
Predictive Maintenance of Pumps at ‘Den Magiske Fabrikken’, 

Using Machine Learning Techniques 

Martin Holm1,2, Ozgur Yalcin1, Carlos Pfeiffer1, Håkon Viumdal1 
1 Faculty of Technology, Natural Sciences, and Maritime Studies, University of South-Eastern Norway, Norway, 

ozgurylc@gmail.com, {carlos.pfeiffer, hakon.viumdal}@usn.no 
2Lindum AS, Norway, martin.holm@lindum.no  

  

 

 

 

 

Abstract 

In this work, we investigate machine learning methods 

to predict the failures of progressive cavity pumps 

(PCP). The PCPs are located in a biogas plant, Den 

Magiske Fabrikken, in Norway, which is transforming 

food waste and animal manure to biogas and 

biofertilizer. Available measurements were pump on-

signal, speed, current, torque and control signal, inlet 

flow, inlet pressure and outlet pressure, and several 

vibrations derived signals. 

Five categories were defined to categorize the 

operation of the pumps as: stopped, normal running, 7 

days from failure, 1 day from failure and 1 hour from 

failure. The objective was to train a Machine Learning 

model to predict these categories. The data was pre-

processed to clean gross outliers and scale the signals 

using different techniques. 

This paper presents results from the same Long 

Short-Term Memory (LSTM) model using two different 

approaches for scaling the data. The results are 

evaluated using confusion matrices where one scaling 

method clearly improves the results when testing on new 

data points. 
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1 Introduction 

This project investigates and evaluates progressive 

cavity pump failures used in a waste processing plant by 

applying machine learning (ML) methodology. In the 

industry, maintenance costs account for significant 

losses in profit for companies. Predictive maintenance 

methods and their tools have changed the way in how to 

approach problems through advanced control analysis. 

Lindum operates a waste management company that 

produces biogas and biofertilizer as a result of 

processing animal manure and food waste. During the 

processing phase, the highly corrosive and acidic liquid 

flows through the pipes and causes severe effects on the 

pumps. To prevent any production losses and increase 

the pump lifetime, pumps are maintained periodically. 

Obviously, excessive manual supervision of the pumps 

may result in increased labor force demand and increase 

the spare part costs. However, increased periodic 

surveillance do not prevent unexpected failures 

completely. Consequently, the objective of this project 

is to develop methods for preventing pump failures by 

analyzing pump parameters with ML algorithms and 

proposing a model to detect faults.  

1.1 Progressive Cavity Pumps and 

Predictive Maintenance 

Positive displacement pumps can handle solids, high 

viscosity and low flow rates. Besides, progressive cavity 

pumps are one type of positive displacement pump. 

Centrifugal pumps, on the other hand, are suitable for 

low viscosity and high flow rates. The pump efficiency 

will decrease at both higher and lower pressures for 

centrifugal pumps, whereas the pump efficiency will 

increase with increasing pressure in positive 

displacement pumps.   

In this project, the analyzed pump type is ‘Nemo’ brand 

progressive cavity pumps produced by Netzsch Pumpen 

& Systeme GmbH. These types of pumps provide a 

large capacity and pressure range. During the operation 

of the process in the factory, the pumps suffer from 

changing viscosity and corrosive materials in each 

batch. Figure 1 illustrates the progressive cavity pump 

that is used in the process. The pump has the following 

components: rotor (1), stator (2a, 2b), drive chain (3), 

shaft sealing (4), suction and discharge housing (5). 

Typical problems in progressive cavity pumps are 

elastomer expansion, rotor, and stator material corrosion 

which are caused by high temperature or fluid type (Lea 

et al., 2003).   

There are some points to avoid pump failure 

specifically in progressive cavity pumps. These are: 

• Choosing the right elastomer type by taking into 

account temperature and fluid physical properties 

• Avoiding dry running conditions 
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• Selecting suitable rotor material to stay away from 

abrasive wear on the rotor 

 

Predictive maintenance aims to transform advanced 

analytical and process data into valued outcomes. 

Hence, equipment failure or breakdown can be 

prevented just before it occurs. Additionally, predictive 

maintenance may take advantage of ML algorithms to 

build a systematic approach. Besides, predictive 

maintenance minimizes the cost of maintenance and 

improves the equipment lifetime without causing 

unpredicted production losses. Thus, the process will 

run as long as possible without interruption. 

1.2 Machine Learning Methods 

Various type of data is gathered from the process 

equipment. ML algorithms are able to unveil unseen or 

hidden patterns and relationships within a data set. With 

the progressively increase of computational power, and 

development of new ML algorithms, there is an 

increasing trend in publications in the literature related 

to data analysis through ML algorithms (Carvalho et al., 

2019). One method is the LSTM algorithm, which is 

considered especially successful in time series 

applications, where long-term dependencies in the data 

needs to be detected (Géron, 2019, pp.511-523). 

Simply, the function stores a value and determines how 

long it should be stored. This makes long short - term 

memory one of the most common models when working 

with time-dependent data (Rivas et al.,2019). Wisyaldin 

(2020) compared Autoregressive Moving Average 

(ARMA), Recurrent Neural Network (RNN), and 

LSTM models for analyzing vibration signals to predict 

the health condition of bearings of a water circulation 

pump and LSTM produced better accuracy. Even 

though LSTM is used to calculate remaining useful time 

and anomaly detection in various processes, there are 

few studies for progressive cavity pump failure analysis 

with LSTM found in the literature.    

2 System Description 

2.1 Features 

The system under scrutiny in this paper consists of a 

progressive cavity pump with measurements control 

signal [%], current [A], torque [%] and speed [%] from 

a frequency converter. In addition, inlet pressure [Bar], 

outlet pressure [Bar] and inlet flow [m³/h] is measured. 

These will be used as the features for the machine 

learning model. The sampling rate for all the 

measurements is 30 seconds. Although the selected 

pump is part of a system of pumps and may be impacted 

by other pumps earlier in the process, this potential 

impact has been ignored in this work. The system 

cyclically pumps fluid for 45-60 minutes, it will always 

start the cycle again after 60 minutes whether it has just 

ended or ended 15minutes ago. 

The analyzed feature data spans 17 months, with some 

missing data. During this period, the pump considered 

has been replaced 14 times due to pump failures.  

2.2 Predictions 

The goal is to predict one of the five operational 

categories: pump is (0) stopped, (1) running normally, 

(2) less than one week from failure, (3) less than one day 
from failure or (4) less than one hour from failure. 

Where running normally is assumed to be anything 

which is not covered by the other categories. 

These categories have been assumed useful as there was 

little information concerning the breakdown of the 

pumps, only sparse information about when they had 

been replaced was available. 

3 Methods and Methodology 

3.1 Long Short-Term Memory 

Configuration 

The LSTM model architecture was set up as a two 

layered LSTM block with a dense output layer as seen 

in Figure 2. The first layer has 7 feature inputs with a 

sequence length of 120 and 32 output neurons. The layer 

Figure 1. Illustration of the progressive cavity pump that is used in the process. 

 



has the parameter return_sequence set as true (Chollet, 

LSTM layer, 2015) which means a sequence will be 

returned, compared to only return the last estimate of the 

sequence, which is the case when set to false. The 

sequence length of 120 samples correspond to one hour 

which is the cycle time for the pump sequence. The 

pump sequence is determined by the process operation. 

The 32 neurons from the first layer serves as inputs to 

the second layer. However, it outputs only 16 neurons 

as the return sequence is set to false. Both the LSTM 

layers are using standard configurations for all other 

parameters. Lastly, a dense layer using the softmax 

activation function with the 16 neurons from the 

previous layer as inputs and outputting a probability for 

each of the categories. The output with the highest 

probability is assumed to be correct for a given sequence 

thus giving a positive for one of the five categories. The 

loss function, categorical crossentropy (Chollet, 2015),  

is minimized using the Adam optimizer (Kingma, 

2017). 

LSTM Layer 1

LSTM Layer 2

Dense Output layer

Input:

Output: 120 samples, 32 neurons

120 samples, 7 features

Input:

Output: 16 neurons

120 samples, 32 neurons

Input:

Output: 5 categories

16 neurons

 

Figure 2. LSTM model architecture 

3.2 Scaling 

Standardization is used to scale the data, using Eq. (1) 

where z is the scaled sample, x is the sample that should 

be scaled, µ is the mean and σ is the standard deviation. 

𝑧 =  
𝑥 − µ

𝜎
 (1) 

The standardization is used in two ways, one where the 

data from all the pumps are scaled using the same scaler 

for the merged dataset, from hereon named Merged 

Dataset Scaling (MDS). The other approach is to collect 

data during one hour of operation for each pump and use 

this data to calculate individual means and standard 

deviations to scale the new data. This second method is 

called Separate Dataset Scaling (SDS). Both approaches 

are shown in Figure 3.  
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Figure 3. Two methods to scale training data.  

The reasoning behind this approach can be seen by 

inspecting parts of the data shown in Figure 4. There are 

several normal distribution-like structures in the current 

when including data from all the pumps in the same 

histogram. This may indicate that the level of current 

(and other variables) may vary between the pumps that 

have been replaced, and thus the level near the end of 

the lifetime may vary. This gives the ML method 

ambiguous signals as to what is considered a degraded 

pump.  

Figure 5 shows one single pump scaled with the first 

hour of its own data. The distribution now seems closer 

to a single normal distribution, yet, it still has two 

distinct tops. Investigating other plots reveals that many 

look like Figure 5 and some are a lot closer to a narrow 

normal distribution.  

 

Figure 4. Histogram including all pump failures with 

previous original scaling method for current. 

 

Figure 5. Histogram for one pump failure for the feature 

current, scaled. 

It thus appears that there are individual characteristics of 

the pumps, and hence they have various distributions. 

This may confuse the LSTM-model as there will be 

many levels of data points where the pump is ok for one 

pump, but not for another. 

Continuing this approach and using data from only 

the first hour of the pump's active lifetime yields a 

distribution as seen in Figure 6. This distribution looks 

more coherent, yet there are more outliers and a higher 



span. 

 

Figure 6. Histogram including all failures with scaling 

Method 2. 

3.3 One hot encoding 

The outputs are one hot encoded from integer encoded, 

meaning that the labels have been converted to numbers 

as seen in Table 1. These in turn has been transformed 

into a one hot encoded format, where each row indicates 

an example where only one label is true, and others are 

false. As per definition of one hot encoding (Géron, 

2017). 

Table 1. Integer encoded labels 

Label Description 

0 Stopped 

1 Normal running 

2 Less than one week before failure 

3 Less than 24 hours before failure 

4 Less than 1 hour before failure 

4 Results and Discussion 

4.1 Scaling pump data using Merged Dataset 

Scaling 

Before the data is used for training, the features are 

standardized. All the 14 failures are scaled using one 

scaler and the data is split into sequences. The outputs 

are one hot encoded. After this, the data is split into 

training, validating and testing datasets with 60% used 

for training, 20% for validation and 20% used for 

testing. The validation data is used during training to 

check if the model is improving or not, while the test set 

from this distribution is used in Figure 7.  

Using the MDS method, the results on the confusion 

matrix based on the training set can be seen in Figure 7 

and appears very good. Figure 8 however shows the 

results in a more realistic manner where the data tested 

on was not involved in training the model. The model 

was trained on data from March 2020 to September 

2021 and was then tested on data from September 2021 

to October 2021. The confusion matrix for the test data 

shows that all the three categories where it was less than 

one week before failure of the pump, was considered 

“normal operation”, or in some rare cases “stopped”. 

Some of the reason for this might be related to an 

extensive number of “normal operation” in the data, 

compared to the other. That will affect the model. 

Comparing Figure 7 and Figure 8, there is a clear 

indication of a generalization problem with the model. 

As already mentioned, the MDS method has its 

shortcomings, which is improved in the SDS method. 

 

Figure 7. Confusion matrix based on training data 

 

 

Figure 8. Confusion matrix based on test data 

4.2 Scaling pump data using Separate 

Dataset Scaling 

Using the SDS method for scaling the data has reduced 

the overall accuracy of the model based on the training 

data, as seen in Figure 9. It can however be noted that 

most false positives in the failure categories for the most 

part end up in another failure category.  

The test set shows that the model is greatly improved by 

using the SDS method in Figure 10. The total accuracy 

becomes 78.5% where the total accuracy is defined by 

how many samples are correct for each label divided by 

number of samples tested on.  
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Figure 9. Confusion matrix on test data with SUS method 

from training data 

 

Figure 10. Confusion matrix on test data completely 

separate from training data using the SUS method 

The expectation to be able to predict one hour before 

failure may have been high, however, the other failure 

categories appear to be reasonable, at least a 

combination of them. Assuming all failure modes are 

merged to one, the total accuracy of the model becomes 

98.9%. One week from fail: 98.7%, One day from fail: 

98.9%, and one hour from fail: 99.1% when adding 

together each row. 

However, the model does never predict a normal 

operation as an upcoming failure for the given test set. 

The results indicate that there is a small risk of having a 

false alarm, and performing pump replacements without 

any good reason, with this approach. Simultaneously, 

there is a good chance of being able to detect an 

approaching error within a pump in advance. On the 

other side, it is a risk for not being able to detect 

precisely when the pump failures will occur. 

The model was only tested on one pump failure, 

while trained on many. As such there may be a lucky 

draw that the model was able to predict as well as it did. 

It has already been seen that the data varies from pump 

to pump, and it may be that other pump failures are not 

that well picked up. 

In the process of LSTM modelling, noise was not 

removed from the input data and only raw data was fed 

into the model. One might argue that noise filtering can 

increase accuracy. However, it was concluded that noise 

in data still can hold valuable information, and 

disregarding noise in data might reduce the model 

performance.  

5 Conclusions and Further Work 

This paper has aimed at evaluating and predicting of 

progressive cavity pump failures in the waste processing 

plant, maintained by Lindum AS. After gathering 

information from field instruments, measurement data 

classified 5 different pump working time cycles such as 

stopped or normal condition, 1h, 24h, and 1 week from 

failure. Analyzed data covered 17 months of operation 

that consist of 14 replacements, and with 30s sampling 

rate. The time series data was handled well by the LSTM 

algorithm and produced reasonable results. However, it 

became evident that scaling for the entire dataset led to 

information loss on pump failures, that is using the MDS 

method. Instead, improved results were obtained by 

scaling pump data with one hour of operational data for 

each pump replacement, the SDS method. Thus, each 

pump data was captured on the scaled dataset, 

separately. The total accuracy of the model with the 

proposed scaling method becomes 78.5%.  

Further work is being done on trying to generalize the 

model such as to fit onto similar pumps in the process. 

This requires some features to be removed and use data 

from many more pumps (Holm, 2022).  

As the stopped label is already known, it is not really 

needed to predict and will be removed in further studies. 

The one hour from failure label is never predicted 

outside the training data and is thus removed from 

further studies. 

More work should be done on setting correct 

parameters of the LSTM structure. 

The initial project (Holm et al., 2021) also explored 

other ML techniques such as Support Vector Machine, 

Naïve Bayes and Principal Component Analysis. These 

were not tested with the new scaling method and may be 

worthwhile to investigate further. 
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