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Abstract 
 
As cities grow and develop, urban planners face an increasing challenge to create more sustainable and 
environment friendly communities. The Kopparlunden district in Västerås, Sweden, is no exception, with plans 
underway to transition the area to a more sustainable neighborhood. To assist this effort, this paper presents a 
simple grey box modeling approach to predict the heat demand of eight buildings in the area. As the city 
transforms from a historical industrial district to a mixed district with residential buildings, shops, and offices, the 
model will allow urban planners to predict their new heat demand. The model is calibrated using a genetic 
algorithm, then validated using real historical data. The results show a good accuracy of the model and highlight 
the importance of increasing the insulation efficiency of the walls in the modelled buildings. The model can be 
used to predict the heat demand variations, with minimum error of 2.49 kW and up to 16.6 kW for large buildings. 
The model highlights the importance of energy modeling for urban development projects and shows its 
significance as a tool to aid in decision-making towards sustainable and more efficient urban areas. 
 

1. Introduction 
With the increased growth of urban population and 
urban energy use, cities around the world are facing 
an increasing challenge to provide sustainable and 
energy efficient environment for their residents. The 
building sector is one of the major contributors of 
CO2 emissions worldwide, and thus presents a great 
potential to reduce energy use and associated 
emissions. Urban planners and policymakers are to 
plan and implement large scale improvements of 
buildings’ energy performance, which imposes 
significant challenges and issues related to the 
complexity and scale of the urban environment 
(Hong et al., 2020; Keirstead et al., 2012), policy and 
regulatory frameworks essential to adequately 
support and /or incentivize sustainable and energy 
efficient practices (Economidou et al., 2020; 
Strielkowski et al., 2019), funding and securing 
financial resources for projects implementation 
(Alam et al., 2019; Bertoldi et al., 2021; Sebi et al., 
2019), data availability and accessibility for 
informed decision making, and long term planning  
and adaptation with consideration of future needs 
and changing circumstances. In this context, the 
European Commision recently revised the Energy 
Performance of Buildings Directive (EPBD) under 
the ”Fit for 55” package (Wilson, 2022), and 
introduced stricter regulations. The revised EPBD 
aims at accelerating the renovation rates, targets the 
15% of EU buildings that perform the worst, and 
establishes high energy performance standards. 
Notably, every building should achieve at least a 

Class E on the revised A-G energy performance 
scale by 2030.  
 
The Kopparlunden district in Västerås, Sweden, is 
no exception to this global and regional trend. As 
part of a larger effort to foster sustainability, plans 
are underway to transition the district into a more 
sustainable neighborhood. 
 
Building Energy Modelling (BEM) became an 
indispensable tool for building professionals and 
energy policy makers to optimize the design, 
operation, and energy efficiency of buildings (Al-
Homoud, 2001; Reinhart & Cerezo Davila, 2016). 
BEM can be performed at the individual building 
level, up to the urban level (Urban Building Energy 
Modelling – UBEM). Its approaches comprise three 
main categories: white-box models, black-box 
models and grey box models (Foucquier et al., 
2013). The white-box models are based on physical 
equations that describe the underlying mechanisms 
of the building. They offer transparency and 
understanding of the physical phenomena involved, 
allowing for accurate predictions and optimization, 
as well interpretability of the results. However, there 
are drawbacks to consider, such as the complexity of 
dealing with complex systems, and the time-
consuming nature of model development (Harish & 
Kumar, 2016). Black-box models on the other hand, 
are purely data driven models. They use actual data 
and perform statistical analysis to capture the 
correlation between the building energy use and 
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operation data (Li & Wen, 2014). Grey-box models 
represent a hybrid approach that combines physical 
and empirical equations to achieve a close 
approximation of the underlying physical 
representation (Harb et al., 2016). They are utilized 
when there are partial information or incomplete 
data, allowing for flexibility and adaptation in 
handling discrepancies, and providing a more robust 
modeling framework (Zhao & Magoulès, 2012).  
 
Discrepancies between a model’s predictions and 
actual energy use are inevitable. To reduce the 
entailing mismatch, calibration is applied. It is a 
process of changing and fine-tuning the model's 
parameters and input assumptions to guarantee that 
the simulated energy performance matches the 
actual energy use of the building (Chong et al., 
2021). It consists of comparing the model's 
predictions to measured data in the building and 
making modifications to increase the model's 
accuracy and credibility. The calibration of BEM 
can be either manual, where it relies on the modeler 
expertise, or automated, where an objective function 
is set to match the simulation results with the 
measured data (Coakley et al., 2014; Hou et al., 
2021). Among the popular calibration techniques are 
optimization evolutionary algorithms, such as 
genetic algorithms (Lara et al., 2017). 
 
In this paper, we present a study that focuses on the 
simulation of eight buildings in the Kopparlunden 
area of Västerås, Sweden. Our main objective is to 
develop a grey box model capable of predicting the 
hourly heat demand for each building under steady 
state conditions. Despite the simplicity of the model, 
we ensured its accuracy through a careful calibration 
process using a genetic algorithm. By incorporating 
this calibration technique, we fine-tune the model's 
parameters to improve its performance and align it 
with measured data. The resultant model achieves a 
good balance between simplicity and accuracy, 
making it a useful and effective tool for predicting 
heat demand in the investigated buildings. Our 
findings demonstrate the successful use of a basic 
yet calibrated grey box model, emphasizing its 
utility in giving vital insights for energy efficiency 
and decision-making in building energy 
management. 
 

2. Methodology  
2.1. Case study 
Kopparlunden, an industrial area in Västerås dating 
back to 1898, holds historical significance. Situated 
in close proximity to the city center, as depicted in 
Figure 1 on the map, the majority of its buildings still 
retain their original character and were originally 

 
1 https://www.archus.se/kopparlunden-fran-ett-stangt-
industriomrade-till-en-levandestadsdel/ (accessed 26/6/2023) 

utilized for metal industry purposes. However, the 
evolving landscape has seen a shift in usage, with 
the buildings now serving as offices or stores, 
accommodating nearly 200 companies in the 
vicinity. Recognizing the potential for optimizing 
the local area, plans have been set in motion to 
revitalize Kopparlunden into a contemporary 
residential space, integrating modern housing, 
commercial establishments, and workspaces1.  
 
The municipality is dedicated to maximizing the 
energy efficiency of the area and has actively 
collaborated with various partners to oversee the 
implementation of the plan. The transformation of 
Kopparlunden is part of a multi-step strategy that the 
municipality and building companies have 
collectively committed to. While many aspects of 
the project, such as the size and functionality of the 
buildings, have been determined, finer details 
regarding the architectural design and specific shape 
are still under consideration. However, at this stage, 
it is possible to make preliminary assessments of 
certain parameters, such as the current heat demand, 
which is the primary focus of the current study. 

2.2 Data Collection 
The buildings simulated in this study are highlighted 
in Figure 2. Buildings data were obtained from the 
NRGYHUB dataset (Krayem et al., 2021). The data 
included buildings’ perimeters, areas, and heights. 
The real heat demand data was obtained from 
Mälarenergi at hourly level for the year 2019. The 
outside temperature was downloaded from ERA52 

for the same year at the hourly level.  
 

2 https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-
era5-single-levels?tab=form (accessed 26/6/2023) 

 
Figure 1: Kopparlunden district, in close proximity to 
Västerås center. The modelled buildings are shown in 

green. 

https://www.archus.se/kopparlunden-fran-ett-stangt-industriomrade-till-en-levandestadsdel/
https://www.archus.se/kopparlunden-fran-ett-stangt-industriomrade-till-en-levandestadsdel/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
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2.3. Model and assumptions 
It is assumed that the building heat balance is given 
using the following equation: 

𝑃𝑃𝐷𝐷 + 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑃𝑃𝑠𝑠  (1) 
where 𝑃𝑃𝑠𝑠, power loss by transmission; 𝑃𝑃𝐷𝐷,  generated 
heat power (only district heating and generated heat 
from the occupants). To simplify the model, losses 
by ventilation, unintended ventilation and air 
leakage were neglected.  
For each element of the building, the transmission 
loss is calculated by the following equation: 
𝑃𝑃𝑠𝑠 = 𝑈𝑈 .  𝐴𝐴 .  (𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑝𝑝𝑜𝑜𝑜𝑜)  (2) 

where 𝑈𝑈, heat transfer coefficient in W/m2.°C, 𝐴𝐴, 
area in m2, 𝑇𝑇𝑖𝑖𝑖𝑖, indoor temperature in °C, and 𝑇𝑇𝑝𝑝𝑜𝑜𝑜𝑜 , 
outdoor temperature in °C. The total transmission 
loss of the building is the sum of the individual 
transmission loss of each element. 
 
The Uvalue of different elements of old buildings were 
assumed from the literature (Liu et al., 2014). The 
Uvalue of the floor was assumed 0.22W/m2.°C and 
that of windows 1.3 W/m2.°C. The walls assembly, 
with an overall thickness of 0.4m, were considered 
to be a composite structure comprising, in sequence, 
brick, concrete, wood, insulation material, wood, 
and a final concrete layer. The respective 
thicknesses of these materials are 0.09m for 
concrete, 0.06m for timber, and 0.1m for insulation. 
Corresponding thermal conductivity values for these 
materials are delineated in Table 1. The overall 
𝑈𝑈𝑜𝑜𝑝𝑝𝑜𝑜𝑡𝑡𝑝𝑝  of the walls is equal to the reciprocal of its 
total resistance 𝑅𝑅𝑜𝑜𝑝𝑝𝑜𝑜𝑡𝑡𝑝𝑝, which is calculated as 
follows: 

𝑅𝑅𝑜𝑜𝑝𝑝𝑜𝑜𝑡𝑡𝑝𝑝 = �
𝑑𝑑𝑖𝑖
𝑈𝑈𝑖𝑖

 
 (3) 

where 𝑑𝑑𝑖𝑖 represents the thickness of layer i and 𝑈𝑈𝑖𝑖 
its corresponding thermal conductivity. The areas of 
the walls, floors and ceilings were estimated from 
the shapefiles. The area of the windows, which were 
assumed double glazed, was then calculated using 
the window to wall ratio from Table 1.  
For 𝑇𝑇𝑖𝑖𝑖𝑖 , it is assumed to be 21℃ to ensure indoor 
comfort. 
 
The internal generated heat power is considered 
mainly generated from occupancy and is calculated 
using the following equation: 

𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐴𝐴𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 .𝑛𝑛𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑠𝑠.𝑃𝑃𝑝𝑝ℎ . 𝑟𝑟𝑝𝑝 (3) 
where 𝐴𝐴𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓, a building’s floor area, 𝑛𝑛𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓, number 
of floors, 𝑃𝑃𝑝𝑝ℎ, heat generated per person, assumed to 
be 80W/person, and 𝑟𝑟𝑝𝑝, the person ratio in 1/m2 and 
it is assumed to be one person per 35m2. The values 
are based on the Swedish National Board of 
Housing, Building, and Planning (BBR)3. 
 

 
3 Boverkets föreskrifter om ändring av verkets föreskrifter och 
allmänna råd (2016:12) om fastställande av byggnadens 

The walls of all buildings are assumed to be 
composed of double layers of concrete and wood 
with an insulation layer in between. Several key 
inputs related to the materials properties and 
buildings construction (shown in Table 1) remain 
indeterminate due to unavailable or ambiguous data. 
To address these uncertainties and ensure the 
reliability of the model, a calibration process was 
conducted using a genetic algorithm (Martínez et al., 
2020). The objective of the calibration (cost 
function) was to minimize the Root Mean Square 
Error (RMSE) between the simulated heat demand 
and the observed heat demand data. This iterative 
process involved fine-tuning some of the model's 
parameters to achieve a higher level of accuracy in 
predicting the heat demand. During the calibration 
process, multiple design variables were considered, 
as outlined in Table 1. These inputs played a crucial 
role in optimizing the model's performance and 
aligning it with the actual heat demand patterns 
recorded in the Kopparlunden area. Careful 
selection and adjustment of these variables 
contributed to improving the model's capability to 
simulate the complex heat demand patterns observed 
in the buildings. The variations’ range of the 
concrete heat conductivity was obtained from (Misri 
et al., 2018) and for wood from (Pásztory et al., 
2020). 
 
By iteratively adjusting and refining these design 
variables, the aim was to enhance the model's 
accuracy and its ability to capture the variation 
nature and seasonal patterns of the heat demand 
profiles of different buildings.  
 
3. Results 
Among the buildings studied, Building II exhibited 
the highest level of accuracy in terms of heat demand 
prediction, with an RMSE of approximately 2 kW, 
as shown in Table 2. Conversely, the first building 
demonstrated the largest deviation from the actual 
heat demand, resulting in an RMSE of 16 kW. This 
discrepancy can be attributed to several factors,  

energianvändning vid normalt brukande och ett normalår, BFS 
2017:6 

Table 1: Range of values of inputs estimated with the 
genetic algorithm. 

Variables Range of 
variations 

Window to wall ratio 0.1 – 0.65 
Concrete heat conductivity 1.3 – 2  
Wood heat conductivity  0.12 – 0.16 
Insulation heat 
conductivity 

0.06 – 0.1 

Wall resistance indoor 0.1 – 0.16 
Wall resistance outdoor 0.02 – 0.06 

https://rinfo.boverket.se/BFS2016-12/pdf/BFS2017-6.pdf
https://rinfo.boverket.se/BFS2016-12/pdf/BFS2017-6.pdf
https://rinfo.boverket.se/BFS2016-12/pdf/BFS2017-6.pdf
https://rinfo.boverket.se/BFS2016-12/pdf/BFS2017-6.pdf
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including the lack of detailed information regarding 
the construction materials utilized in Building 1. 
Additionally, the accuracy of the geometry data 
employed in the model significantly influences the 
predictive performance.  
Figure 2 (scatter plot) illustrates a comparison 
between the actual heat demand points and the 
corresponding predicted values. The closeness of the 
points to the diagonal red line indicates the degree 
of agreement between the actual and predicted 
values. A strong correlation is observed for most of 
the considered buildings, as signifies the tight 
clustering of points around the diagonal red line, 
while deviations suggest a divergence between the 
actual and predicted values. 
The analysis reveals that buildings 1, 5, and 7 exhibit 
the highest discrepancies between predicted and 
actual values. Remarkably, these buildings are also 
the largest in the study, boasting significant annual 
heat demands of 153.52 MWh, 349.95 MWh, and 
189.84 MWh, respectively. This highlights a notable 
limitation in the model's accuracy when estimating 
heat demand for sizable and complex buildings. 
Achieving more accurate results in these cases 
necessitates a more detailed approach that considers 
additional factors. 
Figure 3 illustrates the distribution of losses among 
the buildings based on the optimal design variables 
obtained from the calibration process. It is evident 
that wall losses contribute the most significant 
proportion of total losses for all buildings, closely 
followed by losses through the ceiling. Conversely, 
losses through the windows are relatively low due to  
the smaller window-to-wall ratio considered and the 
utilization of effective insulation materials. 
 
4. Summary and Discussions 

The utilization of a grey-box model in this study 
provides a straightforward approach to estimate 
building heat demand. However, it is important to 
recognize that higher levels of accuracy may 
necessitate a substantial amount of data. A larger 
and more detailed dataset would have contributed to 
enhancing the precision of the model's predictions. 
While detailed data might be available for specific 
or individual projects, and it is possible to achieve 
detailed data collection, it might not always feasible 
for large scale modeling, such as in Urban Building 
Energy Modeling (Hao & Hong, 2021; Wong et al., 
2021), given the vast heterogeneity in buildings and 
associated operational variables. Different modeling 
approaches are adopted, ranging from physics-based 
to statistical-based methods (Swan & Ugursal, 
2009). Each comes with its own set of advantages 
and limitations, depending on the availability of data 
and the specific objectives of the analysis. 
 The heat losses shown in Figure 3 highlights the 
importance of insulation to reduce the wall heat 
losses for buildings. The findings suggest that 
improving the insulation and thermal characteristics 
of the walls could lead to substantial reductions in 
energy losses. Furthermore, using highly thermal 
resistant materials in the ceiling can also contribute 
to minimizing overall heat losses. 
By focusing on these key areas of concern, such as 
wall and ceiling insulation, building operators and 
policymakers can effectively enhance energy 
efficiency and reduce heating demands. This 
understanding of the relative contributions of 
different building components to heat losses offers 
valuable insights for implementing targeted 
interventions and developing sustainable heating 
practices in the Kopparlunden area. 
 

Table 2: The estimated inputs of the model after calibration using the genetic algorithm. 

Building 
number 

I II III IV V VI VII VIII 

Window to wall 
ratio 

0.10 0.14 0.10 0.10 0.10 0.10 0.10 0.10 

Uvalue of window 0.85 1.28 0.85 0.85 0.92 0.85 0.85 0.85 

Concrete heat 
conductivity 

1.30 1.78 1.30 1.30 1.35 1.30 1.30 1.37 

Wood heat 
conductivity  

0.12 0.14 0.12 0.12 0.13 0.12 0.12 0.14 

Insulation heat 
conductivity 

0.06 0.07 0.06 0.06 0.07 0.06 0.06 0.08 

Wall resistance 
indoor 

0.16 0.16 0.16 0.16 0.12 0.16 0.16 0.15 

Wall resistance 
outdoor 

0.06 0.05 0.06 0.06 0.04 0.06 0.06 0.03 

RMSE [kW] 16.60 2.49 5.62 10.92 14.71 4.93 8.51 4.97 
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While the results obtained from the model offer 
valuable insights into the fluctuations of heat 
demand in the studied buildings, it is crucial to 
realize the inherent limitations associated with this 
approach. Grey-box models may rely on simplified 
assumptions and estimated parameters and may not 
fully capture the intricate complexities of real-world 
systems. Nevertheless, this methodology serves as a 

valuable tool for providing initial estimations of heat 
demand and can serve as a starting point for further 
analysis and refinement.  
By acknowledging both the strengths and limitations 
of the grey-box model and considering the 
availability and quality of data, researchers and 
practitioners can make informed decisions regarding 
energy management and optimization strategies. 
Future actions should concentrate on enhancing the 
model's accuracy through the incorporation of more 
detailed information, improved geometry data, and 
potential exploration of alternative modeling 
techniques to achieve even higher levels of 
predictive performance.  
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