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Abstract 

The need to improve reliability and support decision-making in manufacturing has drawn attention to the 

application of diagnostic and decision-support tools. Particularly in the investment casting industry, data-

driven methods can be the enabler for process diagnostics and decision support. Images from the microscopic 

examination in the investment casting process are used as data input, to detect defects in produced pieces. 

The microscopic examination usually relies solely upon the ability of the operator to determine whether an 

image from the microscope contains a defect. Therefore, an effective strategy for this decision-making 

process is crucial to improve the reliability of the examination. The use of the machine learning classifier 

Random Forest is introduced to derive predictions on the existence of a defect in the input image.  This work 

focuses on employing machine learning tools for image recognition and the developed approach constitutes 

a decision support model to assist the operator and improve the reliability of their assessment.  

 

1. Introduction 

During the last decade, machine learning (ML) 

techniques have been widely implemented in 

different production processes, aiming to enhance 

the quality of the products, apply process 

diagnostics, or support decision-making 

(Esmaeilian et al., 2016) Utilization of ML 

methods has found application in production 

operational management centers to facilitate 

decision-making processes (González Rodríguez 

et al., 2020), or use predictions to support 

decisions in inventory management (Mohamed & 

Saber, 2023). The need to improve the reliability 

of decision-making for fault detection and 

diagnostic processes represents one of the 

strategic objectives of many industries. In 

manufacturing, reliability refers to machines, 

equipment, and systems being able to perform 

their intended functions with consistency and 

predictability. Providing reliable products is vital 

to the success of the industry, as traditionally 

reliability is evaluated by the final product quality 

(Safhi et al., 2019). Numerous measures can be 

taken to increase manufacturing reliability, such 

as regular maintenance and calibration of 

equipment, as well as diagnosing faults in 

components or systems.  

The microscopic examination mentioned in 

this work is a part of the investment casting 

process, a process aiming to create components 

that can be used in turbomachinery applications, 

characterized by high geometrical complexity, 

and later subjected to demanding performance 

conditions. The production of such parts has 

multiple subprocesses and is a very sophisticated 

procedure with much attention to detail (Warren 

et al., 2021).  

Most current practices in industry involve 

experts inspecting individually each piece 

produced and detecting defects manually 

(Jawahar et al., 2021). Particularly in the 

aerospace manufacturing industry, visual 

inspection still dominates the testing of parts 

including engine blades, accounting for 

approximately 90% of all inspections (Aust et al., 

2021).  With quality assessment being one of the 

essential steps of the process, relying solely on the 

ability of an inspector to detect faults could be of 

high risk (Aust et al., 2021). Studies have shown 

that during the inspection of parts, the judgment 

of professionals can be biased by expectations 

coming from contexts such as prior knowledge or 

experience and inspectors may be unaware when 

their judgments are affected (MacLean & Dror, 

2021). Bias can come from different sources, 

either case-specific, such as data, reference 

materials, and contextual information, depending 

on the environment and experience, or cognitive 

architecture and human nature. Many studies have 

so far been carried out on using ML techniques to 

identify faults and improve the reliability of other 

processes such as fluorescent penetrant inspection 
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(Niccolai et al., 2021) (Shipway et al., 2019), or 

X-ray inspection (Jiang et al., 2021), (García 

Pérez et al., 2022), but little has been done on the 

microscopic examination of the parts, and even 

less on the investment casting products.  

   The microscopic examination process in 

investment casting appears to be an excellent 

opportunity for the application of ML methods 

that could improve the reliability of fault 

diagnosis by assisting in decision-making. This is 

due to the requirement that the inspector 

conducting the examination detects 

discontinuities in materials and decides whether 

they could endanger the structural integrity of the 

produced part and its functionality. The purpose 

of this research work is focused on improving the 

reliability of the decision-making mechanism of 

the inspector’s assessment during the microscopic 

examination, through the application of ML 

techniques. As it is essential to reduce the risk of 

false assessment when diagnosing faults while 

minimizing possible bias and increasing 

objectivity, an assisting ML model for the 

operator is proposed. 

 

2. Methodology  

2.1. Background 

Investment casting is a manufacturing process 

that produces dimensionally accurate components 

and is a more cost-effective alternative to forging 

or machining since waste materials are reduced to 

a very low level (Li & Wang, 2021). During the 

process, molten wax is injected into a metallic 

mold to create a wax pattern with the desired 

component shape. The wax mold is repeatedly 

dipped into a ceramic slurry which then hardens 

to create a ceramic casing around the wax design. 

The wax is then removed from the shell by 

melting, leaving a cavity inside that exactly 

resembles the shape of the component. The 

casting procedure itself is carried out by filling the 

thus-produced ceramic shell with molten alloy 

after hardening the ceramic shell by heating. The 

shell is separated as the molten metal hardens to 

produce the components which will then undergo 

various finishing and inspection processes (Del 

Vecchio et al., 2019). 

As one of the final inspection methods, the 

microscopic examination contains assessments 

whose results determine if a part is ready for 

delivery, based on the requirements of each 

customer. Usual requirements might be the 

maximum allowed percentages of a specific 

defect found on a part, such as porosity. The 

conditions of the casting process in its entirety 

strongly determine the occurrence of defects 

during the observation. The operation of 

microscopic examination within the factory 

typically relies solely upon the ability of the 

operator, without any assisting model. The 

inspection is carried out using portable equipment 

and conventional optical microscopy procedures. 

For the microscopic examination to be successful 

and with accurate results, the operator is required 

to search for and detect irregularities by visually 

examining the cut surface of the material, an 

example of which is shown in Figure 1.  
 

 

Figure 1: The cut up of a piece produced by 

investment casting. 

When inspecting the material in the 

microscope, the operator comes across images 

that are either clean or contain a defect. It is up to 

the operator to decide the status of every image 

(faulty or non-faulty). Faults appearing on the 

image can be: 

• Porosity (often forming as microporosity), 

which appears in the microscope as dark 

repeated streaks with smooth edges. It is 

known to be the most common defect found 

during investment casting and dramatically 

limits the life of aerospace components 

(Torroba et al., 2014). A possible porosity 

cause is shrinkage during solidification, 

where there is a shortage of molten material 

flow in-between the space of connected 

dendrites (Mozammil et al., 2020). 

• Gas pockets, that are observed as dark circular 

shapes during the microscope examination. 

Similar to porosity, factors such as metal 

solidification time and air entrapment are due 

to turbulence during the pouring of the molten 

metal into the shell (Kaiser et al., 2011). 

• Cracks, which are usually caused by internal 

stresses from the solidification of the metal or 

rapid cooling, can be identified as either hot 

tear cracks, appearing as noncontinuous dark 
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lines of variable widths, or cold state, which 

indicates thin continuous lines. They can also 

initiate forming by other defects or 

intermetallics (Dezecot & Brochu, 2015). 

• Chemical reactions that might appear due to 

refractories used during the forming of the 

shell mold (Hao et al., 2020). They can be a 

result of the interaction of the metal used in 

investment casting and the ceramic mold 

where the metal is poured. 

Examples of the above are shown in Figure 4. 

There are also fewer common cases of other 

defects appearing such as missruns, dross, or 

segregation, generated mainly during the 

solidification process. During the microscopic 

assessment, the inspector may come across one of 

the defects or possible combinations of them. 

 

2.1. Approach 
The method proposed in this paper aims to detect 

faults that can occur during the investment casting 

process and support the assessment of defect 

presence. The steps followed in this work to tackle 

the risk of inaccurate assessment and create an 

assisting model for the operator were designed as 

follows: 
 

 
 

Figure 2: The approach to designing the data-driven 

method. 

According to several researchers (Ali et al., 2012; 

Bertovic et al, 2013), the examination of a part 

requires information processing that contains 

signal detection and decision-making. The first 

decision-making at this point is not to identify the 

specific type of defect but to determine whether 

the picture of the cut material contains a defect or 

not. In signal detection, the aim is to recognize a 

signal from a background interference or noise 

(Swets, 1996). Therefore, the operator can give 

two right or wrong answers: to correctly or 

incorrectly accept or reject the presence of a 

defect (Enkvist et al., 1999; Lynn &Barrett,2014). 

The four possible outcomes are illustrated in 

Figure 3. 

 

 
 
 

 Figure 3: The possible outcomes of the assessment 

depend on the true state of the world, according to 

signal detection theory. 

 

2.2. Data Preprocessing 
The input for the model was both images that 

contained defects and images that did not. The 

images in the dataset were taken from a database 

of microscopic examinations and were previously 

used to manually inspect portions of the parts to 

find defects. Initially, 1787 photographs were 

retrieved from the database that had various kinds 

of defects, while 462 images had no signs of any 

defects. Without a form of data augmentation that 

would provide a wider and more balanced training 

dataset, it can be challenging to obtain appropriate 

performance because datasets from real 

applications (such as production) are frequently 

limited (Shorten & Khoshgoftaar, 2019; Xu et al., 

2023).  

For the initial processing of the images, data 

augmentation was applied. A usual form of data 

augmentation technique is altering the 

geometrical characteristics of the initial images. 
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The first step of augmentation consisted of using 

the PIL Python library to alter the dimensions of 

the images. PIL is widely used in Python, as a 

potent tool for processing images. It can alter 

different kinds of image formats, sizes, and 

orientations (Guan et al., 2019). The images were 

cropped to the ratio of 1:1, to facilitate the rotation 

process that took place later. The initial 

dimensions were 722*990 pixels, and the final 

images were 722*722 pixels, cropped regarding 

the defect area. To increase the number of training 

data, the images were flipped and subjected to 

rotation.  

Figure 4 displays the original and altered photos 

as well as instances of the four categories of 

defects that were stated before. 

 
  Figure 4: The original cropped images (left) of and the 

artificially edited ones (right) of four different types of 

defects (from top to bottom): porosity, gas pockets, 

cracks, and chemical reaction. 

 

To enhance the computational performance of 

the classifier, the image pixels were reduced to 

42*42 instead of 722*722.  The classifier was able 

to better predict the existence of a defect on the 

image tested when the pixels were reduced to 42 

per side, as shown in Figure 5, which indicates the 

higher accuracy levels achieved with this 

particular number of pixels. 
 

 

Figure 5: The accuracy score development during the 

repetitions with different numbers of pixels. 

 

2.3. Classification 

Considering the specific dataset's characteristics, 

including its size and the presence of defects, the 

proposed approach employs the ML classifier 

Random Forest (RF) to make predictions 

regarding the presence of defects in the input 

image. In applications with datasets similar to the 

one being utilized in this study (Khatami et al., 

2019; Subudhi et al., 2020), RF shows satisfactory 

performance. This remains accurate for this stage 

of the process and is in line with the requirements 

of image recognition and classification between 

the two classes. Opting for RF over alternative 

methods is supported by its dependable 

performance in effectively tackling the challenges 

presented by dataset size and complexity. 

According to the literature, RF is often used for 

small data sets, similar to those from the medical 

field because it contributes to solving problems in 

industrial applications and has advantages such as 

ease of use, robust generalization ability, greater 

classification accuracy, and high functionality 

(Wang et al., 2023). 

The RF method is considered quite a popular 

ensemble technique for pattern and image 

recognition. As an ensemble learning technique, it 

combines multiple decision trees to increase the 

Porosity 

Gas pockets 

Cracks 

Chemical reaction 
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predictions’ accuracy. The training is 

accomplished for each decision tree, where all 

classifiers generated from different trials are 

collected to construct the final classifier (Azar et 

al., 2014). The algorithm, when used for 

classification, outputs the mode of the classes of 

the individual trees. A subset of training data and 

a subset of features are randomly selected by the 

algorithm to build each decision tree.  

The limitations of an RF classifier would 

depend on the high dimensionality of the data, 

which was tackled by reducing the number of 

pixels during data preprocessing, as mentioned in 

section 2.2. For pixel-based approaches like the 

one in this application, and for this stage and the 

requirements of the process, RF can perform 

satisfactorily. Research on methods for pixel 

analysis of pictures has revealed that RF acts 

similar to Neural Networks (NN) in defining 

linear borders between classes, such as in the 

usage of plantation boundaries (Boston et al., 

2022). When aiming to reduce time consumption 

and computational complexity while dealing with 

a small number of training samples, RF has been 

preferred over NN in situations with diagnostic 

applications comparable to this one (Han et al., 

2018).  

The images obtained from previous 

microscope examinations were pre-processed and 

split into training and testing datasets. One of the 

possible limitations in training the RF classifier 

would be an imbalanced data set, where the 

classifier might favor the minority class. 

Therefore, a balanced data of 3600 images from 

each category (faulty or non-faulty) was used to 

create the training and testing datasets, to better 

assist the training process and reduce 

computational complications. The data set split 

was 80% training and 20% testing images, which 

was 5760 and 1440 images respectively.  

Since the data set was labeled during the 

preprocessing stage, comparable supervised 

machine learning classifiers have been employed 

on this dataset. These included the Decision Tree 

(DT), the Support Vector Machine (SVM), and 

the Gaussian Process (GP) Classifier. The goal of 

the DT classifier is to create a training model that 

can be used to infer learning decision rules from 

training data in order to predict the class or value 

of target variables (Charbuty & Abdulazeez, 

2021). The SVM is a common pattern recognition 

classification technique that aims to find a central 

hyperplane to partition the data points. The 

datasets are therefore divided into different 

classes. Along the hyperplane that separates the 

classes, SVM establishes a concentrated 

separation boundary (Halder et al., 2023). GP 

classifiers offer a probability distribution over all 

conceivable functions that can match a given set 

of training points. The decision boundary then 

corresponds to the midpoint between the two 

classes as a result of the prior distribution's initial 

assignment of equal probability to both classes 

(Basha et al., 2023). On the basis of their accuracy 

score, the three aforementioned techniques were 

compared with the RF classifier. 

 

3. Results and discussion 

The RF classifier underwent testing with different 

numbers of estimators to determine the best 

configuration that would produce the most 

accurate outcomes. It attained an accuracy rate of 

86.5%. This score was found to be higher after 

experimenting with several types of classifiers. 

 

Figure 6: The accuracy score between the different 

classifiers. 
 

     As illustrated in Figure 6, the RF classifier 

outperformed other classifiers used in comparable 

applications, for this particular dataset with 

industrial images. The other types of classifiers 

that were tested and produced accuracy scores 

were the GP (78,6%), the SVM (60,8%), and 

finally the DT classifier (74,8%). 

The number of assigned estimators, which in 

this application was 120 estimators, is typically 

used to describe the Random Forest classifier. 

This was obtained by several iterations of the 

model, each using a different set of estimators. 

After achieving peak accuracy at the 120 

estimators (86.5%), it was seen that the 

computing time increased while the accuracy 

score did not, entering a relatively static period. 
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The development of the accuracy score regarding 

the number of estimators used is illustrated in 

Figure 7. 
 

 
Figure 7: The accuracy score development during the 

repetitions with different estimator numbers. 

 

The model produced a confusion matrix, a 

metric used to evaluate the accuracy of the 

classification. The confusion matrix contrasted 

the amount of accurate and inaccurate 

classifications made. Correct forecasts 

outperformed incorrect ones (false calls or 

misses) by a factor of five in terms of outcomes. 

The color gradient scale of the confusion matrix 

draws attention to the accurate classifications and 

the stark contrast between them and the inaccurate 

ones. The three matrices for the other classifiers 

were produced in addition to the confusion matrix 

from the RF classifier (Figure 8). 

   As observed in the confusion matrices for each 

classifier, the RF classifier demonstrates a more 

even distribution along the diagonal of the color 

scale. It achieves 1240 correct predictions 

(composed of 642 true positives and 548 true 

negatives), as opposed to 200 incorrect 

predictions (comprising 78 false positives and 122 

false negatives). This pattern aligns with the 

accuracy scores, as the other classifiers show a 

decreased frequency of accurate predictions that 

match the true labels. The color-coded cells 

within the matrices distinctly indicate that only 

the SVM classifier surpasses the RF classifier in 

prediction count for a specific class. However, the 

SVM's incorrect predictions outnumber the 

correct ones, resulting in a lower accuracy score 

for this classifier. In essence, the analysis 

underscores that the RF classifier outperforms the 

others by maintaining a more balanced and 

accurate distribution of predictions, making it the 

most reliable choice among the evaluated 

classifiers. 

 

Decision Tree Classifier 

Gaussian Process Classifier 

Support Vector Machine Classifier 

Random Forest Classifier 

Figure 8: The Confusion Matrix for each classifier. 
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4. Conclusions 

The present work demonstrated a data-driven 

approach to the investment casting microscopic 

examination to provide an assisting tool that 

supports decision-making and improves its 

reliability. The RF classifier that was chosen has 

achieved a level of prediction accuracy that is 

adequate given the characteristics of the dataset 

that was collected and preprocessed. It established 

higher efficiency for the selected dataset when 

compared to other classifiers that are employed in 

similar applications. Even though production data 

are seldom balanced, the model may also be used 

to predict unbalanced datasets after it has been 

trained. Therefore, this work contributes to 

developing a framework for integrating machine 

learning into the investment casting process, 

particularly in one of its subprocesses. It 

encourages further use of the ML classification 

algorithms for investment casting defects while 

introducing semi-automation of the investment 

casting microscopic examination. 
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