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Abstract

Dynamic models of industrial processes play an instrumental role in the operation of such processes from smart sensors, data
reconciliation, to advanced control. For good performance, a precise model is normally required. The issue of improving
models has received considerable critical attention. In this work, we consider the estimation of model parameters and initial
states of a gas lifting oil well model, followed by filtering of its states. By utilizing information from both first-principle model
and data, the results are presented to show the estimated values and their uncertainties. Julia is the main programming language
used in this study. This research study provided an opportunity to advance the understanding of the optimization and estimation
for the oil well operation.

1. Introduction
As a common statistic method, Bayesian inference has
been used in many scientific fields and industries to
provide estimates for unknown quantities considering
uncertainty. The application of the Bayesian approach
can be classified as batch and sequential according to
the property of the data set. In the case of the
estimation related to batch datasets, all data are collected
at once before processing. Markov chain Monte Carlo
(MCMC) algorithms, as stochastic simulation methods,
are commonly used for the batch case to solve model
uncertainty problems. In the sequential application,
the data arrive sequentially, so the estimation or the
data evolution is required in real-time. The relevant
algorithms for Bayesian sequential updating of probability
distributions include the Kalman Filter (KF) [1], the
Particle Filter (PF) [2], the Ensemble Kalman Filter
(EnKF) [3].
With the information of prior and likelihood, the posterior
distribution can be calculated, which helps gain more
insight into the estimated quantities. In some cases,
the posteriors are simple and can be presented or
approximated as tractable and common distributions.
However, the posterior distribution may be complex
for sophisticated models, for example, the distribution
is multimodal or high dimensional. The MCMC
algorithm provides a solution where the distribution of
the accepted samples converges to the true posterior
distribution in the long run [4]. Compared with
many deterministic approximation methods, the MCMC
algorithm is conceptually easy to adopt for complex
systems.
Although the MCMC algorithm has less requirement
for the system, the algorithm is computationally
slow. Therefore, it was not commonly applied to
oil well systems in early research. Benefiting from
the development of computer technology, a parallel
computing scheme can be used for the MCMC algorithm.

For the dynamically evolving datasets, KF and PF have
been used in the past to solve data reconciliation and
data assimilation problems. Derived KF approaches,
algorithms such as the Extended Kalman Filter (EKF),
the Unscented Kalman Filter (UKF), and the EnKF, solve
the problem where the model is nonlinear. Models and
algorithms are formed in these methods to recursively
update and estimate quantities.
By linearizing the model using differentiation, the
covariance matrices are propagated assuming Gaussian
distribution in EKF. However, the analytical computation
is not feasible for non-Gaussian models or models which
can not be succinctly linearized. In these cases, numerical
strategies can be applied to estimate the system states.
Another approach to solving nonlinear problems is PF.
As a nonparametric approach, PF estimates the belief by
sampling the model output and assigning weights to these
samples. Resampling schemes are used to estimate the
posterior distribution in each iteration. The high weighted
particles are used to design copies and low weighted
particles are rejected [5, 6].
In the EnKF method, stochastic models are used to
calculate the probability distribution and time evolution
of the states. During the initialization, particles are
generated around the initial states and these particles are
designed according to the prior probability distribution.
The term ‘ensemble members’ will be used in this paper
to refer to these particles in the EnKF algorithm. All
ensemble members are propagated and updated during
the iterations. The uncertainty is predicted by calculating
the error covariances. Because only a few ensemble
members play a vital role eventually in the integration
and the weights of most ensemble members become very
small, the accuracy of estimation is related to the ensemble
size [7]. Typically, the number of ensemble members
should be in the range of 50-200 for computing mean and
covariance, and considerably larger for computing higher
order statistics. However, the large ensemble size also
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causes high computational cost. Compared with EKF,
EnKF is easy to be implemented as it does not demand
differentiation. For the sequential filters, EnKF requires
substantially less computational cost than PF.
In the oil well area, MCMC and EnKF have been used in
some research work. One study by Maraggi et al. [8] chose
a Bayesian approach to estimate two parameters of oil
reservoirs, which was simplified as a single dimensionless
equation. Following an adaptative MCMC algorithm,
posterior predictive checks were adopted to examine
the inferences. Uncertainty of the estimated ultimate
recovery was addressed in the study. The convergence
of the chains, acceptance ratio, posterior distributions,
correlation between posterior parameters, the reliability
plot and posterior predictive checks were presented to
evaluate the approach.
Kang et al. [9] applied a similar method to an electric
submersible pump system. With given prior, Bayesian
inference and the MCMC methods were adopted for
parameter estimation. After estimating five parameters,
validation and cross-validation were deployed using two
sets of data to examine the model. Dynamic and
steady-state uncertainty of the model were obtained
via probability density functions using uncertainty
assessment [10]. Autocorrelation was used to evaluate
the samples, and sensitivity analysis was employed for
capturing the region of convergence of the likelihood
function. However, the research study did not take
into account the samples process in much detail. The
convergence of multiple chains was not clearly shown to
provide reliable parameter estimation.
In terms of the application of the EnKF to the oil
well field, a recent study [11] proposed to use principal
component analysis for selecting the initial models for
EnKF, so that fewer ensemble members were needed to
predict production performances of the channel reservoirs.
Meanwhile, the accuracy of the prediction is better than
the prediction using one model when the ensemble size is
the same. With a smaller ensemble size, computational
time decreased significantly. Compared with the original
EnKF, this work with model selection scheme provided
a solution for filtering data of a complex model with
less time. However, the selection of representative initial
models demands empirical information of the system,
for example, permeability distribution in this work. The
selection is the part of the work which belongs to prior
design.
With coupled machine learning and EnKF, a data-driven
method was proposed to estimate the properties of the
reservoir using pressure transient data [12]. Prior to
commencing parameter estimation, the random forest
method was adopted to classify the model using the
discrete linear segment slopes in transition parts. After
deciding which model should be used, the grid search
method was conducted to estimate three hyper-parameters.
With partitioned subspace, a decision tree was designed
to address the optimal partitions. The accuracy of the
optimization was validated by using cross validation.
Once the model and parameters were decided, EnKF was
applied to predict the pressure transients of the water drive
gas reservoir well.
The purpose of this investigation is to estimate parameters
and initial states in the process of a gas lifting oil well
model using a first-principle model and batch data, and
then sequentially estimate the states online. The dominant
noise is Gaussian white noise on the measurements.
MCMC was employed to approximate the posterior
distributions of parameters and initial states in the first

stage. Once the estimates and uncertainty were extracted,
EnKF was carried out to estimate states at each sampling
time. This study provides a solution to advance the
understanding of the uncertainty in a complex system in
real-time.
The overall structure of the study is as follows. Section 2
presents the methodology which is adopted in this work.
The third section introduces the gas lifting oil well model
which is used in this work and explains the procedure of
the simulation. Section 4 validates the performance of
the method, Section 5 provides a discussion of the results,
while conclusions are given in Section 6.

2. Parameter Estimation and States Filtering
In this work, the estimation include two parts: parameters
and initial state estimation, and state estimation. We
used the Metropolis-Hastings (MH) Algorithm to estimate
the distribution of parameters and initial states based on
Bayesian analysis. Once we have found the distribution
of the parameters and initial states, we draw samples from
part of the accepted list for the initialization of the EnKF.

MCMC Parameter distribu�on
  distribu�on EnKF
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Model

Date All 
states

DrawCut burn-in 
period 

Figure 1: Outline of the estimation process.

2.1. Parameter and Initial State Estimation
Among the MCMC algorithms, the MH algorithm is one
of the algorithms which has least requirement of the
posterior and is simple to apply [13]. We use MH here
to estimate the parameters and initial states by accepting
or rejecting proposed samples.
A strong relationship between the accuracy of the MCMC
estimation and the chain length has been reported in the
literature [14]. Similar to most MCMC algorithms, the
step length of MH is a pivotal parameter in the algorithm
and impacts the efficiency of the algorithm. A series of
experiments were run and step length for each quantity
was selected after comparing the results, so that proposed
samples can reach large parameter space and can also
converge to an optimised value.
For each MH iteration, differential equations in the oil
well model need to be solved. Therefore, it takes a long
time to run more than 20 chains with a large number
of iterations, for example, 20 chain with 1000 iterations
for the outputs which contain 3600 samples takes more
than six hours with the processor Intel(R) Core(TM) i7-
10750H CPU @ 2.60GHz 2.59 GHz. To increase the
computational efficiency, the number of chains and the
number of samples for each chain were chosen carefully
by trial and error.
After running the MH algorithm, we have a list of accepted
samples. These samples form a chain. We can check
how the chain explores the parameter space by plotting
these samples. The distribution of these samples can be
used to approximate the distribution of the posterior of the
parameters.
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Algorithm 1: Ensemble Kalman Filter algorithm
Initialization:
Draw samples for initial states, xi

0|0, from Q, i ∈ {1, ..., n}
Calculate the mean of the samples x̂0|0 = 1

n
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i
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T
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xi
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i
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εk|k−1 = 1
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∑n
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T

Kk = Zk|k−1ε
−1
k|k−1

xi
k|k = xi

k|k−1 +Kk(yk − yik|k−1)
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T

end

Finally, a subset Q is prepared to include the estimation
information for the initialization of the estimation of
the state. According to the posterior distribution, Q is
designed to cover the most likely estimation by ignoring
the burn-in, which is the beginning part of the chain before
the chain converges to a certain value.

2.2. State Estimation
The aim of this section is to estimate the model states,
given a first-principle model and a set of measurements
with unknown uncertainties. The data assimilation
method, EnKF, was applied as in Algorithm 1 [7].
The distribution of states at each sampling time were
approximated via a number of ensemble members xi

k. The
superscript shows the number of the ensemble member
and the subscript presents the sampling time. Initial
ensemble members are drawn from the subset Q to include
the prior knowledge. In the EnKF algorithm, previous
studies evaluating the algorithm results observed that the
ensemble size is important [7]. The ensemble size that we
used in the algorithm is n. The covariance of the states at
sampling time k is Xk. The experiment contains N time
steps.
In the propagation stage, the states are forecasted based on
the last states and the dynamic system model. During the
update stage, the estimated outputs are expressed based
on the dynamic system model. e and v are the process
noise and measurement noise with zero means. yk is the
measurement vector which contains noise. The means and
covariance of the states are updated at the end of each time
step. The states of the oil well model can be filtered in real
time.

3. Simulation Study

3.1. Gas Lifting Oil Well Model
The gas lifting oil well model used in this work is based
on previous work [15, 16]. The input of the model is the

valve opening of the gas lift choke valve, u. As one of
the parameters to be estimated, the water cut, WC, is the
volume of water produced compared to the volume of total
liquids produced from an oil well. Other parameters in the
model to be estimated are gas-to-oil ratio, GOR, and the
productivity index, PI [ kg/hr

bar
]. PI is a mathematical means

of expressing the ability of a reservoir to deliver fluids to
the wellbore. All these parameters are dimensionless.
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Figure 2: Flow chart of an oil field: the blue blocks are the
components of an oil well. The red arrows show the gas flow and
black arrows present the liquid phase flows, which can contain
oil and water. The mass and flow rate are depicted beside the
corresponding components where these states occur in the gas
lifted oil well.

The flow chart in Fig. 2 shows the change of flows
and masses in the gas lifting oil well. m denotes
accumulated mass, and w denotes mass flow rate. A
dot on top of a mass implies the time derivative of
mass. A subscript indicates the phase (g: gas, o:
oil) and location of the various variables. The output
vector is y = {wga, wgp, wop, wwp, Pwf , Pwh, Pa}. Flow
measurements are impacted by bubbles and are not as
reliable as other data such as temperature and pressure.
Pressure transmitters are used to measure the bottom hole
pressure and well flow pressure (Pwf ), the pressure in the
tubing upstream the production choke valve (Pwh), and
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the pressure in the annulus downstream the lift gas choke
valve (Pa). We assume the pressure of the gas in the
gas distribution pipeline (Pc) is a constant as 200 [bar].
In the production process, temperature sensors detect the
temperature in the gas distribution pipeline, the annulus
and the tubing. Because of the small difference between
these temperatures, we assume the temperature is constant
everywhere and all these temperatures are assumed to be
equal to T [K].
Considering the principle of the gas lifted oil well, its
model is designed based on the mass balance of three
states: the mass of gas in the annulus mga, the mass in the
tubing above injection point mgt, and the mass of liquid
in the tubing above injection mlt. After time derivative,
the mass balance is mainly presented as Eq. (1):

ṁga = wga − wginj , (1)

ṁgt = wginj + wgr − wgp,

ṁlt = wlr − wlp,

, where wga is the flow rate of the gas through the gas
lift choke valve which is injected into the annulus. The
flow rates of the lift gas from the annulus and reservoir
to the tubing are wginj and wgr respectively. The flow
rate of produced gas through the production choke valve
is presented as wgp. wlr and wlp are the liquid phase
flow from the reservoir into the well and through the
production choke valve, respectively. The state vector is
x = {mga,mgt,mlt}.

3.2. Simulation Setup
There has been an increased interest in the programming
language Julia [17] in recent years. As a free
language, it has shown rapid advances in the field
of numerical computing. In this work, we adopted
Julia as the main language, especially for the state
estimation part. The parameter and initial state
estimation part is based on the previous work [16].
The Julia packages Plots, StatsP lots, Distributions,
DifferentialEquations, Noise, Random were used
in the this work.
The work began by generating data from the oil well
model with true parameters and initial states, and then
Gaussian noise with zero means was added to the outputs.
The oil well model does not contain process noise. The
noise in the measurements only include measurement
noise. The true parameters are WC = 0.18, P I = 2.4×
104, GOR = 0.15. The true initial states of mga,mgt

and mlt are m1 = 8650,m2 = 3306,m3 = 18250
respectively. The true values were only revealed after
the estimation for evaluation. The information of noise
is not accessible during the experiments. The simulation
will then go on to estimate the parameters and the initial
states, as well as the uncertainty of the model. Once the
distribution of these quantities are found, the states will be
estimated.
The prior of the parameters and initial states were set
as uniform distribution in Eq. (2). The GOR and WC
parameters represent ratios, so they are between 0 and 1.

P (θ,m0 | ui, ye(i,j)) =
B PI ∈ [104, 105], GOR ∈ [0, 1],WC ∈ [0, 1],

m1 ∈ [4000, 10000],m2 ∈ [1000, 5000],

m3 ∈ [1× 104, 2.5× 104]

0 otherwise
(2)
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Figure 3: Estimation of the parameters and the initial states.
The top three rows of plots show the parameter estimates and
the remaining plots present the initial value estimates. The red
vertical lines in the right columns of plots show the true values of
the parameters and initial states.
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In this work, we run 10 chains, and each chain contains
3000 iterations to identify the parameters and initial states
using data with 40 samples. We assume the measurements
are independent and contain white noises which are
normally distributed with zero means, but with different
variances. For every individual measurement, the variance
is assumed to be constant during the experiments. The
process error, eik−1, used at the propagation stage in EnKF
was tuned by trial and error. The measurement noise,
vik−1, used at the update stage was calculated from the
data.

4. Estimate validation
The main aim of this section is to present and analyse the
results of experiments in various ways. To gain insights
into every parameter in the estimation process, we present
plots of individual quantities distributions and chains. The
interactions between every pair parameters are shown in
scatter plots and contour plots. The estimated states are
compared with the true states.

4.1. The Distribution of Quantities and Chains
In order to test the influence of the random initial value of
the MCMC algorithm and check the explored range of the
estimated distribution, we present the plots of the chains
and the distribution for each parameter and initial value,
shown in Fig.3. The plots include the estimations of ten
chains of the MCMC algorithm with 3000 iterations.
The left column of plots show trace plots with
various initial values, which provides information on the
converging speed of the chains. The vertical axis is the
estimated value, and the horizontal axis is the iteration
number. The burn-in periods of these chains are generally
less than 2000. Compared with other chains, WC and m1

took longer time to converge to a certain range. We cut
the burn-in periods and used the last 1000 samples as the
subset Q.
According to these plots, all chains converge to around the
true values after exploring the whole prior range. The end
of the chains overlap each other and fairly smoothly drift
around the optimal estimated value, namely the estimate
uncertainty decreased as the iterations progressed. All
the chains for the same parameters converge to a similar
region and mix well, which indicates convergence is
achieved.
The right column of the figures illustrates the distribution
of each individual estimate. The histograms of the
quantities are drawn based on the accepted lists of all
chains. According to the distribution, the most likely
estimates of these quantities are around the true values.
The MCMC algorithm was able to identify the true values
of the quantities.

4.2. Pair plots of the Distribution of Quantities
Scatter plots and contour plots are shown in Fig.4
to present the relationship between each pair of the
parameters and initial states. According to the top two
rows of plots, the main distribution of PI is between
2.35×104 to 2.50×104. The first and third rows of plots
show that GOR distributes around [0.14, 0.20]. The
samples of WC spread between 0.2 to 0.8. The initial
state estimates are not as converged as the parameter
estimates. Most of m1 samples are between 8000 and
10000. m2 is estimated within [3000, 4000], and the value
of m3 is locate in [1.6, 2]×104. These plots confirm the
estimates in Fig.3. The contour plots in the second column
demonstrate more details in the converging area and show
that some of the posterior distributions are multimodal.
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Figure 4: Estimation of parameters and initial states with 2D plots
in scatter plots and contour plots. The top three rows of plots
show the parameter estimates and the remaining plots present the
initial value estimates. The contour plots are drawn in the range
with minimum and maximum values. The colors of the contour
plots show the density of estimated values. The red curves shows
the estimation at high density, while the blue curves correspond
to the low density contour. For the estimation of parameters, the
converge parts were zoomed in to present the contour clearly.
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Figure 5: Estimation of states. The grey shadows are the estimated states which include 100 estimates for each sampling time. The dark blue
lines are the mean of these ensemble values. The true values of these states are presented as red lines.

4.3. State estimation
We compare the estimated states and the true states in
this subsection. Figure 5 shows the estimation result.
With 1000 samples from the accepted list Q, the EnKF
algorithm is initialised with 100 ensemble members. The
time evolution of these ensemble members are shown as
grey shadows in the plots. The starting points of these
grey shadows indicate the initialisation range of ensemble.
For example, the initial ensemble members of mass in
the annulus is distributed within the range (7000, 10000)
and the initial ensemble members of mass balance for
gas and liquid in tubing are in the ranges (2950, 3550)
and (16800,19400), respectively. The true states were
collected from model simulation without any noise.
According to the result, the mean of all estimated states are
close to the true states. All the ensemble values converge
quickly towards the true states, though some of the initial
values are distributed with a considerable deviation from
the true initial states. Because the estimation of the states
is based on the model and the measurements with noise,
the estimates are less smooth than the true state.
The covariance matrix shows the uncertainty of the
estimation. The uncertainty can also be checked through
the width of the grey shadow. The uncertainty of the
estimates of the mass for the gas and liquid in the tubing
does not change significantly after the input changing at
t = 1, while the uncertainty of the estimates of the
mass for the gas in tubing increases significantly. The
increase of uncertainty results from the propagation of the
error between the estimated output and the measurement.
Compared with the last two states, the first state changes
more noticeable after the input changes.

5. Disscussion
Due to the lack of real data, it is not possible to exam
the method here to a real gas lifting oil well system. In
real life, the model mismatch might lead to undesirable
estimation. Besides, in real oil well systems, most
states and measurements are coupling. We simplified
the problem and assumed the noises of these quantities
are independent, so that the measurement error in the
EnKF algorithm could be easily found by calculating
the variance of the measurement during steady state.
The assumption might lead to some mismatch in the
estimation.
During the data filtering stage, the initial ensemble
contains the prior information. However, it is not
possible to add constraints to the time evolution of these
ensemble. The estimated states are calculated based on the
measurement and the last estimated states. For example,
the mass should be positive all the time according to
physics knowledge, but the EnKF algorithm can not
guarantee that the estimates are always positive. The
shortage of the EnKF algorithm might lead to some

improper estimation.
Another potential problem is that this research study does
not engage with the circumstance where the parameters
change over time. In reality, models are always imperfect
representations of a system, and it may be necessary to
allow for parameters to change over time to achieve the
best possible model fit.

6. Conclusions
The purpose of this study was to investigate the feasibility
of estimating parameters and states of a gas lifting oil
field. In the first stage, the posterior distributions of
the parameters and the initial states were identified using
a MCMC algorithm. Then, we drew samples from a
subset of the posterior distribution for the initialization
of the EnKF and estimated the states. The analysis
of experimental results undertaken here has confirmed
that the proposed solution was able to find the true
values of the unknown quantities with uncertainty during
estimation. The study contributes to our understanding
of the uncertainty in the estimation of the quantities of a
system in real-time. This understanding helps to improve
the gas lifting oil well model and provide estimations
of the process states in the system, why might benefit
the operation and advanced control in real life. Further
research could be conducted to improve the algorithm for
the estimation of changing parameters.
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