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Abstract
The paper discusses the principles behind epidemiol-
ogy models, with examples taken from the classic SIR
(suspectible-infected-recovered) and SEIR (S-exposed-
IR) models. Both continuous time deterministic and
stochastic models are treated, where the stochastic models
are based on Poisson-distributed events/reactions. These
models use real approximations to the integers represent-
ing the number of people in each of the classes S, (E,) I,
R. An alternative stochastic representation is the first re-
action time description, where the variables are kept as in-
tegers, and where one instead computes the time between
each event. The models are presented in a form compati-
ble with standard chemical engineering models.

Based on the model description, the SIR and SEIR
models are fitted to a measles case study using the Markov
Chain Monte Carlo approach. For the given data, the SIR
model appears to give much smaller uncertainty in predici-
tons. The continuous time stochastic description and the
firt reaction time approaches give similar variation in the
models.

An important measure of the state of epidemics is the
reproduction number, R, which tells whether the infection
is growing or decreasing from an initial infection. The
development of an expression for R is indicated both from
eigenvalues and from the Next-Generation Approach, and
it is shown that the expression for R is identical for the
SIR and the SEIR model.

The principles of epidemiology model development
discussed in the paper are used in models ranging from
HIV/AIDS to COVID-19.
Keywords: epidemiology, reaction engineering, determin-
istic models, stochastic models, model fitting, measles
case study

1 Introduction
1.1 Background
The COVID-191 pandemic spreading in 2020 initially
caused fear, irrational hoarding of consumer goods, un-
certainty about future food supply, and economic depres-
sion. References to historic disasters such as the Black
Death and the “Spanish Flu” were drawn. This period
also spawned a renewed interest in epidemiology to un-

1COVID-19 is the COrona VIrus Disease originating in 2019. The
World Health Organization and Wikipedia.com both appear to write
COVID-19 in all caps.

derstand how infections spread, and a massive effort in
development of virus medicine and vaccines. Policy mak-
ing and society saw challenges hardly faced before on how
to adapt to the development in real time. The effort to
develop vaccines has probably been the largest directed
effort since space exploration, and similar to space tech-
nology, the medical developments will have wide ranging
consequences. The sociological experiment faces serious
questions regarding the limits of governing and personal
freedom.

Although developed within life sciences, epidemiolog-
ical models have much in common with chemical reac-
tion engineering. A key difference is that while chem-
istry operates with particle numbers in the order of 1023,
epidemiological models operate with number of people in
the range of 102– 109. Deterministic epidemics models
are common, but the “law of large numbers” as used in
chemical engineering does not really apply, and stochastic
formulations are of interest.

Policy making and epidemics mitigation has much in
common with feedback control under uncertainty. It is
therefore of interest to relate epidemiological models to
formulations and notation from chemical reaction engi-
neering and process control.

1.2 Previous work
Pandemics such as COVID-19 are not new. The (bacte-
rial) bubonic plague2 that came to Europe ca. 1346-47 be-
came known as the Black Death (1346–1353), and killed
an estimated 60% of the population in Europe (50-80 mil-
lion), and some 75–200 million worldwide. Poland closed
its borders, and was more or less spared from the plague;
Iceland was partially spared since sailors died before the
ships arrived to Iceland. An artistic work from this period
expressed an almost modern belief in science:

“Elegant ladies, as I believe you know, the
wisdom we mortals possess does not merely
consist of remembering things past and appre-
hending the present, but on the basis of these
two activities being able to predict the future,
which is considered by serious men to be the
highest form of human intelligence.”

Boccaccio, Giovanni (1349-1351/-52). The
Decameron, p. 851. Translated by Wayne A.
Rebhorn. W. W. Norton & Company. Kindle
Edition.

2https://en.wikipedia.org/wiki/Bubonic_plague
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The “Spanish Flue”3 or the 1918 influenza pandemic, in-
fected up to 500 million, with 17–100 million deaths.
Classical epidemiology models were developed in the
decade following the “Spanish Flu”.

Historically, the population of N individuals was par-
titioned into a deterministic 3 compartmental model con-
sisting of those who are susceptible to an infection (S),
those who have been infected (I), and those who have
recovered (R), (Kermack and McKendrick, 1927). Con-
sidering infections as reactions, and reaction events fol-
lowing a Poisson distribution, a determistic model can be
converted to a stochastic model and solved using stochas-
tic differential equation solvers. Alternatively, the model
can be solved using Gillespie’s algorithm, which is based
on work in the statistics community ca. 1930–19504 and
also assumes that reactions follow a Poisson distribution
(Gillespie, 1976, 1977).

Approximately at the same time as the deterministic
Kermack-McKendrick model, the stochastic Reed-Frost
model was formulated which describes the same SIR
types; this model was published much later, (Schwabe
et al., 1977). This model is based on SIR compartmen-
talization, is discrete in time, and assumes a stochastic in-
fection transmission with a fixed probability. To some de-
gree, this model is related to agent-based models, where
one could envision tracking of individuals within a com-
partment.

A good, general introduction to epidemiology models is
(Keeling and Rohani, 2008). See also (Martcheva, 2015),
who gives a more mathematically oriented overview with
elements of stability results using Lyapunov theory. In
(Brauer et al., 2019), various complex epidemiology mod-
els are discussed, with a number of case studies. An im-
portant concept related to infection spreading is the so-
called reproduction number, R, which is related to ini-
tial stability of the infection model. An alternative to the
above “balance” type models, is models whare “particles”
move around in space, and are infected based on some
stochastic model due to proximity to other infected “par-
ticles”, e.g., (Britton and Pardoux, 2019).

Classical epidemiological models use a spatial descrip-
tion (Euler description) where the focus is on a number
of compartments of fixed area/people with fixed attributes
(age, immune level, etc.) where people move in and out of
the various compartments/attributes. An alternative could
be a material description (Lagrangian description) where
one instead track the status of each individual or a group
of individuals of similar attributes, and how these move
about in the world, get into proximity with other people,
and get infected with a certain probability. Such mate-
rial descriptions are sometimes referred to as agent-based
models.5 Agent-based models are not discussed in this

3The disease apparently was first observed in Haskell County,
Kansas, USA in January 1918, with first known case being an army
cook at Camp Funston in Kansas, March 4, 1918.

4https://en.wikipedia.org/wiki/Gillespie_algorithm
5Some presentations of epidemiology refer to Lagrangian and Eu-

paper.

1.3 Scope
The focus in this work is to relate basic epidemiology
models to process engineering concepts such as balance
equations, “chemical” reactions, and mass action rates.
A comparison between deterministic and various stochas-
tic models is given. Some basic analysis is provided, to-
gether with methods for model solution and model fitting.
As a simple case study, a model of a measles outbreak
is used, and model fitting is developed. The paper is orga-
nized as follows: in Section 2, some details of the problem
scope with materials and methods is given, in Section 3,
the methods in Section 2 are applied to a case of measles
infection. Section 4 provides basic analysis of models
with reference to epidemics growth and reduction: devel-
opment of expressions for the basic reproduction number.
Section 5 provides some conclusions.

All computations in the paper are carried out using
language Julia, which has an excellent package for solv-
ing both deterministic and stochastic differential equa-
tions (DifferentialEquations.jl; (Rackauckas
and Nie, 2017a), (Rackauckas and Nie, 2017b), (Rack-
auckas and Nie, 2018)), as well as standard least
squares model fitting (package BlackBoxOptim.jl)
and Markov Chain Monte Carlo methods (Turing.jl).
Plotting is done with package Plots.jl.

2 Materials and methods
2.1 Number balance
In epidemiology models, individuals are categorized into
nX types/classes X j with j ∈ {1, . . . ,nX}. The number of
individuals in class/compartment X j is denoted X j ∈ N0,
and the total number of individuals in the population is
N = ∑

nX
j=1 X j. For efficiency, we collect individuals X j into

vector X ∈ NnX
0 .

A general (vector) number balance for the individuals
in the compartments is

X (t +∆t) = X (t)+
∫ t+∆t

t

(
Ẋi (θ)− Ẋe (θ)+ Ẋg (θ)

)
dθ .

(1)

Here, Ẋ ∈ ZnX denotes flow rate, with subscripts i: immi-
gration, e: emigration, and g: generation, and Ẋg = N · rg,
where the per capita rate of generation vector rg for the nX
classes is

rg = ν
Tr (2)

and ν ∈ Qnr×nX is the stoichiometric reaction matrix,
while r is the rate of reaction per capita for the nr reac-
tions.

If we make the assumption that the elements of X are
“large” numbers so that

∣∣∣(X (t +∆t)−X (t)) j

∣∣∣� ∣∣∣X (t) j

∣∣∣,
lerian movement in an unconventional way, e.g., Martcheva (2015), pp.
389–392.
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we make the approximation X ∈ RnX
0 . If we also assume

that the integrand is a continuous function of time6, the
mean value theorem allows the result

dX
dt

= Ẋi− Ẋe +N ·
(

ν
Tr
)
. (3)

With similar assumptions, we can describe the total popu-
lation as

dN
dt

= Ṅi− Ṅe + Ṅg. (4)

Introducing the per capita number X̌ , X̌ , X/N, and simi-
larly Ẋi , Ṅi · X̌i, Ẋe , Ṅe · X̌e, the per capita model is

dX̌
dt

=
Ṅi

N

(
X̌i− X̌

)
+ν

Tr−
Ṅg

N
X̌ . (5)

2.2 Assumptions on the total population
Simple epidemiology models consider a single compart-
ment with constant population: either dead people are
considered part of the population and births are neglected,
or birth rate and death rate are assumed to be equal. If the
spread of the infection is slow compared to the birth/death
cycle, population growth must be included in the model.

If infection rate and level of illness depends on internal
coordinates such as age, underlying illnesses, etc., it may
be necessary to pose separate models for each age group,
etc. In this case, “birth” and “death” into each age group
or group of underlying conditions must be included.

If there is a geographical distribution in the number of
infected per capita, some sort of distributed model should
be used. Examples could be one compartment per country,
per region, per municipality, per suburb, or other natural
groupings. In this case, it may be necessary to include im-
migration and emigration for the individual compartments
— this depends on the level of interaction vs. the rate of
infection spread.

2.3 The classical continuous SIR description
In the classical (Kermack and McKendrick, 1927) model,
the population of N individuals is divided into 3 groups:
individuals of type S are susceptible for infection, individ-
uals of type I are infected, while individuals of type R have
recovered from the infection (or died), thus X = (S, I,R).
There is a chain of “reactions” S→ I→ R, which can be
broken down into two independent parallel events E j —
interaction with infection Ei of rate ri, and recovery Er of
rate rr:

Ei :S I→
ki

I, ri

Er :I→kr R, rr.

Here, S I→
ki

I indicates that an infected individual catal-
yses the transformation of a susceptible S into a new in-
fected individual I without “consuming” the original in-
fecting individual, with a frequency factor ki or with a

6Invalid for stochastic processes!

mean interval τi = 1/ki.7 The infection rate ri per capita
takes place with a certain probability when a susceptible
individual is in proximity of an infected individual, thus
the probability of infection depends on the relative con-
centration of the two types, in accordance with the law of
mass action in chemical kinetics,

ri =
1
τi

ŠǏ = kiŠǏ.

At the same time, I→kr R indicates a simple recovery
(i.e., no catalysis) from infected I to recovered R during a
mean time of τr = 1/kr. The reaction rr depends only on
the concentration of the infected type, thus

rr =
1
τr

Ǐ = krǏ.

The stoichiometric reaction is(
−1 1 0
0 −1 1

)
︸ ︷︷ ︸

=ν

 S
I
R

← ( 0
0

)

where ν is the stoichiometric matrix. It follows that rS,g
rI,g
rR,g

= ν
T
(

ri
rr

)
=

 −ri
ri− rr

rr

 .

2.4 Extension: the SEIR description
In the SEIR description, individuals are classified as type
S (susceptible), type E are exposed to infection, but the in-
fection is latent, type I (infected), and type R (recovered).
This gives X = (S,E, I,R), and neglecting birth and death,
N = S+E + I +R. The chain of events S→ E→ I→ R,
can be broken down into the three parallel independent
events Ei, Ee, and Er with rates ri, re, and rr, respectively:

Ei :S I→
ki

E, ri =
1
τi

ǏŠ = kiǏŠ

Ee :E→ke I, re =
1
τe

Ě = keĚ

Er :I→kr R, rr =
1
τr

Ǐ = krǏ.

The stoichiometric reaction is −1 1 0 0
0 −1 1 0
0 0 −1 1


︸ ︷︷ ︸

=ν


S
E
I
R

←
 0

0
0


7Note that τi = 1/ki is not the length of time an infected person stays

infected (which probably is more or less constant), but rather the mean
interval between each time one infected individual causes a suscepti-
ble to become infected. In other words, if a freshly infected person is
removed from society (e.g., locked up, or otherwise put away), then
τi → ∞, alternatively ki → 0, but the same infected person will still re-
cover (or die) in finite time.
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where ν is the stoichiometric matrix. It follows that
rS,g
rE,g
rI,g
rR,g

= ν
T

 ri
re
rr

=


−ri

ri− re
re− rr

rr

 .

2.5 Poisson distribution in events
Let Nt be the (random) number of events that already
have occurred at time t, and let Nt+∆t denote the number
of events that have occurred at time t +∆t. Introducing
∆Nt , Nt+∆t −Nt, it follows that in the interval [t, t +∆t],
we have ∆Nt ∈N0 new occurrences. When occurances ap-
pear with a constant mean rate λ , random variable ∆Nt is
Poisson distributed, ∆Nt ∼ Pois(λ ), with

E(∆Nt) = λ

V(∆Nt) = λ .

Next, consider the random generation rate R = ∆Nt
∆t in

a relatively short time interval ∆t, and an average rate of
generation r̄ so that λ = r̄ ·∆t. There is no guarantee that
realization r = ∆n

∆t is an integer, but the random variable
R is distributed according to a quasi continuous Poisson
distribution, R∼ cPois(r̄), where for “large” r̄,

E(R)≈ r̄
V(R)≈ r̄.

Furthermore, for realistic values of r̄, the random rate R
will approach a normal distribution R∼ N

(
r̄,
√

r̄
)
.

2.5.1 Stochastic differential equation

When the reaction rate is random (r in Eq. 3 becomes
R), the mean value theorem is invalid, and Eq. 3 must be
rephrased as a stochastic differential equation (SDE)

dX = Ẋidt− Ẋedt +N ·
(

ν
TR
)

dt.

With R∼ N
(
r̄,
√

r̄
)

and introducing Z ∼ N(0,1), this can
be rephrased as

dX =
(

Ẋi− Ẋe +N ·
(

ν
Tr̄
))

dt +N ·
(

ν
T
√

r̄
)

Zdt.

Using an SDE solver, a number of realizations are found.
Then based on these realizations, statistics (mean, etc., in-
cluding the distribution) can be computed for each time
instance. Alternatively, an associated determistic Fokker-
Planck equation can be posed, and solved to find the prob-
ability distribution directly.

When formulating the SDE, the approximation X ∈RnX

is used.

2.5.2 First reaction time
Let Nt be the random number of arrivals accumulated at
time t. Let ∆Tt be the random time it takes for the event
of one additional arrival, assuming that someone arrived
at time t.

By definition, the following two events are equivalent:

(∆Tt > ∆t)≡ (Nt = Nt+∆t) .

With ∆Nt ∼ Pois(λ ), it can be shown that ∆T is Exponen-
tially distributed, ∆T ∼ Exp(r̄), or alternatively with U
uniformly distributed U ∼ U[0,1) we can use

∆T =−1
r̄

ln(U) .

In the simplest version of Gillespie’s algorithm, a three
step procedure is used: (i) first, a uniform random num-
ber generator is used to find which event takes place (i.e.,
which of the reaction takes place), (ii) secondly, the time
∆T until next event is computed by drawing from an Ex-
ponential distribution. (iii) Then only the event found
from (i) is carried out, and the time index is updated to
ti+1 = ti +∆T .

A number of realizations of the first reaction time model
can be carried out, and it is possible to compute statistics
for each time point.

Alternatively, similarly as for SDEs and the Fokker-
Planck equation, a deterministic master equation can be
posed to describe the probability distribution of the solu-
tion for the first reaction time model.

When using the first reaction time formulation, we
maintain the fact that the number of people are integers,
X ∈ NnX

0 .

2.6 Reproduction number
The reproduction number of the disease is the average
number of persons that an individual infects before recov-
ering. The basic reproduction number R0 is the reproduc-
tion number when (i) starting from a disease-free state, (ii)
for the zeroth generation, i.e., the natural reproduction at
initial time when everyone are susceptible, prior to invok-
ing any mitigation policy.

For the SIR model, the initial time Jacobian JX̌ of the
model vector field is

JX̌ =

 −kiǏ −kiŠ 0
kiǏ kiŠ− kr 0
0 kr 0

 .

Starting from a disease-free state, Ǐ (0)≡ 0,

JX̌ =

 0 −kiŠ (0) 0
0 kiŠ (0)− kr 0
0 kr 0

 .

JX̌ has two eigenvalues in the origin, and one eigenvalue
at

λ = kiŠ (0)− kr.
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Table 1. Daily number of measles infected at boarding school
with 763 boys in Northern England, January-February 1978.
Taken from (Martcheva, 2015).

Day # infected Day # infected
3 25 9 192
4 75 10 126
5 227 11 71
6 296 12 28
7 258 13 11
8 236 14 7

Stability requires λ < 0,

kiŠ (0)
kr

< 1.

The infection rate constant ki varies with mitigation pol-
icy, etc. Let k0

i denote the natural rate constant without
mitigation. The basic reproduction number R0 is assessed
when Š (0)≡ 1 and without mitigation, hence

R0 =
k0

i
kr
.

With mitigation, we could define an effective reproduction
number R, ki/kr.8

2.7 Model fitting

In simple model fitting, model parameters and initial states
are posed as unknowns in a loss function that measures
the difference between experimental data and a shooting
(ballistic) formulation of the model. More sophisticated
methods for Bayes estimation are conveniently solved us-
ing Markov Chain Monte Carlo methods (MCMC), see,
e.g., (Evensen, 2009) for a practical introduction with his
Ensemble Kalman Filter approach. Other methods and
tools exist.

2.8 Measles case study

At a boarding school in North England, January–February
1978, measles infection was observed among the 763
pupils, with 25 infections on assumed day 3 of the epi-
demic. The evolution of observed infections was as
recorded in Table 1.

In (Martcheva, 2015), a SIR model is used to model the
infection, assuming that N = 763 is constant, and that all
pupils are locked up in the school. The basic reproduc-
tion number for measles is estimated to be in the range
R0 ∈ [16,18], (Keeling and Rohani, 2008), which should
be contrasted to the range [3,4] for seasonal flu.

8R0 and R has nothing to do with the number R of recovered.

Figure 1. Comparing SIR model with original parameters vs.
registered infection data for boarding school in North England,
January–February 1978.

Figure 2. Distribution in Bayes estimates of parameters τr =
1/ki and τi = 1/kr in SIR model based on infection data for
boarding school in North England, January–February 1978. Dr.
Tamas Papp, TU Wien, provided the function of doing this plot.

3 Measles case study
3.1 SIR model
3.1.1 Deterministic model with model fitting

With the data in Table 1, and using parameters
((Martcheva, 2015), p. 127 )

ki = βN = 0.0025 ·763 = 1.9075
kr = α = 0.3,

the deterministic model fits data reasonably well, Figure 1.

It is of interest to find better model parameters. With-
out going into details, the Turing.jl package for Julia
supports Markov Chain Monte Carlo (MCMC) estimation
of the model parameters, with parameter probability dis-
tribution as in Figure 2.
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Figure 3. Comparing SIR model data retrodiction vs. registered
infection data for boarding school in North England, January–
February 1978. Dark/thick lines are based on the point esti-
mates.

Point estimators (mean values) of the parameters are
found to be:

ki ≈ 1.817
kr ≈ 0.4618,

which gives an effective reproduction number of R ≈
1.817/0.4618≈ 3.9. MCMC provides a number of possi-
ble parameter values, and this parameter uncertainty trans-
lates into prediction uncertainty, known as data retrodic-
tion; results are given in Figure 3 in pale/thin lines, to-
gether with the simulation when using the point estimates
in dark/thick lines.

From the data retrodiction, we see that there is rela-
tively little uncertainty in the model even with varying pa-
rameters. This indicates that the model has quite good
predictive properties.

3.1.2 SDE model

Using basic data from the deterministic simulation, we ex-
pand the model to a set of stochastic differential equations
as described Section 2.5.1. The results are shown in Fig-
ure 4.

3.1.3 First reaction event model

Instead of formulating the model as Stochastic Differen-
tial Equations, we can write integer difference equations
with first reaction event description for changes, see Sec-
tion 2.5.2. The results are shown in Figure 5, and should
be compared to the results in Figure 4.

3.2 SEIR model
It is of interest to consider the SEIR model for the measles
case, where we assume that I3 is known, that R3 = 0, that
N is known, but that S3 or E3 are unknown; we choose to
estimate S3. Reusing the model parameters for ki and kr
from the SIR model, we initially assume that ke = 2; see
Figure 6.

Figure 4. Stochastic realizations (trajectories) for an ensemble
of 100 possible scenarios.

Figure 5. Stochastic realizations (trajectories) for an ensem-
ble of 100 possible scenarios using Gillespie’s First Reaction
Method.

Figure 6. SEIR model with original parameters vs. registered
infection data for boarding school in North England, January–
February 1978.
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Figure 7. Comparing SEIR model data retrodiction vs. reg-
istered infection data for boarding school in North England in
January–February 1978. Dark lines are based on the point esti-
mates.

We can also fit the parameters of the SEIR model, in-
cluding the initial value of S3. The result are the following
point estimates (mean value):

ki ≈ 2.50
ke ≈ 2.826
kr ≈ 0.477
S3 ≈ 720

If we draw estimates of these parameters and initial
value and redo simulations, the data retrodiction is as in
Figure 7. As we see, the uncertainties in the retrodiction
of the SEIR model, Figure 7, are far larger than the un-
certainties in the retrodiction of the SIR model, Figure 3.
This may indicate that the measles infection is best mod-
eled by a SIR model, but it must be remembered that we
have few data points and the SEIR model has almost twice
as many parameters as the SIR model9.

4 Analysis of epidemiology models
4.1 Condition for infection growth
With model

dX̌
dt

= F
(
X̌
)

in per capita variables X̌ , a standard procedure for finding
conditions for infection growth is to analyze the Jacobian

JX̌0
=

∂F
∂ X̌

∣∣∣∣
X̌0

,

where X̌0 is the operating point. In general, the operating
point will depend on the current states.

9Estimated parameters for the SIR model: ki, kr, and standard devi-
ation in output error. Estimated parameters for the SEIR model: ki, ke,
kr, initial value for S3, and standard deviation in output error.

In a standard way, stability can be assessed based on
eigenvalues, or related Routh-Hurwitz criteria. However,
eigenvalues are often difficult to compute for realistic
models.

An alternative is the Next-Generation Approach
(van den Driessche, 2017; Martcheva, 2015). With model

dX̌
dt

= ν
Tr

where r = r
(
X̌
)
, assume that X̌ has been sorted such that

X̌ = (x,y) and x contains the infected compartments while
y contains all other compartments. Thus, we have the dif-
ferential equations

dx
dt

= f (x,y)

dy
dt

= g(x,y)

where (
f (x,y)
g(x,y)

)
= ν

Tr (x,y) .

We split f (x,y) into two terms,

f (x,y) = F (x,y)−V (x,y)

where Fi (x,y) contains the rate of appearance of new in-
fections in compartment i, while Vi (x,y) include all other
terms: births, deaths, disease progression, recovery. Ob-
serve that F (x,y) and V (x,y) are not necessarily unique.

Let F and V be the Jacobians of F and V in the
disease-free case given by x0,y0, where x0 = 0 and y0 ≥ 0:

F =
∂F (x,y)

∂x

∣∣∣∣
0

V =
∂V (x,y)

∂x

∣∣∣∣
0
.

Then N = FV−1 is the Next-Generation Matrix. Let
ρ (N) denote the spectral radius of matrix N: with λi the
eigenvalues of N, ρ (N) = maxi |λi|. We can then define
the reproduction number R as

R, ρ
m (FV−1)

where m is some integer to make R ∝ ki. The infection is
under control/decreases if R < 1, and is out of control/-
grows if R> 1.

4.2 Stability from SEIR model
For the SEIR model with Š (0) = 1, the disease-free Jaco-
bian is

JX̌(0) =


0 0 −ki 0
0 −ke ki 0
0 ke −kr 0
0 0 kr 0

 ,

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185481 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

487



and it is feasible to find R from eigenvalue analysis. How-
ever, for illustration, we consider the Next-Generation Ap-
proach.

Here, x =
(
Ě, Ǐ
)
, and we need to extract elements

(2 : 3,2 : 3), i.e.,

J0 =

(
−ke ki
ke −kr

)
=

(
0 ki
ke 0

)
︸ ︷︷ ︸

=F

−
(

ke 0
0 kr

)
︸ ︷︷ ︸

=V

,

and the Next-Generation Matrix N is

N = FV−1 =

(
0 ki
ke 0

)(
ke 0
0 kr

)−1

=

(
0 ki

kr
1 0

)
,

with eigenvalues

det

 λ − ki

kr
−1 λ

= λ
2− ki

kr
= 0

and spectral radius

R= ρ
m (N) = m

√
ki

kr
;

where we choose m = 2 so that R ∝ ki; R = ki
kr

— just as
for the SIR model, see Section 2.6.

5 Conclusions
An overview of principles for formulating epidemiologi-
cal models has been given. Here, models based on bal-
ance laws are treated; the principle is identical to what is
used in chemical engineering and other process engineer-
ing fields. A deterministic model is the starting point, and
it is discussed how the assumption of Poisson distribution
in the reactions events leads to either a stochastic differ-
ential equation or the first reaction time model/Gillespie
formulation. These ideas of Poisson distribution carries
over to chemical reactions in general.

Based on the published measles infection data,
a susceptible-infected-recovered (SIR) epidemiological
model is fitted to data using a Markov Chain Monte Carlos
approach (MCMC), and appears to be adequate. It is also
possible to fit an extended model with an exposed class
(SEIR) to the measles data, but this gives much wider un-
certainty in model parameters, with resulting large uncer-
tainty in model predictions.

In an analysis part, several ways of finding an expres-
sion for the reproduction number R are discussed; R is
used to describe the stability of an infection. The Next-
Generation Approach is probably the method that is sim-
plest to use for complex models.

This paper lays out the fundamental ideas behind epi-
demiology models, as used, e.g., in COVID-19 studies.
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