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Abstract  

Captured carbon dioxide (CO2) must be dehydrated 

prior to transport or storage because of possibilities for 

corrosion and hydrate formation. CO2 dehydration can 

be performed by absorption, typically into triethylene 

glycol (TEG) followed by desorption or by adsorption 

on a solid (typically a molecular sieve) followed by 

desorption. In this work, the process simulation program 

Aspen HYSYS is used to calculate material and heat 

balances for a TEG based absorption process and a 

molecular sieve adsorption process to achieve less than 

30 ppm water in the dehydrated gas.  The absorption and 

stripping columns were modelled using a specified 

Murphree stage efficiency on each absorption and 

stripping stage.  In the base case, the absorption and 

adsorption pressure was 40 bar and the inlet temperature 

was 30 °C.  An additional stripping column was added 

below the desorption column to obtain a low water 

content.  In the molecular sieve based process, all the 

process units except the adsorption/stripping units were 

simulated in Aspen HYSYS.  It is simulated reasonable 

process alternatives for CO2 dehydration down to water 

levels of 30 and 5 ppm.  The simulations combined with 

cost estimation indicate that a TEG based process is the 

most economic process both for dehydration down to 30 

ppm and to 5 ppm water in dehydrated gas. 

   

Keywords: Dehydration, Carbon capture, Adsorption, 

Absorption, Aspen HYSYS  

 

1 Introduction  
 

CO2 dehydration is the process of reducing the water 

content of captured CO2 down to an acceptable value 

prior to transport or storage.  The reasons are to avoid 

problems like corrosion and hydrate formation.  

Possible specifications are discussed in the references 

(Cole et al., 2011; Uilhorn, 2013; Buit, 2011).  Water 

specifications are normally in the range between 5 and 

500 ppm (parts per million by volume).   

The most mentioned processes for dehydration are 

based on absorption and adsorption. The most 

traditional method for large scale dehydration is by 

absorption into triethylene glycol (TEG).  For very low 

water levels, adsorption processes (typically using 

molecular sieves) are claimed to be necessary (Kohl and 

Nielsen, 1997; Kemper et al., 2014).  Processes for 

glycol dehydration of CO2 down to water levels below 

5 ppm (Øi and Fazlagic, 2014) using stripping gas and 

an extra stripping column have been simulated.  Øi and 

Rai (2018) simulated the alternative including an extra 

stripping column and a Drizo process achieving a water 

level down to 1 ppm.  Glycol based processes are 

evaluated and compared by Kinigoma and Ani (2016), 

Kong et al. (2019) and Affandy et al. (2020).     

Most commercially planned processes for CO2 

dehydration are based on molecular sieve technologies, 

eg. the operating facility at Melkøya (Equinor, 2016), in 

Brevik (Norcem, 2019) and Fortum Oslo Varme (2020). 

However, CO2 dehydration has also been performed 

large scale using glycol processes, eg. at the Quest 

project in Canada (Dharwadkar, 2011).  

The main purpose of this paper is to perform 

simulation, dimension and cost estimation of a glycol 

based and molecular sieve dehydration process for a 

traditional specification of 30 ppm to compare the two 

alternatives.  To our knowledge, such comparisons have 

not been documented in open literature before. 

2 Process description   

2.1 Process description of traditional process  

A traditional process for CO2 dehydration using TEG is 

shown in Figure 1.  The inlet gas flows upwards in the 

contactor/absorber while lean glycol (glycol with little 

water) flows downwards.  The rich glycol (with water) 

flows to a heat exchanger and a regenerator where the 

water is evaporated.  The regenerated glycol is cooled in 

the heat exchanger and flows back to the contactor. 

 

 

Figure 1. Process flow diagram of a standard TEG 

dehydration process (Øi and Rai, 2018)  
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A traditional adsorption based dehydration process has 

at least two columns filled with an adsorbent like 

molecular sieves.  While one of the columns is in 

adsorption mode, the other is in desorption mode.  After 

a scheduled time, the operation mode is switched 

between the columns by opening and closing control 

valves.   

2.2 Process description of simulated 

processes 

 

Figures 2 and 3 were used as a basis for process 

simulation.    Figure 2 is based on information from Øi 

and Fazlagic (2014) and Øi and Rai (2018).  Compared 

to Figure 1, the process in Figure 2 takes stripping gas 

from the flash gas which is contacted countercurrently 

with regenerated glycol in an extra stripping column. 

The advantage with using stripping gas and an extra 

stripping column is that the water content in regenerated 

glycol can be reduced considerably.  This makes it 

possible to obtain considerably less water in dehydrated 

gas out from the absorber.    

 
Figure 2 Flowsheet of TEG dehydration unit with extra 

stripping column and flash gas as stripping gas (Nitsche, 

2020). 

 

Figure 3 is a simplified version of the process 

information from Fortum (2020).  The feed (wet CO2) is 

first brought to an inlet separator to remove any free 

water.  The CO2 then flows into the column in 

adsorption mode where the water is adsorbed on 

molecular sieves.  The dry CO2 exits at the bottom.  A 

portion of the dry CO2 is heated and goes through the 

column operating in regenerating mode.  The water is 

released from the molecular sieves and exits with the 

regeneration gas.  This gas is now cooled, and the water 

is separated out.  A compressor is used to recycle the gas 

back to mix it with the inlet gas.        

 

Figure 3. Process flow diagram of the molecular sieve 

based process (Nitsche, 2020).  

3 Simulations  

3.1 Specifications and simulation of TEG 

process and molecular sieve process 

 

The simulation is performed using the glycol package in 

Aspen HYSYS based on the vapour/liquid equilibrium 

model Twu et al. (2005).  The simulation is similar to 

the simulations in Øi and Fazlagic (2014) and in Øi and 

Rai (2018).  In these simulations, the Peng-Robinson 

(PR) model and the Twu-Sim-Tassone (TST) model  

have been used. The specifications are given in Table 1.  

An Aspen HYSYS flow diagram is shown in Figure 4.  

The desorption column and the extra stripping column 

were simulated as one column in Aspen HYSYS with 

heating at an intermediate stage. 

 

Table 1. Aspen model parameters and specifications for 

the TEG simulation  

Parameter Value 

Feed flowrate [kg/h] 55000 

CO2 content in Feed [mol%] 0.9960 

Water content in Feed [mol%] 0.40 

Absorber column temperature [°C] 30 

Absorber column pressure [kPa] 4000 

Lean TEG temperature [°C] 35 

Lean TEG pressure [kPa] 4000 

Lean TEG circulation rate [kg/h] 1337 

Number of stages in absorber column 8 

Murphree efficiency in absorber column 0.5 

Flash drum pressure [kPa] 110 

Lean-Rich TEG heat exchanger ΔTmin [°C] 10 

Number of stages in desorber column 7 

Murphree efficiency in desorber column 1.0 

Reboiler temperature [°C] 200 

Desorber column pressure [kPa] 101.3 

Reflux ratio in desorber column 0.5 
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Figure 4. Aspen HYSYS flow diagram of the TEG dehydration process (Nitsche, 2020)  

 

 

Table 2. Aspen model parameters and specifications for 

the mol sieve simulation  

Parameter Value 

Feed flowrate [kg/h] 55000 

CO2 content in Feed [mol%] 99.6 

Water content in Feed [mol%] 0.4 

Regeneration gas flow rate [kmole/h] 125.3 

CO2 content in Regeneration gas (same as in  
Wet CO2) [mol%] 

99.79 

Water content in Regeneration gas (same as 
Wet CO2) [mol%] 

0.21 

Adsorber inlet and outlet temperature [°C] 30 

Adsorber / regeneration inlet pressure [kPa] 4000 

Pressure drop in regenerator [kPa] 5 

Adsorber column outlet and inlet [kmole/h]  1373 

Regeneration column inlet temperature  [°C] 278 

 

A simulation of the molecular sieve based process 

was performed based on the specifications in Table 2.  

The two adsorption/regeneration columns were not 

simulated in Aspen HYSYS, so the calculation was 

divided in three. An Aspen HYSYS flow diagram is 

shown in Figure 5.  The first part starts with the feed and 

the regeneration gas and ends before the column in 

adsorption mode.  The second and middle part starts 

after the column in adsorption mode and ends before the 

column in regeneration mode.  The third starts after the 

column in regeneration mode and ends with the 

regeneration gas.  The resulting flow in the regeneration 

gas in the third part equals the flow to the first part. The 

Aspen HYSYS flow diagram is shown in Figure 5.  

 

 

 

 
 

 

Figure 5. Aspen HYSYS flow diagram of the molecular sieve based process (Nitsche, 2020)  
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4 Dimensioning and cost estimation 

4.1 Dimensioning specifications 

The basis for the dimensioning is the material and heat 

balance from the Aspen HYSYS simulations. 

For the TEG dehydration process, gas velocity was 

specified to 0.32 m/s to calculate the cross section and 

diameter.  The estimated gas velocity through the 

structured packing is calculated from a traditional value 

of 2 m/s at atmospheric conditions divided by the square 

root of the pressure ratio (40).  The packing height of the 

absorption and desorption column is 1 meter per stage 

with a specified stage efficiency.  The total height of the 

absorption column, desorption column and extra 

stripping column were specified to be 17 m, 8 m and 7 

m, respectively.  The extra height is due to distributors, 

demister, gas inlet, outlet and sump.  The heat transfer 

numbers (U-values in W/(m2K)) were estimated to 300 

for the lean rich heat exchanger, 900 for the reboiler, 500 

for the condenser and 300 for the cooler. 

The adsorption and stripping columns were 

dimensioned by assuming gas velocities (0.12 m/s) 

based on an Ergun equation from GPSA, relative water 

capacity (0.13 kg water/kg for 1/8”) of the molecular 

sieves, retention time and operation time between 

switching between adsorption and stripping modes (12 

hours). The adsorber height was calculated by finding 

the height of the saturation zone and the mass transfer 

zone. The total height and diameter for the two 

adsorbers were then specified to 6.1 m and 1.4 m, 

respectively. 

The separator tanks were dimensioned by a 

traditional Souders Brown factor of 0.07 using data for 

physical properties from the Aspen HYSYS simulation.  

For the tanks, traditional design pressure based on 

operating pressure was assumed.  Standard corrosion 

allowance was also assumed.  The adiabatic efficiency 

for the compressor was specified to 0.75. 

 

4.2 Cost estimation specifications 

The Enhanced Detailed Factor (EDF) method from Ali 

et al. (2019) was used in the cost estimation.  For each 

equipment unit, the Aspen In-plant version 10.0 was 

used to estimate the procured cost.  Stainless steel was 

specified for all process units.  Then an installation cost 

was calculated based on a detailed factor table (Ali et 

al., 2019).  Then the unit cost was corrected for currency 

and year index.     

Table 3. Assumptions made for CAPEX calculation 

Parameter Value 
Currency exchange rate (20.11.18) 9.7135 NOK/EU 

Currency exchange rate (20.11.20) 10.6613 NOK/EU 

Cost index (Nov.2018) 109.8 

Cost index (Nov.2020) 112.4 

 

Table 4. Assumptions for OPEX calculations 

Maintenance cost 4 % of CAPEX 

Electricity price 0.50 NOK/kWh 

Steam price 0.13 NOK/kWh 

Operational time 8000 hours/yr 

 

4.3 Scope of dimensioning and cost 

estimation  

The cost analysis is limited to the equipment listed in the 

flowsheets in Figure 4 and 5.  No pre-treatment like inlet 

gas purification is considered, and no treatment after 

processing like purification, compression, transport or 

storage is considered.  The cost estimate is limited to 

installed cost of listed equipment. It does not include eg. 

land procurement, preparation, service buildings or 

owners cost.  

 

5 Results and Discussion 

 

5.1 CAPEX results 

 

Based on the cost estimation described in section 4, the 

capital cost was calculated for the process based on 

glycol dehydration (the TEG unit) and the process based 

on molecular sieve adsorption.  The results are presented 

in Figure 6. 

  

 

 

Figure 6.  Comparison of CAPEX between the TEG and 

molecular sieve unit [kEUR] (Nitsche, 2020)  
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The comparison of the CAPEX shows that the 

capital cost is considerably higher for the molecular 

sieve based unit.  There are two main reasons.  The 

recirculation compressor unit is expensive, and the 

molecular sieve columns are large due to a lower gas 

velocity through the molecular sieve compared to the 

gas velocity in the absorption column. 

The processes are compared for the base case 

conditions and selected specifications.  The inlet and 

operating pressure of 30 bar is based on optimum 

absorption conditions between 30 and 50 bar from 

literature (Øi and Fazlagic, 2014).  Other specifications 

as pressure drop and regeneration flow rate for the mol-

sieve process are also recommended values from 

industry (GPSA, 1987).  Other choices of the 

specifications are not expected to change  much on the 

differences between the compared processes. 
 

5.2 Opex results 

 

The yearly operating cost was calculated for both 

dehydration processes. The dominant operation cost is 

energy which is due to heating, compression and 

pumping.  Maintenance cost estimated as 4 % of 

CAPEX is also included.  The results are presented in 

Figure 7. 

 

 

 

Figure 7.  Comparison of yearly OPEX between the TEG 

and molecular sieve unit [kEUR] (Nitsche, 2020)  

 

The comparison of OPEX also shows considerably 

higher operating cost for the molecular sieve based 

process.  The two main reasons are that the heat demand 
is higher for the adsorption case because of more 

indirect heating, and that the compressor has a high 

energy demand.  It is assumed that electricity is 

necessary to heat the regeneration gas.  For the glycol 

unit, it is possible to use cheaper heat as steam. 

If the same heat source (like steam or electricity) was 

used for both processes, the operating cost difference 

would be less.  But because the heat demand is higher 

for the molecular sieve based process, the operating cost 

for the molecular sieve alternative would still be higher.     

    

5.3 Results for 5 ppm water specification 

 

Some references (Kohl and Nielsen1997; Kemper et al., 

2014) claim that a molecular sieve based process is 

necessary to obtain low water levels.  A glycol based 

process which achieved less than 5 ppm was simulated 

with a higher absorption column than in the standard 

case.  This is compared with the molecular sieve process 

in Figure 8.  The capital cost for the molecular sieve unit 

is assumed to be only slightly increased to obtain 5 ppm 

water in dehydrated gas. 

 

 

 

Figure 8.  Comparison of CAPEX between the TEG and 

molecular sieve unit [kEUR] for dehydration down to 5 

ppm (Nitsche, 2020)  

 
The results show that the CAPEX is still 

considerably higher for the molecular sieve based 

process for obtaining less than 5 ppm in dehydrated gas. 

There might be other criterias than cost when 

comparing a glycol based and molecular sieve based 

dehydration process like stability, robustness and risk.  

These factors are however assumed to be comparable for 
the two dehydration processes.  There is no reason to 

claim that it is not possible to achieve 5 ppm water with 

both a glycol based and a molecular sieve based process. 
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6 Conclusion  

 

In this work, the process simulation program Aspen 

HYSYS is used to calculate material and heat balances 

for a TEG based absorption process and a molecular 

sieve adsorption process to achieve less than 30 ppm 

water in the dehydrated gas.  The absorption and 

stripping columns were modelled using a specified 

Murphree stage efficiency on each absorption and 

stripping stage.  In the base case, the absorption and 

adsorption pressure were 40 bar, the inlet temperature 

was 30 °C, and the processes achieved less than 30 ppm 

water in the dehydrated gas.  An additional stripping 

column was added below the desorption column. Both 

processes were cost estimated using the Aspen In-Plant 

cost estimation tool for the equipment cost, using a 

detailed factor method to estimate the capital cost and 

typical utility cost data for heat and electricity.   

For the base case (with less than 30 ppm water in the 

dehydrated gas), the capital cost was calculated to 2.4 

mill. EURO for the TEG unit and 4.7 mill. EURO for 

the molecular sieve process.  The yearly operating cost 

was calculated to 0.1 mill. EURO for the TEG process 

and 0.23 mill. EURO for the molecular sieve process.   

The process was also calculated for dehydration down 

to 5 ppm.  To achieve that in the TEG process, a higher 

absorption column is necessary.  The cost of the TEG 

based process did not increase considerably, so the TEG 

absorption process was also most economical for those 

conditions.    

It is simulated reasonable process alternatives for 

CO2 dehydration down to water levels of 30 and 5 ppm.  

The simulations combined with cost estimation indicate 

that a TEG based process is the most economic process 

both for dehydration down to 30 ppm and to 5 ppm 

water in dehydrated gas.  
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