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Abstract

Accurate forecasting of thermal loads is a critical factor for operating district heating and cooling networks economically,
efficiently and with minimized emissions. If thermal loads are known with high accuracy in advance, use of renewable energies
can be maximized, and fossil generation, in particular in peaking units, can be avoided. Machine learning has already proven
to be an efficient tool for time series forecasting in this context. One recent advancement in machine learning is the "Temporal
Fusion Transformer" (TFT), which shows especially good results in the area of time series forecasting. This paper examines
the performance of TFT in the concrete context of thermal load forecasting for district heating and cooling networks. First,
a brief summary of differences between TFT and other machine learning methods is given. Secondly, it is described how the
method can be adopted to train a machine learning model for thermal load forecasting. The data to train and evaluate the neural
network is based on 8 years of hourly operating data made available from the district heating network of the city of Ulm in
Germany. The presented technique is used to produce 72 hours of heating load forecasts for three different district heating grids
in the city of Ulm. The results are compared to forecasts of other machine learning methods that have been previously made
as part of the publicly funded research project "deepDHC", in order to evaluate if TFT is an improvement to further reduce
forecasting uncertainties.

1. Introduction
Precise forecasting of thermal loads is crucial
for operating district heating networks efficiently,
economically and environmentally friendly. If precise
load forecasts are available to the operator, the use
of fossil-fuelled peaking boilers can be significantly
reduced. In addition, integration of fluctuating renewable
into the grid can be maximized. A precise long-term load
forecast several days ahead also simplifies fuel ordering,
or planned maintenance. Hence this work focuses on
thermal load forecasts throughout 72 hours in advance.
The data used for the process is based on hourly data from
the district heating network in Ulm, a medium-sized city
in southern Germany with about 130,000 inhabitants.

2. Related Work
Accurate prediction of heat loads has become an
interesting field of application for modern time series
forecasting methods. Its importance even increases with
a rising global energy demand, decreasing reserves of
fossil fuels and the impact of using fossil fuels on
climate change (Benalcazar and Kamiński, 2019). District
heating and cooling can be a sufficient way to reduce
carbon dioxide emissions by optimizing fuel consumption
(Werner, 2017). Machine learning has proven to be an
attractive option for generating accurate thermal load
predictions also in the context of district heating and
cooling (e.g. (Saloux and Candanedo, 2018; Leiprecht
et al., 2021)).
Different algorithms have been evaluated in recent years
for this purpose, such as Adaptive Boosting (AdaBoost)
(Freund et al., 1996) and its derivative Extreme Gradient

Boosting (XGBoost) (Friedman, 2000), recurrent neural
networks (RNNs) like Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) and the Seasonal
Autoregressive Integrated Moving Average Exogenous
model (SARIMA) (Fang and Lahdelma, 2016).
While the traditional machine learning methods produce
decent results, they all have the problem of not being
significantly better than statistical methods on many time
series problems. In many cases the larger overhead of
implementing these methods make them economically
less attractive than statistical approaches (Lim and Zohren,
2021). Current research tries to solve this issue by
improving the abilities of models of learning from the
past, which helps these methods to further improve their
accuracy in time series forecasting by reducing their
overfitting.
One approach to this issue is the Temporal Fusion
Transformer (TFT) (Lim et al., 2021). This new method
is an attention based network. TFT is already used
in a number of areas for time series forecasting, like
meteorology (Wu et al., 2022), medicine (Phetrittikun
et al., 2021) and the stock market (Hu, 2021). While there
will be some commonalities in input data with forecasting
in meteorology, right now there is no research about the
performance of TFT for energy demand forecasting. This
paper therefore aims to give a first estimation of what
results can be expected in this area.
Most of the work that was done on the topic of energy
demand forecasting focused on a 24 hour time horizon
(Benalcazar and Kamiński, 2019; Xue et al., 2019). This
paper instead focuses on an extended forecasting period of
up to 72 hours, in order to allow further optimised dispatch
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planning of power plants and thermal energy storages.

3. Temporal Fusion Transformer
TFT (Lim et al., 2021) is a new approach explicitly
developed for time series forecasting. Therefore it brings a
number of qualities that are very helpful for training robust
forecasting models. Usually machine learning methods
use information of the past to learn the behaviour of a
time series in order to create accurate forecasts. In order to
learn patterns in historic data, neurons have to memorize
data they have seen earlier during training. Most of the
time this is currently achieved with RNNs (Hochreiter
and Schmidhuber, 1997; Jaeger, 2001). However RNNs
oftentimes face the problem of expecting that all input data
is known, even for time steps in the future. However this
is not always possible. For example the temperature in the
future can not be known for sure. It can be estimated with
the help of weather forecasts, but there exist parameters
for which there is no way of knowing them upfront. TFT
on the other side does not belong into the class of RNNs,
it instead uses a transformer architecture (Vaswani et al.,
2017). Transformers use a more advanced method to learn
patterns in historic data. As a consequence they support a
variety of different types of input data, which enables the
usage of features whose values can not be known during
prediction. Next some of the advantages of TFT for time
series forecasting will be explained.
Firstly TFT supports multi step forecasting. This means
that multiple forecasts can be done in one prediction call.
For example in the case of this paper one prediction creates
forecasts for the next 72 hours with an interval of one
hour. Single step methods on the other side would only
predict one step at a time. To predict further ahead than
one hour this would require the user to do one prediction,
add it to the input data and then run the next prediction
until the size of the targeted prediction interval is reached.
This is undesirable because prediction errors in early time
steps can influence the prediction of later time steps.
Many new machine learning methods support this type
of forecasting, but it is still important to have and can’t
be done with every of the methods mentioned in this
paper. As transformers are not RNNs, another way to learn
relations between historic data is needed. TFT uses an
attention based method for solving this issue.
TFT supports three different types of input data: temporal
data which is known in the future, temporal data which
is unknown in the future and static variables. The first
group is the most common type of data as known from
other forecasting problems. For example the hour of the
day for which a prediction is made is such a feature. It
is known for historic data during training, but it can also
be determined for every future time step. The second type
of data is only needed during training, but can be missing
when the model is used for predictions. A good example
is weather data. Usually the historic weather is known
but can not be determined for the future. Other machine
learning algorithms would require to guess the weather
data or for example use a weather forecast instead of
real weather data. However these approaches don’t deliver
the actual correct values. The model however is trained
assuming the provided values are correct, which leads to
the predictions being inherently wrong when a forecast
is used as input instead. TFT on the other hand makes
it possible to use any feature in training even when it is
not possible to provide it during prediction phase. The last
type allows to add static data that will not change over
time, e.g. the holidays of the location of the prediction or
the location itself.

Another feature is the support of predicting multiple time
series at once. Usually every time series that should be
predicted needs its own neural network that is fitted to the
training data, in order to create the best possible forecast
based on the provided data. TFT provides the possibility
to add multiple sets of input data to a model. The model
then learns which dataset is used for predicting which time
series and fits its model in a way that can predict all time
series at the same time. This process can be very helpful
because this can save a lot of time. Usually in the process
of fitting a model, the hyperparamters will be optimized
to. If each time series would need its own neural model
multiple of this hyperparameter optimizations would be
required. In TFT only one for the model as a whole is
needed.
Additionally TFT tries to make the process of working
with it more interpretable. Usually neural networks are
black boxes that can not be understood in their way of
calculating a result. This makes the process of improving a
model especially tough when the model just does not seem
to get better. TFT solves this issue by a so called multi
head attention mechanism. This process works as follows.
TFT always calculates the importance of different input
features as part of its attention system. These importances
can be analysed and can be provided to the machine
learning developer. They can then examine which features
are important or which impact different features had
during one training. Altering features and then evaluating
the impact of the change to the performance of a parameter
makes it much easier to optimize and understand a model.
The prior explained advantage already includes a last
advancement TFT provides. Since the TFT calculates the
importance of all input features, it can also realize that a
given feature has no importance to the prediction problem.
In this case TFT can weigh the effect of the feature with a
zero which leads to the feature having no effect in training
and prediction. This can also save a lot of time, because
the right features do not have to be selected up front by a
data scientist.

4. Model Training
The training was done with a little bit more than six
years of historic data beginning at 02.09.2014 until the
31.12.2020. This time frame was split into a training and
validation dataset with the first 70% being the training
dataset and the last 30% being used for validation.
As TFT can analyse features itself in terms of their
importance for the problem, almost all features that were
available to us were used to train the model. In total those
were more than 37 features. Some of the most important
ones can be found in Tab. 1

Table 1: Used features for TFT training.
Name Description

Last Load The thermal load of the
prior hour in MW

avgLoad6/12/24 The average thermal load over
the last 6/12/24 hours in MW

Temperature Current air temperature in Celsius

avgTemp6/12/24 The average temperatur over
the last 6/12/24 hours in Celsius

Dewpoint Current dewpoint in Celsius

Season Sin One period of a sine wave
mapped onto the period of a whole
year
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Key features are temperature and the current thermal load
profile of the district heating network. The temperature is
the main factor that changes heating behaviour, especially
in residential areas. Therefore the required thermal load
strongly correlates with the temperature. The dew point
acts like an amplifier of the temperature. In our case both
values are very similar most of the time so it also is a good
indicator for how the heating demand evolves.
The last load is a good indicator, because most of the time
the thermal load demand does not change drastic over a
short period of time. Therefore, it usually acts as a good
estimation of the next thermal load required. Both of these
parameter can also be used as averages over the last few
hours. These averages can indicate the overall trend of the
current thermal load demand which can help to estimate
if the load demand will rise or decline over the next few
hours.
The Season Sin feature encodes which day of the year
it is at a given prediction point. This can be helpful
in improving the understanding of time in the neural
networks. While the weather is not exactly the same at the
same day over multiple years it can be similar, because
it is usually around the same time of the year when the
weather gets warmer or colder. Season Sin helps to learn
to take this periodic behaviour into account.
The implementation of TFT was not done by ourselves.
Pytorch(Paszke et al., 2019) already provides an
implementation of TFT which was used in this paper.

5. Methodology

5.1. Metrics
Benchmarking the forecasts is not an easy task, since
there is no standardized metric available. The Mean
Absolute Percentage Error (MAPE) is probably the most
commonly used metric for measuring forecast accuracy. It
is widespread in finance or other forecasting applications,
especially if enough data is available. The MAPE is
dimensionless and independent of the magnitude of the
values considered. At the same time, it can be clearly
interpreted. A MAPE of zero corresponds to a perfect
forecast (Clark, 2013; Armstrong and Collopy, 1992). Its
equation can be seen in (1). It is the mean of the sum of
the absolute error ei divided by the real value di. n is the
number of prediction-load pairs that are used to calculate
the error.

MAPE =
1

n

n∑
i=0

|ei|
di

(1)

In addition the Mean Absolute Error (MAE)(Willmott and
Matsuura, 2005) was used as a second metric. It is the
mean of the sum of n errors. The errors are the absolute
deviation of the prediction yi from the real thermal
load xi. The MAE oftentimes has the disadvantage of
being hard to interpret. In many cases the range of
values the target of a prediction can have is not known.
In this situations it is hard to argue if the measured
absolute improvement is significant or not. However in
our context this is not the case. For each of the district
heating networks considered the thermal loads that can be
expected are known. Moreover the unit of the MAE in this
case is Megawatts, a unit that is very easily interpretable.
The MAE should not be used to compare different district
heating networks, because their load profile can differ
significantly, however for each individual network the
metric can be very helpful for the power plant. It knows
which ways it has to provide the thermal load to a given

district heating network and how much energy each of
these options can provide. In this context absolute values
can be very helpful to optimize the energy production for
a given district heating network.

MAE =

∑n
i=1 |yi − xi|

n
(2)

So while the MAPE is a good indicator for making general
assumptions about the performance of a machine learning
method for district heating networks, the MAE can be used
for closer evaluation for concrete scenarios. Moreover the
MAE can relativise a high MAPE if the absolute target
values are quite low.

5.2. District Heating Networks
For the comparison three different district heating
networks of the city of Ulm were used. The first network
acts as a good general baseline for the performance
of a machine learning method, as the network is very
consistent and most algorithms evaluated so far perform
best on it. It has a total length of 40 km and provides space
heating for over 7500 households with an average annual
heating demand of 75 GWh, and a heat load ranging from
2 to 22 MW. Water with a temperature between 70°C and
110°C is used as a heat transfer fluid.
Additionally two more networks were selected which have
a more complex thermal load profile. The second district
heating network uses a combination of steam and hot
water for heat transfer. Steam transfer uses steam at a
heat of 130°C while the temperature of the water varies
between 70°C and 110°C. The network provides space
heating to over 13.000 households and has a heat load
ranging from 1 to 19 MW.
The third and last district heating network considered,
mainly supplies industrial buildings instead of private
households, which leads to one more different thermal
load profile. It is run with 120°C hot water as transfer fluid.
Additional to many factories the district heating network
supplies 220 households. It has a heat load ranging from 2
to 25 MW.
While still providing promising forecasts, many of the
machine learning methods evaluated prior produced far
less optimal results on district heating network two and
three. Evaluating the results of TFT on these networks
too, can show if the strengths of its new approach help
dealing with overall harder to predict scenarios. Also
the addition of a more industrial focused district heating
network provides more insights for a wider range of use
cases.

5.3. Time Frames
As time frame for the comparison the whole year of 2021
was used. With this time frame the evaluation should hold
meaningful results for the active usage of the model in a
power plant by covering many different scenarios and load
profiles of different seasons. Moreover the data is very
new, thereby the results can be extrapolated into the future
of the net more easily than an older time frame.
In addition to the comparison over the whole year, several
shorter time frames are evaluated too. These are:

• Winter (01.01.2021-28.02.2021 and 01.12.2021-
31.12.2021)

• Spring (01.03.2021-31.05.2021)

• Summer (01.06.2021-31.08.2021)

• Fall (01.09.2021-30.11.2021)
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These four intervals resemble four parts of the year
which have different load profiles. Evaluating them makes
it possible to further investigate how TFT performs
in different scenarios. For example the load profile is
very consistent in winter and summer which resulted in
pretty good predictions for the already evaluated methods.
However the older approaches struggle far more in the
spring and fall time frame. During these periods the
load profile is much more ambivalent. This could be a
problem for these older models because they tend to
overfit. Comparison of these time frames will show if
TFT can adapt better to learning more unpredictable time
series.

5.4. Machine Learning Methods
TFT will be compared to the results of three machine
learning methods. Namely LSTM, AdaBoost and
XGBoost. Since these methods can not abstract which
features are not important to them, these methods were
not trained by providing all possible features available
as input. To find the most important features for the
given machine learning method a feature reduction
was performed. The used method was the scikit learn
(Pedregosa et al., 2011) implementation of Recursive
Feature Elimination (Guyon et al., 2002) with cross
validation. The features used for each method can be seen
in Tab. 2

Table 2: Features used for training of different machine learning
methods.

Method Used Features
LSTM loads of the last 6 hours,

temperature,
season sin, avgTemp24,
hour, temperature forecast,
dewpoint forecast

AdaBoost loads of the last 6 hours,
season sin, avgTemp12, avgLoad24,
hour,
temperature forecast for the next 5 hours

XGBoost season sin, avgTemp12,
avgLoad24, hour,
loads of the last 6 hours,
temperature forecast for the next 3 hours

The features correspond to the features explained in
section 4. The amount of last loads and forecasts used in
AdaBoost and XGBoost vary between the models for each
of the three different nets in order to further improve the
results of the nets. The range in which those parameters
lie is three to six hours. The forecasts of all LSTM neural
networks are the same as the LSTM predicts the load as a
multi step while AdaBoost and XGBoost use a single step
method.

6. Discussion of Results
The promising results of TFT can be seen in Fig. 1. TFT
beats all other machine learning methods on every district
heating network evaluated. Moreover this is special,
because it is the first time in our investigation that one
method is the best one for any district heating network it
was tested on. For example without TFT, LSTM would
be the best way to predict network one while XGBoost
is the best method for network two and three. Moreover
the reduction of the error is impressive. On the easiest
network it beats LSTM by two percent points. This is
a good result, however it is not that relevant for the

facility, because looking at the absolute error, it already
lies beneath one MW. However the improvement is much
stronger in the tougher to predict networks two and three.
In both cases the MAPE of TFT is almost half as high as
the MAPE of XGBoost. This indicates how the attention-
based approach of TFT is way better in generalizing the
problem than older machine learning methods and thereby
avoids overfitting.

Figure 1: MAPE for the whole year of 2021

As a next step the four different time frames will be
evaluated to gain a better understanding why TFT beats the
other machine learning methods by such a huge margin.
The results for the spring time frame can be seen in Fig.
2. The results of this time frame early in the year are
quite similar to the overall results of the evaluation. TFT
performs best on every net, but while the difference is only
around two percent points better for network one the error
is around 4 percent points better for network two and 8
percent points better for network three. The MAPE for all
methods is higher in the spring than in the overall year. The
reason is that spring and fall is more difficult to predict
because the load profile does not behave as similar as it
does in the summer and winter months.
Comparing the difference between the overall MAPE
and the spring MAPE for each of the machine learning
methods shows that the difference in percent points is quite
similar across all methods. This indicates that TFT is not
per definition better in predicting spring times. The big
improvement is only so huge because the predictions of
TFT are overall better.

Figure 2: MAPE of the spring time frame.

Fig. 3 shows the different results for the summer time
frame. Errors in the summer time frame are generally
lower and closer to the overall year MAPE than the results
of the spring time frame. Again TFT is the best machine
learning method evaluated for all three district heating
networks. Comparing the summer results with the spring
results, district heating network three stands out. While
in network one and two the MAPE is much lower in
summer than in spring, in district heating network three
the reduction of the error is not that significant. TFT even
performs worse in summer than in spring on network
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three. All three district heating networks are located in
the same city, so the weather during this period was
the same for all three networks and should not have
been more unpredictable for network three. This leaves
two possibilities for why TFT is worse in summer than
in spring. Either the network changed which leads to
the historic data being less optimal for a prediction of
the current form of the district heating network, or the
reported load values during the prediction time frame
were erroneous, which lead to bad input values for the
prediction. The load data during the prediction time frame
did not have any issues, so the first problem probably
caused this result.

Figure 3: MAPE of the summer time frame.

Fig. 4 shows the results of all machine learning methods
for the fall time frame. Similar to the spring time frame
TFT really performs much better than its alternatives
during this period. For network two and three the error is
reduced by almost 50% over the second best method and
even on the already well performing network one the error
is reduced by around 30%. Together with the results of Fig.
2 the assumption of TFT being especially good for less
predictable time frames can be proved. This is a very good
trait for a machine learning method used for thermal load
forecasting, because some of the most important features
are weather data and weather forecasts. Even if a forecast
is very accurate, the nature of a forecast is, that it is
never a safely known value. This makes a very adaptable
system like TFT preferable. If compared with the spring
time frame also all MAPEs are a bit better. In both time
frames the thermal load provided by the district heating
networks is quite similar, which again would indicate that
the spring time frame of 2021 was less predictable in
its behaviour compared to the fall time frame. Moreover
when compared to the summer time frame it seems like
the predictions in fall would be better than in the summer.
This is as misconception created by the MAPE having a
percentage as error unit. In summer the thermal load is far
lower in all of the evaluated district heating networks. This
results in larger MAPEs even for small absolute errors.
Considering the absolute errors, the predictions for the
summer are actually better than for fall, e.g. with TFT
for network one the MAE for summer is 0.22MW and for
fall it is 0.49MW. So the summer predictions are actually
better even if the MAPE is worse.
Lastly the winter time frame is considered. The results
can be seen in Fig. 5. Again TFT is the strongest method
for each of the three inspected networks. For network
two and three TFT beats XGBoost by about 10 percent
points. Furthermore, TFT also is a notable improvement
in network one even though the error reduction is just
2.3 percent points. Moreover the MAPEs in the winter
time frame is the best of the whole year. This has two
reasons. First the prediction is overall very good. 5.52%
MAPE resembles a MAE of 0.78MW which is fairly low

Figure 4: MAPE of the fall time frame.

in the context of the evaluated district heating network.
The second fact is again one of the properties of the
MAPE. In the winter months the thermal load is quite
high, which leads to lower MAPEs even on similar large
absolute errors.

Figure 5: MAPE of the winter time frame.

For more insight on the actual absolute error, Tab. 3 shows
all predicted MAEs for TFT. A good indicator for the
performance of the TFT is that most errors are below
1MW. Only in the very unpredictable network three the
absolute error lies on average above 1MW. The networks
considered have thermal loads in the range of 10 to 20
MW for most of the year, so the calculated error is very
little. The absolute errors of summer also show the issue
of comparing the MAPEs of different time frames. The
MAEs are the lowest for every network in the summer time
frame but still the summer MAPEs were the worst.

Table 3: Absolute errors of TFT in MW.
Timeframe Network 1 Network 2 Network 3

Overall 0.57 0.56 1.00
Spring 0.79 0.96 1.28

Summer 0.22 0.19 0.36
Fall 0.49 0.45 0.92

Winter 0.78 0.67 1.44

Evaluation of all time frames has shown that out of the list
of evaluated methods, TFT is the best machine learning
method for the use case of time series forecasting in any
scenario. Further comparing the MAPEs in different time
frames showed that TFT is not really better in predicting
any of the time frames as it also struggled with predicting
spring and fall more than summer and winter. However
TFT predictions were overall always way better than their
competitors. This results in overall lower errors in all
time frames which leads to very competitive overall errors
because the reduction of the error in spring and fall also
reduces the overall error far more than improvements in
the summer and winter forecasts. A low overall error
translates to a more robust system.

7. Conclusion-and-Future-Work
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Use of TFT could contribute to further improve thermal
load forecasting. This paper presents first results of
benchmarking TFT against different machine learning-
based forecasting approaches for district heating and
cooling networks. As a starting point, the predictions
of these different methods were analysed on multiple
time frames and over multiple district heating networks.
All measured data, including statistically optimized
point weather forecasts, were automatically pre-processed
prior to the actual training and validation steps. The
models predicted 72 hours in advance. The predictions
were benchmarked against three other machine learning
methods that where evaluated in previous works. TFT
showed to have better MAEs and MAPEs over all
experiments, making it a very strong candidate for
thermal load forecasting in any scenario. Especially the
improvements in spring and fall forecasts above other
methods is a big improvement.
This paper used one specific model for each of the
networks to predict the thermal loads. One of the
advantages of TFT is to be able to train one model for
the prediction of multiple time series. As a next step it
should be investigated if a model trained to predict the
thermal load of multiple networks still holds the same
results. This could be a very important step in making
machine learning for thermal load forecasting more viable,
because it would reduce training effort and cost for the
power plants immensely.
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