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Abstract 
 
Multiphase flow metering is a challenging task because of the complexity of multiphase flow. In this paper, non-
intrusive multiphase flow metering techniques, including machine learning (ML) / artificial intelligence models 
for the identification of flow regimes and estimation of flow parameters of a two-phase flow in a horizontal pipe 
are proposed that use data from Electrical Capacitance Tomography (ECT) and conventional measurements such 
as differential pressure in the pipe. The flow regimes are classified into five types, namely plug, slug, annular, 
wavy and stratified. Two-phase air/water flow experimental data from ECT are collected by running extensive 
experiments using the horizontal section of the multiphase flow rig at the University of South-Eastern Norway 
(USN). Exploratory data analysis (EDA) is performed on these data to extract features for use in classification 
and regression algorithms. Time series of normalized capacitance data from ECT sensors are used to classify flow 
regimes and identify flow parameters. ML techniques of Artificial Neural Network, Support Vector Machine 
(SVM), K-Nearest Neighbors (KNN) and Decision Tree (DT) are used to classify flow regimes by using features 
extracted from ECT data. The cross-correlation technique is used to estimate flow velocity using data from a twin-
plane ECT module. ML regression techniques are used to estimate phase fractions. Fusing data from differential 
pressure sensors enhances the flow regime classification. An overall system performance is given with suggestions 
for designing dedicated control algorithms for actuators used in multiphase flow control. 

 

1. Introduction 
In fluid mechanics, multiphase flow is the flow of 
two or more phases of matter in a pipe. Multiphase 
flow is a complex phenomenon. Two-phase flow is 
a flow where two phases out of solid, liquid and gas 
phases are observed simultaneously in a pipeline. 
Gas/Solid is prevalent in pneumatic conveyors, dust 
collectors, fluidized beds, heterogeneous reactors 
and metallized propellant rockets. Gas/liquid flow 
can be seen in atomizers, scrubbers, dryers and 
combustors. Liquid/liquid droplet flow is observed 
in extraction, homogenizing and emulsifying. 
Liquid/solid is present in flotation and sedimentation 
(Soo, 1990).   
The geometric distribution of constituent phases in a 
multiphase flow is known as flow regime or pattern 
(Tan and Dong, 2023). There are various types of 
flow regimes. Slug, plug, stratified, annular, wavy, 
bubble, etc., are common and well-known flow 
regimes observed in multiphase flow (Vohr, 1960). 
Flow regimes depend on the orientation of pipe and 
direction of flow. The density of phases, viscosity of 
phases and mass flow rates of phases also greatly 
affect the creation of flow regimes (Alssayh et al., 
2013). Operating pressure, temperature, valves and 
bends have a direct effect on the flow regimes 

(Hansen et al., 2019). Classification of flow regimes 
in a two-phase flow pipeline is a major challenge in 
the field of flow analysis (Pereyra et al., 2012). Flow 
regimes can be classified subjectively through 
graphics or by employing the probability density 
function of pressure or void fractions signals from 
sensors (Almalki and Ahmed, 2020; Godfrey 
Nnabuife et al., 2021). Flow regimes has direct 
effect on the measurement of flow velocities, phase 
fractions and other parameters (Godfrey Nnabuife et 
al., 2021). Some of the flow regimes observed in 
horizontal gas/liquid multiphase flows are described 
below:  
 Stratified 
When gas and liquid flow rates are low, stratified 
flow is observed. It is applicable in horizontal flow 
direction. There is no mixing of the two phases and 
the liquid phase remains as a film at the lower 
portion of the pipe (Liné and Fabre, 2011).  
 Wavy 
At higher gas flow rates, the stratified flow converts 
to wavy flow in which ripples or waves are observed 
on the top of the liquid layer. It appears like waves 
in a sea. (Jayanti, 2011) 
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 Annular 
At higher gas velocity, wavy flow converts to 
annular flow in which liquid flows at the periphery 
of the pipe while gas flows at the center of the pipe. 
(Zeigarnik, 2011) 
 Plug / Elongated Bubble 
Plug is a kind of flow pattern in which large bubbles 
of gas float on the top surface of the liquid phase 
spanning a large area in the pipe. The gas phase is 
dispersed in the liquid phase. (Vohr, 1960) 
 Slug 
Slug flow is intermittent flow in which slugs of 
liquid with dispersed bubbles flow along with large 
gas pockets. The flow is always unsteady. The 
bubble is in the shape of a bullet. This flow alternates 
between high liquid fraction and high gas fraction. 
(Vohr, 1960) 

(Wang and Zhang, 2009) use an ECT for identifying 
flow regimes by applying Support Vector Machine 
(SVM) to classify flow regimes and Principal 
Component Analysis (PCA) to optimize the inputs 
to the SVM model. (Ameran et al., 2015) discuss 
velocity measurement of two-phase flow through 
ECT using cross-correlation techniques. A study of 
flow velocity and phase concentrations of horizontal 
two-phase flow is presented by (Stavland et al., 
2021), employing a dual-plane ECT with gamma-
ray tomography to measure volumetric flow rates of 
the phases, achieving an accuracy of ±10%. 
The results presented in this paper are developed 
during the master thesis’s work of (Noorain Syed 
Kazmi, 2023). 
 
2. System Description 
A multiphase flow rig is at the University of South-
Eastern Norway (USN), Campus Porsgrunn. This rig 
is equipped with facilities for multiphase flow 
studies using water, air, and mineral oil through a 
horizontal pipe. The pipe can be tilted by ±10⁰ with 
respect to the horizontal surface. The operational 
limit of mass flow rate for air is 5 kg/min, whereas 
for liquid is 150 kg/min. By injecting various 
combinations of air, water and oil mass flow rates, 
different flow regimes can be generated and visually 
inspected through the Plexiglass transparent section, 
as shown in Fig. 1. A simplified piping and 
instrumentation diagram (P&ID) of the flow rig is 
shown in Fig. 2. Some important parameters of the 
rig are given in Tab. 1. 
 

 
Figure 1: The rig setup (partly) at USN, Porsgrunn. 

 
Figure 2: P&ID of the rig at USN, Porsgrunn 

Table 1: Some parameters of the rig at USN, Porsgrunn 

 
As depicted in Fig. 1, a TOMOFLOW TFLR5000 
dual-plane ECT system from Process Tomography 
Limited is equipped on the rig. The ECT system can 
measure the flow parameters of an uneven two-
phase flow when the constituents have dielectric 
properties (Process Tomography Limited, 2011). In 
this rig, air, oil and water permittivities are 1, 2.7 and 
80, respectively (Dupré et al., 2017).  

PDT120 and PDT121 are the differential pressure 
meters mounted on the rig, as shown in Fig. 3. 
PDT120 measures the differential pressure across a 
span of 10.22m in the pipe, and PDT121 captures the 
differential pressure across a shorter distance of 
5.38m within the same pipe. In addition, the inlet air 
flow rate and air  pressure are measured separately 
by a flow transmitter FT131 and a pressure 
transmitter PT131.  

 
Figure 3: Measurement areas of differential pressure 

meters on the flow rig at USN, Porsgrunn (Dupré et al., 
2017) 

3. Electrical Capacitance Tomography 
ECT is a non-invasive, non-radioactive flow sensing 
method that measures the spatial distribution of 
dielectric materials within a pipe using capacitance 
readings from peripheral electrodes (Process 
Tomography Limited, 2011; Saied and Meribout, 
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2016). The capacitances can also be converted into 
images for visual depiction of the flow.  
Generally used in two-phase liquid/gas flow, ECT 
measures permittivity distribution inside a pipe at 
two cross-sections of a pipe that can give the 
velocity profile of flow while also providing volume 
ratio or phase fraction data. ECT is most effective 
when working with fluids that have low electric 
conductivity and variable permittivity (Process 
Tomography Limited, 2011). The working principle 
of an ECT (one plane) is shown in Fig. 4.  
 

 
Figure 4: Principal of ECT with 8-electrodes (Process 

Tomography Limited, 2011) 

An alternating voltage is applied between the source 
and the ground. The source is charged to one 
electrode. Currents, in direct proportion to the 
capacitance, are subsequently measured at all 
remaining electrodes. Within a single measurement 
frame, the currents/ capacitances between each pair 
of electrodes are measured. For an N-electrodes ECT 
plane, there are in total M = N(N-1)/2 unique 
capacitance values per measurement frame (Process 
Tomography Limited, 2011). The measured 
capacitances can be normalized by using Eq. 1. 
 

𝐶 =
𝐶 − 𝐶

𝐶 − 𝐶
 (1)  

 
In Eq. 1, 𝐶  is the inter-electrode raw capacitance. 
𝐶  is the capacitance when the pipe is full with lower 
permittivity material such as air. 𝐶  is the 
capacitance when the pipe is full with higher 
permittivity material such as water. 𝐶  is the 
normalized capacitance. 𝐶  is dimensionless and 
normalized, making it suitable as input for 
mathematical operations and algorithms. 
 
4. Experiments 
Based on the flow conditions outlined in Fig. 5, 45 
of two-phase air and water experiments are carried 
out on the flow rig using the ECT system. 
Conventional measurements such as differential 

pressure, temperature and mass flow rate were also 
recorded during each experiment.  
The flow regimes indicated in Fig. 5 are validated 
via visual inspection throughout the experiments. 
Fig. 6 displays the active experimental area on the 
flow regime map. The lowest flow rates for air and 
water are 0.07 kg/min and 2 kg/min, respectively, 
while the highest flow rates for both mediums reach 
5 kg/min and 77 kg/min. Fig. 7 illustrates the setup 
of the sensor array, comprising of 8 electrodes, 
around the pipe. Tab. 2 provides the parameters 
setup in the ECT system during the experiments. 
 

 
 

Figure 5: Test matrix for two-phase flow with varying 
velocities of water and air (in kg/min) generating 

different flow regimes 

 
Figure 6: Active region (blue area) of experiments on a 

flow regime map, based on Mandani et al.. 
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Figure 7: Setup of ECT electrodes and planes on the pipe 
and their connection to TOMOFLOW TFLR5000 system 

 

Table 2: HW/SW related parameters used in the ECT 
module for the experiments  

Parameter Value 
Frames per second per plane 100 
Sampling interval per plane (ms) 10 
Number of planes 2 
Number of electrodes per plane  8 
Number of capacitances per measured frame 28 
Logging duration per experiment (s) 30 

For each experiment, 3000 frames of ECT data were 
collected. For example, one of the experiments for 
Annular flow regime was conducted by simulating 
an Annular flow in the USN flow pipeline by using 
the matrix of Fig. 5. This experiment generated 3000 
frames of normalized capacitances from the eight 
electrodes. This batch of frames was labeled as 
Annular to be used for supervised machine learning 
algorithms. Each frame consists of 28 capacitance 
values. For 45 experiments, a total of 135000 frames 
of capacitance data are collected. These capacitance 
data were normalized before using them in 
classification and regression algorithms. Each frame 
was flattened to 28 columns of normalized 
capacitances with the observed flow regime in the 
29th column of the flattened file enabling 135000 
rows as inputs to machine learning models.  

 
5. Methods 
This paper defines CXY as the normalized 
capacitance between electrodes X and Y, with C12, 
for instance, denoting the normalized capacitance 
between electrodes 1 and 2. The electrode counts are 
given in Fig.7. The classification and regression 
models are developed in MATLAB R2020b for this 
paper.  
 
5.1 Flow Regime Identification 
Flow regime identification utilizes 28 normalized 
capacitances from one ECT data frame as 

features/inputs. The associated flow regime types 
act as labels/outputs in machine learning (ML) 
classification algorithms, as illustrated in Fig. 8. 
ML algorithms of Decision tree (DT), K-Nearest 
Neighbors (KNN), SVM and Feedforward Neural 
Networks (FNN) are used as flow regime 
classification algorithms. Classification Learner 
App in MATLAB is used to develop the flow regime 
classification algorithms of DT, KNN and SVM. 
The Neural Network Pattern Recognition App in 
MATLAB is used to develop the flow regime 
classification FNN algorithm. 

In pursuit of enhancing model performance, another 
model incorporating both ECT data and differential 
pressure data from sensors PDT120, PDT121, and 
PT131 is also developed by implementing a sensor 
fusion method, as illustrated in Fig. 9  

 

 
 

Figure 8: Model for flow regime classification using 
normalized capacitances as features in ML algorithms 
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Figure 9: Model for flow regime classification using 

sensor fusion concept 

 

5.2 Flow Velocity Estimation 
To estimate the flow velocity, a cross-correlation 
analysis is performed using frames from both planes 
in a dual plane of ECT. The normalized capacitances 
at these two planes are cross-correlated to find the 
peak correlation lag between them. For instance, the 
series of C12 at plane 1 is correlated with the series 
of C12 at plane 2 in the ECT sensor. The peak 
corresponds to the degree of similarity between the 
two capacitances. This model specifically considers 
Annular, Plug, and Slug flow regimes due to their 
dynamic flow characteristics. The distance between 
the two planes mounted on the rig is 0.187 m. The 
flow velocity is calculated by dividing this distance 
by the lag time, where each lag time is 10ms. 
 
5.3 Volume Ratio Estimation 
The volume ratio for each phase is estimated by 
considering two differential pressure data from 
PDT120 and PDT121, and the inlet air flow rate data 
from FT131 as inputs to the regression model. The 
inverse volume ratio data obtained from ECT 
experiments is considered the model training targets, 
as explained in Fig. 10. 
 

 
 

Figure 10: Model for volume ratio estimation with two 
pressures  and flow measurement as inputs.  

 
FNN is used as a volume ratio estimation algorithm. 
The trained FNN model features a single hidden 
layer containing 10 neurons.  
 
6. Results 
6.1 Flow Regime Identification 
Using the model illustrated in Fig. 8, the flow regime 
classification neural network examines a total of 
135000 samples with an evenly distributed array of 
flow regimes. For training and testing of the FNN 
model, these samples are divided into training, 
validation, and testing datasets in a 70:15:15 ratio. 
The hidden layer in the FNN employs a tansig 
activation function. The performance of the neural 
network, as seen in Fig. 11, indicates an overall 
accuracy of 96.5%. 
KNN, SVM and DT algorithms are utilized for 
training flow regime classification models. Half of 
the data is reserved for validation purposes. Tab. 3 
presents the overall validation accuracy achieved by 
these algorithms in classifying flow regimes. 
KNN gives the highest accuracy, while SVM has the 
lowest accuracy among the three. The confusion 
matrix of KNN is shown in Fig. 12. This model will 
perform well when the flow is in the region of the 
training data as per Fig. 5. The data from transition 
zones of the flow regime matrix was not used to train 
this model. 
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Figure 11: Performance of the FNN model for flow 

regime classification with 28 normalized capacitances as 
inputs and flow regime (1-Stratified, 2-Wavy, 3-Annular, 

4-Plug, 5-Slug) as output. 

 
Table 3: Comparison of accuracy from various flow 
regime identification models using 28 normalized 
capacitances as inputs and flow regime as output 

ML algorithms Overall accuracy (%) 
KNN (Fine) 98.7 
DT (Fine) 96.6 

SVM (Linear) 94.7 
 
 

 
Figure 12: Confusion Matrix of KNN (Validation) for 

flow regime identification with 28 normalized 
capacitances as inputs and flow regime as output. The 

corresponding sample amounts are represented by 
percentages and detailed in the parentheses below. 

 

 

In the sensor fusion-based model, illustrated in Fig. 
9, pressure and differential pressure meter signals 
merge with normalized capacitances to serve as 
features/inputs. Training of the models continues to 
use KNN, SVM, and DT algorithms. However, due 
to differing data sampling frequencies (PDT and PT 
sampled at 20 Hz, while ECT at 100 frames per 
second per plane), the total sample count is reduced 
for synchronization. The overall validation accuracy 
from these algorithms to classify flow regimes is 
given in Tab. 4. 
 

Table 4: Comparison of accuracies achieved with  
various algorithms for flow regime identification using 

28 normalized capacitances and the three pressure signals 
as inputs and flow regime as output 

ML algorithms Overall accuracy (%) 
KNN (Fine) 98.6 
DT (Fine) 98.6 

SVM (Linear) 99 
 

SVM gives the highest accuracy. The confusion 
matrix of SVM is shown in Fig. 13. 
 

 
Figure 13: Confusion Matrix of SVM (Validation) for 

flow regime identification with 28 normalized 
capacitances and 3 pressure signals as inputs and flow 

regime as output. The corresponding sample amounts are 
represented by percentages and detailed in the 

parentheses below. 

6.2. Flow Velocity Estimation 
The results of estimating flow velocity are presented 
in the subsequent subsections, featuring two cases 
for each flow regime: annular, plug and slug.  

6.2.1. Annular 
 Case 1: Water - 2 kg/min, Air – 4 kg/min 

Higher lags are disregarded as they likely arise from 
random fluctuations. Thus, from Tab. 5, there are 10 
of found lags that are disregarded as seen marked by 
the orange-colored rectangles. Therefore, the 
domain cross-correlation lags for the remaining 
capacitances are at around -13, ignoring the “0” lags.   
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8 lags are corresponding to approximately 120 to 
130ms time. Therefore, the flow velocity is 
estimated to be 0.187/0.13 = 1.43 m/s for this 
experiment.  

Table 5: Cross-correlation for Water - 2 kg/min, Air – 4 
kg/min (Disregarded lags marked by the orange-colored 

rectangles)

 

 Case 2: Water - 2 kg/min, Air – 5 kg/min 
Higher lags are disregarded as they likely arise from 
random fluctuations. Thus, from Tab. 6, there are 9 
of found lags that are disregarded. Therefore, the 
domain cross-correlation lags for the remaining 
capacitances are at around -10, ignoring the “0,-1” 
lags.   10 lags are corresponding to approximately 60 
to 100ms time. Therefore, the flow velocity is 
estimated to be 0.187/0.09 = 2.07 m/s for this 
experiment. 

Table 6: Cross-correlation for Water - 2 kg/min, Air – 5 
kg/min

 

6.2.2. Plug 
 Case 1: Water - 76 kg/min, Air – 0.11 kg/min 

Tab. 7 suggests the domain cross-correlation lags for 
the capacitances are at around -12. 28 lags are 
corresponding to approximately 100 to 130ms time. 
Hence, this experiment estimates a flow velocity of 
0.187/0.12 = 1.55 m/s for this experiment.  

 

 

 

Table 7: Cross-correlation for Water - 76 kg/min, Air – 
0.11 kg/min 

 

 Case 2: Water - 77 kg/min, Air – 0.07 kg/min 

As seen in Tab. 8, the domain cross-correlation lags 
for the capacitances are at around -13, ignoring the 
“0, -1,-2,-3” lags.   23 lags are corresponding to 
approximately 100 to 150ms time. This yields a 
calculated flow velocity of  0.187/0.13 = 1.43 m/s. 

 
Table 8: Cross-correlation for Water - 77 kg/min, Air – 

0.07 kg/min

 

6.2.3. Slug 
 Case 1: Water - 75 kg/min, Air – 0.3 kg/min 

Tab. 9 suggests the domain cross-correlation lags for 
the capacitances are at around -6. 28 lags are 
corresponding to approximately 50 to 70ms time. 
Therefore, the flow velocity is estimated to be 
0.187/0.06 = 3.11 m/s for this experiment.  

Table 9: Lags based on  peaks of cross-correlation for 
Water - 75 kg/min, Air – 0.3 kg/min
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 Case 2: Water - 77 kg/min, Air – 0.5 kg/min 
 
Tab. 11 suggests the domain cross-correlation lags 
for the capacitances are at around -4. 28 lags are 
corresponding to approximately 30 to 50ms time. 
Hence, this experiment's flow velocity is estimated 
as 0.187/0.04 = 4.67 m/s.  
 
The average flow velocities for three flow regimes 
are shown in Tab. 10. The average flow velocity of 
Slug regime is in the expected region. A pattern can 
be seen with the flow velocity increasing as the flow 
changes from complex flow regimes of Plug to Slug. 
 
Table 10: Average flow velocity from cross-correlation 

technique on dual-plane ECT 
Flow Regime Average Flow Velocity (m/s) 

Annular 1.43 to 1.87 
Plug 1.24 to 1.43 
Slug 2.67 to 3.74 

 
 
6.3 Volume Ratio Estimation 
In the volume ratio estimation FNN model, a total of 
1350 samples are used for training and testing. 
These samples are partitioned into training, 
validation, and testing datasets with a 70:15:15 ratio. 
The activation function in the hidden layer is tansig, 
and in the output layer is linear. The model's 
performance, shown in Fig. 14, achieves an R-value 
of 0.95 for the test dataset, with an overall R-value 
also standing at 0.95. Some of the outputs are far 
from the target since the regression model is not 
perfect and has an R2 value of 0.9. This model can 
be used to estimate the volume ratio in the pipe with 
good confidence. 
 
Table 11: Cross-correlation for Water - 77 kg/min, Air – 

0.5 kg/min 

 
 

 
Figure 14: Performance of volume ratio estimation model 

with PDT120, PDT121 and FT131 as inputs and 
1/Volume Ratio from ECT as output 

 
7. Summary and Discussions 
The data-driven multiphase flow metering models 
developed, capable of classifying flow regimes and 
estimating phase fractions and velocities for two-
phase air/water flow, are developed after collecting 
ECT data from the horizontal flow rig located at 
USN.  
The flow regime classification model, using ECT, 
achieved an accuracy surpassing 94%. Additionally, 
a sensor fusion model integrating ECT and pressure 
sensor data for flow regime classification exceeded 
98% accuracy. For annular, plug and slug regimes, 
flow velocity was estimated using cross-correlation. 
The volume ratio estimation neural network model 
attained an R-value greater than 0.95. 
This paper demonstrates the feasibility of 
multiphase flow metering through the use of ECT 
and pressure sensor data. As depicted in Fig. 15, the 
data acquired from these sensors can be directly 
channelled into dedicated ML algorithms to provide 
insights into multiphase flow in pipeline. This 
approach facilitates the monitoring and control of 
processes involving multiphase flow with real time 
processing of process data on premises or in the 
enterprise cloud. 
 

 
Figure 15: An algorithm for actuator control using a data-

driven ML metering model. 
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Applying ML algorithms to time-series data from 
these sensors eliminates the necessity for complex 
mathematical time-series and image-processing 
methods.  
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