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Abstract 
In this study, we consider fault prediction problem and 

production process risk monitoring based on 

observational data. We consider case, when there are no 

variables, by which one could classify the situation 

preceding to the fault. We propose an approach that is 

based on a specific auxiliary risk variable and 

modifications of the modeling accuracy estimation 

criterion, so the fault detection problem is reduced to 

supervised learning problem. We use deep learning and 

examine different model architectures. Trained model 

produces the risk estimations for new observations, then 

we use postprocessing to interpret the estimations to 

decision-maker. This work confirms that data-driven 

risk estimation can be integrated into digital services to 

successfully manage plant operational changes and 

support plant prescriptive maintenance. This was 

demonstrated with data from a commercial circulating 

fluidized bed firing various biomass and residues but is 

generally applicable to other production plants.  

Keywords:     deep learning, fault detection, risk 

estimation, postprocessing 

1 Introduction 

In this paper we consider a real-world problem 

concentrating on boiler fault prediction in biomass-fired 

circulating fluidized bed (CFB) power plants. These 

plants are extremely important and have not only the 

financial benefits, but also benefits for the environment 

as they can be used to replace fossil-fuel -based power 

generation. Plants of this type can utilize challenging 

fuels such as biomass or waste residues efficiently, but 

the drawback is that these types of fuel may often cause 

different problems such as blockages in the material 

flow. Especially this concerns biomass fractions that 

include large amounts of alkali metals. Although the 

consequences of the blockages are serious, we still 

cannot measure the quality of the fuel accurately and 

need to control the process using the observational data 

coming from different other sensors. At the same time 

rapidly evolving energy market sets challenges to 
traditional combustion-based power plants as it 

demands efficiency and flexibility in terms of fuel and 

load range. For example, the share of biomass as an 

energy source has increased significantly during recent 

years and it is expected to keep on increasing. In this 

study we propose and apply an approach to find patterns 

in a system state that takes place priorly to the fault. 

The fault prediction problem and state monitoring 

problem appear in many different industries. This 

problem is serious because faults bring damage to 

production process and causes loss of profit. Faults can 

cause production blockage or disfunction and 

companies require resources to stabilize the process. In 

(Paltrinieri and Khan, 2016) the importance of risk 

assessment is considered for chemical industries. In 

energy sector faults consequences are serious too: any 

unexpected load limitation or shutdown of a power unit 

can cause considerable economical losses. Usually, the 

cost of undoing the damage is much higher than the cost 

of preventing the fault and that is why it is important to 

monitor and analyze the system state. The production 

system state analysis can predict if the process is in risky 

state and we need to act to lessen the risk.  

Production processes are complex so many of those 

does not have adequate mathematical models based on 

physics or chemistry. But if even we had a mathematical 

model, there is still high level of uncertainty: we cannot 

measure all the inputs and all the system states. Once we 

met uncertainty, we use data to fight it. This leads us to 

hypothesis of using the data and data-driven modeling 

to solve fault prediction problem.  

But how do we know that some of the system states 

causes faults? In general, there are no state variables 

indicating that situation is getting risky. Even process 

experts cannot name the conditions by which we could 

determine the pre-fault state. Anyway, if there are such 

variables, the approach we consider in this study can be 

applied too. Commonly, these conditions could be 

complex, and first we need to recognize those. When we 

can identify the system state with some value 

representing how close it is to pre-fault condition, and 

this is where we use mathematical model. In this case 

mathematical model is a mapping that reflects the 

observations to indicative values that shows if the 

system is risky and earlier it led to one of the fault cases. 

The next step would be transforming the indicative 
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value to decision. This next step is based on another

mathematical model, which we call a post-processing

unit, that helps production expert to categorize the

situation.

To sum up, we propose ap approach that is based on

recognition of patterns in data that led to failure in the

past and help production experts in decision-making by

mapping state evaluation to clear and succinct labels. Of

course, similar patterns can be met also in common

functioning, so it is important part of the approach to

deal with interpretation contradictions. But adjustment

of proposed decision-making support system needs to

involve economical effect calculation. We can make

system more sensitive and increase the number of times,

when the system indicates, that the current situation is

risky, so the production expert needs to act. Or we can

make it less sensitive and focus only on patterns that

proved their statistical relation to fault. System

sensitivity is the question that can be solved with

business only and by measuring the economic effect.

Proposed approach helps analyzing the patterns

leading to the faults and revealing if similar conditions

caused the fault in different cases.

In this study we reduced the fault prediction problem

to regression problem, where we use observational data

to train the model utilizing machine learning techniques.

We adjusted the modeling criterion to fit the problem

and applied a specific mapping to the modeling results

to interpret the model predictions so the model and its

postprocessing unit can work online to solve the risk

monitoring problem.

2 Risk Estimation and Fault

Prediction

Statistical modeling is applicable to solve various

application problems (Kuhn and Johnsson, 2016) and

computational resources today allow solving complex

modeling problems. We can apply deep neural

networks, train them on large datasets and produce a

value for the production. Deep learning algorithms

proved their efficiency in solving complex modeling

problems (Chollet and Allaire, 2018) and (Goodfellow

et al., 2016). Digital transformation or Industry 4.0 has

high demand in statistical models and modeling

methods (Brink et al., 2016) since many of models are

data-driven or learning from the data.

In many different studies machine learning

algorithms were applied to solve the fault prediction

problem, but considered approaches are applicable to

specific domain or when there is known variable, by

which one can measure how safe is the process. For

example, in (Paltrinieri et al., 2019) the machine

learning based approach is considered as a promising

tool of solving risk estimation problems, but in their

study was a variable that represents the risk level. But

the process we study does not have such variables. If we

could label the system states data, we could apply the

approach considered in study (Bondyra et al., 2018). But 

we have thousands of observations and no information 

on how we can estimate the degree of risk for each 

system state. 

Approach based on labeled data is also presented in 

study (Rackshani et al., 2009), where authors consider 

the fault prediction problem for a power plant boiler and 

solved it by means of deep neural network. In their study 

the risk variable was constructed based on the fact of 

immediate faults and 8-hours operating cycle. This 

approach is difficult to be applied if there are only a few 

fault cases in dataset. It also makes it difficult to use this 

model to make just in time decisions, since the model is 

trained on aggregated data. It is also hard to detect if the 

reason for the fault was observed earlier than the 

working cycle interval. Approach without data 

aggregation was considered in the study (Hujanen, 

2019), where the problem was reduced to the 

classification problem with 3 classes and deep neural 

networks were trained.  

In this study we propose an approach that is based on 

recognizing of specific patterns in data, that caused the 

system fault in the past. We construct the auxiliary risk 

variable that indicates how dangerous is the current 

state. We assume that risk starts to grow some time 

before the fault and all the other time it is low. This risk 

interpretation is a simplification of the risk definition 

done by (Kaplan and Garrick, 1981), and we are not 

estimating the consequences and probabilities. 

Having risk variable makes it possible to reduce the 

fault detection problem to supervised learning problem. 

But there is uncertainty of the actual risk value for the 

observations that do not belong to the prior to the fault 

interval. In following paragraphs, we consider the risk 

variable construction, the adjustment of criterion and the 

postprocessing of the modeling results. 

2.1 Problem Reduction 

The considered process state can be characterized by 

different inputs that correspond to the sensor data from 

the different parts of the boiler plant. Each of these 

inputs can be described as time series with fixed step 

size: 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑠}, 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑠}, where 𝑠 is a 

sample size. We also know 𝑚 times at which the fault 

happened: 𝑡𝑖
𝑓

, 𝑖 = 1, 𝑚, so we assume that there had 

been some time before that, at which the risk began to 

grow. 

2.1.1 Risk Variable Construction 

This time before the fault is a parameter ∆ of the 

proposed approach. We put forward a hypothesis, that 

there is no risk in any other timestamp, than timesteps 

before the fault limited by the parameter. We also 

assume that risk increases monotonically starting from 

zero, and it reaches its maximum value of one by the 

fault time, so the risk variable can be evaluated by the 

following function  
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𝑟(𝑡, 𝑡𝑓) = {
𝑡 − 𝑡𝑓

∆
+ 1, 𝑡𝑓 − ∆ ≤ 𝑡 ≤ 𝑡𝑓 ,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 (1) 

where 𝑡𝑓 is the fault time and ∆ is the parameter. Since 

there could be 𝑚 different faults, the risk function for 

whole observation time can be evaluated as a sum of 

single fault functions (1): 

𝑟(𝑡) = ∑ 𝑟(𝑡, 𝑡𝑖
𝑓

).

𝑚

𝑖=1

 (2) 

We assume that there is always a normal system state 

between the different faults, so it is possible to find such 

∆ that ∄𝑖, 𝑗,  𝑡𝑖
𝑓

< 𝑡𝑗
𝑓

: 𝑡𝑗
𝑓

− 𝑡𝑖
𝑓

< ∆, so non-zero 

intervals of the risk functions are not overlapping. 

According to this approach, we need to find a relation 

between the system state variables and the risk feature. 

In this study we assume that the risk is increasing 

identically before any of the faults. 

2.1.2 Criterion Adjustment 

We need to split the data on train and test sets to 

estimate the adequacy of model and its generalization. 

Since we work with time series, which consists of 

several intervals corresponding to several faults, we 

consider two splitting schemes. First option is to leave 

the data for one of the faults for the test and to keep 

other faults data for the train. This would help us to 

understand which faults have similar (or different) 

patterns corresponding to the risk increase. Second 

option is to split the data on two subsets, one before 

some date as train and validation and second after that 

date as test. In that case we can see, how good is 

historical data in predicting the future faults. To provide 

validation we used stratification, so train and validation 

contain observations from a common process and 

observations from the interval before the fault. 

As a modeling criterion we used the root mean 

square error 

𝐼(�̃�) = √∑(𝑟(𝑡𝑖) − �̃�(𝑥𝑖))
2

𝑛

𝑖=1

, (3) 

where n is a test or validation subset size, 𝑟(𝑡𝑖), 𝑖 = 1, 𝑛̅̅ ̅̅̅ 

are risks (2) at 𝑡𝑖 timestamps and �̃�(𝑥𝑖), 𝑖 = 1, 𝑛̅̅ ̅̅̅ are risk 

estimations at the same time points by the model. Since 

we cannot properly estimate the risk for the time, when 

no fault was detected and we cannot estimate the risk 

for time intervals right after the fault, we suggested to 

use specific weights for these errors in the sum (3):  

𝐼𝑤(�̃�) = √∑ 𝑤(𝑡𝑖) ∙ (𝑟(𝑡𝑖) − �̃�(𝑥𝑖))
2

𝑛

𝑖=1

, (4) 

where 𝑤(𝑡) is a weighting function, 

𝑤(𝑡) = {

𝑤𝑎𝑓𝑡𝑒𝑟, 𝑡 ∈ 𝑇𝑎𝑓𝑡𝑒𝑟 ,

𝑤𝑛𝑜𝑟𝑚𝑎𝑙 , 𝑡 ∈ 𝑇𝑛𝑜𝑟𝑚𝑎𝑙 ,
𝑤𝑟𝑖𝑠𝑘 , 𝑡 ∈ 𝑇𝑟𝑖𝑠𝑘 ,

 (5) 

and 𝑇𝑎𝑓𝑡𝑒𝑟 are the time intervals corresponding to states 

after the faults, 𝑇𝑟𝑖𝑠𝑘 are the time intervals before the 

faults and 𝑇𝑛𝑜𝑟𝑚𝑎𝑙 are the other intervals. Here 𝑤𝑎𝑓𝑡𝑒𝑟, 

𝑤𝑛𝑜𝑟𝑚𝑎𝑙 and 𝑤𝑟𝑖𝑠𝑘 are weighing coefficients. These 

coefficients are used for increasing the influence of 

errors caused at the points, when the risk was growing 

and decrease the influence of errors of risk estimation 

for the time intervals for which the risk value is 

uncertain. 

2.1.3 Supervised Learning Problem 

The goal of our risk modelling approach is to estimate 

the risk of the current system state and to observe its 

dynamics for decision making. It means that we need to 

have model with optimal parameters 𝛼∗, which is 

adequate in risk estimation and thus minimizing the 

criterion (4): 

𝑎∗ = argmin
𝛼

𝐼𝑤(�̃�(𝑥|𝛼)), (6) 

where �̃�(𝑥|𝛼) is the model prediction in case of its 

parameters 𝛼, and 

𝑟∗(𝑥) = �̃�(𝑥|𝑎∗), (7) 

is the best model by criterion (5) for the data we have. 

The fault prediction problem is reduced to minimization 

problem (4), where we use specific weight coefficients 

(5). The solution of reduced problem is optimal model 

parameters (6), that we use to estimate a risk by system 

state variables. Now the risk estimation (7) can be used 

for fault prediction and decision making, but in this 

study, we consider interpreting risk estimations for 

decision making in production control. 

2.2 Postprocessing 

As a result of learning process, we have a model (7), 

which takes the system state as an input and returns risk 

prediction as an output. But we cannot use the risk 

prediction value to make decisions, because the single 

number cannot be interpreted. To solve the 

interpretation problem, we need another computational 

module, which takes the risk predictions and classifies 

the current situation. 

Let �̃�𝑡 , �̃�𝑡−1, … , �̃�𝑡−𝑚 be the latest 𝑚 predictions of the 

model (7) and the postprocessing function is  

𝑃(∙): 𝑅𝑚 → 𝑅, 
𝑃(�̃�𝑡, �̃�𝑡−1, … , �̃�𝑡−𝑚) = 𝑙𝑡, 

(8) 

where 𝑙𝑡 is the postprocessed value or label that 

classifies the production process state. 

In this study we used three different classes: “good”, 

“warning” and “dangerous”, so ∀𝑖, 𝑙𝑖 ∈
{good, warning, dangerous}. First label indicates that 

process is running regularly, second label requires 

attention to the production process and the third one 

indicates that the situation can lead to a fault. In general, 

one can use any other classes and labels. 
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We used postprocessing function, which is based on 

filtering the low values and summation of all the risk 

values: 

𝑣𝑡 = {

0 if ∃𝑖 < 𝑚: �̃�𝑡−𝑖 > 𝑏,

∑ �̃�𝑡−𝑖

𝑚

𝑖=0

, otherwise,
 (9) 

where 𝑣𝑡 is an intermediate numeric value and 𝑏 is filter 

parameter. 

Now we use intermediate values (9) to classify the 

process state: 

𝑙𝑡 = {

"good" if 𝑣𝑡 < 𝑞1,
"warning" if 𝑞1 ≤ 𝑣𝑡 < 𝑞2,

"dangerous" if 𝑣𝑡 > 𝑞2,
 (10) 

and 𝑞1 < 𝑞2 are classification parameters. 

2.3 Approach Parameters 

Proposed approach has parameters, which need to be 

tuned. The first group of parameters is related to time 

intervals: ∆ and time after the fault. In general, each 

interval can be characterized by its own parameters, but 

it this study we assume that ∆ and time after the fault are 

similar for all fault cases. Production expert opinion is 

useful in determining time after the fault. 

Weights (5) that we use in criterion have strong 

influence on results. General recommendations are to 

make 𝑤𝑟𝑖𝑠𝑘 > 10 ∙ 𝑤𝑛𝑜𝑟𝑚𝑎𝑙 > 𝑤𝑎𝑓𝑡𝑒𝑟, so recognition of 

risk increase before the fault is more important than 

small risk value in case of regular production process. It 

is also useful to resolve the contradiction if the same 

pattern led to fault in one case and did not in the other. 

Prost-processing parameters are window size 𝑚, 

filter value 𝑏, borders 𝑞1 and 𝑞2. These parameters need 

to be tuned with production and business experts, 

because of their relation to the decision-making process. 

Window size depends on dynamical character of the 

process and rate of observations. Filter value among 

with the labeling borders can be tuned on the basis of 

the training data by adjusting the sensitiveness of the 

postprocessing system. 

3 Data-driven Risk Estimation and 

Monitoring 

The production process we want to estimate risk for has 

many observation variables. Each variable is measured 

every 15 minutes. We explicitly selected the variables 

with help of production experts to avoid overfitting and 

to focus on the factors of the main interest. The dataset 

contains 50879 observations and has a gap in 

observations. In given observation time there were 8 

faults, each could be caused by own reasons and we do 

not know that in advance.  

In this study we manually tried different time delta 

parameters and finally used ∆= 2 hours. For that 

parameter and according to observation step size, we 

have only 192 observations that can be labelled as 

leading to the fault. One can see that the dataset is

unbalanced: 50687 of “good” observations versus 192

of “leading to the fault” observations. For some

production processes, it is typical that the faults occur

uniquely, so there is imbalance between classes.

We also consider modeling when we include lags

from the previous observations. In this paper we check

the last 5 observations, which equals to 1.5-hour

lookback. We will label these modes specifically.

The weighs (5) for criterion (4) are set as following:

𝑤𝑎𝑓𝑡𝑒𝑟 = 𝑤𝑛𝑜𝑟𝑚𝑎𝑙 = 1, 𝑤𝑟𝑖𝑠𝑘 = 10. The weights were

tuned manually and based on the modeling results

feedback from the production experts. Weights (5) are

important when adjusting the balance between fault

sensitivity and the number of fail detections. In general,

these characteristics should be tuned as a part of

decision-making support system. It depends on

resources company loses with any missed fail and

resources company loses when act in case of alarming

signal produced by the fault detection system.

We used the Keras framework (Allaire and Chollet,

2018) for modeling, and the application were

implemented in R (R Core Team, 2018). We made a

web application with R Shiny framework (Chang et 

al., 2021), that can be deployed to the company 

server. Since this application has access to the data 

needed it gives the results in visual form directly to 

the decision maker.

In this study we tried different deep neural network

(DNN) architectures. Previously we tested that the

proposed approach works for failure prediction problem

solving (Ryzhikov et al., 2020) and now test if the

efficiency changes with different DNN models. Each

model layer has a dropout with 0.5 probability. When

train model we use root mean square back propagation

algorithm with a batch size of 5000 and 100 iterations.

For each model given in Table 1, we calculated the

root mean square error (RMSE) on train and test data.

As one can see, in Table 1 there are models, which

include lagged variables. For those models we used lags

for the previous 5 observations to check if including the

historical data will improve the modeling results.

In this study we use specific learning data splitting:

for each fault we produce training dataset, which

contains all observations except ones that belong to an

interval containing the fault, and test dataset, which is

this interval. This splitting helps us to understand if one

fault case can be predicted with model, which was

trained on another fault cases.

When comparing model, we are interested in how

these models predict on train data on intervals before

the fault cases and all other intervals, and the same for

test dataset. Intervals before fault and all other intervals

for train data and for test data are given in Figures 1-4.

Since dropout and initial coefficients are random, we

provide boxplots of the RMSE and run each problem

for 10 times.
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Table 1. DNN architectures. 

DNN Neurons by layer With lag? 

1 64, 64, 64 no 

2 64, 64, 64, 64 no 

3 128, 64, 64 no 

4 256, 64, 64 no 

5 128, 64, 8, 64 no 

6 64, 64, 64 yes 

7 64, 64, 64, 64 yes 

8 128, 64, 64 yes 

9 256, 64, 64 yes 

10 128, 64, 8, 64 yes 

 

 

 

Figure 1. RMSE on train data, fault intervals, by model 

architecture on x axis and problem on y axis. 

 

 

 

 

Figure 2. RMSE on train data, regular process intervals, 

by model architecture on x axis and problem on y axis. 

As one can see, some of architectures outperform 

other architectures on pre-fault intervals risk estimation. 

Based on pre-fault intervals RMSE statistics we could 

assume that some of the models are preferable than 

others. When we look at RMSE statistics on regular 

process intervals, we can see that the variation of 

average results is not as big, as it is for fault intervals. 

Nevertheless, the most important part is prediction for 

data in test dataset.  

 

 

Figure 3. RMSE on test data, fault intervals, by model 

architecture on x axis and problem on y axis. 
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Figure 4. RMSE on test data, regular process intervals, by 

model architecture on x axis and problem on y axis. 

When we compare model performance on test data, 

we can see some surprising results. For example, 

architecture 6, which was worse than 1-5 architectures, 

shows nearly the same or better mean values in 6 

problems. 

We need to have a closer look at model predictions 

on train in test data to understand the reason for that 

effects and why we cannot use RMSE to select the best 

model. First, our modeling approach assumes (1) and 

(2), that risk can be explained by the following function. 

But when we train the model, we are interested in having 

values greater than 0 in pre-fault intervals and values 

close to 0 in all other intervals. And models deliver that, 

but with different magnitude of values. Second, reasons 

for the faults and selected parameter for pre-fault 

interval could be different from one fault to another. 

We demonstrate this effect in Figures 5-8. Figures 5 

and 6 refer to DNN architecture 7, which outperforming 

statistic we observed above. We randomly selected one 

of the models from 10 runs for each architecture. 

The subject of further research is another metric for 

comparing modeling results, that is based on ability to 

predict the fault in advance and  

 

 

Figure 5. Risk estimation for all dataset, DNN 

architecture 7. 

 

Figure 6. Risk estimation for pre-fault intervals only, 

DNN architecture 7. 

According to plots on Figures 5 and 6, we can assume 

that model gives a good prediction on a training data, all 

other observations are near 0 and target interval shows 

some positive estimations of risk value. The maximum 

risk value is near 35. Let us compare these two plots 

with similar ones done for DNN with architecture 2. 
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Figure 7. Risk estimation for all dataset, DNN 

architecture 2. 

 

 

Figure 8. Risk estimation for all dataset, DNN 

architecture 2. 

The prediction on all dataset looks like Figure 5, but 

fuzzier. The prediction of risk before the target fault is 

better, according to values, but all the other fault 

predictions have greater magnitude than ones in Figure 

6. This proves our assumption that we need to design 

and use another criterion co compare different models 

and architectures, so we could produce them 

automatically. 

In this study and solving real-world fault prediction 

and risk monitoring problem, we observed all the 
models manually, running tens and hundreds of model 

trainings to then choose several. Chosen model was 

taken as the basis for risk monitoring system. We used 

model predictions and (8)-(10) postprocessing 

approach. We adjusted the parameters of postprocessing 

manually, so these parameters detect the faults in 

advance. 

Data loading, data preprocessing, modeling and 

postprocessing were implemented in web-application, 

implemented in R and R Shiny framework. In Figures 

9-11 one can see the simulation where model receives 

new data, estimates risk and then postprocessor signals 

to application user interface that process is running fine, 

there is warning, and situation is dangerous. Interface 

shows also preselected number of previous risk 

estimations, so the decision-maker can see the situation 

dynamics. 

 

 

Figure 9. Risk monitoring, postprocessor receiving “Ok” 

state. 

 

 

Figure 10. Risk monitoring, postprocessor receiving 

“Warning” state. 
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Figure 11. Risk monitoring, postprocessor receiving 

“Danger!” state. 

4 Conclusion 

In this study we examined proposed approach of risk 

estimation and fault detection. We applied 

postprocessing scheme that is based on filtering and risk 

summation, which makes possible to interpret the risk 

estimation model outputs and use this interpretation in 

decision-making. 

Risk is constructed as auxiliary variable that 

monotonically increases in time interval prior to the 

fault. This variable makes possible revealing the 

patterns that possibly caused the faults even if these 

patterns were observed in different time before the fault 

and/or during the regular process. Once we apply leave 

one out testing and validation, we can estimate if the 

faults caused by similar system states. It is important to 

mention, that auxiliary risk variable helps us solving the 

fault detection problem, when there are no variables by 

which one could detect that there is something wrong 

with the production process and there is a fault risk. 

Postprocessing of the model estimations makes it 

possible to interpret the results by once adjusting the 

mapping algorithm. As one can see, different models 

give risk estimations that differ in magnitude and 

sensitivity. By adjusting postprocessing we could 

suggest what is indication fits the production experts 

most: is one sensitive enough or accurate enough.  

Further work is related with automatic model 

selection. We need to design criterion and searching 

algorithm that will compare models with different 

magnitudes of risk estimations and deal with uncertainty 

of different risk intervals. 

We implemented the fault detection and risk 
estimation as web application with R, keras and R Shiny 

framework. This application can be deployed to the 

company network and work online, demonstrating the 

decision-maker the current estimation of risk. 
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