Extended COVID-19 Models

Bernt Lie

University of South-Eastern Norway, Porsgrunn, Norway, Bernt.Lie@usn.no

Abstract

The paper discusses how to extend the SEICUR model with a description of migration. Next, the SEICUR model is extended with a description of age distribution, for the case that infection and serious illness depends on age. Finally, the SEICUR model is extended with models of vaccination. Simulation of the SEICUR model for Italy and Spain indicated that the number of migrants per day between the two countries need to be relatively large before a significant change in infection is noticed. However, this was based on the assumption of average spreaders among the migrants. The age distribution model is mainly of use when considering serious illness and death, and was not pursued further. Vaccination data for Italy, Spain, and Norway shows that for countries with a low fraction of infected (e.g., Norway), vaccination allows for a noticeable relaxation in mitigation, while for countries which already have a high fraction of infected (e.g., Spain), the effect of vaccination is relatively smaller due to the larger fraction of people already recovered. The extended models allow for a more realistic study of COVID-19 spread, and how to optimize mitigation policies vs. vaccination.

Keywords: COVID-19 models, deterministic models, complex models, vaccination policy

1 Introduction

1.1 Background

The COVID-191 pandemic spreading in 2020 initially caused fear, irrational hoarding of consumer goods, uncertainty about future food supply, and economic depression, but also spawned a renewed interest in epidemiology to understand how infections spread, and a massive effort in development of virus medicine and vaccines. Policy making and society saw challenges hardly faced before on how to adapt to the development in real time.

More than one year after the pandemic outbreak in February/March 2020, fitted epidemic macro models are becoming more reliable due to large amounts of data, and vaccination is well underway in some countries. Still, for accurate mitigation policy, the models have shortcomings. Current mitigation models have poor description of seasonal variations, genetic/health variations, cultural variations, and demographic variations. In addition, relations between infection, treatment, and death is lacking in understanding.

Spreading by migration is clearly important, with travel restrictions and lock-downs being key instruments in taming infection spread. Data from the past year has shown that age distribution is an important determining factor for serious illness/death. Data from Europe and USA indicate that a combination of genetics, nutrition, health care, culture, and living conditions put some groups more at risk. But seasonal variation in temperature, solar irradiation, humidity, etc. also plays an important role, whether this is directly by influencing infection rates, or indirectly by keeping people more outdoor and therefore reducing infection rates.

In Europe, the initial spread in the winter/spring of 2020 saw a dramatic reduction starting in late May/June 2020, and lasting until late September 2020. Most likely, this was a combination of improved hygiene and some social distancing. But it is almost certain that there also was a seasonal element in this reduction. The winter/spring of 2021 has been marked by vigorous vaccination in Europe and North America, and again: the number of infected is going down.

Both for COVID-19 and for future epidemics, it is of interest to study how extended infection models can be developed.

1.2 Previous work

Classical epidemiology models were developed in the decade following the “Spanish Flu”. A renewed public interest in epidemic models started with the AIDS/HIV epidemic some decades ago; these models have been used to study other infectious diseases, e.g., (Brauer et al., 2019). (Lie, 2021a) gives a brief overview of such general models from a process engineering point of view.

Many COVID-19 models are available on the internet, e.g., from the IHME COVID-19 Forecasting Team2, see (Reiner et al., 2021). (Zlojutro et al., 2019) give a general framework for reducing spread via migration. Early work at Imperial College London3 was important in stressing the importance of mitigation policy. Some relatively complete macro models include that of (López and Rodó, 2021).

1COVID-19 is the COrona VIrus Disease originating in 2019. The World Health Organization and Wikipedia.com both appear to write COVID-19 in all caps.

2The Institute for Health Metrics and Evaluation (IHME) is an independent global health research center at the University of Washington

3https://covid19.healthdata.org/united-states-of-america?view=cumulative-deaths&tab=trend

4https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/covid-19-planning-tools/
2.1 Reaction mechanism

A SEIR model with the I population extended to (I,C,U) was proposed for COVID-19 in (Liu et al., 2020b; Lie, 2021b) Figure 1.

The above, proposed mechanism implies that susceptibles S are infected by some “pre-infected” I and the non-quarantined unconfirmed U leading to the exposed phase E, which is infected but not yet infectious. These exposed E then are converted to the “pre-infected” I class, which then either become more serious cases and are confirmed infected C, or stay as unconfirmed U. Finally, the confirmed infected and the unconfirmed end up in the recovered population R (which includes those who die). We will refer to this model as the SEICUR model.

For class X, let X denote the number of people in that class, and \hat{X} the number of people per capita. The following mechanism describes the reactions:

$$
\begin{align*}
\delta_i : S \rightarrow I + U & \quad r_i = k_i (I + U) S \\
\delta_c : E \rightarrow k_c I & \quad r_c = k_c E \\
\delta_r : I \rightarrow r_c C & \quad r_c = k_i I \\
\delta_u : I \rightarrow k_u U & \quad r_u = k_u I \\
\delta_{cr} : C \rightarrow r_c R & \quad r_c = k_c C \\
\delta_{ur} : U \rightarrow r_u R & \quad r_u = k_u U .
\end{align*}
$$

We introduce

$$
k_{cu} = k_c + k_u \\
k_c = \eta k_{cu} \\
k_u = (1 - \eta) k_{cu} .
$$

Thus, specifying k_{cu} and η, we can find

$$
k_c = \eta k_{cu} \\
k_u = (1 - \eta) k_{cu} .
$$

(Lie, 2021b) details how to fit the model to cumulative confirmed infection cases, and how to find initial states.

2.2 Migration

We consider the response in infection when compartments open up for migration exchange at rate N people per day. With X_i denoting a general population state, $X_i \in (S,E,I,C,U,R)$, the emigration rate of class X_i is

$$X_i^e = N X_i / N$$

where we have assumed homogeneous mixing of the population. The balance equation for class X_i with constant population N is then

$$
\frac{dX_i}{dt} = X_i^i - X_i^e + N \left(v^T r \right) ,
$$

where v is the stoichiometric matrix, (Lie, 2021a), and r is the vector of rates of reaction for the events, (Lie, 2021a,b). For a constant population $N = \sum X_i$, it is required that $\sum X_i^e = \sum X_i^e$.

Without loss of generality, consider two compartments, each with constant populations N_1 and N_2, which have open borders with migration rate \bar{N} between each other and closed borders to every other compartment. Neglecting the possibility of people staying on the border, it follows that we must require

$$X_{i1}^e = X_{i2}^e ;$$

the number of people per day of class i immigrating to compartment 1 must equal the number of people per day of class i emigrating from compartment 2.

If we also include a model for equivalent mitigation policy as in (Lie, 2021b), the SEICUR model for compartment $j \in \{1, 2\}$ is then
Assume that young infected people are born at a rate $\frac{N_y}{N}$ and die at a rate γ_y; for a constant population, $N_y = N_o$. This means that people are transferred from young to old at a rate $N_o - N_y$. For young people (\(j = y\)), we have

\[
S_y^* = N_y;
\]

people are born as young, and all are assumed to be susceptible at birth. Similarly, the susceptible “die”, or rather age from young to old, as

\[
S_y^d = \frac{N_y S_y}{N_y^d}.
\]

Note that we need to use the number of young susceptibles per young population here, i.e., the correct fraction is $\frac{S_y}{N_y}$. For all other classes in the SEICUR model, $X_j^b \in \{E_y^b, S_y^b, C_y^b, U_y^b, R_y^b\}$, it follows that

\[
X_y^b = 0.
\]

Ageing from “dying” young into “born” old implies

\[
E_y^d = \frac{N_o E_o}{N_o^d} = E_o^b
\]

\[
I_y^d = \frac{N_o I_o}{N_o^d} = I_o^b
\]

\[
C_y^d = \frac{N_o C_o}{N_o^d} = C_o^b
\]

\[
U_y^d = \frac{N_o U_o}{N_o^d} = U_o^b
\]

\[
R_y^d = \frac{N_o R_o}{N_o^d} = R_o^b.
\]

Old people die out of their classes at rates due to ageing:

\[
S_0^d = \frac{N_o S_0}{N_0^d};
\]

\[
E_0^d = \frac{N_o E_o}{N_o^d};
\]

\[
I_0^d = \frac{N_o I_o}{N_o^d};
\]

\[
C_0^d = \frac{N_o C_o}{N_o^d};
\]

\[
U_0^d = \frac{N_o U_o}{N_o^d};
\]

\[
R_0^d = \frac{N_o R_o}{N_o^d}.
\]
So-called "herd immunity" is reached when there are too few susceptible left to drive the infection growth. Just before herd immunity is reached, the infection rate increases dramatically, before dying out. When herd immunity is reached, a large fraction of the population will have become recovered; in the SEICUR model, the class of recovered includes those who die.

Some researchers and politicians have suggested that one should let COVID-19 go its natural course, and aim for herd immunity. The alternative is to impose mitigation policies to reduce the number of infected at any time, while waiting for vaccines.

Clearly, aiming for herd immunity with no mitigation would have put an end to COVID-19 relatively quickly. However, the number of seriously ill from the infection would have completely overwhelmed the hospital system, leading to a high fraction of deaths among the infected. Aiming for herd immunity has rarely been an explicit policy, but a few countries have at times lost control of the infection growth, with near collapse in the health system. The main idea behind a mitigation policy is to attempt to keep the number of seriously infected at any time within the capacity of the health system and thus minimize the number of deaths.

2.4 Extinction of COVID-19

2.4.1 Herd immunity

In a crude vaccination model, we assume that vaccinated immediately become recovered, with efficacy \(\eta \). For the SEICUR model, vaccination only changes the expressions for \(S \) and \(R \), which become

\[
\frac{dS}{dr} = -\eta V - k_i (I + U) S / N \\
\frac{dR}{dr} = \eta V + k_r (C + U).
\]

Crude model: A slightly less crude model could utilize that it takes a certain time interval \(\tau_v \) before good vaccine protection is achieved, and then operate with a filtered vaccination rate

\[
\frac{d\dot{V}_t}{dr} = \frac{1}{\tau_v} (\dot{V} - \dot{V}_t)
\]

with expressions for \(S \) and \(R \) now becoming

\[
\frac{dS}{dr} = -\eta V_t - k_i (I + U) S / N \\
\frac{dR}{dr} = \eta V_t + k_r (C + U).
\]

Mechanistic model: In a more realistic mechanistic vaccination model, vaccinated are still partially susceptible, and it takes a certain time \(\tau_v \) before full vaccination is achieved. This transformation of vaccinated into recovered can be described by the reaction

\[
\phi_v : V \rightarrow^{k_v} R,
\]

where \(k_v = 1/\tau_v \). The number of recovered is then modified to

\[
\frac{dR}{dr} = k_v V + k_r (C + U).
\]

The vaccinated population \(V \) will still be susceptible, but with a relatively low average infection rate over the time constant \(\tau_v \). This implies that there will be an additional infection reaction

\[
\phi_v^* : V \rightarrow^{k_v^*} E,
\]

where \(k_v^* \) is considerably smaller than \(k_i \) for an efficient vaccine. The total expression for \(V \) is then

\[
\frac{dV}{dr} = \dot{V} - N \cdot r_v - N \cdot r_v^* \\
\]

\[
\frac{dV}{dr} = \dot{V} - k_v V - k_v^* (I + U) V / N.
\]

The expressions for the number of exposed \(E \) becomes

\[
\frac{dE}{dr} = k_i (I + U) S / N + k_i^* (I + U) V / N - k_E E.
\]

The remainder of the model is as before.

\[
\frac{dS}{dr} = \dot{S} - S - k_i^* (I + U) S / N \\
\frac{dE}{dr} = \dot{E} - E - k_i^* (I + U) S / N - k_r^* I
\]

\[
\frac{dI}{dr} = \dot{I} - I - k_i^* (I + U) S / N - k_C I
\]

\[
\frac{dC}{dr} = \dot{C} - C - k_i^* (I + U) S / N - k_C I
\]

\[
\frac{dU}{dr} = \dot{U} - U - k_i^* (I + U) S / N - k_C I
\]

\[
\frac{dR}{dr} = \dot{R} - R - k_i^* (I + U) S / N - k_C I
\]

\[
\frac{dV}{dr} = \dot{V} - V - k_i^* (I + U) S / N - k_r^* I
\]

\[
\frac{dE}{dr} = k_i (I + U) S / N + k_i^* (I + U) V / N - k_E E.
\]
The efficacy η is now determined indirectly by k_i^v. One possible definition of the efficacy is unity minus the fraction of the rate at which vaccinated get infected, and the rate at which susceptible get infected,

$$\eta = 1 - \frac{k_i^v (I + U) V / N}{k_i (I + U) S / N} = 1 - \frac{k_i^v V}{k_i S}.$$

We assume an efficient vaccine, so that in steady state, $|\dot{V} - k_v V| \gg k_i^v (I + U) V / N$, thus $\frac{dV}{dt} \rightarrow 0$ leads to

$$V = \frac{1}{k_v} \dot{V} = \tau_v \dot{V}.$$

Then, approximately,

$$k_i^v = (1 - \eta) k_i \frac{S}{\tau_v V}.$$

This expression is not entirely satisfactory, as k_i^v depends on the remaining number of susceptible S and the vaccination rate \dot{V}. A simpler expression is

$$k_i^v = (1 - \eta) k_i.$$

Vaccination rate
Figure 2 shows the cumulative number of people having received at least one vaccine dose (per capita) in Italy, Spain, and Norway. The ripples in the data are due to slower vaccination in week-ends.

Figure 3 shows the actual cumulative fraction of administered doses vs. the cumulative fraction of people receiving at least one vaccine dose, for Italy, Spain, and Norway.

Efficacy varies with vaccine types, where mRNA-based vaccines (e.g., those of Pfizer and Moderna) seem to provide 95+% efficacy, while vector based vaccines (e.g., AstraZeneca, Sputnik, etc.) seem to provide in the range 50-85% efficacy. These numbers have been reduced with the emergence of more aggressive mutations such as the Delta variant.

Typically, full vaccination is assumed 1–3 weeks after the final dose; for most vaccines, two doses are required. In Norway, initially, two dose vaccines were given with 3 week intervals. Then this was changed to 4 weeks, then to 6 weeks, then to 12 weeks, then moved back to 9 weeks, etc. Thus, τ_v may vary with time to some degree.

2.4.3 Qualitative effect of mitigation + vaccination

Initial requirement for stability for the disease-free case is that the basic reproduction number is less than unity, $R_0 < 1$, (Lie, 2021a,b). This requirement is based on the assumption that the entire population is susceptible, i.e., that $S(0) = S(0) / N = 1$. If the infection dies out, and then is in the process of re-starting, the requirement for stability is that $S(0) R < 0$. Here, it should be noted that $R \propto k_i$, the infection rate constant, where $k_i = k_i^v \cdot u_{tm}$ in the steady state of the mitigation policy; k_i^v is the infection rate constant without mitigation, and $u_{tm} \in [0,1]$ is the equivalent mitigation policy which depends on seasonal variations, etc. Thus, $R = R_0 u_{tm}$, and the infection is kept under control when

$$S(0) R_0 u_{tm} < 1.$$

It follows that with $S(0) = 1$, the equivalent mitigation policy u_{tm} must be chosen such that

$$u_{tm} \leq 1 / R_0.$$

Some initial estimates of R_0 from March 2020 suggested that $R_0 \in [2.2,2.7]$ or so. Some of the more recent virus mutations (British, South-African, Indian) are more infectious, with the Delta mutant having $R_0 = 6$ or even higher. This could indicate that R_0 is as a minimum $R_0^0 = 5$ at the moment, leading to the requirement that $u_{tm} \leq 0.2$.

The effect of vaccination, on the other hand, is essentially to reduce $S(0)$.

5Early estimates from China indicated values up to 4 or 5.
reduce $S(0)$ to $S(0) \leq 0.2$, which implies that 80% of the population must be vaccinated.

Because the most vulnerable, those that have a high risk of dying, probably are vaccinated early, society may function more or less as normal with fewer than 80% vaccinated — but must then accept that there is a certain number of infected at any time.

3 Results

3.1 Migration

Figures 4 and 5 display resulting change in infections caused by migration between Italy and Spain when these countries are assumed closed for other countries, first with $N = 10^4$ persons/day, Figure 4, and with $N = 10^5$ persons/day, Figure 5.

The results in Figs. 4, 5 indicate that migration needs to be considerable to give an effect. The results should be used with caution, though: (i) data used in equivalent mitigation policy fitting already has some interaction with multiple countries, and (ii) “super-spreaders” (in densely populated bars, discoteques, ...) are perhaps more likely to migrate than average spreaders.

The idea of interaction between countries as indicated above, is the basis for network models.

3.2 Herd immunity

Although not shown here, using the fitted mitigation policy for Italy for the period February 2020 – late October 2020, and making forecasts while keeping the mitigation policy at the level of late October 2020 into the future, those forecasts indicated that Italy would have reached herd immunity before Christmas 2020. The consequence would have been a health system with considerably higher strain than in April 2020. Italy introduced restrictions/lock-downs ca. October/November 2020 which reduced the infection spread sufficiently to avoid this situation, see (Lie, 2021b).

3.3 Vaccination

Here, we consider the simplified case of (i) use of the fitted mitigation policy, (ii) use of the “semi-crude” vaccination model with $\eta_v = 0.8$ and $\tau_v = 28d$, and (iii) actual vaccination rates.

The resulting equivalent mitigation policy for Italy with vaccination, u^v_{fm}, vs. without vaccination, u_{fm}, is displayed in Figure 6. u^v_{fm} is the real equivalent policy, while u_{fm} is a hypothetical policy when neglecting vaccination.

The resulting equivalent mitigation policy for Spain with vaccination, u^v_{fm}, vs. without vaccination, u_{fm}, is displayed in Figure 8.

The resulting equivalent mitigation policy for Norway with vaccination, u^v_{fm}, vs. without vaccination, u_{fm}, is displayed in Figure 9.

For all countries, the model fit to the cumulative number of confirmed cases (Lie, 2021b) is just as good whether...
the SEICUR model is extended with the vaccination model — leading to equivalent mitigation policy \(u_{fm}^v \), or whether vaccination is baked into \(u_{fm} \).

The number of certified infected per capita (and thus: recovered) is highest in Spain, a little lower in Italy, e.g., Figure 4, and quite low in Norway. It is not clear whether the various countries choose to vaccinate people who have recovered. As Figs. 6–9 illustrate, the mitigation policy with vaccination (\(u_{fm}^v \)) is less restrictive for Norway and (partially for) Italy compared to the case when there is no vaccination (\(u_{fm} \)). For Spain, the situation is less clear. In conclusion, vaccination allows for relaxing the mitigation policy.

3.4 Quenching COVID-19: the importance of vaccination

When a certain fraction of the population has either recovered from COVID-19, or has been vaccinated, herd immunity is reached and infection will die out. An interesting question is whether the current reduction in infection in North America, Europe, and a few other countries is due to rapid vaccination roll-out. This question is not trivial to assess: there was a similar reduction in infection in May–June 2020, so it is possible that the reduction in infection is (partially) due to a seasonal variation in infection rate constants.

It seems like vaccination has dramatically reduced the death rates from COVID-19; this will reduce the strain on the health care system. But it is still possible that there will be growths in infection during the fall of 2021, both due to seasonal variations and due to new mutations.

4 Conclusions

In this paper, the SEICUR model discussed in (Lie, 2021b) has been extended in several directions. First the model is extended with migration terms. Comparing the effect of migration solely between Italy and Spain, the model indicates that the number of people per day moving between the countries must be relatively high before a significant change in infection is observed. However, this is based on the assumption that the migrants are “average spreaders”. Some tourists engaging in nightlife activities will most likely be “super spreaders”, so to get a more accurate description, it would probably be necessary to distinguish between super spreaders and regular spreaders.

Second, the SEICUR model is extended to handle demographic variations due to age dependence in rate constants. This is particularly important when considering the risk of serious illness and death. Because this paper has not considered confirmed death rates, simulations have not been carried out and the presentation is mainly included for illustration/future studies.

Thirdly, the SEICUR model is extended with a description of vaccination, with 3 models of the effect of vaccination. The “semi-crude” model has been added to the SEICUR model, and an equivalent mitigation policy has
been fitted to the data when the vaccination model is included. The results indicate that vaccination has most effect on the equivalent mitigation policy in countries with a low level of confirmed infections (e.g., Norway), and less effect in countries with a higher number of confirmed infected (e.g., Spain). This may be due to vaccinating people who have already recovered, or to the relative reduction in the number of susceptibles due to vaccination.

Realistic COVID-19 models need to include migration/network description between the various compartments, and for the case that demographics influence the degree of illness, age distribution models and other types of models distributed in co-morbidity should be used. In the models studied here, an equivalent mitigation policy has been assumed. For more realistic models, it is recommended to improve the effect of genetics, seasonal variations, etc. in the infection rate expression.

The spreading of the Delta mutation in the second and third quarters of 2021 would probably have necessitated using different model parameters (frequency factors, etc.), and would have complicated the total model. Also, hesitance against vaccination in various populations would need to be taken into consideration.

The SEICUR model with the extension of the vaccination model holds the potential for computing some “optimal” transition between mitigation and vaccination using feedback control theory (e.g., Model Predictive Control). Essentially, the “fitted” mitigation policy u_{fit} is the control variable, and one could specify a cost function for future infection, and then compute how an “optimal” future mitigation policy should be in order to tackle the infection. Some important caveats are that (i) the current model does not describe seasonal variations in infection rate constant, thus relatively short future horizons should be used, (ii) the “fitted” mitigation policy is not directly related to concrete policies (“social distancing”, “mask use”), etc. In summary, MPC is more useful if the mitigation model is extended to hold real mitigation policies u instead of “fitted” mitigation policy u_{fit} — it is non-trivial to figure out quantitative real policies from u_{fit} — beyond “we need a stricter policy” or “we can relax the policy”.

References

Zhihua Liu, Pierre Magal, and Glenn F Webb. Predicting the number of reported and unreported cases for the COVID-19 epidemics in china, south korea, italy, france, germany and united kingdom. apr 2020c. doi:10.1101/2020.04.09.20058974.

Aleksa Zlojutro, David Rey, and Lauren Gardner. A decision-support framework to optimize border control for global outbreak mitigation. Scientific Reports, (2216), 2019. doi:https://doi.org/10.1038/s41598-019-38665-w.