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Abstract

With the ever-increasing incorporation of wind and solar power in the electric power system, enhanced performance of classical
bulk hydropower plants for robust operation of the power system is required. This current energy transition may cause a rapid
increase in undesirable low-frequency oscillations (LFOs) in modern power system operations. A power system stabilizer
(PSS) located at hydropower plants is one solution to damp such oscillations. This paper presents a new method based on
Long Short-Term Memory (LSTM) neural networks for sine-wave phase shifting to possibly enhance PSS damping. The
proposed controller considers the PSS input and the rotor speed deviation as a damped sinusoidal signal, simplifying PSS
control and real-time optimization of PSSs parameters. Results show that the proposed LSTM architecture is able to learn
multiple damped sine waves with different frequencies and decay rates. Therefore, the proposed controller can operate on the
entire range of LFOs, unlike simple feedforward neural network (FNN) controllers, which can only learn and function on a
single LFO frequency.

1. Introduction
The shift towards a more sustainable energy system
demands increased stability properties from the
hydropower fleet. Power system stabilizers (PSS),
formerly known as supplementary excitation control
systems, were developed to enhance the damping of
low-frequency oscillations (LFOs) and increase power
transfer limits [4, 5, 9–11]. In Norway, it is obligatory
to install PSS on synchronous generators with a capacity
of 30 MW and above (type D) [16]. The first PSSs were
installed in the Nordic power system around 1970 to
reduce power oscillations and increase power exchange
on the interconnections between Norway and Sweden.
PSS design and tuning were re-visited through the 1990s
when the system loading and demand for power exchange
increased, becoming one of the most cost-effective
solutions for enhancing power system stability [12].
Traditionally, PSSs are only tuned and validated during
the commissioning of the machine. These start-up settings
of the PSS have the intention to dampen a wide range
of low-frequency oscillations in the grid system during
operation [18]. However, as the power system develops
and expands with more intermittent energy sources such
as wind and solar, new challenges are introduced to
the operation of the power system. High-impedance
weak grid systems and reductions in short-circuit power
capabilities will transform the grid characteristics and
may adversely affect the damping performance of the
online PSS operation.
Over the past couple of decades, advancements in
machine learning algorithms and computing power have
enabled researchers to explore automatic calibration of
PSS parameters to changing grid conditions [2, 3, 15].
Moreover, [6] proposed two methods to enhance the small-
signal stability of a single-machine infinite bus (SMIB)
system. Firstly, a particle swarm optimization (PSO)

algorithm was used to determine optimal parameters for a
conventional power system stabilizer (CPSS) [8]. CPSS is
a simplified version of the PSS1A type PSS [1]. The PSO
algorithm optimizes the CPSS parameters for a specific
value of the external (Thévenin) impedance connecting the
synchronous machine to the infinite bus. However, PSO
algorithms are computationally expensive and potentially
slow at finding solutions. Hence, a simple feedforward
neural network (FNN) was used to map a range of external
impedance values to the corresponding set of optimized
parameters by the PSO algorithm. The end design is
an auto-tuning system that automatically adjusts CPSS
parameters in response to changes in the external network
impedance.
Secondly, a model-free approach to PSS design was
proposed in [6]. A simple FNN-based PSS, called the sine
shifting neural network (SSNN) controller, was developed
without relying on complex electrical machine theory.
Unlike the first method, which augmented the CPSS with
an auto-tuning system based on artificial neural networks,
the SSNN controller completely replaces the CPSS.
This paper proposes replacing the simple FNN
architecture of the SSNN controller with a more
complex neural network architecture to improve the
stability performance of the PSS when subjected to a
wide range of LFO in the electricity grid. Specifically,
the proposed approach, which is called the Sine Shifting
LSTM (SSLSTM) controller, uses a Long Short-Term
Memory (LSTM) neural network, which is a type of
recurrent neural network (RNN) architecture, to expand
the operational range of the SSNN controller. While the
SSNN controller can only function correctly over a single
LFO frequency, the proposed SSLSTM controller can
operate effectively over a wide range of LFO frequencies
(0.1 to 2.5 Hz) with minimal performance impact.
Moreover, a detailed discussion on best-practice for
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picking training sets and training options is included.
The paper is organized as follows. Section 2 briefly
describes the excitation control system of synchronous
generators and CPSS’s role in the control loop. Section
3 describes the SSNN controller, while section 4 describes
LSTM networks. Section 5 describes the proposed
controller. Simulation and results are presented in Section
6, and results are discussed in Section 7. Finally,
conclusions and future work are given in Section 8.

2. Excitation systems
A typical excitation control system consists of an exciter,
automatic voltage regulater (AVR), and a PSS. The AVR
regulates the generator terminal voltage by controlling
the amount of current supplied to the generator field
winding by the exciter, while the PSS is a feed-forward
supplementary control device. The primary function of
the PSS is to damp generator rotor oscillations (LFO’s)
and enhance both steady-state stability and transient
stability. A well-tuned excitation system provides benefits
such as improved oscillation damping, relay coordination
and enhanced first-swing transient stability. Fig. 1
shows a block diagram of a grid-connected synchronous
generator’s excitation control system. In the figure, the
PSS output VPSS is an auxiliary control signal passed to
the AVR. The AVR input can be expressed as:

∆V∑ = ∆V + VPSS. (1)

Here, the voltage error ∆V is expressed as:

∆V = Vref − Vg. (2)

AVR + Exciter
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Step-up
Transformer

Figure 1: Block diagram of a grid-connected synchronous
generator’s excitation control system. In the figure, VPSS is
the supplementary control signal, ∆V is the voltage error,
∆E′

q(∆Ef )
is the quadrature component of the transient emf, ∆ω

is the speed deviation, Vref is the reference voltage, and Vg is the
generator terminal voltage [12].

Fig. 2 shows a block diagram of a CPSS. In this figure,
the CPSS is made up of four parts: (a) amplifier gain, (b) a
signal washout high-pass filter, (c) lead elements for phase
compensation, and (d) a limiter. In addition, some CPSS
also include a signal sensor and a low-pass filter stage,
which is not shown in the figure. A common signal used
as input in the CPSS is the speed deviation ∆ω. In most
studies the amplifier gain KPSS and the time constants of
the phase compensation stage are typically tuned to damp
the LFOs. The other parts of the CPSS ensure that it
functions as intended and does not disrupt the AVR action.

Classical tuning and performance evaluation of the PSS
are typically done through phases compensation, root
locus, and time domain analysis [9–11]. In phase
compensation, which is the most widely used approach,
the stabilizer is tuned to compensate for the phase lags
through the generator, the excitation system, and the
power system in such a way that torque changes are in
phase with speed changes.

a b c

d
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Figure 2: Block diagram of a conventional PSS (CPSS) [6, 12].

3. Neural Network PSS design
In [6] a Sine Shifting Neural Network (SSNN) Controller
was developed. This approach has been evaluated in this
paper. The SSNN approach is based on the assumption
that the rotor speed deviation ∆ω can be considered a
damped sinusoidal signal. However, the neural network
used to build the controller was trained on a sinusoidal
signal without taking damping into account. That is, the
controller input, the speed deviation ∆ω was expressed as:

∆ω ≈ As sin(ωst). (3)

Here, As and ωs are the amplitude and the frequency of
the sinusoidal signal, respectively. Also, the controller
output was expressed as an identical, phase-shifted sine
wave

∆̂ω ≈ As sin(ωst+ β). (4)

where β is a control variable that represents the desired
phase shift. Ideally, the controller would require only
two inputs: the speed deviation ∆ω and the desired
phase shift β. However, since the SSNN controller was
designed using FNN, which is a simple neural network
architecture without internal memory, additional inputs
were required. The additional inputs are the speed
deviation values at the two previous time steps: ∆ω

∣∣
t=t−1

and ∆ω
∣∣
t=t−2

. Algorithm 1 shows the pseudo-code
for generating the SSNN training data. In essence, the

Algorithm 1 Pseudo-code to generate the training
data set for the SSNN controller [6]. An FNN-based
SSNN requires four inputs.

1: for Every amplitude Ai in A’s range do
2: for Every phase shift βj in β’s range do
3: for each time step tk in one period do
4: SSNN input 1 = βj

5: SSNN input 2 = Ai sin(ωtk)
6: SSNN input 3 = Ai sin(ωtk−1)
7: SSNN input 4 = Ai sin(ωtk−2)
8: SSNN output = Ai sin(ωtk + βj)
9: end for

10: end for
11: end for

additional inputs serve as external memory cells to the
SSNN. However, information stored in these memory
cells is lost as new data is measured, which limits the
functionality of the SSNN. Furthermore, the performance
assessment in [6] showed that under the FNN architecture,
the SSNN performs well only at the frequency at which
it was trained. In addition, a slight attenuation or gain
was observed in the amplitude when β ̸= 0. The
results indicate that a controller based on FNN can only
output the correct amplitude for undamped sine waves.
This is evident from the amplitude of the oscillations
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in the results; until the amplitude decays, the controller
outputs the correct amplitude. For damped sine waves,
the controller outputs the correct amplitude only when
β = 0. Moreover, according to [6], it is practically
impossible to train an FNN to differentiate between sine
waves of different frequencies; training SSNN for more
than one frequency under the FNN architecture results in
a network that performs as if it were trained on the average
of all the frequencies. Consequently, the results in [6]
show the controller’s performance deteriorates rapidly at
all frequencies except for the one for which it was trained.
To correct the amplitude and the phase drift, [6] describes
several approaches. One approach assumes that the
frequency of oscillation is known at the time of the
disturbance and proposes training several SSNNs at
different frequencies and enabling the one that was trained
for the current frequency of the oscillation. However, this
approach of multiple SSNNs is valid only if the oscillation
frequency can be determined in real-time and relatively
fast to avoid degrading the PSS’s initial performance.
In this work, the frequency of oscillations is considered
to be unknown, but it is assumed to be in the range of
0.1 − 5 Hz. If the oscillation frequency is unknown, [6]
proposes using a more complex neural network to correct
the amplitude and the phase drift, namely RNN and the
LSTM architecture.

4. Long Short-Term Memory network
For a better understanding on the underlying architecture
in the proposed method this section describes the Long
Short-Term Memory (LSTM) network. LSTM is an
advanced type of RNN that is capable of learning long-
term dependencies between time steps of time-series data
or any other type of sequential data [7]. Fig. 3 shows a
block diagram of an LSTM cell (left) and LSTM layer
(right). A single LSTM layer can contain N LSTM cells,
where N depends on the length of the longest sequence of
interest. In addition, it is also possible to stack several
LSTM layers in a single neural network architecture to
create deeper LSTM networks.
Furthermore, each LSTM cell consists of three gates: (a)
a Forget gate, which controls what information should be
discarded from the old cell state ct−1, (b) an Update gate,
which controls the flow of new information into the new
cell state ct, and (c) an Output gate, which controls the
value of the next hidden state ht (also called the output
state). At time step t, the cell state ct and the hidden state
ht are expressed as:

ct = ft ⊙ ct−1 + it ⊙ gt (5)

ht = ot ⊙ σtanh(ct). (6)

Here, the symbol ⊙ denotes the Hadamard product
(element-wise multiplication). Moreover, the functions ft,
it and ot are given by:

ft = σsigmoid(Wfxt +Rfht−1 + bf ) (7)

gt = σtanh(Wgxt +Rght−1 + bg) (8)

it = σsigmoid(Wixt +Riht−1 + bi) (9)

ot = σsigmoid(Woxt +Roht−1 + bo). (10)

Here, the matrices W , R, and b represents the learnable
parameters (weights) of the LSTM cell. To view and
analyze the learnable parameters in MATLAB, the neural
network can be imported to the Deep Network Designer
app, which can analyze the network parameters. For
example, Tab. 1 shows the analysis results of an LSTM

LSTM Layer

+

Forget

Input

Output

Cell candidate

LSTM Block
Initial state

LSTM
Block

LSTM
Block

LSTM
Block

LSTM
Block

Final state

C
ell State

a)

b)

c)

Figure 3: An LSTM cell (left) and LSTM layer (right). In
MATLAB, the default activation function for ft, it and ot is
the sigmoid function (represented by green lines), while the
hyperbolic tangent function (tanh is represented by blue lines) is
used for gt [13, 17].

Table 1: Analysis results of an LSTM network with 128 hidden
units using MATLAB’s Deep Network Designer application. The
total learnable parameters in the network is 67.2× 103.

Type Properties
1 Sequence input −

2 LSTM
Weights: 1× 128
Bias: 1× 1

3 Fully Connected
InputWeights: 512× 2
RecurrentWeights: 512× 128
Bias: 512× 1

4 Regression Output −

network with 128 hidden units, where the number of
hidden units refers to the size of the hidden state ht.
Tab. 2 summarizes the hyperparameters of the LSTM
layer. In MATLAB, InputSize is automatically set at
training time. It is typically set to the number of features
in the data set. NumHiddenUnits (the hidden size) is
a hyperparameter that determines how much information
the hidden state can store from previous time steps.
This hyperparameter highly influence SSLSTM prediction
accuracy. OutputMode determines if the layer outputs the
complete sequence or the last time step of the sequence.
Since SSLSTM phase-shift one point at a time, this
parameter is set to ’last’. The last two hyperparameters
are the activation functions used in Equations 6 - 10.

Table 2: Hyperparameters of the LSTM layer.
Hyperparameter Value

1 InputSize auto
2 NumHiddenUnits 128
3 OutputMode last
4 StateActivationFunction tanh
5 GateActivationFunction sigmoid
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5. Sine Shifting LSTM Controller
In this work, a Sine Shifting controller based on LSTM
networks is developed to phase shift the speed deviation
∆ω to some optimal value. In the CPSS structure shown
in Fig. 2 the required phase shift is obtained using two
lead/lag stages. The time constants of these stages are
tuned to produce a control signal that induces positive
damping in the synchronous machine. Moreover, the
proposed SSLSTM controller like the SSNN controller
uses a single control parameter, β , to obtain the required
phase shift. However, in contrast to the SSNN controller
which can only function properly on a single LFO
frequency, SSLSTM can function on the entire range of
LFO frequencies.
The ability of LSTMs to predict discrete sine functions
was studied by [14]. However, in this work it is focused on
phase-shifting rather than forecasting future values. The
objective is to develop a simple controller with only two
control parameters, KPSS to control the gain, and β to
control the phase. It should be pointed out that the optimal
values of KPSS and β are outside the scope of this work
and left for future research.

5.1. Generating the training data sets
Training, validation, and testing data sets are required
to develop the machine learning model. In this study,
different techniques were evaluated to generate the data
sets: (a) an Expanding Window, (b) a Sliding Window, (c)
a Sliding Data, and (d) An Expanding-Sliding Window.
Depending on the technique, training time and model
performance may be adversely affected. Moreover, in
these techniques each predictor has a dimension of 2×W,
where W is the window width (A sequence contains at
least two points, therefore the minimum value of W is
2). However, the window length is fixed to 2 (the number
of features). Unlike the SSNN (Eq. 3 and Eq. 4), the
SSLSTM features e−λtAs sin(ωst) and β include the
Decay constant λ. Also, the targets, e−λtAs sin(ωst+β),
have a fixed dimension of 1× 1.
Fig. 4 shows the Expanding Window method. In this
method, the data sets consist of sequences of varying
width. This method guarantees that targets are generated
for all time steps {t1, t2, ..., tend}. However, this method
will add unnecessary information to all sequences beyond
SN . This implies that any target generated after the first
period will have a predictor pair that contains unnecessary
data points since one sine wave period contains all the
necessary information to learn λ and ω. Hence, a better
solution is to discard these redundant data points to save
memory space, reduce training time, and enhance training
performance.
In Fig. 5 the Sliding Window method is presented. In
this method, the data sets consist of sequences of fixed
width. This method guarantees that enough information
is contained in all predictors when the window width is
greater or equal to N . However, if the window width
is greater or equal to N , then no targets are generated
for time steps that comes before N . Moreover, Fig. 6
shows a comparison between the data sets generated by
the Expanding Window method and the Sliding Window
method. In the figure, no targets were created for t1
and t2 in the Sliding Window method. To create targets
for t1 and t2, either the window width can be reduced
from 4 to 2, or the time steps prior to t0 can be filled
with zeros (pre-padding the data array with zeros).
Fig. 7 shows the Sliding Data method, which is a slight
modification to the Sliding Window method. In this
method, as in the Sliding Window method, the data sets

Window width

Figure 4: (a) The Expanding Window method. In this method,
sequences have a variable length. Also, at some time tn, Sn

contains all previous data points.

Window width

Figure 5: (b) The Sliding Window method. In this method, the
window width is fixed. To illustrate, the window width is set to
two.

consist of sequences of fixed width. However, the data
points slide into the window. This slight modification
guarantees that targets are generated for all time steps,
as in the Expanding Window method. However, this
method pre-pads the window/predictors with zeros, which
results in an inefficient memory allocation for all targets
with predictors length less than the window width. This
is illustrated in Fig. 7 for the first three sequences
{S1, S2, S3}.
Fig. 8 shows the Expanding-Sliding Window method. This
method combines the Expanding Window and Sliding
Window methods to ensure memory-efficient generation
of targets for all time steps. In this study, this approach
proved to be the most effective method for generating the
data sets and was selected to develop the SSLSTM PSS.
Also, it is possible to add redundant data for the first
quarter of the first period using the Expanding Window
method to speed up and improve model training for early
predictions. To illustrate this, Fig. 9 shows a histogram
of a training data set generated by the Expanding-Sliding
Window method for 2.2, 3.2, and 4.2 Hz sine waves. In
addition, the figure illustrates how the Expanding Window
method can be used to add redundant data to the training
data set. However, it is advised not to add too much
redundant data or the model can overfit.
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Figure 6: A comparison between data sets generated by the
Expanding Window and the Sliding Window methods. Each
sample consist of two features and W data points. Where W is
the window width.
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Figure 7: (c) The Sliding Data method. In this method, the
data points slide into a window with fixed width. Although all
sequences has same number of data points, some might contain
zeros (pre-padding the sequences with zeros before training).

5.2. Neural network architecture of SSLSTM
The proposed neural network architecture of SSLSTM
is shown in Fig. 10 using Deep Network Designer
application in MATLAB. The network layers were
described in Tab. 1. In addition, zscore normalization
option was used in the sequenceInputLayer layer. Also,
the Output mode was set to ’last’ in the LSTM layer to
perform sequence-to-one regression.

5.3. Training options
This section describes MATLAB’s training options used in
this work. Moreover, Tab. 3 lists the training options used
in this study. Apart from the training options shown in the
table, no other changes were made to the default training
options. Throughout this study, the Adam optimizer was
used for training the network. In MATLAB, except for
solverName and Plots, all other options in the table are
considered optional arguments. These arguments can be
categorized based on their function into eight groups:

1st Period 2nd
Period

Window width

Figure 8: (d) The Expanding-Sliding window method. In this
method, the Expanding window and the sliding window methods
are combined to improve the model performance.

(a) Plots and Display options, (b) Mini-Batch options,
(c) Validation options, (d) Solver options, (e) Gradient
Clipping options, (f) Sequence options, (g) Hardware
options, and (h) Checkpoints options.

Table 3: Training Options.
Name Value

1 solverName adam
2 Verbose 0
3 Plots training-progress
4 MaxEpochs 100
5 MiniBatchSize 2048
6 Shuffle every-epoch
7 InitialLearnRate 0.01
8 LearnRateSchedule piecewise
9 LearnRateDropPeriod 1
10 LearnRateDropFactor 0.95
11 GradientThreshold 1
12 SequenceLength longest
13 SequencePaddingDirection left

First, from the Plots and Display options, the option Plots
was set to "training-progress" to visualize the training
progress since it is easier to monitor the training progress
by the accuracy and loss plots of the validation and
training sets. The downside to this is that after training
the network for a long time, it can become difficult to tell
if the metrics are improving or not since the plots do not
automatically scale to the last few training iterations. In
this case, it is best to use Verbose to monitor the training
progress, which displays the training progress metrics in
the command window.
Secondly, under the Mini-Batch options, the number
of Epochs was fixed to a relatively large value when
comparing models with different hyperparameters. In this
work, the value of MaxEpochs typically range from 50
to 500, ensuring that the model does not get stuck in a
local minimum. Moreover, the value of MiniBatchSize is
a trade off between training speed and accuracy. In this
work, the max value of MiniBatchSize was limited by
the GPU memory, while the minimum value was limited
by the available training time. Setting MiniBatchSize
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Figure 9: A histogram of a training data set generated by the
Expanding-Sliding Window method for 2.2, 3.2, and 4.2 Hz. The
redundant data generated by the Expanding window method does
not contain any new information, but it helps improve model
training speed on early targets by exposing the model to the data
more than once during one training epoch.

Figure 10: The proposed architecture of SSLSTM [13]. The
layers are described in Tab. 1.

to a small value increases the training time and the
regularization effect of mini-batches. Thus, the model
generalizes better, resulting in a lower validation’s Root
Mean Square Error (RMSE). In addition, it was observed
that shuffling the training data after each epoch helps to
reduce the validation RMSE. Thus, the option Shuffle was
set to "every-epoch".
Thirdly, for the Solver options the InitialLearnRate,
LearnRateDropPeriod, and LearnRateDropFactor
were set with the options MaxEpochs and taken Shuffle
into account to give the best training performance. The
strategy adopted was to decrease the learning rate for
every few epochs as training data is shuffled. Also, for
Gradient Clipping options, GradientThreshold is set
to 1 instead of "inf" (default) to improve the training
stability at high learning rate. This helps prevent gradient
explosions and speeds up the training process.
Finally, from the Sequence options,
SequencePaddingDirection was set to "left". This
is because any padding done in the final time steps of
the sequence can negatively impact the training process
in a Sequence-to-one regression. For SequenceLength,
the value depends on the method used for generating the

data. When the Expanding Window method was used,
the sequence length was set to "longest". In this case, the
sequences in each mini-batch are padded to the length of
the mini-batch’s longest sequence. However, when the
Sliding Window method is used, the sequence length is
set to the length of the longest possible sequence; it was
set to the length of one period of the lowest frequency of
interest. For example, if the lowest frequency considered
is 0.1 Hz, and the step size is 10−3, then SequenceLength
is set to 104.

6. Results and validation
In order to demonstrate SSLSTM’s ability to learn
multiple frequencies and decay rates, four simulation tests
were conducted for β ∈ {0◦, 45◦, 90◦, 180◦}. In these
tests, the SSLSTM was trained on the data range in Tab. 4
with a step size of 0.5 × 10−2. Fig. 11, 12, 13, and 14
show the results of these tests. In the figures, SSLSTM’s
predictions match the ground truth (the ideal expected
output) over a wide range of β, while SSNN’s predictions
only match when β = 0.

Table 4: Data resolution and range. ω: frequency, λ: decay rate,
A: sine amplitude, β: phase-shift.

Lower bound Upper bound Resolution
ω 2.2 Hz 4.2 Hz 3
λ 0 1 10
A 1× 10−5 0.1 10
β 0◦ 180◦ 9
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Figure 11: SSLSTM performance with β = 0◦.

The equations describing the dynamics of a synchronous
generator during transient operation are quite stiff e.g., fast
changing differential equations. Hence, often small step-
sizes of Ode solvers are desired. In [6] the solver (ode23tb
variable-step) step size was set to 3×10−5. In this work,
it was not possible to generate training data with a step
size of 3 × 10−5 due to limited hardware resources. To
validate and compare the performance of SSLSTM and
SSNN, both models were trained with a step size of 10−3.
Fig. 15 shows the simulation results for SSLSTM and
SSNN when a disturbance occurs after 4s of simulation
time.
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Figure 12: SSLSTM performance with β = 45◦.
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Figure 13: SSLSTM performance with β = 90◦.

7. Discussion
In this work, the neural network architecture and the
training options were tuned to improve the model
performance. These are summarized in Tab. 1, Tab. 2,
and Tab. 3. Nevertheless, training LSTM models is
computationally expensive compared to FNN models
since the predictors of LSTM models are sequences. In
this work, to train and tune the models in a reasonable
amount of time, the training data was generated with the
smallest possible step size and limited to the range of
interest. Although it is possible to reduce the amount of
data generated by increasing the step size to 10−2 and
instead train the model on more frequencies and decay
rates, it would decrease the controller performance on
LFOs in the upper range. For example, a control action
each 0.01s maybe sufficient to damp 0.1 Hz LFOs, but it
might not be sufficient to damp 3 Hz LFOs effectively.
A step size of 10−3 achieves the best possible model
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Figure 14: SSLSTM performance with β = 180◦.

Figure 15: A comparison between SSLSTM and SSNN in
damping the dominant mode of oscillation (3.2 Hz) of the
machine under study. The disturbance occurs after 4s of
simulation time.

accuracy and generalization capability in the range of
interest while keeping model training and tuning time to
a minimum. Also, besides the data resolution and step
size, it is also possible to generate more observations by
generating more periods per sine wave. When generating
targets for the current period, it makes sense to discard
data points from the previous period to save memory
space. Thus, the Sliding Window method is preferred to
generate predictor sequences for targets after the second
period. It is also possible to increase the sliding window
width to include more information in each predictor.
While this would increase the model accuracy at the cost
of increased memory usage, it will not improve the model
generalization capability. Thus, this approach was not
preferred in this work. It is also possible to improve the
model accuracy at the cost of training time by increasing
the number of epochs and reducing the mini-batch size.
In Fig. 11, 12, 13, and 14, SSLSTM’s ability
to learn multiple frequencies and decay rate was
demonstrated. Moreover, In Fig. 15 SSLSTM and SSNN
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performance was compared. Both controllers showed
similar performance, which is to be expected since
both controllers were trained on the LFO’s frequency.
However, SSLSTM shows a slightly worse performance,
this is likely due to SSLSTM’s lower prediction accuracy
compared to SSNN’s accuracy. Although SSLSTM’s
prediction accuracy is lower, it has a better generalization
capability; unlike SSNN, it can phase shift sine waves with
different frequencies and decay rates correctly.

8. Conclusion
In this paper, LSTM networks were used to develop a
new sine-wave phase shifter for stability enhancements
of electric power systems through the PSS. Simulation
results show promising results and the main findings are:

• LSTM networks are capable of learning and tracking
sine waves with multiple frequencies and decay
rates.

• SSLSTM outperforms the SSNN controller at all
frequencies except for the one SSNN was trained to
phase shift.

• Training LSTM networks to learn periodic signals
with a wide range of frequencies entails selecting the
smallest step size to sample the highest frequency of
interest while avoiding increasing the computational
load significantly during model training. Training
LSTM to learn long sequences, such as a 0.1 Hz
LFO with a high sample rate, requires significant
computing power.

• Carefully selecting the best method to generate the
training data set can significantly improve the model
performance.

Suggestions for future work:

• Develop an online adaptive PSS by combining
SSLSTM and auto-tuning algorithms to adjust β and
KPSS during operation.

• Combine LSTM with other neural networks to
improve prediction accuracy and reduce the amount
of data required to train the LSTM network.
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