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Abstract
We present a mathematical model of metabolism in can-
cer cells that is capable of describing both aerobic oxida-
tive metabolism and anaerobic fermentation metabolism,
and how cancer cells shift between these metabolic states
when exposed to different substrates and different enzy-
matic inhibitors. The model is designed to be used in com-
bination with experimental data gathered with an Agilent
Seahorse XF metabolic analyzer. The model is param-
eterized in a manual tuning procedure to fit experimental
data, and validated against experimental data from another
setup, to which the model shows good conformity. We
also investigate the structural identifiability of the model.
The results indicate that the model is structurally identifi-
able, and that it can thus be uniquely parameterized, using
the following 5 measurements: extracellular concentra-
tions of glucose, glutamine and lactate, proton production
rate (a Seahorse XF analyzer measurement) and oxygen
consumption rate.
Keywords: biological systems, cancer metabolism, simu-
lation, parameter estimation, biotechnology

1 Introduction
Cancer is a group of diseases where cells grow and pro-
liferate uncontrollably (Jones and Thompson, 2009). An
emerging hallmark of cancer is reprogrammed energy
metabolism (Hanahan and Weinberg, 2011). Metabolism
is important in understanding how different cancer cells
proliferate and develop into tumors and metastases, and
for designing and testing therapeutic strategies.

Cancer cells differ from non-cancerous cells in that they
typically have a high uptake of glucose and a shift from en-
ergetically efficient oxidative metabolism to less efficient
anaerobic fermentation even in the presence of O2. This
phenomenon is the so-called Warburg effect (Liberti and
Locasale, 2016; Warburg, 1956). Many cancer cells also
have an increased metabolic reliance on glutamine (Wise
and Thompson, 2010), which is the most abundant free
amino acid in muscles and blood plasma.

In this paper we present a model of aerobic and anaer-
obic metabolism in cancer cells designed to be used in

combination with experiments performed using an Agilent
Seahorse XF analytic instrument, a commonly used tool
for studying and metabolic phenotyping cancer cells. The
Seahorse XF instrument measures oxygen consumption
rate (OCR) and extracellular acidification rate (ECAR) in
live cells under controlled conditions. The instrument fea-
tures automatic injection and mixing of up to four sub-
stances and can run experiments that reveal how cells re-
spond to addition of metabolic substrates and how they
respond to forced blocking of certain metabolic pathways
by the addition of enzymatic inhibitors (Agilent, 2019).

2 Modeling
Our model includes cellular uptake and metabolism of
glucose and glutamine, and describes the most promi-
nent metabolic processes by simplified kinetic expres-
sions. The model deals with enzymatic reactions, i.e. fast
changes in metabolic reaction rates, due to immediate ad-
ditions of substrates and inhibitors. Since the timescale
of experiments are in the order of minutes to a maxi-
mum of a few hours, significantly shorter than the dou-
bling time for typical cell lines used in these experiments,
cell growth is not considered in the model. The Caco2
cell line used in this work has a doubling time in the
range of days (Hidalgo et al., 1989). Figure 1 shows a
schematic overview of the model (see also Table 1 for a list
of abbreviations). The model has the following 12 state
variables: the internal concentrations of metabolites and
metabolic intermediates (glucose, pyruvate, glutamine, α-
ketoglutarate, and lactate), the internal concentration of
ADP and ATP (for energy production and balance), the
concentration of NAD+ and NADH (the electron carrier in
oxidative production of ATP), and the external concentra-
tions of glucose, glutamine, and lactate. There are in total
11 metabolic reactions, or flow expressions, in the model.
As indicated by the red and green symbols in Figure 1,
the model also includes the effect of the following 5 in-
hibitors: 2-DG (2-deoxyglucose), rotenone, antimycin A,
oligomycin and CCCP (Carbonyl cyanide m-chlorophenyl
hydrazone). These inhibitors are often used in Seahorse
experiments, such as glycolysis- and mitochondrial stress
tests (Agilent, 2019).
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Figure 1. Overview of the model. The fully drawn circle is the
cell membrane. Inside the dotted line is the mitochondria. The
black arrows are metabolic reactions and the red and green lines
show inhibitors/activators often used in Seahorse experiments.

Notation
The reactions in the model are simplified and each reac-
tion actually covers multiple enzyme catalyzed reaction
steps. Unless otherwise stated, we assume that the overall
reactions are irreversible and we use the rate constants k
to describe the maximum reaction- or transport rate. We
use subscript to denote the reaction, e.g., the rate constant
for glycolysis, jGP, is kGP. The effect of substrates in re-
actions are expressed by saturation ratios r (0 ≤ r ≤ 1),
where we use subscript to denote the reaction and super-
script to denote the substrate. We use saturation ratios
based on the Micahelis-Menten equation. As an example,
the contribution of glucose G to the glycolysis rate jGP
is described in the saturation ratio given as rG

GP = G
KG

GP+G
,

where KG
GP is the half-saturation constant.

The expressions for the different reactions in the model
will be explained in the following.

Transport
With a few exceptions, such as O2 and CO2, most
molecules cannot freely diffuse across the cell membrane,
and thus, transport across the cell membrane is dependent
on transport proteins. Glucose is transported across the
cell membrane by glucose transporter proteins (SLC2A
family) through facilitated diffusion – a passive process
where the concentration gradient provides energy for pro-
tein mediated transport across the membrane. The so-
called GLUT1 transporter protein (SLC2A1) is of special
interest in studies of cancer metabolism, as it is abundant
in many human tumor types (DeBerardinis et al., 2008;
Hanahan and Weinberg, 2011).

Glutamine is transported across the cell membrane

Table 1. List of abbreviations.

G glucose
P pyruvate
Gn glutamine
K α-ketoglutarate
L lactate
NAD+ nicotinamide adenine dinucleotide

(oxidized form)
NADH nicotinamide adenine dinucleotide
ATP adenosine triphosphate
ADP adenosine diphosphate

Gext extracellular glucose
Gnext extracellular glutamine
Lext extracellular lactate

OCR oxygen consumption rate
ECAR extracellular acidification rate
PPR proton production rate
TCA cycle tricarboxylic acid cycle
2-DG 2-deoxyglucose

by several amino acid transporters, but most notably by
SLC1A5 and SLC6A14 which are commonly upregulated
in cancer cells (Scalise et al., 2017; Cha et al., 2018).

Lactate is transported out of the cell by monocarboxy-
late transporters (MCTs), a type of symporter that couple
protons (H+) and monocarboxylate transport, and hence,
lactate excretion is coupled with extracellular acidifica-
tion.

The expressions for transport of glucose, glutamine and
lactate in Eqs.(1)-(3) respectively, are all modeled as facil-
itated diffusion through transporter proteins where we use
the fixed site carrier model (Baker and Widdas, 1973) de-
scribing transport through a membrane pore with binding
sites on both sides of the membrane.

jGextG = kGextG
Gext −G(

KGext
GextG +Gext

)(
KG

GextG +G
) (1)

jGnextGn = kGnextGn
Gnext −Gn(

KGnext
GnextGn +Gnext

)(
KGn

GnextGn +Gn
)
(2)

jLLext = kLLext

L−Lext(
KL

LLext
+L

)(
KLext

LLext
+Lext

) (3)

The transport of glucose ( jGextG) and glutamine ( jGnextGn)
are defined positive into the cell, whereas the transport of
lactate ( jLLext) is defined positive out of the cell.

Glycolysis and fermentation
Glucose is converted to pyruvate in a series of 10 enzyme
catalyzed reactions in the glycolysis pathway. The net pro-
duction for each glucose molecule through the glycolysis
is 2 pyruvate-, 2 ATP- and 1 NADH molecules. The mod-
eled expression for the glycolytic flux, jGP, given as

jGP = kGP rG
GP rADP

GP rNAD
GP (4)
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depend on glucose, ADP and NAD+.
Cells regenerate NAD+ to sustain glycolysis, and if O2

is available most cells prefer to oxidize NADH in the mito-
chondria to produce more ATP. In the absence of O2, cells
regenerate NAD+ through fermentation by reducing pyru-
vate to lactate. Cancer cells, however, often show a pref-
erence for fermentation even in the presence of O2, which
refers to the so-called Warburg effect or aerobic glycoly-
sis. The expression for fermentation, jPL, is given as

jPL = kPL rP
PL rNADH

PL (5)

Oxidative metabolism
In the mitochondria (the inside of the dashed line in Fig-
ure 1) organic material such as pyruvate can be further
catabolized in the TCA cycle (tricarboxylic acid cycle) to
produce large quantities of NADH, which is oxidized to
NAD+ by O2 in the electron transport chain. The oxida-
tion of NADH is coupled to ATP production by a proton
gradient across the inner mitochondrial membrane, where
the gradient is sustained by proton transport by the elec-
tron transport chain and used by ATP synthase to produce
ATP. This process is called oxidative phosphorylation. To
account for proton leak, we use the following two fluxes
to describe oxidative phosphorylation.

jNN = kNN rNADH
NN rADP

NN (6)
jNNI = kNNI NADH (7)

where jNN describe the regeneration of NAD+ coupled
to ATP production and jNNI describe the regeneration of
NAD+ coupled to proton leak across the membrane.

Pyruvate is transported into the mitochondria where
it is completely catabolized in the TCA cycle produc-
ing 4 NADH molecules for each pyruvate molecule. In
the model we describe the catabolism of pyruvate in two
steps: first conversion of pyruvate to TCA intermediate α-
ketoglutarate, jPK in equation (8), and second conversion
of α-ketoglutarate to oxaloacetate, jKO in equation (9).

In addition, glutamine enters the TCA cycle through
glutaminolysis, jGnK in equation (10), where glutamine is
converted to α-ketoglutarate that also produce NAD(P)H.
Oxaloacetate is in the model treated as a sink (symbol Ø in
Figure 1) as we do not include further anabolic processes.

jPK = kPK rP
PK rNAD

PK (8)

jKO = kKO rK
KO rNAD

KO (9)

jGnK = kGnK rGn
GnK rNAD

GnK (10)

Energy consumption
We assume that the cellular energy consumption, jAA, de-
pends on ATP availability as follows:

jAA = kAA rATP
AA (11)

State equations
Equations (1) - (11) represent the 11 reactions in our
model, giving the following 12 state equations of our
model:

Ġ = jGextG − jGP (12)

Ṗ =2 jGP − jPK − jPL (13)

Ġn = jGnextGn − jGnK (14)

K̇ = jPK + jGnK − jKO (15)

L̇ = jPL − jLLext (16)
˙NAD = jPL + jNN + jNNI − jGnK

−2 jGP −2 jPK −2 jKO (17)
˙NADH =− ˙NAD (18)

˙ATP =2 jGP +2.5 jNN − jAA (19)
˙ADP =− ˙ATP (20)

˙nGext =−Vi jGextG (21)
˙nGnext =−Vi jGnextGn (22)

ṅLext =Vi jLLext (23)

where Vi is the total cellular volume. Note that the extra-
cellular state variables are expressed in amount in moles
instead of concentration because the extracellular volume
may change. The extracellular concentration of glucose,
glutamine and lactate are found by dividing their respec-
tive amount by the extracellular volume Ve.

3 Seahorse XF
The Seahorse XFp Analyzer measures OCR and ECAR
on live cells placed in a specialized well plate. The mea-
surements are performed by sinking a sensor into the well
creating a microchamber with a volume of 2 µl where
changes in pH and O2 concentration occur more rapidly
due to the small volume.

ECAR measurements, which is the change of pH in the
microchamber (− dpH

dt ), are converted to PPR (proton pro-
duction rate), which is a measure of the number of protons
(H+) excreted from the cells. Excretion of lactate is the
primary source of extracellular acidification and is related
to PPR (mol/s) by

PPR = Vi jLLext (24)

OCR is a measurement of cellular O2 consumption,
(− dO2

dt ), where oxidation of NADH in oxidative phospho-
rylation is the primary consumer of O2. Since 2 NADH
molecules is oxidized for each O2 molecule, OCR (mol/s)
is related to oxidative phosphorylation by

OCR =
Vi

2
( jNN + jNNI) (25)

Inhibitors
The model is designed to be used in combination with
experimental results from so called glycolysis- and mito-
chondrial stress tests performed with the Seahorse XFp
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Analyzer. In these experiments, inhibitors that block or
disrupt certain metabolic pathways in the cells are injected
into the wells. The following describe these inhibitors and
how we implement their effect in the model.

2-Deoxyglucose (2-DG) is a glucose analogue that is
transported through the cell membrane by GLUT1. Inside
the cell 2-DG and its derivatives inhibit early steps in gly-
colysis, jGP. We implement the injection of 2-DG as a
99% decrease in the rate constant for glycolysis, kGP.

Oligomycin is an inhibitor of the enzyme complex
ATP synthase, which phosphorylate ADP in oxidative
phosphorylation, and we implement the injection of
oligomycin as a decrease in the rate constant kNN by 99%.
Oxidation of NADH still occurs, but at a lower rate, pri-
marily due to proton leak across the mitochondrial inner
membrane, which is described by jNNI.

CCCP is an inhibitor of oxidative phosphorylation, i.e.
it uncouples the oxidation of NADH with ATP synthesis
by destroying the proton gradient across the inner mito-
chondrial membrane and therefore acts as an activator of
oxidative phosphorylation coupled to proton leak. We im-
plement the injection of CCCP as an increase in the rate
constant for the oxidation of NADH coupled to proton
leak kNNI. The factor of increase is a tuning parameter
during parameter estimation, where we initially increase
kNNI by a factor of 100.

Rotenone and antimycin A inhibit oxidative phosphory-
lation by limiting the oxidation of NADH. We implement
the effect of these inhibitors as a 99% decrease in the rate
constants for oxidative phosphorylation kNN and kNNI

4 Parameter estimation
The model was fitted to experimental data from a gly-
colysis stress test, a method that measures key properties
of the glycolytic pathway, in a manual parameter tuning
procedure. We performed the experimental test on can-
cer cells from the cancer cell line Caco2 (Hidalgo et al.,
1989). In the test the cells are initially starved for glu-
cose, but glutamine is available in the media. The Sea-
horse XFp Analyzer then sequentially adds: (i) glucose,
starting glycolytic activity, (ii) oligomycin, inhibiting mi-
tochondrial ATP production in oxidative phosphorylation
and thereby increasing glycolytic activity to maximal ca-
pacity, (iii) CCCP, further inhibiting oxidative phosphory-
lation, and (iv) 2-DG, inhibiting glycolysis. Initial media
volume in the wells, the extracellular volume Ve, is 180 µl
and for each injection the volume increase by 25 µl. The
cell culture contained an estimate of 15000 cells, which
based on average cell size for Caco2 cells (Hidalgo et al.,
1989), correspond to a total cell volume Vi of 0.0204 µl.

The possible ranges of the reaction fluxes in the model
were calculated from OCR and PPR measurements based
on the stoichiometry. Prior to glucose injection, glucose
uptake is restricted since glucose is not available in the
media and therefore glucose uptake jGextG is zero. By as-
suming that oligomycin and 2-DG completely inhibit ATP

coupled oxidative phosphorylation and glycolysis respec-
tively, further restrictions on fluxes were possible; jNN
was set to zero after oligomycin injection and jGP was set
to zero after 2-DG injection.

In order to identify a set of initial model parameters,
we use the glucose phase which is after the addition of
glucose but prior to the addition of inhibitors. Having
both glucose and glutamine present in the growth me-
dia is common in experiments, and thus, it enables us
to use available literature data, see Table 2. To ob-
tain stationary conditions in the model, external concen-
trations of glucose, glutamine and lactate were consid-
ered constant and the differential equations were solved
for the rate constants. Uptake of glucose jGextG and
glutamine jGnextGn, excretion of lactate jLLext and ATP
coupled oxidative phosphorylation jNN were considered
known in the calculation since they are the easiest fluxes
to measure or estimate from OCR and PPR. We use
jGextG = 2.26mM/min, jGnextGn = 3.47mM/min, jLLext =
4.25mM/min and jNN = 10.4mM/min. As a starting
point the saturation ratios r were set to 1

2 , which is equiva-
lent to setting the half-saturation constants K equal to their
respective substrate concentrations in Table 2.

Table 2. Assumed steady state concentration (SS [mM]) after
glucose injection. These values are used in the manual tuning
procedure. *Obtained from (Shestov et al., 2014). **Experi-
mental setup.

G 5 K 1 NADH 0.1 Gext** 10.0
P* 0.5 L 0.5 ATP* 3.0 Gnext** 0.2
Gn 0.1 NAD* 0.5 ADP 1 Lext 0.1

Manual tuning
With the initial parameter set (Table 3), we simulated the
model and compared it to measurements of OCR and PPR,
see Figure 2, panel A. We see that the model poorly cap-
tures the dynamics, especially PPR in phases 3-5.

As a measure to improve the model, we decreased
KNAD

GP and KNADH
PL significantly; in such a way that glycol-

ysis and fermentation became saturated with NAD+ and
NADH, respectively, causing PPR to increase as response
to oligomycin and CCCP injection, see phases 3 and 4 of
panel B. The increased rate of glycolysis from saturated
NAD+ was compensated for by reducing the rate constant
for glycolysis kGP by a factor of 2. It was not necessary to
compensate the rate of fermentation, as it is limited by gly-
colysis, and most pyruvate is already fermented to lactate,
i.e. the flux from pyruvate to α-ketoglutarate is small.

We observe that the model response in panel B is im-
proved compared to panel A. In order to further improve
the model response with respect to proton leak (OCR) be-
fore CCCP injection (phase 1-3), we adjusted the rate con-
stant kNNI until the model response fitted the experimental
results in phase 3. This is a well suited tuning method
as oxidative phosphorylation coupled to ATP production,
jNN, is inhibited in phase 3.
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Figure 2. Simulation (blue) and experimental measurements (black) of oxygen consumption rate (OCR) and proton production
rate (PPR calculated from ECAR) for the parameter estimation procedure. Injections of glucose and metabolic inhibitors shown
on vertical lines. A Simulation based on the initial parameter set, see main text. B Glycolysis and fermentation were saturated
with NAD+ and NADH respectively to increase PPR as a response to oligomycin and CCCP injection. The increased glycolytic
flux from this adjustments was compensated. C Oxidative phosphorylation coupled to proton leak prior to CCCP injection was
adjusted so it described OCR after oligomycin injection. Glutaminolysis and the energy consumption rate was adjusted so that
it better described the glucose injection. D Response after last adjustments. Glycolysis was increased until PPR coincided with
experimental data after oligomycin injection. The increased glycolytic flux after glucose injection was compensated by reducing
ADP availability through increasing oxidative phosphorylation coupled to ATP production. As a last step the effect of CCCP on
oxidative phosphorylation coupled to proton leak was adjusted until OCR after CCCP injection coincided with experimental data.

We also observe that after glucose addition (panel B,
phase 2), the model response of OCR is opposite of the ex-
perimental results. To improve this response, we increased
the rate of glutaminolysis kGnK and decreased the energy
consumption rate kAA, see panel C. This adjustment of the
energy consumption rate was necessary both to decrease
the rate of glutaminolysis and glycolysis, and to shift the
glucose metabolism towards fermentation in phase 2.

The response in panel C shows a relative good fit to the
experiment in OCR but a not so good fit in PPR. To im-
prove the PPR response in phases 3 and 4, we increased
the rate for glycolysis kGP to ensure that glucose is fer-
mented to lactate at maximal capacity after oligomycin
injection (phase 3). As this adjustment also increase the
rate of glycolysis during phase 2, were the PPR became
too high, an increase in the rate of oxidative phosphoryla-
tion coupled to ATP production kNN was necessary. Fur-
thermore, to improve the OCR response in phase 4 after
the addition of CCCP, we decreased kNNI once again, this
time however, we changed the value of kNNI when it is
affected by CCCP.

The resulting simulation after tuning, shown in panel
D, shows a good fit with the experimental data, especially
considering that only 8 parameters were adjusted during
the manual tuning. Parameter values before and after tun-
ing are listed in Table 3. However, in phase 3 after the ad-

dition of oligomycin, the response is too fast with respect
to PPR, and too slow with respect to OCR. This is possi-
bly a result of not including compartmentalization in the
model, resulting in increased ADP availability in the mito-
chondria from inhibition of ATP synthase by oligomycin,
immediately affecting the glycolysis in the model.

The rapid increase and peak in OCR after CCCP injec-
tion in phase 4 is in the model caused by rapid depletion of
accumulated α-ketoglutarate after oligomycin injection,
i.e. it signifies accumulation of TCA intermediates in the
cells. Similarly, the small transient increase in PPR from
CCCP injection is in the model a result of accumulation
of lactate after the preceding oligomycin injection. This
is due to saturation in lactate excretion where increased
external volume from the injection of CCCP is associated
with dilution of external lactate, which increases the con-
centration gradient and therefore allows a higher flux.

The experimental data show a transient increase in OCR
after injection of 2-DG in phase 5, which is not captured
by the model; it is not clear why this transient occurs.

Validation
To validate the model and parameters identified through
the glycolysis stress test, we compared the model with ex-
perimental data from a so-called mitochondrial stress test
which measures key properties for mitochondrial respira-
tion. We used the same cell line Caco2 with the same
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Table 3. Estimated parameter values. Rate constants k [mM/s]
and half saturation constants (K) in [mM]. For parameters that
were adjusted in the manual tuning both the initial- and final
estimates are included. * kNNI when CCCP is present.

Par Value Par Value Par Value

KGext
GextG 10 KLext

LLext
0.1 KGn

GnK 0.1
KG

GextG 5 kLextL 0.0354 KNAD
GnK 0.5

kGextG 1.508 KP
PK 0.5 KK

KO 1
KG

GP 5 KNAD
PK 0.5 KNAD

KO 0.5
KADP

GP 1 kPK 0.018 kKO 0.2493
KP

PL 0.5 KGnext
GnextGn 0.2 KNADH

NN 0.1
kPL 0.2833 KGn

GnextGn 0.1 KADP
NN 1

KL
LLext

0.5 kGnextGn 0.04624 KATP
AA 3

Par Initial Final Par Initial Final

KNAD
GP 0.5 0.001 KNADH

PL 0.1 0.001
kGP 0.3013 0.377 kGnK 0.2313 0.37
kAA 1.0173 0.865 kNN 0.693 1.11
kNNI 0.2267 0.057 *kNNI 22.67 1.995

number of cells as in the glycolysis stress test. The me-
dia in the mitochondrial stress test contain glutamine and
glucose, but at a lower concentration (5mM) than after the
glucose injection in the glycolysis stress test (10mM). The
Seahorse XFp Analyzer sequentially adds (i) oligomycin,
(ii) CCCP, (iii) Rotenone and (iv) antimycin A. The last
two are new compared to the glycolysis stress test, and
they both inhibit oxidative phosphorylation.

The simulation and the experimental data from the mi-
tochondria stress test is shown in Figure 3 and shows a
remarkable good fit. The relatively unaffected PPR re-
sponse (both experimentally and simulated) is expected
since all the injections inhibit oxidative phosphorylation
and fermentation operate at maximal capacity to sustain
glycolysis for energy production.
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Figure 3. Simulation (blue) and experimental measurements
(black) of oxygen consumption rate (OCR) and proton produc-
tion rate (PPR calculated from ECAR) for a mitochondrial stress
test. Injections of metabolic inhibitors shown on vertical lines.

5 Structural properties
Intrigued by the model’s ability to fit the experimental re-
sults and to capture the main dynamics, we wanted to ex-
amine the structural properties of the model in more detail.
We wanted to investigate the possibilities for using an au-
tomated method for parametrization. Thus we needed to
see if the model could be uniquely parameterized from
available data and chose to look at the structural identi-
fiability of the model.

In this context, the number of measurements are of
importance. Adding more measurements to the experi-
mental setup, especially substances inside the cell, like
internal concentrations of metabolites, will increase the
experimental complexity and cost. We therefore wanted
to explore whether the Seahorse measurements (PPR and
OCR) together with the external concentrations of glu-
cose, glutamine and lactate form a sufficient set of mea-
sured outputs for parameter identifiability.

Structural identifiability
We will first briefly explain the concept of structural
identifiability. A model based on a general non-
linear state space form: dx(t)

dt = f (x(t),u(t),θ) and
y(t) = h(x(t),u(t),θ) is identifiable if all parameters θ

can be uniquely determined from the system input u(t)
and the measured system output y(t) (Miao et al., 2011).
A generic form of identifiability is structural identifiabil-
ity, where the term structural indicates that it depends
solely on the model structure, i.e. structural identifiability
is completely determined by the structure of the system
equations and the output function (Villaverde, 2019). For
a model to be structurally identifiable, all of its parameters
must be structurally identifiable. If this is not the case, it is
structurally unidentifiable. If a model is found to be struc-
turally identifiable with a chosen set of measured outputs,
it is theoretically possible to uniquely estimate the param-
eters of the model based on these measurements.

Method
Over time a variety of methods to investigate structural
identifiability have been suggested. Some examples are
analytic approaches using Taylor series or similarity trans-
formation (Chis et al., 2011; Miao et al., 2011). One major
weakness of these and other analytic methods are that the
resulting set of non-linear equations can be computation-
ally difficult to solve because of their complexity. Given
the amount of parameters in our model, this would be the
case for us. Therefore we chose a method suggested and
used by Stigter et al. in (2015), (2017), (2018). This
method is designed for use on models with many parame-
ters and uses a hybrid numerical and symbolic approach.

With this method the model is simulated with param-
eter values randomly chosen within a constrained box of
realistic parameter values. This is repeated 10 times to
ensure robustness. A set of singular values and a set of
correlated parameters θcorr are calculated from these simu-
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A1 B1

A2

B2

Figure 4. A1 Log scale plot of singular values. No discernible gap between the smallest singular values indicates structural
identifiability. B1 Log scale plot of singular values without measurement of external lactate Lext. Singular values 103 orders of
magnitude smaller than panel A1 and a defined gap indicates structural unidentifiability. A2 Plot of correlated parameters related
to panel A1. This plot does not give any relevant information when the model is structurally identifiable. B2 Plot of correlated
parameters related to panel B1. From the plot we see that the parameters [KL

LLext
,KLext

LLext
,L0,Lext] are correlated.

lations. The singular values, or more specifically a promi-
nent jump in numerical value of the lowest singular values,
will indicate whether the model is structurally unidentifi-
able, while the set of correlated parameters will indicate
which parameters are causing this structural unidentifia-
bility. A symbolic calculation with this reduced set of pa-
rameters θcorr can then be performed to confirm the results
indicated by the simulations. For a more in depth expla-
nation of the method see (Stigter and Molenaar, 2015).

Experiments and results
In addition to the 12 states of the model, we add PPR and
OCR as states to be used as measured outputs in the algo-
rithm. The model has a total of 47 parameters, including
20 half saturation constants, 11 rate constants, internal and
external volume, and the initial conditions of the 14 states.

A natural first choice of measurements are the PPR and
OCR provided by the Seahorse XFp analyzer. However,
they proved insufficient to obtain structural identifiability.

We included therefore the three external concentrations
[Gext,Gnext,Lext] in our measured output set as they are
relatively easy to measure during an experiment. Run-

ning the algorithm with these 5 measured outputs gave
the results shown in Figure 4, panels A1 and A2. Very
small singular values and a clear gap, typically greater
than 3 (Joubert et al., 2018), between the smallest singular
values would indicate structural unidentifiability. In panel
A1 we observe a gap of an order between 0 and 1, indi-
cating structural identifiability. When a model is found to
be structurally identifiable from the singular values plot,
the plot of correlated parameters (such as in panel A2)
does not contribute with any relevant information (even
if it looks like two or more parameters are correlated).
The symbolic verification supports the conclusion from
the simulations.

Having a situation where measurements of OCR and
PPR together with the 3 external concentrations are
enough for the model to be structurally identifiable, we
wanted to investigate whether we could remove one of the
external concentration measurements and still obtain the
same result. Thus, running the algorithm three times with
one of the external measurements left out for each run re-
sulted in all runs indicating a lack of structural identifi-
ability. Panels B1 and B2 in Figure 4 show the results
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with the measurement of external lactate Lext left out. The
plot of singular values in panel B1 shows that the smallest
singular values are of order 10−15 to 10−16 and that there
is a clear gap between the two smallest singular values.
Panel B2 shows a plot of the correlated parameters for this
case, i.e. θcorr = [KL

LLext
,KLext

LLext
,L0,Lext]. This is a reason-

able result since all these parameters can be found in equa-
tion (3) describing the transport of lactate out of the cell.
Performing the symbolic calculation with this reduced pa-
rameter set θcorr also indicates structural unidentifiability,
confirming the numerical results.

6 Conclusions
We constructed a dynamic model of aerobic and anaerobic
metabolism in cancer cells designed to be used in combi-
nation with experiments performed using an Agilent Sea-
horse XF analytic instrument. The model consist of 12
state variables including the external concentration of glu-
cose, glutamine and lactate and describes 2 common types
of reprogrammed energy metabolism in cancer cells, i.e.
aerobic glycolysis and glutamine addiction.

Parameter values were estimated based on experimental
data from a glycolysis stress test on the Caco2 cell line in
a manual tuning procedure. The model was then validated
with experimental data from a mitochondrial stress test on
the same cell line with promising results.

Our experiments indicate that the model is struc-
turally identifiable with a set of 5 measured outputs
[Gext,Gnext,Lext,PPR,OCR]. These are measurements
that are simple to perform experimentally and that can be
performed in vivo (without killing cells). However, we
must keep in mind that this is a purely theoretical result
and in practice it could still be difficult to uniquely param-
eterize the model based on only these 5 measured outputs.

For future work we will investigate an automatic
method for parameterization as an alternative to manual
parameter tuning. Our results from the structural identi-
fication analysis supports a possible unique parameteriza-
tion with an automated algorithm.
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