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Abstract

Extreme black-swan occurrences like earthquakes, glacial lake outbursts, flash floods, landslides, etc. are important concerns in
Himalayan countries like Nepal, which are highly susceptible, geologically active, and exquisitely fragile. Nepal generates 97
percent of its electricity from hydropower, where 56.08 percent of it is coming from seasonal run-off-river (RoR) hydro plants.
Landslides and mudflows are common in the monsoon, and low discharge is common in the winter season. These RoR plants
must be able to withstand high-impact events like earthquakes and lengthy droughts in order for the Nepalese grid to remain
secure. This study gives a presentation and overview of previously occured natural hazards in Nepal related to hydropower
plants. In particular, the 2014 Sunkoshi landslide and the 2021 Melamchi flood are evaluated as extreme events and their
impacts on hydropower plant has been studied. In addition, an in-depth investigation on a ROR plant is carried out. Moreover,
the water discharge and extreme rainfall peaks in time series data is evaluated using an ARIMA-based model. This paper shows
the feasibility of predicting the energy produced by a run-off river hydropower plant. The purpose is to forecast discharge and
hence the ROR power generation with the aim to facilitate the hydropower operators for their availability declaration which will
again help in the overall energy planning. The results are discussed together with performance metrics, and indicates that the
implemented technique is promising.These predictions can be further used for planning and estimating the power generation
on a more complex level.

1. Introduction

1.1. Background
The electrical power system supports a variety of impor-
tant infrastructures in today’s world, including transporta-
tion, communication, health, and education. Countries, on
the other hand, are subjected to severe exigencies and nat-
ural disasters that directly or indirectly damage electric-
ity systems. The rising expense of power outages caused
by natural disasters or climate fluctuations, as well as the
devastating impact on different fields of security and per-
sonnel security, cannot be overlooked. Power outages
over extended periods of time, substantial and important
equipment failures in the system, cascading failures, load-
shedding, and even system blackouts are all possible out-
comes. For the power system to run smoothly, it is im-
portant to keep the system in balance while keeping its
security and economic limits.
Extreme weather events, as well as climatic differences,
are becoming more common in many countries through-
out the world. As a result, today’s electricity system must
be resilient in this area. Power system engineers face a
difficult task in designing a resilient power system that
can resist climate change and extreme occurrences. Af-
ter all, weather is stochastic, unexpected, and difficult to
anticipate. Figure 1 depicts an overview of climate in-
fluences on the electricity system based on a number of
papers. The globe is currently confronted with the issues
of climate change and global warming; the primary fo-

cus has been on clean energy and the decarbonization of
global energy systems. The movement toward a flexible
electrical system based on renewables is gaining traction
(Mitchell, 2016). Hydropower is the world’s greatest re-
newable energy source, and it contributes significantly to
global power system balance and regulation (Yang et al.,
2018). Hydropower is not only needed for electricity; it
also helps to balance the intermittent renewable energy
supply. The relevance of hydropower to the reliability, sus-
tainability, and economy of energy systems is addressed
in Europe’s 2050 Energy Strategy (Roadmap, 2011). The
backbone for connecting multiple renewable energy sys-
tems is more flexible in a hydro-dominated power system.
However there are still challenges with a power system
that are heavily dependant on hydropower mainly due to
natural events, for instance, scheduling the right amount
of reserve capacity, the possibility of frequency oscilla-
tions in the system, and the overall quality, security, and
dependability of the power system.

1.2. Nepalese Power System and the impacts of natural
disaster
The Nepalese grid, known as the Integrated Nepal Power
System (INPS), is one of the hydro-dominated electric grid
systems in the Himalayan region. Currently, Nepal gener-
ates 97% of total electricity from hydropower; 56.08% of
it from Run-Off-River (RoR) plants. These RoR plants
are subject to a large discharge variation between wet
and dry seasons. Also, the catchment area faces land-
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Figure 1: The figure presents the impact of climatic effects on the electric power system distinguished between climate variations and extreme
events.
a represents climatic variation and their effects on power system
b represents effects of extreme events on power system

slides and heavy mudflow conditions in monsoon, and pro-
longed periods of low discharge in the winter. Typical
generation capacity of a RoR plant is roughly 100% for
6 wet months, when it is most vulnerable to landslides and
floods, 80% for 2 months, 50-30% for 4 months of winter
when any form of energy is highly precious to the liveli-
hood. Therefore, the power system operational security of
the Nepalese grid is heavily dependent on how these RoR
plants respond to winter demands. RoR should safeguard
itself during the monsoon floods and landslides, and be re-
silient to other high impact events such as earthquakes and
prolonged drought. Moreover, concerns with the Nepalese
grid have posed a threat to INPS’s reliability and security.
Until 2017, Nepal was subjected to up to 18 hours of load
shedding during the dry season. Although load shedding
has been officially resolved, there is still a problem with
INPS’ power supply quality and reliability. In INPS, the
existing transmission lines are mostly working at full ca-
pacity. In all existing high voltage lines, there is no suffi-
cient provision for n-1 contingency. As a result of the this
and inappropriate contingency analysis, the INPS reliabil-
ity is compromised.

River flow and hydropower are inextricably linked, and
rainfall has a considerable impact on both. Because rain-
fall is influenced by a multitude of factors, hydropower

generation is highly seasonal. Nepal is also at risk from
earthquakes, flooding, landslides, and a variety of other
natural disasters. In Table 1, the effects of a few natu-
ral risks on Nepal’s power generators and system over the
last decade are presented. It is clear from this table that
the Nepalese power infrastructure is extremely sensitive
to weather and natural disasters.

1.3. Contribution of the work
Having a good grasp of the trends and behavior of river
discharge is critical for an effective power/energy man-
agement, especially in the hydropower-dominated power
system. The amount of rain, temperature, and other envi-
ronmental factors influence how much water is discharged.
Reliably predicting hydropower generation under certain
operational conditions is essential to making the most of
hydropower’s advantages as a clean and inexpensive en-
ergy source. Economic and societal gains can be gained
through its use. It is also possible to perform some
preventative measures if the serious condition is antici-
pated. Consequently, this research focuses on analyzing
the river discharge and hydroelectric output of one of the
hydropower facilities in Nepal. The following points will
serve as a reminder of the study’s contributions during the
discussion:

• Extreme events including floods, landslides, and
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Table 1: Natural hazards in Nepal in the last decade.
Event Major Effect
Flash Flood-Seti River-2012 Damage to infrastructure and livelihood including water supply systems

and electric poles (Ojha, 2018)
Landslide-Jure-2014 Damage of more than 1.5 million USD in Sunkoshi HPP (Liu et al.,

2020)
Earthquake-Gorkha- 2015 Severe damage to infrastructure and livelihood including significant

damage in Sunkoshi HPP (Liu et al., 2020)
Glacial Lake Outburst Flood
(GLOF)- Bhotekoshi- 2016

Damage to infrastructure and livelihood including damage in intake
dam of Upper Bhotekoshi HPP (Action, 2018)

Terai Flood-2017 The financial loss of 584.7 million USD including damages in the en-
ergy sector as well (First Tornado in Nepal – March 2019, 2019)

Tornado-Bara/Parsa-2019 Damage to infrastructure and many livelihoods leaving affected places
without electricity and communication (Service, 2020)

Landslide-Sindhupalchok-2020 Loss of many lives and houses and other infrastructure (Samiti, 2020)
Flash flood-Melamchi-2021 Swept houses, bridges, and severe damage to infrastructure and liveli-

hoods including hydropower plants (Debnath and Mourshed, 2018)

earthquakes have all been researched in relation to
the discharge statistics of the rivers.

• It is the goal of this work to analyze weather, dis-
charge, and extreme events connected to time se-
ries data, and to estimate their effects on power
generation using a modeling approach. The Auto-
Regressive Integrated Moving Average modeling ap-
proach is used for the forecasting of time series data
on discharge and power generation.

1.4. Structure of the paper
This paper opens by describing the setting in which the
study is being conducted, as well as the reasons for doing
so. Section 2 presents the assumptions and strategies uti-
lized to tackle these problems. In the third section, the
study’s results are presented, and the conclusions taken
from them are discussed in Section 4.

2. Methodology
For the investigation of underlying forecasting methods, a
systematic review of published literature’s was conducted.
A number of literature’s have shown that linear time series
models, such as the Auto-Regressive Integrated Moving-
Average (ARIMA) model, are among the most popular
statistical models used to forecast time series based on his-
torical data. It owes its reliability for this sort of data (Deb-
nath and Mourshed, 2018). In (El Desouky and Elkateb,
2000), an Artificial Neural Networks (ANN) and ARIMA
modeling were used to forecast electric load where both
strategies were implemented to reduce forecasting mis-
takes, and they found that both techniques produce lower
errors as compared to similar predictions obtained using
the established time-series method. (Erdogdu, 2007) im-
plemented ARIMA modeling technique for studying en-
ergy demand in Turkey and obtained results with very
small error. Similarly, (Wang et al., 2011) employed a
seasonal decomposition approach with vector regression
to forecast hydropower usage in China and demonstrated
that the method they utilized for time series forecasting
was accurate. Likewise, (Cassiano et al., 2013) established
an ARIMA model for forecasting effluent flow in a hydro-
electric facility in Brazil by merging hierarchical cluster-
ing and Principal Component Analysis (PCA).
Forecasting,in general, refers to making future predictions
based on the analysis of current and historical trends, with
three primary components: input variables (historical and

current data), prediction methods (trend analysis), and out-
put variables (future predictions), as illustrated in Figure 2.

Figure 2: General forecasting model structure.

In this study, the prediction method used is the ARIMA
modeling approach. The input variable is the river dis-
charge (cubic meter per second/cumecs), and the output
variable is the forecasted average discharge values. The
ARIMA modeling technique is one of the efficient time-
series forecasting model for hydropower generation fore-
cast along with the prediction in the river discharge (Pol-
prasert et al., 2021). Hence, the study has considered the
implementation of ARIMA model in case of hydropower
in Nepal which has not been done in the previous litera-
ture. Nepal is a developing country with huge potential in
hydropower generation and it is very important to ensure
a balance between the generation and consumption in or-
der to make the grid secure. This study aims in contribut-
ing to this fact by analyzing ARIMA time-series mod-
eling approach for investigating the behavior of Runoff
River (RoR) hydropower plant subject to seasonal river
discharge and its power generation. This will aid in fur-
ther study of various other hydropower plants in case of
Nepal to ensure power security in INPS.
The ARIMA model has the format of ARIMA (p, d, q),
where p is the Auto-Regressive term, d is the order of dif-
ferencing required for the data to make it stationary and
q is the Moving-Average term. The established model is
identified through the data of sample autocorrelation func-
tion (ACF) and partial autocorrelation function (PACF).
Box and Jenkins presented a complete stepwise approach
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for analysis and forecasting of a time series using ARIMA
models in 1976 (Box et al., 2015). Because of the popu-
larity of its methodology, ARIMA models are frequently
referred to as Box-Jenkins models (Jamil, 2020).
The ARIMA model is a type of Box-Jenkins series analy-
sis. The prediction value is viewed as a function defined by
the time sequence. Integrated autoregressive and moving
average models are used to model the data. These are re-
gression models that include delays in the dependent vari-
able as well as delays in the error term.
The ARIMA (p, d, q) model is decomposed into three parts
(Polprasert et al., 2021).
The part (p) is AR part which represents the dependent
variable regressed on its own lagged values as shown in
equation 1.

Xt = α0 + α1Xt−1 + .....+ αtXt−p + ϵ1 (1)

where,
α0 = constant
Xt = interpreted variable
α1, ..., αt = coefficients or AR model parameters
Xt−p = pre-stage data
t = periodic time
ϵ1 = error term
Similarly, the part (q) is MA part which shows that the re-
gression error is a linear combination of error terms whose
values occurred simultaneously and at various times in the
past as shown in equation 2.

Xt = ut + β1ut−1 + .....+ βqut−q (2)

where,
β1 = coefficient of MA model which is the weight
Xt = interpreted variable
t = periodic time
ut−q = error term
Finally, the part (d) is the I part that indicates that the data
values have been replaced with the difference between
their current values and the previous values.
A general ARIMA model can be written as shown in equa-
tion 3.

Xt = α0 + α1Xt−1 + .....+ αtXt−p + ϵ1

+ut + β1ut−1 + .....+ βqut−q

(3)

Before building ARIMA model, it is necessary to check
the stationarity of the data. The first step is to analyze
the data-time plot to examine whether it is covariance sta-
tionary. The time series is subjected to a unit root test to
determine its stationarity. The unit root test regresses the
time series Xt on its lag value Xt-1, and the results re-
veal the data’s nature in respect of stationarity (First Tor-
nado in Nepal – March 2019, 2019). If the data is non-
stationary, after basic first-order or second-order differenc-
ing, the ARIMA model is still suitable to nonstationary
time series. At this stage, the level of differentiation i.e.,
the number of times the data is differenced for its station-
ary is (d). Kwiatkowski–Phillips–Schmidt–Shin (KPSS)
(Kwiatkowski et al., 1992) test was used in the research
as a unit root test for testing a null hypothesis that the ob-
servable time series is stationary around a deterministic
trend. The KPSS test is a linear regression-based statis-
tical test for determining if a time series is stationary.The
test’s null hypothesis is that the time series is stationary,
whereas the alternative hypothesis is that the time series
has a unit root.(Kwiatkowski et al., 1992)provides a de-
tailed mathematical formulation behind the KPSS test.

The study is carried out using EXPLORATORY tool (Ex-
ploratory, Inc., n.d.).The software builds an ARIMA time
series model and performs forecast based on input time
series data. The model parameters p,d,q are selected on
the basis of ACF and PACF plots. The effectiveness of the
model is observed from three performance metrics: Root
Mean Square Error (RMSE) which gives the root of mean
of squares between the forecasted and actual value, Mean
Absolute Error (MAE) which is the mean of absolute dif-
ferences between forecasted and actual value and Mean
Absolute Percentage Error (MAPE) which is the mean
of absolute differences in percentage of actual value (Ex-
ploratory, Inc., n.d.).

3. Results and Discussion
The efficacy of the presented approach has been tested on
a RoR Hydropower Project test case. The salient features
of the project is shown in table Table 2.

Table 2: Salient features of the test case project
Particulars Features
Location Pyuthan District, Central / West Nepal
Intake River Jhimruk Khola
River Training 2 km Canal, Gabion Mattresses
Dam 300m Curvilinear with desilting basin

and intake, 10,000m3 Concrete
Tunnels Headrace 1100m x 8.5m2, fully lined

Inclined Shaft (45 degree) 280m x 9/3.5m2,
fully lined (Steel, Concrete)

Powerhouse Semi-underground, Steel Trusses,
8m x 20m x 18m

Rated power 12,6 MW
Head 201,5 m
Flowrate 12 m3/s(4m3/s each turbine)
Turbines 3 units, Francis, Kværner
Speed 1000 rpm

The two years daily average discharge and power gener-
ation data collected are presented in Figure 3a. The data
shows the daily variations of average discharge from 2017
to 2019. It is evident that the average discharge shows a
seasonality trend with high discharge during wet seasons
and low discharge in dry months. Moreover, there is an
abundant water supply, typically from July to October.
It can be seen that the hydropower plant can not generate
more than the rated maximum even at the times of max-
imum discharge. However, there is a substantial differ-
ence in the values of maximum and minimum energy pro-
duction, which indicates the significant dependence of hy-
dropower generation on discharge, water quality and oper-
ational constraints.
Ideally, in a hydropower plant, the abundance water sug-
gests high hydropower generation. Therefore, a flat hy-
dropower generation plot with maximum rated value could
be expected during the times of high discharge. But,
contrary to the ideal assumption, it can be observed that
the hydropower generation seems to decrease when the
river discharge spikes as shown in Figure 3b which is a
zoomed in view of Figure 3a. This is because the se-
lected site and the rivers of Nepal in general also face the
challenges of high sediment issues which results in shut
down/rescheduling of the generation units in order to pre-
vent the sediment erosion in a turbine to ensure its dura-
bility when the river discharge increases during monsoon
season. The generation plot is almost flat post monsoon
season as seen in Figure 3b as the sediment is less during
that period.
To understand the correlation between variables and the
trend in decrease/increase of data, the raw data along with
its trend line is illustrated in the following Figure 4.
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(a)

(b)
Figure 3: The figure presents the average discharge and average
generation plot.
(a) represents the overall plot of the input data for two years
(b) represents a zoomed version of (a) from May 2018 for a better
analysis of the plot

The trend change lines represent the points in a year where
the river discharge is either changed to increasing or de-
creasing flow. The major rate of change in the trend line is
observed around September, where the discharge sharply
decreases from that month onward.
The predicted average discharge from ARIMA model as
compared to the actual average discharge is shown in Fig-
ure 5a.
There was a considerable increase in average discharge
around August 2017 as shown in Figure 5b, resulting in
a significant difference between predicted and actual val-
ues. However, the model fit improves significantly after
that, as the predicted and observed values nearly perfectly
overlap.
The performance metrics RMSE, MAE and MAPE from
the study was obtained as shown in Table 3. In general, a
lower value yields a better prediction. It is evident from

Table 3: Performance Metrics
Metric Value
RMSE 8.04
MAE 2.8
MAPE 0.12

the results that the RMSE value (squared error) is signif-
icant larger than the approaches for average error estima-
tions. Since the errors are squared before they are aver-
aged, the RMSE gives a relatively high weight to large er-
rors. The RMSE is most useful when large errors are par-

Figure 4: Change in the Average Discharge Trend.

(a)

(b)
Figure 5: The figure presents the ARIMA model for average dis-
charge.
(a) represents the overall plot of the model for entire input data
(b) represents a zoomed version of (a) for a better analysis of the
model
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ticularly undesirable. From the figures it can be seen that
the difference between actual and forecasted values at the
discharge peaks (rainfall) are significant. Hence, all three
methods should be used together to diagnose the variation
in the errors in a set of the forecasts. As the ROR plant
has large seasonal variation and different magnitude, a mix
of these methods should be considered in the forecasting
evaluation. An ideal model should have the lowest error
metrics. However, the results show a good fit of the devel-
oped model as compared to the previous literature in the
relevant domain (Jamil, 2020), (Polprasert et al., 2021).
Figure 6 shows the short-term forecasting result obtained
from the ARIMA model for average discharge. The fore-
casting for immediate 10 days has been obtained from the
model. In the historical data, average discharge plot during
January-March is almost flat which is reflected in the fore-
casted data for February as well. As the input data for only
two years has been used in the modeling, the forecasted
data tends to follow the trend shown by the historical data.
The model do not seem to forecast the sudden events such
as increment in discharge and the peak it causes. A mini-
mum sample size of 50 is required for a reliable statistical
analysis of a time series using the ARIMA method, which
indicates that data for at least 50 years should be avail-
able (Box and Tiao, 1975).The intent of this work is to
analyze and forecast annual generation based on discharge
and other operation or maintenance variables; which is ex-
pected to show an annual trend but not the monthly or
weekly or daily trend. As the data for large number of
years was not available, the model accuracy is compro-
mised. The model would have been more effective if larger
volume of historical data was available as input for the
model.

Figure 6: The figure represents the forecasting part of average
discharge with ARIMA modeling as seen in bottom right part of
Figure 5(a).

Proper energy planning is a crucial factor to ensure power
security. There are several cases of power cut and unre-
liable power supply due to mismatch in the energy pro-
duction capacity and its consumption. The scenario gets
worse because of evolving climatic variations which has
affected the power systems all over the world. Nepal,
being a rich country in hydropower generation potential,
is also a victim of seasonality leading to frequent power
cuts and low power quality in various parts of the country.
Several studies are being conducted to estimate the power
system parameters subject to changing climatic conditions
but the study in case of Nepal is very limited. Therefore,
as a small step in ensuring power security for INPS, this
study has applied ARIMA forecasting model for varying
seasonal discharge to make it easy for the electricity reg-
ulators to conduct proper energy planning amidst the fluc-

tuating river discharge. The study, till this point, is done
for average river discharge by fitting an ARIMA model.
River discharge is a natural process which can be accu-
rately modeled. Therefore, preliminary investigation to
study and forecast has been obtained in this study. Further,
the implications of weather events on hydropower produc-
tion, as mentioned in Section 1, is yet to be addressed.
Correlating weather events and actual hydropower gener-
ation and its modeling is a complex process as generation
is affected by operational constraints such as operator’s
instructions as well. This is yet to be incorporated in the
model. Although the aim is to incorporate extreme events
such as GLOF, landslide, flooding, etc., the modeling of
these events in relation to a hydropower production is a
complex methodology which is yet to be addressed.
The major challenge during the study was the availability
of the data from hydropower in Nepal. There was lack
of proper record maintenance and also the power plants
were reluctant to provide data. The study was performed
with the daily discharge and generation data for two years.
Results from modelling could be improved if more obser-
vations were available e.g., either hourly data or if data for
a larger period of time was available.

4. Conclusions
This paper presents a study that investigates the histori-
cal and future trends of energy produced by a hydropower
plant of Nepal, taking into account its historical average
discharge conditions. Forecasting studies play a signifi-
cant role in resource planning and management in the fu-
ture. The gathered historical data was statistically ana-
lyzed, and ARIMA modeling was used to forecast Nepal’s
future average discharge impacting hydroelectricity gen-
eration. From the research investigation, it is concluded
that the proposed model can be utilized to better under-
stand the trend in discharge and generation of a ROR hy-
dropower plant and as a reference for energy planning.
However, when utilizing the model to anticipate electricity
generation from green energy, which is based on natural
resources, additional care must be taken because environ-
mental circumstances and climate fluctuation might have
a significant impact.
The major findings of the paper can be summarized as:

• It is evident that ROR hydropower plants have large
natural yearly variations following the rainfall sea-
sons. Future climate variations may further impact
this variation, demanding good statistical models for
discharge and power generation forecasting.

• An effective forecasting model demands more obser-
vations e.g., several years of discharge data to give a
satisfying prediction.

• The ARIMA modeling approach is an effective
method for predicting river discharge. The model
follows the river discharge trend in mostly of the
study and gives a short-term forecasting result. How-
ever, seasonal rainfall peaks are rather challenging to
track.

Future work will focus to enhance the modelling frame-
work and environment. More sophisticated data-driven
models e.g., Long short-term memory (LSTM), and other
artificial neural network and deep learning will be ex-
plored. A novel architecture such as Temporal Fusion
Transformer (TFT) which is also being used in time-series
forecasting and gives globally important variables, sus-
taining temporal patterns and significant events in the
dataset is of interest. The proposed approach can be an
improved decision tool for power producers for planning
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and revenue. In addition, government officials in the en-
ergy industry can make informed energy production de-
cisions and develop a long-term strategic plan to keep up
with economic growth in Nepal.
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