
Consolidating Industrial Batch Process Data for Machine Learning 

Simon Mählkvist1,2     Jesper Ejenstam2     Konstantinos Kyprianidis1 
1Future Energy Center, Mälardalen University, Sweden, simon.mahlkvist@mdh.se 

2Kanthal, Sweden 

 

 

 

 

Abstract 
The paradigm change of Industry 4.0 brings attention to 

data-driven modeling and the incentive to apply ma-

chine learning methods in the process industry. Further, 

capitalizing on a great deal of data available is an ad-

verse task. For batch processes, the dataset is in a three-

way format (Batch × Sensor × Time). Depending on the 

process and the goal of the analysis, it might be neces-

sary to aggregate batches together. For this reason, a 

campaign unfolding structure is applied. By grouping 

the batches under new labels relevant to the analytical 

goal, campaigns are created. These labels can be created 

from periodical occurrences, such as refurbishing the re-

fractory lining in the case of the case study. In order to 

utilize the three-way batch format, it is necessary to 

align the batches. In order to address this, the feature-

oriented approach Statistical Pattern Analysis (SPA) is 

applied. SPA derives statistics, e.g., mean, skewness and 

kurtosis from the time series, consequently aligning the 

batches. The SPA and the campaign approach create a 

dataset consisting of select statistics instead of an irreg-

ular three-way array. Functional data analysis (FDA) is 

used to smooth and extract first- and second-order de-

rivative information from the sensors in which func-

tional behavior can be observed before creating features. 

Principal Component Analysis (PCA) is used to exam-

ine the final dataset. Further, industrial processes are no-

toriously nonlinear, and even more so batch processes. 

Therefore, kernel-based principal component analysis 

(KPCA) is used to review the final dataset. The KPCA 

can accommodate different underlying characteristics 

by modifying the kernel function used. 

Batch Process Analysis (BDA), Batch Preprocessing, 

Functional Data Analysis (FDA), Statistical Pattern 

Analysis (SPA), Kernel Principal Component Analysis 
(KPCA)  

1 Introduction 

Within the scope of industry 4.0, industries are deter-

mined to incorporate into their analytical framework 

machine learning methods. Despite the vast selection of 

turn-key solutions, the procedure often falls short on the 

neglected part of the analytical procedure: data acquisi-

tion and preprocessing. Legacy process industries suffer 

from the fallback of outdated infrastructure, making 

data-acquisition procedures cumbersome and prepro-

cessing complex due to, e.g., lack of contextual infor-

mation such as accurate timestamps.  

Batch data analytics (BDA) is a field of study that fo-

cuses on analyzing industrial batch processes. A batch 

process produces products in a turn-based manner which 

repeats over the following phases: charging, operating, 

and discharging. Working with batch process datasets 

offers unique challenges. The dataset a batch process 

provides is a three-dimensional matrix (Batch × Sensor 

× Time, see Figure 1), which offers additional chal-

lenges. E.g., each batch is going to be of different 

lengths, leading to an uneven dataset. Also, the time in-

terval between samples may not be uniform. To accom-

modate irregular sampling or uneven batches, batch syn-

chronization or feature extraction can be applied. In this 

work, The Statistical Pattern Analysis (SPA) method is 

used to compile relevant statistics from the sensor data 

and create an aligned three-dimensional array. Further, 

there are many strategies to convert a three-dimensional 

array into a two-dimensional array. This procedure is 

commonly called unfolding. It is necessary to unfold 

batch data to make it suitable for a more comprehensive 

array of models. Also, a campaign structure is applied to 

understand and explain variables after several batches. 

In short, the campaign approach entails concatenating 

the batches into new batches before the feature extrac-

tion procedure. 

Furthermore, industrial batch processes can be ex-

pected to be nonlinear, making them unsuitable for 

many conventional methods. In order to investigate the 

nonlinear phenomenon, the batch structured datasets are 

analyzed using kernel-PCA (KPCA), which can accom-

modate nonlinear behavior due to its variation of kernel 

functions. A more conventional Principal Component 

Analysis (PCA) supplements this analysis to investigate 

the linear behavior as well.  

A common phenomenon in industrial process analy-

sis is noisy data. Also, for some processes, it may be 

beneficial to investigate derivative information. There-

fore, to smooth the sensor data and extract derivative in-

formation, functional data analysis (FDA) is utilized. 

FDA creates a battery of approximation functions that 

describe the underlying processes, allow extraction of 
derivative information, and, consequently, smoothing. 

There are many complex methods available regarding 
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structuring the data, smoothen and extract derivative in-

formation, and select or reduce features. This work com-

bines several methods to see the potential for this blend. 

This work intends to impart a perspective towards con-

solidating complex industrial batch process data with 

machine learning methods.  

The rest of the paper is organized as follows. Section 

2. contains the methodology of the paper, which in turn 

consists of several subsections. Section 2.1 describes the 

process from which the dataset is constructed. Section 

2.2. explains the data acquisition procedure. Section 2.3. 

elaborates on batch data processing and the campaign 

structure. Section 2.4. is on the functional data analysis. 

Section 2.5. on the feature-oriented approach. Section 

2.6 on PCA and KPCA. Section 2.7 describes the ana-

lytical framework. 

2 Methodology 

2.1 Steel Converter Dataset 

The data in this paper is derived from a steel converter. 

The purpose of a steel converter is to enable the use of 

low-grade resources, e.g., scrap-based or low purity, to 

produce high-quality steel. A converter refines steel 

batch-wise and is used as a secondary procedure. The 

raw material is melted and then fed into the converter. 

The converters' refractory lining interacts with the melt 

directly, and when the lining is exhausted, the converter 

is put out of commission and requires relining before it 

can be reinstated. The chemical composition of the melt 

is registered before and after the process. Also, gas inlet 

temperature, flow, and pressure are stored. The number 

of batches produced in the variable of interest is referred 

to as the campaign metric. The methodology aims to ex-

plore the relations between the degradation, the sensor, 

and chemistry. 

2.2 Data Acquisition 

Acquiring data in a legacy process industry is a diverse 

procedure. The accessible data is likely limited to a 

static tabular view. Due to the large size of uncon-

strained sensor data, such tables are usually limited in 

scope, i.e., duration, time-resolution, or amount of sen-

sors. The memory of the computer or server can be a 

limiting factor if analyzing high-resolution data with 

many sensors. By dynamically detecting relevant sen-

sors or duration in time of interest, it is helpful to sys-

tematically collect similar or more data regarding this or 

even connect a model directly to the system. Being able 

to analyze and collect data from the same development 

platform is beneficial. There are several parameters to 

consider when working on data acquisition for process 

data. Extracting the duration of interest may prove diffi-

cult. For each batch, identifying the duration in which 

the process is working with respect towards the batch is 

called local batch time. The accuracy of the local batch 

times' start and stop timestamps should be reviewed for 

 

Figure 1. Aligned batch data 

 

Figure 2. Uneven batch data

accuracy. The stored information about the batch may

not initially be intended to be used for analytics pur-

poses and, therefore, inaccurate. The workstation and

database server has limited memory. Hence when work-

ing with multiple batches over a significant duration, it

is necessary to extract the data in manageable segments.

2.3 Structuring Batch Data

Batch data is designed in a three-way array structure

with I, J, and K corresponds to a number of batches, var-

iables, and time (local batch time) respectively, see Fig-

ure 1. (Nomikos & MacGregor, 1994) This results from

the distinct structure of batch processes and, as a result,

inhibits the utilization of conventional method without

first transforming from three- to two-dimensions array.

In practice, the batch duration deviates between batches,

and batch data from industrial processes have different

durations, hence producing an uneven dataset, as de-

picted in Figure 2. The procedure of aligning batch data

is called batch synchronization or batch alignment.

By employing a campaign structure along with SPA,

the need for time-sensitive alignment is circumvented.

A description of how to combine and restructure the

three-way array with data from upstream and down-

stream processes follows. The batch-wise unfolding ap-

proach transforms the dataset from an uneven three-way

array to an uneven two-way array by concatenating the

sensor trajectories (see Figure 3).

Wu et al. (2018) introduce a campaign-based batch

unfolding structure which is further advanced by Wu et

al. (2019).  In batch processes where the metric or vari-

able of interest varies or resets over several batches, the
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campaign approach coalesces metric-relevant data into 

a new type of batch (see Figure 4).  

2.4 Functional Data Analysis 

Functional data analysis (FDA), it applied in order to 

extract derivative information and to smooth the trajec-

tories. FDA creates a battery of approximation functions 

that represents the underlying characteristic. Observing 

derivative information of physical variables, e.g., tem-

perature and flow, can be beneficial since the derivative 

adds further information to the system. Using FDA, it is 

possible to interpret derivative information from time-

series sensor data that show functional nature. (Ramsay 

& Silvermann, 1998) In Figure 5, the FDA is showcased 

where the original data is overlaid on top of the approx-

imation function in subfigure (a). Further, it shows the 

1st and 2nd derivatives of the approximation in subfigures 

(b) and (c), respectively. 

 

Figure 5. FDA example show smoothing and 1st and 2nd 

order derivative: (a) raw samples (black dots) and 

smoothing (red line), (b) 1st derivative, (c) 2nd derivative   

Functional data representation is used in a multivari-

ate functional kernel principal component analysis in 

(H. Wang & Yao, 2015). The functional local kernel 

principal component analysis is also in (F. He & Zhang, 

2020). For more information about the FDA's funda-

mentals, see Ramsay et al. works on Functional Data 

Analysis (Ramsay & Silvermann, 1998). 

2.5 Statistical Patten Analysis 

The Feature-oriented method used in this approach is 

SPA. SPA was introduced in He and Wang (2011) as a 

fault detection framework and utilizes 1st, 2nd higher-or-

der statistics derived from batch trajectories instead of 

the trajectories themselves to monitor the process. Like 

other feature-oriented methods, SPA alleviates the pre-

processing step batch trajectory alignment by creating 

statistical metrics from the trajectories.  

He and Wang (2011) monitor a semiconductor batch 

process and use the SPA statistics: mean, skewness, kur-

tosis, and covariance. Wang and He (2010) apply SPA 

with continuous processes and uses the following statis-

tics: mean, variance, autocorrelation, cross-correlation, 

skewness, kurtosis. In this work, the mean, kurtosis, and 

skewness are used as statistics for pattern identification. 

Skewness is a measurement of distribution asymmetry. 

Kurtosis is a measurement of the spread of the data. In 

this work, SPA is used to transform a time series of data 

into a set of three statistics; mean, variance, kurtosis, and 

skewness.   

For more information on feature-oriented methods 

for BDA, see Rendall et al. (2017) and Rendall et al. 

(2019). For a perspective on how the SPA framework 

relates to challenges purposed by smart manufacturing 

and other methods, see He et al. (2019) 

Figure 4. Campaign-wise unfolding 

Figure 3. Batch-wise unfolding 
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2.6 PCA and Kernel-PCA 

PCA is a commonly used method in process analytics 

for dimensionality reduction, feature selection, and un-

supervised data exploration. The PCA is limited to in-

vestigating the linear relations in the dataset. Schölkopf 

et al. (1997) introduced KPCA, which provides further 

utility compared to the conventional, linear PCA. The 

KPCA aggregates the dataset, transforming it into a 

high-dimension feature space using a nonlinear map-

ping. Then, performing dimensionality reduction on the 

feature space and if a suitable kernel function and pa-

rameter is designed makes previously nonlinear data lin-

early interpretable. There are several kernel functions. 

The most commonly applied and used in this work are 

polynomial and radial basis functions (RBF). Both ker-

nel functions have parameters that need to be config-

ured. The KPCA can accommodate underlying nonlin-

ear characteristics and show itself to outperform the 

PCA when performing feature extraction and classifica-

tion on datasets with nonlinear behavior. (Lee et al., 

2004) Works on fault detection using KPCA can be fur-

ther viewed in the works by Lee et al. (2004), H. Want 

and Yao (2015), and He and Zhang (2020). For a funda-

mental look into Kernel methods, the reader is referred 

to the work of Schölkopf et al. (1997).  

2.7 Analytical Design 

Each batch has 15 sensors. FDA is applied 10 of these 

sensors, which creates 20 new trajectories per batch, 10 

for both the 1st and 2nd order derivative. In total, this 

makes 35 trajectories per batch. Batches are concate-

nated to relevant campaigns. The chemical composition 

is measured for every batch before and after the process. 

10 and 17 elements are registered before and after, re-

spectively. For every sensor and chemical element, three 

statistical features are derived. Resulting in 186 features 

per campaign.  

In order to investigate the impact of different meth-

ods, the campaign dataset is segmented into several dif-

ferent subsets. Every subset contains 93 campaign sam-

ples. The following list details the name, description, 

and number of features for the eight:  

• Full: All data (186 features) 

• 0th order: Sensor data without derivatives (45 fea-

tures) 

• 1st & 2nd order: Sensor data of both 1st and 2nd deriv-

ative (60 features) 

• 1st order: 1st order derivative sensor data (30 fea-

tures) 

• 2nd order: 2nd order derivative sensor data (30 fea-

tures) 

• Chem: Both prior and post elemental composition 

(81 features) 

• Pre chem: Elemental composition before the pro-

cess (30 features) 

• Post chem: Elemental composition after the process 

(51 features) 

Using PCA, the explained variance for each of these da-

taset will be calculated and compared. The five most sig-

nificant principal components (PC) will be further in-

vestigated, and each PC's five most significant features 

will also be compared. The fit of the significant PC to 

the campaign metric will be reviewed using ordinary 

least squares and the by investigating the coefficient of 

determination.  

The KPCA is modeled for the RBF and polynomial 

kernel. The parameters for these are dynamic and is pre-

sented in results when relevant. 

3 Results & Discussions 

This section will show how the combined influence of 

the campaign structure, the FDA smoothing, the 1st  and 

2nd  derivatives, and the SPA, by using PCA and KPCA 

to identify different phenomenon in the campaign da-

taset with respect to the campaign features. 

The campaign dataset is segmented into eight differ-

ent datasets, and PCA is performed on all constellations 

of the Campaign dataset. In Figure 6, the explained var-

iance per principal component (PC) for 15 first compo-

nents for each dataset is in a scree plot. Beyond 15 com-

ponents, the explained variance approaches zero and is 

not included.  

In Figure 7, the five samples of the largest explained 

variance of Figure 6 are extracted, and for each sample, 

again, the five features with the most significant ex-

plained variance are derived.  There is overlap between 

the selected features, e.g., the features for the 1st PC in 

the Full dataset have similar significant features to the 

1st component in the 1st & 2nd order dataset (see the top 

figure and second figure from the top in Figure 7). 

 

Figure 6. Explained Variance 
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Figure 7. Feature variance of top 5 PCs  

Two patterns are noteworthy when observing the data 

variance in Figure 6 and the variance of the features in 

Figure 7. First, the 1st PC of the Full dataset coincides 

with the 1st PC consisting of features from the 1st and 2nd 

order derivatives and indicates that the sensor deriva-

tives influence the variance of the Full dataset. Further, 

the 1st PC from the dataset, consisting of only 1st order 

derivates, also shares features with both aforementioned 

datasets. The 1st feature seems to be the root of signifi-

cant variance. Regarding the second discernable pattern, 

the 2nd PC of the Full dataset and the 1st component of 

the Chem dataset share three top features. Hence, the 

Full dataset explains the variation of two datasets with 

its 1st and 2nd PC.  

The five PC is used to model the campaign metric. 

The coefficient of determination 𝑅2 is calculated for 

each to determine how well the PCs are able to general-

ize the campaign metric. None show a significant 𝑅2. 

Hence, while these PC describes the major variance in 

the datasets, they cannot be used to generalize the cam-

paign metric. 

The KPCA is used on the constellations of datasets. 

Several different KPCA is constructed using the poly-

nomial and RBF kernels along with their corresponding 

parameters. Systematically investigating the pcs of the 

different KPCA constellations shows a weak linear 

correlation towards the campaign metric. No significant 

𝑅2. By observing the relations between the KPCA PC, 

two interesting patterns are visible.  

 

Figure 8. Clustering of campaign metric over PC from 

KPCA of the 1st order dataset  

The first pattern is seen in Figure 8, where the PC is 

derived from the KPCA with RBF kernel and gamma 

0.01 from the 1st order dataset. The 1st PC plotted over 

the campaign metric shows no significant correlation, 

but two clusters emerge, as illustrated by the shape and 

color difference. The features of the 1st order dataset are 

explored using a kernel density estimation (KDE) plot, 

and two features are distinct, as seen in Figure 9 and 

Figure 10, which, respectively, show the skewness and 

kurtosis of the same sensor. The sensor is the 1st 

derivative of the temperature sampled for a gas inlet. 
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Figure 9. Density plot of skewness for 1st order derivative 

of inlet gas temp 

 

Figure 10. Density plot of kurtosis for 1st order derivative 

of inlet gas temp  

The separation in Figure 9 and Figure 10 shows that the 

left cluster in Figure 8 has lower skewness and greater 

kurtosis than the right cluster. 

The second pattern, seen in Figure 11, shows a clus-

tering when comparing the campaign metric with the 1st 

PC derived from a KPCA with the RBF kernel and 

gamma of 0.001 of the Chem dataset. Figure 12 and Fig-

ure 13 further shows how this clustering transfers to the 

two features of the Chem datasets. Further, both features 

show the kurtosis for the chemical composition, of the 

same element, before and after the process. The cluster-

ing is overlapping since the distribution in Figure 12 for 

the right cluster shows two peaks, of which the line up 

with the other cluster. The right cluster for both figures 

aligns around where kurtosis is zero, which indicates a 

tighter spread. Hence, the left cluster is more random re-

garding the element's content, i.e., it has a more signifi-

cant deviation.  

Considering both the patterns identified via the KPCA 

(Figure 8 and Figure 11). Isolating the clusters and per-

forming additional analysis could provide further infor-

mation. Additional campaign samples would be benefi-

cial as they would provide more data for analyzing data 

subsets. With a total campaign sample size of 93, fur-

ther, partitioning can prove detrimental. 

In general, the approach applied does not explain the 

campaign metric. Several variables may contribute to 

expanding the approach, and the rest of this section will 

reflect on this.  

The PCA and KPCA transform the different datasets, 

and while the PCA is limited to a linear approach, the 

KPCA is not. However, even with several approaches 

by KPCA,  a relevant interpretation concerning the cam-

paign metric is not discovered. This may be because the 

analytical approach relies on a parametric framework 

that assumes the data to conform to underlying statisti-

cal distributions. Therefore it would be suitable to in-

clude non-parametric methods, such as variation of ran-

dom forest, to analyze the relationship between the cam-

paign data and metrics. The SPA is not limited to the 

statistics used in this work, and many other feature-ori-

ented approaches have the potential to derive features 

that can explain other metrics. 

The campaign-based approach unfolds the data 

batch-wise with respect to a campaign metric. Further, 

it is common in BDA to divide the batch into phases if 

the process has different operation modes. Also, it is 

possible that a campaign can have similar phases, e.g., 

the first batches are of specific interest and should be 

separated from the rest. Further, the analysis results of 

the campaign datasets may be understood if the batch 

mix is considered, e.g., the clustering is a result of dif-

ferent products or groups of products with similar pro- 

 

  

Figure 11. Clustering of Campaign metric over PC from 

KPCA of the Chem dataset  
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cess parameters, being overly represented in said cam-

paign. Hence, designing the analysis so that the batch 

and campaign are divided into relevant phases is sug-

gested. On the other hand, some of the datasets used are 

already high-dimensional. Considering batch and cam-

paign phases, and adding additional statistical features, 

would further increase the number of features. 

Therefore, an efficient and sustainable feature selec-

tion method should be applied so that a more complex 

and encompassing dataset can be considered. 

 

Figure 12. Density plot of kurtosis for elemental content 

before the process  

 

 

Figure 13. Density plot of kurtosis for elemental content 

after the process  

4 Conclusion 

This methodology provides a low complexity and a 

practical approach to batch process data preprocessing 

and synthesizes the unaligned three-way array into a 

two-way array. It is challenging to systematically eval-

uate the methodology due to a high number of design 

variables. The approach proves to be poor at generaliz-

ing the campaign metric, e.g., unable to explain the deg-

radation mechanics. Several design improvements are 

discussed to enhance further the potential for the dataset 

to contain relevant information and increase the number 

of features, further aggravating the issues that high-di-

mensional datasets provide. Therefore, it would be val-

uable to implement a feature selection approach suitable 

for the campaign structure. 

The KPCA approach uncovers interesting patterns in 

the data. These patterns manage to isolate different 

modes in the statistical features. The origin of these clus-

ters is not determined, but their existence shows poten-

tial for the campaign structure to provide insights. It 

would be beneficial to increase the number of samples, 

I.e., increase the number of campaigns, to get a more 

accurate view of the underlying distributions by investi-

gating data subsets. The challenge to this is that the rate 

at which data is generated is low. Hence the analytics 

has to rely on available historical data.  

While the feature-oriented approach applied in this 

work is considered low complexity, the combination of 

campaign structure and FDA and KPCA makes it an 

elaborate construct. It shows potential to understand 

campaign-related phenomena, but further research into 

proper analysis methods is required. 
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