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Abstract
The coronavirus COVID-19 is affecting around the world
with strong differences between countries and regions.
Extensive datasets are available for visual inspection and
downloading. The material has limitations for phe-
nomenological modelling but data-based methodologies
can be used. This research focuses on intelligent mod-
elling on the basis of these datasets. The methodology
has been tested in the analysis of daily new confirmed
COVID-19 cases and deaths in six countries. The datasets
are studied per million people to get comparable indica-
tors. Nonlinear scaling brings the data of different coun-
tries to the same scale and linear interactions represent the
varying operating conditions well. The same approach op-
erates for both the confirmed cases and deaths and can be
used for any country or group of people. The effects of
the vaccinations were clearly shown at the end of the ana-
lyzed period. During the pandemic, the scaling functions
expanded for the confirmed cases but remained practically
unchanged for the confirmed deaths which is consistent
with increasing testing. Limitations are seen if there are
too many interacting things, e.g. several infection trans-
mission chains which are in different stages. The feasi-
bility analysis needs to be extended to the modelling with
inputs. The presented approach is promising for this wider
analysis.
Keywords: intelligent methods, temporal analysis, dy-
namic modelling, digital twins, COVID-19

1 Introduction
The coronavirus COVID-19 is affecting around the world.
There are strong differences between countries and re-
gions. People of all ages can be infected but older people
and people with pre-existing medical conditions are more
vulnerable to becoming severely ill. The risk is presented
with three parameters:

• Transmission rate evaluated by the number of newly
infected people,

• Case fatality rate (CFR) based on the percent of cases
that result in death,

• Vaccine performance as a prevention measure.

An online interactive dashboard is hosted by the Cen-
ter for Systems Science and Engineering (CSSE) at Johns

Hopkins University for visualising and tracking reported
cases of coronavirus disease 2019 (COVID-19) in real
time (CSSE, 2021; Dong et al., 2020). Transmission dy-
namics is difficult to explain since the characteristics of a
novel disease include many uncertainties. The open ev-
idence review (Jefferson et al., 2021) makes information
about active research on modes of transmission available.

The effective reproduction number (R) of an infectious
disease is used for modelling. The tracking of the parame-
ter is done by assuming a model structure. An example of
this approach is presented in (Arroyo-Marioli et al., 2021)
where the Kalman filter and a SIR model has been used
for tracking R for COVID-19.

The steady-state simulation models are linear multiple
input, multiple output (MIMO) models ~y = F(~x), where
the output vector~y = (y1,y2, . . . ,yn) is calculated by a lin-
ear function F from the input vector ~x = (x1,x2, . . . ,xm).
Statistical modelling in its basic form uses linear regres-
sion for solving the model coefficients. Linear methodolo-
gies are suitable for large multivariable systems and can
be extended with quadratic and interactive terms response
surface methodologies (Box and Wilson, 1951). Princi-
pal components compress the data by reducing the num-
ber of dimensions with a minor loss of information (Jol-
liffe, 2002). Partial least squares regression (PLS) is an
extension of these ideas (Gerlach et al., 1979). Known
semi-physical models of inputs are important in linear
modelling, see (Ljung, 1999). In linear parameter vary-
ing (LPV) models, an exogeneous variable measured dur-
ing the operation, modifies the local linear models (Ljung,
2008).

Dynamic data-driven modelling with parametric mod-
els, also known as identification (Ljung, 1999), is the key
methodology in the dynamic modelling. These models use
the static mapping and NARX/Nonlinear AutoRegressive
with eXogenous structures with a finite number of inputs
and outputs. The dynamic structures are reduced in dy-
namic models based on fuzzy set systems or neural net-
works (Babuška and Verbruggen, 2003).

Generalized norms are used in data analysis to extract
features from waveform signals collected from the statis-
tical databases (Lahdelma and Juuso, 2011). The compu-
tation of the norms can be divided into the computation
of equal sized sub-blocks, i.e. the norm for several sam-
ples can be obtained as the norm for the norms of indi-
vidual samples. This means that norms can be recursively
updated (Juuso, 2011). The same methodologies can be
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used for analysing the data distributions in less frequent
data, e.g. daily COVID-19 data. Distributions of the vari-
ables provide useful information about fluctuations, trends
and models. This has been used in temporal analysis for
all types of measurements, features and indices. Recur-
sive updates of the parameters are needed in prognostics.
(Juuso, 2020)

Dynamic LE models use the static mapping and NARX
input models in the same way as fuzzy set systems and
neural networks. The main difference is that the input
and output variables are processed by a nonlinear scaling
method, which originates from the membership functions
used in fuzzy systems. (Juuso and Leiviskä, 1992; Juuso,
2004) Constraints handling (Juuso, 2009) and data-based
analysis (Juuso and Lahdelma, 2010), improve possibil-
ities to update the scaling functions recursively (Juuso,
2011). Different fuzzy approaches can be efficiently com-
bined with LE models where the interactions between the
scaled variables are linear (Juuso, 2014).

This research aims to develop unified intelligent models
for analyzing the fluctuations, trends and severity of the
corona situations. Parametric systems are used to adapt
the solution for varying operating conditions caused by
local areas and groups of people. Recursive updates are
used in the parametric models.

2 COVID-19 data
This research uses the complete COVID-19 dataset main-
tained by Our World in Data. The collection of the
COVID-19 data is updated daily and includes data on con-
firmed cases, deaths, hospitalizations, and testing. Raw
data on confirmed cases and deaths for all countries is
sourced from the COVID-19 Data Repository by the Cen-
ter for Systems Science and Engineering (CSSE) at Johns
Hopkins University. Data visualizations rely on work
from many people and organizations (Ritchie et al., 2020).

The Our World in Data has created a new description
of all our data sources available at the GitHub repository
where all the data can be downloaded. These datasets were
used as a data source in this research. The collection of
data is presented as tabular data where every column of a
table represents a particular variable, and each row corre-
sponds to a given record of the data set for a specific coun-
try on a certain day. Each record consists of one or more
fields, separated by commas. The data can be visualised
in the COVID-19 DataExplorer for individual countries.
Several countries can be compared by selecting them for
the view. The maps available in DataExplorer help in fo-
cusing on the analysis.

The analysis uses confirmed COVID-19 cases whose
number is lower than the number of actual cases. The
main reason for that is limited testing which also varies
between countries and time. Therefore, the analysis is
done country-wise. The pandemic introduces an increas-
ing number of new COVID-19 cases but countries also
make progress in reducing the speed towards zero new

cases (Figure 1). However, the increase can start again
as can be seen in the data of different countries. The pan-
demic can restart if it is active somewhere. The difficult
periods vary between countries.

A part of the pandemic cases leads to hospitalizations
and deaths. Both increases and reductions can be seen
in the daily new confirmed COVID-19 deaths (Figure 2.
During the outbreak of the pandemic, the calculated case
fatality rate (CFR) was a poor measure of the mortality
risk since it depends on the number of tests and at that time
there were few tests. The true number of cases was much
higher. Later the number of tests has increased strongly,
but not in all countries.

An increasing number of variants and mutations has
effects on the number of cases. Vaccinations were just
started during the studied period. All these have strong ef-
fect on the dynamics of the pandemic. The problems be-
come more case specific but can in the same time activate
in many locations.

The research focused on the temporal analysis is aimed
on finding situations for more detailed modelling and ac-
tion planning.

3 Methodologies
The modelling needs to be adapted in the appropriate sit-
uations. The unified analysis requires that all the features
are in the same scale. In this research, this is done by com-
bining the nonlinear scaling and the intelligent temporal
analysis. This methodology allows recursive updates of
the scaling functions.

3.1 Nonlinear scaling

The nonlinear scaling brings various measurements and
features to the same scale by using monotonously increas-
ing scaling functions x j = f (X j) where x j is the vari-
able and X j the corresponding scaled variable. The func-
tion f () consist of two second order polynomials, one for
the negative values of X j and one for the positive val-
ues, respectively. The corresponding inverse functions
X j = f−1(x j) based on square root functions are used for
scaling to the range [-2, 2], denoted as linguistification.
The monotonous functions allow scaling back to the real
values by using the function f (). (Juuso, 2004)

The parameters of the functions are extracted from mea-
surements by using generalized norms and moments. The
support area is defined by the minimum and maximum
values of the variable, i.e. a specific area for each variable
j, j = 1, . . . ,m. The central tendency value, c j, divides the
support area into two parts, and the core area is defined by
the central tendency values of the lower and the upper part,
(cl) j and (ch) j, correspondingly. This means that the core
area of the variable j defined by [(cl) j,(ch) j] is within the
support area.

The corner points are defined by iterating the orders, p,
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Figure 1. Daily new confirmed COVID-19 cases per million people, rolling 7-day averages collected from (Our, 2021) for selected
countries.

of the corresponding generalised norms

||τ Mp
j ||p = (Mp

j )
1/p = [

1
N

N

∑
i=1

(x j)
p
i ]

1/p, (1)

where p 6= 0, is calculated from N values of a sample, τ is
the sample time. This provides possibilities to recursively
update the scaling functions since the generalized norms
can be recursively updated. The iteration is based on the
generalized skewness (Juuso and Lahdelma, 2010).

The scaled values should preserve the directions of the
temporal changes with time. To achieve this, the scal-
ing functions should be monotonously increasing. This
is achieved by limiting the ratios,

α
−
j =

(cl) j−min(x j)

c j−(cl) j
,

α
+
j =

max(x j)−(ch) j
(ch) j−c j

,
(2)

in the range [ 1
3 , 3]. The corner points are adjusted if these

limitations are not filled. There are several alternatives to
select the points to tune. (Juuso, 2009)

The second order polynomials,

f−j = a−j X2
j +b−j X j + c j, X j ∈ [−2,0),

f+j = a+j X2
j +b+j X j + c j, X j ∈ [0,2],

(3)

are monotonously increasing if the coefficients are defined
as follows:

a−j = 1
2(1−α

−
j ) ∆c−j ,

b−j = 1
2(3−α

−
j ) ∆c−j ,

a+j = 1
2(α

+
j −1) ∆c+j ,

b+j = 1
2(3−α

+
j ) ∆c+j ,

(4)

where ∆c−j = c j− (cl) j and ∆c+j = (ch) j− c j.

3.2 Steady-state LE modelling
The nonlinear scaling transforms the nonlinear problem
~y = F(~x) to a linguistic equation (LE) model represented
by a compact equation

xout(t) = fout

(
− 1

Ai out

m

∑
j=1, j 6=out

Ai j f−1
j (x j(t−n j))

)
,

(5)
where the functions f j and fout are scaling functions. Each
variable j has its own time delay n j compared to the vari-
able with latest time label. In the general case, the the
weight factors

wi j =−
Ai j

Ai out
. (6)

The coefficients Ai j and Ai out can be set to one or to a
chosen value by modifying the scaling functions.

The directions of the interactions analyzed with these
methodologies are aimed to be valid in a wider area than
the scaling functions of the individual model variables.
The quadratic effects are embedded in the scaling ap-
proach and the model can handle various kinds of inter-
actions. Subsets of scaled variables can form linguistic
principal components (LPCs) and PLS regression could be
useful in modelling. The LPV modelling further extends
the feasible areas of the model parameters.

3.3 Dynamic LE modelling
In NARX models, the input and output values are chosen
according to appropriate system orders. In the regressor
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Figure 2. Daily new confirmed COVID-19 deaths per million people, rolling 7-day averages collected from (Our, 2021) for selected
countries.

vector, the number of past inputs and outputs may become
too high if nonlinear effects are needed. The nonlinear
scaling reduces the number of input and output signals
needed for the modelling of nonlinear systems. In the de-
fault dynamic LE model,

Yout(k)+a1Yout(k−1) =
m

∑
j=1, j 6=out

b jU j(k−n j)+ e(t), (7)

where Yout(k), Yout(k− 1) and U j(k− n j) are the scaled
values of the variables and e(t) is a noise term. The scal-
ing function fout is not changing between time steps k−1
and k. The delays n j of the inputs can depend on the oper-
ating conditions and need to be calculated if variable step
numerical integration is used.

A wide variety of situations can be represented with
composite local models which are based on the same
model equations (7) and case specific scaling functions f j
and fout . Overlapping local models can be combined with
fuzzy set systems by using case specific solutions which
are first scaled back to the real values.

4 Epidemiological modelling
Data collection and working practices were under devel-
opment during the first months of the COVID-19 pan-
demic. In this research, the modelling was started with
the variable selection and analysis in the varying operat-
ing conditions.

4.1 Variable selection
New cases. The modelling uses daily new confirmed
COVID-19 cases and deaths as output variables. The
study was done for the same countries as in (Juuso, 2021).
Six countries were Finland, India, Italy, Sweden, United
Kingdom and United States.

The rolling 7-day averages were used for the research
study since they operated smoothly for the confirmed
deaths as well. The cases were analyzed per million peo-
ple to improve the sensitivity of the analysis for small
countries. Situations vary strongly between countries and
periods of time.

Hospital patients, hospital admissions and intensive
care patents could be analyzed with the same methodolo-
gies, but the datasets are much more limited.

The datasets include also test activities, vaccination and
stringency information.

Operating conditions. The number of tests was every-
where very low in the beginning of the pandemic in the
spring of 2020. The confirmed new cases remained low
for the first 240 days (Juuso, 2021) for all the countries
compared in this research (Figure 1). Since similar differ-
ences were not seen in new confirmed deaths (Figure 2),
the severe cases were detected already in the beginning. A
high number of undetected cases is in agreement with the
high values of excess mortality.

COVID-19 was activated country by country. In this
research, a high number of cases per million people ap-
peared in the sequence Italy, the UK, Sweden and the
USA. Finland had a low number of cases and India hardly
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any. During the summer of 2020, both new cases and
deaths went down, although the number of tests was in-
creased. An exception was the USA where both remained
high, which was true situation since the share of positive
tests was high as well. India had all the time very few
cases, but the test activity was very low and the share of
positive tests was high meaning that the situation was sim-
ilar with the spring of 2020 in other countries.

In the autumn of 2020, the number of cases and deaths
started to rise again in the same sequence as previously.
The number cases was rising fast and the number of deaths
only slightly.

Vaccinations started in December 2020 and increased
steadily, fastest in the UK and USA (Table 1) where the
number of new cases dropped fast. The decrease contin-
ued although the number of tests was increased.

Table 1. Cumulative COVID-19 tests and vaccinations per 100
people by April 12, 2021 (Our, 2021).

Tests One dose Two doses
Finland 76.1 20.93 1.79
India 18.5 6.82 0.97
Italy 88.2 15.6 6.65
Sweden 77.2 15.18 6.26
United Kingdom 189.0 47.28 11.22
United States 120.0 39.28 24.89

The society can take actions to prevent the pandemic
to expand. The stringency index presented in (Hale et al.,
2021) is a composite measure based on nine response indi-
cators including school closures, workplace closures, and
travel bans, rescaled to a value from 0 to 100 (100 =
strictest). This index was highest in India and lowest in
Finland.

The reproduction rate represented as the average num-
ber of new infections caused by a single infected individ-
ual. If the rate is greater than 1, the infection is able to
spread in the population. If it is below 1, the number of
cases occurring in the population will gradually decrease
to zero. The estimate rates (Arroyo-Marioli et al., 2021)
were very high in the spring of 2020 since the detected
COVID-19 cases were almost all serious cases.

4.2 Data analysis
The nonlinear scaling approach aims to simplify the mod-
elling work. The normalisation keeps the directions of the
effects but would leave the analysis of nonlinear effects
to the modelling. For all six countries, the data analysis
was taken from the research on temporal analysis (Juuso,
2021). The country specific lines were extracted from the
full dataset with all the countries by using the DataEx-
plorer. Selected time periods were used in the analysis.

Within each country, the risk levels are represented by
using nonlinear scaling. The scaling functions are defined
by five corner points by generalized norms whose orders

Figure 3. Parameters min(x j), (cl) j. c j, (ch) j and max(x j) for
the daily new confirmed cases: first 240 days (left) and all data
(right) , all based on 7-day rolling average of confirmed cases
per million people (Juuso, 2021).

Figure 4. Parameters min(x j), (cl) j. c j, (ch) j and max(x j).
for the daily new confirmed deaths: first 240 days (left)
and all data (right), all based on 7-day rolling average of
confirmed cases per million people (Juuso, 2021).

are obtained from the data. The parameters of the scaling
functions are country and time period specific (Figures 3
and 4). The differences between the early and later stages
of the pandemic are very clear. For the death cases, the
differences are hardly visible.

The confirmed cases and deaths were analysed per mil-
lion people but still the relative values are still much higher
in the UK, the USA and Italy than in Finland.

4.3 Feasibility results
The default dynamic LE model (7) is studied for all the
analyzed data. The cases were the same as in the tem-
poral analysis presented in (Juuso, 2021). The first phase
is the nonlinear scaling of the variables. In this research,
the variables are the daily new confirmed COVID-19 cases
(Figure 1) and deaths (Figure 2).

The input variables could be the vaccination level, strin-
gency index and active level of infections. Vaccinations
were just coming at the end of the studied period. The
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Figure 5. Scaled daily COVID-19 cases and deaths in Finland.

stringency index was not yet on a practical level. There
were not measurements for the active level of infections.

This section is a feasibility study of the linear interac-
tions of the scaled data in different countries having dif-
ferent operating conditions.

Finland. During the first days of the pandemic, the lev-
els of the daily new cases were much lower than in Au-
tumn and Winter. In spite of that, the levels of deaths were
already at the same level as later. For Finland, this is seen
in Figure 5 and 6. The difference in operating conditions
is clear in the parameters of the scaling functions (Figures
3 and 4).

Linear interactions operate well for the changes in the
scaled values. The time delay from the changes of con-
firmed cases to the confirmed deaths is about two weeks.
The steep slope at the beginning of the cases could be
caused by the delayed detection of them. The analysis
reveals details which are hardly visible in Figures 1 and 2,
including a drastic change in deaths seen in Figures 5 and
6). On December 2020, there was a maximum area for
both new cases and deaths. After that, the new infections
were increasing but the new deaths went down (Figure 5).

Italy. Italy was first country in Europe to meet the pan-
demic which may have cased the very slope seen in the
linear model (Figure 7). There was also a very short time
delay between the detected cases and deaths. Later the
time delay went to the same two weeks which was in Fin-
land. For Italy, the scaling functions were much steeper
than for Finland (Figures 3 and 4). There was a maximum
area slightly earlier than in Finland and the infection levels
remained constant. The new deaths went down.

Sweden. Sweden had considerably softer actions for
controlling the pandemic. According to the conformed
deaths, the first period of the pandemic lasted about 50
days longer than in Finland and Italy (Figure 8). There
were also a high level of infections during the whole Sum-
mer. The scaling functions were comparable with the Ital-
ian ones. Time delays between confirmed cases and deaths

Figure 6. Scaled daily COVID-19 cases and deaths in Finland
during the first 240 days.

Figure 7. Scaled daily COVID-19 cases and deaths in Italy.

Figure 8. Scaled daily COVID-19 cases and deaths in Sweden.
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Figure 9. Scaled daily COVID-19 cases and deaths in the United
Kingdom.

Figure 10. Scaled daily COVID-19 cases and deaths in the
United States.

were not easy to find since the level of infections was high
continuously.

United Kingdom. The scaling functions are the steep-
est for the United Kingdom (Figures 3 and 4). The first
period of the pandemic went very closely in the same way
as in Finland and Italy. In the autumn of 2020, a short
maximum area was slightly before the similar period in
Italy. This was followed by a short maximum period and
a very steep decrease for both the new cases and deaths
(Figure 9. The decrease is considerably faster than in the
first pandemic period. This improvement is linked with
the widening vaccination (Table 1).

USA. Scaling functions are quite steep already in the
first period. The first period of the pandemic started in
the same way as in Finland, Italy and the UK (Figure 10).
Summer 2020 was different: the recovery was slow, even
slower than in Sweden. The level of new infections and
deaths were all the time higher than in other countries.
Three peaks were detected in November-December 2020

Figure 11. Scaled daily COVID-19 cases and deaths in India.

could be from different infection transmission chains. Af-
ter them, the level of new infections go down almost as fast
as in the UK. Also, here this improvement is linked with
the widening vaccination (Table 1). The time difference
between the last peaks of the infections and the deaths is
again close to two weeks.

India. India was in the starting phase: the parameters
of the scaling functions have very low values (Figures 3
and 4 and the time difference between the peaks of the
infections and the deaths are small (Figure 11).

5 Discussions
The nonlinear phenomena are well presented with the
combination of the nonlinear scaling and linear interac-
tions for different countries in varying operating condi-
tions. The same approach operates for both the confirmed
cases and deaths. Different countries and specific periods,
including periods where the data quality is not sufficient,
are analyzed in the same scale [−2,2].

The effects of the vaccinations at the end of the ana-
lyzed period are clear, especially the UK and the USA
but also Finland, Italy and Sweden where the vaccinations
were just started.

Limitations are seen if there are too many interacting
things, e.g. several infection transmission chains which
are in different stages. Situations of this kind of are active
in the summer of 2020 in Sweden and the USA. Three in-
fection chains in November-December 2020 are interact-
ing. The actual inputs would be needed in those situations.

6 Conclusions and future studies
The combination of the nonlinear scaling and linear in-
teractions operates well for different countries in varying
operating conditions. This aggregated material was used
for analyzing some countries. The analysis can be done
with this approach for any country which has data in the
overall dataset.
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The analysis can be done in similarly for different sub-
sets. Specific scaling functions can be used in local anal-
ysis and for groups of people to increase the sensitivity
of the temporal analysis. The data material already in-
cludes hospital patients and patients in intensive care. The
progress in people vaccinations provides more material for
comparisons. Also, different variants can be taken in the
analysis.

References
Our world in data. https://ourworldindata.org/,

2021. Accessed: 2021-07-10.

F. Arroyo-Marioli, F. Bullano, S. Kucinskas, and C. Rondón-
Moreno. Tracking r of COVID-19: A new real-time estima-
tion using the kalman filter. PLoS ONE, 16(1):1–16, 2021.

R. Babuška and H. Verbruggen. Neuro-fuzzy methods for non-
linear system identification. Annual Reviews in Control, 27
(1):73–85, 2003.

G. E. P. Box and K. B. Wilson. On the experimental attainment
of optimum conditions. Journal of the Royal Statistical Soci-
ety. Series B, 13(1):1–45, 1951.

CSSE. COVID-19 data repository by the center for sys-
tems science and engineering (CSSE) at Johns Hopkins Uni-
versity. https://github.com/CSSEGISandData/
COVID-19, 2021. Accessed: 2021-07-10.

E. Dong, H. Du, and L. Gardner. An interactive web-based dash-
board to track covid-19 in real time. Lancet Inf Dis., 20(5):
533–534, 2020. doi:10.1016/S1473-3099(20)30120-1.

R. W. Gerlach, B. R. Kowalski, and H. O. A. Wold. Partial least
squares modelling with latent variables. Anal. Chim. Acta,
112(4):417–421, 1979.

Thomas Hale, Noam Angrist, Rafael AU Goldszmidt, Beatriz
Kira, Anna Petherick, Toby Phillips, Samuel Webster, Emily
Cameron-Blake, Laura Hallas, Saptarshi Majumdar, and He-
len Tatlow. A global panel database of pandemic policies
(oxford covid-19 government response tracker. Nature Hu-
man Behaviour, 5:529–538, 2021. doi:10.1038/s41562-021-
01079-8.

T. Jefferson, E. A. Spencer, A. Plüddemann, N. Roberts,
and C. Heneghan. Transmission dynamics of
COVID-19: An open evidence review. https:
//www.cebm.net/evidence-synthesis/
transmission-dynamics-of-covid-19/, 2021.
Accessed: 2021-07-10.

I. T. Jolliffe. Principal Component Analysis. Springer, New
York, 2 edition, 2002. 487 pp.

E. Juuso and S. Lahdelma. Intelligent scaling of features in
fault diagnosis. In 7th International Conference on Condi-
tion Monitoring and Machinery Failure Prevention Technolo-
gies, CM 2010 - MFPT 2010, 22-24 June 2010, Stratford-
upon-Avon, UK, volume 2, pages 1358–1372, 2010. URL
www.scopus.com.

E. K. Juuso. Integration of intelligent systems in de-
velopment of smart adaptive systems. International
Journal of Approximate Reasoning, 35(3):307–337, 2004.
doi:10.1016/j.ijar.2003.08.008.

E. K. Juuso. Tuning of large-scale linguistic equation (LE)
models with genetic algorithms. In M. Kolehmainen, edi-
tor, Revised selected papers of the International Conference
on Adaptive and Natural Computing Algorithms - ICANNGA
2009, Kuopio, Finland, Lecture Notes in Computer Science,
volume LNCS 5495, pages 161–170. Springer-Verlag, Hei-
delberg, 2009. doi:10.1007/978-3-642-04921-7_17.

E. K. Juuso. Recursive tuning of intelligent controllers of
solar collector fields in changing operating conditions. In
S. Bittani, A. Cenedese, and S. Zampieri, editors, Proceed-
ings of the 18th World Congress The International Fed-
eration of Automatic Control, Milano (Italy) August 28
- September 2, 2011, pages 12282–12288. IFAC, 2011.
doi:10.3182/20110828-6-IT-1002.03621.

E. K. Juuso. Intelligent methods in modelling and simulation of
complex systems. Simulation Notes Europe SNE, 24(1):1–10,
2014. doi:10.11128/sne.24.on.102221.

E. K. Juuso. Expertise and uncertainty processing with nonlinear
scaling and fuzzy systems for automation. Open Engineering,
10(1):712–720, 2020. doi:10.1515/eng-2020-0080.

E. K. Juuso. Intelligent temporal analysis of coronavirus statis-
tical data. Open Engineering, 2021. doi:10.1515/eng-2020-
0285.

E. K. Juuso and K. Leiviskä. Adaptive expert systems for met-
allurgical processes. In S.-L. Jämsä-Jounela and A. J. Niemi,
editors, Expert Systems in Mineral and Metal Processing,
IFAC Workshop, Espoo, Finland, August 26-28, 1991, IFAC
Workshop Series, 1992, Number 2, pages 119–124, Oxford,
UK, 1992. Pergamon.

S. Lahdelma and E. Juuso. Signal processing and fea-
ture extraction by using real order derivatives and gen-
eralised norms. Part 1: Methodology. International
Journal of Condition Monitoring, 1(2):46–53, 2011.
doi:10.1784/204764211798303805.

L. Ljung. System Identification - Theory for the User. Prentice
Hall, Upper Saddle River, N.J., 2nd edition, 1999.

L. Ljung. Perspectives on system identification. In M. J.
Chung and P. Misra, editors, Plenary papers, milestone re-
ports & selected survey papers, 17th IFAC World Congress,
Seoul, Korea, July 6-11, 2008, pages 47–59. IFAC, 2008.
http://www.ifac-papersonline.net/.

Hannah Ritchie, Esteban Ortiz-Ospina, Diana Beltekian,
Edouard Mathieu, Joe Hasell, Bobbie Macdonald, Charlie
Giattino, Cameron Appel, Lucas Rodés-Guirao, and Max
Roser. Coronavirus pandemic (COVID-19). Our World in
Data, 2020. https://ourworldindata.org/coronavirus.

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185505 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

512

https://ourworldindata.org/
https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://doi.org/10.1016/S1473-3099(20)30120-1
https://doi.org/10.1038/s41562-021-01079-8
https://doi.org/10.1038/s41562-021-01079-8
https://www.cebm.net/evidence-synthesis/transmission-dynamics-of-covid-19/
https://www.cebm.net/evidence-synthesis/transmission-dynamics-of-covid-19/
https://www.cebm.net/evidence-synthesis/transmission-dynamics-of-covid-19/
www.scopus.com
https://doi.org/10.1016/j.ijar.2003.08.008
https://doi.org/10.1007/978-3-642-04921-7_17
https://doi.org/10.3182/20110828-6-IT-1002.03621
https://doi.org/10.11128/sne.24.on.102221
https://doi.org/10.1515/eng-2020-0080
https://doi.org/10.1515/eng-2020-0285
https://doi.org/10.1515/eng-2020-0285
https://doi.org/10.1784/204764211798303805

	Introduction
	Materials & Methods
	Sample preparation and Raman analysis
	Principal Component Analysis (PCA)

	Results & Discussion
	Pre-processing of raw spectra
	Initial PCA Analysis
	Optimized PCA with Variable Selection

	Conclusion
	Introduction
	Knowledge-based variable grouping
	Grouping with data analysis
	Correlation analysis
	Correlations in nonlinear systems
	Correlations in variable groups
	High-dimensional data

	Decomposition
	Clustering
	Reasoning

	Model-based selection and grouping
	Application cases
	Discussion
	Conclusions and future studies
	Introduction
	Proposed Wall Element
	Heat Transfer Analysis
	Material Properties and Boundary Conditions
	Results

	Hygrothermal Analysis
	Concluding Remarks
	Introduction
	Modeling for Energy Optimal Control
	Optimal control
	Numerical solution to optimal control problems
	Modeling implications

	Data
	Pressure offset estimation

	Model
	Dynamics
	Throttle
	Cylinder
	Torque
	Turbine
	Wastegate
	Compressor

	Energy optimal control
	Conclusions
	Introduction
	Background
	Previous work

	Methods
	Machine learning vs traditional computer vision algorithms
	Machine learning using fastai
	Image classification and segmentation
	Estimating tank level from an image
	Transfer learning
	ResNet
	Model training

	Traditional approach using OpenCV
	Binary threshold
	Canny edge detection


	Experimental setup
	Perspective distortion

	Results and discussion
	Model training
	Optimal scene conditions
	Challenging scene conditions
	Adapting to changes in the image scene 

	Repeatability under experimental variation
	Rotating tank - altered viewing angle
	Refilling tank - altering distribution of coffee beans in tank

	Timing

	Conclusions
	Introduction
	An introductory example
	Analysis
	Instability
	Erroneous simulation

	Numerical optimal control
	Optimal control
	Direct methods for optimal control

	Simulation of the optimal control
	Event functions
	Handling of the control input

	Example application
	Rocket Model
	Nominal problem formulation
	Problem variation
	Simulation

	Conclusions
	Introduction
	Operational Philosophy
	Lean burn gas engine - Otto Cycle
	Main control loops
	Speed Control
	Air pressure/AFR control
	Air temperature control
	NOx control
	Global ignition timing control

	Global ignition timing and efficiency
	Global ignition timing and heat rate

	Process modelling and description
	Charge air pressure
	Global Ignition timing
	Suction air temperature
	Charge air temperature
	IMEP
	Heat rate
	Knock level
	Peak pressure
	NOx
	O2
	Exhaust temperature
	State space model of engine

	Optimal control problem formulation
	Results and Discussion
	Conclusions
	Introduction
	Materials and methods
	Measurements
	Signal processing

	Results and discussion
	Acceleration measurements and their squared envelope spectra, bearing fault
	Acceleration measurements and their squared envelope spectra, misalignment
	Local regularity signals and their L-S periodograms and DCT spectra, bearing fault
	Local regularity signals and their L-S periodograms and DCT spectra, misalignment

	Conclusions
	Modeling and Simulation for Decision Making in Sustainable and Resilient Assembly System Selection
	1 Introduction
	1.1 Aims
	1.2 Sustainable manufacturing
	1.3 Resilient and Agile Manufacturing
	1.4 Requirements and solutions

	2 Design, modeling and evaluation
	2.1 Define requirements and needs
	2.2 Solution modeling
	2.2.1 Manufacturing system modeling

	2.3 Evaluation and analytics
	2.3.1 Cost and efficiency aspects analytics
	2.3.2 Environmental aspects analytics

	2.4 Improve decision making

	3 Discussion
	4 Conclusions
	Introduction
	Background
	Previous Work
	Outline of the Paper

	System Description
	Mathematical Model
	Hydro Power Plant
	Solar Power and Consumer Load
	Grid
	Canonical Representation of the Model
	Case Study

	Deterministic MPC
	Cost Function
	OCP Formulated in JuMP.jl

	Stochastic MPC
	Cost Function
	Stochastic Scenarios for Ps and P
	Stochastic OCP

	Results and Discussions
	Deterministic MPC
	Stochastic MPC

	Conclusions and Future Work
	Bibliography
	Introduction
	Background
	Outline of the Paper

	Speed Governor for Single Hydro Power Plant
	Governing mechanism
	Trollheim Hydro Power Plant
	Tuning of PI Controller
	Step Change in Load Power P

	Control of Multiple Hydro Power Plants
	Problem Description
	Concept of Droop Control
	Internal Structure of Droop Controller

	Case Studies
	Case Study-1
	Case Study-2

	Conclusions and Future Work
	Bibliography
	Introduction
	System Description
	Electrode Drying
	Solvent Recovery System
	Dry Room Air Dehumidification System
	Heat Pump
	Heat Exchanger Networks

	Results and Discussion
	Effect of Parameters on the Evaporation Energy of Drying
	Effect of Drying Temperature and Regenerator Size on the Energy of Solvent Recovery System
	Energy Consumption with Heat Pump
	Energy Consumption with MER-Network
	Comparison of the Used Energy Optimization Methods
	Comparison with Literature Values

	Conclusions
	Introduction
	System Description
	System model
	Operational constraints

	Optimal Control Formulation
	Reference region tracking OCP with output constraints
	New OCP with constraint relaxation

	Simulation of Nominal MPC
	Simulation result: Initial water level below the reference region
	Simulation result: Initial water level in the reference region

	Robustness Analysis
	Conclusion
	Introduction
	Methods
	Results and Discussions
	Conclusions
	Introduction
	Modeling and Sensitivity Analysis
	Model Description
	Uncertainties
	Open Loop Simulation
	Global Sensitivity Analysis

	Standard NMPC and Stochastic Analysis
	Design of deterministic standard NMPC
	Stochastic analysis of parametric uncertainty

	Conclusion
	Introduction
	Background
	Previous Work
	Structure of Paper

	Model Overview
	Two-phase Flow in a Porous Media
	Reservoir Overview
	Reservoir Model
	Well Model
	Simplifying Assumptions
	Valve and Pipe
	Water Saturation Versus Relative Permeability
	Mobility Determination
	Numerical Solution
	Pressure Equation

	Model Uncertainty and PI Controller
	Uncertainty Analysis
	PI Controller

	Simulation Results
	Conclusions
	Bibliography
	Introduction
	Method
	Simulation
	Sensors and Measurement Noise
	Analysis of Residuals

	Results and Discussion
	Fault Detectability and Isolability
	Fault Signatures
	Sensitivity to Measurement Noise

	Conclusions and Recommendations
	Acknowledgements
	Introduction
	Method
	Using a Cloud Platform
	Models
	Data
	Integration
	Output and presentation

	Results
	Implemented models
	Data Extraction
	Data and Model Integration

	Discussions
	Conclusions
	Acknowledgment
	Methanol synthesis from syngas: a process simulation
	1 Introduction
	2 Methanol synthesis from syngas and carbon dioxide
	2.1  Previous works

	3 Materials and methods
	4 Results and discussion
	5 Conclusion
	Introduction
	Modeling
	Seahorse XF
	Parameter estimation
	Structural properties
	Conclusions
	Introduction
	Background
	Previous work
	Scope

	Materials and methods
	Number balance
	Assumptions on the total population
	The classical continuous SIR description
	Extension: the SEIR description
	Poisson distribution in events
	Stochastic differential equation
	First reaction time

	Reproduction number
	Model fitting
	Measles case study

	Measles case study
	SIR model
	Deterministic model with model fitting
	SDE model
	First reaction event model

	SEIR model

	Analysis of epidemiology models
	Condition for infection growth
	Stability from SEIR model

	Conclusions
	Bibliography
	Introduction
	Background
	Previous work
	Scope

	Materials and Methods
	COVID-19 data
	Initial evolution of C
	SEICUR model
	Reaction mechanism
	Approximate initial response
	Parameters and initial states
	Reproduction number

	The Norwegian PHI model
	Variation in infection rate
	Mitigation

	Model Fitting
	Initial evolution
	Fitted mitigation policy
	Case Norway
	Case: Italy
	Case: Spain


	Discussion and conclusions
	Bibliography
	Introduction
	Background
	Previous work
	Scope

	Materials and Methods
	Reaction mechanism
	Migration
	Demographic distribution
	Extinction of COVID-19
	Herd immunity
	Vaccination
	Qualitative effect of mitigation + vaccination


	Results
	Migration
	Herd immunity
	Vaccination
	Quenching COVID-19: the importance of vaccination

	Conclusions
	Bibliography
	Introduction
	COVID-19 data
	Methodologies
	Nonlinear scaling
	Steady-state LE modelling
	Dynamic LE modelling

	Epidemiological modelling
	Variable selection
	Data analysis
	Feasibility results

	Discussions
	Conclusions and future studies

