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Abstract

Increasing age and cardiovascular diseases lead to stiffening of the vasculature. Knowledge about an individual’s arterial
stiffness gives insights into the current state of the cardiovascular system and it is considered to be a valuable diagnostic index.
However, arterial stiffness cannot be measured directly. Numerical modelling based on measurements of flow and deformation
in an individual’s artery enable an indirect means. Our research aims to develop a method to estimate the local arterial
stiffness of an artery from non-invasive measurements through inverse modelling. Experimental measurement limitations and
the unmeasurable nature of model input parameters lead to uncertainties in the model prediction. Uncertainty quantification
and sensitivity analysis (UQSA) inform about how the model prediction is influenced by these uncertainties. Due to the
computational expenses of 3D fluid-structure interaction (FSI) models, we reduced the model’s complexity to a 1D model. To
verify the 3D-FSI implementation and validate the 1D implementation we performed simulated inflation tests and compared
the results with analytical theory. 3D-FSI simulations were performed and compared to the 1D-model predictions for different
simplification assumptions. To quantify the impact of uncertainties in input data, polynomial chaos expansion for UQSA was
applied to the 1D-model. This analysis revealed the model input parameters which lead to the highest variability in model
prediction. UQSA showed that variations in the Young’s modulus and the lumen radius lead to the largest variability in the
1D-model prediction. Thus, we focused in the validation process on the comparison between the the arterial wall behaviour
between the 1D and the 3D-FSI model.

1. Introduction
Arterial stiffening is an ubiquitous process associated with
human ageing and can be observed in all humans over
age 30 [1]. Stiffening itself contributes to cardiovascular
disease, and some diseases, such as arteriosclerosis,
directly cause arterial stiffening [2]. Clinicians recognize
arterial stiffness as a valuable biomarker describing the
overall state of an individual’s cardiovascular system.
However, arterial stiffness cannot be measured directly
[3]. Using numerical models and an inverse problem
formulation, we seek to estimate arterial stiffness from
non-invasive flow and deformation measurements.

The accuracy of an inverse problem’s solution depends
on the accuracy of the forward model response, which
is limited by experimental measurement uncertainties
and unavailable model parameters. Through uncertainty
quantification (UQ), the propagation of input uncertainties
through a numerical model can be investigated.
Subsequent sensitivity analysis (SA) attributes the
uncertainty in the model response to individual model
input parameters and their interactions [4]. These results
can help to identify key sources of error as well as focus
efforts on developing and validating influential portions
of the forward model. However, UQSA require the
evaluation of the entire uncertain input parameter space
increasing the computational expenses with the number
of uncertain model parameters and dimensions.

Three-dimensional (3D) models of vessel segments
enable the simulation of patient-specific geometries
giving spatially resolved insights into a patients’
haemodynamics. Of all model types, fluid-structure
interaction (FSI) models represent the anatomical and
physiological state in the greatest detail. However,
the computational expenses for such models are high,
making it impractical to conduct several thousand model
evaluations for UQSA.

Reducing the spatial model dimension to one (1D)
decreases the information which can be retrieved from
the model, but it also reduces the computational expenses
significantly. In vessel segments where the vascular
flow is independent of the geometry, 1D models
represent hemodynamic quantities like pressure and flow
rate accurately [5]. Low computational expenses and
the ability to evaluate specific hemodynamic quantities
accurately make 1D models suitable for UQSA.

The aim of this work is to compare the 1D model
prediction of pressure, flow rate, and radial deformation
of the common carotid artery (CCA) against a 3D-FSI
model and to determine focus for model development.
To gain insights into the uncertainty propagation from
the input parameters to the 1D model response, we
applied polynomial chaos (PC) expansion. PC is an
efficient way of representing random model inputs as a
polynomial function of another random variable enabling
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Figure 1: Representation of the 1D-model used in this validation
work. As an outlet boundary condition, a Windkessel model with
arterial impedance Z, compliance C, and resistance R is applied.

the evaluation of qualitative and quantitative uncertainty
measures [6]. Information about the most sensitive
1D model input parameters can be used in the process of
validating low-dimensional models against higher fidelity
models and experimental measurements.

2. Methodology
In this work, steps for the verification and validation of
a 1D-model of the CCA were conducted. The workflow
included verification of the 1D-model, UQSA, as well as
initial steps for the validation against a 3D-FSI model.

2.1. 1D-model formulation
The CCA in the 1D model is represented as a straight
deformable tube, depicted in Fig. 1. The quantities of
interest, pressure p, volumetric flow rate Q, and radius
change ∆R, are evaluated at five equidistant nodes located
on the tube’s centreline. In the vessel, laminar and
axisymmetric blood flow is assumed. Impermeability and
homogeneity characterize the vessel wall. Deformation of
the vessel wall is purely in the circumferential direction.
Blood is modelled as an incompressible Newtonian fluid.
Based on these assumptions, the conservation laws of
mass and momentum can be formulated as

∂A

∂t
+

∂(Au)

∂z
= 0 (1a)
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where the quantities u and p are the velocity and pressure
averaged over the vessel cross-section A, ρf is the fluid
density, and f represents the frictional force per unit
length [7]. The velocity profile of the fluid flow determines
the magnitude of f which accounts for the wall shear
stress and convective inertia terms. A commonly used
symmetric polynomial model of the velocity is applied:

ur(z, r, t) = u(z, t)
ζ + 2

ζ

[
1−

( r
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)ζ]
, (2)

where ur is the velocity at a given radial distance r
from the centerline. R denotes the vessel radius, and the
polynomial order ζ determines the shape of the profile,
where a higher ζ corresponds to a blunter profile. For
this profile and a constant dynamic blood viscosity µ,
the friction term becomes f = −2(ζ + 2)µπu. In all
simulations of this work, a parabolic velocity profile with
ζ = 2 was applied.
The arterial wall was modelled as a thin, incompressible,
homogenous, isotropic, elastic material. The tube law
describes the fluid-structure interaction by relating the
pressure to the area with

p = pdia +
β
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with β =

√
πEh

(1− ν2)
,

(3)

where pdia and Adia are the diastolic pressure and cross-
sectional area, respectively. Generally, Adia is larger than
the reference area A0 because A0 is the lumen area when
p = 0. Material properties of the vessel wall are the
Young’s modulus E, wall thickness h, and Poisson’s ratio
ν.
Eqs. 1 resemble a hyperbolic system of equations such
that at each boundary one boundary condition (BC) needs
to be specified. A representative volumetric flow rate
Qin(t) of the CCA was imposed at the inlet boundary
[8]. At the outlet, the 1D-model was coupled with a three
element Windkessel model, mimicking the behaviour
of the downstream vasculature. The elements of the
Windkessel model are a resistor Z modelling the arterial
impedance, a second resistor representing the peripheral
resistance R, and a capacitor C, which mimics the arterial
compliance. Relating pressure and flow, the Windkessel
model equation reads
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As an initial condition, pressure in the entire domain was
set to Pd = 74.5 mmHg [9] and the initial flow rate was
7.7 mL/s. An explicit MacCormack scheme was used
to solve the system of equations. This solution method
is second order in space and time. To grant stability of
an explicit scheme, the Courant-Friedrich-Lewy (CFL)
condition needs to be satisfied. Information travels in
the domain from one element to the next with a forward
travelling wave, which is the sum of the fluid flow speed
u and the pulse wave velocity c. Using the constitutive
equation given in Eq. 3, the pulse wave velocity is

c =

√
β

2ρAdia
A1/4. (5)

The CFL condition becomes with the grid spacing ∆x and
the time step ∆t

CFL = (u+ c)
∆t

∆x
≤ 1. (6)

Since Eqs. 1 form a hyperbolic system of equations,
physiological conditions have two Riemann invariants
that travel in opposite directions, thus at each boundary
the BCs can only be specified to determine the single
Riemann invariant entering the domain [10]. We imposed
a volumetric inflow at the inlet and a relationship between
pressure and flow at the outlet.

2.2. Grid independence of the 1D model
Model verification is essential for every numerical study
[11]. In this work, a periodic solution of pressure, flow and
radius change was reached within twelve cardiac cycles,
demonstrating iterative convergence. Consistency of the
model was shown through mass conservation over five
consecutive heart beats and a pressure drop from inlet
to outlet. In total, three grids with increasing number
of grid points were tested. The coarsest grid with a
total of five nodes returned the same values for pressure,
flow, and radius change as the finer grids with ten and
15 nodes. Therefore, all simulations used a grid of five
nodes. The maximum allowed time step ∆tmax during the
simulations was determined with a maximal CFL number
of 0.8 and the five grid points following Eq. 6. To check
temporal convergence, the time step was set manually
in two subsequent simulation runs to 0.5 ∆tmax and
0.25 ∆tmax. Decreasing the time step did not alter the
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Table 1: Baseline hemodynamic parameters and uncertainties of
the 1D CCA-model of a healthy 45-year -old. Each value is given
with their lower and upper bound.

Lower Upper Unit

R 2.525 3.495 mm [12]
h 0.8875 1.3725 mm [13]
E 236 1306 kPa [9]
ν 0.4908 0.4912 - [14]
ρ 1043 1054 kg/m3 [15]
µ 3.784 5.516 mPa s [16]
Rtot 1.9066 2.3302 109 Pa s/m3 [17]
C 1.2192 1.4901 10−10m3/Pa [17]

accuracy of pressure, flow rate, and radius change values.
Therefore, the maximal allowed time step ∆tmax was used
for the simulations.

2.3. Validation of the 1D model
As a first step of the validation process, we conducted
UQSA of the 1D-model based on population variations in
parameter values. The results of SA motivated us to place
special focus on the structural mechanics of the FSI-solver.
Therefore, we compared a finite element (FE) inflation
test with the analytical solution of thin- and thick-walled
cylinder theory.

Uncertainty quantification and sensitivity analysis
Measurement errors and lack of knowledge lead to
uncertainties about model inputs and and thus propagate
through numerical models to contribute to uncertainty
about model outputs [18]. Quantifying this uncertainty
is an integral part of the model verification and
validation process [11], as well as a prerequisite for
its implementation in clinical decision support [18].
However, computational costs for UQ increase with
increasing number of uncertain model parameters and
model dimension, limiting efficient analysis to low-
fidelity models. This motivates to conduct UQSA on
the 1D-model prior to its validation against the 3D-FSI
model since UQSA will give insights into the model
characteristics. Validation test cases can then be designed
in such a way to capture these characteristics [11].
We considered a total of eight uncertain parameters based
on the variations in a 45-year old healthy population
given in literature. A uniform distribution was assumed
for all parameters, summarized with their lower and
upper bounds in Tab. 1. Due to lack of data and lack
of knowledge, the uncertainty of the Windkessel model
parameters, C and Rtot = R + Z, were assumed
with a deviation of ± 10% from their respective reference
value. Compliance was adjusted from reference values in
order to represent a 45-year old subject, whereas vascular
resistance was considered to be age-independent [17, 19].
The vessel length was held constant at 126mm for UQSA.
The 1D-model’s governing equations can be summarized
with the deterministic inputs z and deterministic output y
with a black box functional f as

y = f(z). (7)

If model input parameters are uncertain, then the model
output becomes uncertain as well. This is emphasized by
rewriting Eq. 7 in terms of a stochastic vector of input
variables, Z, that yields a stochastic output Y

Y = f(Z). (8)

PC expansion was used for estimating uncertainty and
sensitivity measures of this stochastic model, which can

Table 2: Material parameters and dimensions of the 3D-FSI
model. Material parameters, ρs, ρf , µ, and ν, are taken from
[20].

Property Value Unit

Length L 115 mm
Unstressed radius Rd 2 mm
Wall thickness h 0.5 mm
Young’s modulus E 700.0 kPa
Wall density ρs 1120 kg/m3

Wall Poisson ratio ν 0.49 -
Fluid density ρf 998.2 kg/m3

Fluid dynamic viscosity µ 1.003 mPa s

be written in the form of Eq. 8. A finite number
of polynomials N approximate Y through a sum of
expansion coefficients cp and orthogonal polynomials Φp

Y ≈
N∑

p=0

cp Φp(Z), (9)

where the orthogonality of Φp is with respect to the
distributions in Z [6].
SA attributes model output variance to particular model
inputs, as well as to the interactions between the uncertain
input parameters [4]. From the PC expansion, total
variance of the model output, Var[Y ], was computed as

Var[Y ] ≈ Var[YPC ] =
∑
p

Var[cp Φp(Z)]. (10)

The main sensitivity index Si quantifies the direct effect
of particular input parameter zi on Var[Y ]. With the set
Ai containing all basis functions depending only on zi, the
main sensitivity index Si describing the fraction of output
variance due to zi, can be approximated as

Si ≈
1

V ar[YPC ]

∑
p∈Ai

V ar[cp Φp]. (11)

The set AT,i contains all basis functions where the random
input zi and all its interactions with z∼i are involved, such
that the total model output variance with respect to zi can
be represented with the total sensitivity index STi as

STi ≈
1

V ar[YPC ]

∑
p∈AT,i

V ar[cp Φp]. (12)

PC expansion of orders one to three were tested, showing
that the sensitivity indices were already converged for
the third order. At the mid-point of the vessel, we
computed the sensitivity indices through time-averaging
and weighting by the last cardiac cycle’s variance, as well
as normalizing with the model output variance [21].

3D-model formulation
The CCA is modelled as an idealized, hollow cylinder.
Tab. 2 summarizes the dimensions and material properties
of the model. The mathematical formulation of the
3D problem assumes an incompressible Newtonian fluid
and a linear elastic vessel wall. Mass and momentum
conservation of the fluid domain Ωf are

∇ · u = 0 in Ωf

(13a)

ρf
∂u

∂t
+ ρfu · ∇u = −∇p+∇ · τ f + b in Ωf

(13b)
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Figure 2: Representation of a thick-walled cylinder subjected to
internal pressure p and external pressure pext = 0 Pa.

where ρf denotes the fluid density, u, the fluid velocity, p
the pressure inside the vessel, τ f = µf (∇u + (∇u)T )
the viscous stress tensor for a Newtonian fluid, and b body
forces which are assumed to be zero. At the fluid-structure
interface, a no-slip boundary condition was applied. The
governing equations for the solid domain Ωs are

ρs
∂us

∂t
−∇ · σs = bs in Ωs (14a)

σs · ns = (−PI + τ f ) · ns onΓ (14b)

with the wall density ρs, Cauchy stress tensor σs, body
forces on the solid domain bs, which are assumed to be
zero, and the outward normal vector ns on Γ.

Static and transient inflation test
In order to assure the correct settings for the comparison
between the 3D-FSI and the 1D-model, we tested the
mechanical solver individually with a static and transient
inflation test. Longitudinal displacement at the ends was
either prohibited or allowed, representing thick-walled
cylinder theory with fixed surfaces at the end or free
surfaces without stress, respectively. Radial displacement
was allowed in both cases. The pressure inside the
tube was increased linearly from the reference pressure
p0 = 0 Pa to 20000 Pa over ten seconds. Large
deformation of the domain was suppressed.
The wall displacement of the inflation test cases was
compared with the analytical solution of the thick-walled
cylinder theory, represented in Fig. 2. For a thick-walled
cylinder with fixed ends and no external pressure acting on
the outer surface is radial displacement described as [22]

u(R) =

1

2G

ri

1−
(

ri
ri+h

)2
(
ri
R

+ (1− 2ν)

(
ri

ri + h

)2
R

ri

)
P,

(15)

where ri is the inner radius and G the shear modulus as

G =
E

2(1 + ν)
. (16)

In order to represent the thick-walled cylinder with free
ends, a correction term ∆u(R) needs to be added to Eq. 15

∆u(R) = − ν2

G(1 + ν)

−( ri
ri+h

)2P

1− (ri + h)2
R. (17)

To investigate inertia effects, we tested simulation
times of five seconds while maintaining the maximum
pressure. This set of test cases resulted in a total
of two static and four transient simulations. Mesh

independence was demonstrated through three mesh
refinements. All simulations were performed in Ansys
Mechanical (Version 2021 R2) with the standard solver
MAPDL. Time integration was performed with an implicit
scheme.
In addition to the analytic thick-walled cylinder theory, the
radial displacement was analysed under the assumption
of a thin-walled cylinder with free ends. This analysis
was conducted because the current 1D-model contains this
assumption. The circumferential stress σc in a thin-walled
cylinder [22] is

σc =
P r

h
, (18)

with the middle radius r = ri+0.5h, where ri is the inner
vessel radius and h the vessel wall thickness. From the
linear stress-strain relation it follows for the displacement

uthin =
P r2

E h
. (19)

One-way FSI simulation without flow
To ensure a correct coupling between the fluid and the
solid domain in the study, we conducted a one-way FSI
simulation with the same pressure increase as in the
inflation test, fixed ends of the artery, and a resting fluid
domain. Ansys (Version 2020 R2) Fluent was used to
generate and solve the fluid domain. Both solid and fluid
domains consisted of hexahedral elements. A coupled
pressure-velocity solver evaluated the fluid problem, and
the standard MAPDL solver evaluated the solid problem.
Since Ansys uses the segregated approach to solve a
FSI problem, the equations are not solved simultaneously
within one matrix [20]. Instead, each of the participant
programs calculates its own problem. Fluent first iterates
the fluid domain for a set number of iterations, then passes
the evaluated force which the fluid exerts on the structure
to Mechanical so that the displacement of the structural
part can be obtained. This constitutes to one coupling
iteration in one-way FSI simulations. One coupling step
is equivalent to one time step and it contains a set number
of coupling iterations. Ansys guidelines suggest between
one and five. The number of iterations in Fluent was
set to seven, Mechanical’s iteration number was program
controlled. The maximum amount of coupling iterations
was five, with three usually being sufficient to meet the
convergence criteria after a few time steps had passed
since the start of the simulation [20].

3. Results
In Fig. 3, the time-averaged main and total sensitivity
indices for the pressure, flow rate, and radius change
predicted by the 1D-model, Eqs. 1-3, are presented for
the mid-point of the artery. Further, the numerical values
of the time-averaged main and total sensitivity indices
for the qunatities of interest are given in Tab. 3. For
all quantities of interest, the uncertainty in the Young’s
modulus is responsible for the largest part of the model
output variation. Lumen radius and wall thickness
have a minor influence, whereas the fluid properties
ρf and µ, the Poisson ratio, and the total resistance
of the Windkeseel model have no influence on model
output variation. Additionally, all quantities of interest
are slightly sensitive to the compliance value of the
Windkessel model. For all uncertain input parameters the
main and total sensitivity indices are approximately the
same, indicating that parameter interaction does not play a
significant role.
Over one cardiac cycle, Fig. 4 displays the 95 %
prediction interval for the pressure and the relative radial
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Figure 3: Main and total sensitivity indices, Si and STi, respectively, evaluated at the mid-point of the 1D-model. All sensitivity indices
are time-averaged over the last cardiac cycle. The quantities of interest are (a) pressure p, (b) flow rate Q, and (c) radius change ∆R with
reference to the minimum radius of the respective model evaluation.

Table 3: Numerical values for the main and total sensitivity indices, Si and STi, respectively, evaluated at the mid-point of the 1D-model
for pressure p, flow rate Q, and radius change ∆R with reference to the minimum radius of the respective model evaluation. All sensitivity
indices are time-averaged over the last cardiac cycle.

µ ρf h E ν R Rtot C

S ST S ST S ST S ST S ST S ST S ST S ST

p 0.00 0.00 0.00 0.00 0.06 0.07 0.75 0.76 0.00 0.00 0.14 0.14 0.00 0.00 0.04 0.04
Q 0.00 0.00 0.00 0.00 0.06 0.07 0.85 0.86 0.00 0.00 0.07 0.08 0.00 0.00 0.01 0.01
∆R 0.00 0.00 0.00 0.00 0.06 0.06 0.90 0.91 0.00 0.00 0.03 0.03 0.00 0.00 0.01 0.01

(a) (b)

Figure 4: 95% prediction interval for the last cardiac cycle at the mid point of the artery for the (a) pressure p and the (b) relative radius change
∆R with reference to the minimum radius of the respective model evaluation.

(a) (b) (c)

Figure 5: Comparison of analytical solutions of thin- and thick-walled cylinders with static and transient FE and one-way FSI inflation test.
(a) analytical solutions with different underlying assumptions, (b) solution comparison with the assumption of fixed ends, and (c) solution
comparison with the assumption of free ends.
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displacement with reference to the minimum radius of the
respective model evaluation predicted by the 1D-model
at the mid-point of the artery. During early systole and
around the dicrotic notch is the prediction band for the
pressure very close to the expected pressure values. The
relative radial displacement shows large variations at peak
systole.
Results from the comparison of the inflation tests with
analytical solutions for thick- and thin-walled cylinders
are presented in Fig. 5. In our analysis, static and
transient inflation tests for the 3D-FE model of the artery
coincide with the analytical solution for a cylinder with
fixed and free ends. The radial displacement of the
one-way FSI-simulation with fixed ends agrees with the
analytical and FE solution. Fig. 5a depicts the analytical
solutions visualizing the underlying assumption on the
radial displacement ∆R. For a thick-walled cylinder with
free ends, ∆R is higher than for a thick-walled cylinder
with fixed ends. For the thin-walled simplification, Eq. 19,
using the internal lumen radius results in the largest
discrepancy between 1D and 3D; however, using the mid-
wall radius results in a near agreement with the thick-
walled theory and 3D results.

4. Summary and Discussions
In this work, we verified that the simulations of a 1D
arterial model were grid independent. Subsequently,
UQSA of the 1D arterial model was performed using PC
expansion. This UQSA served a role in the validation
process to focus on comparison of the 1D wall model,
Eq. 3, with results from the 3D-FSI model. To this end, we
verified the solution during inflation of the 3D-FSI model
against thick-walled cylinder theory and evaluated the 1D
arterial model predictions against the 3D-FSI model of the
CCA.
The SA suggests that the most sensitive input parameters
are related to the arterial wall mechanics, namely the
wall thickness h, the Young’s modulus E, and the lumen
radius R. Small sensitivity indices were estimated for
the compliance C which might be due to the relation
of the downstream vasculature’s compliance to arterial
wall properties. Since variations in the fluid properties,
the Poisson ratio, and the total resistance do not lead to
variations in the quantities of interest, this result suggests
that these parameters can be set to average population
values in further simulations. This reduces the number
of parameters which need to be explored and with this
decrease computational expenses as well.
The SA findings motivated a detailed analysis of the
structural part of the FSI-model. We showed agreement
between the analytical thick-walled cylinder theory and
the FE inflation tests indicating that the boundary
conditions and material properties were set correctly in
the simulation. Since the transient and static simulation
results coincided, the inflation tests were not influenced
by inertia effects. Furthermore, the consensus between the
FSI simulation and the analytical solution assure correct
coupling between the fluid and the solid domain.
The discrepancy between the analytical thin- and thick-
walled cylinder with fixed ends radial displacement under
internal pressure indicates that the wall model in the
current 1D-model needs to be revised in order to lead to
the same displacement as the 3D-FSI model.

5. Conclusions
With this work we showed that UQSA during the
validation process can elucidate model characteristics
where specific emphasis needs to be placed on during

the validation process. In our specific case, special
focus needs to be placed on the wall mechanics because
variations in the arterial wall input parameters lead to the
largest variations in the model output.
In a next step, the FSI inflation test will be simulated
with a two-way coupling and the 1D wall model will
be advanced such that the average cylinder radius in the
thin-walled theory is used for the computation instead
of the inner radius. After successful completion, a
physiological flow rate and pressure wave will be applied
at the boundaries of the 3D-FSI model as well as at the 1D-
model. The discrepancy between the model predictions
will be quantified closing the validation process.
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