SIMS EUROSIM 2021

Level measurements with computer vision - comparison of
traditional and machine learning computer vision methods

Eirik Dgble, Sindre Haugseter, Christian Mikkelsen, Jgrgen Bang Sneisen, Nils-Olav Skeie, Ole
Magnus Brastein*

Department of Electrical Engineering, Information Technology and Cybernetics
University of South-Eastern Norway, N-3918 Porsgrunn,
*(ole.m.brastein @usn.no)

Abstract

In this work, modern machine learning methods are com-
pared against traditional image processing techniques, for
the purpose of estimating the level of coffee beans in a
transparent tank fitted to a coffee machine. Measurements
using both approaches are compared against manual level
measurements. The resulting algorithm are analysed for
repeatability under scene variations, such as orientation of
the tank with respect to the camera and the distribution of
coffee beans. Keywords: Level measurement, computer
vision, image segmentation, ResNet34

1 Introduction

1.1 Background

Level measurements is important for a large number of
applications in both industry, science and the commer-
cial sector (Bentley, 2005). Popular measurement tech-
nologies include guided radar, ultrasonic, capacitance and
flotation based sensors principles (Bentley, 2005). In
many cases, it is desirable to apply a non-intrusive sen-
sor principle. One possible solution which has received
significant scientific interest in recent years is the use
of digital cameras together with advanced, typically ma-
chine learning (ML) based, algorithms (Goodfellow et al.,
2016). This technology has a large range of possible ap-
plications, including the non-intrusive level measurement
of substances in a partially transparent tank.

In this work, the system of interest is a coffee machine
that has been outfitted with an industrial robotic arm. The
goal of the project, originating from Bouvet Consulting in
Porsgrunn, is to create an Al barista. One aspect of this
project is to measure the level of coffee beans remaining
in the tank of the coffee-machine. Since the machine is
a common-of-the-shelf model, there is no level measure-
ment sensor built in. However, as is typically the case
for such devices, there is a transparent inspection window
which allows users to visually estimate the level of cof-
fee beans in the tank. The facility for visual inspection,
together with the obvious need to ensure safe human con-
sumption of the produced coffee, makes the use of vision
based sensor technology particularly interesting.

1.2 Previous work

There have been several published works on using com-
puter vision for level estimation for liquids, which is argu-
ably easaier then the granular coffee beans studied in this
work. Zepel et.al. used open-source libraries (Numpy,
OpenCYV, and PySerial) for liquid level monitoring and
control in common continuously stirred tank reactor pro-
cesses. They used Canny Edge detection in order to locate
strong horizontal edges to detect the liquid-air interface,
and perform decisions to control the pump(s) for manipu-
lating the liquid level. They found that the method gives
acceptable results when using computer-vision as part of
an autonomous platform to monitor experimental factors
and make control decisions. (Zepel et al., 2020).

In (Eppel and Kachman, 2014) a general computer vis-
ion method for the recognition of liquid surfaces and li-
quid levels in various transparent containers is presented.
They concluded that making a general recognition method
for liquid systems is possible and that it can be achieved
with good accuracy in various cases. The best indication
of the liquid surface was found to be the relative intensity
change, the edge density change and the gradient direction
relative to the curve normal.

2 Methods

2.1 Machine learning vs traditional computer
vision algorithms

The field of computer vision has experienced a paradigm
shift over the last two decades (Goodfellow et al., 2016).
The application of machine learning (ML), and in partic-
ular multilayer artificial neural networks (ANN), known
as deep learning, has revolutionised what is possible to
achieve with computer vision (Goodfellow et al., 2016),
leading to the use of computer vision in many new applica-
tion. While machine learning certainly has had a profound
effect on the computer vision field, there are still much use
for non-learning algorithms as well. In many applications,
the traditional image processing methods may indeed be
advantageous because they tend to be faster w.r.t. execu-
tion time.

Before presenting the methods of interest in this work
it is instructive to discuss the fundamental difference

DOI: 10.3384/ecp21185140 Proceedings of SIMS EUROSIM 2021 140

Virtual, Finland, 21-23 September 2021

SIMS EUROSIM 2021

Traditional image

A Solution
processing

Solution
Rules

Machine Learning

Data

Figure 1. Comparing traditional image processing with machine
learning

between the two approaches to image analysis. Before the
advent of ML, image analysis was conducted by construct-
ing algorithms using various developed standard tech-
niques, such as filtering and gradient computations (Brad-
ski and Kaehler, 2008). Most analysis tools uses a series
of such steps to compute a result. The common denomin-
ator for these techniques is that the algorithms consist of
a set of rules that describe how an image should be pro-
cessed to produce an analysis results or solution (Brad-
ski and Kaehler, 2008). In some applications, engineering
these rules turns out to be very difficult. Consider the text-
book case of distinguishing images of cats and dogs, it is
difficult to imagine manually constructing a set of rules
that can compute the probability of an image containing a
particular animal based solely on the pixel values.

As shown in Fig. 1, machine learning turns the ap-
proach to image analysis, and indeed data analysis in gen-
eral, around. Rather then engineering the rules needed
to produce a solution, relevant input data is coupled by a
desired solution (Goodfellow et al., 2016; Kuhn and John-
son, 2013). Subsequently, algorithms are used to identify
patterns between input data and the desired solution. The
identified patterns can be considered as machine gener-
ated rules which in turn is applied to new images in order
to compute the desired result (Goodfellow et al., 2016;
Kuhn and Johnson, 2013). Naturally, rules generated by
a computer by pattern recognition is not necessarily sim-
ilar in formulation to the rules or instruction steps used
in traditional computer vision algorithms, but their use is
the same; computing a solution or analysis result for new
images of the underlying system of interest.

2.2 Machine learning using fastai

The ML framework of choice in this project is Fastai
which was created by the Fast.ai organization (Howard
and Gugger, 2020). The motivation for developing the
framework is to provide a practical approach to machine
learning, where the idea is to start learning by doing prac-
tical work instead of first requiring a deeper theoretical
knowledge of the intricacies of ML. The fastai framework
is based on PyTorch (Paszke et al., 2019) and gives the
PyTorch library an extra layer of functionality using the
APTI’s by offering high-level API’s which makes it easier
to get started with machine learning.

Training
Algorithm

-

Figure 2. Machine learning and prediction with images

Prediction

Output

2.2.1 TImage classification and segmentation

A fundamental goal of many computer vision analysis al-
gorithms is to label the content of an image (Goodfellow
et al., 2016). Two distinctly different approaches towards
applying labels to various parts of an image are known
as classification and segmentation (Bradski and Kaehler,
2008). Both methods use an algorithm to train a model
from the images. After a model has been trained, new im-
ages is sent to the model and an output is given, as shown
in Fig. 2.

In classification objects in the image are analysed
and labelled as belonging to one of many pre-determined
classes, often together with an estimated probability ac-
curacy of the class label being correct (Bradski and
Kaehler, 2008; Goodfellow et al., 2016). A class can
be, for example, a car, a cat, a house, etc. When train-
ing a classification model, a large number of images are
pre-labelled and sorted according to the class of object
they contain, typically arranged in different folder in the
filesystem. The output of an image classifier is a region,
typically rectangular, in the input image together with a
label that classifies the content of that region.

In contrast, image segmentation does not detect dis-
crete objects, but rather seeks to determine non-uniform
regions in the image which belong to a particular pre-
trained class (Bradski and Kaehler, 2008). As such, seg-
mentation can arguably be considered a type of classific-
ation, but instead of classifying the object in the image,
each single pixel is labelled depending on what class it
most likely belongs to. When training a segmentation
model, each pixel in the training image is labelled by a
class id, typically using different shade of grey in an over-
laying image known as a mask (He et al., 2016; Deng
et al., 2009). By coupling a mask with a training image,
the machine learning algorithm learns the pattern that con-
nects image content with segment class. When the trained
segmentation model is applied to a new image it will as-
sign a class label to every pixel, such that neighbouring
pixels of the same class form an image segment. The seg-
mented image can then be further analysed to locate ob-
jects and boundaries like lines and curves in an image.

2.2.2 Estimating tank level from an image

In this work, image segmentation is used to estimate the
level of coffee beans in a transparent tank. After apply-
ing the segmentation model on a new image, the method
outputs a tensor of same dimensions as the input image,

DOI: 10.3384/ecp21185140 Proceedings of SIMS EUROSIM 2021 141

Virtual, Finland, 21-23 September 2021

SIMS EUROSIM 2021

where each tensor element constitutes a class label for the
pixel in the corresponding image.

All the training images used in this project are tagged
by manually creating masks with three classes: COFFEE,
EMPTY_TANK and BACKGROUND. When a new im-
age is segmented using the resulting trained model, the
output is a tensor array of the same dimensions as the in-
put image, containing the identified classification of each
pixel.This tensor is used to calculate the level in the coffee
bean container using:

v Neoffee (1)
coffee T Neank

where Ncoffee and Nignk is the number of pixels after im-
age segmentation classified as belonging to the segments
COFFEE and EMPTY_TANK, respectively. The under-
lying assumption of this approach is that the camera is
positioned such that the 2D projection of the coffee tank
onto the image sensor produces an image, where the re-
gion consisting of coffee beans relative to that of the com-
plete tank, e.g., the empty tank plus the coffee beans, is
proportional to the coffee volume of interest. While this
assumption is true for the approximate rectangular tank
used for this work, a more complex geometry may require
a second regression model to be trained in order to estim-
ate the actual volume from the projected 2D regions in an
image (Goodfellow et al., 2016; Kuhn and Johnson, 2013).

Level [%] =

2.2.3 Transfer learning

Transfer learning (TL) was first introduced in (Bozinovski
and Fulgosi, 1976) where they describe a mathematical
and geometrical model of TL (Bozinovski, 2020). TL is
a method in machine learning where knowledge gained
in one task is exploited to improve generalization in dif-
ferent but related task (Goodfellow et al., 2016). For ex-
ample, knowledge gained from recognizing a car could be
used when learning to recognize a truck. TL is a popu-
lar approach in computer vision and natural language pro-
cessing tasks because it can train neural networks with
comparatively little data with shorter training time than
when training from scratch. In most real-world prob-
lems it is difficult to obtain a large number of labelled
data points for training of complex models. Hence, a pre-
trained model is beneficial. In Computer vision, it is com-
mon for the neural network to first find edges in the first
layers, general shapes in the middle layers, and finally
task-specific characteristics for the last layers. In TL, the
first and middle layers are transferred to the new model,
while only the last layers must be re-trained. The main ad-
vantages of TL is shorter training time, less training data,
and in most cases better performance (Bozinovski, 2020).

2.2.4 ResNet

The ML model of choice in this work is a Residual Neural
Network (ResNet), which is a continuation of a convolu-
tional neural network (CNN) that has become a popular
model for computer vision in the recent years (He et al.,

DOI: 10.3384/ecp21185140

Proceedings of SIMS EUROSIM 2021

2016). To further improve on the CNN method, the Res-
Net adds skip connection or shortcuts to jump over some
layers. ResNet models typically implements double- or
triple- layer skip connections. A weight matrix can be
used to find the skip weights in models known as High-
wayNets. The skip connections help to avoids the trouble-
some vanishing gradient problem, which occurs in CNN
which preventing further training.

The ResNet model used for this project is ResNet-34
which consist of a network with 34 layers (He et al., 2016).
The ResNet-34 model was pre-trained using the ImageNet
dataset which consists of millions of pre-labeled images
(Deng et al., 2009). Larger networks are better at com-
plex problems but are easy to overfit, takes longer to train
and use more memory than smaller networks. Hance,
ResNet-34 was chosen because its performance to ac-
curacy trade-off was satisfactory for the problem. Other
neural networks like AlexNet, GooglLeNet, DenseNet and
SqueezeNet was tested but based on initial experimenta-
tion the ResNet-34 model appears to perform adequately
for the task.

2.2.5 Model training

The ResNet-34 model was repeatedly re-trained with an
increasing number of training images, until a satisfactory
result was reached at only 93 images. The relatively low
number of training images needed to achieve satisfactory
performance shows the strength of using transfer learning
on a pre-trained model.

A common method for increasing the variation in the
training set artificially is to apply randomised transform-
ations to training set. Examples of transformations are:
changing the image size, flipping, rotating, or adding
Gaussian blur. By increasing the variation of images in
the training set the resulting model will be able to handle
a greater variance in images used as inputs when predict-
ing results.

2.3 Traditional approach using OpenCV

The traditional approach to computer vision, i.e., prior to
the advent of ML methods, is to construct the algorithms
using a sequence of processing steps, typically using a se-
lection of standard computations such as computing gradi-
ents, filtering, global or local thresholding, and morpholo-
gical transformations (Bradski and Kaehler, 2008). These
operators are applied to produce new images, typically of
the same dimensions in height and width but not neces-
sary the same bit-depth. Input images are typically RGB
encoded bitmaps of bit-depth 8, but many other formats
exist. Often, building the software for image capture and
conversion into the required format requires considerable
work (Bradski and Kaehler, 2008). A sequence of captur-
ing and processing steps is often denominated as a pipeline
in the computer vision field.

One of the main advantages of traditional computer
vision algorithms is that the image operators , i.e., math-
ematical processing steps, that is used to build up higher

142

Virtual, Finland, 21-23 September 2021

SIMS EUROSIM 2021

level algorithms are well known and understood (Brad-
ski and Kaehler, 2008). Hence, there exist highly optim-
ised implementations of these steps. Arguably, the most
popular library of such optimised computation methods
is the Open-Source Computer Vision Library (OpenCV)
(Bradski and Kaehler, 2008). As an open-source library,
the framework consist of contributions from many of the
worlds leading experts in computer vision. Since OpenCV
is widely used, its methods and syntax is commonly un-
derstood and recognised by software engineers in the field,
which helps to speed up the development of new applica-
tions (Bradski and Kaehler, 2008). OpenCV supports the
programming languages C ++, Python, Java and Matlab,
and all major operating systems, e.g., Windows, Linux,
Mac OS, and Android.

In this work, OpenCYV is used to analyse the images
of the coffee bean tank and subsequently provide an es-
timate of the level of coffee beans. Two promising meth-
ods of interest towards this goal is the use of segmentation
by binary thresholding or edge detection using the Canny
Edge Detection algorithm. Note that OpenCV also con-
tains several ML based approaches, but in this work it is
the non-learning methods in OpenCV that are of primary
interest.

2.3.1 Binary threshold

OpenCV supports numerous thresholding functions
(Bradski and Kaehler, 2008), including a simple binary
threshold with or without inversion, i.e., pixels above
threshold can be defined as either high (white) or low
(black) in the output image.

The simplest thresholding method compares every
pixel in the frame against the pre-determined threshold
leoffee- In the output image, each pixel value is set depend-
ing on being above or below the threshold. If the intensity
of the pixel fy, is greater than that given threshold value
leoffee, the output image pixel f, , will be set to black, e.g.,
a greyscale value 0 and white or greyscale 255 otherwise,
according to:

~ 0,

Jry = { 255,
The application of a threshold assumes that the region of
interest can be distinguished from the background by the
intensity of the pixel alone. One difficulty with applying
this method is choosing an appropriate threshold value,
since this value is highly dependant on the scene and light-
ing conditions.

While the application of the threshold computation is
straight forward, building an algorithm around threshold-
ing requires the application of several additional image
operators to pre-process the image. In this work, the
image is first converted to greyscale by averaging the
RGB values of each pixel. Next, a Gaussian blur step
is used to smooth the image and reduce the influence of
noise on the thresholded image, before finally applying
the threshold step. Further, as illustrated in Fig. 3, the

fx,y > lcoffee
otherwise

2)

Delution

—

Erosion

ed

Original image

Figure 3. Binary threshold post processing steps.

output of the threshold step is post-processed by the mor-
phological transformations erosion and dilation, which to-
gether forms the operation known as opening, to further
reduce image noise. The output of the morphological
transformation is a binary image where, assuming appro-
priate threshold value, the coffee bean area is marked as
white. The last two steps of the algorithm is to find the
contour of the thresholded region and finally fit a rectangle
around it. Since the width of the tank is known apriori,
the coffee bean level can be estimated from the height vs
width ratio of this identified rectangle. A weakens of this
approach is that it neglects the possibility of uneven distri-
bution of coffee beans. However, this shortcoming could
easily be remedied in future work by either fitting a poly-
gon or multiple rectangle slices across the width direction.

2.3.2 Canny edge detection

Canny Edge Detection (CED) is an algorithm that can be
used to detect edges in an image (Bradski and Kaehler,
2008). CED is a multi-step algorithm which consist of the
following steps:

1. Noise reduction with a Gaussian filter

2. Finding the intensity gradient compares a pixel’s
value against its neighbouring pixels and outputs a new
image where the larger difference in intensity equates to a
higher pixel value

3. Non-maximum Suppression is used to thin the
edges

4. Hysteresis thresholding is used to connect neigh-
bouring pixels into a consistent edge

The CED algorithm was tested for the purpose of
identifying the edges of the tank and the edge between the
two mediums: coffee beans and air. However, the binary
threshold algorithm was found to provide more consist-
ent results, hence in the sequel only the binary threshold
method is discussed further .

3 Experimental setup

An experimental rig, consist of a wooden plate where a
Logitech C922 camera and the coffee tank are mounted,
was constructed in order to get repeatability in the pictures
w.r.t. camera angle. The camera angle was chosen such
that the flat top of the coffee container would not disturb

DOI; 10.3384/ecp21185140 Proceedings of SIMS EUROSIM 2021 143

Virtual, Finland, 21-23 September 2021

SIMS EUROSIM 2021

Chosen setup

Unwanted
setup

Figure 4. Experimental setup

[T TETN SN B

Figure 5. Image shows a A4 25x25mm calibration chessrboard.

the measurement, as shown in Fig. 4. This is because of
the method used for measuring level is effectively meas-
uring the area that is in the cameras field of view (FOV).

To get enough variety in the background of the pictures
the rig was positioned with different walls in the back-
ground, and some black paper was used to show that black
does not automatically mean ‘coffee’ for the ML model.
The ideal scenarios are a plain light-coloured background
with little disturbances, even lighting, and little to no re-
flection.

3.1 Perspective distortion

Due to the position of the optical sensor in relation to the
tank, as shown in Fig. 4, the captured images are some-
what affected by perspective distortion, which will influ-
ence the measured area. As shown in Fig. 5 a rectangle
of a given size will occupy a bigger pixel area the fur-
ther down in the image that it is projected. Observe also
that, due to a slight lens distortion effect, the rectangles
are not completely square. Compensating for these factors
would be recommended for future work and is achievable
by standard OpenCV methods.

4 Results and discussion
4.1 Model training

Once the fasai framework is configured and the training
images loaded, the model training process consist of re-
peatedly calling the fit_one_cycle method, which advances
the model training one iteration, or epoch as is the denom-
ination used in the ML literature. The method returns the
loss and accuracy metric in the form of a table for the cur-

DOI: 10.3384/ecp21185140

Proceedings of SIMS EUROSIM 2021

Image 20 epochs 40 epochs 100 epochs

-

Figure 6. Training with increasing number of epochs. Seg-
ments are labeled as coffee (yellow), empty tank (cyan), and
background (purple).

rent training stage. Since segmentation is used to estimate
the coffee level, the loss function compares pixel gradients
in the training pictures and masks, as discussed in Sec.
2.2.2. To determine the ML model’s performance loss, the
predicted output is compared with the target value, and the
deviation between these determines the loss values, where
a large deviation gives a high loss value.

The amount of training needed varies from the com-
plexity of the task. Some examples of different situations
are shown in Fig. 6. In the first row, an ideal scene config-
uration with even lighting, little reflection and no noise
in the background is shown. Here the machine learn-
ing model finds satisfactory results already after just 20
epochs. A more challenging scene is shown on the second
row, where a dark jacket is introduced in the background.
With only 20 epochs of training, the ML model struggles
to differentiate the dark jacket from the container with cof-
fee. At 40 epochs the prediction is much better, and at 100
epochs of training the prediction is close to perfect. This
result shows that more complex scene configurations are
more challenging to segment and therefore require a more
intensively trained ML model. Further, this results shows
that it is important to have a variety of scene configura-
tions in the training data since the ML. model can only be
expected to accurately estimate the image segmentation of
images that are similar to the training set used to build the
model.

4.2 Optimal scene conditions

The ideal scene configuration is a plain light-colored back-
ground with little disturbances providing good contrast
with the coffee beans, even lighting, and little or now re-
flection from the transparent tank. In this situation both
OpenCV and fastai detects the area with coffee beans
with acceptable accuracy. The mean error from ten differ-
ent predictions gives fastai an error at 0,7% and OpenCV
3,0% as the results in Fig. 7 and Table 1show. The esti-
mated level accuracy for both methods is considered well
within acceptable range for the purpose of a coffee robot.

Note that both methods failed to estimate the level to
0% if the tank is empty, due to how the level is computed

Virtual, Finland, 21-23 September 2021

144

SIMS EUROSIM 2021

33,7% 34,3% 37,9%
543% 54,0% 59,0%

79,4%

78,8%

82,0%

Figure 7. Results of applying both methods under optimal con-
ditions (left: raw image, middle: ML result, right: threshold
result).

from the image analysis results.

4.3 Challenging scene conditions

Figure 8 shows some examples of more challenging scen-
arios. In the first row a black sheet of paper was added
to the background to test if the models could differenti-
ate dark background from the coffee beans. The results
show that fastai still segments the coffee accurately, except
for a small strip with a lot of reflection on top of the cof-
fee beans. In contrast, the binary threshold method failed
completely due to the pre-determined threshold value no
longer being suitable for the captured image. The dark
background caused the camera to automatically turn up
the light sensitivity, which made the coffee too light to be
within the threshold. For future work all automatic func-
tions on the camera, like light sensitivity, should be turned
off to secure better control over the images.

The second row shows a near ideal scenario, but with
the coffee slanted. Here, Fastai also obtains an accur-

Table 1. Comparing analysis results under ideal conditions.

Ref [%] ML [%] Err[%] OCV [%] Err[%]
15.2 14.7 0.5 14.6 0.6
25.2 26.4 1.2 26.7 1.5
33.7 34.3 0.6 37.9 4.2
44.3 44.3 0.0 45.8 1.5
54.3 54.0 0.3 59.0 4.7
62.1 62.1 0.0 65.1 3.0
72.0 71.0 1.0 74.3 2.3
79.4 78.8 0.6 82.0 2.6
97.2 96.3 0.9 102.3 5.1

Mean error 0.7 3.0

DOI: 10.3384/ecp21185140

Proceedings of SIMS EUROSIM 2021

40,5%

55,7% 34,5%

Figure 8. Results of both methods under challenging conditions
(left: raw image, middle: ML result, right: threshold result).

ate level estimate while the threshold based method sig-
nificantly overestimate the level. Since the ML method
post processing counts all the marked pixels, while the
threshold based method draws a rectangle around the ex-
treme points in the largest contour and find the height from
a width to height ratio, the latter is unable to account for an
uneven coffee distribution and will therefore always over-
estimate the level in such conditions. A solution for future
work would be to draw a polygon around the coffee in-
stead of a rectangle.

The images in the third row of Fig. 8 contains a com-
pletely different container than used in in the training data.
One of the problems with this scene is that the top sur-
face of the coffee is visible, which violates the assump-
tion discussed in Sec. 4. The coffee beans in the picture
are also a much lighter colour which further complicates
the choice of threshold value. The fastai model, despite
the rather large deviation of this particular scene config-
uration compared with the training images, successfully
segmented out the coffee beans. Only some areas around
the lid were misclassified. The estimation error of 15% is
largely caused by the image violating the assumption of
camera angle w.r.t. the coffee surface in the jar being vis-
ible. While the threshold method apparently produced a
prediction error of only 5%, this result is simply random
and must be rejected as false. Since the ratio between the
height and the width of the container is different from the
assumed tank geometry, the post processing of threshold
based method cannot produce reliable results without ad-
apting the assumptions to the new container.

A common challenge encountered in many of the ex-
periments performed in this work is the sensitivity to re-
flection on the container. The reflections affect the results

Virtual, Finland, 21-23 September 2021

145

SIMS EUROSIM 2021

on both fastai and the threshold method, resulting in in-
accurate level calculations. In fastai the reflections will
in some cases be interpreted as the container instead of
the coffee beans behind the reflection. In the threshold
method the reflection brightness makes the algorithm neg-
lect part of the coffee area as it is brighter than the coffee
beans not covered by a reflection.

4.3.1 Adapting to changes in the image scene

As discussed in Sec. 4.3, performing level estimation on
an image which deviates from the reference images can
cause the level prediction to fail or miscalculate the level.
These disturbances and deviations are typically changes in
the container geometry, challenging light conditions, col-
our schemes, reflections, shadows, or new structures in the
background.

The fastai model is only capable of accurate segment-
ation on images that are similar to the training images.
However, it can be retrained for new deviations or disturb-
ances, which is done by adding images containing the new
conditions to the training set. Next the model is trained
through several epochs to prodiuce a new model. The ex-
isting training data should be preserved and is used as a
starting point when a model is trained with new condi-
tions. This process of adding new data to the training set
and subsequently re-training the model is arguably similar
to process of creating a new model using transfer learning
on the general ResNet-34 model.

In the threshold based method, the expected scene is
more closely tied to the chosen method parameters, i.e.,
the tank geometry and threshold values, which must be
set for each specific scenario. Since the threshold value is
more highly dependant on light conditions and colour, it
is necessary to manually set new threshold values by trial
and error. An alternative for future work could be to de-
tect the threshold automaticity by further utilising apriori
knowledge of the scene, such as the expected approxim-
ately rectangular shape of the coffee area, or indeed the
expected location of the coffee beans in the projected im-
age.

The difference in manual labour needed when updat-
ing the methods for new conditions or deviations, shows
the versatility and adaptability of the fastai training meth-
ods compared to the more traditional threshold based
method. When compensating for disturbances fastai will
retain all previous scenarios, while the threshold method
is configured for using specific settings for each scenario.

4.4 Repeatability under experimental varia-
tion

To test the repeatability of the computer vision based level
estimation methods, two experiments were preformed.
First, the tank is rotated such that the images are captured
from 10 different angles in the range 0 to 90 deg. Next, the
beans were repeatedly removed and replaced in the tank
to test different distributions of coffee beans. Both exper-

Table 2. Repeatability under altered viewing angle.

OpenCV [%] Fastai [%]

Average 59.6 56.4
Std.dev. 4.59 2.04
Max.dev 12.1 3.01

Table 3. Repeatability under altered coffee distribution.

OpenCV [%] Fastai [%]

Average 59.6 58.03
Std.dev. 3.39 2.39
Max.dev 8.44 5.67

iments used the exact same amount of coffee beans, and
consist of 10 repeated images captured with no more than
one changing experimental variable for each experiment.

4.4.1 Rotating tank - altered viewing angle

The results of the first experiment, shown in Table 2,
shows that the standard deviation of the thresholding
based method is more than twice that of the ML based
method. This can be explained by how the threshold
method post process the binary output image under the
assumption of a known tank geometry height/width ratio.
When viewing the tank at an angle, the assumed tank ge-
ometry differs significantly from the observed image pro-
jections, hence the estimated level is incorrect. In contrast,
the ML method segments the tank directly, thus capturing
the effective projected width of the tank from any angle,
thereby producing accurate estimates level estimates also
under varying viewing angles.

4.4.2 Refilling tank - altering distribution of coffee
beans in tank

The results of the second repeatability experiment, shown
in Table 3, shows that both methods are somewhat robust
against the distribution of coffee in the tank. As in the pre-
vious experiment, the ML method shows lower estimation
errors, but only marginally so for the second experiment.
The error in the threshold method is mostly driven by the
assumption of a rectangular coffee region, i.e., the use of
a fitted rectangle around the detected thresholded region.
If an alternative geometry is fitted, e.g., a polygon, the
threshold method would likely have similar robustness to
coffee distribution as is found for the ML method. Again,
the ML method, by use of image segmentation to obtain a
detailed shape of the coffee in the tank, produces accurate
estimates also under varying distributions of coffee within
the tank.

4.5 Timing

An important consideration in any method that utilities
ML is the computation time needed to obtain a results.
The largest allowable computation time is often denomi-
nated as a hard real-time requirement. In this work, the
real-time requirement is the minimum amount of time it

DOI: 10.3384/ecp21185140 Proceedings of SIMS EUROSIM 2021 146

Virtual, Finland, 21-23 September 2021

SIMS EUROSIM 2021

Table 4. Comparing computation time of both methods.

OpenCV [s] Fastai [s] Relative [x]
Average 0.019 6.35 337
Fastest 0.013 2.75 208
Slowest 0.030 11.7 388

would take to brew a cup of coffee, since the coffee level
only needs to be calculated when the level changes.

To verify that the proposed solution meets this require-
ment, an experiment was done where 40 level predictions
was executed with both binary threshold in OpenCV and
the re-trained ResNet model in fastai to compare the time
usage for each prediction. The experiment used a col-
lection of randomly selected images and gave the results
shown in in Table 4. As expected, the threshold method in-
cluding pre- and post-processing steps vastly outperforms
the ML method in terms of computation time, being on
average 337 times faster. This can be explained by the
relative simplicity of the computations needed in the bi-
nary threshold method, compared with the mathematical
complexity of evaluating a 34-layer neural net.

However, from manual observation of the Al barista
robot, just the task of moving the coffee cup from the ma-
chine to the customer is found to take around 12 seconds,
hence a maximum computation time of 11.7 seconds for
the ML method is more then sufficient w.r.t. the real-.time
requirement.

5 Conclusions

The goal of this work was to test the feasibility of using
computer vision, both machine learning and more tradi-
tional rule-based computations, for non-intrusive coffee
bean level estimation in a transparent tank. Further, both
approaches was compared on merits of accuracy and com-
putational speed. Both methods are found to be suitable
for the specific application in the Al barista project.
Based on the results and analysis presented in this
work, it can be concluded that computer vision with ma-
chine learning is superior to traditional image processing
in terms of accuracy, robustness against scene config-
uration, and user-friendliness. The traditional methods
still produce good level estimation accuracy, but requires
significantly more assumption w.r.t. the scene config-
uration. However, the traditional approach is computa-
tionally much faster and therefore less resource demand-
ing. If assuming an ideal scene configuration, e.g., good
lighting and without disturbances, the traditional method
may be preferable in applications where the real-time re-
quirements are more challenging than for a coffee ma-
chine. Over all, the level estimation accuracy and repeat-
ability of both methods are found to be acceptable, with
some suggested improvements to improve robustness of
the threshold based approach, for the implementation in a
coffee machine, but in another application, there may be a
higher demand for correcting distortion and the robustness

DOI: 10.3384/ecp21185140

Proceedings of SIMS EUROSIM 2021

against stacking errors.

In future work, lens and perspective distortion due
to camera physics and position should be compensated
for. To increase the threshold methods robustness against
slanted coffee distributions, the post processing step of fit-
ting a rectangle to the obtained threshold region should
be modified to instead fit a more flexible geometric shape,
e.g., a polygon or a set of thinner rectangle slices that to-
gether make up the full tank width.

References

John P Bentley. Principles of measurement systems. Pearson
education, 2005.

Stevo Bozinovski. Reminder of the first paper on transfer learn-
ing in neural networks, 1976. Informatica, 44(3), 2020.

Stevoand Bozinovski and Ante Fulgosi. The influence of pattern
similarity and transfer learning upon the training of a base
perceptron b2. Proceedings of Symposium Informatica, (3-
121-5), 1976.

Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer
vision with the OpenCV library. " O’Reilly Media, Inc.",

2008.
J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and
Li Fei-Fei. Imagenet: A large-scale hierarchical im-

age database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248-255, 2009.
doi:10.1109/CVPR.2009.5206848.

Sagi Eppel and Tal Kachman. Computer vision-based recog-
nition of liquid surfaces and phase boundaries in transparent
vessels, with emphasis on chemistry applications. arXiv pre-
print arXiv:1404.7174, 2014.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
learning, volume 1. MIT press Cambridge, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770-778, 2016.

Jeremy Howard and Sylvain Gugger. Fastai: A layered api for
deep learning. Information, 11(2):108, Feb 2020. ISSN 2078-
2489. doi:10.3390/info11020108.

Max Kuhn and Kjell Johnson. Applied predictive modeling,
volume 26. Springer, 2013.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Nat-
alia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. arXiv preprint
arXiv:1912.01703, 2019.

Tara Zepel, Veronica Lai, Lars PE Yunker, and Jason E Hein.
Automated liquid-level monitoring and control using com-
puter vision. ChemRxiv Preprint, 10, 2020.

Virtual, Finland, 21-23 September 2021

147

https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.3390/info11020108

	Introduction
	Materials & Methods
	Sample preparation and Raman analysis
	Principal Component Analysis (PCA)

	Results & Discussion
	Pre-processing of raw spectra
	Initial PCA Analysis
	Optimized PCA with Variable Selection

	Conclusion
	Introduction
	Knowledge-based variable grouping
	Grouping with data analysis
	Correlation analysis
	Correlations in nonlinear systems
	Correlations in variable groups
	High-dimensional data

	Decomposition
	Clustering
	Reasoning

	Model-based selection and grouping
	Application cases
	Discussion
	Conclusions and future studies
	Introduction
	Proposed Wall Element
	Heat Transfer Analysis
	Material Properties and Boundary Conditions
	Results

	Hygrothermal Analysis
	Concluding Remarks
	Introduction
	Modeling for Energy Optimal Control
	Optimal control
	Numerical solution to optimal control problems
	Modeling implications

	Data
	Pressure offset estimation

	Model
	Dynamics
	Throttle
	Cylinder
	Torque
	Turbine
	Wastegate
	Compressor

	Energy optimal control
	Conclusions
	Introduction
	Background
	Previous work

	Methods
	Machine learning vs traditional computer vision algorithms
	Machine learning using fastai
	Image classification and segmentation
	Estimating tank level from an image
	Transfer learning
	ResNet
	Model training

	Traditional approach using OpenCV
	Binary threshold
	Canny edge detection

	Experimental setup
	Perspective distortion

	Results and discussion
	Model training
	Optimal scene conditions
	Challenging scene conditions
	Adapting to changes in the image scene

	Repeatability under experimental variation
	Rotating tank - altered viewing angle
	Refilling tank - altering distribution of coffee beans in tank

	Timing

	Conclusions
	Introduction
	An introductory example
	Analysis
	Instability
	Erroneous simulation

	Numerical optimal control
	Optimal control
	Direct methods for optimal control

	Simulation of the optimal control
	Event functions
	Handling of the control input

	Example application
	Rocket Model
	Nominal problem formulation
	Problem variation
	Simulation

	Conclusions
	Introduction
	Operational Philosophy
	Lean burn gas engine - Otto Cycle
	Main control loops
	Speed Control
	Air pressure/AFR control
	Air temperature control
	NOx control
	Global ignition timing control

	Global ignition timing and efficiency
	Global ignition timing and heat rate

	Process modelling and description
	Charge air pressure
	Global Ignition timing
	Suction air temperature
	Charge air temperature
	IMEP
	Heat rate
	Knock level
	Peak pressure
	NOx
	O2
	Exhaust temperature
	State space model of engine

	Optimal control problem formulation
	Results and Discussion
	Conclusions
	Introduction
	Materials and methods
	Measurements
	Signal processing

	Results and discussion
	Acceleration measurements and their squared envelope spectra, bearing fault
	Acceleration measurements and their squared envelope spectra, misalignment
	Local regularity signals and their L-S periodograms and DCT spectra, bearing fault
	Local regularity signals and their L-S periodograms and DCT spectra, misalignment

	Conclusions
	Modeling and Simulation for Decision Making in Sustainable and Resilient Assembly System Selection
	1 Introduction
	1.1 Aims
	1.2 Sustainable manufacturing
	1.3 Resilient and Agile Manufacturing
	1.4 Requirements and solutions

	2 Design, modeling and evaluation
	2.1 Define requirements and needs
	2.2 Solution modeling
	2.2.1 Manufacturing system modeling

	2.3 Evaluation and analytics
	2.3.1 Cost and efficiency aspects analytics
	2.3.2 Environmental aspects analytics

	2.4 Improve decision making

	3 Discussion
	4 Conclusions
	Introduction
	Background
	Previous Work
	Outline of the Paper

	System Description
	Mathematical Model
	Hydro Power Plant
	Solar Power and Consumer Load
	Grid
	Canonical Representation of the Model
	Case Study

	Deterministic MPC
	Cost Function
	OCP Formulated in JuMP.jl

	Stochastic MPC
	Cost Function
	Stochastic Scenarios for Ps and P
	Stochastic OCP

	Results and Discussions
	Deterministic MPC
	Stochastic MPC

	Conclusions and Future Work
	Bibliography
	Introduction
	Background
	Outline of the Paper

	Speed Governor for Single Hydro Power Plant
	Governing mechanism
	Trollheim Hydro Power Plant
	Tuning of PI Controller
	Step Change in Load Power P

	Control of Multiple Hydro Power Plants
	Problem Description
	Concept of Droop Control
	Internal Structure of Droop Controller

	Case Studies
	Case Study-1
	Case Study-2

	Conclusions and Future Work
	Bibliography
	Introduction
	System Description
	Electrode Drying
	Solvent Recovery System
	Dry Room Air Dehumidification System
	Heat Pump
	Heat Exchanger Networks

	Results and Discussion
	Effect of Parameters on the Evaporation Energy of Drying
	Effect of Drying Temperature and Regenerator Size on the Energy of Solvent Recovery System
	Energy Consumption with Heat Pump
	Energy Consumption with MER-Network
	Comparison of the Used Energy Optimization Methods
	Comparison with Literature Values

	Conclusions
	Introduction
	System Description
	System model
	Operational constraints

	Optimal Control Formulation
	Reference region tracking OCP with output constraints
	New OCP with constraint relaxation

	Simulation of Nominal MPC
	Simulation result: Initial water level below the reference region
	Simulation result: Initial water level in the reference region

	Robustness Analysis
	Conclusion
	Introduction
	Methods
	Results and Discussions
	Conclusions
	Introduction
	Modeling and Sensitivity Analysis
	Model Description
	Uncertainties
	Open Loop Simulation
	Global Sensitivity Analysis

	Standard NMPC and Stochastic Analysis
	Design of deterministic standard NMPC
	Stochastic analysis of parametric uncertainty

	Conclusion
	Introduction
	Background
	Previous Work
	Structure of Paper

	Model Overview
	Two-phase Flow in a Porous Media
	Reservoir Overview
	Reservoir Model
	Well Model
	Simplifying Assumptions
	Valve and Pipe
	Water Saturation Versus Relative Permeability
	Mobility Determination
	Numerical Solution
	Pressure Equation

	Model Uncertainty and PI Controller
	Uncertainty Analysis
	PI Controller

	Simulation Results
	Conclusions
	Bibliography
	Introduction
	Method
	Simulation
	Sensors and Measurement Noise
	Analysis of Residuals

	Results and Discussion
	Fault Detectability and Isolability
	Fault Signatures
	Sensitivity to Measurement Noise

	Conclusions and Recommendations
	Acknowledgements
	Introduction
	Method
	Using a Cloud Platform
	Models
	Data
	Integration
	Output and presentation

	Results
	Implemented models
	Data Extraction
	Data and Model Integration

	Discussions
	Conclusions
	Acknowledgment
	Methanol synthesis from syngas: a process simulation
	1 Introduction
	2 Methanol synthesis from syngas and carbon dioxide
	2.1 Previous works

	3 Materials and methods
	4 Results and discussion
	5 Conclusion
	Introduction
	Modeling
	Seahorse XF
	Parameter estimation
	Structural properties
	Conclusions
	Introduction
	Background
	Previous work
	Scope

	Materials and methods
	Number balance
	Assumptions on the total population
	The classical continuous SIR description
	Extension: the SEIR description
	Poisson distribution in events
	Stochastic differential equation
	First reaction time

	Reproduction number
	Model fitting
	Measles case study

	Measles case study
	SIR model
	Deterministic model with model fitting
	SDE model
	First reaction event model

	SEIR model

	Analysis of epidemiology models
	Condition for infection growth
	Stability from SEIR model

	Conclusions
	Bibliography
	Introduction
	Background
	Previous work
	Scope

	Materials and Methods
	COVID-19 data
	Initial evolution of C
	SEICUR model
	Reaction mechanism
	Approximate initial response
	Parameters and initial states
	Reproduction number

	The Norwegian PHI model
	Variation in infection rate
	Mitigation

	Model Fitting
	Initial evolution
	Fitted mitigation policy
	Case Norway
	Case: Italy
	Case: Spain

	Discussion and conclusions
	Bibliography
	Introduction
	Background
	Previous work
	Scope

	Materials and Methods
	Reaction mechanism
	Migration
	Demographic distribution
	Extinction of COVID-19
	Herd immunity
	Vaccination
	Qualitative effect of mitigation + vaccination

	Results
	Migration
	Herd immunity
	Vaccination
	Quenching COVID-19: the importance of vaccination

	Conclusions
	Bibliography
	Introduction
	COVID-19 data
	Methodologies
	Nonlinear scaling
	Steady-state LE modelling
	Dynamic LE modelling

	Epidemiological modelling
	Variable selection
	Data analysis
	Feasibility results

	Discussions
	Conclusions and future studies

