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Abstract
In a wastewater treatment plant reliable fault detection is
an integral component of process supervision and ensur-
ing safe operation of the process. Detecting and isolat-
ing process faults requires that sensors in the process can
be used to uniquely identify such faults. However, sen-
sors in the wastewater treatment process operate in hostile
environments and often require expensive equipment and
maintenance. This work addresses this problem by identi-
fying a minimal set of sensors which can detect and isolate
these faults in the Benchmark Simulation Model No. 1.
Residual-based fault signatures are used to determine this
sensor set using a graph-based approach; these fault signa-
tures can be used in future work developing fault detection
methods. It is recommended that further work investigate
what sizes of faults are critical to detect based on their po-
tential effects on the process, as well as ways to select an
optimal sensor set from multiple valid configurations.
Keywords: fault detection, wastewater treatment, de-
tectability, isolation

1 Introduction
Fault detection (FD) is an important part of process su-
pervision; monitoring the state of the process, identifying
undesirable states, and initiating action to prevent nega-
tive consequences (Isermann, 2006, pg. 13). The safe and
reliable operation of a process depends on the process su-
pervision, this is no less the case in a wastewater treat-
ment plant (WWTP) where poor performance can result
in the release of untreated wastewater subsequently endan-
gering human health and the environment (Ryder, 2017).
The successful implementation of automatic control also
hinges on the quality of process supervision. Control
and automation in WWTPs has historically lagged behind
other industrial processes, but is becoming increasingly
important as effluent standards have become more strict
and processes move from wastewater treatment to recov-
ery (Olsson et al., 2005).

In a WWTP there are numerous types of faults that can
occur, such as instrument faults and process faults. Spe-
cific process faults that have been the focus of FD research
include: a decrease in the growth rate of autotrophic bacte-
ria causing a decrease in nitrification (Choi and Lee, 2004;

Lee et al., 2003, 2004b,a; Yoo and Lee, 2006), a decrease
in the growth rate of heterotrophic bacteria (toxicity fault)
(Aguado and Rosen, 2008; Borowa et al., 2007; Garcia-
Alvarez et al., 2009; Yin et al., 2017; Yu, 2012), a com-
bined decrease in growth rate and increase in death rate
of heterotrophic bacteria (inhabitation fault) (Aguado and
Rosen, 2008; Garcia-Alvarez et al., 2009; Yin et al., 2017),
a decrease in ammonification rate (Yu, 2012), and a de-
crease in the settling velocity to simulate a bulking fault
(Aguado and Rosen, 2008; Choi and Lee, 2004; Garcia-
Alvarez et al., 2009; Yoo and Lee, 2006).

Each of these faults possess a fault signature based on
how they affect the measurable states. These fault signa-
tures are independent of any particular FD strategy (Ding,
2013, pg. 52), and knowledge of their detectability and
isolability can be beneficial when quantifying the perfor-
mance of different FD methods (Basseville, 2001).

Sensors and measurement devices are pivotal to FD as
they provide information about the state of the process.
However, the hostile environment in a WWTP commonly
places sensors at risk of, for example, clogging and bio-
fouling (Li et al., 2017). This can result in high mainte-
nance costs due to required cleaning and calibration. Ad-
ditionally, the sensors themselves are costly, can disturb
the process, and in some cases are unavailable. Due to
this, it is important to strategically select and place sen-
sors in order to obtain as much information as possible
while minimising the costs associated with monitoring.

There are numerous ways to approach the problem
of sensor placement, such as considering observability
and redundancy within the process (Villez et al., 2016,
2020), or considering fault detectability and isolability
(Krysander and Frisk, 2008; Jung et al., 2020). In this
work we consider the latter approach, focusing also on
the determination of fault signatures for common process
faults within a WWTP.

This type of analysis has been done extensively in other
fields. For example, in gas turbines analysing fault sig-
natures based on sensitivity (Chen et al., 2015), correla-
tion (Stenfelt et al., 2019), and measurement uncertainty
(Chen et al., 2015; Zaccaria et al., 2020) are all com-
mon procedures to determine a sensor set. However, a
correlation based method is not easily applicable to a
WWTP. WWTPs consist of process units in series, with
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similar biochemical mechanisms occurring in each unit.
This structure inherently leads to high correlation between
measurements in successive units and renders futile the
use of correlation analysis for sensor selection.

An alternative approach is to utilise the structural in-
formation of the process model. In this method variables
and equations are represented as separate node sets in a
bipartite graph and a graph theoretic approach is used to
select a minimal sensor set (Krysander and Frisk, 2008).
This approach yields ‘best case’ results for an ideal sys-
tem. Using a distinguishability criterion that facilitates
the specification of thresholds on the probability of false
alarms and missed detections the method can be extended
to a more realistic case, and when combined with model
analysis a greedy stochastic search method can be used to
determine an optimal sensor set to satisfy the requirements
(Jung et al., 2020)

In this work a combined approach is used. Simula-
tions are performed to observe the effects of faults on
the various measurements, and responses that are be-
low noise thresholds are discarded. The remaining fault-
measurement combinations are represented as a bipartite
graph, with non-zero residuals specifying the edges. De-
tectability and isolability conditions are defined in terms
of neighbourhoods on the graph, and both a greedy ap-
proach and a Monte Carlo approach are implemented to
obtain a minimal sensor set to satisfy the requirements.

2 Method
2.1 Simulation
The Benchmark Simulation Model No. 1 (BSM1) was
used for simulating the WWTP. The benchmark plant con-
sists of five biological reactors in series, where two are
anoxic (total volume 2000 m3) and three are aerated (to-
tal volume 3999 m3), the reactors are modelled with the
Activated Sludge Model No. 1 (ASM1). The reactors
are followed by a secondary settler with a volume of
6000 m3 which is modelled as a nonreactive ten layer set-
tler with the Takács model (Gernaey et al., 2014, pg. 9–
10). The model assumes a constant temperature of 15 °C.
The BSM1 is used with the two standard control loops
for NO3 – N and dissolved oxygen control, with set-points
of 1 gNm−3 and 2 gO2 m−3 respectively (Gernaey et al.,
2014, pg. 55–56). The layout of the process is shown in
Figure 1 with the control loops, and the locations where
for this study it was considered feasible to place sensors.

The MATLAB Simulink implementation of the steady-
state form of the BSM1 was run with constant influent.
The steady-state model utilises ideal sensors in the control
loop but is otherwise similar to the normal BSM1. This
simulation set-up was used to be able to easily detect the
new steady-state that is reached after a fault has occurred.

The simulation model was modified to allow for the in-
troduction of process faults. These faults were added as
bias faults, where the size of the step was a percentage of
the normal value of the parameter. Table 1 shows the list

of faults, along with the normal values for the single pa-
rameters. The fault sizes used for simulation were 1 %,
5 %, 10 %, 20 %, 30 %, 40 %, 50 %, and 75 %. Consider-
ing each fault fault-size combination as a unique fault, a
total of n f = 96 faults were tested.

Table 1. Summary of faults that were introduced to the system.
The fault symbol shows whether there was an increase or a de-
crease in the parameter. All growth rates are maximum specific
growth rates as used in the ASM1.

Faulty
Parameter(s)

Normal
Value

Symbol Fault No.

Ammonification
rate 0.05a +ka 1

−ka 2
Heterotrophic
growth rate 4 d−1 +µH 3

−µH 4
Heterotrophic
death rate 0.3 d−1 +bH 5

−bH 6
Heterotrophic
growth rate

4 d−1
Ib 7

Heterotrophic
death rate

0.3 d−1

Autotrophic
growth rate 0.5 d−1 +µA 8

−µA 9
Autotrophic
death rate 0.05 d−1 +bA 10

−bA 11
Settling
velocity

NAc −vs 12

a The ammonification rate constant has units of
m3 gCOD−1 d−1.

b The inhabitation fault is a combination of−µH and +bH .
c The settling velocity is calculated from the double-

exponential settling velocity function and therefore has
no single normal value.

The simulation was loaded from a predetermined
steady-state and run for 50 days before introduction of a
fault. After the fault was introduced the simulation con-
tinued until the system reached a new steady-state. The
post-fault steady-state values were used for the residual
analysis.

2.2 Sensors and Measurement Noise
The starting set of sensors was taken as those variables that
are commonly measured and have available commercial
sensors. These included flow rates (Q), dissolved oxygen
(SO), alkalinity (SALK), total suspended solids (T SS), as
well as nitrate/nitrite nitrogen (SNO), and ammonium/am-
monia nitrogen (SNH) (Olsson et al., 2005; Rieger et al.,
2003). All six variables were considered to be measur-
able at the eight locations indicated in Figure 1. These
locations are used as subscripts to describe a specific sen-
sor, e.g. SO,5 indicates the dissolved oxygen measure-
ment in the fifth reactor. Additional flow rates were mea-
sured in the wastage (Qw) and internal recycle (Qa). It
was also assumed that the oxygen mass transfer coefficient
(KLa), which represents the airflow into the final reactor,
is known or measured. This resulted in a starting set of
51 measurements; 40 concentration sensors, 10 flow rate
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Figure 1. The plant layout for the BSM1 WWTP, the two standard control loops are shown on the diagram with the measurements
involved, as well as all locations where it is assumed possible to install sensors and take measurements marked by 1-5 (inside
biological reactors), e and u (in settler effluent and underflow respectively), and ASi (in the inflow to biological reactors).

sensors, and the KLa value in the fifth tank. We represent
the total number of sensors with ns.

As stated previously, ideal sensors were used in the sim-
ulation of the process. However, sensor ranges and mea-
surement uncertainty were considered when analysing the
residuals. In the non-ideal BSM1 measurement noise is
specified as 2.5 % of the maximum measurement range
boundary for the sensor of interest, and measurement
ranges for variable-specific sensors are provided (Gernaey
et al., 2014; Rieger et al., 2003). We denote the measure-
ment noise for sensor j as σ2

j .
A sensitivity analysis was performed by changing the

noise to 1 % (Rosen et al., 2008) and 4 % and comparing
the main results.

2.3 Analysis of Residuals
Residuals were calculated for each fault, fault size, and
sensor based on the normal operating conditions and the
post-fault steady states obtained from simulations per-
formed using the modified BSM1. These residuals form
an n f × ns influence matrix M′, where M′i, j represents the
size of the residual detected by sensor j caused by fault i.
We then construct an n f × 2ns binary influence matrix M
as follows:

Mi, j =

{
1, M′i j > σ2

j

0, otherwise
Mi, j+ns =

{
1, M′i j <−σ2

j

0, otherwise
(1)

If we represent this matrix blockwise M = [M+ M−] then
the block M+ shows that fault i caused a positive residual
above the noise threshold of sensor j; block M− shows the
same thing for negative residuals.

This can be interpreted as the biadjacency matrix of a
bipartite graph G = (F,S,E), where F = { fi}

n f
i=1 is a set

of vertices representing faults, S = {s+j ,s
−
j }

ns
j=1 is a set of

vertices representing positive or negative residuals on sen-
sors, and E is the set of edges. A fault, fi, is detectable
only if it is connected to at least one sensor s+j or s−j . For-
mally, we can say that the neighbourhood of a detectable
fault in G is non-empty, i.e. N( fi) 6= /0. A fault can be
isolated if it is detectable and the residual set it creates is
distinct from all others, i.e. N( fi) = N( f j) if and only if
i = j.

Call a subgraph H = (F,S′,E ′) of G a minimal sen-
sor graph if: 1) all faults which are detectable in G are
detectable in H, 2) all faults which are isolable in G are
isolable in H, 3) removing any vertex pair (s+j ,s

−
j ) from

S′ would violate 1) or 2). To find a minimal sensor graph
in G we used both a greedy method for removing vertices
from G, as well as a Monte Carlo approach.

For the greedy method residual pairs (s+j ,s
−
j ) are iter-

ated through, if a pair is found which can be removed with-
out affecting the overall isolability and detectability, it is
removed. This continues until no more residual pairs can
be removed. The Monte Carlo approach samples from the
existing residual pairs randomly and removes pairs while
preserving isolability and detectability. When the sub-
graph stagnates the search terminates.

3 Results and Discussion
Following the procedure detailed above, both the greedy
method and the Monte Carlo approach identified a mini-
mum of eleven sensors as necessary to detect and isolate
the maximum number of fault cases. Ten thousand itera-
tions of the Monte Carlo approach resulted in no changes
to the minimum number of sensors, but different combi-
nations of sensors were identified. Future work will inves-
tigate additional criteria which may be used to determine
an optimal sensor set from the results of the Monte Carlo
approach, however, this work considers the set obtained
with the greedy method. These sensors are: SNH,1, SNH,3,
SNO,3, SO,3, SO,4, SNO,e, SALK,e, T SSe, T SSu, T SSASin ,
KLa5.

3.1 Fault Detectability and Isolability
Considering the faults described in Table 1, faults +ka and
+µH were found to be undetectable by any of the possi-
ble sensors, given the sensor noise thresholds. This is not
unexpected as they were unconventional faults; increasing
either of these parameters may in some circumstances be
beneficial, however, any deviation from the desired oper-
ating point satisfies the definition of a fault.

Additionally, small deviations, the 1 % and 5 % fault
sizes, were found to be undetectable. Considering that the
smallest deviation in these parameters that was found in
the literature was 6 % (Lee et al., 2003), with 40 % to 60 %
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being more common sizes for changes in the parameters,
this is an expected result. Future work should consider the
effect that different fault sizes have on the performance of
the WWTP in order to understand which sizes are criti-
cal to detect. These aforementioned non-detectable faults
account for 36 of the original 96 tested faults.

Figure 2 shows for the detectable faults and fault sizes,
at what size each fault became detectable, and where the
signatures were unique. From this Figure we can see that
31 of the original 96 faults were detectable and isolable,
while 43 were detectable.

Figure 2. The detectability and isolability of faults is shown for
different sizes of faults. White indicates an undetectable fault
while colored indicates a detectable fault. The dark green with
hatching shows completely unique fault signatures, green with
a dotted pattern indicates that within a particular fault different
sizes have the same signature, and the unpatterned light green
shows identical signatures in different fault types. The letters
show which fault signatures are the same.

There are several interesting observations to be made
from this Figure. Firstly, we see that certain faults at
particular sizes can resemble different faults at either the
same, or different fault sizes. Consider the faults marked
‘A’ as an example of the latter case; this occurs at a 10 %
deviation for fault −µA, and at 40 % for +bA and shows
that these two faults share the same signature. This makes
sense as a decrease in growth rate and an increase in death
rate of the autotrophic bacteria can be expected to have a
similar effect on the process. However, the faults are dis-
tinguishable if their evolution is monitored as they only
share a signature at one size. The faults marked ‘B’ and
‘D’ show a similar relationship between +µA and−bA, but
identical signatures also exist within the +µA fault across
several sizes as shown by the ‘D’ faults.

Faults +bH and I are interesting due to the appearance
of ‘C’ and ‘E’, marking two unique signatures shared by
these two faults at the same sizes. This is likely due to the
fact that I, as mentioned previously, is a combination of
+bH and −µH . In Figure 2, fault −µH is seen to be un-
detectable until a size of 50 %, this is the size at which the
signatures of +bH and I become distinct from each other,
indicating that at smaller sizes the dominant effect was
+bH and we could expect the two signatures to be equal.
From this observation we can state that it is likely that if

an additional fault was tested that was the combination of
+bA and −µA, this fault would share signatures with −µA
until fault size 30 %.

The uniqueness of signatures across fault sizes, within
a fault, can be a useful property as fault sizes can be iden-
tified purely from the signs of the residuals, without anal-
ysis of the size of the residuals. In the case where certain
fault sizes require immediate action this property can pro-
vide an early warning if the evolution of fault signatures
are monitored.

3.2 Fault Signatures
Discussing now the fault signatures, in Figure 3 all fault
signatures are shown. Each subplot is for a single fault,
the columns represent the different sizes of the fault, and
the rows show which sensor is used in detecting that oc-
currence of the fault. The sign of the residual is shown by
the fill on the Figure.

The first observation to make from Figure 3 is that,
when considering fault pairs of “+" and “−" of the same
parameter, we observe similar residual patterns yet oppo-
site signs. This is an expected response, and if the process
were perfectly linear we would expect identical but op-
positely signed residual patterns. There are three pairs to
observe this behavior in: µA, bA, and bH .

Secondly, pairs of parameters that have a similar effect
on the process have similar residual patterns. These pairs
are the oppositely signed changes of growth and death
rates of either the autotrophic or heterotrophic bacteria.
This was mentioned in the discussion of Figure 2 in rela-
tion to the labelled pairs of identical signatures (‘A’, ‘B’,
‘C’, etc.). Considering ‘C’ and ‘E’ which were seen be-
tween faults +bH and I, these are easily identified in Fig-
ure 3. We see SO,4, T SSASi , T SSu, and KLa5 responding
to both of these faults identically up until fault size 50 %
where the effect of −µH becomes significant.

Considering some specifics, the sensor T SSe is only
used to detect a decrease in the settling velocity (−vs).
This suggests that despite this fault having a more com-
plex signature based on the sensor set, it could be identi-
fied and isolated with that single sensor if the size of the
fault was not of interest. Similarly, SALK,e is only used
in fault −µA and causes size 20 % and 30 % to be distin-
guishable. If we were uninterested in isolating the sizes of
this fault based on the binary residual approach followed,
this sensor could be excluded from the sensor set.

Finally, if we consider KLa5 in the fault −µA, the resid-
ual can be observed to change sign as the fault size in-
creases which is a clear indicator of nonlinearities in the
process.

3.3 Sensitivity to Measurement Noise
Sensitivity of the selected sensor set and detectable faults
to measurement noise can be evaluated by repeating the
analysis for different sensor noise levels. Table 2 shows
the maximum possible number of isolable faults, the num-
ber of sensors required for fault isolation, and the changes
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Figure 3. Fault signatures for the tested, detectable, faults. The hatched red squares indicate a positive residual observed in a
specific sensor while unpatterned blue indicates a negative residual.

to the sensor configuration specified previously.

Table 2. Sensitivity of analysis to measurement noise.

1 % 2.5 % 4 %

Isolable faults 34 31 31
Number of sensors 13 11 10
Sensors to remove - - SALK,e, SO,4
Sensors to add SNH,4, Qa - SNH,4

An interesting observation is the addition of sensor
SNH,4 in both cases, this suggests that including this sensor
in the recommended sensor set may make the FD and iso-
lation more robust to variations in noise and uncertainty.
The additional number of sensors required to detect the
faults with less noise is due to more sensors producing
residuals above the threshold and subsequent isolation of
the faults requiring more information. We can similarly
discuss the fewer number of sensors required to isolate the
same number of faults with the 4 % noise when compared
to 2.5 %. As the noise increases the number of residuals
above the threshold decreases, which means fewer sensors
may be required to isolate the same number of faults. This
suggests that clearly defining a threshold for each sensor
is a vital step in the FD procedure.

4 Conclusions and Recommendations
Using a combined simulation based-graph theoretic ap-
proach a minimal sensor set was suggested in order to al-

low for the detection and isolation of the maximum num-
ber of fault fault-size combinations. The required sensors
were SNH,1, SNH,3, SNO,3, SO,3, SO,4, SNO,e, SALK,e, T SSe,
T SSu, T SSASin , KLa5; a total of eleven. However, other
combinations of eleven sensors were capable of detecting
the same faults and future work should consider how to se-
lect the optimal combination of sensors. It was found that
replacing SALK,e with SNH,4 may increase the robustness
to variations in measurement noise, and the importance of
defining a noise threshold was highlighted.

Fault signatures were identified for faults relating to
changes in the growth and death rates of the autotrophic
and heterotrophic bacteria, as well as changes to the
ammonification rate, and settling velocity. It was ob-
served that small changes to these parameters do not pro-
duce residuals that are distinguishable from measurement
noise, and it is recommended that future work investigate
the effect that different fault sizes have on the performance
of the WWTP in order to highlight which fault sizes are
critical to detect.

The results were based on a binary approach, consid-
ering only the sign of the residual and not its magnitude.
It may be possible to reduce the sensor set and increase
isolability by considering residual magnitude, and this can
be investigated further in future work. Following the bi-
nary approach simplifies the residual analysis and is easier
to visualise; which is an important consideration in terms
of potential implementation in industry.
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