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Abstract 

Aluminum is one of the most used metals. Since 

aluminum has a unique combination of appealing 

properties and effects, it allows significant energy 

savings in many applications, such as vehicles and 

buildings. Although this energy-saving leads to lower 

CO2 emissions, the production process of aluminum still 

dramatically impacts the environment. 

The process used exclusively in the aluminum industry 

is the Hall-Héroult process with a considerable carbon 

footprint and high energy consumption. As the best 

alternative, Alcoa's approach (which is not 

industrialized yet) is based on the chlorination of 

processed aluminum oxide, reducing the traditional 

method's negative impacts. 

Further to Alcoa’s effort, this study aims to investigate 

the possibility of a new low-carbon aluminum 

production process. This aim can be achieved by 

designing an industrial fluidized bed reactor with an 

external (due to high corrosion inside the reactor) gas-

solid separation unit. The aim is to handle 0.6 kg/s of 

solid reactants and produce aluminum chloride as the 

main product. The research focuses on determining the 

best bed height based on the available reaction rates, 

choosing the best reactor dimension to reduce particle 

outflow under isothermal conditions (700°C). Autodesk 

Inventor® and Barracuda® are used for 3D modeling of 

the reactor and CFD simulation for multiphase (solid-

gas) reactions, respectively. Although results have 

shown that the bed aspect ratio (H/D; H- bed Height and 

D- bed Diameter) does not affect the reaction, it highly 

affects the reactor’s hydrodynamics and particle 

outflow. The final design shows the best hydrodynamics 

belongs to bed aspect ratio equal to 2.  

Keywords: CPFD simulation, Bubbling regime, 

Fluidized bed reactor, Reactor design, Alumina 

Chlorination 

1 Introduction 

Aluminum is now the second most used metal globally 

(Bray, 2021). This is because aluminum has a unique 

combination of appealing properties and functionalities 

allowance for significant energy savings in many 

applications, such as vehicles and buildings. Besides, 

recycled aluminum is highly energy-efficient, using 

only 5% of primary production energy (Mapping 

Resource Prices: The Past and the Future, 2012). 

Although this energy-saving leads to lower CO2 

emissions, the production process of aluminum still has 

a massive impact on the environment (The Aluminium 

Effect, 2021). One of the aluminum industry's key 

targets (such as many other sectors) has remained 

aluminum manufacturing with the lowest carbon 

footprint possible, thanks to growing concern about 

global climate change (Adoption of the Paris 

Agreement, 2015). The industrial sector contributes 

approximately 21% of global greenhouse gas (GHG) 

emissions, with aluminum industries accounting for 1.0 

percent (11.5 tons of CO2 per ton of aluminum) 

(Clemence, 2019), and many key players in the global 

aluminum sector have taken the lead and made progress 

in reducing CO2 emissions in their smelting operations. 

This becomes more important when the significant 

increase in the global aluminum market size from 

around 150 billion dollars in 2019 to 250 billion by 2027 

with a compound annual growth rate of 5.7% during the 

period is reported (Aluminium Market Size, Trends | 

Global Industry Forecast [2027], 2021). 

The process which is used almost exclusively in the 

aluminum industry is the Hall-Héroult process. This 

process has turned aluminum metal into a commodity 

product since its invention in 1886 (Kovács et al., 2020). 

Alumina is dissolved in a cryolite bath in this continuous 

process, and aluminum is produced by electrolysis. In 

this cryolite-alumina melt electrolysis, aluminum oxide 

is dissolved in molten cryolite (Na3AlF6) and afterward 

electrolytically reduced to aluminum at almost 960°C. 

Carbon anodes are used in the process, consumed during 

electrolysis, resulting in the formation of CO2. This 

process suffers from relatively high heat loss from the 

electrolytic cells and increased CO2 emissions from the 

anodes, even though manufacturers have gradually 

improved their production processes. Besides, the Hall-

Héroult process moves down to its potentially lowest 

energy consumption and CO2 emissions during decades 

(Prasad, 2000).  

Alternative aluminum processing strategies have 

been under intense investigation due to the 

comparatively high energy usage and carbon footprint 
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associated with anode consumption (Thonstad, 2001). 

In continuation of this, in 1973, an innovative process 

was introduced by Alcoa Corporation, and it had several 

advantages compared to the commonly used method 

(Hall-Héroult) at that time (National Fuels and Energy 

Conservation Act, S. 2176, 1973). Alcoa's process is 

based on the chlorination of processed aluminum oxide. 

The chlorination process has the advantages of being 

more compact and operating at a lower temperature than 

the Hall-Héroult process, normally 700°C. The 

chemical carbon footprint of the two processes, 

however, is similar since aluminum chloride is created 

by carbochlorination of aluminum oxide, which 

includes aluminum oxide reacting with carbon (C) and 

chlorine gas (Cl2) to form aluminum chloride (AlCl3) 

and CO2. As a result, the same amount of CO2 is 

extracted per kilogram of aluminum in classical 

electrolysis. However, there are some significant 

differences although that make this process fascinating. 

First, this process does not necessitate the use of pure 

aluminum oxide as a raw material exclusively. 

Consequently, the Bayer process could be skipped, 

eliminating the issue of disposing of vast amounts of red 

sludge (Survey of Potential Processes for the 
Manufacture of Aluminium, 1979). Second, 

carbochlorination can result in relatively high CO2 

concentrations in the process gas, making CO2 capture 

and storage easier to implement (Øye, 2019). The third, 

the mechanical properties of carbon, which is merely a 

chemical reactant in aluminum chloride production by 

chlorination, are unnecessary. As a result, biocarbon can 

be used instead of coke from petroleum refineries, 

required by the Hall-Héroult process requires anodes 

with high mechanical strength and density (Øye, 2019). 

Around the time of the Alcoa process's 

implementation, a great deal of work was conducted on 

both the process and the chlorination of raw materials. 

Later, interest somewhat waned, but it has recently 

reappeared. Theoretically, many minerals containing 

sufficient amounts of aluminum can be directly 

chlorinated. So naturally, minerals with such a weak 

thermodynamic bond to aluminum, such as clay 

minerals bauxite and kaolinite, as well as hydrated 

aluminum sulfates, are preferred (Peterson & Miller, 

2007). 

Until now, fluidized bed technology has been studied 

in a wide range of applications. Even though it is a well-

known technology, designing such a reactor with ideal 

and realistic operating conditions continues to be a 

challenge without advanced numerical calculations. The 

complexity of hydrodynamics and the uncertain nature 

of the particles’ behavior with their enormous influential 

characteristics in the fluidized bed reactor make this 

engineering process complex (Barahmand, Aghaabbasi, 

et al., 2021). A highly corrosive environment inside the 

reactor adds the design further challenges. 

2 Hydrodynamics 

The hydrodynamic models depict solid motion and 

distribution, gas-solid mixtures, bubble size, velocity, 

growth, the relationship between the bubble and 

emulsion phases, and mass and heat transfer processes 

(Yang, 2003). The balance of forces between particles 

and gas velocity defines the hydrodynamics of a 

fluidized bed. It is possible to set the required 

fluidization regime by adjusting the gas velocity 

(Philippsen et al., 2015). The fixed bed has a low gas 

velocity, which keeps the bed static. The minimal 

fluidization regime is the fluidization regime's 

beginning point. When the gas velocity exceeds the 

minimum fluidization velocity, the bubbles form, 

causing flow instability. When the gas velocity exceeds 

the terminal velocity, the pneumatic transfer of 

particulates occurs, and it is employed in circulating 

fluidized beds (Kunii & Levenspiel, 1991). 

Figure 1. Solids motion and of different solids volume fractions zones (Horio, 1997) 
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Because of interactions between the gas and solid 

phases, fluidized beds have highly complex 

hydrodynamics. The movements of gases and solids are 

tough to define and explain. Hydrodynamics in a 

fluidized bed reactor deals with the mechanics of gas-

solid suspensions and the hydrodynamic properties of 

gas-solid contacts. The dilute suspension’s clustering 

nature, first observed from the relatively high gas-solid 

slip velocity, has been the most significant point of 

concern from a theoretical perspective. On the other 

hand, the impact of structural factors such as column 

diameter, wall shape, gas distributor design, exit 

configuration, solid separation and recycling equipment, 

as well as operating conditions, on the performance of 

circulation systems are the main hydrodynamic 

concerns from an engineering standpoint which is 

relatively interrelated with scientific aspects (Horio, 

1997).  

Any mechanical interactions in the model must be 

considered in a mathematical model to correctly 

simulate all of the flow processes associated with gas-

solid flows. These interactions, which are dependent on 

the mean and fluctuating components of the gas and 

solid velocity fields, are described by (Sinclair & 

Jackson, 1989) as 1) the interaction between average gas 

and solid velocity results in the drag force between the 

two phases, 2) the gas-phase Reynolds stresses are 

created by the interaction of average and fluctuating gas 

velocities, 3) the interaction between average and 

fluctuating solid velocities in the solid assembly that 

causes stresses., and 4) the interaction of particles with 

a fluctuating gas velocity, resulting in an interfacial flux 

of kinetic energy correlated with arbitrary motion. 

The properties of the particles have a significant effect 

on fluidization. Geldart (Geldart, 1973) divided particle 

behavior in fluidization into four categories, which are 

now generally recognized and applied in fluidized bed 

modeling. 

 Group A: The particles are small (30–150 𝜇m) and 

have a low density (1.4 g/cm3). The fluidization is 

simple, smooth, and consistent. It allows operating 

with modest gas flows while still controlling the size 

and speed of the bubbles. 

 Group B: Medium-diameter particles (40–500 𝜇m) 

having a density of 1.4 – 4 g/cm3. For high gas flow 

rates, fluidization is appropriate. Bubbles emerge at 

the onset of fluidization and expand rapidly. 

 Group C: Particles with a diameter of less than 30 𝜇m. 

Fluidization is a complex process. 

 Group D: Particles that are dense and big (d > 500 

𝜇m). Fluidization is complex and uneven, making 

spouted beds suitable. 

                                                 
1 Averaging the local disparity between upward and downward 

mass fluxes across the cross-sectional area. 

2.1 Particle motion and solids mixing 

mechanisms 

Studying fluidized bed hydrodynamics (Hartge et al., 

1988; Zhang et al., 1991) has indicated that the solids 

volume concentrations in the fluidized bed reactor can 

be classified into mainly four regions (Figure 1). First, 

cross-sectional average solids volume concentrations of 

usually 0.1 to 0.2 characterize the bottom region, where 

solid particle acceleration occurs. Next, a dilute region 

follows the transition zone, occupying most of the riser 

height and marked by low solids volume concentrations 

(> 1%). Finally, the exit geometry governs the fluid 

dynamics throughout the exit zone at the reactor’s top 

(smooth or abrupt exit)  (Horio, 1997). 

2.1.1 Particle motion in the dense bed 

In a previous work (Svensson et al., 1993), it is reported 

that the dense bottom zone of a fluidized bed 

experiences hydrodynamic activity similar to bubbling 

or turbulent fluidized beds, with fluidization gas flowing 

through the reactor’s bottom typically in the form of 

voids, based on pressure variations at the bottom. These 

voids break and push solids into the transfer zone as they 

hit the bottom zone's surface. Since there have not been 

enough local experiments on solids mixing in the 

bottom zone of a fluidized bed, it is safe to conclude that 

the mixing processes are identical to those in bubbling 

fluidized beds. According to (Kunii & Levenspiel, 

1991), “the transport in the wakes of rising voids is the 

essential mixing mechanism.”  

2.1.2 Particle motion in the dilute zone 

The presence of two phases (lean and dense phase) can 

describe the dilute region. According to studies in local 

hydrodynamics (Hartge et al., 1988), the lean phase 

comprises an upward-moving dilute suspension, while 

the dense phase comprises downward traveling particle 

clusters. The dense phase is made near the riser wall for 

the most part and has solids concentrations at least 

marginally more significant than the lean phase. For the 

sake of convenience, the dense phase is often believed 

to be constrained to a layer near the wall. Figure 2 

demonstrates radial profiles of local solids mass fluxes 

collected by a suction probe as an example of solids 

motion in the dilute zone (Kruse & Werther, 1995). 

Reduced solids fluxes1 are plotted against r/R to 

demonstrate the results. The upward solids mass fluxes 

are highest at the reactor’s core and decline as they 

approach the sidewall, while the downward mass fluxes 

are the opposite. Under these operating conditions, 

comparatively high downward-moving mass fluxes 

have been observed at the wall. 

The presence of a radial profile of local average solids 

velocities is another feature of the dilute region. It is 
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reported that the reactor’s core has the highest solids 

velocities (Figure 3), with mean solids velocities of 1.5 

to 2 times the superficial gas velocity (Yang et al., 

1992). Showing a dominant downward movement of 

solid particles near the sidewall, negative values are 

registered. In 1992 (Rhodes et al., 1992), a high-speed 

video camera to perform a more thorough analysis of the 

acceleration of downward flowing solids in regions near 

the wall was used. At velocities ranging from -0.3 to -

0.4 m/s, high-density particle swarms were observed 

descending in contact with the wall. Falling solids were 

observed to drop with a velocity of -1 m/s as strands a 

few millimeters from the wall. 

 

 

Figure 2. Radial profiles of solids mass fluxes (Horio, 

1997) 

 

Figure 3. Radial profiles of solids velocities (Horio, 

1997) 

2.1.3 Particle motion in the transition zone 

A transition from the dense bottom zone to the dilute 

zone happens in this zone, with low solids volume 

concentrations of solid and the gas phase (Senior & 

Brereton, 1992). Significant volumes of solids are 

released from the bottom zone into the transition zone 

through bursting voids. Solids from the dilute zone are 

carried back into the zone by dropping clusters. As a 

consequence, this is a high-intensity mixing region. 

Solid particles mix in the transfer region; on the other 

hand, the phenomenon has not yet been studied 

separately (Horio, 1997). 

2.1.4 Particle motion in the exit zone 

In the literature, two primary forms of exit geometries 

have been identified as smooth and abrupt exits. The 

first is a smooth bent pipe from the top of the fluidized 

bed reactor to the gas separation unit (cyclone) entry, 

with no impact on the reactor’s flow regime, and the 

second geometry includes a sharp 90° take-off below the 

reactor's end cap. Experiments using an abrupt exit 

(Mabrouk et al., 2008) have revealed increasing solids 

concentrations at the top of the riser. This effect is 

caused by solids colliding with the reactor’s end cap. 

Heavier particles, which cannot follow the gas flow 

through the outlet, are mirrored at the riser's top, 

allowing solids to accumulate in this region (Horio, 

1997). 

2.2 Heterogeneous particles fluidization  

Solid segregation happens when different solids with 

varying sizes and densities are fluidized, closely related 

to solids mixing. Solids segregation in bubbling 

fluidized beds has gained much interest recently 

(Nienow, 1985). The consequences of segregation are 

commonly unfavorable and harm hydrodynamics inside 

the reactor (Barahmand et al., 2021c).  

2.3 Particle’s classification 

In (Zhang et al., 2014), The fluidization state has been 

described using a generalized flow regime diagram with 

the Reynolds number as a function of the Archimedes 

number. As seen in Figure 4, the Archimedes number 

(or Geldart classification) and the height to bed diameter 

ratio may be used to classify diverse materials properly. 

These experiments have studied the effect of different 

H/D based on hundreds of powders in different Geldart 

classifications on the fluidized bed hydrodynamics. In 

practice, there are, in many cases, there are different 

alumina types in a process that have different physical 

properties (Barahmand et al., 2021c). Hence, 

considering and studying the possibility of segregation 

is essential for designers.  

3 CPFD simulations and discussion 

The main goal of the present study is to simulate the 

alumina chlorination reaction under an isothermal 

condition at 700℃ in a simple cylindrical fluidized bed 

reactor and study the effect of different bed aspect ratios 

(H/D) on the reaction conversion rate and 

hydrodynamics of the system. The reactor height has 

been chosen relatively high enough to avoid particle 

escape in fluidization. The alumina size and reaction 
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kinetics are based on (Barahmand et al., 2021b). The 

Archimedes number for the alumina sample can be 

calculated as 3.59 (Geldart group A). Therefore, H/D 

below and above unity has been considered into 

simulations. This study investigates the effect of 

different bed aspect ratios and operating pressures on the 

reaction conversion rate. The overall reaction and mass 

balance are given in equations (1) and (2). 

𝐴𝑙2𝑂3 + 3𝐶𝑙2 + 3𝐶𝑂 → 2𝐴𝑙𝐶𝑙3 + 3𝐶𝑂2 (1) 

3.1 Bed aspect ratio (H/D) 

To study the effect of bed aspect ratio on reactor 

hydrodynamics and reaction efficiency, different H/Ds 

have been chosen (0.5, 1, 1.5, 2, 2.5, and 3). 

Figure 5 shows the initial bed at the time 0 for 6 

different cases. Almost 1500 seconds after fluidization, 

the system experiences a steady-state. The expanded 

beds are shown in Figure 6, where the red color 

represents the solid region in the bed. In all cases, the 

bed’s solid regions cause the fluid to escape through the 

area between the reactor wall and the bed.  

The Cl2 average mass concentrations and mole 

fractions at the outlet are given in Table 1. As shown in 

Figure 7, the highest and lowest Cl2 concentration 

belongs to H/D equal to 3 and 1, respectively. Thus, the 

results show that the bed aspect ratio (above unity) 

harms the reaction conversion.  

 

 

 

Figure 5. Initial bed for different H/Ds 

 

Table 1. Cl2 concentration and mole fraction at the outlet 

H/D Mass Concentration (g/m3) Mole Fraction 

3 38.15 0.0375 

2.5 21.2 0.0161 

2 19.2 0.0146 

1.5 5.6 0.0043 

1 0.62 0.0005 

0.5 1.96 0.0015 

 

 

Figure 4. Block flow regime diagram for different particle classification in a fluidized bed (Shaul et al., 2012) 
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Figure 6. Solid regions in the bed at steady-state 

Although the H/D equal to unity shows the best 

performance in reaction conversion, to choose a proper 

bed aspect ratio, it is necessary to consider the whole 

hydrodynamics of the bed (Barahmand et al., 2021a, 

2021b). Too low H/D can cause channeling, and it may 

reduce the reaction efficiency. As a result, Cl2 

concentration at the reactor outlet may increase. Even a 

tiny amount of Cl2 at the outlet could cause problems if 

there is no purification process on Cl2.  Too high H/D 

may also cause channeling because of creating strong 

solid regions in the bed. Simultaneously, too high H/D 

will increase energy consumption significantly due to 

the increased pressure drop of the reactor.   

 

 

Figure 7. Average Cl2 concentration in the outlet vs. H/D 

3.2 Pressure Effect 

In the next step, the present work aims to study the effect 

of the operating pressure on the reactor's chemical 

performance. The outlet pressure boundary condition 

directly affects the fluid’s superficial velocity for a 

certain fluid mass flow rate.  Choosing H/D=1, several 

simulations have been done in different conditions. 

Each simulation has a duration of at least 1500 seconds 

to reach the pseudo-steady-state. As seen in Figure 8, the 

average Cl2 mass concentration in the outlet increases 

by increasing the outlet pressure. Therefore, it can be 

concluded that it is favorable to operate the reactor with 

the lowest pressure to have better reaction conversion. 

There is a negative correlation between the reactor’s 

outlet pressure and the reaction conversion. Studying 

the effect of outlet pressure on Cl2 mass concentration 

illustrates that the minimum concentration belongs to 

the range when outlet pressure is between 1 and 2 bars. 

 

 

Figure 8. The effect of the pressure on the Cl2 

concentration 

4 Conclusions 

As simulation results show, almost all the Cl2 are 

consumed within the first meter of the reactor, which 

means the current range of bed and reactor height may 

not be fully activated in an actual chlorination process.  

However, the H/D value has a significant role when it 

comes to suitable hydrodynamics of the reactor. 

Therefore, selecting the reactor specification for good 

hydrodynamics of the gas-solid fluidized bed reactor is 

very important. Too low and high H/D can cause 

channeling. A low H/D may reduce the reaction 

efficiency. Too high H/D may also cause channeling 

because of creating strong solid regions or increasing 

energy consumption significantly.  The results show that 

the reactor performs best (minimum Cl2 mass 

concentration at the outlet) when the outlet pressure 

ranges between 1 and 2 bars. 

Considering all factors to ensure the reliable and 

effective operation of the fluidized bed reactor (such as 

hydrodynamics, change in Cl2 concentration over 

height, and particle outflow, etc.), the suitable height to 

diameter ratio (H/D) can be considered as 2. Results of 

further simulations related to the selected H/D ratio are 

reported by (Barahmand, 2021). 
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