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Abstract

In this work, modern machine learning methods are com-
pared against traditional image processing techniques, for
the purpose of estimating the level of coffee beans in a
transparent tank fitted to a coffee machine. Measurements
using both approaches are compared against manual level
measurements. The resulting algorithm are analysed for
repeatability under scene variations, such as orientation of
the tank with respect to the camera and the distribution of
coffee beans. Keywords: Level measurement, computer
vision, image segmentation, ResNet34

1 Introduction

1.1 Background

Level measurements is important for a large number of
applications in both industry, science and the commer-
cial sector (Bentley, 2005). Popular measurement tech-
nologies include guided radar, ultrasonic, capacitance and
flotation based sensors principles (Bentley, 2005). In
many cases, it is desirable to apply a non-intrusive sen-
sor principle. One possible solution which has received
significant scientific interest in recent years is the use
of digital cameras together with advanced, typically ma-
chine learning (ML) based, algorithms (Goodfellow et al.,
2016). This technology has a large range of possible ap-
plications, including the non-intrusive level measurement
of substances in a partially transparent tank.

In this work, the system of interest is a coffee machine
that has been outfitted with an industrial robotic arm. The
goal of the project, originating from Bouvet Consulting in
Porsgrunn, is to create an Al barista. One aspect of this
project is to measure the level of coffee beans remaining
in the tank of the coffee-machine. Since the machine is
a common-of-the-shelf model, there is no level measure-
ment sensor built in. However, as is typically the case
for such devices, there is a transparent inspection window
which allows users to visually estimate the level of cof-
fee beans in the tank. The facility for visual inspection,
together with the obvious need to ensure safe human con-
sumption of the produced coffee, makes the use of vision
based sensor technology particularly interesting.

1.2 Previous work

There have been several published works on using com-
puter vision for level estimation for liquids, which is argu-
ably easaier then the granular coffee beans studied in this
work. Zepel et.al. used open-source libraries (Numpy,
OpenCYV, and PySerial) for liquid level monitoring and
control in common continuously stirred tank reactor pro-
cesses. They used Canny Edge detection in order to locate
strong horizontal edges to detect the liquid-air interface,
and perform decisions to control the pump(s) for manipu-
lating the liquid level. They found that the method gives
acceptable results when using computer-vision as part of
an autonomous platform to monitor experimental factors
and make control decisions. (Zepel et al., 2020).

In (Eppel and Kachman, 2014) a general computer vis-
ion method for the recognition of liquid surfaces and li-
quid levels in various transparent containers is presented.
They concluded that making a general recognition method
for liquid systems is possible and that it can be achieved
with good accuracy in various cases. The best indication
of the liquid surface was found to be the relative intensity
change, the edge density change and the gradient direction
relative to the curve normal.

2 Methods

2.1 Machine learning vs traditional computer
vision algorithms

The field of computer vision has experienced a paradigm
shift over the last two decades (Goodfellow et al., 2016).
The application of machine learning (ML), and in partic-
ular multilayer artificial neural networks (ANN), known
as deep learning, has revolutionised what is possible to
achieve with computer vision (Goodfellow et al., 2016),
leading to the use of computer vision in many new applica-
tion. While machine learning certainly has had a profound
effect on the computer vision field, there are still much use
for non-learning algorithms as well. In many applications,
the traditional image processing methods may indeed be
advantageous because they tend to be faster w.r.t. execu-
tion time.

Before presenting the methods of interest in this work
it is instructive to discuss the fundamental difference
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Figure 1. Comparing traditional image processing with machine
learning

between the two approaches to image analysis. Before the
advent of ML, image analysis was conducted by construct-
ing algorithms using various developed standard tech-
niques, such as filtering and gradient computations (Brad-
ski and Kaehler, 2008). Most analysis tools uses a series
of such steps to compute a result. The common denomin-
ator for these techniques is that the algorithms consist of
a set of rules that describe how an image should be pro-
cessed to produce an analysis results or solution (Brad-
ski and Kaehler, 2008). In some applications, engineering
these rules turns out to be very difficult. Consider the text-
book case of distinguishing images of cats and dogs, it is
difficult to imagine manually constructing a set of rules
that can compute the probability of an image containing a
particular animal based solely on the pixel values.

As shown in Fig. 1, machine learning turns the ap-
proach to image analysis, and indeed data analysis in gen-
eral, around. Rather then engineering the rules needed
to produce a solution, relevant input data is coupled by a
desired solution (Goodfellow et al., 2016; Kuhn and John-
son, 2013). Subsequently, algorithms are used to identify
patterns between input data and the desired solution. The
identified patterns can be considered as machine gener-
ated rules which in turn is applied to new images in order
to compute the desired result (Goodfellow et al., 2016;
Kuhn and Johnson, 2013). Naturally, rules generated by
a computer by pattern recognition is not necessarily sim-
ilar in formulation to the rules or instruction steps used
in traditional computer vision algorithms, but their use is
the same; computing a solution or analysis result for new
images of the underlying system of interest.

2.2 Machine learning using fastai

The ML framework of choice in this project is Fastai
which was created by the Fast.ai organization (Howard
and Gugger, 2020). The motivation for developing the
framework is to provide a practical approach to machine
learning, where the idea is to start learning by doing prac-
tical work instead of first requiring a deeper theoretical
knowledge of the intricacies of ML. The fastai framework
is based on PyTorch (Paszke et al., 2019) and gives the
PyTorch library an extra layer of functionality using the
APTI’s by offering high-level API’s which makes it easier
to get started with machine learning.

Training
Algorithm

-

Figure 2. Machine learning and prediction with images
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2.2.1 TImage classification and segmentation

A fundamental goal of many computer vision analysis al-
gorithms is to label the content of an image (Goodfellow
et al., 2016). Two distinctly different approaches towards
applying labels to various parts of an image are known
as classification and segmentation (Bradski and Kaehler,
2008). Both methods use an algorithm to train a model
from the images. After a model has been trained, new im-
ages is sent to the model and an output is given, as shown
in Fig. 2.

In classification objects in the image are analysed
and labelled as belonging to one of many pre-determined
classes, often together with an estimated probability ac-
curacy of the class label being correct (Bradski and
Kaehler, 2008; Goodfellow et al., 2016). A class can
be, for example, a car, a cat, a house, etc. When train-
ing a classification model, a large number of images are
pre-labelled and sorted according to the class of object
they contain, typically arranged in different folder in the
filesystem. The output of an image classifier is a region,
typically rectangular, in the input image together with a
label that classifies the content of that region.

In contrast, image segmentation does not detect dis-
crete objects, but rather seeks to determine non-uniform
regions in the image which belong to a particular pre-
trained class (Bradski and Kaehler, 2008). As such, seg-
mentation can arguably be considered a type of classific-
ation, but instead of classifying the object in the image,
each single pixel is labelled depending on what class it
most likely belongs to. When training a segmentation
model, each pixel in the training image is labelled by a
class id, typically using different shade of grey in an over-
laying image known as a mask (He et al., 2016; Deng
et al., 2009). By coupling a mask with a training image,
the machine learning algorithm learns the pattern that con-
nects image content with segment class. When the trained
segmentation model is applied to a new image it will as-
sign a class label to every pixel, such that neighbouring
pixels of the same class form an image segment. The seg-
mented image can then be further analysed to locate ob-
jects and boundaries like lines and curves in an image.

2.2.2 Estimating tank level from an image

In this work, image segmentation is used to estimate the
level of coffee beans in a transparent tank. After apply-
ing the segmentation model on a new image, the method
outputs a tensor of same dimensions as the input image,
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where each tensor element constitutes a class label for the
pixel in the corresponding image.

All the training images used in this project are tagged
by manually creating masks with three classes: COFFEE,
EMPTY_TANK and BACKGROUND. When a new im-
age is segmented using the resulting trained model, the
output is a tensor array of the same dimensions as the in-
put image, containing the identified classification of each
pixel.This tensor is used to calculate the level in the coffee
bean container using:

v Neoffee (1)
coffee T Neank

where Ncoffee and Nignk is the number of pixels after im-
age segmentation classified as belonging to the segments
COFFEE and EMPTY_TANK, respectively. The under-
lying assumption of this approach is that the camera is
positioned such that the 2D projection of the coffee tank
onto the image sensor produces an image, where the re-
gion consisting of coffee beans relative to that of the com-
plete tank, e.g., the empty tank plus the coffee beans, is
proportional to the coffee volume of interest. While this
assumption is true for the approximate rectangular tank
used for this work, a more complex geometry may require
a second regression model to be trained in order to estim-
ate the actual volume from the projected 2D regions in an
image (Goodfellow et al., 2016; Kuhn and Johnson, 2013).

Level [%] =

2.2.3 Transfer learning

Transfer learning (TL) was first introduced in (Bozinovski
and Fulgosi, 1976) where they describe a mathematical
and geometrical model of TL (Bozinovski, 2020). TL is
a method in machine learning where knowledge gained
in one task is exploited to improve generalization in dif-
ferent but related task (Goodfellow et al., 2016). For ex-
ample, knowledge gained from recognizing a car could be
used when learning to recognize a truck. TL is a popu-
lar approach in computer vision and natural language pro-
cessing tasks because it can train neural networks with
comparatively little data with shorter training time than
when training from scratch. In most real-world prob-
lems it is difficult to obtain a large number of labelled
data points for training of complex models. Hence, a pre-
trained model is beneficial. In Computer vision, it is com-
mon for the neural network to first find edges in the first
layers, general shapes in the middle layers, and finally
task-specific characteristics for the last layers. In TL, the
first and middle layers are transferred to the new model,
while only the last layers must be re-trained. The main ad-
vantages of TL is shorter training time, less training data,
and in most cases better performance (Bozinovski, 2020).

2.2.4 ResNet

The ML model of choice in this work is a Residual Neural
Network (ResNet), which is a continuation of a convolu-
tional neural network (CNN) that has become a popular
model for computer vision in the recent years (He et al.,
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2016). To further improve on the CNN method, the Res-
Net adds skip connection or shortcuts to jump over some
layers. ResNet models typically implements double- or
triple- layer skip connections. A weight matrix can be
used to find the skip weights in models known as High-
wayNets. The skip connections help to avoids the trouble-
some vanishing gradient problem, which occurs in CNN
which preventing further training.

The ResNet model used for this project is ResNet-34
which consist of a network with 34 layers (He et al., 2016).
The ResNet-34 model was pre-trained using the ImageNet
dataset which consists of millions of pre-labeled images
(Deng et al., 2009). Larger networks are better at com-
plex problems but are easy to overfit, takes longer to train
and use more memory than smaller networks. Hance,
ResNet-34 was chosen because its performance to ac-
curacy trade-off was satisfactory for the problem. Other
neural networks like AlexNet, GooglLeNet, DenseNet and
SqueezeNet was tested but based on initial experimenta-
tion the ResNet-34 model appears to perform adequately
for the task.

2.2.5 Model training

The ResNet-34 model was repeatedly re-trained with an
increasing number of training images, until a satisfactory
result was reached at only 93 images. The relatively low
number of training images needed to achieve satisfactory
performance shows the strength of using transfer learning
on a pre-trained model.

A common method for increasing the variation in the
training set artificially is to apply randomised transform-
ations to training set. Examples of transformations are:
changing the image size, flipping, rotating, or adding
Gaussian blur. By increasing the variation of images in
the training set the resulting model will be able to handle
a greater variance in images used as inputs when predict-
ing results.

2.3 Traditional approach using OpenCV

The traditional approach to computer vision, i.e., prior to
the advent of ML methods, is to construct the algorithms
using a sequence of processing steps, typically using a se-
lection of standard computations such as computing gradi-
ents, filtering, global or local thresholding, and morpholo-
gical transformations (Bradski and Kaehler, 2008). These
operators are applied to produce new images, typically of
the same dimensions in height and width but not neces-
sary the same bit-depth. Input images are typically RGB
encoded bitmaps of bit-depth 8, but many other formats
exist. Often, building the software for image capture and
conversion into the required format requires considerable
work (Bradski and Kaehler, 2008). A sequence of captur-
ing and processing steps is often denominated as a pipeline
in the computer vision field.

One of the main advantages of traditional computer
vision algorithms is that the image operators , i.e., math-
ematical processing steps, that is used to build up higher
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level algorithms are well known and understood (Brad-
ski and Kaehler, 2008). Hence, there exist highly optim-
ised implementations of these steps. Arguably, the most
popular library of such optimised computation methods
is the Open-Source Computer Vision Library (OpenCV)
(Bradski and Kaehler, 2008). As an open-source library,
the framework consist of contributions from many of the
worlds leading experts in computer vision. Since OpenCV
is widely used, its methods and syntax is commonly un-
derstood and recognised by software engineers in the field,
which helps to speed up the development of new applica-
tions (Bradski and Kaehler, 2008). OpenCV supports the
programming languages C ++, Python, Java and Matlab,
and all major operating systems, e.g., Windows, Linux,
Mac OS, and Android.

In this work, OpenCYV is used to analyse the images
of the coffee bean tank and subsequently provide an es-
timate of the level of coffee beans. Two promising meth-
ods of interest towards this goal is the use of segmentation
by binary thresholding or edge detection using the Canny
Edge Detection algorithm. Note that OpenCV also con-
tains several ML based approaches, but in this work it is
the non-learning methods in OpenCV that are of primary
interest.

2.3.1 Binary threshold

OpenCV supports numerous thresholding functions
(Bradski and Kaehler, 2008), including a simple binary
threshold with or without inversion, i.e., pixels above
threshold can be defined as either high (white) or low
(black) in the output image.

The simplest thresholding method compares every
pixel in the frame against the pre-determined threshold
leoffee- In the output image, each pixel value is set depend-
ing on being above or below the threshold. If the intensity
of the pixel fy, is greater than that given threshold value
leoffee, the output image pixel f, , will be set to black, e.g.,
a greyscale value 0 and white or greyscale 255 otherwise,
according to:

~ 0,

Jry = { 255,
The application of a threshold assumes that the region of
interest can be distinguished from the background by the
intensity of the pixel alone. One difficulty with applying
this method is choosing an appropriate threshold value,
since this value is highly dependant on the scene and light-
ing conditions.

While the application of the threshold computation is
straight forward, building an algorithm around threshold-
ing requires the application of several additional image
operators to pre-process the image. In this work, the
image is first converted to greyscale by averaging the
RGB values of each pixel. Next, a Gaussian blur step
is used to smooth the image and reduce the influence of
noise on the thresholded image, before finally applying
the threshold step. Further, as illustrated in Fig. 3, the

fx,y > lcoffee
otherwise

2)

Delution

—

Erosion

ed

Original image

Figure 3. Binary threshold post processing steps.

output of the threshold step is post-processed by the mor-
phological transformations erosion and dilation, which to-
gether forms the operation known as opening, to further
reduce image noise. The output of the morphological
transformation is a binary image where, assuming appro-
priate threshold value, the coffee bean area is marked as
white. The last two steps of the algorithm is to find the
contour of the thresholded region and finally fit a rectangle
around it. Since the width of the tank is known apriori,
the coffee bean level can be estimated from the height vs
width ratio of this identified rectangle. A weakens of this
approach is that it neglects the possibility of uneven distri-
bution of coffee beans. However, this shortcoming could
easily be remedied in future work by either fitting a poly-
gon or multiple rectangle slices across the width direction.

2.3.2 Canny edge detection

Canny Edge Detection (CED) is an algorithm that can be
used to detect edges in an image (Bradski and Kaehler,
2008). CED is a multi-step algorithm which consist of the
following steps:

1. Noise reduction with a Gaussian filter

2. Finding the intensity gradient compares a pixel’s
value against its neighbouring pixels and outputs a new
image where the larger difference in intensity equates to a
higher pixel value

3. Non-maximum Suppression is used to thin the
edges

4. Hysteresis thresholding is used to connect neigh-
bouring pixels into a consistent edge

The CED algorithm was tested for the purpose of
identifying the edges of the tank and the edge between the
two mediums: coffee beans and air. However, the binary
threshold algorithm was found to provide more consist-
ent results, hence in the sequel only the binary threshold
method is discussed further .

3 Experimental setup

An experimental rig, consist of a wooden plate where a
Logitech C922 camera and the coffee tank are mounted,
was constructed in order to get repeatability in the pictures
w.r.t. camera angle. The camera angle was chosen such
that the flat top of the coffee container would not disturb
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Figure 4. Experimental setup
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Figure 5. Image shows a A4 25x25mm calibration chessrboard.

the measurement, as shown in Fig. 4. This is because of
the method used for measuring level is effectively meas-
uring the area that is in the cameras field of view (FOV).

To get enough variety in the background of the pictures
the rig was positioned with different walls in the back-
ground, and some black paper was used to show that black
does not automatically mean ‘coffee’ for the ML model.
The ideal scenarios are a plain light-coloured background
with little disturbances, even lighting, and little to no re-
flection.

3.1 Perspective distortion

Due to the position of the optical sensor in relation to the
tank, as shown in Fig. 4, the captured images are some-
what affected by perspective distortion, which will influ-
ence the measured area. As shown in Fig. 5 a rectangle
of a given size will occupy a bigger pixel area the fur-
ther down in the image that it is projected. Observe also
that, due to a slight lens distortion effect, the rectangles
are not completely square. Compensating for these factors
would be recommended for future work and is achievable
by standard OpenCV methods.

4 Results and discussion
4.1 Model training

Once the fasai framework is configured and the training
images loaded, the model training process consist of re-
peatedly calling the fit_one_cycle method, which advances
the model training one iteration, or epoch as is the denom-
ination used in the ML literature. The method returns the
loss and accuracy metric in the form of a table for the cur-
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Figure 6. Training with increasing number of epochs. Seg-
ments are labeled as coffee (yellow), empty tank (cyan), and
background (purple).

rent training stage. Since segmentation is used to estimate
the coffee level, the loss function compares pixel gradients
in the training pictures and masks, as discussed in Sec.
2.2.2. To determine the ML model’s performance loss, the
predicted output is compared with the target value, and the
deviation between these determines the loss values, where
a large deviation gives a high loss value.

The amount of training needed varies from the com-
plexity of the task. Some examples of different situations
are shown in Fig. 6. In the first row, an ideal scene config-
uration with even lighting, little reflection and no noise
in the background is shown. Here the machine learn-
ing model finds satisfactory results already after just 20
epochs. A more challenging scene is shown on the second
row, where a dark jacket is introduced in the background.
With only 20 epochs of training, the ML model struggles
to differentiate the dark jacket from the container with cof-
fee. At 40 epochs the prediction is much better, and at 100
epochs of training the prediction is close to perfect. This
result shows that more complex scene configurations are
more challenging to segment and therefore require a more
intensively trained ML model. Further, this results shows
that it is important to have a variety of scene configura-
tions in the training data since the ML. model can only be
expected to accurately estimate the image segmentation of
images that are similar to the training set used to build the
model.

4.2 Optimal scene conditions

The ideal scene configuration is a plain light-colored back-
ground with little disturbances providing good contrast
with the coffee beans, even lighting, and little or now re-
flection from the transparent tank. In this situation both
OpenCV and fastai detects the area with coffee beans
with acceptable accuracy. The mean error from ten differ-
ent predictions gives fastai an error at 0,7% and OpenCV
3,0% as the results in Fig. 7 and Table 1show. The esti-
mated level accuracy for both methods is considered well
within acceptable range for the purpose of a coffee robot.

Note that both methods failed to estimate the level to
0% if the tank is empty, due to how the level is computed
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Figure 7. Results of applying both methods under optimal con-
ditions (left: raw image, middle: ML result, right: threshold
result).

from the image analysis results.

4.3 Challenging scene conditions

Figure 8 shows some examples of more challenging scen-
arios. In the first row a black sheet of paper was added
to the background to test if the models could differenti-
ate dark background from the coffee beans. The results
show that fastai still segments the coffee accurately, except
for a small strip with a lot of reflection on top of the cof-
fee beans. In contrast, the binary threshold method failed
completely due to the pre-determined threshold value no
longer being suitable for the captured image. The dark
background caused the camera to automatically turn up
the light sensitivity, which made the coffee too light to be
within the threshold. For future work all automatic func-
tions on the camera, like light sensitivity, should be turned
off to secure better control over the images.

The second row shows a near ideal scenario, but with
the coffee slanted. Here, Fastai also obtains an accur-

Table 1. Comparing analysis results under ideal conditions.

Ref [%] ML [%] Err[%] OCV [%] Err[%]
15.2 14.7 0.5 14.6 0.6
25.2 26.4 1.2 26.7 1.5
33.7 34.3 0.6 37.9 4.2
44.3 44.3 0.0 45.8 1.5
54.3 54.0 0.3 59.0 4.7
62.1 62.1 0.0 65.1 3.0
72.0 71.0 1.0 74.3 2.3
79.4 78.8 0.6 82.0 2.6
97.2 96.3 0.9 102.3 5.1

Mean error 0.7 3.0
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Figure 8. Results of both methods under challenging conditions
(left: raw image, middle: ML result, right: threshold result).

ate level estimate while the threshold based method sig-
nificantly overestimate the level. Since the ML method
post processing counts all the marked pixels, while the
threshold based method draws a rectangle around the ex-
treme points in the largest contour and find the height from
a width to height ratio, the latter is unable to account for an
uneven coffee distribution and will therefore always over-
estimate the level in such conditions. A solution for future
work would be to draw a polygon around the coffee in-
stead of a rectangle.

The images in the third row of Fig. 8 contains a com-
pletely different container than used in in the training data.
One of the problems with this scene is that the top sur-
face of the coffee is visible, which violates the assump-
tion discussed in Sec. 4. The coffee beans in the picture
are also a much lighter colour which further complicates
the choice of threshold value. The fastai model, despite
the rather large deviation of this particular scene config-
uration compared with the training images, successfully
segmented out the coffee beans. Only some areas around
the lid were misclassified. The estimation error of 15% is
largely caused by the image violating the assumption of
camera angle w.r.t. the coffee surface in the jar being vis-
ible. While the threshold method apparently produced a
prediction error of only 5%, this result is simply random
and must be rejected as false. Since the ratio between the
height and the width of the container is different from the
assumed tank geometry, the post processing of threshold
based method cannot produce reliable results without ad-
apting the assumptions to the new container.

A common challenge encountered in many of the ex-
periments performed in this work is the sensitivity to re-
flection on the container. The reflections affect the results
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on both fastai and the threshold method, resulting in in-
accurate level calculations. In fastai the reflections will
in some cases be interpreted as the container instead of
the coffee beans behind the reflection. In the threshold
method the reflection brightness makes the algorithm neg-
lect part of the coffee area as it is brighter than the coffee
beans not covered by a reflection.

4.3.1 Adapting to changes in the image scene

As discussed in Sec. 4.3, performing level estimation on
an image which deviates from the reference images can
cause the level prediction to fail or miscalculate the level.
These disturbances and deviations are typically changes in
the container geometry, challenging light conditions, col-
our schemes, reflections, shadows, or new structures in the
background.

The fastai model is only capable of accurate segment-
ation on images that are similar to the training images.
However, it can be retrained for new deviations or disturb-
ances, which is done by adding images containing the new
conditions to the training set. Next the model is trained
through several epochs to prodiuce a new model. The ex-
isting training data should be preserved and is used as a
starting point when a model is trained with new condi-
tions. This process of adding new data to the training set
and subsequently re-training the model is arguably similar
to process of creating a new model using transfer learning
on the general ResNet-34 model.

In the threshold based method, the expected scene is
more closely tied to the chosen method parameters, i.e.,
the tank geometry and threshold values, which must be
set for each specific scenario. Since the threshold value is
more highly dependant on light conditions and colour, it
is necessary to manually set new threshold values by trial
and error. An alternative for future work could be to de-
tect the threshold automaticity by further utilising apriori
knowledge of the scene, such as the expected approxim-
ately rectangular shape of the coffee area, or indeed the
expected location of the coffee beans in the projected im-
age.

The difference in manual labour needed when updat-
ing the methods for new conditions or deviations, shows
the versatility and adaptability of the fastai training meth-
ods compared to the more traditional threshold based
method. When compensating for disturbances fastai will
retain all previous scenarios, while the threshold method
is configured for using specific settings for each scenario.

4.4 Repeatability under experimental varia-
tion

To test the repeatability of the computer vision based level
estimation methods, two experiments were preformed.
First, the tank is rotated such that the images are captured
from 10 different angles in the range 0 to 90 deg. Next, the
beans were repeatedly removed and replaced in the tank
to test different distributions of coffee beans. Both exper-

Table 2. Repeatability under altered viewing angle.

OpenCV [%] Fastai [%]

Average 59.6 56.4
Std.dev. 4.59 2.04
Max.dev 12.1 3.01

Table 3. Repeatability under altered coffee distribution.

OpenCV [%] Fastai [%]

Average 59.6 58.03
Std.dev. 3.39 2.39
Max.dev 8.44 5.67

iments used the exact same amount of coffee beans, and
consist of 10 repeated images captured with no more than
one changing experimental variable for each experiment.

4.4.1 Rotating tank - altered viewing angle

The results of the first experiment, shown in Table 2,
shows that the standard deviation of the thresholding
based method is more than twice that of the ML based
method. This can be explained by how the threshold
method post process the binary output image under the
assumption of a known tank geometry height/width ratio.
When viewing the tank at an angle, the assumed tank ge-
ometry differs significantly from the observed image pro-
jections, hence the estimated level is incorrect. In contrast,
the ML method segments the tank directly, thus capturing
the effective projected width of the tank from any angle,
thereby producing accurate estimates level estimates also
under varying viewing angles.

4.4.2 Refilling tank - altering distribution of coffee
beans in tank

The results of the second repeatability experiment, shown
in Table 3, shows that both methods are somewhat robust
against the distribution of coffee in the tank. As in the pre-
vious experiment, the ML method shows lower estimation
errors, but only marginally so for the second experiment.
The error in the threshold method is mostly driven by the
assumption of a rectangular coffee region, i.e., the use of
a fitted rectangle around the detected thresholded region.
If an alternative geometry is fitted, e.g., a polygon, the
threshold method would likely have similar robustness to
coffee distribution as is found for the ML method. Again,
the ML method, by use of image segmentation to obtain a
detailed shape of the coffee in the tank, produces accurate
estimates also under varying distributions of coffee within
the tank.

4.5 Timing

An important consideration in any method that utilities
ML is the computation time needed to obtain a results.
The largest allowable computation time is often denomi-
nated as a hard real-time requirement. In this work, the
real-time requirement is the minimum amount of time it
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Table 4. Comparing computation time of both methods.

OpenCV [s] Fastai [s] Relative [x]
Average 0.019 6.35 337
Fastest 0.013 2.75 208
Slowest 0.030 11.7 388

would take to brew a cup of coffee, since the coffee level
only needs to be calculated when the level changes.

To verify that the proposed solution meets this require-
ment, an experiment was done where 40 level predictions
was executed with both binary threshold in OpenCV and
the re-trained ResNet model in fastai to compare the time
usage for each prediction. The experiment used a col-
lection of randomly selected images and gave the results
shown in in Table 4. As expected, the threshold method in-
cluding pre- and post-processing steps vastly outperforms
the ML method in terms of computation time, being on
average 337 times faster. This can be explained by the
relative simplicity of the computations needed in the bi-
nary threshold method, compared with the mathematical
complexity of evaluating a 34-layer neural net.

However, from manual observation of the Al barista
robot, just the task of moving the coffee cup from the ma-
chine to the customer is found to take around 12 seconds,
hence a maximum computation time of 11.7 seconds for
the ML method is more then sufficient w.r.t. the real-.time
requirement.

5 Conclusions

The goal of this work was to test the feasibility of using
computer vision, both machine learning and more tradi-
tional rule-based computations, for non-intrusive coffee
bean level estimation in a transparent tank. Further, both
approaches was compared on merits of accuracy and com-
putational speed. Both methods are found to be suitable
for the specific application in the Al barista project.
Based on the results and analysis presented in this
work, it can be concluded that computer vision with ma-
chine learning is superior to traditional image processing
in terms of accuracy, robustness against scene config-
uration, and user-friendliness. The traditional methods
still produce good level estimation accuracy, but requires
significantly more assumption w.r.t. the scene config-
uration. However, the traditional approach is computa-
tionally much faster and therefore less resource demand-
ing. If assuming an ideal scene configuration, e.g., good
lighting and without disturbances, the traditional method
may be preferable in applications where the real-time re-
quirements are more challenging than for a coffee ma-
chine. Over all, the level estimation accuracy and repeat-
ability of both methods are found to be acceptable, with
some suggested improvements to improve robustness of
the threshold based approach, for the implementation in a
coffee machine, but in another application, there may be a
higher demand for correcting distortion and the robustness
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against stacking errors.

In future work, lens and perspective distortion due
to camera physics and position should be compensated
for. To increase the threshold methods robustness against
slanted coffee distributions, the post processing step of fit-
ting a rectangle to the obtained threshold region should
be modified to instead fit a more flexible geometric shape,
e.g., a polygon or a set of thinner rectangle slices that to-
gether make up the full tank width.
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