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Abstract 

 

Air-assist atomizers have been widely used in various applications such as the aerospace industry, internal 

combustion engines, molten metal, food processing, etc. The mean drop size for these atomizers was obtained 

through the Shadowgraph imaging technique. This study aims to assess the feasibility of the acoustic 

chemometrics approach for classifying the atomizer types and predicting the mean drop size, such as Sauter mean 

diameter (SMD), for a two-phase spray atomizer employed. The droplet size measurements were carried out at 

three radial locations and one axial location for various air and liquid (water) flow rates. The acoustic signals were 

recorded through two different sensors: accelerometers and microphones. The main objective of this work is to 

implement prediction models for the mean drop sizes (SMD) measured at various locations. The model prediction 

is based on the dimensionless number B, whose unique values correspond to different two-phase flow working 

conditions. This analysis will further cater to the question that whether the acoustics chemometrics approach, 

including Principal Component Analysis (PCA) and Partial Least Squares Regression (PLS-R), is suitable for 

extracting valuable information such as predicting mean drop size (SMD) in two-phase flows through recorded 

acoustic signals.  
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Mean droplet size  

 

1. Introduction 

Multi-phase flows can be found in various industrial 

applications ranging from fuel sprays in IC engines 

to petroleum pipelines. The most occurred case is 

two-phase flows in which gas and liquid interact to 

form various flow patterns generating vibrations and 

flow-based noise. Flow-based vibrations are 

classified into four types, in which acoustic 

resonance (flow-induced pulsations) and turbulent-

induced excitation (FIV) are common in internal 

two-phase flows (Pettigrew and Taylor, 2016). Flow 

classification utilizing vibrations signals is present 

in literature (Miwa, Mori, and Hibiki, 2015). Flow 

rates and the vibration signals recorded using the 

PAT approach (sensors) showed a strong correlation 

(Evans, Blotter and Stephens, 2004). The peak 

frequency of these induced vibrations is 

proportionate to the flow parameters, such as void 

fraction (Ortiz-Vidal, Mureithi and Rodriguez, 

2017). The time and frequency spectrum of the force 

fluctuations in two-phase flow were analyzed 

through flow-induced vibrations (Liu et al., 

2012). Though there are studies related to 

vibration-based analysis for flow classification, 

it lacks study on the effect of flow-induced 

vibrations (FIV) on the flow parameters such as 

local void fraction, interfacial area, and particle size 

distribution. 

The single-phase flow (air only) can significantly 

affect the flow-induced vibrations and the acoustic 

noise. When expanded to high speeds, the jets 

produce shock-associated noise, further 

exacerbating flow-induced vibrations (Tam, 1998). 

The two-phase flow study constituting both 

vibration study for flow-induced vibrations caused 

due to internal flows and acoustic analysis from 

acoustic energy emitted from gas-liquid coaxial 

flows followed by two-phase mixing is still not 

considered. There have been attempts to measure the 

local two-phase flow parameters such as void 

fraction, Sauter mean diameter with flow-induced 

vibrations study (Hibiki and Ishii, 1998), and 

acoustic emission method (Guo et al. 2014). But the 

combination of techniques is still not attempted to 

date. This work applies a united approach, including 

accelerometers for acquiring flow-induced 

vibrations and microphones for obtaining acoustic 

signals. The novelty of this method lies in 

correlating the flow parameter, i.e., Sauter mean 

diameter (SMD), with acquired acoustic data and 
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parameter prediction using PLS-R. The data fusion 

with both techniques (described in the methods 

section) is done in the study to predict the flow 

parameter such as mean droplet size (SMD). The 

dual advantage of this approach is that vibrations, an 

inherent part of fluid flows in piping in industrial 

plants, can be used for both flow parameter 

prediction and dynamic stress analysis to estimate 

fatigue or structural damage.  

 

2. Materials and Methods  

 

The study was conducted utilizing the CMOS-based 

high-speed camera (Photron SA-Z), Nikon macro 

lens (80-200 mm), and Questar long-distance 

microscope (QM1). The rig setup built in-house at 

the process and energy department laboratory was 

used for the experiments. The different atomizers 

configuration with varying cone distances (Lc) and 

similar orifice (throat) diameters (d = 3.0 mm) were 

attached to the lance mounted at the Bosch Rexroth 

traverse system. Fig. 1 shows the airflow patterns for 

three atomizers.  

 

 

Figure 1: Airflow patterns in atomizers with three 

different cone distances (Lc). 

 

Yokogawa Rotamass and Endress Hauser 

Promass 83 (Coriolis type) flowmeter used water 

and air rate measurements. In the test rig (Figure 2), 

the compressor with 7.0 bar (g) capacity was 

employed for the air supply, and the water flow 

supply pump by Froster AS company was used. The 

water flow rate employed was 100, 200 and 300 

kg/h, and the airflow rate employed are 20, 30 and 

40 kg/h. Therefore, nine experiments were done at 

specific air-to-liquid mass ratios (ALR) and Weber 

number (We) based on liquid sheet velocity. The 

range of dimensionless number corresponds to ALR 

and the We number is mentioned in (Sikka, 

Halstensen and Lundberg, 2022)  

ALR  is defined as: 

     𝐴𝐿𝑅 =
𝑚𝑎𝑖𝑟

𝑚𝑙𝑖𝑞𝑢𝑖𝑑
                                                  (1)         

 where mass flow rate in kg/hr. 

 

Weber number is defined as:  

 

    𝑊𝑒 =  
𝜌 𝑈2𝑡

𝜎
                                                      (2)                                                

 

A new dimensionless number (B) (depicted in 

Table 1) was employed, which is defined as: 

 

 𝐵 = 𝑊𝑒 ⋅ 𝐴𝐿𝑅                                                     (3)    

 

The experiments were conducted at STP such that 

fluid physical properties are assumed to be standard 

values. The spray formation in all three different 

cone distance (Lc) atomizers is illustrated in Fig. 2. 

The combined experimental setup for the spray 

imaging/drop size measurements and acoustic 

emission study is depicted in Fig. 3.  

 

 

Figure 2: Images showing the spray pattern for 20 kg/h 

airflow rate at various liquid flow rates and the image 

size scaled (yellow line). 

The acoustic arrangement employed two 

Piezoelectric types, 4518 accelerometers from Bruel 

& Kjær, Denmark, to collect noise/vibration data. 

Acoustic readings were procured using two electret 

condenser type Veco Vansonic PVM-6052-5P382 

omnidirectional microphones (mounted on an arc at 

300 mm from the spray centerline) with a sensitivity 

of -38 dB and signal-to-noise ratio of 58 dB. The 

microphone frequency ranges from 50 Hz to 16 

KHz. The microphones were mounted along the arc 

at θ = 90⁰ and 150⁰ from perpendicular to the nozzle 

axis at R = 100D, termed "far-field" measurements 

(Wong et al., 2020). The vital point is that the 

acoustic data were recorded in a non- anechoic  
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Figure 3: Schematic of the experimental setup for shadowgraphy technique along with the acoustic chemometric.

chamber, affecting the signal through stray noise. A 

data acquisition device (DAQ) from National 

Instruments (USB-6363), a signal amplification 

module, and a personal laptop with an in-house 

LabView interface was employed for signal 

acquisition. LabVIEW-based in-house created 

interface (Halstensen et al., 2019) was used for the 

acoustic chemometrics signal collection and signal 

conditioning. The signal processing was carried out 

on the acquired signal of 8192 recorded samples. 

The time-series signal was multiplied by a window 

(Blackman Harris) to avoid spectral leakage in the 

acoustic spectrum. This signal is finally transformed 

into the frequency domain using Discrete Fourier 

Transform. The Discrete Fourier Transform 

transforms a sequence of  N complex numbers 

{xn}:= x0,x1,...,xn-1 into another sequence of complex 

numbers, {Xk}:= X0,X1,...,XN-1, which is defined by 

equation (4): 

 

𝑋𝑘 =  ∑ 𝑥𝑛 𝑒−𝑖2𝜋𝑘𝑛/𝑁𝑛−1
𝑛=0  𝑘 = 0, … , 𝑁 − 1         (4)   

           

A more advanced and efficient form of the DFT is 

the Fast Fourier Transform (FFT) (Ifeachor and 

Jervis, 1993), implemented for fast real-time 

calculations 

2.1. Drop Size Measurements 

 

The laser-based shadowgraphy method measured 

the mean drop size with a CMOS high-speed camera   

(Photron SA-Z model). The spray was illuminated 

by dual-cavity ND: YAG Laser (Photonics 

industries DM60-532 DH model) at 532 nm (green 

light). The uniform speckle-free light background 

was achieved with diffuser optics. Questar's long-

distance microscope  (QM1) provides a field of view 

(FOV) of 8.445 mm x 8.445 mm. The ParticleMaster 

software package incorporated in Davis 10.1 version 

(LaVision) is used for droplet sizing. The calibration 

plate provides a depth of field (DOF) of ~17:1. The 

minimum pixel used for particle  

 

 

Figure 4: Schematic of the drop size measurement 

locations for shadowgraphy 

 

detection is 3 pixels (in the area). The images were 

recorded at four locations depicted in Fig. 4 (line 

marked) – each 50 mm apart at the radial axis at 300 

mm downstream from the outlet. Though, 500 

images give convergence for mean droplet sizes. 

However, 1000 images were recorded for each 

measurement location which mitigates the 

measurement uncertainty (<1%). Laser intensity (in 

the current (A)) was set adequately to provide 

uniform background in proportion to the droplet 
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density of the shadowgraph picture. Note that the 

camera pixel resolution allowed for drop size 

measurements of 16−2000 µm. The mean drop size 

(SMD) for different radial locations is shown in Fig. 

5. 

 

 

 

Figure 5: Mean drop size (SMD) for radial locations for 

all atomizers. 

 

3. Results and Discussions 

 

The acoustics spectrum is hard to analyze due to its 

multi-dimensional nature. Principal Component 

Analysis (PCA) is a dimensionality reduction 

technique that simplifies the analysis and reveals 

hidden patterns/structures. PCA projects the data 

into the new orthogonal plane, whose first principal 

component (PC1) is aligned in such a way that 

maximizes the variance. The new mean-centred 

plane is given by scores (T) and loadings (P) and 

residual (E). It is given by  

 

                     𝑋 = 𝑇 𝑃𝑇 + 𝐸                                 (5) 

The Nonlinear Iterative Partial Least Squares 

(NIPALS) algorithm developed (Wold, Esbensen 

and Geladi, 1987) was used for its many advantages. 

The method is unsupervised due to its 

independent Singular Value Decomposition (SVD) 

on the data. 

 

The scores plot (Fig. 6) depicts how the acoustic 

spectrum was segregated as colour clusters for three 

different atomizers based on the tests carried out at 

various fluid flow rates. For the 6mm (Lc) atomizer, 

the maximum variance is in the first principal 

component (PC1) direction. Whereas for the 8 mm 

(Lc) atomizer, cluster points scattered in the PC2 

direction show that PC2 contains valuable 

information.  The loading plot (Fig. 7) shows that the 

information is there in all the frequencies for 

accelerometers, reflecting the PCA classification 

model capability. In contrast, for microphones, 

frequencies recorded are from a narrow spectrum.  

 

 
Figure 6: Score plot t1-t2 for all three atomizers. 

 

The prediction model builds upon the regression-

based method. Partial Least Squares regression 

(PLS-R) is a supervised method used to calibrate the 

predicting models, as explained in the PLS tutorial 

(Geladi and Kowalski, 1986).  

 

 
Figure 7: loadings plot for all the sensors. 

 

PLS-R is a more advanced version of other 

regression techniques like MLR, PCR, etc. The 

robustness lies in the fact that model parameters vary 

little when new calibration samples are taken from 

the population. It builds on two-variable blocks, X 

and Y, representing training data. The NIPALS 

algorithm is used for PLS-R modelling (Halstensen, 

2020). The X data matrix contains the frequency 

spectra in our study, and Y is a vector containing the 

mean drop size (SMD) values for a particular radial 

location. The regression model for mean drop size 

prediction is based on both accelerometers and 

microphone data.  

The acoustic spectra used to calibrate the PLS-

R model was a 162 x 8192 matrix, each sensor 

containing 162 frequency spectra. Each spectrum 

has 2048 frequencies ranging from 0 to 200 KHz for 

each sensor. The test set validation (50% data) was 

performed for alternate data values in the column. 

The root mean squared error of prediction (RMSEP) 

value, RMSEP (%) the slope, and the correlation 

coefficient (R2) (Pearson) are commonly used in 

evaluating the different prediction models.  

 



SIMS 63  Trondheim, Norway, September 20-21, 2022 

 
Figure 8: Predicted Vs. Reference (B) value. The target 

line (black) and regression line (red) are indicated. 

The RMSEP is defined as  

RMSEP = 
√𝛴𝑖=1

𝑛  (�̂�𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝑦𝑖,𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒)
2

𝑛
    (3) 

Where i = sample index number, n = total samples, 

RMSEP= Root Mean Squared Error of Prediction. 

The slope of 0.86 matches well with the target slope. 

RMSEP value comes out to be 3.65 with a 

correlation coefficient (R2) value of 0.86 for a 100 

mm location (Fig. 8). The loading weights linked the 

X matrix block to the Y-matrix through weights 

based on acoustic data (Fig. 9). 

 
 

Figure 9: Loading weight plot for all sensors. 

Table 1. Prediction models parameters 

 

SMD 

Location 

Prediction parameters (5 factors) 

Slope RMSEP RMSEP 

(%) 

R2 

Pearson 

0 mm 0.74 7.22 12.2    0.75 

50 mm 0.84 6.93 9.71 0.82 

100 mm 0.86 3.65 9.60 0.86 

150 mm 0.83 12.50 10.4 0.84 

 

The prediction model parameters for all locations 

are given in Table 1.  

 

 
Figure 10: Residual validation variance plot. 

Based on the residual validation variance plot (Fig. 

10), the number of factors optimal for model 

prediction is 5, as Y-variance reduces drastically 

until 5 factors, then slightly decrease with more 

factors involved.  

 

4. Summary  

 

A feasibility study was conducted for the non-

intrusive method using acoustic by applying 

multivariate data analysis techniques. The frequency 

data were recorded through accelerometers and 

microphones. The Principal Component Analysis 

(PCA) model reveals the clusters belonging to twin-

fluid atomizers with the maximum variance in the 

first principal component (PC1) direction and first 

principal component (PC2) for the 6.0 mm cone 

distance (Lc) atomizer and 8.0 mm cone distance 

(Lc) atomizer, respectively. Prediction models based 

on the mean drop size (SMD) were fabricated using 

the Partial Least Squares regression (PLS-R) 

method. The prediction model works best for the 

100 mm radial location as depicted by a low RMSEP 

(%) value of 9.60 and a high correlation coefficient 

(R2) value of 0.86 when validated by test set 

validation. 
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