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Abstract
This paper describes mathematical modeling, optimiza-
tion, and analysis of a gas lift oil field with five wells.
A global sensitivity analysis using the variance-based
method is performed to classify the parameters, which
are highly sensitive and uncertain simultaneously. An im-
proved model is further used to design a model-based pre-
dictive controller to optimally distribute a limited supply
of lift gas among the oil wells. Several simulation cases
showed an increase in the total oil production, and all
the constraints were fully satisfied when the determinis-
tic NMPC was applied to the nominal model. The effect
of parametric uncertainty is studied by applying the deter-
ministic NMPC to the plant model containing the uncer-
tain parameters. It has been shown that under the presence
of uncertainty, robust constraint satisfaction is not guaran-
teed with some constraints not being satisfied, leading to
unachievable and unrealistic lift gas distribution.
Keywords: Gas Lifted Oil Wells, Model Predictive Con-
trol, Global Sensitivity Analysis, Dynamic Modeling and
Simulation, Parametric Uncertainty

1 Introduction
It is always of interest to manage and plan resources effi-
ciently to obtain profit as much as possible from a given
resource. In this sense, the oil and gas industry is not an
exception. Hence, the optimal distribution of available gas
is crucial to maximizing total oil production in a gas-lifted
oil field where the multiple oil wells share the lift gas sup-
plied by a common source.
In a gas lifted oil field, an artificial external mechanism is
exploited to bring the dead wells back to life or increase
the production rates from the naturally flowing wells. A
continuous flow gas lifted oil field normally consists of
multiple gas lift oil wells sharing lift gas from a common
supply pipeline. A single gas lifted oil well is shown in
Figure 1.In this system which is mostly used to extract the
lighter crude oils, the high-pressurized natural gas is con-
tinuously injected into the annulus of the well through the
gas lift choke valve. The injected gas finds its way into
tubing at some points located at proper depths and mixes
with the multiphase fluid from the reservoir. As a result
of this mixing, the density of the fluid in the tubing will
be reduced, which means that the flowing pressure losses

in the tubing reduce. Consequently, the reservoir pressure
will be able to overcome the flowing resistance in the well
and push the reservoir fluid to the surface.
Each well has its own inflow characteristics. For exam-
ple, two oil wells in the same field may produce differ-
ent amount of oil even when the same amount of lift gas
is injected into them. In other words, there is no rule of
thumb on how to distribute the available lift gas among the
oil wells to obtain the maximum possible oil production
from the field. For optimal distribution of lift gas among
the wells, model based real-time optimizer (RTO) can be
used. For this an accurate mechanistic model of the pro-
cess, which should be simultaneously simple enough to
be used for real-time optimization and control purposes
should be used.
Modeling and control of gas lifted oil field has been stud-
ied before in (Sharma et al., 2011), where some simpli-
fying assumptions were made that may not reflect real-
ity. For example, the fluid that comes out of the reservoir
was assumed to be pure oil (without gas coming from the
reservoir) and all the well parameters were assumed to be
deterministic. This model had been used further in op-
timization of lift gas allocation as nonlinear optimization
in (Sharma et al., 2012). This model has been improved
in (Krishnamoorthy et al., 2016) by considering the gas
to oil ratio. The long term production optimization un-
der uncertainty has been studied in (Capolei et al., 2015;
Hanssen et al., 2017) using economic MPC. But when it
comes to the short-term optimization, most of the works
either consider a deterministic model, which means they
simply disregard uncertainty, or they limit the research
scope to steady-state optimization using a very simplified
linear model (Hanssen and Foss, 2015). Recently, a few
papers have been published on real-time process optimiza-
tion under the presence of uncertainty (Krishnamoorthy
et al., 2019) to address the challenges in this area.
The first purpose of this paper is to improve the existing
mathematical model of gas lifted oil fields with more re-
alistic assumptions. To achieve this goal, the fluid that
comes out of the reservoir is considered to be a mixture
of oil, water, and gas. Furthermore, parametric uncertain-
ties are considered for some parameters such as gas to oil
ratio and productivity index. The second aim of the pa-
per is to classify parameters that are both highly sensitive
and uncertain simultaneously. Therefore, a global sensi-
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tivity analysis is performed to study how the uncertainty
in output (total oil production from the field) can be ap-
portioned to different sources of uncertainty in the model
parameters. The first order and total-effect sensitivity in-
dices are calculated using the variance-based method due
to its valuable features, such as the inclusion of interac-
tion effects among input factors (Saltelli et al., 2008). The
third goal is to study the effect of parametric uncertainty
on lift gas distribution optimization problem. Considering
the operational constraints of the process and the inher-
ent robustness (to a certain extent) of the receding hori-
zon strategy, a deterministic nonlinear model based pre-
dictive controller is designed based on the nominal plant
model to optimally distribute a limited supply of lift gas
being shared to several oil wells in the field. Several sim-
ulation cases are performed to study the performance of
the optimal controller under varying operational scenar-
ios. Simulation results show that the total oil production
will be increased and all the constraints will be satisfied
when the deterministic NMPC is applied to the nominal
model. The effect of parametric uncertainty is shown by
applying the deterministic NMPC to the plant model con-
taining uncertain parameters and it has been shown that
some constraints will be violated which suggests that the
uncertainties should be considered explicitly in the opti-
mal control problem.
The rest of the paper is organized as follows. Section 2
describes mathematical modeling of the gas lifted oil field
system, openloop simulation results and the sensitivity
analysis. Standard nonlinear model predictive control de-
sign, simulation results and stochastic analysis are pre-
sented in Section 3 before concluding in Section 4.
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Gathering
Manifold

Production
Choke Valve

Reservoir

To Separator

From Other Wells
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Choke Valve

To Other Wells

Tubing
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Figure 1. Schematic diagram of a single gas lift oil well

2 Modeling and Sensitivity Analysis
The considered gas lifted oil field of this paper consists
of five oil wells that share a common gas distribution

pipeline and common gathering manifold. A compressor
discharges highly pressurized lift gas into the common gas
distribution pipeline where it should be distributed among
the oil wells. Considering a single oil well, the lift gas
mass flow rate from the common distribution manifold
into the well’s annulus is denoted by wi

ga where the super-
script i refers to the ith oil well. Then, the high pressure lift
gas is injected from annulus into tubing (wi

ginj) at a proper
depth through the gas injection valve which is always open
and only passes the flow in one direction. The injected
gas mixes with the multiphase fluid (mixture of oil, wa-
ter, and the gas from the reservoir) and reduces its density.
This causes the hydrostatic pressure of the fluid column
in tubing above the injection point and consequently the
bottom hole pressure to drop. As a result, the differential
pressure between the reservoir and the bottom hole pres-
sure will increase and pushes the liquid column to flows
upward to the surface. The produced mixture flows out
through all the production choke valves (wi

glp) is collected
in the common gathering manifold and finally transported
to the separator where they are separated into their corre-
sponding compartments. The gas is then sent back to the
compressor system and recycled to be used for lifting pur-
poses.
Friction losses in the pipelines have not been taken into ac-
count since it might not be important for the sole purpose
of control. All phases of the multiphase fluid are assumed
to be evenly distributed with no slugging. The tempera-
ture of lift gas and the multiphase fluid is assumed to be
constant at 280 K at all sections of the pipelines and the
reservoir pressure is assumed to be constant at 150 bar.
All the assumption are based on expert knowledge from
Equinor ASA.

2.1 Model Description
The model is developed considering all the components of
a typical gas lifted oil well as shown in Figure 1. The dif-
ferential equations in model are obtained from the mass
balances of each compartment. The algebraic equations
are mostly density models, pressure models, flow models,
and so on, which are obtained from equations of states,
valve equations, and first principal modeling techniques.
Considering the mass of lift gas in annulus mi

ga, mass of
the gas in the tubing above the injection point mi

gt, and
mass of the liquid (mixture of oil and water) in the tubing
above the injection point mi

lt as three states and applying
the mass balance, three corresponding differential equa-
tions are given by:

ṁi
ga = wi

ga −wi
ginj (1)

ṁi
gt = wi

ginj +wi
g −wi

gp (2)

ṁi
lt = wi

l −wi
lp (3)

wi
ga is the mass flow rate of the injected lift gas into each

well from the gas lift choke valve (system input), wi
ginj

is the mass flow rate of the gas injection from the annu-
lus into the tubing, wi

gp and wi
lp are the produced gas and
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liquid phase mass flow rates from the production choke
valve, respectively, and wi

g and wi
l are the gas and liquid

mass flow rates from the reservoir into the well. wi
glp is

the total mass flow rate of all phases from the production
choke valve and wi

op is the oil compartment of the wi
lp. All

the flow equations are given by:

wi
ginj = KiY i

2

√
ρ i

ga max(Pi
ainj −Pi

tinj,0) (4)

wi
gp =

mi
gt

mi
gt +mi

lt
wi

glp (5)

wi
lp =

mi
lt

mi
gt +mi

lt
wi

glp (6)

wi
l = PIi max(Pr −Pi

wf) (7)

wi
g = GORiwi

l (8)

wi
glp =Cv(ui

2)Y
i
3

√
ρ i

m max(Pi
wh −Ps,0) (9)

wi
op =

ρo

ρw
(1−WCi)wi

lp (10)

Pi
a is the pressure of lift gas in annulus downstream the gas

lift choke valve, Pi
ainj is the pressure upstream the gas in-

jection valve in the annulus and Pi
tinj is the pressure down-

stream the gas injection valve in the tubing, and Pi
wh and

Pi
wf are the well head and bottom hole pressure respec-

tively. All the pressures are given by:

Pi
a =

zmi
gaRT i

a

MAi
aLi

a_tl
(11)

Pi
ainj = Pi

a +
mi

ga

Ai
aLi

a_tl
gLi

a_vl (12)

Pi
tinj =

zmi
gtRT i

t

MV i
G

+
ρ i

mgLi
t_vl

2
(13)

Pi
wh =

zmi
gtRT i

t

MV i
G

−
ρ i

mgLi
t_vl

2
(14)

Pi
wf = Pi

tinj +ρ
i
l gLi

r_vl (15)

ρ i
ga is the average density of gas in the annulus. ρ i

gl is the
density of liquid phase (oil and water mixture), ρ i

m is the
average density of multiphase mixture in tubing above the
injection point. Y i

2 and Y i
3 are the gas expandability fac-

tor for the gas that passes through gas injection valve and
production choke valve, respectively. V i

G is the volume of
gas present in the tubing above the gas injection point, and
Cv(ui

2) is the production choke valve characteristics as its
opening. All the densities and other variables are given

by:

ρ
i
ga =

M(Pi
a +Pi

ainj)

2zRT i
a

(16)

ρ
i
l = ρwWCi +ρo(1−WCi) (17)

ρ
i
m =

mi
gt +mi

lt

Ai
tL

i
t_tl

(18)

Y i
2 = 1−αY

Pi
ainj −Pi

tinj

max(Pi
ainj,P

min
ainj )

(19)

Y i
3 = 1−αY

Pi
wh −Ps

max(Pi
wh,P

min
wh )

(20)

V i
G = Ai

tL
i
t_tl −

mi
lt

ρ i
l

(21)

Cv(ui
2) =


0 if ui

2 < 5
30.303ui

2 −151.788 if 5 < ui
2 < 50

136.5ui
2 −5460 if 50 < ui

2
(22)

Note that the dynamic model 1 to 22 could be written as
an explicit ODE (ordinary differential equations) by sim-
ply eliminating the algebraic variables. So the model in
compact form is given by:

ẋ = f (x,u) (23)
y1 = h1(x,u) (24)
y2 = h2(x,u) (25)

where x and u are the states and system inputs, and y1 and
y2 are two desired outputs

x =
[
m1

ga . . . m5
ga m1

gt . . . m5
gt m1

lt . . . m5
lt
]T

(26)

u =
[
w1

ga w2
ga w3

ga w4
ga w5

ga
]T (27)

y1 =
5

∑
i=1

wi
op (28)

y2 =
5

∑
i=1

wi
glp (29)

2.2 Uncertainties
In this work, the productivity index PI which is a mathe-
matical means of expressing the reservoir’s ability to de-
liver fluids to the wellbore, gas to oil ratio GOR which
is defined as the mass ratio of produced gas to produced
liquid (oil and water), and water cut WC which is defined
as the volumetric flow rate of water to the total produced
liquid, are considered to be constant but unknown param-
eters. Considering the five oil wells, there exist fifteen
uncertain parameters in the system that makes it visually
impossible to show the uncertainty region. Nevertheless,
the uncertainty region of one well is shown in Figure 2 as
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an example. All the uncertain parameters of all the five
wells in this paper are assumed to have the same ±20%
deviation from their nominal values and uniform distribu-
tion. The reason of choosing uniform distribution is to
challenge the controller.

Figure 2. Unceratainty region with ±20% deviation.

2.3 Open Loop Simulation

The system is simulated in open loop using the nominal
values of parameters provided in Table 1 and Pr and Ps are
assumed to be 150 and 30 bar, respectively. The presented
results in Figure 3 show that a decrease in the injected lift
gas flow rates causes an increase in bottom hole pressures,
and consequently, the oil production flows decrease. This
means that the model is capable of showing all the neces-
sary dynamics of gas lifted oil field and will be used fur-
ther to perform sensitivity analysis and to design nonlinear
model predictive control.

Figure 3. Open loop simulations of the nominal model

2.4 Global Sensitivity Analysis
It is useful to figure out which parameters have a
strong/weak influence on the model output, especially un-
der the presence of uncertainties, because the model based
control design will be more problematic and needs more
care if the uncertain parameters are sensitive as well. Vari-
ance based global sensitivity analysis method is selected
due to its valuable features such as model independence,
capacity to capture the influence of the full range of vari-
ation of each input factor, and appreciation of interaction
effects among input factors.
The first order and total sensitivity indices are calculated
using the variance based method introduced in (Saltelli
et al., 2008) which is an improved extension of the origi-
nal approach provided by (Sobol, 1993) and (Homma and
Saltelli, 1996). Here only the results are presented and the
readers are referred to the main reference for more infor-
mation about the method due to the word limitation.
A number of 136000 Monte Carlo simulations have been
done to calculate the sensitivity indices. Both sensitiv-
ity indices presented in Figure 4 show that for the consid-
ered uncertainty region introduced in Figure 2, gas to oil
ratio is the most sensitive/influential parameter and pro-
ductivity index and water cut are at the second and third
place, respectively. In other words, the standard controller
based on the nominal model will be more robust to devi-
ation in water cut. On the other hand, a slight deviation
in the gas to oil ratio leads to a severe mismatch between
the nominal and uncertain model, therefore, poor perfor-
mance is expected. These interpretations will be verified
by stochastic analysis results in the following section.

Figure 4. Sensitivity indices

3 Standard NMPC and Stochastic
Analysis

3.1 Design of deterministic standard NMPC
The primary control objective is to maximize the total oil
production of the field (output y1) by manipulating the in-
jected lift gas (u). Additionally, u and ∆u are introduced
to penalize excessive lift-gas utilization and large fluctua-
tions in the control signals. Apart from the model equa-
tions, which obviously should be satisfied, the process is
subjected to operational constraints. For example, the to-
tal injected lift gas should be equal to or less than the to-
tal available lift gas (W max

gc ) and the total produced fluid
should not exceed the maximum capacity of the separator
(W max

s ). There are also upper and lower bounds on control
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Table 1. Nominal values of well parameters used for simulation.

Parameter Well1 Well2 Well3 Well4 Well5 Unit

K 68.43 67.82 67.82 69.26 66.22 [

√
kgm3

bar
hr ]

PI(1.0e+4) 2.51 1.63 1.62 4.75 0.232 kg/hr
bar

GOR 0.05 0.07 0.03 0.04 0.06 [kg/kg]
WC 0.20 0.10 0.25 0.15 0.05 [m3/m3]
La_tl/Lt_tl 2758 2559 2677 2382 2454 [m]
La_vl/Lt_vl 2271 2344 1863 1793 1789 [m]
Aa 0.0174 0.0174 0.0174 0.0174 0.0174 [m2]
At 0.0194 0.0194 0.0194 0.0194 0.0194 [m2]
Lr_vl 114 67 61 97 146 [m]

inputs and change of control due to the physical limitation
of the actuators (valves). Therefore, the optimal control
problem formulation is given by:

min
x,u

N−1

∑
k=0

(
−Q(y1,k)

2 +R
5

∑
i=1

ui2
k +S

5

∑
i=1

∆ui2
k

)
(30)

s.t. xk+1 = f (xk,uk,θk) (31)
5

∑
i=1

ui
k ≤W max

gc,k (32)

y2,k ≤W max
s (33)

uLB ≤ ui
k ≤ uUB (34)

∆uLB ≤ ∆ui
k ≤ ∆uUB (35)

where Q, R, and S are tuning weights and are chosen to
be 1, 0.5, and 50, respectively. The total available lift gas
W max

gc = 9.22[kg/s] and the maximum capacity of the sep-
arator W max

s = 520[kg/s]. The lower and upper bounds
on the control signal are 0.323 and 11.66[kg/s]. Change
of control also is limited between ±0.15[kg/s]. A sam-
pling time of 10 seconds and a prediction horizon of 25
timesteps ( 4.1 min) is used. These values are maintained
constant throughout this paper.

3.2 Stochastic analysis of parametric uncer-
tainty

In the first scenario, the deterministic NMPC was applied
to the nominal model. As shown in Figure 5, open loop
simulation started within the feasible region and the con-
troller activated after 1 hour. The simulation results show
a 12% increased in the total oil production from the field
while all the constraints on the total available lift gas, ca-
pacity of separator and actuator limitations are fully satis-
fied.
In the other scenarios, the same controller is applied to the
models containing uncertainties to see whether the con-
troller can cope with the uncertainties in the model. For
the extreme cases where the uncertain parameters take
their maximums and minimums in the uncertainty region,
severe oscillations were observed that led to instability.

Figure 6 shows the result of applying the nominal con-
troller to the plant that only has -10% deviations in water
cut, while the gas to oil ratio and productivity index are
equal to their nominal values. It can be seen that the total
oil production has been increased while the constraint on
the maximum capacity of separator is violated. Although
this case is not practically implementable, it worth to be
noted that the same, or even smaller deviation (about 4%)
in gas to oil ratio and productivity index leads to instabil-
ity. This observation is consistent with the outcome from
the sensitivity analysis that says the model is less sensitive
to water cut rather than either gas to oil ratio or productiv-
ity index.
Figure 7 is the last scenario with -5, 8, and -2 percent devi-
ations in productivity index, water cut, and gas to oil ratio,
respectively, from their nominal values. The mismatch be-
tween the nominal and uncertain models can be observed
from the total fluid production graph. In essence, it can be
concluded that the deterministic NMPC is not sufficient
for the gas lifted oil field model with uncertain parame-
ters.

Figure 5. Performance of standard NMPC when it is applied to
the nominal model.
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Figure 6. Performance of standard NMPC when it is applied to
the uncertain model.

Figure 7. Performance of standard NMPC when it is applied to
the uncertain model.

4 Conclusion
This paper presented a modeling framework for the gas
lifted well system and total oil production maximization
as a dynamic optimization control problem. The simula-
tion results showed that the deterministic NMPC based on
nominal model is capable of maximizing the total oil pro-
duction of the nominal model while fulfills all the opera-
tional constraints subjected to the process; however, when
the deterministic NMPC is applied to the model contains
uncertainties, simulation results showed some constraints
violations. This means that a deterministic NMPC is not
sufficient to handle parametric uncertainties for this prob-
lem. Feasibility issues showed that the uncertainties need

to be considered explicitly inside the optimization prob-
lem using robust or stochastic model predictive control.
The future work includes using such advanced control
methods to maximize total oil production while ensuring
robust constraint satisfaction for all possible values of the
uncertainties.
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