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Abstract
OpenHPL is an open-source hydro power library for mod-
eling, design, and analysis. Currently, OpenHPL consists
of mechanistic models for waterways from a reservoir to
tailrace, Francis and Pelton turbine models, a simple gen-
erator model, hydro power speed governor model, etc.
However, the library lacks a controller for the parallel op-
eration of hydro powers. This paper mainly focuses on
extending OpenHPL with power-frequency droop control
for a multi-generator system. Two simulation case studies
are carried out for the parallel operation of hydro power
units.
Keywords: Parallel operation of hydro powers, multi-
generator system, Droop control, OpenHPL

1 Introduction
1.1 Background
Electricity generation from renewable sources is increas-
ing because of oil insecurity, climatic concern, and the nu-
clear power debate. Renewable energy is a combination
of intermittent and dispatchable energy sources. Intermit-
tent sources like solar, wind, and tidal power plants ex-
hibit fluctuating power production that creates an imbal-
ance between generation and load. In this regard, renew-
able dispatchable sources like hydro power plants play a
significant role in balancing out the variability caused by
intermittent sources. Current hydro power modeling, de-
sign, and analysis tools are free or available commercially.
Freely available tools include CASiMiR-Hydropower1,
LVTrans2, and OpenHPL3, while commercial tools in-
clude Alab4 and Modelon Hydro Power Library (HPL)5.
This drives a motivation for an open-source hydro power
library development for modeling, design, and analysis.

A mechanistic model of hydropower systems had been
developed in (Splavska et al., 2017) using mass and mo-
mentum balances which leads to a Modelica6 based open-
source hydropower library OpenHPL, and was initiated in
a PhD study (Vytvytskyi, 2019). OpenHPL is under devel-
opment at the University of South-Eastern Norway. Cur-
rently, OpenHPL has units for the flow of water in filled

1http://www.casimir-software.de/save_download.php?language=2
2http://svingentech.no/about%20lvtrans.html
3https://github.com/simulatino/OpenHPL
4http://www.alab.no/Alab-Hydropower-Software/Functionality-

Alab-Hydropower-Software/Operation-simulation-with-waterway
5https://www.modelon.com/library/hydro-power-library/
6https://www.modelica.org/

pipes (inelastic and elastic walls, incompressible and com-
pressible water) (Vytvytsky and Lie, 2017), a mechanis-
tic model of a Francis turbine (including design of tur-
bine parameters) (Vytvytskyi and Lie, 2018), etc. The li-
brary is further extended with mechanistic models of dif-
ferent kinds of surge tanks and draft tubes (Pandey and
Lie, 2020, Submitted). In addition, some accompany-
ing work on analysis tools has been developed in script-
ing languages (Python, Julia) related to state estimation,
structural analysis, etc (Vytvytskyi and Lie, 2019). The
library has been tested on real power plant data (Pandey
and Lie, 2020). The library can be interfaced with other
Modelica libraries, for example, OpenIPSL7 for genera-
tor and grid, PhotoVoltaics8 for solar power plants, and
WindPowerPlants9 for wind power plants as in (Pandey
et al., 2021; Pandey and Lie, 2020). However, the library
lacks hydro power controllers for parallel operation of hy-
dro power and load frequency control in an interconnected
power system network.

In this regard, it is of interest to extend OpenHPL with
hydro power controller models. This paper mainly fo-
cuses on developing a droop control mechanism applied
for the parallel operation of hydro turbine generating units
in OpenHPL.

1.2 Outline of the Paper
Section 2 presents a speed governing mechanism in a hy-
dro power plant. Section 3 provides the concept of droop
control in the parallel operation of hydro power plants.
The implementation of droop control is tested via case-
studies in Section 4. Finally, conclusions and future work
are presented in Section 5.

2 Speed Governor for Single Hydro
Power Plant

2.1 Governing mechanism
Figure 1 a) shows the speed governing mechanism in a
hydro power plant. In the figure, T is the turbine, G is the
generator and Pg is the generated power from the T-G ag-
gregate which is supplied to cover the consumer load P̀ .
When there is a difference in power generation and con-
sumer load, the volumetric discharge V̇ through the tur-
bine is controlled which in turn controls the generation

7https://github.com/OpenIPSL/OpenIPSL
8https://github.com/christiankral/PhotoVoltaics
9https://github.com/christiankral/WindPowerPlants
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Figure 1. Speed governing in a hydro power system.

from the generator. To achieve this generation control, the
shaft speed ω = 2π f of the T-G aggregate system is com-
pared with the reference speed ω ref = 2π f ref by the speed
governing system to generate a valve signal uv for control-
ling the flow valve FV. It is of interest to design a speed
governing system using a PI-controller in OpenHPL using
a case study of a real hydro power plant.

2.2 Trollheim Hydro Power Plant
Figure 1 b) shows the layout of Trollheim hydro power
plant (HPP) in Norway, with nominal power output
130MW, nominal discharge rate 40m/s2, and nominal
rated speed 380rpm. The diameter of the intake tunnel
is 7m, and the diameter of both the surge tank and the
penstock is 4m. Figure 1 c) shows the model of Troll-
heim HPP created in OpenHPL. Models in OpenHPL are
created simply by “dragging and dropping” hydro power
units, and then connecting them together from the outlet
of one unit to the inlet of another unit as in the case of the
surge tank and the penstock shown in the figure. In Fig-
ure 1 c) a controller is used to maintain the frequency of
T-G aggregate to f ref = 50Hz while controlling the flow
through the turbine to balance the generation and the load.
The controller is a PI controller taken from the built-in
Modelica Standard Libraryand is characterized by a pro-
portionality gain Kp and an integral time constant Ti.

2.3 Tuning of PI Controller
The PI controller is tuned based on the SMIC-PI tuning
rule (Skogestad, 2001). In the SMIC-PI tuning method,
a process is considered as a first-order system plus delay
with a generalized transfer function as

G(s) =
k

τs+1
e−θs. (1)

Controller parameters Kp and Ti are selected as

Kp =
1
k

(
τ

τc +θ

)
(2)

Ti = min(τ,4(τc +θ)) (3)

where τc is considered as the tuning parameter and acts as
a trade-off between (i) a fast controller response, and (ii)
stability, robustness, and small input usage. For a reason-
able response with good robustness we set τc = θ . In ad-
dition, the controller response becomes faster as the value
of τc is decreased, and slower/smoother as the value of τc
is increased.

2.4 Step Change in Load Power P̀
Figure 2 shows the step responses from the PI controller
for Trollheim HPP. The PI controller is specified by Kp =
0.2 and Ti = 5. Figure 2 shows the respective generated
power Pg from the hydro power plant to balance the con-
sumer load P̀ . Figure 2 also shows the turbine valve sig-
nal for controlling the water flow through the turbine to
balance the load and the generation while maintaining the
system frequency at 50Hz.

3 Control of Multiple Hydro Power
Plants

3.1 Problem Description
Next, consider operation of multiple hydro power plants
connected to the same grid as shown in Figure 3 a), with
generator i supplying power Pg,i to a common consumer
load P̀ . For each of the T-G aggregates, what happens if
we use the same speed governing mechanism as in Fig-
ure 1 a)? The grid frequency is determined by the “swing
equation”, essentially

Jeq
dω

dt
=

1
ω

(
∑

i
Pg,i − P̀

)
(4)

where ω is the common electric grid angular velocity re-
lated to frequency f by ω = 2π f , and Jeq is the equiv-
alent moment of inertia of all generators, referred to the
electric grid frequency. If we use PI controllers as in Sec-
tion 2, we essentially try to specify a single variable ( f
or ω) by changing many guide vane openings, one for
each generator. This implies that we have many more un-
knowns (guide vane openings) than equations (specifying
f or ω),and there is no unique solution. In practice, using
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Figure 2. Step response from the PI controller for Trollheim
HPP. a) Step change in load power P̀ from 50% loading to 80%
loading and the corresponding generation Pg from the hydro tur-
bine, b) turbine valve signal uv, and c) frequency f of the plant.

one PI controller per generator will lead to wildly oscillat-
ing control outputs, and the system will break down

(Schavemaker and Van der Sluis, 2017). In summary,
we can only use one PI controller when controlling a sin-
gle variable (the grid frequency). Thus a different strategy
is needed for multiple generators.

In practice, the Transmission System Operator (TSO)
makes a prediction of the next-day power consumption,
Pref
` . In a competitive power market, power producers

make a bidding on amount of power produced at a sug-
gested price, and the TSO allots a share Pref

`,i of the pre-
dicted power load to generator i (alternatively: to a power
area i) such that Pref

` = ∑i Pref
`,i .

The real next-day power load P̀ will differ from the
predicted/reference power load Pref

` leading to a frequency
f which differs from the reference frequency f ref (typi-
cally 50Hz or 60Hz), and a mechanism is needed to dis-
tribute the difference P̀ −Pref

` among all the generators in
a way which takes into account their capacity and drives f
towards f ref. This distribution of the difference is com-
monly done using a droop control mechanism as illus-
trated in Figure 3 a). The droop control mechanism can be

Figure 3. Concept of droop control for parallel operation of
hydro power plants.

applied in diverse filed of engineering. Typical examples
include the use of droop control in microgrid (Pota, 2013),
inverters (Zhong and Zeng, 2016), oil and gas (Sharma
et al., 2011), etc. The load power P̀ and the grid fre-
quency f are compared with the reference load power Pref

`

and the reference frequency f ref . The droop controller
makes a one-to-one power-frequency relation as in Figure
3 b) and distributes the proportioned signal to each of the
generators’ controller to restore the grid frequency. The
droop controller operates based on the droop characteris-
tics of each of the generators.

3.2 Concept of Droop Control
Figure 3b) shows the concept of the droop power-
frequency control in a hydro power system. A droop is
a slope of two independent variables in a dynamical sys-
tem. For instance, the slope between the consumer P̀ and
the frequency of the system f in a hydro turbine-generator
power system can be represented by a power-frequency
droop. When there is a sudden change of a consumer load
there is a change in the system frequency. When the con-
sumer load is greater than the generation, the system fre-
quency decreases, and vice-versa. The droop D in case
of power-frequency relation is expressed, thus, with the
negative slope and defined as,

D =−∆ f/ f ref

∆P/Pr (5)

where f ref and Pr are the reference frequency (normally
taken as 50Hz or 60Hz depending on the power system
network) and the rated power for the hydro power system,
respectively. ∆ f is the change in frequency for the change
in generation and load represented by ∆P. The values of
the droop for a typical hydro power system are set in the
range of (2%−6%).
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Figure 4. a) Internal structure of a droop controller b) Error from droop controller for the plant with PI-controller.

Figure 3b) shows the power-frequency characteristics
or the droop characteristics for the operation of a multi-
generator systems. The operation of the plant with droop
characteristics D1 at position ”1” is shifted to position ”2”
when the consumer load changes suddenly by ∆P1 with
a drop in frequency ∆ f1; and so on for the other systems
with droop characteristics D2,D3, ....Dn. The relationship
between droop characteristics of each of the parallelly ran
multi-generator systems is transferred into one-to-one P−
f relation. In the figure, ∆P is the overall difference in
the generation and the load which is distributed to each of
the generators for restoring f from the droop controller.
The generation to be increased by the ith generator to cope
with the total variation ∆P in the multi-generator system,
is given as,

∆Pi =−Pr
i

Di

(
f − f ref

f ref

)
. (6)

3.3 Internal Structure of Droop Controller

Figure 4 a) shows the internal structure of a droop con-
troller. The grid frequency f is calculated based on the
measurement available for the generation Pg,i and the load
P̀ using the swing equation. For each of the generators,
based on the droop Di, power rating Pr

i and the grid fre-
quency f , an error signal ∆Pi is generated for the PI con-
troller of the generator which is used to change the guide
vane opening of the hydro turbine as shown in Figure 4 b)
which drives the grid frequency f towards f ref.

Table 1. Parallel operation of two turbines for Trollheim HPP.

Units Pr D Kp Ti
Unit-1 65MW 4% 0.03 3
Unit-2 65MW 5% 0.03 3

4 Case Studies

4.1 Case Study-1

We now consider Trollheim HPP with two hydro turbine
units operating in parallel for supplying to a common con-
sumer load P̀ . The droop, rated power, and values of Kp
and Ti are given in Table 1.

Figure 5 a) shows the total load and the generation from
the hydro power units. In the figure, at time = 30s load is
increased from 65MW to 90MW. To compensate the in-
crease in 25MW load, according to Eq. (6), Unit-1 should
produce D2

D1+D2
∆P = 5

4+5 ·25 ≈ 14MW and Unit-2 should
then produce ≈ 11MW as shown in the figure. As the
generating Unit-1 has a lower droop than Unit-2, Unit-1
will add more power into the grid according to Eq. (6).
Figure 5 b) shows the turbine valve signal for both the hy-
dro power units. Figure 5c) shows the grid frequency and
frequencies of both synchronous generating units. As the
consumer load increases, the grid frequency of the system
decreases and to compensate for the increased power both
flow in the turbine units should be increased which will
accelerate the generators of Unit-1 and Unit-2. The fre-
quency of generators and the grid will be the same after
the steady-state condition is reached.
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Figure 5. Droop control for parallel operation of two hydro units
for Trollheim HPP.

4.2 Case Study-2
We now consider models of five hydro power plants op-
erating in parallel to supply a common consumer load as
shown in Figure 6 b). Figure 6 a) shows the initializa-
tion and droop controller parameter GUI in OpenHPL.
For the icon shown in the top-right of the figure, the input
to the controller is the grid frequency f and output from
the controller is the turbine valve signal uv. To initialize
the droop control for n number of synchronous generators,
rated power Pr, droop D, Kp and Ti values for PI-controller
for each of the turbine-generator plant should be given as
in Figure 6 a). For the purpose of the case study, Pr, D,
and Kp and Ti values for the PI-controller for five hydro
power plants are given in Table 2.

Figure 7 a) shows the generation and load in the case
of five hydro power plants operating in parallel. Figure 7
b) shows the respective generation from each of the hydro
power units supplying to balance the difference in the load
and the generation. The generation from each of the hydro
power units are distributed based on their power rating and

Figure 6. Droop control in OpenHPL.

droop characteristics. In the figure, Unit-1 has the least
contribution and Unit-4 has the highest contribution to bal-
ance the generation and the load. Figure 7 c) shows the
turbine valve signals for controlling flow through each of
the turbine units. From the figure we can see that to cope
with the load and the generation variation flow through
Unit-3 is the highest and flow through Unit-1 is the least.
The flow uv,i depends on Di, Kp,i and Ti,i. Similarly, 7 d)
shows the grid frequency and frequencies of each of the
generator units supplying to a common consumer load.

From Figure 4 b) we see that if T = ∑
5
i=1 Ti,i is the

equivalent integral time constant at which the grid fre-
quency of the system is restored then the valve signal for
the units are given as

uv,i = Kp,i∆Pi +
Kp,i

Ti,i

∫ T

0
∆Pidt (7)

where

∆Pi =−Pr
i

Di

(
∆ f
f ref

)
. (8)
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Figure 7. Droop control for five generators operating in parallel
index by numbers from 1 to 5.

Table 2. Specifications of power plants.

Pr D Kp Ti
50MW 4% 0.03 3
100MW 3% 0.01 2
150MW 2% 0.02 5
200MW 5% 0.04 6
250MW 6% 0.02 4

Table 3. Valve signal and power shared after the steady state is
reached at sudden increment in the load power.

uv,i ∆uv,i ∆Pi
0.23 0.03 2MW
0.3 0.04 5MW
0.6 0.13 16MW
0.55 0.12 27MW
0.4 0.03 25MW

∑∆Pi = 75MW

Putting Equation (8) into (9) we get

uv,i = Kp,i

(
1+

1
Ti,i
T

)
∆Pi

which can be further expressed as

uv,i =−Kp,i

(
1+

1
Ti,i
T

)(
Pr

i
Di

∆ f
f ref

)
(9)

where Ti,i
T is the integral time constant for the valve signal

uv,i and depends on total integral time constant given by
T = ∑

5
i=1 Ti,i. This adheres that as the number of hydro

turbine increases the plant with a lower value of Ti will
have a smooth control over uv as shown in Figure 7 c).

From Figure 7 d) f is the grid frequency. Figure 7 a)
shows that at t = 30s the load power P̀ increases from
225MW to 300MW with an increment of 75MW. This
addition of the load will be sensed by the decrement in
the grid frequency as shown in Figure 7 d) where f is the
grid frequency. From Figure 7 d) we see that in response
to the addition of the load into the grid there is a change
in the grid frequency given as ∆ f ≈ 0.037Hz. With T =
∑

5
i=1 Ti,i = 20s and the values taken from Table 2 for all

the generators, the required valve signal for each of the
hydro turbines can be calculated from Equation (9). The
steady state values of the valve signal uv,i after the grid
frequency is restored is given in Table 3. Similarly, the
power shared among the generators shown in Figure 7 b)
is also given in Table 3.

5 Conclusions and Future Work
This paper presents the droop control mechanism applied
for the parallel operation of hydro power plants for an
open-source hydro power library OpenHPL. The droop
controller is a feature extension for OpenHPL. The dif-
ference in total generation and load is shared among all
the generators operated in parallel to cope with the dif-
ference. This is achieved by controlling the flow through
the turbines. For an ith generator operating in parallel in
a multi-generator system, the turbine valve control signal
depends particularly on Kp and Ti of the PI-controller for
that unit, power rating Pr, the droop D and the total inte-
gral time constant T = ∑i Ti,i.
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Future work includes an extension of OpenHPL with
automatic generation control (AGC) or load frequency
control (LFC) in the case of the interconnected power sys-
tem network.
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