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Abstract 
In this study, we develop a mechanistic model that 
contributes to the application of microbial 
electrochemical synthesis (MES) technology for biogas 
upgrading. The model considered two reactor 
compartments- a continuous-flow stirred-tank reactor 
(CSTR) and an MES biofilm reactor which are coupled 
through a recycle loop. The modelling of biogas 
production (i.e. anaerobic digestion (AD) process) in the 
CSTR follows the most used model for biogas process 
modelling, ADM-1. The MES biofilm model 
incorporates microbially active CO2 reduction to CH4. 
To formulate this reduction reaction rate, the Nernst 
expression was incorporated as a Monod-type kinetic 
expression. The simulations demonstrate the basic 
concepts of coupling MES reactor for biogas upgrade 
and its limitations. According to the simulation result, 
maximum CH4 content of 87 % is achievable with 
recycling ratios of 0.4 and 0.6 when the biofilm volume-
specific area is equal to 0.18 m2/m3, and 0.36 m2/m3 
respectively. However, the conversion of CO2 to CH4 
results in increased pH and consequently CH4 
production decreases by ~ 40 % compared to AD-CSTR 
without MES. Therefore, it is essential to maintain a 
proper pH to prevent the inhibition of AD. The rate of 
the CO2 conversion to CH4 can mainly be constrained 
by available substrate concentration (dissolved CO2). 
The local potential of the cathode and the volume-
specific area above 0.36 m2/m3 have minimum effects. 

Keywords: MES, Biofilm, Anaerobic digestion, ADM-1, 
Bio-methane, Biogas, AQUASIM 

1 Introduction 
Anaerobic Digestion (AD) is a biological process that 
produces biogas from organic matter. Biogas contains 
50-70 % methane (CH4) and 30-50 % carbon dioxide 
(CO2). The CH4 content has a significant impact on 
biogas quality; thus, biogas should be purified before 
using as a transport fuel. Microbial Electrosynthesis 
(MES) is an effective technology to convert CO2 to CH4 
with the help of electroactive microorganisms powered 
by electrical energy (Nelabhotla and Dinamarca, 2018). 
Thereby the CH4 content of the biogas can be increased.  

The MES cell consists of a cathode as the working 
electrode and an anode as the counter electrode. The 
possible chemical reactions of CO2 conversion to CH4 

are presented (1-3) with standard potential in Volts (V)  
vs. Normal Hydrogen Electrode (NHE) (Geppert et al., 
2016). The conversion of CO2 to CH4 occurs at the 
cathode through direct electron transfer (1) or indirectly 
via production of intermediates (2-3). The conversion of 
CO2 to CH4 with intermediate production of hydrogen 
(H2) follows two steps: protons reduction to H2 and then 
the produced H2 is used as an electron donor for CO2 
reduction to CH4.  

𝐶𝑂ଶ + 8𝐻ା + 8𝑒ି → 𝐶𝐻ସ + 2𝐻ଶ𝑂    -0.24 V     (1)

8𝐻ା + 8𝑒ି →  4𝐻ଶ -0.41 V     (2)

𝐶𝑂ଶ + 4𝐻ଶ →  𝐶𝐻ସ + 2𝐻ଶ𝑂                  (3) 
 
Equation (1) is performed by electroactive microbes 

growing in the biofilm on the cathode (Siegert et al., 
2015). These microorganisms use CO2 as the only 
carbon source. Equation (2) can be biotic (Rozendal et 
al., 2008) or abiotic.  The protons (H+) and electrons (e-

) needed for the reduction reaction at the cathode are 
generated at the anode, by oxidizing water or easily 
degradable short-chain organics such as acetate. 
Another possible oxidation compound is ammonium 
(Sivalingam et al., 2020).  

The surface area of the electrodes has a major impact 
on reactor efficiency. Increasing the cathode surface 
area can increase the number of catalyst bacteria 
available and enhance the MES system's efficiency by 
lowering the biocathode electrode's activation 
overpotential. Further, a lower potential for the 
transition of a certain quantity of electrons is more 
effective than a higher potential for the same amount of 
electrons (Mueller, 2012). Therefore, direct electron 
transfer (1) is more desirable than indirect reactions 
since it occurs at lower potentials. 

Even though it is experimentally proved that 
integrating MES system in AD reactor system can 
increase the quality of biogas, the technology is still not 
mature for full-case implementations. The technology is 
still to be economically optimized. An MES unit 
(relatively smaller than a large-scale biogas reactor) can 
be integrated into an existing AD reactor before a full-
scale implementation. Thereby, the technical and 
economic feasibility of the application can be evaluated. 
Further, in a unit as such, a pure electroactive 
methanogenic culture or an enriched methanogenic 
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consortium can be maintained at the cathode, while the 
biogas process happens in the main reactor.  

This study focuses on a mechanistic modelling 
approach to study an MES reactor as an auxiliary unit to 
a main biogas reactor. The experimental work requires 
significant efforts to test a wide variety of operational 
conditions, while mathematical modelling can 
extrapolate such results and enhance our understanding 
of MES application in the biogas process.  

2 Materials and methods 
Figure 1 shows the reactor configuration of the model. 
An MES biofilm reactor compartment (MES-RBC) is 
coupled as an auxiliary unit to a main biogas reactor, 
which is a continuous-flow stirred-tank reactor (AD-
CSTR).  The MES-RBC is fed with the effluent from 
AD-CSTR. The effluent of the MES-RBC is recycled 
back to AD-CSTR. The reactors are operated under the 
mesophilic condition (35 °C). The model is formulated 
in the simulation tool, AQUASIM 2.1. 

 

Figure 1. Schematic diagram representing MES biofilm 
reactor coupled with AD-CSTR reactor (for biogas 
production). CSTR – continuous-flow stirred-tank reactor, 
AD – Anaerobic digestion, MES - Microbial 
electrosynthesis, PS – power supply. 

2.1 AD-CSTR reactor  
The main biogas process occurs in AD-CSTR. The 
reactor has a volume of 28 m3. The reactor is fed as 
described in the simulation outline (Section 2.4). The 
most common platform for biogas process modelling 
Anaerobic Digestion Model No.1 (ADM-1) (Batstone et 
al., 2002) was used to simulate the biogas process in 
AD-CSTR. 

2.1.1 ADM-1 model  

The ADM-1 is structured on anaerobic biochemical 
reactions catalysed by intra or extracellular enzymes and 
act on the pool of biologically available organic material 
(Figure 2). 

 

Figure 2. The reaction paths in ADM-1 (Batstone et al., 
2002), with the following microbial groups: (1) sugar 
degraders, (2) amino acid degraders, (3) LCFA degraders, 
(4) propionic acid degraders, (5) butyric and valeric acid 
(VFA) degraders, (6) acetoclastic methanogens, and (7) 
hydrogenotrophic methanogens, taken from  (Lauwers et 
al., 2013). 

The anaerobic digestion (AD) process decomposes 
complex organic materials into the final product, biogas 
(CH4 and CO2) through several decomposition steps. 
The first step is the disintegration of complex organic 
material into particulate constituents (carbohydrates, 
proteins, and lipids). The next step is the hydrolysis of 
those particulate constituents into soluble sugars, amino 
acids and long-chain fatty acids (LCFAs). The 
hydrolysis products are then fermented into volatile 
fatty acids (acidogenesis step in Figure 2). These acids 
are broken down to acetate and hydrogen 
(acetogenesis). The final step is methanogenesis in 
which acetoclastic methanogens converts acetate to 
methane, and hydrogenotrophic methanogenesis 
converts carbon dioxide and hydrogen to CH4.  

The model incorporates these steps as rate equations. 
The kinetics of disintegration and hydrolysis steps are 
expressed as a first-order reaction rate. The substrate 
uptake rates are described using substrate-level Monod 
saturation kinetic equations (Monod, 1949). Biomass 
decay rates for each microorganism type is first order 
and is described with an independent set of expressions. 
The detailed description of the model can be found 
(Batstone et al., 2002). 

2.2 MES-BRC  
The volume of MES-BRC is 2.8 m3 (10 % of AD-CSTR 
volume). The reactor is fed with effluent from AD-
CSTR, and the flow rate is increased stepwise as a ratio 
of the effluent flowrate from AD-CSTR. 
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To simplify the process modelling in MES-BRC, 
only the chemical reaction which is based on the direct 
electron transfer process (1), was considered. The 
electroactive microorganism performs the reaction as 
microbial growth on a substrate. The specific microbial 
community in this case is electroactive methanogens 
which grow on the cathode surface. These bacteria take 
electrons from the cathode and deliver them to CO2 as 
the final acceptor, using CO2 as a carbon source for 
biomass growth. As a result, the availability of both the 
electron donor and the electron acceptor will limit the 
reaction rate. The overall reaction rate can be defined as 
(4) detailed in (Samarakoon et al., 2019). The 
stoichiometric coefficient of this biotic process is the 
same as in hydrogenotrophic methanogenesis (i.e H2 
uptake) in ADM-1.  

𝜌௘௘௧ = 𝑘௠ି௘௘௧
଴ 𝑋௘௘௧(

ௌ಴ೀ

௄ೄ಴ೀమ
ାௌ಴ೀమ

)(
ଵ

ଵାୣ୶୮ቂି
ಷ

ೃ೅
ఎቃ

)𝐼௣௛𝐼_𝑁𝐻_𝑙𝑖𝑚𝑖𝑡 

      (4) 
ρeet- kinetic rate. The last term in the parenthesis in 

(4) which is derived from the Monod equation is 
referred as the Nernst-Monod term. The main 
assumption for its use is that microbial kinetics control 
electron consumption. The Nernst-Monod term shows 
that the rate of substrate uptake increases as the local 
potential increases until a constant maximum level is 
reached. R is the ideal gas constant, T is absolute 
temperature, F is Faraday constant, η is local potential 
in reference to EKA. EKA is the potential in which the 
substrate consumption rate will reach half of the 

maximum substrate consumption. η is equal to η =EKA 
– Ecathode. EKA refers to the reference potential (E ≡ 0), 
thus η= – Ecathode (Marcus et al., 2007). Xeet is the 
concentration of electrically active microorganisms, Iph 
is an inhibitor that describes microbial growth due to 
extreme pH conditions, I_NH_limit is an inhibitor that 
describes microbial growth due to the limitation of 
soluble inorganic nitrogen. Other parameters: km-eet

0 - 
maximum uptake rate, SCO2 - dissolved CO2 
concentrations, KCO2 – half maximum rate 
concentrations for substrates Sco2. In addition to the bio-
electrochemical process, decay of electrochemical 
active biomass Xeet is defined as a process in MES-BRC. 
The rate (dec_Xeet) is first-order (5) where kdec-eet is the 
first-order decay rate. 

 
𝑑𝑒𝑐_𝑋௘௘௧ = 𝑋௘௘௧𝑘ௗ௘௖ି௘௘௧     (5) 
 

The type of biofilm reactor (in AQUASIM tool) was 
set to be “confined”. The biofilm matrix is a rigid 
structure with no suspended solid in pore volume. The 
pore volume consists of only a liquid phase and 
dissolved solids. The rate of porosity was considered 
zero. The surface detachment velocity of the biofilm is 
assumed to be global and set initially as 0.63 times the 
growth velocity of the biofilm as proposed by (Botheju 
and Bakke, 2008). More detail about the biofilm reactor 
compartment in AQUASIM tool can be found in 
(Wanner and Morgenroth, 2004). Other assumptions 
made for MES-BRC modelling:  

Table 1. Model parameters used for bioelectrochemical processes in MES-BRC  according to a (Samarakoon et al., 
2019); b (Processes, 2002); c(Reichert, 1998); d(Cunningham, 2001); m.d.-determined by the model. MES - Microbial 
electrosynthesis, RBC - biofilm reactor compartment.  

Parameters Description Unit Value 
km_eet maximum electrons uptake rate Kmol-e Kg COD 

Xd-1 
4.5a  

X_eet concentration of electroactive biomass  Kg COD m-3 m.d. 
S_co2 concentration of dissolved CO2  M m.d. 
Ks-co2 Half saturation constant for CO2 reduction M 0.06a 
F Faraday’s constant C mol-e-1 96485  
R Ideal gas constant J mol-1 K-1 8.314  
T Temperature K 308 
ƞ Local potential V change 
I_NH_limit Microbial growth inhibition due to limitation of inorganic 

nitrogen 
- reported formulab 

Y_eet Yield of bio-electroactive biomass  Kg COD-X/Kmol-e 0.48a 
D_X Diffusivity of biomass m2d-1 1×10-7 c 
D_S_co2 Diffusivity of dissolved CO2 m2d-1 0.00012171 
rho Biomass density  Kg COD m-3 25c  
LF Biofilm thickness m m.d. 
LL Boundary layer thickness m 0.0001c  
uf Growth velocity of biofilm md-1 m.d. 
A Cathode biofilm area m2 change 
R‘ Recycle ratio   change 
Kdec_x_eet first order decay rate of X_eet d-1 0.02a 
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1. The biofilm model is one-dimensional. 
2. Biofilm surface area is constant at the given areas 

(A) for the simulation.  
3. The electroactive methanogens catalyze CO2 

reduction to CH4 (1). This microbial community can 
acquire electrons directly from the solid cathode. 

4. Only the cathodic biofilm in MES-BRC is 
considered in the modelling (the reaction at the 
anode is not included). 

5. Only electroactive methanogens are present in the 
biofilm on the cathode surface (any other parallel 
biochemical and bio-electrochemical reactions are 
neglected). 

6. The inhibition that describes electroactive microbial 
growth due to extreme pH conditions (Iph) is 
neglected. 

7. The anode side (which is not included in the 
modelling) supplies an unrestricted proton flow and 
electron current flow (to the cathode side).  The 
transport of H+ in biofilm is comparatively faster. 

2.3 Model parameters  
The model parameters used for the processes in AD-
CSTR are similar to the reported sludge digestion 
experiment with ADM-1 simulations (Siegrist et al., 
2002) and are presented in Table . 

2.4 Simulation outline 
First, a simulation was run only with AD-CSTR without 
coupling MES-BRC i.e., there was no feed flow to 
MES-BRC and the processes (4 and 5) were deactivated. 
The reactor settings of AD-CSTR, and its feed 
composition were the same as in (Siegrist et al., 2002). 
The composition of the feed is given in Table 2. The 
reactor is fed with sludge from a wastewater treatment 
plant for 50 days (Figure 3). The feed flow increases at 
day 16 and day 37 (AD reactors are in general started 
with low organic loading and then gradually increased 
so that stable reactor operation is achieved). 

Table 2. Influent feed composition to AD-CSTR. 

Compounds Concentrations 
kg COD/m3 

Amino acids 4.2 
Fatty acids 6.3 
Monosaccharides 2.8 
Complex particulates 10.0 
Total 23.3 

The bio-electrochemical process was activated at day 
50 while maintaining a constant feed rate (5.31 m3/d) to 
AD-CSTR. The influent flow to MES-BRC reactor was 
set as a fraction of effluent from AD-CSTR (i.e., 
Recycle ratio, R’ × effluent flow). The recycle ratio (R’) 
increase stepwise from 0.1 to 0.8 (0.1, 0.2, 0.4, 0.6 and 
0.8).  The corresponding hydraulic retention times 
(HRT) for each R’ are 5.3, 2.6, 1.3, 0.9 and 0.7 days 

respectively. The local cathode potential (η) was 
increased from -0.200 to +0.200 V stepwise (step size 
=0.05) at every 10 days for each recycle ratio. This 
simulation procedure was followed for 3 different 
cathodic biofilm areas: 0.5 m2, 1 m2 and 1.5 m2 which 
are equal to volume-specific areas of 0.18, 0.36 and 0.54 
m2/m3, respectively. 
 

 
Figure 3. The sludge feed flow to AD-CSTR (Siegrist et 
al., 2002).  

3 Results and Discussion 
Figure 4 shows the biogas production rate and the 
composition of the biogas from AD-CSTR when it is not 
coupled with MES-RBC. As the feed rate is increased 
during the first 50 days, the biogas production rate 
increases. The reactor produces biogas ~ 45m3/d at day 50 
with ~ 65 % CH4 content. This simulation reported 
(Siegrist et al., 2002) was done for baseline results and the 
microbial adaptation before any change was made to the 
conventional biogas process. 

Figure 5 shows how the CH4 content in the biogas 
from AD-CSTR changes at different recycle ratios (R’) 
when it is coupled with MES-BRC and the local 
potential of the biocathode varies. CH4 content increases 
with the recycle ratio (i.e. the feed flow to MES-BRC 
increases). The reason is that dissolved CO2 coming 
with the recycle flow from the main reactor is converted 
to CH4 in MES-BRC and more CH4 is fed back to AD-
CSTR. Increasing local potential (Ƞ) does not make a 
significant influence on CH4 content under the condition 
of this study. This indicates that it is the electron 
acceptor; in this case, dissolved CO2 that limits the rate 
of the conversation reaction (1). 

Similarly, the cathodic biofilm area over 1 m2 does 
not influence CH4 content. However, when the area is 
chosen as 0.5 m2 and R’ is equal to 0.4, the CH4 content 
is about 87 % (which is the same at R=0.6). On the other 
hand, when the area is equal to 1 m2, at the same recycle 
ratio (R= 0.4) the CH4 content is lower, about 72 %. This 
indicates that increasing the area from 0.5 to 1 m2 has 
given a negative impact on the CO2 reduction processes. 
It is in contradiction to the fact that the increased area 
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provides more biomass available for the conversion 
processes. A higher cathode area causes higher electron 
flow and sufficient area for biofilm to grow (Nelabhotla 
and Dinamarca, 2018; Sydow et al., 2014; Zhang et al., 
2019). The reason for this negative influence observed 
in the current simulation might be due to the larger 
biofilm thickness at A=1 m2 compared to A=0.5 m2. 
Initially higher biomass concentration is available for 
A=1 m2 compared to A=0.5 and it results in the thicker 
biofilm for A=1 m2. Thicker biofilm makes resistance to 
substrate transfer within the biofilm. This finding 
suggests the importance of maintaining a proper biofilm 
thickness in the process. Further, it is also important to 
properly model the biofilm surface detachment velocity 
so that an applicable biofilm thickness is maintained.  

 

 
Figure 4. Biogas production rate (A) and its composition 
(B) from AD-CSTR (when it is not connected with MES-
RBC). The feed rate changes at days 16 and 37. 

Even though CH4 content increases with the recycle 
ratio, the total biogas production decreases with the 
recycle ratio (Figure 6, the simulation results are the 
same for A=1 and 1.5, therefore the result corresponding 
to A=1 is only presented). In another word, biogas 
production decreases as CH4 content increases. For the 
case corresponding to the highest CH4 content (87 %), 
biogas production decreases by 55 % compared to AD-
CSTR without MES.  

 

 

 
Figure 5. CH4 content (%) in biogas from AD-CSTR 
(coupled with MES-BRC) vs. local potential (Ƞ) from -0.2 
to +0.2V (step size=0.05) at different recycle ratios (R’) 
and area (A)=0.5,1.0 and 1.5m2. 

The increasing recycle ratio allows more CO2 from 
the biogas rector (AD-CSTR) to convert to CH4. 
Consequently, bicarbonate strength in the bulk liquid of 
the reactor (AD-CSTR) decreases and hence pH rises 

0

20

40

60

0 10 20 30 40 50

B
io

ga
s 

fl
ow

 [
 m

3 /
d]

Time [d]

(A)

0

20

40

60

80

0 10 20 30 40 50

B
io

ga
s 

co
m

po
si

ti
on

 [
%

]

Time [d]

(B)

CH4 % CO2 %

60

70

80

90

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

C
H

4
%

Local Potential (V)

A=0.5m2

R'=0.1 R'=0.2 R'=0.4 R'=0.6

60

70

80

90

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

C
H

4 
%

Local Potential (V)

A= 1 m2

R'=0.1 R'=0.2 R'=0.4 R'=0.6

60

70

80

90

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

C
H

4
%

Local Potential (V)

A= 1.5 m2

R'=0.1 R'=0.2 R'=0.4 R'=0.6

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185450 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

454



(Figure 8). The elevated pH can lead to deprotonation of 
ammonium ions, releasing free ammonia. Free ammonia 
strictly inhibits acetoclastic methanogens, the bacterial 
group which is responsible for the decomposition of 
acetate into methane (Figure 2). In conventional AD, a 
major portion of biogas is produced via this acetate 
pathway. When recycle ratio is equal to 0.8, pH rises to 
10 (the result is not presented) and acetoclasic 
methanogens’ activity completely terminates. The result 
is the same for all three biofilm areas studied. However, 
in the real-case application of MES, the free ammonia 
can oxidize at the anode (Sivalingam et al., 2020), 
thereby its inhibition can be mitigated. 

 

 

Figure 6. Biogas production in AD-CSTR reactor coupled 
with MES-BRC compared to AD-CSTR without MES 
when the local potential (Ƞ) increases from -0.2 to +0.2V 
(step size=0.05) for different recycle ratios (R’) and A=0.5 
and 1m2. 

Due to the reduction in total biogas production in 
AD-CSTR coupled with MES-BRC, the CH4 production 
also decreases as CH4 content increases or the recycle 
ratio increases (Figure 7,  the simulation results are the 
same for A=1 and 1.5, therefore the result corresponding 
to A=1 is only presented). CH4 production decreases by 

40 % at the highest CH4 content observed (87 %) at R= 
0.4 and 0.6 when the biofilm area is equal to 0.5 m2 and, 
at R=- 0.6 when the biofilm area is equal to 1 m2. 
However, a previous experimental study reported that 
MES could increase CH4 yield by 10-15 %  compared 
to that produced in a reactor without MES operation 
(Nelabhotla and Dinamarca, 2019). 

 

 

Figure 7. CH4 production in AD-CSTR reactor coupled 
with MES-BRC compared to AD-CSTR without MES 
when the local potential (Ƞ) increases from -0.2 to +0.2V 
(step size=0.05) for different recycle ratios (R’) and 
A=0.5 and 1m2. 

In the present modelling approach, the other 
processes (both microbial processes and Physico-
chemical reactions) in AD were not considered in MES-
BRC. If the processes as such were taken into account, 
the severe impact on biogas production due to pH rise 
might not be observed, since the AD processes itself can 
produce some alkalinity/buffer capacity. Further, such a 
pH rise can also be avoided if extra CO2 is added from 
an external source as suggested by (Samarakoon et al., 
2019).  
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Figure 8. Response of pH in AD-CSTR coupled with 
MES-BRC when the local potential (Ƞ) increases from -
0.2 to +0.2V (step size=0.05) for different recycle ratios 
(R’) and A=0.5 and 1 m2. 

The diffusion coefficient can also have a significant 
impact on the CO2 reduction rate. To understand the 
effect of diffusivity on CH4 production, low and high 
values were chosen for the diffusivity coefficient of 
dissolved CO2 for a single simulation case. This 
examination was done on the case where the local 
potential is equal to +0.2 V, A=1, and for all recycle 
ratios. The high and low diffusivity coefficient values 
were 0.002 m2/d and 0.00002 m2/d, respectively. Only a 
0.11% increase in CH4 production at the higher value 
(result not presented) was observed. However, it could 
be expected that at the lower local potential the 
diffusivity constant may influence the production. 

3.1 Limitations of the model and suggestions 
for improvement. 

In the present model, only the bioelectrochemical CO2 
reduction process and microbial decays are the activated 
processes in the biofilm reactor (MES-BRC). It means 
that the model modification assumes only one 
microorganism (Xeet) is growing in the cathodic biofilm, 
while in the real case, other microorganisms’ growth or 
other microbial processes (Figure 2) also exist.  

Both pH and IN have a greater impact on the 
biological processes. However, the acid-based 
equilibrium and charge balance (i.e. physicochemical 
processes) which are vital for pH and inorganic nitrogen 
(IN) concentration determinations were also not 
considered in the biofilm modelling (in MES-BRC).  
Hence, their influence on biofilm growth cannot be 
studied with the current model. Due to these limitations, 
the model prediction might be far-off from the real case 
scenarios even though the model can give a qualitative 
understanding of the new application. 

As a suggestion to improve the model one step 
further, ADM-1 with the bioelectrochemical CO2 
reduction process can be implemented in MES-BRC. 
However, ADM-1 model with AQUASIM software 
uses a differential-algebraic system of equations (DAE) 
to model the AD process in CSTR. On the other hand, 
the solver for the biofilm reactor compartment (BRC) 
model in AQUASIM cannot numerically handle the 
DAE system. Therefore, implementing ADM-1 with 
BRC in AQUASIM is not straightforward. The acid-
base equilibrium processes should be removed and 
redefined as dynamic processes as reported by (Botheju 
and Bakke, 2008). In Addition, how it will affect ADM-
1 with CSTR should also be investigated since the 
reactor configuration (Figure 1) consists of both CSTR 
and BRC. 

Furthermore, the present model requires proper 
parameter estimation and validation based on real case 
scenarios. 

4 Conclusion 
The proposed model can be used to illustrate the 
principle of MES coupled with AD for biogas upgrading 
by bio-electrochemically transforming CO2 to CH4. The 
model can be used to study some significant process 
parameters such as cathode local potential (ƞ) recycle 
ratio, cathode area, and biofilm detachment velocity on 
the MES integrated with AD reactor.  

The simulations show that coupling the MES biofilm 
reactor with a recycle loop increases CH4 content in the 
biogas. The maximum CH4 content achieved is 87 % 
with recycle ratios (R’) of 0.4 (1.3 d HRT) and 0.6 (0.9 
d HRT) when the biofilm volume-specific area is equal 
to 0.18 m2/m3 and 0.36 m2/m3 respectively (under the 
reactor condition studied). However, the conversion of 
CO2 to CH4 results in elevated pH in the main biogas 
reactor and consequently CH4 production decreases by 
~ 40 % compared to AD-CSTR without MES. 
Therefore, it is essential to maintain a proper pH to 
prevent the inhibition.  

The rate of the CO2 conversion to CH4 can mainly be 
constrained by available substrate concentration 
(dissolved CO2) and the cathode local potential and 
volume-specific area above 0.36 m2/m3 have minimum 
effects. 
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