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Abstract
The framework of model predictive control is used in this
paper to optimally control the operation of an B36:45
LNG engine. The model of the engine is based on real
life data from an installed B36:45 gas engine in a power
plant. Stored data from the plant was used to develop a
state space model of the process consisting of 2 manip-
ulatable variables, 3 measured disturbances and 6 mea-
sured outputs. The goal is to use global ignition timing
and the charge air pressure as control variables to min-
imize the heat rate while considering constraints on the
measured outputs. Heat rate of the engine is directly re-
lated to engine performance efficiency. Results show that
a model based controller has the potential to be used as an
advanced controller for optimal operation of this engine.
Keywords: B36:45 LNG engine, MPC, optimal operation

1 Introduction
Bergen Engines AS is a developer and producer of gas
and diesel engines for the marine and land-based power
marked. The factory is located just north of Bergen on
the west coast of Norway and have been since it moved
from the city centre of Bergen in 1965. Bergen Engines
was part to the Ulstein group from mid-eighties until 1999
from which it has been a part of Rolls-Royce.The latest
LNG (Liquefied Natural Gas) fuel engine type developed
is the B36:45 engine family, and a graphical representation
of the engine is shown in Figure 1.

Figure 1. 20 cylinder B36:45 LNG gas engine with generator.
(Courtesy: Bergen Engine AS)

For an LNG gas engine, the engine efficiency is in gen-
eral as shown in Figure 2 for a given power output. It
should be noted that the efficiency is not very good below
20% power output and rises slowly from approx. 30%
power output to 100% at which the efficiency is close to
50%. The distribution of the efficiency losses can be seen
in Figure 2 where most of the losses are to the exhaust gas.

In the search for increasing the engine efficiency, more

Figure 2. Fuel efficiency for and LNG engine. (Courtesy:
Bergen Engine AS)

Figure 3. Distribution of losses for an LNG gas engine. (Cour-
tesy: Bergen Engine AS)

complex logic, which takes into account more of the in-
formation available, is constantly developed. This has re-
sulted in a large increase in parameters and static maps
that interact with each other, which makes the engine tun-
ing phase a complex and time-consuming job.

It is of great interest to Bergen Engines AS to use ad-
vanced model based controller such as a model predictive
controller (MPC) for generating optimal set points based
on measured states of the engine and known disturbances.
This is set to be the first step towards a more data driven,
self-optimizing algorithms that can use the large amount
of data produced. The ultimate goal here is to use a re-
duced set of parameters which can be used to prioritize
different possibilities such that various requirements are
reached. For instance one of the requirements for a project
can be to reach a given NOx set point and secondary fuel
efficiency, while for another case, it can be the fuel econ-
omy as the most important requirement while keeping the
NOx within given constraints.

The main engine controller currently used is an embed-
ded controller from Woodward Inc. The LECM (Large
Engine Control Module) is a purpose-built controller with
suitable hardware for interfacing large industrial engines.
The software for the controller is developed and built in-
house at Bergen Engines and hence gives a large flexibility
in custom made control algorithms. The control software
used in the LECM is developed in MATLAB Simulink
with a proprietary library for hardware access to the ac-
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tual controller from MotoHawk. The MotoHawk library
is a rapid programming development tool which allows
engineers to quickly develop control software in Simulink
to run on a MotoHawk enabled control module; like the
LECM. Even though MotoHawk as many pre-made al-
gorithms available, it does not have any available MPC
control structures and hence this must be developed us-
ing standard MATLAB and Simulink functions. Thus the
main goal of this project work is to add MPC control struc-
ture to this existing controller for engine fuel optimization.

MPC has been proven in use for instance in steam gen-
erators and servos as illustrated in Richalet (1993). In
Koli (1981) an MPC for a turbocharged gasoline engine
with EGR (Exhaust Gas Recirculation) has been devel-
oped where the dynamics of the model is defined by sim-
ple feedforward neural network. It showed that the simple
black-box model is sufficient for using with MPC. A paper
by Luther (2002) compares neural-net-based modelling to
Adiabatic Mean Value Engine Modelling. Some system
parts were modeled with good accuracy, but others with
large deviations. A neural net based MPC has been used
for the non-linear MIMO system with great performance.
In Lu et al. (2015) support vector machine for non-linear
system identification has been used. The engine model
shows the rotation speed of the engine as a function of
fuel flow, and an MPC is designed in Simulink.

2 Operational Philosophy
The B36:45 engine family is a medium speed lean-burn
single fuel spark ignited internal combustion engine. It
mainly uses LNG as fuel source and a run at 720/750
rpm for 60- and 50 Hz applications respectively. It is
turbocharged and has a 2-stage water cooled charge air
cooler. In most land-based power plants it connected to a
generator which is often connected to either a small local
grid or a large national grid. The engines nominal power
output is 600 kW pr cylinder mechanically and comes in
both in inline and Vee configurations. The smallest is
an inline 6-cylinder engine and the largest is a Vee 20-
cylinder engine.

2.1 Lean burn gas engine - Otto Cycle
A lean-burn gas engine runs with a high air to fuel ratio
compared to the required air for a stochiometric combus-
tion. This lowers the combustion temperature and hence
reduces NOx emissions. The B36:45 engine is a lambda
2 engine, indicating that it runs with twice the required
amount of air for a stochiometric combustion. This lean
mixture is difficult to ignite and hence a pre-combustion
chamber is mounted in the cylinder head. A rich mixture
is here ignited by a spark plug and the resulting flames will
propagate out and into the main chamber where it will ig-
nite the lean mixture. Figure 4 shows an illustration of the
engine process and some control loops. The engine is a
4-stroke (also known as the Otto cycle) which means that
there are 4 distinct phases for the combustion process.

‘

Figure 4. Illustration of the process with some control loops.
(Courtesy: Bergen Engine AS)

2.2 Main control loops
This section shortly describes the most common control
loops for the combustion process which are controlled by
the engine control system today. There some other control
loops as well, but the major once are described here.

2.2.1 Speed Control

It is a PID controller which controls the flow of fuel ad-
mission in order to keep the engine speed at a desired set
point. When connected to a large electricity grid with
fixed frequency, speed control loop is used to control the
engine power output to a given set point. Increasing the set
point for speed will make the speed controller to increase
the fuel admission by increasing the fuel flow which will
result in an increase of engine power output as the grid
frequency cannot change.

2.2.2 Air pressure/AFR control

The AFR, or air pressure control, is a control loop whose
main purpose is to control the charge air pressure in the
air receiver to a given set point. The set point is based
on a map with engine power output and engine speed as
inputs. The set point map is derived based on numerous
of test runs at the test bed by skilled engineers. Since this
is a static map the set point must be biased to a certain
degree based on operational conditions. The air pressure
control is the most active and influents of all control loops.
It dictates most of the engine behaviour as it directly con-
trols the air/fuel ratio under all operational conditions.The
output from the air pressure control is a position control
signal to a waste gate actuator. The waste gate actuator
will control the amount of exhaust by-passing the turbine
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part of the turbocharger(s) and hence the energy used to
increase the air pressure.The feedback to the air pressure
control is the measured air pressure in the air receiver
which then forms a closed loop control system. One of
the goals of this project is to find the optimum charge air
pressure to maximize engine efficiency.

‘

2.2.3 Air temperature control

In order to further control the air/fuel ratio the tempera-
ture of the combustion air should be kept at given values.
The air temperature is often controlled by a low level PID
controller to a given set point based on operational ambi-
ent conditions.The control signal from the PID controller
is used to control a 3-way valve which will direct, or by-
pass, water to a 2-stage charge air cooler. By increasing
the amount of water going through cooler the temperature
can be reduced, and vice-versa. An increase in tempera-
ture will lead to an increase in NOx due to lower air mass
added to the combustion process and due to increase in
temperature. This will also result in the engine operating
closed to the ignition knocking limit.

2.2.4 NOx control

There are dual NOx sensors at the exhaust outlets to mea-
sure NOx [ppm] and Oxygen [%]. A PID controller con-
trol the NOx level to a given setpoint. However, the NOx
controller will bias the air pressure controller’s base set
point between +10% and -5%, so there is direct interac-
tion between these controllers.

‘

2.2.5 Global ignition timing control

The ignition timing is the time in crank angle (CA) de-
grees at which the cylinder individual spark plug is ignited
in the pre-combustion chamber. The base timing setpoints
is created as a map based on various testing on the testbed
by engineers. This base timing is adjusted such that a good
margin to ignition knocking while maintaining high level
of efficiency is achieved. The global timing is adjusted
so that the maximum pressure in the cylinder is occurring
around 13-15 [degCA] after TDC (Top Dead Center). This
will give rise to best performance. The control of the tim-
ing location is complex and difficult to maintain.

In this project, this complexity is reduced by allowing
an advanced model based controller to find the optimum
timing set points given a set of constraints to protect the
engine from running into dangerous operational points.

2.3 Global ignition timing and efficiency
In Figure 5, an indication of the relationship between
global ignition timing and peak pressure and engine effi-
ciency is shown. These curves are based on data from tests
performed on the previous version of the Bergen LNG gas
engine, the B35:40. This engine operates at lower brake
mean effective pressure (BMEP) than the B36:45 engine
and with lower peak pressures. The indicated relationship

Figure 5. Global timing influence on efficiency and cylinder
pressure.

Figure 6. Heat release curve.

however shows similar behaviour also for the B36:45 en-
gine. Earlier ignition timing, i.e. ignition before top dead
centre (BTDC) will increase the peak pressure in the cylin-
der, but it will also increase the efficiency of the engine.
There are however, as indicated, a mechanical limit in the
construction of the engine on how high the peak pressure
can become before there is a risk of mechanical break-
down. The engine control system therefore monitors the
peak pressure for all cylinders and in case of too high pres-
sure the engine will shut down. For the MPC, this pressure
will be used as a constraint to avoid too high pressure.

2.4 Global ignition timing and heat rate
The accumulated heat release average over a number of
combustion cycles are used together with the measured
engine load to calculate the heat rate of the engine. The
smaller the heat rate of the engine, the less is the amount
of fuel used per unit power output. In other words, mini-
mized heat rate will maximize engine efficiency. A typical
heat release curve for different ignition timing (crank an-
gle) is shown in Figure 6. The heat release curve is shown
with the locations for CA10, CA50 and CA90. These are
the locations at which 10%, 50% and 90% of the fuel have
been burned in the combustion chamber.

3 Process modelling and description
Operational data collected from a commercial B36:45 en-
gine operating in a power plant in the city of Tabor in
Czech Republic was used to develop a data-driven model.
The process data is captured at 10 Hz sampling rate by
a local data logger. This logger then pushes the data to
the cloud every 30 minutes. This data is used both for
modelling, fault detection, machine learning and support

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185163 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

165



Figure 7. Process functional diagram.

at Bergen Engine AS. A functional diagram of the process
showing the control input signals, output signals and the
input disturbances is shown in Figure 7.

The two control inputs are the charge air pressure and
Global ignition timing. There are six measured outputs
from the system namely heat rate, peak pressure, knock
level, oxygen (O2) percentage, NOx and Exhaust temper-
ature. In addition there are three measured input distur-
bances namely IMEP (Indicated Mean Efficiency Pres-
sure), charge air temperature and suction air temperature.

3.1 Charge air pressure
The charge air pressure is the pressure of the combustion
air entering the combustion chamber from the air receiver.
This pressure is controlled by adjusting the waste gate by-
pass valve such that the pressure is according to set point.
Traditionally these set points are found based on testing
on a real engine where the emissions are measured and
the distance to the knocking limit is observed. In addition,
the pressure is mapped towards the turbocharger to pre-
vent any stalling or crossing the surge limit. The charge
air pressure set point is usually a map where the set point
is based on the engine speed and the power output but bi-
ased from several sources to make it adaptable to ambient
conditions and ageing. This charge air pressure set point
is traditionally highly driven by the engine power output
in an almost linear relation. Nominal charge air pressure
at 100% power output is approximately 4.2 barg.

3.2 Global Ignition timing
The global ignition timing command is used to set the
base ignition timing for the engine. Each individual cylin-
der will adjust this base timing withing a window of ±-3
[degCA] to balance the peak pressure off the cylinders.
The ignition base timing is traditionally found during test-
ing and running the engine close to the knocking limit dur-
ing controlled environments. It is however not given that
the same conditions will be applicable on every project
and hence margin must be added on the set point to take
into account different fuel compositions and ambient con-
ditions. Ageing is also a factor here. To counter act
these changing conditions several set point modifiers are
in place which will bias the set point if a change in igni-
tion knocking is detected or if exhaust temperature is in-
creased. In addition, the location of the centre of combus-

tion is measured based on the heat release curve from the
combustion process. This location is used as a set point
on a second level PID controller which biases the base
set point so that this location is kept on set point as well.
But none of these measures are there to optimize the fuel
consumption over time and to take into account all these
constraints as an MPC controller can do.

3.3 Suction air temperature
This is slow varying input disturbance to the system which
has the least impact. The suction air temperature is the
air temperature measured at the inlet of the compressor
part of the turbocharger. This disturbance will inform the
system about the ambient conditions under which the en-
gine is currently operating. The ambient temperature, and
hence the suction air temperature will wary over a year for
a given installation location. This variation might be small
or large depending on the location. It might therefor have
an impact in some cases and hence it is included here.

3.4 Charge air temperature
The charge air temperature is measured in the air receiver
and is the temperature of the combustion air fed into the
combustion chamber during the opening time of the inlet
valve. This temperature is in some cases actively regu-
lated by a PID controller, while it in some installations are
mechanically adjusted at max power output to give a cer-
tain temperature. Normal operational temperature here is
around 50-55 ◦C. This might however change if the humid
conditions are present such that condensation might occur
at this temperature. The temperature of the charge air in-
fluences the air mass which is available to the combustion
process and hence any change here will impact both NOx
emissions and the resilience towards knocking.

3.5 IMEP
IMEP (Indicated Mean Effective Pressure) is a measure of
produced work of the engine including the friction work,
i.e. the actual work done by the engine independent of
the engine displacement. It is a measure of the average
pressure in the combustion chamber of the engine cycle.
IMEP is measured directly by the cylinder pressure sen-
sors. The highest and lowest values are removed and the
average over the number of cylinders is taken and fed into
a moving average filter over 100 cycles. This final value
indicates the current loading (power output) of the engine.

3.6 Heat rate
This is the variable that is to be minimized. It is indicative
of the relation between the power output and the fuel con-
sumption estimation. The heat rate is given as the relation
between the IMEP and the total heat release. The IMEP is
measured by the cylinder pressure sensors as well as the
total cumulative heat release. The heat release is given
as [kJ/cycle] and is estimated based on the pressure rise
curve measured by the cylinder pressure sensors.
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3.7 Knock level
Knock level is also known as engine detonation and is
when the combustion takes place prematurely in part of
the compressed air fuel mixture in the cylinder. This
knocking can cause severe damage to the engine if not
responded to early because of high frequency pressure
waves causing very high cylinder pressures potentially
above the design limit of the engine. The engines are
constantly pushed towards the knocking limit as this area
produces better fuel efficiency at higher power outputs.
Knocking might occur if the air fuel mixture is not cor-
rect or substances such as oil leaks into the combustion
chamber causing changes to the burn rate of the air/fuel
mixture. Each cylinder is monitored for knock level and
any increase in knocking results in that cylinder ignition
timing being retarded for some time. If several cylinders
experience knocking the global timing point is usually re-
tarded to avoid any further increase into non-operational
areas. The knock value is measured by looking at the rip-
ples on the cylinder pressure curve after the ignition loca-
tion. This value indicates the level of knocking for each
cylinder but is averaged for all cylinders here. This will in
general only pickup up globally severe knocking. Knock-
ing can also be reduced by lowering engine power out-
put or increasing the amount of air in the air/fuel mixture
resulting in a leaner mixture. That will however impact
efficiency.

3.8 Peak pressure
The peak pressures are measured from cycle to cycle and
is the highest measured pressure in the combustion cham-
ber of the combustion cycle. The peak pressure is a value
which must be limited as there are design limitations on
the engine for how high pressures the internal components
can withstand without damage.

3.9 NOx

The NOx emissions are measured in the exhaust outlet af-
ter the turbocharger. The emissions are measured with
sensor from Continental most commonly used on trucks
and cars. This sensor gives the wet NOx values in ppm
directly and is used in a closed loop regulation for con-
trolling the level of NOx to a given set point. The NOx
values are good indications of how rich or lean the fuel
mixture in the combustion is. A high NOx value indicates
a rich mixture and vice versa. The NOx value is very sen-
sitive to these variations and will rapidly increase in case
of the charge air pressure is reduced. It should however be
noted that the NOx values should rarely be seen drifting
high during steady operation. During transients a change
in NOx value is expected as the engine increases the air
pressure during the transient to get better margins to the
knock limit.

3.10 O2

The same sensors that measures the NOx level in exhaust
will also measure the O2 level. In the traditional engine

controller, the O2 percentage is used actively for engine
limitation. That is if the O2 level becomes too low, which
indicates a too rich mixture, the engine will limit the fuel
admittance and hence reduce power output.

3.11 Exhaust temperature
Traditionally the exhaust temperature outlet from each
cylinder has been used to balance the engine power output
from each cylinder. Before the cylinder pressure sensor
era the only possibility to check how much each cylinder
contributed to the power output was by looking at the de-
viation in exhaust temperature between the cylinders. The
exhaust temperature used here is the temperature mea-
sured in the collecting pipe just prior to the turbine part of
the turbocharger. This exhaust will therefore be an indica-
tive of the all cylinders on that pipe collectively. The tem-
perature will increase in case the power output increases
and mixture becomes too rich. It is therefore very depen-
dent on the charge air pressure, but also the ignition tim-
ing. In case the ignition timing is retarded the temperature
will increase and hence this needs to be handled.

3.12 State space model of engine
In order to find the relationship between the control in-
puts, the measured outputs and the measured input dis-
turbances, system identification toolbox in MATLAB was
utilized to obtain a discrete state space model of the form,

xk+1 = Axk +Buk +Bdud,k

yk =Cxk
(1)

Here, x is the state vector, u is the vector of control in-
puts, ud is the vector of measured disturbances and y is
the vector of the measured outputs. The state matrix, in-
put matrix, disturbance matrix and the output matrix are
A ∈ R25×25, B ∈ R25×2, Bd ∈ R25×3 and C ∈ R6×25 re-
spectively. The subscript k denotes the discrete time steps.

4 Optimal control problem formula-
tion

The goal of utilizing an advanced optimal controller is to
maximize the engine efficiency. This is achieved by mini-
mizing the heat rate of the engine. To do so, the controller
will generate optimal values for the charge air pressure
and global ignition timing. From an optimization point
of view, these two are the decision variables. These sig-
nals will not directly control the process values but will act
as optimal set points for the lower level PID controllers
which in turn will adjust accordingly to achieve optimal
operation.

The physical constraints for the charge air pressure will
be imposed as bounds to the optimizer. By a defined upper
limit for what is physical possible and at the same time
set a lower bound close to 0 barg. Since the process will
not be working on 0 barg air pressure, the lower bound
will be set to 0.3 barg and the upper bound to 4.5 barg
to give some regulation margin. The charge air pressure
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cannot instantly change from one pressure to the next and
hence the optimizer is limited based on rate of change of
the control value such that it cannot change instantly. Nor
can the waste gate valve change instantly and hence such
limitations makes sense.

The global base timing will influence the efficiency of
the engine but also has an impact on the peak pressures,
NOx generation, knocking and exhaust temperature. By
advancing the global timing, the peak pressure increases
and this needs to be within the design limit of the engine
to prevent mechanical damage to the it. If the ignition is
retarded the exhaust temperature increases and the NOx
emissions decreases as the combustion air temperature in-
creases due to longer burn duration. By retarding the ig-
nition timing, the heat rate increases to indicate less effi-
ciency. There are some physical known limitations of the
ignition timing that should be obeyed. The global igni-
tion timing is seldom, if at all, below -8.5 [degCA] for a
running power plant connected to the grid and producing
power at nominal speed. It will also not be possible to
advance the timing more than to -20 [degCA]. Nominal
global ignition timing is usually in range of -12 [degCA]
to -16 [degCA].

The knock level here is included as constraint at it is
a limiting factor for advancing the global ignition timing
too much or reducing the charge air pressure too much.
Typically, the engine is shutdown with a value over 30%.

The nominal peak pressures during 100% power out-
put at nominal speed is usually around 175 [bar]. The
control system has alarms and shutdown conditions if sus-
tained operation around 200 bar is experienced and hence
the optimizer should avoid operation above 200 bar, and
preferably limit operation to 180 bar but with some slack.

The NOx value would be used as a constraint during the
optimization phase such that it can stabilize below at least
150 ppm.

The O2 is rather critical and hence strict constraints on
the low level is to be used. During normal operational con-
ditions the O2 percentage is somewhere between 8.5% and
12.5%, with nominal condition a approx. 9.5%. The op-
timization should be rather strict on the lower limit while
the upper limit can be broken during given condition. The
aim should however be to stay within the limits of 8.5%
and 12.5%.

There are limitations from the turbocharger supplier on
the max inlet/suction temperature of turbine and hence
these needs to be obeyed. The constraints can here be set
based on normal operational conditions where the exhaust
temperature before the turbocharger turbine should not ex-
ceed 600 ◦C.

Table 1 shows the constraints on the output signals and
Table 2 lists the constraints on the control inputs and input
disturbances.

In order to minimize the heat rate of the engine while
still satisfying the constraints on both the inputs and the
output signals, a constrained optimal control problem is

Table 1. Constraints on the outputs.

Signal (symbol) lower limit Upper Limit
Peak Pressure (Pp) 0 bar 180 bar
Knock level (Kl) 0% 30%
Heat rate (hr)
Exhaust temperature (Te) 0 ◦C 600 ◦C
NOx (Nox) 0 ppm 150 ppm
O2 (O2) 8.5% 12.5%

Table 2. Constraints on the control inputs and disturbances.

Signal (symbol) lower limit Upper Limit
Charge air Pressure (Pca) 0.3 barg 4.5 barg
Global timing (Gt) -20 degCA -8.5 degCA
Charge air pressure rate (4Pca) -0.2 barg/s 0.2 barg/s
Global timing rate (4Gt) -0.3 degCA/s 0.5 degCA/s

formulated as,

min
Pca,Gt ,s1,s2

1
2

N

∑
k=1

hT
r,kPhr,k +PT

ca,k−1Q1Pca,k−1 +GT
t,k−1R1Gt,k−1

+4PT
ca,k−1Q24Pca,k−1 +4GT

t,k−1R24Gt,k−1

+ sT
1,kM1s1,k + sT

2,kM2s2,k

s.t. xk+1 = Axk +Buk +Bdud,k

yk =Cxk

0≤ Te,k ≤ 600
0≤ Nox,k ≤ 150
8.5≤ O2,k ≤ 12.5+ s1,k

0≤ Kl,k ≤ 30
0≤ Pp,k ≤ 180+ s2,k

0.3≤ Pca,k ≤ 4.5
−20≤ Gt,k ≤−8.5
−0.2≤4Pca,k ≤ 0.5
−0.3≤4Gt,k ≤ 0.5

(2)

For the relaxation of the upper bounds on the output con-
straints O2 and Pp, two slack variables s1 and s2 are used.
The slack variables are then added to the list of decision
variables so that the relaxation of the output constraints
is a gentle as possible. When the output constraints are
within their limits, the variables s1 and s2 take values
as zeros. In equation 2, P,Q1,R1,Q2,R2,M1 and M2 are
the weighting matrices of appropriate sizes. The predic-
tion horizon for the MPC is denoted by N. The terms
4Pca,k = Pca,k−Pca,k−1 and4Gt,k = Gt,k−Gt,k−1 denote
the rate of change of the control inputs.

To solve this constrained optimization problem,
f mincon solver in MATLAB has been used. For the re-
ceeding horizon strategy of MPC, only the first control
move is applied and the optimal control problem given by
equation 2 is re-solved at every sampling time.
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Figure 8. Input disturbances.

Figure 9. Optimal set points for charge air pressure and global
ignition timing under real life disturbances.

5 Results and Discussion
Data from a real power plant operating the B36:45
LNG engine are used for two input disturbances namely
for charge air temperature and suction air temperature.
These two input disturbances together with the third dis-
turbance (IMEP) is shown in Figure 8. These input distur-
bances vary over time and whey they act on the system,
they can cause the operation of the plant to be far from
optimal. In order to compensate for these disturbances,
the optimal controller continuously generates new optimal
values of the control inputs which are then fed as variable
setpoints to the local PID controllers. Figure 9 shows the
optimal values of the control inputs (charge air pressure
and Global ignition timing) as calculated by the advanced
controller.

When these optimal values of the charge air pressure
and global ignition timing is applied to the system, the
efficiency of the engine is maximized. As already stated
above, this can be shown by the minimization of the heat
rate as shown in Figure 10.

During the process of minimizing the heat rate, the op-
timal controller was also able to satisfy the output con-
straints. The output variables Nox,O2 and Te are well
within their limits as shown in Figure 11. In order to fur-
ther test the advanced optimal controller, data from the
real power plant containing large variation in the input dis-

Figure 10. Minimization of the heat rate under real life distur-
bances.

Figure 11. Output variables within their limits under real life
disturbances.

turbances was applied. The real life disturbances are given
in Figure 12 for all three input disturbances. In particu-
lar, the IMEP covers a range of operational windows from
lower values to a peak at full nominal power at 1200-1500
seconds before reducing back down to low level again.

Figure 13 shows the simulated optimal values of the
charge air pressure and global ignition timing as calcu-
lated by the optimal controller (blue line). In addition
it also shows the real values of these two variables from
the current engine controller operating in the field (red
line). Some differences between these two coloured lines,

Figure 12. Input disturbances with real life field data.
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Figure 13. Optimal set points for charge air pressure and global
ignition timing for real life field data containing large input dis-
turbance variation. Red line: Measured real values, Blue line:
Simulated values.

Figure 14. Output variables within their limits for real life field
data containing large input disturbance variation.

in particular related to the engine global timing can be
observed. The optimal controller utilizes the global ig-
nition timing more than the current controller used in the
power plant. This should in principle increase the fuel ef-
ficiency. The charge air pressure is also slightly increased
to compensate for the increase in burn rate due to the
advanced timing generated by the optimal controller. It
should be noted that an unlimited possibility of increasing
the charge air pressure might not be feasible due to capac-
ity of the turbocharger and a variable upper bound in this
value should be established to avoid unrealistic optimal
behavior of the optimizer.

At the same time, the output variables Nox,O2 and Te are
kept within their upper and lower limits in Figure 14 which
implies safe operation of the engine. The heat rate output
is minimized by the optimizer and the simulated result is
shown by blue line in Figure 15. In addition, the mea-
sure heat rate from the real field is shown by red line for
the same real life input disturbances. It can be noted that
values are closely related and share the same form. For
the major part of the simulation, the optimized heat rate is
also lower than the measured value from the installed en-
gine running traditional control. There is a period around
2250 second mark where the estimated optimize is slightly

Figure 15. Heat rate minimization for real life field data con-
taining large input disturbance variation. Red line: Measured
real values, Blue line: Simulated values.

higher than the measured, but for the majority of the time,
the value of the heat rate from the optimal controller is
lower. This indicates that the advanced model based con-
troller performs relatively better.

6 Conclusions
The potential of using a model based advanced controller
for a B36:45 LNG engine is investigated in this paper. The
optimal controller shows promising results in simulations.
Compared to the current traditional controller used in the
field, the advanced optimal controller could improve the
efficiency of the engine. However, the advanced controller
requires a dynamic model of the engine, and development
of such a model using operational data can be difficult and
time consuming. The quality of the results from the opti-
mal controller relies on the quality of the dynamic model.
The model used in this paper can be improved in the fu-
ture and the optimal controller should be tested on a real
engine.
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