
Accurate Simulation for Numerical Optimal Control

Viktor Leek, Lars Eriksson

Division of Vehicular Systems, Linköping University, Sweden
viktor.leek@liu.se, lars.eriksson@liu.se

Abstract
Accurate simulation of the numerical optimal control in
software environments where call to simulation routines
is explicit, for instance Matlab and SciPy. A discussion on
the simulation aspects of numerical optimal control, how it
may fail, and how such erroneous results can be detected
using accurate simulation. The key contribution is how
to accurately include a piecewise constant control input
in the simulations, which is discussed in detail, including
code examples. The technique is demonstrated on an ex-
ample problem which show how simulation can be used
to analyze optimal control problems with uncertainty, but
also demonstrates how erroneous simulation may lead to
erroneous conclusions.
Keywords: Simulation, Optimal control, direct multiple
shooting, direct collocation

1 Introduction
Numerical optimal control (NOC) is the field devoted
to solving optimal control problems (OCPs) numeri-
cally. There exist several approaches that can be divided
into three main categories: State-space methods, indirect
methods, and direct methods. An overview is found in
(Rao, 2009). Here, the focus is on direct methods, which
are characterized by first discretizing the OCP, in a pro-
cess known as transcription, into a parameter optimization
problem, and then solved numerically. Often the param-
eter optimization problem is a nonlinear program (NLP),
but may very well be a quadratic program, or some other
suitable problem class.

Numerical solution to differential equations, the field
underpinning simulation, has been actively researched for
well over a century (Butcher, 1996). Too vast to enumer-
ate all relevant publications, a good introduction to the
subject can be found in the textbook (Ascher and Petzold,
1998).

Simulation enters NOC is many different ways. It is the
key component in the transcription process but can also
be used for other purposes. For instance, as a mean of
providing an initial guess, as a mean to post-analyze the
results, or the results are already from the beginning in-
tended to be used in a simulation, for instance as input to
a more complex representation of the system, or as a feed-
forward/reference signal. It also plays an important role in
fine-tuning the transcription process, as it aids the user in
selecting a suitable integration method that balance accu-

racy and execution time.
Perhaps the most important enabler of modern NOC

was the release of software package Casadi (Andersson,
2013; Andersson et al., 2019). It provides the building
blocks necessary for the user to implement a custom tran-
scription method. The benefit is that the user can formu-
late and solve a large class of relevant OCPs. The draw-
back is that the user needs to implement the method them-
selves from essential building blocks, which is not trivial
and therefore opens up for potential pitfalls.

The most vulnerable part of simulating the numerical
optimal control is inclusion of a piecewise constant con-
trol input. It is well established that discontinuities make
simulation more difficult (Shampine et al., 1976), and var-
ious solutions can be found (Gear and Osterby, 1984; Ma-
jer et al., 1995; Mao and Petzold, 2002). In the field of
NOC, much attention is given to how simulation and nu-
merical integration enters NOC (von Stryk and Bulirsch,
1992; Diehl et al., 2006; Betts, 2010; Biegler, 2010; Rawl-
ings et al., 2017), but little attention is given to how NOC
enters simulation. An important enabler of NOC in simu-
lation is therefore an explicit investigation of how to han-
dle the incurred difficulties, in particular, an explicit de-
scription of handling piecewise constant control inputs,
which is the subject here.

The main contribution is how to structure simulations
that involve NOC results based on a piecewise constant
control input model, and why they should be structured in
that way. Secondary contributions include demonstrating
how integration in NOC can produce erroneous results and
how accurate simulation can help detect that.

The outline is as follows. Section 2 introduces the sub-
ject by an example, Section 3 develops a user’s model of
the transcription process, Section 4 shows how to accu-
rately simulate the optimal control, Section 5 gives an ad-
vanced use case in which Monte-Carlo simulation and op-
timal control is used to test a method for finding robust
optimal trajectories, and the conclusions are presented in
Section 6.

2 An introductory example
To introduce the subject of simulation in NOC, a simple
example has been devised. The purpose is to show the
importance of adequately selecting the integration method
in the OCP transcription, but also the importance of an
accurate simulation of the results.

Begin by denoting the state variable by x, the control

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185148 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

148

0 10 20 30 40 50 60 70 80 90 100
−4
−2

0
2
4

x1 sol
x1 sim

0 10 20 30 40 50 60 70 80 90 100
−4
−2

0
2
4

x2 sol
x2 sim

0 10 20 30 40 50 60 70 80 90 100
−1
−0.5

0
0.5

1

t

u sol

Figure 1. Numerical solution to (2) using implicit euler to dis-
cretize the continuous time dynamics. Solid lines (blue) show
the numerical solution as obtained from the optimization prob-
lem solver. Dashed lines (red) show a validation of the results
when the system is driven with the optimal control as input. Y-
axis is limited.

input by u, the output by y, and consider the linear system

ẋ =
[

1
5 − 13

50
1 0

]
x+
[

1
0

]
u (1a)

y =
[
0 1

]
x (1b)

Omitting the control input (u = 0), the system is unstable
and has poles 1/10±1/2i.

Assume it is desired to solve the following optimal con-
trol problem, in which the above system dynamics is de-
noted ẋ = f (x,u):

min
u

∫ t f

0
xTQx+uTRu dt

s.t. ẋ = f (x,u),
x(0) = x0,

x(t f) = x f

(2)

The aim is to drive the state from the initial value x0, to the
final value x f , while minimizing the quadratic criterion
in the objective function, and doing so within the fixed
time horizon t ∈ [0, t f]. To solve the above problem us-
ing numerical optimal control a transcription method is
needed. Here, the direct collocation method (Hargraves
and Paris, 1987) using implicit Euler for numerical inte-
gration is used.

For the parametrization

Q =

[
0.1 0
0 0.1

]
, R = 1000, t f = 100,

x0 = [1,1]T, x f = [0,0]T

Figure 1 shows, drawn using solid lines (blue), a numeri-
cal solution to the problem.

The results are counter intuitive. The system dynam-
ics are unstable, and yet the control input is close to zero.
To confirm the results, the system is simulated using the
Matlab routine ode45 (default settings), which is an im-
plementation of Dorman-Prince method (Dormand and
Prince, 1980). The results are drawn using dashed lines
(red) in Figure 1. It shows that the system is diverging,
and not at all driven to the origin, as indicated by the nu-
merical solution to the optimal control problem.

2.1 Analysis
The problem in the above example is that the stability
properties of system (1) is not preserved by the implicit
Euler method. To analyze the situation, and better appre-
ciate the importance of simulation in numerical optimal
control, it is demonstrated with which ease the problem
can be constructed.

Consider the system, ẋ = Ax, where A is a diago-
nalizable, constant coefficient, m×m matrix. Take T
as a nonsingular matrix consisting of eigenvectors of A.
A is then diagonalizable as A = T DT−1, where D =
diag(λ1,λ2, . . . ,λm), is a diagonal matrix with diagonal
entries λi, i = 1,2, . . . ,m, being the eigenvalues of A. By
introducing the change of variable z = T−1x, the decou-
pled dynamics is obtained as ż = Dz. Applying implicit
Euler over the fixed grid

0 = t0 < t1 < · · ·< tN−1 < tN = t f (3a)
h = tn+1− tn, n = 0,1, . . . ,N−1 (3b)

for some number of steps N, the discretized dynamics is
obtained as zn+1 = (I−hD)−1zn. Every component z(i) is
of the form

z(i)n+1 =
1

1−hλi
z(i)n , i = 1,2, . . . ,m

For |1− hλi| > 1, i = 1,2, . . . ,m, a converging sequence
|z(i)0 |> |z

(i)
1 |> · · ·> |z

(i)
n | is obtained, regardless of the sta-

bility properties of the underlying ODE. So, by construc-
tion the matrix from the desired eigenvalues and step size,
an unstable ODE, whose stability property is not preserved
by the implicit Euler method, can be constructed.

In the example, the poles are 1/10± 1/2i and the step
length h = 1, which gives |1−hλi|= 1+37/1250 > 1.

These types of traps and pitfalls are to be found in sim-
ulation, especially when working with simple integration
methods, as is typically done in NOC. It shows the impor-
tance of properly understanding the type of problem one
is simulating, but perhaps even more, the importance of
confirming the results by use of simulation.

2.2 Instability
Unstable systems are difficult to simulate, even when con-
trol is applied. To demonstrate that the above problem is

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185148 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

149

0 10 20 30 40 50 60 70 80 90 100
−4
−2

0
2
4

x1 sol
x1 sim

0 10 20 30 40 50 60 70 80 90 100
−4
−2

0
2
4

x2 sol
x2 sim

0 10 20 30 40 50 60 70 80 90 100
−1
−0.5

0
0.5

1

t

u sol
u sim

Figure 2. Numerical solution to (2). Drawn using dashed lines
(blue) is the results from the OCP solver, using a high order
integration method. Drawn in solid lines is the simulation of the
results using a different high order integration method.

simulatable, the OCP (2) is solved using a fifth order Leg-
endre collocation integration method and simulated using
ode45 in Matlab (it can be noted that this is overkill for
a linear system). The results are found in Figure 2. Con-
trary to the first case, the results are consistent with intu-
ition and control is applied forcefully in the beginning to
prevent the system from diverging.

2.3 Erroneous simulation
Simulating the numerical results of an optimal control
problem is not as trivial as it first appears. Consider Figure
3. Drawn in dashed (blue) is the same solution presented
in Figure 2. Drawn in solid (red) is an erroneous simula-
tion of the optimal control. The integration method used
to obtain the simulation results presented in Figure 2 and
Figure 3 is the same, the Matlab command ode45, using
default settings in both cases. One trajectory is diverging,
the other converging. The difference is in how the simula-
tion is structured, and how to do that accurately is shown
in Section 4.

3 Numerical optimal control
In order to structure the simulations correctly, it is nec-
essary to develop a user’s model of the transcription pro-
cess. This section briefly introduces the subject of optimal
control and outlines a sufficiently detailed model of the
transcription process to structure the simulations.

3.1 Optimal control
A solution to an optimal control problem is seeking the
optimal control, u∗, and the optimal state trajectory, x∗,
that minimize the cost function and does not violate the
constraints. The problem’s characteristic feature is the
differential constraint ẋ = f (t,x,u). The objective func-

0 10 20 30 40 50 60 70 80 90 100
−4
−2

0
2
4

x1 sol
x1 sim

0 10 20 30 40 50 60 70 80 90 100
−4
−2

0
2
4

x2 sol
x2 sim

0 10 20 30 40 50 60 70 80 90 100
−1
−0.5

0
0.5

1

t

u sol
u sim

Figure 3. Dashed lines show the actual trajectory, obtained us-
ing a correct simulation setup. Solid lines show a faulty con-
firmation, obtained using the same integration method, with the
same default settings as the dashed line, but with a faulty setup.
Notice that the control signals are almost identical. The pertur-
bation is still large enough to put the system on a completely
different trajectory.

tion consists of two parts. An integral cost
∫

L(t,x,u)dt,
and a terminal cost E(t f ,x(t f)). There is an allowable set
for the initial value x(0) ∈X0, path constraints x(t) ∈X
and u(t) ∈ U , and an allowable set for the terminal state
x(t f) ∈X f . The problem is formulated as

min
u

E(t f ,x(t f))+
∫ t f

0
L(t,x,u) dt

s.t. ẋ = f (t,x,u), t ∈ [0, t f],

x(0) ∈X0,

x(t) ∈X , t ∈ [0, t f],

u(t) ∈U , t ∈ [0, t f],

x(t f) ∈X f

3.2 Direct methods for optimal control
Any numerical method for optimal control needs to ad-
dress the fact that the system of interest is represented by
a differential equation. While there are many available
methods, the focus here is on direct methods, which tran-
scribes the OCP into an NLP, and solves that numerically.

To transcribe the continuous time OCP into an NLP,
there are two major considerations to take into account.
How to handle the control input, and how to handle the in-
tegration of the system dynamics. There is also a third one,
the integration of the integral cost I =

∫
L(t,x,u)dt. How-

ever, by introducing the integration state xl , ẋl = L(t,x,u),
the integral can be integrated with the system dynam-
ics and rephrased as an terminal cost I =

∫
L(t,x,u)dt =

xl(t f), and therefore the two main concerns are the state
and control trajectory.

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185148 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

150

Consider again the fixed grid (3). Over it, the control
input is parameterized as a piecewise constant signal, with
a constant input, un, for each step

u(t) = un, t ∈ [tn, tn+1)

While there are several ways of parameterizing the control
input (Andersson, 2013), this is the most popular (Diehl,
2011) and corresponds to a zero-order hold control sys-
tem implementation. It is also more general than it first
appears. Consider the following augmentation. Denote
the augmented system state by x̃ and augmented control
signal by ũ and let them be defined by

x̃ =
[

x
u

]
, ˙̃x =

[
f (t,x,u)

ũ

]
, ũ =

du
dt

Given that ũ is piecewise constant, it then follows that u is
piecewise linear. Since this augmentation can be applied
arbitrarily many times, it shows that u can be of arbitrar-
ily high order, even if the augmented input is piecewise
constant. It should be noted that in a numerical setting,
the obtained degree is also influenced by the order of the
integration method.

The two most popular direct methods (Diehl et al.,
2006), direct collocation (Hargraves and Paris, 1987), and
direct multiple shooting (Bock and Plitt, 1984), integrate
the system dynamics over each segment of the grid sepa-
rately, forming a discontinuous trajectory, consisting of a
sequence of initial value problems

ẋ = f (t,x,un), t ∈ [tn, tn+1), n = 0, · · · ,N−1 (4a)
x(tn) = xn (4b)

which is parameterized by the initial condition xn, and
state at the terminal boundary by x(tN) = xN .

To obtain a continuous trajectory, continuity constraints
are introduced that bind the trajectory together

F(tn,xn,un) = xn+1, n = 0, . . . ,N−1 (5)

Here, F is the numerical integration of the continuous time
dynamics over the segment

F(tn,xn,un)≈
∫ tn+1

tn
f (t,x,un)dt

A sketch of the process is found in Figure 4.
Omitting the path constraints and only considering box

constraints for the initial and terminal constraints, the tran-
scription process results in the NLP

min
x0,...,xN

u0,...,uN−1

E(t f ,xN)+ xl,N

s.t.
[

x0,min
x f ,min

]
≤
[

x0
xN

]
≤
[

x0,max
xN,max

]
, F(t0,x0,u0)− x1

...
F(tN−1,xN−1,uN−1)− xN

= 0

(6)

𝑥, 𝑢

𝑡
𝑢! 𝑢"#$𝑢$ 𝑢% 𝑢%&$

𝑥!

𝑥$ 𝑥%

𝑥%&$

𝑥"#$

𝑥"𝐹 𝑥%, 𝑢%
= 𝑥%&$

……

Figure 4. Sketch of a direct method for optimal control. The
control input u is piecewise constant, and the state trajectory is
discontinuous and parameterized with an initial value for every
segment. The state trajectory is made constant by introducing
the continuity constraint (5).

As a user’s model, the two most important things to note
is that the control input can be expected to be piecewise
constant, and the state trajectory is integrated separately
over the grid segments.

It should also be emphasized that this is an outline of the
transcription process, and not a formal description, which
can be found in (Biegler, 2010; Betts, 2010).

4 Simulation of the optimal control
The main difficulty in simulating a system with the op-
timal control as input is handling the piecewise constant
control input. Consider the following basic IVP where the
intention is to simulate the optimal control. ẋ = h(t,x) is
used to describe the simulated system, which is a combi-
nation of the controlled system and a look-up of the opti-
mal control.

ẋ = h(t,x), t ∈ [0, t f] (7a)
x(0) = x0 (7b)

The controlled system, ẋ = f (t,x,u), is contained in ẋ =
h(t,x). Since the simulated solution is expressed in the
two variables t and x, then so is the simulated control, us.
By introducing the definition us = g(t,x), the simulated
system can be described by ẋ = h(t,x) = f (t,x,g(t,x)).
The transcription process gives that the optimal control is
parameterized in terms of t, so the simulated control is a
function in the independent variable only, us = g(t). This
means that formulation (7) include a look-up of u∗ based
on the independent variable t. If simulated correctly, us =
u∗, but it is not necessarily so.

The following Matlab code is an example simulation of
IVP (7). It uses interpolation based on the current value
of the independent variable to look-up the control input.
t and x are the variables the hold the simulation results,
h is the function that is called by the integration routine
ode45, [t0, tf] is the problem horizon, x0 is the ini-
tial value, interp1 does piecewise constant interpola-
tion of the optimal control, (t_sol, u_sol), based on
the function parameter t which represent the independent

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185148 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

151

variable, f is the function that holds the implementation
of the controlled system f (t,x,u), and der is the return
value that represent ẋ(t).

[t, x] = ode45(@h, [t0, tf], x0);
function der = h(t, x)

u = interp1(...
t_sol, u_sol, t, ’previous’);

der = f(t, x, u);
end

This is an example of a naive implementation, and was
used to derive the erroneous confirmation in Figure 3
(solid lines). Since the control is interpolated based on the
independent variable, the actual control input is dependent
on the step length. Unless steps are taken at the exact grid
points (3), the simulated control us does not equal the op-
timal control u∗. The problem is remedied by using a vari-
able step-length solver and lowering the tolerance, but it
does not solve it. Variable step-length solvers are built on
the assumption of a smooth solution, differentiable up to
the order conditions, which is why discontinuities are han-
dled poorly (Ascher and Petzold, 1998). Also, the control
input is not a dependent variable, so local error control
does not have direct mean of estimating the error in that
signal. A secondary effect of lowering the tolerance is
that the number of function evaluations increases, which
increase computational time, so both accuracy and time is
lost when structuring the simulation according to (7).

From a user’s perspective, an aggravating circumstance
of simulating (7) is that it is easy to miss that the opti-
mal control has not been properly reconstructed, since the
simulated control, us, needs to be reconstructed from the
simulation (it is not a state). One might think of using a
global variable to store the control, but this approach does
not work for variable step-length solvers as not all steps
are accepted.

4.1 Event functions
(Ascher and Petzold, 1998; Gustafsson) suggest the use
of event functions to tell the integration method that a dis-
continuous event has occurred. While being a good advice
in general, caution needs to be taken. For instance, Matlab
(Shampine and Reichelt, 1997) and SciPy (Virtanen et al.,
2020) does not use event functions as a mean to direct step
length. In other environments such as OpenModelica ans
Assimulo (Lundvall et al., 2005; Andersson et al., 2015)
events can be used to inform the solver of discontinuities.

4.2 Handling of the control input
To handle the problem of a discontinuous control input in
the simulation, the simulation is restarted for every change
in the control input, similar to what is done in the tran-
scription process (4)

ẋ = f (t,x,un), t ∈ [tn, tn+1], n = 0, · · · ,N−1 (8a)
x(tn) = xn (8b)

This avoids the problem of having to localize the change
in control input and ensures us = u∗, regardless of solver

tolerance.
The following is an example Matlab simulation of (8).

The code is structured based on the number of segments
to simulate, N. The first loop iterate is peeled off in or-
der to initialize the variables t and x which hold the so-
lution. The local solution on each segment (tt, xx) is
appended to the existing solution, without overlap. No-
tice how the control, u_sol, is fixed over each segment
[t_sol(i), t_sol(i+1)]. The standard Matlab
solver ode45 is used, but it could be any suitable method.

f1 = @(t, x) f(t, x, u_sol(1));
[t, x] = ode45(f1, [t0, tf], x0);
for i=2:N

fi = @(t, x) f(t, x, u_sol(i));
[tt, xx] = ode45(fi, [t_sol(i),...

t_sol(i+1)], x(end,:));
t = [t; tt(2:end)];
x = [x; xx(2:end,:)];

end

This technique is used in obtaining the results presented
in Figure 2 using solid lines (red). The relatively small
difference between the code presented at the beginning of
this section, and the code presented here, makes all the dif-
ference for accurate simulation of optimal control trajec-
tories. The technique is also inline with general methods
for handling discontinuities (Ascher and Petzold, 1998;
Gustafsson).

5 Example application
In order to demonstrate the close connection between sim-
ulation and optimal control, an example application is
demonstrated. The example is a variation on the classical
OCP, Goddard’s Rocket Problem, adapted from (Maurer,
1976; Rutquist and Edvall, 2010). The problem consists of
launching a rocket as high up in the air as possible, given
a finite amount of fuel.

The aim here is not to conduct rocket science so certain
aspects are simplified. Instead, the aim is to demonstrate
a case where simulation and numerical optimal control in-
teract.

5.1 Rocket Model
The model has three states x: height h, speed v, and fuel
mass m f . The control input, u, is the fuel mass flow rate.

x = [h, v, m f]
T, u =−

dm f

dt

The motion is governed by the ordinary differential equa-
tion

ẋ = f (x,u) =

 v
Fp(u)−FD(v,h)−m(m f)g(h)

m(m f)

−u


where Fp is the propulsion force, FD the drag force, and g
the gravitational acceleration. The rocket mass, m = m f +
m0, consist of the fuel mass m f , and ballast m0 = 68 kg.

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185148 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

152

0 50 100 150 200
0

0.5
1

1.5
2 ·105

h [m]
Simulation

0 50 100 150 200
0

20
40
60
80

100
mf [%]
Simulation

0 50 100 150 200
0

20
40
60
80

100

t [s]

u [%]

Figure 5. Numerical solution to the nominal formulation of the
Goddard Rocket Problem (9), drawn in solid lines (blue). Fuel
mass m f and control (fuel mass flow) u, are presented in per-
centage of their maximum values. Confirmation by simulation
drawn in dashed lines (red).

Propulsive force Fp is proportional to control effort

Fp = cu

and c = 2069 is the proportionality constant. Drag force
is nonlinear and dependent on both height and speed

FD = D0e−γhv2

where D0 = 1.227 · 10−2 and γ = 1.450 · 10−4 are model
parameters. The gravitational acceleration accounts for
how far above the Earth’s surface the rocket is

g = g0

(r0

r0 +h

)2

and g0 = 9.81 m/s2, and r0 = 6.371 ·106 m is Earth radius.

5.2 Nominal problem formulation
A nominal formulation of the problem is formulated as

max
t f ,u

h(t f)

s.t. ẋ = f (x,u), t f ≥ 0,

x(0) = [0,0,150]T,
h≥ 0, v≥ 0, m f ≥ 0,
0≤ u≤ 9.5

(9)

in which the final time, t f , is a problem parameter. A so-
lution to the formulation is found in Figure 5.

5.3 Problem variation
Assume γ is a parameter that is best described as a random
variable on a launch-to-launch basis, but constant over a
single launch

γ = γnomN (µ,σ2) (10)

with γnom = 1.450 · 10−4. Assume that the same refer-
ence trajectory is going to be used for every launch and
that it therefore is desirable to find a balance between fi-
nal height, h(t f), and deviation from the nominal trajec-
tory when γ changes. To measure deviation the root mean
square error (RMSE) is used

RMSE =

√
1
t f

∫ t f

0
(h∗−hs)2dt (11)

in which the optimal height trajectory is denoted by h∗ and
the simulated one by hs for which γ changes.

To balance between height and deviation it is studied
how the state trajectory change for a sufficiently small
change, φ , in a parameter, p and is written as

x(t, p+φ) = x(t, p)+φ
dx(t, p)

d p
+O(φ 2)

Introducing the notation P = dx(t;p)
d p , the perturbation ma-

trix function P is governed by the sensitivity equation

Ṗ =
(

∂ f
∂x

)
P+

∂ f
∂ p

(12)

with the initial condition P(0) = 0. See (Ascher and Pet-
zold, 1998) for a derivation. For p = γ a cost for the sen-
sitivity dh/dγ is included in the objective function as a
mean to balance the two objectives:

max
t f ,x,u

h(t f)−β

∫ t f

0

(
W

dh
dγ

)2
dt

β is the trade-off parameter, and W = 10−8 is a normal-
ization factor that is used to avoid unreasonably small val-
ues of β . The formulation penalizes both height and final
time t f . To remedy this, an extra constraint is introduced,
v(t f) = 0, which ensures the trajectory reaches the apex.

The full formulation of the problem variation is:

max
t f ,x,u

h(t f)−β

∫ t f

0

(
W

dh
dγ

)2
dt

s.t. ẋ = f (x,u), t f ≥ 0,

x(0) = [0,0,150]T,
h≥ 0, v≥ 0, m f ≥ 0,
0≤ u≤ 9.5,
v(t f) = 0

(13)

Note that f (x,u) is used ambiguously and in this formula-
tion includes the sensitivity equation (12), with p = γ .

For γ = γnom, Figure 6 presents the solution to the prob-
lem for a three different values of β , and Figure 7 shows
the corresponding sensitivity state trajectory dh/dγ .

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185148 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

153

0 50 100 150 200 250
0

0.5

1

1.5

2 ·105

t [s]

h
[m

]

h β=0
h β=2
h β=10

0 50 100 150 200 250
0
2
4
6
8

10

t [s]

u
[k

g/
s]

h β=0
h β=2
h β=10

Figure 6. Solution to (13) for three different values of β .

0 50 100 150 200 250
0
2
4
6

·108

t [s]

dh
/d

γ

h β=0
h β=2
h β=10

Figure 7. Optimal sensitivity trajectory dh
dγ

for different values
of β .

5.4 Simulation
To quantify the trade-off between the two performance
variables, final height h(t f) and RMSE, the problem (13)
is solved for sequence of values of β , for K = 12

β1 < β2 < · · ·< βK (14)

For every solution corresponding to βk, the optimal con-
trol, u∗k , is simulated, using simulation setup (8), with the
parameter γ drawn from the distribution (10). 10’000 sim-
ulations are run for every βk. By completing the procedure
for the full sequence of β (14), the results can be plotted,
and a Pareto front is formed, see Figure 8. It clearly shows
the trade-off between the performance variables.

For γ = γnomN (1,0.15) Figure 8 shows the trade-off
drawn in solid lines (blue), and for γ = γnomN (0.85,0.15)
in dashed lines (red). The height is normalized with max-
imum height for nominal parameter values, solution to
problem (9), and deviation is normalized with the maxi-
mum one for the corresponding distribution of β . For the
unbiased distribution it can be seen the final height is max-
imized for the second-most point from the right (β = 1),
although only slightly higher than the nominal trajectory,
but deviation is reduced by about 6 %, a free lunch. For
the biased estimate, it can be seen that β = 2 maximizes
height, but the most interesting point for both cases is per-
haps β = 5 which gives a significant reduction in deviation
while maintaining much of the height. An important as-
pect of the example is the use of simulation as a mean to

20 30 40 50 60 70 80 90 100
40

50

60

70

80

90

100

RMSE(h*-hs) [max%]

Fi
na

lh
ei

gh
t[

m
ax

%
]

Figure 8. Pareto-optimal solution to (13), for β =
{0, 1, 2, 3, 5, 10, 20, 30, 50, 70, 100, 200}. Values to the
right correspond to lower values of β . Solid line (blue) corre-
spond to the distribution γ = γnomN (1,0.15), dashed lines (red),
to the distribution γ = γnomN (0.85,0.15).

20 30 40 50 60 70 80 90 100

50

60

70

80

90

RMSE(h*-hs) [max%]

Fi
na

lh
ei

gh
t[

m
ax

%
]

Figure 9. Erroneous Pareto-optimal solution to (13), for β =
{0, 1, 2, 3, 5, 10, 20, 30, 50, 70, 100, 200}

gain insights into the optimal control, which shows that
simulation too is an integral part of optimal control, not
just optimization.

As the example is primarily devoted to the simulation
aspect, the obtained results are compared to the same anal-
ysis but using the look-up based simulation method (7).
The simulations are otherwise conducted in the same way,
solver and solver settings remains the same. The problem
is only solved for the distribution γ = γnomN (1,0.15) and
Figure 9 shows the results. The results are erroneous, and
any analysis of the results are therefore useless. In this
case, it is obvious that something is wrong, but in a real
case it does not have to be as easy to decide, and for those
cases it is important to have confidence in the method.

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185148 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

154

6 Conclusions
It is demonstrated how simulation in NOC can fail and
how it can be detected using accurate simulation. A user’s
model of the transcription process is developed, and based
on it, a technique for structuring accurate simulations. The
technique is based on the fact that the parameterized con-
trol input is discontinuous and to accurately handle that,
the simulation is restarted at the discontinuity. MATLAB
code, which is simple enough to act as pseudo code for
other languages, is provided and is a practical guide for
the user on how to apply the technique.The effectiveness
and the importance of accurate simulation is demonstrated
using an example. It shows how simulation can be used as
a tool for getting the most out of optimal control, but also
how an inappropriate simulation setup can lead to erro-
neous results.

References
Christian Andersson, Claus Führer, and Johan Åkesson. As-

simulo: A unified framework for ode solvers. Mathematics
and Computers in Simulation, 116:26–43, 2015.

Joel Andersson. A general-purpose software framework for dy-
namic optimization. PhD thesis, PhD thesis, Arenberg Doc-
toral School, KU Leuven, Department of Electrical . . . , 2013.

Joel AE Andersson, Joris Gillis, Greg Horn, James B Rawlings,
and Moritz Diehl. Casadi: a software framework for non-
linear optimization and optimal control. Mathematical Pro-
gramming Computation, 11(1):1–36, 2019.

Uri M Ascher and Linda R Petzold. Computer methods for or-
dinary differential equations and differential-algebraic equa-
tions, volume 61. Siam, 1998.

John T Betts. Practical methods for optimal control and estima-
tion using nonlinear programming. SIAM, 2010.

Lorenz T Biegler. Nonlinear programming: concepts, algo-
rithms, and applications to chemical processes. SIAM, 2010.

Hans Georg Bock and Karl-Josef Plitt. A multiple shooting al-
gorithm for direct solution of optimal control problems. IFAC
Proceedings Volumes, 17(2):1603–1608, 1984.

John Charles Butcher. A history of runge-kutta methods. Ap-
plied numerical mathematics, 20(3):247–260, 1996.

M. Diehl, H. G. Bock, H. Diedam, and P. B. Wieber. Fast direct
multiple shooting algorithms for optimal robot control. Lec-
ture Notes in Control and Information Sciences, 340:65–93,
2006. ISSN 01708643. doi:10.1007/978-3-540-36119-0_4.

Moritz Diehl. Numerical optimal control. Technical report, KU
Leuven, 2011.

John R Dormand and Peter J Prince. A family of embedded
runge-kutta formulae. Journal of computational and applied
mathematics, 6(1):19–26, 1980.

Charles William Gear and O Osterby. Solving ordinary differ-
ential equations with discontinuities. ACM Transactions on
Mathematical Software (TOMS), 10(1):23–44, 1984.

Kjell Gustafsson. Traps and pitfalls in simulation. Technical
report, Ericsson Mobile Communications AB.

Charles R Hargraves and Stephen W Paris. Direct trajectory
optimization using nonlinear programming and collocation.
Journal of guidance, control, and dynamics, 10(4):338–342,
1987.

Håkan Lundvall, Peter Fritzson, and Bernhard Bachmann. Event
handling in the openmodelica compiler and runtime system.
Linköping University Electronic Press, 2005.

C Majer, W Marquardt, and Ernst Dieter Gilles. Reinitialization
of dae’s after discontinuities. Computers & chemical engi-
neering, 19:507–512, 1995.

Guiyou Mao and Linda R Petzold. Efficient integration over
discontinuities for differential-algebraic systems. Computers
& Mathematics with Applications, 43(1-2):65–79, 2002.

H Maurer. Numerical solution of singular control problems us-
ing multiple shooting techniques. Journal of Optimization
Theory and Applications, 18(2):235–257, 1976.

Anil V Rao. A survey of numerical methods for optimal con-
trol. Advances in the Astronautical Sciences, 135(1):497–
528, 2009.

James Blake Rawlings, David Q Mayne, and Moritz Diehl.
Model predictive control: theory, computation, and design,
volume 2. Nob Hill Publishing Madison, WI, 2017.

Per E Rutquist and Marcus M Edvall. Propt-matlab optimal con-
trol software. Tomlab Optimization Inc, 260(1):12, 2010.

Lawrence F Shampine and Mark W Reichelt. The matlab ode
suite. SIAM journal on scientific computing, 18(1):1–22,
1997.

LF Shampine, HA Watts, and SM Davenport. Solving nonstiff
ordinary differential equations—the state of the art. Siam Re-
view, 18(3):376–411, 1976.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haber-
land, Tyler Reddy, David Cournapeau, Evgeni Burovski,
Pearu Peterson, Warren Weckesser, Jonathan Bright, Sté-
fan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quin-
tero, Charles R. Harris, Anne M. Archibald, Antônio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Sci-
entific Computing in Python. Nature Methods, 17:261–272,
2020. doi:10.1038/s41592-019-0686-2.

O. von Stryk and R. Bulirsch. Direct and indirect meth-
ods for trajectory optimization. Annals of Opera-
tions Research, 37(1):357–373, 1992. ISSN 02545330.
doi:10.1007/BF02071065.

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185148 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

155

https://doi.org/10.1007/978-3-540-36119-0_4
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/BF02071065

	Introduction
	Materials & Methods
	Sample preparation and Raman analysis
	Principal Component Analysis (PCA)

	Results & Discussion
	Pre-processing of raw spectra
	Initial PCA Analysis
	Optimized PCA with Variable Selection

	Conclusion
	Introduction
	Knowledge-based variable grouping
	Grouping with data analysis
	Correlation analysis
	Correlations in nonlinear systems
	Correlations in variable groups
	High-dimensional data

	Decomposition
	Clustering
	Reasoning

	Model-based selection and grouping
	Application cases
	Discussion
	Conclusions and future studies
	Introduction
	Proposed Wall Element
	Heat Transfer Analysis
	Material Properties and Boundary Conditions
	Results

	Hygrothermal Analysis
	Concluding Remarks
	Introduction
	Modeling for Energy Optimal Control
	Optimal control
	Numerical solution to optimal control problems
	Modeling implications

	Data
	Pressure offset estimation

	Model
	Dynamics
	Throttle
	Cylinder
	Torque
	Turbine
	Wastegate
	Compressor

	Energy optimal control
	Conclusions
	Introduction
	Background
	Previous work

	Methods
	Machine learning vs traditional computer vision algorithms
	Machine learning using fastai
	Image classification and segmentation
	Estimating tank level from an image
	Transfer learning
	ResNet
	Model training

	Traditional approach using OpenCV
	Binary threshold
	Canny edge detection

	Experimental setup
	Perspective distortion

	Results and discussion
	Model training
	Optimal scene conditions
	Challenging scene conditions
	Adapting to changes in the image scene

	Repeatability under experimental variation
	Rotating tank - altered viewing angle
	Refilling tank - altering distribution of coffee beans in tank

	Timing

	Conclusions
	Introduction
	An introductory example
	Analysis
	Instability
	Erroneous simulation

	Numerical optimal control
	Optimal control
	Direct methods for optimal control

	Simulation of the optimal control
	Event functions
	Handling of the control input

	Example application
	Rocket Model
	Nominal problem formulation
	Problem variation
	Simulation

	Conclusions
	Introduction
	Operational Philosophy
	Lean burn gas engine - Otto Cycle
	Main control loops
	Speed Control
	Air pressure/AFR control
	Air temperature control
	NOx control
	Global ignition timing control

	Global ignition timing and efficiency
	Global ignition timing and heat rate

	Process modelling and description
	Charge air pressure
	Global Ignition timing
	Suction air temperature
	Charge air temperature
	IMEP
	Heat rate
	Knock level
	Peak pressure
	NOx
	O2
	Exhaust temperature
	State space model of engine

	Optimal control problem formulation
	Results and Discussion
	Conclusions
	Introduction
	Materials and methods
	Measurements
	Signal processing

	Results and discussion
	Acceleration measurements and their squared envelope spectra, bearing fault
	Acceleration measurements and their squared envelope spectra, misalignment
	Local regularity signals and their L-S periodograms and DCT spectra, bearing fault
	Local regularity signals and their L-S periodograms and DCT spectra, misalignment

	Conclusions
	Modeling and Simulation for Decision Making in Sustainable and Resilient Assembly System Selection
	1 Introduction
	1.1 Aims
	1.2 Sustainable manufacturing
	1.3 Resilient and Agile Manufacturing
	1.4 Requirements and solutions

	2 Design, modeling and evaluation
	2.1 Define requirements and needs
	2.2 Solution modeling
	2.2.1 Manufacturing system modeling

	2.3 Evaluation and analytics
	2.3.1 Cost and efficiency aspects analytics
	2.3.2 Environmental aspects analytics

	2.4 Improve decision making

	3 Discussion
	4 Conclusions
	Introduction
	Background
	Previous Work
	Outline of the Paper

	System Description
	Mathematical Model
	Hydro Power Plant
	Solar Power and Consumer Load
	Grid
	Canonical Representation of the Model
	Case Study

	Deterministic MPC
	Cost Function
	OCP Formulated in JuMP.jl

	Stochastic MPC
	Cost Function
	Stochastic Scenarios for Ps and P
	Stochastic OCP

	Results and Discussions
	Deterministic MPC
	Stochastic MPC

	Conclusions and Future Work
	Bibliography
	Introduction
	Background
	Outline of the Paper

	Speed Governor for Single Hydro Power Plant
	Governing mechanism
	Trollheim Hydro Power Plant
	Tuning of PI Controller
	Step Change in Load Power P

	Control of Multiple Hydro Power Plants
	Problem Description
	Concept of Droop Control
	Internal Structure of Droop Controller

	Case Studies
	Case Study-1
	Case Study-2

	Conclusions and Future Work
	Bibliography
	Introduction
	System Description
	Electrode Drying
	Solvent Recovery System
	Dry Room Air Dehumidification System
	Heat Pump
	Heat Exchanger Networks

	Results and Discussion
	Effect of Parameters on the Evaporation Energy of Drying
	Effect of Drying Temperature and Regenerator Size on the Energy of Solvent Recovery System
	Energy Consumption with Heat Pump
	Energy Consumption with MER-Network
	Comparison of the Used Energy Optimization Methods
	Comparison with Literature Values

	Conclusions
	Introduction
	System Description
	System model
	Operational constraints

	Optimal Control Formulation
	Reference region tracking OCP with output constraints
	New OCP with constraint relaxation

	Simulation of Nominal MPC
	Simulation result: Initial water level below the reference region
	Simulation result: Initial water level in the reference region

	Robustness Analysis
	Conclusion
	Introduction
	Methods
	Results and Discussions
	Conclusions
	Introduction
	Modeling and Sensitivity Analysis
	Model Description
	Uncertainties
	Open Loop Simulation
	Global Sensitivity Analysis

	Standard NMPC and Stochastic Analysis
	Design of deterministic standard NMPC
	Stochastic analysis of parametric uncertainty

	Conclusion
	Introduction
	Background
	Previous Work
	Structure of Paper

	Model Overview
	Two-phase Flow in a Porous Media
	Reservoir Overview
	Reservoir Model
	Well Model
	Simplifying Assumptions
	Valve and Pipe
	Water Saturation Versus Relative Permeability
	Mobility Determination
	Numerical Solution
	Pressure Equation

	Model Uncertainty and PI Controller
	Uncertainty Analysis
	PI Controller

	Simulation Results
	Conclusions
	Bibliography
	Introduction
	Method
	Simulation
	Sensors and Measurement Noise
	Analysis of Residuals

	Results and Discussion
	Fault Detectability and Isolability
	Fault Signatures
	Sensitivity to Measurement Noise

	Conclusions and Recommendations
	Acknowledgements
	Introduction
	Method
	Using a Cloud Platform
	Models
	Data
	Integration
	Output and presentation

	Results
	Implemented models
	Data Extraction
	Data and Model Integration

	Discussions
	Conclusions
	Acknowledgment
	Methanol synthesis from syngas: a process simulation
	1 Introduction
	2 Methanol synthesis from syngas and carbon dioxide
	2.1 Previous works

	3 Materials and methods
	4 Results and discussion
	5 Conclusion
	Introduction
	Modeling
	Seahorse XF
	Parameter estimation
	Structural properties
	Conclusions
	Introduction
	Background
	Previous work
	Scope

	Materials and methods
	Number balance
	Assumptions on the total population
	The classical continuous SIR description
	Extension: the SEIR description
	Poisson distribution in events
	Stochastic differential equation
	First reaction time

	Reproduction number
	Model fitting
	Measles case study

	Measles case study
	SIR model
	Deterministic model with model fitting
	SDE model
	First reaction event model

	SEIR model

	Analysis of epidemiology models
	Condition for infection growth
	Stability from SEIR model

	Conclusions
	Bibliography
	Introduction
	Background
	Previous work
	Scope

	Materials and Methods
	COVID-19 data
	Initial evolution of C
	SEICUR model
	Reaction mechanism
	Approximate initial response
	Parameters and initial states
	Reproduction number

	The Norwegian PHI model
	Variation in infection rate
	Mitigation

	Model Fitting
	Initial evolution
	Fitted mitigation policy
	Case Norway
	Case: Italy
	Case: Spain

	Discussion and conclusions
	Bibliography
	Introduction
	Background
	Previous work
	Scope

	Materials and Methods
	Reaction mechanism
	Migration
	Demographic distribution
	Extinction of COVID-19
	Herd immunity
	Vaccination
	Qualitative effect of mitigation + vaccination

	Results
	Migration
	Herd immunity
	Vaccination
	Quenching COVID-19: the importance of vaccination

	Conclusions
	Bibliography
	Introduction
	COVID-19 data
	Methodologies
	Nonlinear scaling
	Steady-state LE modelling
	Dynamic LE modelling

	Epidemiological modelling
	Variable selection
	Data analysis
	Feasibility results

	Discussions
	Conclusions and future studies

