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Abstract

In energy production the characterization of the fuel is a key aspect for modelling and optimizing the operation
of a power plant. Near-infrared spectroscopy is a well-established method for characterization of different fuels
and is widely used both in laboratory environments and in power plants for real-time results. It can provide a fast
and accurate estimate of key parameters of the fuel, which for the case of biomass can include moisture content,
heating value, and ash content. These instruments provide a chemical fingerprint of the samples and require a
calibration model to relate that to the parameters of interest.
A near-infrared spectrometer can provide point data whereas a hyperspectral imaging camera allows the
simultaneous acquisition of spatial and spectral information from an object. As a result, an installation above
a conveyor belt can provide a distribution of the spectral data on a plane. This results in a large amount of
data that is difficult to handle with traditional statistical analysis. Furthermore, storage of the data becomes
a key issue, therefore a model to predict the parameters of interest should be able to be updated continu-
ously in an automated way. This makes hyperspectral imaging data a prime candidate for the application
of machine learning techniques. This paper discusses the modelling approach for hyperspectral imaging, fo-
cusing on data analysis and assessment of machine learning approaches for the development of calibration models.
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1. Introduction

In the energy and process industry the character-
ization of the feedstock material is a key aspect
for modelling and optimizing the operation of a
process or power plant. The operating parameters
are continuously adjusted in order to provide output
that meets certain specifications, which can be the
quality of the end product or the power output.
These are dependent on the quality of the feedstock,
as a difference in its key parameters will result in
different requirements for its processing. Detailed
knowledge of the properties of the fuel can be
used to improve the operation of the plant using
feed-forward control approaches. A sensor that can
provide this information is one of the foundations
for a learning system that can support optimal
operation and decision-making.

Near-infrared (NIR) spectroscopy is a well-
established method for characterization of different
fuels and is widely used both in laboratory envi-
ronments and in power plants for real-time results.
The method itself is based on the excitation and
vibration of the molecules, which in turn provides
the chemical information for the material. This
needs to be correlated to the parameters of interest

of the fuel, which is typically done using statistical
analysis. Near-infrared spectroscopy is one of the
technologies used for the development of smart
sensors in the learning system described in Rahman
et al. (2021). Near-infrared spectroscopy has been
widely used in the literature (Tsuchikawa et al.,
2003; Skvaril et al., 2017) as it can provide a fast
and accurate estimate of key parameters of the fuel,
which for the case of biomass can include moisture
content, heating value, and ash content.

Near-infrared spectroscopy can only provide single
point measurements. This information is well suited
for homogeneous mixtures, where it can provide a
good estimate for the parameters of interest of the
entire batch. In recent years, hyperspectral imaging
(HSI), which combines spectral information and
conventional imaging, is also increasingly used for
fuel characterisation. This allows the collection
of spatial data for the near-infrared spectrum and
can be applied in real environments (e.g. above
a conveyor belt) to provide real-time information
about the fuel. The simultaneous acquisition of
spectral and visual information without the need
for synchronization is another advantage, which
also makes the use in real environments more
realistic. In hyperspectral imaging, the instrument
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can acquire images of the sample, as well as spectral
information for each pixel, providing a hypercube
of data. This can provide multiple opportunities,
as discussed by Mäkelä and Geladi (2017), who
used HSI to distinguish different materials (from
different feedstocks or prepared under different
temperatures) and evaluate their homogeneity. An-
other application of HSI in biomass characterization
is for pelleting of biomass feedstocks where the
spatial resolution allows the classification of images
to assess the efficiency of the mixing of different
biomass streams (Gillespie et al., 2016).

Regardless of the method or instrument used to
acquire spectral information for the samples, a
model is required to correlate that information to
the parameters of interest and provide quantitative
information about the parameters of interest. Linear
regression techniques are considered the standard
for quantitative characterization, with Partial
Least Squares Regression (PLSR) being the most
commonly used approach (Skvaril et al., 2017).
Non-linear methods, such as Artificial Neural
Networks (ANNs), have been shown to improve
the results but are more demanding in terms of
computational power. Advances in computing
power have allowed machine learning techniques to
be used to extract information from spectral data,
and recent literature presents results from different
applications.

Machine learning in combination with IR spec-
troscopy has been widely used for classification
purposes. Mancini et al. (2020) used NIR to study
the supply chain for biomass pellets and applied
different classification algorithms to predict pellet
quality. A similar approach was used by Tiitta
et al. (2020) who employed electric impedance
spectroscopy to classify wood chips of different
origin, which can then allow the derivation of more
accurate models for moisture content. Pitak et al.
(2021) focused on the biomass pellet production
process, using machine learning for wavelength
selection and PLS regression for their calibration
model. Tao et al. (2020) obtained IR spectra of
biomass and waste with an attenuated total re-
flectance (ATR) and used ML for classification and
characterization, employing regression techniques.
Ahmed et al. (2018) applied different methods for
the characterization of biomass wood chips using
NIR, namely ANN, Gaussian Process Regression
(GPR), Support Vector Regression (SVR) and
traditional PLSR, with GPR showing the best
results.

The use of hyperspectral imaging results in a larger
amount of data that what is obtained with NIR
and storage of the data becomes a key issue. The
calibration model for hyperspectral imaging should
be able to be updated continuously in an automated
way, which makes hyperspectral imaging data a
prime candidate for the application of machine
learning techniques. Gewali et al. (n.d.) present
a review of the literature in the use of ML for
HSI, primarily for analysis of hyperspectral images
captured from earth observing satellites and aircraft.
They looked into techniques used for classification
of images based on land cover, concluding that

deep learning is a promising approach. For the
estimation physical/chemical parameters related to
agriculture, Bayesian methods were considered to
be more suitable due to their flexibility, ability to
handle uncertainty, and capacity to perform well
with limited data.

This paper discusses the use of hyperspectral imag-
ing and machine learning for biomass characteriza-
tion. The focus is on data analysis and assessment
of machine learning (ML) approaches for the devel-
opment of calibration models. A comparison of dif-
ferent ML approaches for HSI for the prediction of
biomass properties is not available in the literature,
and neither is a comparison of ML with a conven-
tional model to assess when the use of ML is ben-
eficial in such applications. The contribution of the
paper therefore lies in discussing the suitability of
different methods depending on the purpose of the
analysis and the type of data available, as a first step
towards a thorough study of the use of ML for HSI
data analysis in such applications.

2. Methodology

A set of biomass samples was analysed with a hy-
perspectral imaging camera and different machine
learning techniques were used to create a calibration
model. The following sections discuss the methods
used to acquire the data, pre-processing techniques,
and methods used to build calibration models, fol-
lowed by validation and testing of their predictive
capabilities.

2.1. Sample preparation and data acquisition

A set of 100 biomass fuel samples were used in this
study. The spectral data of the samples was obtained
with a push-broom line scanning hyperspectral
imaging Specim FX17e camera (Specim Spectral
Imaging Ltd, Finland). The camera is equipped
with an InGaAs based NIR detector with spectral
range of 900-1700 nm, 224 spectral bands, and 640
pixels over the cross-track field of view (FOV).
The samples were illuminated with six halogen
light sources of 150W and moved on a laboratory
scanning table (20cm x 40cm) at a velocity of
approximately 90mm/s. The acquisition was done
under constant ambient conditions, at frame rate of
300fps and an exposure time of 5ms, in order to
acquire images with the correct aspect ratio. The
setup for data acquisition is shown in Figure 1.

Reflectance calibration was carried out to correct for
background response of the instrument. The dark
reference image (D) was acquired by closing the
shutter of the camera lens and white reference image
(W) was obtained from a 99% reflectance ceramic
tile surface. The reflectance value R was calculated
from the measured signal (S) on a pixel-by-pixel
basis, as shown in equation 1, where i is the pixel
index.

Ri =
Si −Di

W −Di
(1)
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Figure 1: The experimental setup

A hyperspectral image of a biomass sample is
shown in Figure 2. A set of spectral data is acquired
for each pixel of the image. The spectra obtained
from the camera are shown in Figure 3. It should
be noted that the noisy parts of the spectra at the
lower and higher wavelengths that contain no useful
information have been removed in this figure and
for all data before pre-treatment. The reference to
no pre-treatment in the rest of this paper refers to
data in which the noisy parts have been removed.

Figure 2: Hyperspectral image of a biomass sample

Figure 3: Spectra with no pre-treatment

The moisture content in the samples was determined
according to the European standard EN ISO 18134.
The samples were oven dried for 20 hours in 105◦C
and weighed before and after the process. The re-
sulting moisture content range was from 31.0% to
55.8%.

2.2. Data Preprocessing

The spectral data was pretreated to enhance the dif-
ferences among the samples in order to provide a
better calibration model. Noisy parts of the spec-
trum were removed as they contain no useful infor-
mation and can instead confound the model. Two
different pre-processing techniques were applied:
Savitzky-Golay first derivative (SG1) and Standard
Normal Variate (SNV), which were shown to per-
form best in similar samples analysed with NIR
spectroscopy Ahmed et al. (2018). The results were
also compared to those obtained without any pre-
treatment of the data. The pre-treated data was also
scaled in accordance with the requirements of the
data analysis method, using either the mean and
standard deviation or the range of the dataset to ob-
tain a range from 0 to 1.

2.3. Methods for data analysis

In this paper SVR and ANN were compared with
PLSR. The different techniques were implemented
in Python using the Scikit-learn module (Pedregosa
et al., 2011).

SVR is an extension of the Support Vector Machines
(SVM) method for classification problems to solve
regression problems. It can allow the user to
determine the maximum error that is acceptable in
the model and find an appropriate hyperplane to fit
the data. Hyperparameters C, gamma, and epsilon
were adjusted in order to obtain a model that can
provide the best prediction. Three different kernel
functions (linear, polynomial, radial basis function
- RBF) were tested to allow the separation of the
data and allow for a better model to be obtained.
The hyperparameters were tuned using a grid search
with K-fold cross-validation for all kernel functions.

ANNs are widely used for regression problems
and can provide good results when the underlying
relationship between the different parameters is
non-linear. A network with two hidden layers
was used, with 128 nodes in the first layer and 32
nodes in the second layer. A third hidden layer was
not found to improve the results, which were also
similar for 32, 64, and 128 neurons in the hidden
layers. The optimal learning rate was selected
based on the cross-validation results and the epoch
with the lowest error was selected using a callback
function.

PLSR is considered the standard approach for
spectroscopy applications and performs well when
the underlying relationship is linear. Principal
component analysis was performed to select the
number of components that gives the highest
prediction accuracy.

In this work the collected data was split into a train-
ing set of 80 samples and a testing set of 20 samples.
K-fold cross-validation was also performed during
the training to improve the prediction capability
of the models and avoid over-fitting. The optimal
setting for the cross-validation was found to be 15
folds using 10% of the training dataset.
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3. Results and Discussion

The results of the pre-treatment are shown in
Figure 4(a) for the Standard Normal Variate
and in Figure 4(b) for the Savitzky-Golay first
derivative. The setup for SG1 aimed to ensure
enough information was retained in the spectra to
provide a good model and was evaluated based
on the cross-validation results for PLSR. As seen
in figures 3 and 4, there are two clear dips in
the spectra: one at 1180nm and one at 1430nm.
These areas contain much useful information about
the chemical composition of the samples. The
wavelength of 1180nm is the fingerprint of the C-H
stretching overtone, whereas the wavelength of
1430nm corresponds to the O-H overtone. It is this
differentiation in the spectra of the different samples
that can be coupled to the moisture content and be
used to create a robust model.

(a) Spectra with SNV pre-treatment

(b) Spectra with SG1 pre-treatment

Figure 4: Spectra with pretreatment

The pre-treated spectra of the training set were
used to build the calibration models. K-fold cross
validation was employed to increase the predictive
capability of the models. The models were then
evaluated on an unseen test set. The results for
the PLSR, SVR, and ANN regression for the
different pre-treatment approaches are summarized
in Table 1. The evaluation metrics used are the
goodness of fit measure for linear regression R2

and the root mean square error, RMSE, both for

the prediction of the unseen test set. As seen in the
results, both the the Savitzky–Golay 1st derivative
(SG1) and the SNV pre-treatment methods provide
an improvement in terms of fit and error for all
modelling approaches.

Table 1: Results of cross-validated models for different
pre-treatment methods evaluated on the test set

PLSR
Pre-treatment R2 RMSE

None 0.977 1.087
SG1 0.975 1.196
SNV 0.984 0.772

SVR
Pre-treatment R2 RMSE

None 0.919 3.893
SG1 0.980 0.952
SNV 0.968 1.530

ANN
Pre-treatment R2 RMSE

None 0.949 2.433
SG1 0.969 1.49
SNV 0.973 1.312

In the case of PLSR the difference between the
untreated data and the pre-treated data is very small,
which can be attributed to the cleaning of the data
and the removal of the noisy parts of the spectra
before the pre-treatment. In fact, SG1 pre-treatment
performs worse than the untreated data. This is
most likely due to the fact that there is little noise
in the spectra, rendering the treated and untreated
data very similar. It is possible that the window
selected for the derivative was slightly larger than
the optimal. The SG1 setup was evaluated based
on the cross-validation set, and it appears that
the results on the unseen test set point out that a
different setup would be optimal for SG1. However,
this is not possible to know before the models are
tested.

In the case of SVR and ANN, the difference
between the untreated and pre-treated data is much
larger. This is due to the fact that the untreated
data was not normalized for these cases, resulting
in notably worse models than when the data was
pre-treated. For SVR, the best models for each
of the different pre-treatments were selected. The
models with a linear or polynomial kernel were the
best in all cases, whereas the models with the RBF
kernel were sometimes slightly overfitted, despite
the cross-validation. For ANN, the pre-treatment
did not affect model selection as much, and the best
models were not as good as those built with SVR.
Nonetheless, the difference was not very large,
despite the relatively small dataset.
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The predicted values of the unseen test set are plot-
ted against the reference values in Figure 5 for the
best models, selected based on the R2 and RMSE
values.

(a) PLSR

(b) SVR

(c) ANN

Figure 5: Predicted vs reference moisture content (MC) of
the unseen test set

These are the SNV pretreatment for PLSR (Fig-
ure 5(a)), SG1 pretreatment with a polynomial ker-
nel for SVR (Figure 5(b)), and SNV pre-treatment
for ANN (Figure 5(c)). It can be seen that the pre-
dictions of both the SVR and the ANN models are
worse than those of the PLSR especially for the
higher moisture content, and this could be addressed
in future work.

4. Conclusion

This paper compared different methods to develop
calibration models for hyperspectral imaging
applied to the characterization of biomass samples.
The HSI technique can provide good predictions of
the moisture content in woody biomass fuel. The
two different preprocessing techniques improved
the results for SVR and ANN, with standard normal
variate performing better than Savitzky-Golay first
derivative in the best models developed with two
out of the three methods. Overall, PLSR provided
the best results, particularly with SNV pre-treatment
of the data. Nonetheless, both SVR with SG1
pre-treatment and ANN with SNV pre-treatment
were able to deliver accurate and robust models. It
is also worth noting that the differences between
SNV and SG1 pre-treatment were not very large
for many of the models, and the simplicity in the
setup of SNV compared to SG1 should be taken into
consideration. When taking into account the time
requirements to train and tune a model, PLSR and
SVR are the best options for this application.

It was noted that in a number of models the results
from the evaluation of the models based on their
performance in cross-validation did not agree with
those of the evaluation based on the test set, with
the two pointing at different model setup. Model
selection has to be based on the performance on the
test set, but since the models will be tuned only with
the cross-validation, it is important to be aware that
the best model might still be somewhat overfitted
with this process. This also points out the usefulness
of a more extensive dataset. Nonetheless, the differ-
ences are very small and all models are providing
acceptable predictions for a real application where
this information can be used for the control of a
power plant.

Further analysis is required to assess whether
different machine learning methods, such as GPR,
can be employed to develop a model with an even
better predictive capability. GPR is based on a
Bayesian approach and as such can also provide
the uncertainty range of the predictions. Taking
into account the uncertainty of the measurements
can provide more information on the suitability
of the different techniques for the development of
more realistic, probabilistic models. An expansion
of the dataset, taking advantage of the range of
measurements obtained with the hyperspectral
imaging camera, can help increase the accuracy of
the models and understand whether the difference in
performance is due to the size of the dataset.
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Nomenclature

ANN Artificial Neural Network
GPR Gaussian Process Regression
HSI HyperSpectral Imaging
MC Moisture Content
ML Machine Learning
NIR Near InfraRed
PLSR Partial Least Squares Regression
RBF Radial Basis Function
SNV Standard Normal Variate
SVM Support Vector Machines
SVR Support Vector Regression
SG1 Savitzky-Golay first derivative
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