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Abstract 
In countries with cold winters, snowpack will affect 

the hydropower production during the melting 

periods. To optimize the hydropower production, it is 

relevant to consider information from the snowpack 

to estimate the water content when melting. Several 

techniques and devices can be used to measure the 

water content of the snowpack. This paper discusses 

a prototype based on capacitive measurements with a 

small footprint, and the development of data driven 

models to estimate the snow density, snow depth and 

snow water equivalent in a snowpack. The device was 

deployed in a snowy area throughout the winter with 

logging while manual reference measurements were 

made sporadically. Machine learning methods were 

used for developing the models, and several models 

were combined to estimate the water content of the 

snowpack. The developed model estimated the snow 

density, snow depth and snow water equivalent 

during the wintertime with good results. However, 

during the springtime, the capacitive measurements 

have some limitations. 

 

Keywords: snow density, snow water equivalent, 

capacitive sensor, model development, machine 
learning.  

1 Introduction 

1.1 Background 

Measurement of snowpack has been a challenge for a 

long time, one of the first research papers handling 

this challenge was published in the early 80s (Denoth 

et al., 1984). Snowpack is defined as the mass of snow 

on the ground that is compressed and hardened by its 

own weight. 
Weather forecast is considered the most important 

input to the models used for predicting hydropower 

production. However, in areas where snow 

accumulates during winter and melts in the spring, the 

inflow and hence the predictions based on these 

models, will be highly affected. 

Today measurements of snow depth and density 

are often performed manually at the end of the winter 

season with the aim of estimating the melting inflow. 

These measurements must often be taken in remote 

and impassable locations, making it time-consuming 

and expensive. As an alternative way of measuring 

the snow depth and density, an autonomous system 

with a minimal environmental footprint that can be 

deployed remotely and transmit data is proposed.  

In this work a prototype system was developed, 

based on capacitance measurements, and deployed in 

a snowy area in autumn 2020. The prototype was used 

to record measurement values during the winter 

period 2020/2021 and these measurements were used 

as input data for the work of a master thesis at 

University of South-Eastern Norway (USN) spring 

2021. The focus of this master thesis is a modelling 

approach using machine learning methods (Vahl, 

2021). 

The focus in this work is for hydropower systems. 

However, the prototype system is a more general 

system that can also be applied for other purposes 

based on snowpacks like measuring skiing conditions 

and evaluating the risk for avalanches. 

1.2 Previous work 

Since measuring the snowpack has been a challenge for 

decades, several works and projects have been 

performed within this area. 

An overview of instruments for measurement of the 

snowpack is described in (Denoth et al, 1984). The focus 

of these measurements is to estimate the snow water 

equivalent (SWE) in the snowpack where SWE is 

defined as 

𝑆𝑊𝐸 = ℎ𝑠

𝜌

𝜌𝑤
 

 

where hs is the snow depth, ρ is the density of snow 

and ρw is the density of water, measured in g/cm3. 

Measurement of dielectric properties of snow is 

described in (Hallikainen et al. 1982), and an overview 
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of snow dielectric devices and applications is described 

in (Denoth and Wilhelmy, 1989). 

Newer work about liquid water content in snow is 

described in (Niang et al., 2006) and (Techel and 

Pielmeier, 2010).  

Some ongoing projects are “Long-term snow water 

equivalent measurements” at WSL (Wsl, 2021) and 

“Current snow cover” at CCIN (Ccin, 2021). 

The liquid water content in snow is important for 

hydropower systems as the inflow of water at 

springtime will be a combination of water from 

raining and melting of snow. Predicting the amount 

of inflow is done using models based on among others 

weather forecasts. However, these models are 

missing regular inputs from areas where snow 

accumulates during winter and melts in the 

springtime. 

In Norway, the Norwegian Water Resources and 

Energy Directorate (NVE) published a report where 

snow pillows are recommended as automatic snow 

water equivalent sensors (Stranden et al., 2015). 

Snow pillows are sensors having a large 

environmental footprint with a weight and distance 

sensor to measure the weight and height of the 

snowpack. 

A project was started at USN in 2019, in 

cooperation with Skagerak Energy AS, to try to 

develop an autonomous measurement system for 

snow depth, snow density and snow water equivalent 

for remote locations, with a small footprint. The first 

part of the project looked at the system structure of an 

autonomous measurement system and several 

possible measurement principles, and a capacitive 

solution was proposed (Bjerke et al., 2019). A 

prototype measurement system, based only on 

capacitance measurements was developed and used 

for logging (Murillo Abril, 2020), (Murillo Abril et 

al., 2020). The Covid-19 situation in springtime 2020 

with limitation of traveling and the absence of snow 

at the USN campus limits the number of valid 

measurements. A new prototype was developed 

autumn 2020 with five capacitive measurements at 

different heights in addition to measurement of the 

atmospheric pressure and temperature. This prototype 

was deployed in a snowy area, close to Lillehammer 

(in Norway), throughout the winter season in 

2020/2021 with automatic logging of sensor values 

while manual reference measurements were made 

sporadically.   

1.3 Outline of paper 

Section 2 provides a discussion of the system, the 

prototype developed and deployed, the logging of the 

sensor values from the prototype, and any manual 

measurements. Section 3 gives an overview of the 

machine learning methods. Section 4 gives an 

overview of the model fitting and validation. The 

results are discussed in Section 5 and some 

conclusions are drawn in Section 6. 

2 System description 

The prototype housing consists of a two-meter heigh 

grey plastic pipe, with a 90-degree bend on the top. 

The capacitance sensor devices are located at fixed 

heights of the plastic pipe, and the temperature and 

pressure sensor are located at the top of the plastic 

pipe. The hypothesis for the project was that the 

snow depth and the snow density could be estimated 

based on the capacitance measurements at different 

layers in the snowpack. 

A picture of the prototype is shown in Figure 1 

covered by about 70 cm of snow, with the two upper 

capacitance sensors as the black objects pointing to 

the left from the pipe. The three remaining 

capacitance sensors are covered by the snow. 

  

 

Figure 1: The prototype, covered by about 70 cm with 

snow. The two upper capacitance sensors can be seen as 

the two black objects pointing to the left of the pipe. 

The measurement system of the prototype consists of an 

Arduino Nano located at the top of the plastic pipe. The 

Arduino Nano system starts running once a minute, read 

the sensor values, convert the capacitance sensor 

outputs to voltage range [0,5] Volt, the temperature to 

℃  and the pressure to mBar, and transmit the converted 

values over the serial line (USB) on a Modbus based 
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protocol. The capacitive sensor is a “Capacitive Soil 

Moisture Sensor v1.2” device with a 0-5V interface, the 

temperature sensor is a TMP36 silicon device with a 0-

5V interface, and the pressure sensor is a 4Tech absolute 

pressure device with a 4-20 mA interface. The 4-20mA 

interface is converted to a 0-5V interface using a 250 

Ohm resistor. However, the pressure sensor must be 

powered by a separate 12 V DC power supply while the 

other sensor devices are powered by the 5 V DC output 

of the Arduino system. The vertical locations of the 

capacitive sensor devices are 10, 30, 50, 80 and 110 

[cm].  

A use case diagram, made by Unified Modeling 

Language (UML), for the Arduino software is shown in 

Figure 2. As shown in the figure the Arduino software 

will collect the sensor values and transmit the converted 

sensor values on the serial line. A remote logging system 

is needed to record, filter, and store these values.  

 

 

Figure 2: A use case diagram showing the functionality 

of the Arduino software. Every minute, read the sensor 

values, convert to the right unit, and transmit on the 

serial port using a Modbus based protocol. 

 
Machine learning methods were applied, and 

supervised learning was the selected method as 

prediction models for the snow depth, snow density and 

snow water equivalent were needed. Hence 

corresponding values for snow depth and snow density 

should be recorded together with the sensor values.  

A use case diagram, in UML, for the data storage 

software (DSS) is shown in Figure 3.  

The software has four main functionalities; 1) collect, 

low pass filter, store and display the values from the 

measurement system. 2) handle configuration of sensor 

types, size of low pass filter and how often to store the 

measurement values on the Comma Separated Values 

(csv) file. 3) Allow for input of reference values for 

snow depth and snow density that can be used for the 

training the models. These values will be stored on the 

csv file together with the sensor values. 4) Logging of 

the values on the csv file at specific times independent 

of receiving data from the measurement system. The 

default setup was a moving average low pass filter size 

of 8 and storing the values in csv file every 30 minutes. 

The serial port, used for communication between the 

Arduino system and DSS is an USB port, which also 

contains the power (5VDC) for the Arduino system. 

 

Figure 3: A use case diagram showing the functionality 

of the logging software, for logging the values from the 

measurement system. 

 

Figure 4 shows the measuring node to the left, based 

on a vertical plastic tube with the capacitance sensor 

devices at fixed height, seen as the white areas in the 

figure. The lowest capacitance sensor is not visible in 

this figure. The right side shows the connection between 

the Arduino system and the DSS, and the protocol used 

between these systems. 

 

 

Figure 4: The measurement node to the left with the 

capacitance sensors at the white areas, and the 

connection with some examples of the protocol to the 

right. 

 

The DSS will low pass filter and store the sensor 

values on a csv file at fixed time intervals, 

configurable in the DSS. Figure 5 shows a plotting 

option in DSS when testing manual covering 

capacitance sensor #2 and #3 with snow. Sensor #2 at 

13:40 and sensor #3 at 14:50, with sensor values in 

mV. Sensor #1 is the lowest sensor device already 

covered by snow. The change in the voltage is about 

100 mV depending on the water content of the snow. 
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The format of the csv file is one line for each 

measurement containing the time stamp, the values 

from the capacitance sensors (the lowest one first), 

temperature sensor, pressure sensors, and any 

manually measured values for snow depth and snow 

density. The size of csv file was limited by making a 

new file for each month.  

The manual measurements were made by using a 

metal pipe with an inner diameter of 6.6 cm inserted 

into the snowpack, measuring the depth and the 

weight of the sample. The snow density was 

calculated based on the pipe diameter and the weight 

of the snow. All the data needed for the model 

development are stored in the csv files. 

 

3 Model development 

Several tools and frameworks were used for analysis, 

preprocessing and development of the models. The 

reason for using several frameworks was to get some 

experience with the analyzing tools and the process of 

making models for different frameworks. MATLAB 

was used for both analyzing, preprocessing and 

development of the models. ML.NET is a free machine 

learning framework from Microsoft and was used 

together with C# for developing models. Keras and 

TensorFlow was used together with Python to develop 

models, the tools used in Python was scikit learn. Open 

Neural Network Exchange (ONNX), an open standard 

for machine learning models, was evaluated for 

transferring some of the models between these 

frameworks but was not used since separate models 

were developed in each framework. 

Supervised learning is used so only the measurement 

with references can be used for developing the model. 

The periods for measurements with manual references 

are 1) 22 to 27-NOV-20, 2) 28 to 31-DEC-20, 3) 12 to 

13-FEB-21, and 4) 30-MAR to 2-APR-21. These data 

were analyzed and some of the data had to be removed 

because of a power loss error. There is also a challenge 

Figure 5: Plotting of the capacitance sensor values when covered by snow. Cap1 is the lowest capacitance sensor, 

covered by snow. Cap2 is manually covered by snow at 13:40, and Cap3 at 14:50. Cap 4 and Cap 5 is not 

covered by snow. 

Figure 6: All valid samples for the lowest capacitance sensor with relation to pressure, temperature, depth, and 

density. Three sections, first section is for November (samples 0 to 172) (without snow), second section for 

December (samples 172 to 312) and third section for February (samples 313 to 372). 
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with measurements using a sensor device at fixed 

location so all the measurements from the last period 

was removed. This will be discussed as part of the 

discussion section. The total number of samples that can 

be used for training of the models are 372. 

The valid samples for capacitance sensor #1, the 

lowest sensor, is shown in Figure 6. The first section, 

the red section, is the samples for November [1-172], the 

second section is December [173-312], and the last 

section is February [313-372]. In each row is the 

capacitance sensor compared with the pressure, 

temperature, depth, and density. 

  

A Principal Component Analysis (PCA) was 

performed indicating that only four principal 

components are needed to explain 96% of variance in 

the data. The system has seven variables, 5 capacitance 

sensor devices, one temperature sensor device and an 

absolute pressure sensor device. The PCA indicated that 

all sensor devices were important for the needed 

information. 

The sample set was divided into a training set of 216 

samples and a test set of 156 samples. 

4 Results 

The goal of this project is to develop a model to estimate 

the Snow Water Equivalent (SWE) parameter for the 

snowpack, based on the snow depth and snow density. 

SWE is based on the snow depth and snow density so 

two separate models must be developed first, one to 

estimate the snow depth and one model to estimate the 

snow density.  

4.1 Model trained using MATLAB 

The Regression Learner app was used in MATLAB to 

train the models with different algorithms. The best 

model suggested by the Regression Learner app was 

Figure 7: The model for estimating the snow density based on the BR algorithm in MATLAB. 

Figure 8: The model for estimating the snow depth based on the BR algorithm in MATLAB. 
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Gaussian Process Regression (GPP). These models have 

a challenge in estimating the depth and density in 

November with no snow. A new model was developed 

based on neural network with one hidden layer of 50 

neurons, using Bayesian Regularization (BR). Figure 8 

shows the measured depth and the predicted depth based 

on the BR model.  

The model seems to predict the snow depth ok except 

for the period in November with no snow, and better 

than the GPP model. The corresponding model for 

measured density and predicted density is shown in 

Figure 7. 

 

The model seems to predict the snow density ok, even 

the November is ok even if there is no snow. There is 

also a challenge with the density in February, this will 

be part of the discussion section. 

4.2 Model trained using ML.NET 

ML.NET also contains an automatic trainer but only the 

algorithm with the best validation results regarding 

MSE is available at the end of the development process. 

A test application in C# was developed to plot the 

measured and predicted values from the models. None 

of algorithms for the automatic trainer made a model as 

good as the BR model from MATLAB, and the best 

results was from the Fast Forrest algorithm. The snow 

density result is shown in Figure 9 and the snow depth 

result is shown in Figure 10. 

 

Figure 9: The model for estimation of the snow density based on the ML.NET algorithm. 

Figure 10: The model for estimation of the snow depth based on the ML.NET algorithm. 
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Figure 10 shows that the model will not estimate the 

snow depth very good in November when there is no  

snow. Most of the models seems to have a challenge 

with this period. The same challenge with the snow 

density estimation for the model shown in Figure 9.  

The models developed in the MATLAB framework 

in Figure 7 and Figure 8 seem to estimate the snow 

depth and snow density better then the models 

developed in the ML.NET framework.  

4.3 Model trained using Keras 

Keras is a Python based application programming 

interface (API) for TensorFlow. Neural network models 

and the Adam optimizer was used in Keras, with 80% of 

the samples for training and 20% of the samples used for 

validation. The selection of samples for these sets were 

randomized and 1000 epochs was the default for training 

the models. 

 

Figure 11: The snow density prediction and 

measurement based on the Keras framework. 

The snow depth model architecture consists of eight 

hidden layers with between 50 and 200 neurons in each 

hidden layer. The activation functions used in these 

layers are Tanh, Relu and Sigmoid types.  

The measured and estimated snow depth, based on 

the Keras model, is shown in Figure 12. The model 

shows a good prediction also for the November period 

when there was no snow. 

The snow density model architecture consists of six 

hidden layers with between 25 and 150 neurons in 

each hidden layer. The activation functions used in 

these layers are Tanh and Relu types. The architecture 

for the snow depth model is more complex than the 

snow density model. 

The measured and estimated snow density, based 

on the Keras model, is shown in Figure 11. The snow 

density model shows a good prediction of the snow 

denisty although the density at higher levels is not 

following the reference optimally. 
  

 

Figure 12: The snow depth prediction and 

measurement based on the Keras framework. 

 

Since both the snow depth and the snow density 

models based on the Keras framework seems to 

perform best on the limited data set, these models 

were selected as the input for the SWE model.  
The SWE model, shown in Figure 13, showing a 

good prediction of the SWE. Some deviations in the  

upper regions but still a good fit. 

  

Figure 13: The snow water equivalent (SWE) 

prediction and measurement based on the Keras 

framework. 

5 Discussion 

There are several comments that should be given based 

on these measurements and results. Many of the models 

seems to have a challenge predicting the correct snow 

depth and snow density when no snow, so other weather 

or environment parameters should be checked and 

possible added to the system. As always with machine 

learning methods more data is wanted. In this case there 

are too few reference measurements with too large 

jumps in snow depth. This time the reference was based 

on manual intermittent measurements. The depth 

measurements were ok, while the density was more of a 

challenge. First the density was assumed to be almost 

constant during a day, but in a sunny day the density 

could vary a lot. The next step will be to have an 

automatic measurement of the depth and the density as 

well. Some experiments have been done using an 
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ultrasonic sensor during the winter and if the calculation 

is compensated for the temperature and humidity, an 

ultrasonic sensor will work as depth measurement. A 

weight cell will also be considered to have a reference 

measurement for the weight of the snow, estimate the 

density based on the weight and the depth. 

A big challenge with the capacitance sensor devices 

is that these devices are contact sensors and during the 

springtime when the snow is melting, the snow crystals 

will change the shape and size, and will lose contact 

with fixed objects (Muller, 2020). The capacitance 

sensor will work in wintertime with temperatures below 

0ºC but will lose contact with the snow in springtime 

and temperatures above 0ºC. This is the reason the last 

dataset, the dataset from April was not used in the model 

development process. The current design is not a good 

solution, another solution should be used to measure the 

capacitance in the next version of the prototype. 

The first versions of the models estimate the 

parameters as expected. However, the amount of labeled 

data was too small to get a good and reliable model, and 

the number of capacitive sensors gave a too rough 

estimate of the snow depth.  

The test and validation set are both collected from the 

same original dataset, with small variations, especially 

in the reference. It is therefore likely that the presented 

Keras model with a huge number of hidden neurons are 

partly overfitted. Additional new datasets should 

therefore be tested before the models can be assessed for 

more conditions in a broader range. 

Future work will involve a more robust logging 

system, a non-contact depth sensor like ultra-sonic or 

laser sensor and a weight sensor for better calibration 

data. A new design of the capacitance sensor is needed 

to better measure the capacitance of the snow during the 

springtime. 

The measurement system is measuring the 

capacitance at different layers in the snowpack, and 

estimating the snow depth, the density, and the water 

content. The focus in this project has been on 

measurements for hydro power systems. However, 

properties for other systems like for skiing or avalanches 

should also be possible with this type of measurements. 

Skiing properties like snow depth and surface conditions 

can be estimated based on the measured values from the 

capacitance sensors. Avalanches are beyond the scope 

of this study. However, by measuring the capacitance in 

many layers in the snowpack, with a higher resolution 

of sensor devices, estimating the condition of each layer 

can be used for evaluating the risk of avalanches in that 

area. 

6 Conclusion 

Three different machine learning framework was used, 

MATLAB, ML.NET and Keras. The models developed 

using the Keras framework were the best models, 

especially in the period with no snow. Two different 

models were developed for each framework, for 

prediction of the snow depth and snow density. All 

models performed ok with a limited set of data samples. 

The snow density and snow depth models from the 

Keras framework was used for the SWE model, the goal 

of this work. The model predicting the SWE was 

working ok with some limitation. However, the limited 

set of samples was the largest limitation of making a 

good model. 
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