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Abstract 

 

The petroleum industry operates under great uncertainty. Achieving an efficient approach to quantify uncertainty 

in oil production models is of key importance in supporting decision-makers to find suitable strategies for 

mitigating risks and maximizing profit. Uncertainty quantification is commonly performed based on the Monte 

Carlo approach and this is a very time-consuming process by using the physics-based models developed by 

reservoir simulators. To solve this challenge, data-driven proxy models which are less complex and 

computationally efficient can be used as an alternative. This paper aims to investigate the functionality of the 

ANN method in developing proxy models for uncertainty quantification of oil production from advanced wells. 

The investigation is conducted through a case study for uncertainty assessment of cumulative oil and water 

productions from a long horizontal well with ICD completion and zonal isolation in a synthetic reservoir for 10 

years. In this study, the Eclipse® reservoir simulator is used for developing the base case model and it is coupled 

with MATLAB® for generating the required data sets to train and test the ANN proxy model. According to the 

obtained results, the trained and developed ANN proxy model can predict the production of oil and water from 

advanced wells accurately with a mean error of less than 4%. Besides, the proxy model is 150 times faster than 

the Eclipse model and can solve the challenge of the time-consuming process of uncertainty quantification. 

 

1. Introduction 

Nowadays, to develop long-term oil production 

models, engineers need to predict the behavior of 

reservoirs by utilizing geological features [1]. 

However, the defining variables have a wide range 

and are many and various. Thereby integrating the 

parameters one by one cannot describe the reservoirs 

accurately. Hence some simplifications should be 

applied to solve the model’s difficulties [1], [2]. 

First, the most impactful parameters should be 

determined. Sensitivity analysis is a good solution 

for figuring out the input parameters with the most 

likely influence [3]. By considering some 

assumptions on variables and their distribution, 

numerical models will be generated to simulate the 

reservoir. However, there is still an unsolved issue, 

namely the treatment of uncertainty.  

Defeating the uncertainty in anticipating the 

production requires a huge number of simulations, 

which is unfeasible because of the long computation 

time. [4], [5]. Different techniques have been 

focused on, and among them, proxy models have 

received more attention. The first proxy model was 

innovated by utilizing a bilinear polynomial of 

inputs.  These analytical models have been trained 

and developed to behave like simulators while 

consuming less time. In this way prediction, 

analysis, and finally optimization will be performed 

more efficiently [6], [7].   

So far it can be mentioned that accuracy and 

acceleration are two important characteristics that 

should be considered during the reservoir 

simulations. Artificial Neural Networks (ANNs) 

have been introduced as a practical solution. In a 

study, ANNs were applied as a proxy model to 

assess the uncertainty in production prediction [8]. 

Another study investigated different architectures of 

the neural networks in reducing the time 

consumption of reservoir simulation [9].  Artificial 

neural network separately or in combination with the 

genetic algorithm was utilized to grab nonlinearities 

of problems [2], [10]. Apart from optimization of the 

algorithm, there are several studies related to the 

application of ANN in engineering and production. 

Shaik et al. [2] predicted the life time of a pipeline 

by applying ANN. Otchere et al. [7] forecasted the 

features of a petroleum reservoir by using supervised 

machine learning paradigms. Moreover, the 

application of neural networks in production 

prediction was also proposed by  Yuan et al. [11]. 

Through all the previous studies it is mentioned that 

the quality and accuracy of a proxy model highly 

depend on the training step.  

This study focuses on the applicability of ANN as a 

proxy model for assessing the uncertainty in 

production prediction. Based on the Design of 

Experiments (DOE), a set of reliable data is 

produced by coupling MATLAB and Eclipse. Then 

the proxy model is trained, and the trained model is 

used to assess the uncertainty based on the Monte 

Carlo sampling principle. The main purpose of this 

paper is to propagate a methodology to allow for a 

more reliable decision about the productivity of a 

reservoir based on geological parameters. 
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1.1. Definition of Artificial Neural Network 

A neural network is simply a set of neurons that are 

connected. Each neuron, as it is depicted in Fig. 1, 

takes one or more inputs and gives an output based 

on defined functions. These functions may be Relu, 

Sigmoid, Gaussian, or the sign functions. It should 

be mentioned that synaptic weight is considered for 

different neurons [4]. 

 

Figure 1: Schematic of a artificial neuron. 

According to Fig. 1, x represents inputs, w is 

allocated to weight vector and b0 is bias. 

Mathematically each neuron should be displayed by 

its function (f). So, if a neuron receives n input it 

would be represented as bellow: 

𝑓: 𝑅𝑛+1  ×  𝑅𝑛  → 𝑅  (1) 

Satisfying 

1: 𝑔: 𝑅 → 𝑅 

2: 𝑊 ∈  𝑅𝑛+1, 𝑊 = (𝑤1, 𝑤2, … , 𝑤3, 𝑏0) 

3: ∀ 𝑥 ∈  𝑅𝑛, 𝑓(𝑊, 𝑥) = 𝑔(∑ 𝑤𝑖𝑧𝑖 +  𝑏0)

𝑛

𝑖=1

 

x = (𝑧1, … , 𝑧𝑛)   (2) 

Where g is the transfer function. This basic function 

could model the higher-order functions by utilizing 

the collective behavior of a set of neurons which is 

called a layer. Indeed, a network is made of 

multilayer, consisting of an input layer, one or more 

intermediate or hidden layers, and an output layer, 

while each layer is composed of several neurons 

(Fig. 2). 

 

Figure 2: Schematic diagram of a neural network with 

two hidden layers. 

Learning is the most important ability of a neural 

network, and a neural network will be able to 

generalize, classify and foresee [4], [12]. In other 

words, because of having experienced, neural 

networks will have recognition ability. But 

according to the learning, networks are divided into 

two classes, supervised and unsupervised networks. 

In a supervised learning class, input and output are 

fed into the network at the same time [7]. Then, the 

machine will learn how to reconfigure itself. On the 

other side, under unsupervised learning, the proxy is 

exposed to unlabeled input solely for clustering or 

comparing. It should be mentioned that to make the 

quadradic error of output at least, backpropagation is 

utilized in the supervised learning network, indeed it 

is a method of more accurate weight calculation 

[13].  

Generally, based on the structure of the network and 

the operation of neurons, neural networks carry out 

a quite simple differentiable function. Indeed, after 

the learning phase and stabilizing the weight, the 

machine as a black box forecasts the phenomenon 

for new inputs [9]. Despite all of these, there are still 

some deterrents against utilizing ANNs. In other 

words, configuring the architecture of ANNs, 

namely the number of layers and number of neurons 

in each layer, should be found, while there is not any 

identification of a better architecture [5]. 

 

2. Methodology  

 

2.1. Creating Proxy Model 

Fig. 3 represents the steps of an algorithm to model 

a proxy. The Data sets and the previously proxy 

algorithms are considered as the most important 

factors for qualifying a proxy model. To make sure 

that all aspects of the model are dealt with, an infinite 

size dataset is required, which is practically 

impossible [3], [9], [12]. Some techniques of 

experimental design are enlisted to extract the 

utmost information with the least simulations. 

 
Figure 3: Schematic proxy model development [14]. 
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Selecting the input variable highly depends on the 

type of problem and the level of knowledge of the 

project.  It is recommended to consider all input 

variables at the beginning and then omit unimportant 

parameters through the sensitivity analysis step. 

Indeed, sensitivity analysis filters out less significant 

parameters on a simulation model. Consequently, an 

appropriate dataset will be prepared. 

The accuracy of the proxy model highly originates 

from training. By utilizing a decent dataset 

sampling, the proxy model will be trained 

appropriately, and in the following, the estimation 

will be performed accurately.  Thereby, verifying the 

model which is based on prediction accuracy will be 

satisfied [14].  

 

2.1.1. Architecture of Artificial Neural Network 

A neural network is considered a good proxy when 

it predicted a new case with acceptable error. 

Therefore, evaluation of the model should be 

performed sequentially to avoid overtraining. In this 

way, cross-validation, as one of the most popular 

methods, lets defined architecture stop learning 

when a validation error is raised [11], [12]. 

Overtraining also comes from a poorly structured 

network. Thereby identifying the appropriate 

number of hidden layers and their neurons is so 

requisite [1]. Moreover, the complexity of neural 

networks should also be limited. For this purpose, 

after finishing the learning phase, the pruning 

method will eliminate the connections with the 

smallest effect on the output error. 

To obtain an optimal neural network for the defined 

method, both pruning and cross-validation were 

utilized. 

 

2.2. Development of The Physic-based Model With 

Uncertainity Description 

 

2.2.1. Defining Uncertain Input Domains 

This study is conducted through modeling and 

forecasting oil and water production from an 

advanced horizontal well in a synthetic reservoir 

with uncertain properties for 10 years. The reservoir 

properties are the model inputs, and it is assumed 

that the value of some of the properties is uncertain. 

The uncertain reservoir parameters with their 

uncertainty range are reported in Tab. 1.  

Table 1: Uncertain reservoir properties with their 

range. 

Parameter Min Mean Max 
Porosity 0.15 0.23 0.27 

Permeability in x-dir. [mD] 200 500 1000 

Permeability in y-dir. [mD] 150 600 1200 

Permeability in z-dir. [mD] 20 100 500 

Irreducible water sat. 0.1 0.15 0.2 

Residual oil saturation 0.05 0.1 0.15 

Max. rel. perm. of water 0.2 0.4 0.5 

Max. rel. perm. of oil 0.85 0.95 1 

Initial water saturation 0.12 0.2 0.25 

Capillary pressure [bar] 4 2.7 2 

Aquifer prod. Index [m3/d/bar] 2000 10000 15000 

 

2.2.2. Determining the Most Impactful Uncertain 

Parameters 

Uncertainty quantification based on the Monte Carlo 

approach requires many simulations. For each 

simulation run, a random combination of model 

input values is chosen, and the corresponding model 

outputs are calculated by using the simulator. This is 

a very time-consuming process when the system has 

several inputs. By filtering the less important inputs 

out and focusing on the most impactful input 

variables on the accuracy of the models, a bit of 

prediction accuracy is sacrificed but the speed of 

uncertainty assessment highly increases. The 

sensitivity analysis assesses the contribution of the 

uncertainty of each model input to the accuracy of 

the model outcomes and identifies the most 

important parameters of the system. Cumulative oil 

and water production are the most important outputs 

of oil models and are the model outputs in this paper. 

By performing sensitivity analysis on the uncertain 

reservoir parameters given in Tab. 1, the sensitivity 

coefficient of each reservoir parameter for the 

cumulative oil and water production is calculated. 

The obtained results are depicted as a tornado 

diagram in Fig. 4. Based on the presented results, the 

five most important input variables for predicting oil 

and water production are determined and given in 

Tab. 2. These input variables are the model inputs 

for the proxy model development and uncertainty 

quantification. 

 
Figure 4: Sensitivity analysis of uncertain reservoir 

parameters. 
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Table 2: Uncertain input variables for uncertainty 

assessment. 

Parameter Min. Mean Max. 

Porosity 0.15 0.23 0.27 

Irreducible water saturation 0.1 0.15 0.2 

Initial water saturation 0.12 0.2 0.25 

Permeability in z-dir 20 100 500 

Max. rel. perm. of water 0.2 0.4 0.5 

 

2.2.3. Development of The Physics-based Model in 

Eclipse. 

In this paper, the production prediction and 

uncertainty assessment are performed for primary oil 

production from a medium oil reservoir with a water 

drive. The reservoir fluid properties, as well as the 

temperature and pressure of the reservoir, are given 

in Tab. 3. 

Table 3: Reservoir characteristics and fluid properties. 

Parameter Value 
Oil density and Viscosity 900 kg/m3, 2.5 cP 

Water density and Viscosity 1050 kg/m3, 0.45 cP 

Gas-oil ratio (GOR) 50 

Temperature and Pressure 60 ˚C, 200 bar 

It is assumed that oil is produced from the reservoir 

near an advanced horizontal well with a length of 

1000 m completed with Inflow Control Devices 

(ICDs) and zonal isolation. The diameters of the 

wellbore, the production tubing, and the ICDs are 

8.5 inches, 5.5 inches, and 0.01 m respectively. The 

thickness and width of the reservoir are assumed to 

be 30 m and 70 m respectively. It is also assumed 

that the well is located 5.5 m below the top of the 

drainage area. The schematic of the near-well 

reservoir is shown in Fig. 5. 

 

 
Figure 5: Schematic of the near-well reservoir. 

To achieve a suitable grid setup, in the Y and Z 

directions finer meshes have been set near the 

wellbore and uniform meshes are considered in the 

X-direction. It is assumed that the horizontal well 

has 8 equivalent joints, each 125 m long. As a result, 

8 uniform cells are considered for the reservoir in the 

X-direction. The grid resolution in Y and Z 

directions is illustrated in Fig. 6. 

 
Figure 6: Grid resolution in the Y-Z plane. 

In this study, Eclipse® which is a robust physics-

based simulator is applied as a simulation tool. Due 

to the high pressure and low temperature of the 

reservoir, the reservoir condition is located well to 

the left-hand side of the critical point, and the black-

oil model can be used for modeling fluid flow from 

the reservoir to the production tubing. Moreover, the 

multisegmented well model in the Eclipse simulator 

is used for developing the well model with ICD 

completion and zonal isolation. The well is 

considered to be controlled by the Bottom Hole 

Pressure (BHP), and the BHP is assumed to be 190 

bar.  Based on the mean value of the reservoir 

properties and the mentioned considerations and 

assumptions, a base model is developed in the 

Eclipse simulator. The cumulative oil and water 

production based on the base model for 10 years is 

shown in Fig. 7. 

 
Figure 7: Base model water and oil production 

prediction for 10 years. 

 

3. Results 

 

3.1. Training and Test the ANN 

The training data sets were generated by the Eclipse 

reservoir simulator. Inputs consisted of 5 variables 

and each variable accounted for 5 values, which 

gives the data sets with a size of 55. For each 

variable, the min. value, max. value, mean value, a 

value between min. and mean, and a value between 

mean and max. were opted. In addition, the main 

dataset accounted for 67% training, 25% validation, 

and 8% test. 

Before feeding inputs to the machine for training, all 

values were normalized between [0,1] based on min 

value and max value. Outputs in the dataset 
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accounted for accumulative oil and water production 

through 10 years. Because of that, for predicting 

fluid production of each year, fluid production of the 

previous year was considered as input too, Fig. 8. 

 

Figure 8: Schematic flow chart of predicting in 

sequential years. 

For testing the proxy, the values of inputs opted 

ununiformly in a way that the machine had never 

experienced, although these values were between the 

minimum and the maximum values. 

During testing the machine, prediction errors were 

calculated point by point within 10 years and for 

each state. State refers to the specific set of an input.  

𝐸𝑟𝑟𝑜𝑟 =  
 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
  (3) 

The machine predicted the oil production better than 

the water production. The mean error values are 

presented as a horizontal line in Fig. 9, 0.96 and 3.79 

for oil and water respectively.  

 

 
Figure 9: Prediction error for testing the proxy model. 

 

3.2. Uncertainty Assessment in Production 

Prediction 

Input datasets play a great role in studying 

uncertainty in production prediction. In addition, the 

uncertainty of input parameters makes it necessary 

to use a probabilistic approach [4], [6]. Although 

there are different methods for probabilistic data 

sampling, Latin Hypercubic Sampling (LHS) was 

chosen as an efficient sampling method [14]. Indeed, 

by considering the min and max of 5 effective 

parameters, the 100000 most probable sets of inputs 

were extracted according to the LHS approach. In 

this way, P (10), P (50), and P (90) are to be 

predicted. 

After performing 100000 predictions for each time 

step. Cumulative probability distribution and 

probability density for accumulative oil and water 

production whithin 10th year is shown in Fig. 10, 11, 

12 and 13. 

Fig. 10 depicts a normal distribution for 

accumulative oil production. On the other side, Fig. 

12 shows a lag normal distribution of water 

production.   

 

Figure 10: Probability distributionof cumulative oil 

production after 10 years. 

 

Figure 11: Cumulative probability distributiondiagram 

for predicting oil production after 10 years. 

 
Figure 12: Probability distribution  of cumulative 

water production after 10 years. 

 

Figure 13: Cumulative probability distributiondiagram 

for predicting water production after 10 years. 
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As it is presented in Tab. 4, there is a 90% chance to 

produce less than 2.4E+05  m3  oil and less than 

3.6E+06 m3 water after 10 years. In addition, 

cumulative oil and water production will be less than 

1.5E+05 m3  and 2.4E+06 m3 respectively with a 

chance of 10%. In this case, the best estimation (P50) 

for cumulative oil and water production is 1.9E+05 

m3 and 3.3E+06 m3 respectively. 

Table 4: Summary of uncertainty results. 

 P (10) P (50) P (90) 

Oil 1.5E+05 1.9E+05 2.4E+05 

Water 2.4E+06 3.3E+06 3.6E+06 

 

4. Conclusion  

As the oil reservoirs are developing,  uncertainty 

assessment has become a priority.  An unreliable 

prediction of the producibility of a reservoir may 

cause investment bankruptcy. Although this type of 

reservoir engineering problem could be solved by 

applying a reservoir simulator, the time-consuming 

process is a significant deterrent. Therefore, an 

artificial neural network with a stochastic approach 

has been enlisted to analyze uncertainty. 

This paper presents an appropriate methodology to 

deal with assessing the uncertainty during the fluid 

production prediction. The paper compiles 

MATLAB and Eclipse and built an amendable 

optimal Neural Network by utilizing mathematical 

procedures, to reduce the time consumption of data 

extraction and prediction of an oil reservoir. 

The results show that an appropriate proxy model 

can predict the production with an acceptable error 

of less than 4%. In addition, when utilizing ANN, 

the time consumption was reduced by a ratio of 150 

times. It is also concluded that by increasing the size 

of a dataset, the time-consumption effectiveness of 

ANN will raise.  
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