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Abstract

The ongoing decarbonization, and the rapid increase in renewable penetration in the electric grid, will demand enhanced
flexible operational schemes of the conventional hydropower plants. This paper explores a grid-connected hydropower plant’s
best-efficiency operating conditions when meeting the renewable energy transition. Power loss models combined with various
voltage control methods are investigated for achieving optimal operation. This simulation study is carried out on a static
Single Machine Infinite Bus (SMIB) environment to perform voltage control comparisons. Simulations show that the plant and
grid power loss models can be utilized in an optimal controller setting to increase the accumulated average efficiency (AAE).
However, optimal controllers had slow prediction times, and therefore a Reinforcement Learning (RL) method, A2C, has been
trained to learn an optimal control policy that maximizes system efficiency. The RL agent supersedes the optimal control
techniques with up to 40 times faster prediction times.

1 Introduction

In an energy mix with intermittent renewable energy
sources such as wind and solar, the flexible operation
of reliable reservoir-based hydropower plants can be
the backbone for energy balance and increased stability
(Pandey et al., 2021)(Abadie et al., 2020). Synchronous
machines have inherent stability characteristics in the form
of, e.g., rotational inertia and damper bars. Stability
characteristics are further enhanced by controllers for
frequency and voltage, e.g., the governor (GOV) and
automatic voltage regulator (AVR) (IEEE Recommended
Practice for Excitation System Models for Power System
Stability Studies, 2016). Together they provide essential
system services (constant frequency and voltage) for the
operation of the electricity grid.
The Transmission System Operator (TSO) is responsible
for the operational security of supply and power
transfer capability while reducing investment costs and
transmission losses (NVE, 2019). The active power
dispatch is correlated to market demand by the TSO,
while the voltage levels are considered more as free
control variables in the power system operation. Through
traditional centralized optimization techniques (Hasan
et al., 2020), e.g., Optimal Power Flow (OPF) (Wang
et al., 2017), grid losses and generation costs can be
minimized with respect to active power production and
terminal voltages (Qiu et al., 2009).
There has also been done much research on decentralized
and distributed control schemes (Molzahn et al.,
2017). This technique solves optimization problems by
considering control of smaller grid sections instead of
the complete system. Another approach for optimal
control is reinforcement learning (RL). RL is a machine
learning approach tailored to learning control policies to
maximize an objective function, often referred to as a
reward function (Buşoniu et al., 2018). Moreover, RL

has been implemented in recent literature, e.g., for finding
feasible grid voltage setpoints (Wang et al., 2020)(Duan
et al., 2020), and energy management systems (Chen et al.,
2021).
The use of power loss models of grid (Kundur, 1994)
and synchronous machines (Bortoni et al., 2020) has the
potential for more efficient voltage control.
This paper presents a simulation study comparing
standard decentralized voltage control methods against
optimal power system controllers. Controller schemes
for efficiency maximization will be formulated and
simulated in a grid-connected single machine infinite
bus (SMIB) environment. Power losses are considered
for the waterway, turbine, generator, and grid. Eight
different controller methods under steady-state operation
are considered. Four traditional primary setpoint control
strategies of the AVR will be investigated. Three
optimization-based controllers will be implemented and
tested for the minimization of (i) generation losses, (ii)
transmission losses, and (iii) overall losses. Finally,
the A2C (Mnih and et al., 2016) reinforcement learning
algorithm will be trained to maximize the system
efficiency (plant and grid). The computational speed of
RL compared to optimal controllers will be evaluated.
The paper is organized as follows. Section 2 introduces
the power loss modeling for hydropower plants, while
Section 3 introduces the different voltage controllers under
study. Section 4 presents the study case and simulation
results.

2 Power and energy loss modeling

In hydropower systems, the potential and kinetic energy in
the water is converted first into mechanical energy before
being converted to electrical energy. The electrical energy
is then transported in cables, lines, and transformers,
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Figure 1: An overview of the SMIB topology and parameters.
Power loss P1 to P7 are indicated close to the respective
component.

which have some power losses. The power losses in
a single machine infinite bus (SMIB) environment are
proposed to be divided into seven different parts, e.g., (P1)
to (P7). These losses are presented from top to bottom
in Figure 1. The hydraulic losses (P1) represent water
conduit friction losses from water movement. Turbine
losses (P2) represent the power loss in the transition from
pressure and kinetic energy to mechanical energy on the
rotor shaft. The generator losses are divided into three
separate categories: stator loss (P3), rotor loss (P4), and
constant losses (P5). Stator loss (P3) is the ohmic losses
RaI

2
a in the armature coils and stray loss. Rotor loss

(P4) is the ohmic loss RfI
2
f from the field and excitation

currents in the excitation circuit. Constant losses (P5)
are friction and windage losses, core loss, and bearing
losses. As long as the grid-connected machine’s voltage
and speed are constant, the constant losses will not change.
Moreover, the transformer losses (P6) consist of constant
and load-dependent losses. Finally, the transmission line
losses (P7) are the ohmic losses in the transmission line.
(Chapman, 2012)

2.1 Synchronous generator loss modeling

The calculation framework that was established in Bortoni
et al. (Bortoni et al., 2020) is used for estimating the
synchronous machine losses. This method extrapolates
the machine losses by using known relations between
armature current Ia, field current If , terminal voltage

Vg , and nominal losses noted with ∗. Stator loss (P3) is
extrapolated from nominal armature and stray losses, P ∗

a

and P ∗
s respectively, as shown in Eq. 1. Armature current

Ia should be known beforehand and is calculated from
Eq. 2, implying that Pg , Qg , and Vg are known.

P stator
loss = (P ∗

a + P ∗
s )

(
Ia
I∗a

)2

(1)

Ia∠−φ =
Pg − jQg

Vg
(2)

Rotor loss (P4) is extrapolated from nominal field, brush,
and excitation losses, P ∗

f , P ∗
br , and P ∗

ex respectively, and
depends on the field current If as shown in Eq. 3. For
estimating the field current at any value of Pg , Qg , and
Vg , the generator’s no-load and short-circuit characteristic
curves are required. These curves are usually provided
by the manufacturer or measured during commissioning
of the machine. The no-load characteristics establish a
relation between the internal emf Eg and field current If ,
usually linear. The short-circuit characteristics relates field
and armature currents and capture saturation in the core.
The saturation can be represented as the Potier reactance
(Xp) and Potier emf (Ep) (Kundur, 1994). To calculate the
field current If , the rotor angle δ and internal emf Eg is
calculated with Eq. 4 (Kundur, 1994) and Eq. 5 (Chapman,
2012), respectively. The Potier voltage angle θ and emf
Ep is calculated similarly through Eq. 6 and 7. Field
current in the rotor circuit can then be estimated using
Eq. 8. The parameters bv , k, Cm, and m are obtained
through curve fitting Eq. 8 to measured values of If in the
short-circuit characteristic of the machine (Karikezi et al.,
2021).

P rotor
loss = (P ∗

f + P ∗
br)

(
If
I∗f

)2

+ P ∗
ex

(
If
I∗f

)
(3)

δ = tan−1

(
Ia(Xq cos(φ)−Ra sin(φ)

Vg + Ia(Xq sin(φ) +Ra cos(φ)

)
(4)

Eg = Vg cos(δ) + IaXd sin(δ + φ) +RaIa cos(δ + φ)
(5)

θ = tan−1

(
Ia(Xp cos(φ)−Ra sin(φ)

Vg + Ia(Xp sin(φ) +Ra cos(φ)

)
(6)

Ep = Vg cos(θ) + IaXp sin(θ + φ) +RaIa cos(θ + φ)
(7)

If =
Eg − Ep

bv
+ k(Ep + CmEm

p ) (8)

Constant losses (P5) is extrapolated from the nominal
core, bearing, friction and windage losses, noted P ∗

c , Pb,
and P ∗

wf , respectively, where the core losses is dependent
on the terminal voltage Vg , as shown in Eq. 9.

P const
loss = P ∗

c

(
Vg

V ∗
g

)2

+ P ∗
b + P ∗

wf (9)

Nominal loss and saturation parameters for this paper’s
study case are displayed in Table 1 together with a short
description of the parameters. The presented values
are utilized for the study case calculations described in
Section 4.

2.2 Hydraulic and turbine loss modeling

Hydraulic losses in the hydropower plant are separated
into two parts, e.g., turbine losses and waterway losses,
(P1) and (P2) in Figure 1 respectively. (P2) can be
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Table 1: General Data for Loss Calculations of 103 MVA
synchronous generator, turbine, and water way

Symbol Description Value

bv Saturation parameter 1.0 [.]
Cm Saturation parameter 0.16 [.]
m Saturation parameter 7 [.]
k Saturation parameter 1.0308 [.]
I∗
a Nominal Armature Current 5406.1 [A]

I∗
f Nominal Field Current 1065 [A]

V ∗
g Nominal Generator Terminal Voltage 1 [pu]

P∗
a Nominal Armature Losses 187.46 [kW]

P∗
s Nominal Stray Losses 89.16 [kW]

P∗
f Nominal Field Current Losses 173.65 [kW]

P∗
br Nominal Brush Losses 2.13 [kW]

P∗
ex Nominal Exciter Losses 15.88 [kW]

P∗
c Nominal Core Losses 211.92 [kW]

P∗
b Bearing Losses 240.9 [kW]

P∗
wf Windage and Friction Losses 172.92 [kW]
q∗w Nominal Water Flow Rate 21.843 [m3/s]
Hgr Gross water head 442 [m]
fp Water way friction coefficient 0.0197 [.]

estimated from Eq. 10. The mechanical rotor power Pm

is the generator output power Pg plus generator rotor,
stator, and constant losses. The hydraulic power Phy is the
input power to the turbine before the conversion between
kinetic/pressure water energy to mechanical energy and is
calculated from Eq. 11.

P turb
loss = Phy − Pm = Pm

(
1

ηturb
− 1

)
(10)

Phy =
Pm

ηturb
(11)

Calculating (P1) is done by solving Eq 12 concerning qw.
The gross power Pgr is the potential power from the water,
assuming no losses, and is shown in Eq. 13. PH

loss is
estimated by the friction loss in the water way, shown in
Eq. 14. ρ is water density in [kg/m3], g is the acceleration
of gravity in [m/s2], Hgr is the gross water head in [m],
Hloss is the head loss from friction [m], and qw is the
water flow rate [m3/s]. Inserting Eq. 11, 13, and 14 into
Eq. 12, yields a third degree polynomial for qw, shown
in Eq. 15. All values are known except for qw, and this
equation can therefore be solved. Assuming qw ∈ [0, q∗w)
only one solution to qw is valid and used for the loss
calculation.

Pgr = PH
loss + Phy (12)

Pgr = ρgHgrqw (13)

PH
loss = ρgHlossqw = ρgfpq

3
w (14)

ρg
(
Hgrqw − fpq

3
w

)
− Pm

ηturb
= 0 (15)

2.3 Efficiency Calculations and AAE

The power loss calculation framework for the hydropower
plant and transmission system has the following workflow.
Firstly, the Active power Pg is defined. Then, the applied
voltage controller determines the reactive power dispatch
Qg , and a power flow calculation is executed. The
generator stator, rotor, and constant losses (P3, P4, P5)
are calculated. Moreover, turbine loss (P2) and waterway
loss (P1) are then calculated. From Pg and Qg , the
transformer loss PT

loss (P6) and transmission loss P l
loss

(P7) are calculated through the Pandapowers power flow
calculation (Thurner et al., 2018). For convenience, grid

losses P grid
loss and plant losses P plant

loss is defined in Eq. 16
and 17, respectively.

P grid
loss = PT

loss + P l
loss (16)

P plant
loss = P stator

loss + P rotor
loss + P const

loss + P turb
loss + PH

loss

(17)
Overall system efficiency calculation is shown in Eq. 18.
The numerator represents the active power reaching the
external grid, while the denominator is the sum of active
power production and losses from (P1) to (P7).

η =
Pg − P grid

loss

Pg + P grid
loss + P plant

loss

(18)

There are different ways of estimating the efficiency of
a time series data set. One method is to average the
efficiencies over the data. Another method proposed
by (Karikezi et al., 2021) is the AAE (Accumulated
Average Efficiency). In a data set of varying active power
production, the AAE is a more accurate representation of
the energy losses of the system compared to averaging
over the efficiencies. Eq. 19 shows how AAE is calculated,
assuming evenly spaced data points. The sum in the
numerator represents the total energy production reaching
the external grid (customers) in the data set. The sum in
the denominator represents the total energy production and
all losses.

ηAAE =

∑N
i=1

[
P

(i)
g − P

grid(i)
loss

]
∑N

i=1

[
P

grid(i)
loss + P

plant(i)
loss + P

(i)
g

] (19)

3 Voltage control methods

The rotor induces an internal emf Eg∠δ, determining
the terminal voltage Vg and how much reactive power
production/consumption the synchronous generator (SG)
has. An approximate relation between the internal voltage
and reactive power production is shown in Eq. 20 (Kundur,
1994).

Qg =
E2

g − EgVg cos δ

Xd
(20)

The excitation system of the SG, depicted in Figure 2
(IEEE Recommended Practice for Excitation System
Models for Power System Stability Studies, 2016),
determines both the terminal voltage and reactive power
production. Transducers measure Vg , Pg , and Qg on
the generator terminal. These signals go through a
voltage compensation block that calculates Vc. In this
paper, the automatic voltage regulator AVR has two
operating modes, indicated by switch SW1 and SW2
in the AVR block. If SW1 is closed, the AVR is
in a voltage setpoint tracking mode. Two different
controller modes are determined from this AVR state:
constant voltage controller (C1) and voltage compensated
controller (C2). Constant voltage control (C1) bypasses
the voltage compensation block in Figure 2, effectively
setting controller parameters Rc and Xc to 0. This mode
controls the generator exciter such that Vg = VREF ,
where VREF is a voltage reference. Controller (C2)
includes the voltage compensation block and is a setpoint
controller that forces the resulting compensated voltage
Vc = VREF .
When SW2 is closed (and SW1 is open) the AVR is in
reactive power setpoint mode. This AVR state can define
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Figure 2: Block diagram of the AVR, exciter, synchronous
machine, and voltage transducer (IEEE Recommended Practice
for Excitation System Models for Power System Stability Studies,
2016).

two controller modes: constant Qg controller (C3) and
constant power factor controller (C4). Controller (C3)
adjusts the excitation current such that the reactive power
production reaches some setpoint value Qg = Qset.
Controller (C4) updates Qset continuously according
to the active power production, such that Qset =
Pg tanφset, where φset is the setpoint phase angle.
Controllers (C1) to (C4) are standard control modes
for the AVR. No information on generator or grid
losses is explicitly used in these controllers. Therefore,
three optimal controllers and one RL controller are
implemented, which produces optimal values of Qset to
the AVR, according to some objective function. The first
optimal controller is an optimal plant efficiency control
(C5) to minimize plant losses. The second optimal
controller is the optimal grid efficiency (C6), which
minimizes grid losses. The third optimal controller is
an optimal system controller (C7), which minimizes the
sum of plant and grid losses. In addition, a reinforcement
learning (RL)-based controller (C8) is implemented to
minimize system losses. All controllers, numbered (C1)
to (C8) is listed in Table 2 with descriptions of controller
objectives and tuned controller parameters.

3.1 Implementation of voltage controllers C1 to C7

Controller (C1) is equal to (C2), with the only difference
being that parameters Rc and Xc are zero for (C1) and
not for (C2). Therefore, the implementation for these two
controllers is equal. In this paper, the generator bus is
modeled as a PQ bus. This means Pg and Qg have to
be specified in the power flow calculation. Converting a
voltage setpoint VREF to a reactive power Qg can be done
through Eq. 21 - 23 and Algorithm 1.
The voltage Vc is adjusted towards a voltage setpoint
VREF and is calculated as the generator terminal voltage
plus the voltage drop over a fictitious compensator
impedance Zc = Rc+jXc (IEEE Recommended Practice
for Excitation System Models for Power System Stability
Studies, 2016). The compensated voltage Vc is expressed
in Eq. 21, where it is assumed that terminal voltage Vg has
an angle of zero.

Vc∠− θc = Vg +
1

Vg
(Pg − jQg)(Rc + jXc) (21)

Separating Eq. 21 into real and imaginary parts results in
Eq. 22 and 23. Assuming steady-state operation, Vc must
be equal to the voltage reference, Vc = VREF . Eq. 21 and

Table 2: Controller overview with a description of the controllers.
Optimized controller parameters Θopt is displayed for controllers
(C1) to (C4). Controller objectives are shown for optimal
controllers (C5) to (C7), and the reward function R for the RL
controller (C8).

Controller
Name

Description Tuned Controller Parameters/
Controller Objective

Const V
(C1)

Setpoint control
of Vg

Θopt ← VREF = 1.02 pu

V-comp
(C2)

Setpoint control
of Vc

Θopt ←


VREF = 1.00pu,

Rc = −0.03pu,
Xc = 0.043pu

Const Q
(C3)

Setpoint control
of Qg

Θopt ←Qset
g = 7.01 Mvar

Const φ
(C4)

Setpoint control
of φ

Θopt ← φ = 0.002 rad

Opt Plant
(C5)

Minimizes plant
losses controlling
Qset

Qset = min
Qset

(
P

plant
loss

)

Opt Grid
(C6)

Minimizes grid
losses controlling
Qset

Qset = min
Qset

(
P

grid
loss

)

Opt Sys
(C7)

Minimizes plant
+ grid losses
controlling Qset

Qset = min
Qset

(
P

grid
loss + P

plant
loss

)

RL control
(C8)

RL control
predicting Qset

for optimal
system efficiency.

R =

(
Pg

Pg+P
gen
loss

+P
grid
loss

)2

22 is a system of two equations with the two unknowns
being the terminal voltage Vg and compensated voltage
angle θc. Solving this system is done iteratively by using
an initial power flow as a guess for Vg , which will be
adjusted such that Vc converges to the reference voltage
VREF . Algorithm 1 shows this procedure.

V 2
g − VgVc cos(θc) + PgRc +QgXc = 0 (22)

VgVc sin(θc) + PgXc −QgRc = 0 (23)

Algorithm 1: Constant V controller (C2 and
C4) at PQ bus.

Data: Q(1)
set = 0 pu, Q

(2)
set = 0.1 pu

Do a power flow with Q
(1)
set and Q

(2)
set to obtain V

(1)
c and

V
(2)
c by solving Eq. 22 and 23

while |Q(2)
set −Q

(1)
set| > 1e−3 do

dQset
dVc

← Q
(2)
set−Q

(1)
set

V
(2)
c −V

(1)
c

Qnew
set ← Q

(2)
set +

dQset
dVc

(VREF − V
(2)
c )

V new
c ← Power flow with Qg = Qg

new
set

V
(1)
c ← V

(2)
c , V

(2)
c ← V new

c

Q
(1)
set ← Q

(2)
set, Q

(2)
set ← Qnew

set

end
Result: Set Qset = Q

(2)
set

Constant reactive power (C3) and constant power factor
controller (C4) have, in essence, similar controller
mechanisms, where a reactive power setpoint from the
generator terminal Qset is determined from the controllers
and applied to the PQ bus directly.
The optimal controllers (C5, C6, and C7) utilize
a minimization algorithm to achieve the controller
objectives presented for each controller in Table 2. The
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Figure 3: The figure presents the workflow diagram of the voltage
controller C8 for calculating the optimal efficiency operation
point Qopt

g through step (1) to (4).

decision variable for the optimization is the reactive power
setpoint Qset.
The workflow diagram for the optimal controllers is
illustrated in Figure 3, where the workflow steps are
noted chronologically from step (1) to (5). The workflow
diagram is explained in the sequel: In a time series
simulation, an active power P (i)

g and external grid voltage
V

(i)
ext is given to the controller. The controller is initialized

(1) by creating a grid copy, and the initial value for Qg is
specified at 0.0. A grid copy is made because the controller
modifies the grid during the minimization of losses, and
these modifications are not wanted in the original grid.
The initial condition, a grid copy, and the objective
function (3) is sent to the minimize_scalar function (2)
from (Virtanen and et al., 2020), and utilizes the brent
method. Step (2) and (3) is done iteratively to calculate
an optimal value of Qopt

g . When the minimization has
converged, the optimal reactive power is bounded between
a minimum and maximum allowed value, dictated by
the capability diagram (4) (IEEE Standard for Salient-
Pole 50 Hz and 60 Hz Synchronous Generators and
Generator/Motors for Hydraulic Turbine Applications
Rated 5 MVA and Above, 2006). The resulting reactive
power value is then applied to the grid (5).

3.2 Reinforcement Learning Controller C8

Controller (C8) is a reactive power setpoint control based
on the reinforcement learning method A2C (Mnih and
et al., 2016). The utilized algorithm is implemented
in StableBaselines 3 (Raffin et al., 2021), and the
training environment for the agent is defined in the
Gym framework (Brockman et al., 2016). The training
environment is defined as a one-step deterministic
environment, where the states S = {Vext, Pg}, and the

Table 3: Tuned hyperparameters of the A2C Algorithm in SB3 on
the Power System Loss Environment.

Hyperparameter Value

Policy Neural Network Size [8, 8]
Value Neural Network Size [8, 8]

Steps before updating 32
Discount Factor γ 1.0

Learning Rate 0.01
Value function coefficient for the loss calculation 0.6

action is A = {Qg}. During training, an episode is
initialized by sampling state values Pg and Vext from
a uniform distribution, where Pg [pu] ∈ [0.2, 1.0] and
Vext [pu] ∈ [0.9, 1.1]. The random sampling causes no
two training episodes to be equal, and the agent should
therefore learn to generalize for all allowed values of Pg

and Vext. Eq. 24 defines the reward function R that is
utilized to find an optimal system control policy for Qset.

R(S,A) =

(
Pg

Pg + P gen
loss + P grid

loss

)2

(24)

After a grid search, the highest resulting reward
determined the A2C hyperparameters, with the results
shown in Table 3. Hyperparameters not displayed in the
table have default values from the SB3 library. Both the
policy and value neural network sizes are relatively small
and shallow. These small networks most likely caused
faster training compared to larger networks. However, a
higher learning rate of 0.1 did not yield improved results.
The discount factor was not part of the search and was
arbitrarily set to 1.0 as it doesn’t affect the training in one-
step environments.

3.3 Parameter tuning of controllers C1 to C4.

As shown in Table 2, each controller (C1) to (C4) have
different controller parameters noted as Θ. To find optimal
parameter setting for each controller, parameters Θ is
defined as a decision variable in an optimization problem,
as shown in Eq. 25. The objective function is to minimize
overall system power losses for each controller as shown
in Eq. 26. The system losses is defined in Eq. 27. Nine
operating points close to the nominal (rated) operation is
used in the objective function to achieve optimal controller
parameters Θopt. Three values of external grid voltage
is chosen, where Vext [pu] = {0.99, 1.0, 1.01}, For
each external grid voltage level, three active power levels
are chosen, where Pg [pu] = {0.9, 0.95, 1.0}. These
operating points is represented as the two summations in
Eq. 26. The optimization results of Θ for each controller
is shown in Table 2 as Θopt.

Θopt = min
Θ

J(Θ) (25)

J(Θ) =

3∑
i=1

3∑
j=1

[
Ploss(P

(i)
g , V

(j)
ext ; Θ)

]
(26)

Ploss(P
(i)
g , V

(j)
ext ; Θ) = P plant

loss + P grid
loss (27)

4 Simulation results of a 103 MVA study case

A SMIB (Single Machine Infinite Bus) testbed with the
presented controllers was established on a grid-connected
103 MVA hydro generator. The system overview is shown
in Figure 1, and system parameters are listed in Table 1.
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4.1 Controller efficiency characteristics

Figure ??hows the controller efficiency characteristics for
a range of active power and external voltage values for
all controllers. Efficiencies are estimated by Eq. 18 for
a range of external voltage (x-axis) and active power (y-
axis) combinations. The Pg and Vext axis each has 30
evenly spaced data points on which the contours are based.
A reactive power dispatch is calculated from the voltage
controllers at each point, followed by a power flow and
efficiency calculation. In addition, the yellow “x” in each
subplot in Figure 4 indicates the Best Efficiency Point
(BEP). BEP is the point where the values of Pg and Vext

yield the highest system efficiency for a given controller.
Moreover, the efficiency value for each BEP is shown in
Table 4.

40

60

80

Pg
 [M

W
] BEP

Const V (C1)

BEP

Optimal Plant Control (C5)

40

60

80

Pg
 [M

W
] BEP

V_compensated (C2)

BEP

Optimal Grid Control (C6)

40

60

80

Pg
 [M

W
] BEP

Const Q (C3)

BEP

Optimal Sys Control (C7)

0.90 0.95 1.00 1.05 1.10
V_ext [pu]

40

60

80

Pg
 [M

W
] BEP

Const  (C4)

0.90 0.95 1.00 1.05 1.10
V_ext [pu]

BEP

System
Efficiency

RL Agent (C8)

0.828

0.836

0.844

0.852

0.860

0.868

0.876

0.884

0.892

0.900

Figure 4: Efficiency characteristic plots for the eight presented
controllers. Moreover, the BEP point for each controller is
highlighted.

4.2 Controller performance indicators and data set

Controller performance is evaluated through two
indicators. These are i) the energy losses in the grid,
plant, and system and ii) the voltage variation at the
generator bus. These indicators will be evaluated by
simulating the SMIB environment with an artificially
made data set, which is displayed in Figure 5. In total,
there are 8760 values of Pg and Vext. The data set
is available in (Melfald, n.d.), and was generated by
sampling the active power and external voltage values
from normal distributions. When making the data set,
the average active power value was set to 0.7 pu with a
standard deviation of 0.3, Pg ∼ N (0.7, 0.32). Sampled
values was bounded between 0.3 and 0.9, such that
Pg ∈ [0.3, 0.9]. The average external voltage value was
set to 1.0 pu with a standard deviation of 0.02 with no
bounds, Vext ∼ N (1.0, 0.022). It is assumed to be a
one-hour time-step per data point.

4.3 Energy losses and efficiencies from simulation

The energy losses, and terminal generator voltage,
are obtained from the simulation of the 8760 data
points. Results from the simulation are shown in
Table 4. The grid, plant, and system losses are
calculated from accumulated power losses. A system

Mean Active Power

External Voltage
Probability
Distribution

Active Power Probability Distribution

Mean External Voltage

Figure 5: Data Points used for efficiency comparison between
voltage controllers. (Melfald, n.d.)

energy loss comparison is made with ∆P sys
add . This

variable is obtained by subtracting the system losses of
any controller with the system losses of controller (C7).
This represents additional system losses generated by not
utilizing controller (C7). Similarly, the additional grid
losses ∆P grid

add is comparing the grid losses when using
(C6) against the other controllers. Additional plant losses
∆P plant

add are also compared between controller (C5) and
the rest of the controllers.

4.4 Voltage variation comparisons

The voltage variation on the generator terminal Vg for
different controllers is shown and compared in the box
plot in Figure 6 (a). The box plot shows four properties of
the voltage variation in the study case for each controller.
First, the green horizontal line in each box represents the
median value of the voltages. The box’s upper and lower
vertical boundaries represent the middle 50 percent of the
voltage points, assuming a sorted data set. There is no
box for (C1) because the voltage variation is negligible
for large parts of the data set. The lines stretching out
vertically from the boxes are called “whiskers” and show
the boundaries between the data and outliers, represented
as small circles outside the whiskers. The lower outliers
are defined as data points with voltage values lower than
0.01 % of the data set. Upper outlier data points are values
above 99.9 % of the data set. In addition, arrows to the left
of all boxes and whiskers are displayed with a number.
The arrows and number represent the maximum voltage
variation [%] in the positive and negative direction from
the median voltage in the simulation.
The voltage variation in Figure 6 (a) shows that controllers
(C3, C4, C6, C7, C8) have similar generator voltage
variation throughout the simulation. This similarity
indicates that the reactive power dispatch is similar for
the controllers, which is shown with the reactive power
distributions in Figure 6 (b). On average, the optimal
plant controller (C5) has lower terminal voltage values
during the simulation. The main reason for this is that
the optimal plant operation for the generator is close to
0.2 reactive power consumption, as described by (Karikezi
et al., 2021). This reactive power consumption lowers the
terminal voltage compared to the other controllers with a
higher reactive power dispatch.
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Table 4: Result Data from power flow simulations of the 8760 data points.
Const V V-comp Const Q Const φ Opt Plant Opt Grid Opt Sys RL Agent

C1 C2 C3 C4 C5 C6 C7 C8
AAE [%] 87.6 87.812 87.914 87.936 87.754 87.932 87.937 87.936

Total System Losses [MWh] 70251 69048 68469 68346 69377 68371 68341 68346
Total Grid Losses [MWh] 10925 9983 9410 9405 10614 9378 9404 9394
Total Plant Losses [MWh] 59326 59064 59058 58941 58762 58992 58937 58951

∆P sys
add [MWh] 1910.3 706.5 127.5 5.1 1035.7 29.6 0.0 4.5

∆P grid
add [MWh] 1547.1 605.5 32.4 26.8 1236.1 0.0 25.8 16.1

∆P plant
add [MWh] 563.7 301.5 295.6 178.8 0.0 230.1 174.6 188.9

BEP Efficiency [%] 90.134 90.135 90.309 90.324 90.144 90.300 90.325 90.324
Calculation Speed [steps/s] 12.9 12.7 25.5 32.1 5.6 1.3 0.8 34.2

The constant voltage controllers (C1, C2) have the lowest
voltage variation and, consequently, the highest reactive
power variation. When the external grid voltage Vext

changes, controller (C1) and (C2) force the terminal
voltage towards the voltage setpoint by adjusting the
reactive power dispatch. The reactive power dispatch is
proportional to the voltage difference between Vext and
controller voltage setpoint VREF . It is therefore clear from
Figure 6 (c) that controllers (C1) and (C2) operate less
efficiently compared to the other controllers.

5 Discussion

Figure 4 shows that the active power has the most
significant impact on the system efficiency, with Best
Efficiency Points (BEPs) residing at around 80 MW for
all controllers. However, there is a significant difference
between the BEPs on the Vext axis. All controllers except
(C1) and (C2) prefer higher Vext, likely because of the
lower currents leading to lower ohmic losses.
Controller (C1) and (C2) have, on average, higher
reactive power dispatch because of the additional reactive
compensation needed for constant voltage control,
indicated in Figure 6 (a) and (b). Therefore, the BEPs of
these controllers reside where Vext is close to VREF . With
similar generator and external voltage values, the reactive
power dispatch is close to 0. Lower reactive power flow
has higher efficiencies according to Figure 6 (c).
The additional system losses ∆P sys

add in Table 4 indicates
that the optimal grid controller (C6) has almost the same
performance as the system-wide optimal control (C7).
This indicates that the grid is most sensitive to the reactive
power flow. The optimal plant control (C5) is overall
inefficient. An explanation for this is that the reactive
power dispatch of around -0.2 pu, which negatively affects
the grid efficiency. The saved losses in the plant are
less than the additional grid losses at this reactive power
dispatch level, which is clear from the efficiency curves in
Figure 6 (c).
Both constant voltage controllers (C1 and C2) have the
lowest voltage deviation but at the cost of lower AAE
compared to the other controllers. The constant V control
(C1) has the best performance for limiting the voltage
variation and the worst efficiency. The compensated V
controller (C2) showed some efficiency improvements, but
at the cost of having a higher voltage variation.
Table 4 also shows that the difference between the optimal
system controller (C7) and RL controller (C8) is relatively
small, indicating that the RL agent learned an approximate
optimal control policy. The main difference between (C7)
and (C8) is the calculation speed. The RL agent is a
factor about 40 times faster than (C7). Such a prediction
speed is achieved because the RL agent does not require

an iterative solver to predict Qg , and predicts Qg directly
based on the system states Pg and Vext.

6 Conclusions

This paper has studied eight different voltage control
methods for the best efficiency operation of a grid-
connected hydropower plant. The results are promising
and show that improved efficiency for the overall system,
plant, and grid efficiency is available as more knowledge
on the power losses of the system is provided. Moreover,
results indicate that overall system efficiency increases
for both the optimal controllers (C5) and (C7), and the
RL controller (C8) compared to the traditional control
methods (C1-C4). Combining a hydropower plant loss
model with traditional optimal power flow methods on
the grid side improves the accumulated average efficiency
(AAE) by reducing total power losses and increasing
revenue for plant owners and TSOs. The RL algorithm
A2C has shown to be capable of learning an approximate
optimal system control policy for maximizing system
efficiency. The main difference between (C7) and (C8)
is that (C8) has a significantly faster computational time.
RL can therefore be considered viable for online operation
with time frames of seconds. However, simulations
show that voltage variation on the generator bus is higher
when utilizing controllers for increased system efficiency
compared to voltage setpoint controllers (C1) and (C2).
Future work should focus on expanding the power
system size. In addition, voltage restrictions as part of
the reward/objective functions should be implemented.
Moreover, an in-depth dynamic studies on system stability
criteria must be implemented in further studies.
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