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Abstract 

 

Buildings are currently non optimally controlled, using a weather compensation controller that depends only on 

external temperature. A rich amount of real-time data is available and can be used for better control. This work is 

focused on developing a general and dynamic model for utilizing the building as an energy storage for a peak-

shaving control strategy. A dynamic grey-box model is developed using industry standard operators data from a 

multifamily building, Building A, located in Västerås, Sweden. The training period is set to 408 hours, and the 

prediction horizon to 48 hours. The model is verified in 4 steps: prediction ability on the historic data, parametric 

verification on the time constant, simulation of heat supply separated from the historic data and model generality 

by implementing the model on a second multifamily building, Building B. The modelling errors over a two-month 

simulated period are 8 % for Building A and 9 % for Building B. To demonstrate the utilization possibilities, an 

optimizer is constructed to evaluate a peak shaving control strategy. Different flexibilities for the indoor 

temperature have been examined with a range yielding heat load peak shaving between 30 to 45%. Flexibility 

paves the way for improvement in pricing models for the heating sector. This work demonstrates the potential of 

utilizing building heat storage capacity to reduce peak consumption and costs. 

 

1. Introduction 

Currently, District Heating (DH) substations operate 

in sub-optimal conditions due to a lack of 

information about the supplied buildings, their 

future demand, and the operating parameters. The 

rich amount of real-time data available from new 

sensors implies saving potential if made available to 

the energy providers and buildings managers. 

Utilizing building thermal inertia as a short-term 

storage is a cheap and viable technology (Kensby et 

al., 2015), the concept consists of overheating or 

underheating the building. When overheating or 

underheating the building a change between the set 

indoor temperature and the actual indoor 

temperature occurs. This results in a divergence 

from the set temperature, and it is that temperature 

difference that functions as the energy storage in the 

building (Ståhl, 2009). By utilizing the internal heat 

transfer in buildings as heat storage the supply need 

can be reduced, assuming that the producers have 

knowledge of the relevant storage data. One of the 

main constraints in utilization lies in the comfort 

requirements of the occupancies (Renström et al., 

2021). This work is focused on developing a general 

and dynamic model for utilizing buildings as energy 

storage for a peak-shaving control strategy. The 

work aims to determine how stored heat in buildings 

can be modelled using industry standard data 

streams. Furthermore, the work investigates the 

potential in controlling a building’s heating system 

with consideration to stored heat and how a flexible 

indoor temperature affects different aspects of 

building thermal control. 

 

2. Methodology  

2.1. Problem setup 

The building used for model development is a 9-

storey multifamily building, called Building A, 

located in Västerås, built in 2017. 

The thermal dynamics of the building consist of 

multiple different heat sources and heat losses from 

building components. The heat sources consist of 

two sources; heat supplied from the DH system, and 

heat delivered from unmeasured sources (passive 

heating). The main sources of heat loss are through 

the building envelope and the ventilation. The input 

data was originally supplied by the local DH 

company Mälarenergi (primary side) and a local 

landlord Mimer (secondary side). The data has a 

time step of one hour and consists of 1501 data 

points between 2019-12-01 and 2020-02-02. The 

temperature has been taken as an average over all the 

individual apartments to give an average 

temperature for the building itself, therefore the 

standard deviation on the indoor temperature is also 

given. The outdoor temperature was measured with 

a sensor installed on the building. Supply 

temperature, water mass flow and return 
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temperature were all measured at the building’s 

main heat exchanger.  

The heat supply (calculated based on the supply-, 

return temperature and the mass flow from the main 

heat exchanger), average indoor temperature, and 

external temperature are used in this work. The data 

is presented in Fig. 1. 

 

 

Figure 1: Historical data for Building A 

 

2.2. Development of Building Model 

The finalized model consists of three models that 

combine the strength of them all. The first is called 

First Order Thermal Model (FOTM) and is based on 

simple 1R1C models as described by Harb et al. 

(2016) or Monghasemi et. al (2022). The second is 

called Degree Day Model (DDM) and is a further 

development of the 1R1C model using the degree 

day method by Tabatabaei et al. (2017). The third is 

called Time Constant Model (TCM) and is based on 

Antonopoulos & Koronaki (2000). The cooperation 

between the different models is illustrated in Fig.2. 

 
Figure 2: Model flow chart 

 

FOTM is developed as an 1R1C model to ensure 

robustness due to the lower complexity. The typical 

1R1C model is described with Eq. 1. 

 

𝐶
𝑑𝑇

𝑑𝑡
= 𝑅(𝑇𝑒𝑥𝑡 − 𝑇𝑖𝑛) + 𝑄𝑠𝑢𝑝𝑝𝑙𝑦 (1) 

 

FOTM includes an additional parameter to act as the 

heat from other sources then the heat delivered from 

the building’s substation, 𝑄𝑝𝑎𝑠𝑠𝑖𝑣𝑒. This simulates 

heat from occupancies, electric appliances, solar 

radiation etc. The FOTM model is described with 

Eq. 2. 

 

𝐶
𝑑𝑇

𝑑𝑡
=  𝑅(𝑇𝑒𝑥𝑡 − 𝑇𝑖𝑛) + 𝑄𝑠𝑢𝑝𝑝𝑙𝑦 + 𝑄𝑝𝑎𝑠𝑠𝑖𝑣𝑒 (2) 

 

The DDM is set up as a function called from the 

FOTM, it utilizes Eq. 2 with 
𝑑𝑇

𝑑𝑡
= 0, resulting in Eq. 

3Error! Reference source not found..  

𝑅(𝑇𝑒𝑥𝑡 − 𝑇𝑖𝑛) − 𝑄𝑝𝑎𝑠𝑠𝑖𝑣𝑒 = 𝑄𝑠𝑢𝑝𝑝𝑙𝑦 (3) 

 

Curve fitting (based on least squares) is then used to 

estimate 𝑅𝑝𝑎𝑠𝑠𝑖𝑣𝑒  and 𝑄𝑝𝑎𝑠𝑠𝑖𝑣𝑒 . The steady state heat 

loss of the building is represented by 𝑅. There are 

always some daily variations in the indoor 

temperature, but the general trend of the indoor 

temperature must be steady for 𝑅 determination. 

𝑄𝑝𝑎𝑠𝑠𝑖𝑣𝑒  is determined as an average of the passive 

heating during the training period and will therefore 

give an imperfect estimation on the hourly passive 

heating in the building.  

TCM is also set up as a function called by FOTM. 

The equation used is Eq. 4 where the parameters 

𝐶𝑒𝑓𝑓  & 𝑈 are determined by optimizing for them 

using least squares from the SciPy optimize library 

with Eq. 5 as the cost function. 

 

𝑇𝑖𝑛(𝑡) = 𝑇𝑒𝑥𝑡 −

− [𝑇𝑒𝑥𝑡 − 𝑇𝑖𝑛(0)  +
𝑄𝑠𝑢𝑝𝑝𝑙𝑦

𝑈
] 𝑒

(−
𝑡𝑈

𝐶𝑒𝑓𝑓
)

+
𝑄𝑠𝑢𝑝𝑝𝑙𝑦

𝑈
  (4)

 

 
𝐹(𝑋) = 𝑇𝑖𝑛,𝑝𝑟𝑒𝑑 − 𝑇𝑖𝑛,𝑟𝑒𝑎𝑙 (5) 

 

Given the resulting 𝐶𝑒𝑓𝑓  and 𝑈 for the training 

period the mean of the values is taken to calculate 

the time constant according to Eq. 6.  

 

𝜏 = 𝐶𝑒𝑓𝑓/𝑈 (6) 

 

The time constant is then used to calculate a C based 

on the R value from DDM. In contrast to DDM, 

TCM requires variance in the indoor temperature to 

determine the effective heat capacity, 𝐶𝑒𝑓𝑓 . 

The model detects the trend of the indoor 

temperature, thereby not capturing daily variations. 

The model is a dynamic model with accuracy 

dependent on the accuracy of the temperature data, 

as the temperature sensor most likely has the highest 

uncertainty. The temperature sensor is unknown; 

however a typical range is ± 1 𝐾 according to 
manufacturer specification data. 

 

2.3. Verification of building model  

The first verification step is to determine the 

prediction ability by implementing the model on the 

entire available data set and observing the model’s 
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ability to predict the indoor temperature for each 

time step over different prediction horizons. The 

model must replicate the trend rather than the actual 

values to avoid overfitting to variance caused by 

measuring the input data in the air.  The next step is 

to verify the parameters. This is done by observing 

the resulting values of the time constant and 

comparing it to expected values from the literature, 

as presented in Tab. 1. 

 
Table 1: Time constants presented by Johra et al. (2019) 

Time constant τ 

[h] 
Light Medium Heavy 

1980’s house 9 49 181 

Passive house 135 169 626 

 

The heat is then simulated using the historical 

outdoor temperature without access to the historical 

heat data. The generality of the model is also verified 

by implementing the model on a different building, 

Building B. The data available for Building B is of a 

similar character to that of Building A. 

 

2.4. Optimizer 

To highlight the utilization possibilities of using the 

building as a heat storage, an optimizer is developed 

to evaluate the future heat supply. It is developed in 

Gekko, which is an optimization library in python 

(Beal et al., 2018).  The optimizer is based on a 

strategy presented by Saletti et al. (2021) that 

focuses on minimizing the variations in heat supply 

by controlling for the derivative of the heat supply. 

To minimize the total variation in the heat supplied 

(𝑄𝑠𝑢𝑝𝑝𝑙𝑦) the derivative squared is minimized to 

ensure that only positive values occur in the 

objective, this will assist the optimizer in flattening 

out the heat demand. The control objective (𝑄𝑠𝑢𝑝𝑝𝑙𝑦) 

is controlled by manipulating the indoor temperature 

(𝑇𝑖𝑛) within a set interval. By setting a fixed interval 

for the indoor temperature within the comfort 

interval, the comfort is still maintained. The 

optimization problem is stated below. 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒: 

 min(∑  𝑑𝑄𝑠𝑢𝑝𝑝𝑙𝑦𝑖

2𝑖=𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡
𝑖=1 )  

 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠:                   𝑇𝑖𝑛𝑚𝑖𝑛
≤ 𝑇𝑖𝑛𝑖

≤ 𝑇𝑖𝑛𝑚𝑎𝑥
 

𝑄𝑠𝑢𝑝𝑝𝑙𝑦𝑚𝑖𝑛

≤ 𝑄𝑠𝑢𝑝𝑝𝑙𝑦𝑖

≤ 𝑄𝑠𝑢𝑝𝑝𝑙𝑦𝑚𝑎𝑥  

𝑄𝑠𝑢𝑝𝑝𝑙𝑦𝑖

= (𝑇𝑖𝑛𝑖+1
− 𝑇𝑖𝑛𝑖)𝐶

− 𝑅(𝑇𝑒𝑥𝑡𝑖
− 𝑇𝑖𝑛𝑖

)

− 𝑄𝑜𝑡ℎ𝑒𝑟 

Before the model can be utilized for peak shaving, 

the training period and the prediction horizon need 

to be determined by parametric analysis to yield the 

most accurate results.    The training period is set to 

408 hours/data points, and the prediction horizon is 

set to 48 hours. Different flexibilities in the indoor 

temperature are examined from 𝑇𝑖𝑛=22°C ± 0.25 to 

𝑇𝑖𝑛=22°C ± 2.00. The baseline temperature is set to 

22 ℃ to ensure that the indoor temperature is always 

within the Swedish health agencies recommended 

comfort interval (Folkhälsomyndigheten, 2014). 

 

2.5. Normalized Economics 

Currently, economically motivated peak shaving for 

customers is not the norm at the local DH company. 

The customers have the option to select a “baseload 

consumption” with a fixed price in SEK⁄kW,year 

and a “peak consumption” with a different fixed 

price in SEK⁄kW,year. But they can also allow the 

company to choose, and then no fixed cost is added 

if the consumption increases above the baseload 

level (Landelius & Åström, 2019). To highlight the 

economic benefits in peak shaving from a customer 

perspective a normalised economic analysis is 

developed. An initial baseload is calculated based on 

the average outdoor temperature for December 2019 

using Eq. 3. The different parameters are estimated 

on an average of the first 408 data points. 

The economic savings are then calculated by 

integrating the curves that exceed the baseload and 

comparing the integrals for the historic case and the 

new peak shaved case, as shown in Fig. 3.  

 

 
Figure 3: Normalized Economic Analysis 

 

The savings are presented as a percentage and are 

calculated according to Eq. 7. 

 

𝑆𝑎𝑣𝑖𝑛𝑔𝑠 = 100 −
∫ 𝑃𝑒𝑎𝑘𝑛𝑒𝑤

∫ 𝑃𝑒𝑎𝑘ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐

100[%] (7) 

 

The baseload is then varied to illustrate the different 

savings achieved depending on the baseload level.   
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3. Results 

3.1. Building model verification 

The mean and max error over the entire prediction 

horizon for each time step when choosing the 

optimal prediction horizon and training set length is 

plotted in Fig. 4. 

 

 
Figure 4: Mean and maximum error for Building A 

 

The maximum error is 0.63K and the mean error of 

about 0.14K for Building A. 

The heat capacity of Building A is 108 [
𝑊ℎ

𝐾𝑚2] 

respectively 124 [
𝑊ℎ

𝐾𝑚2] for Building B. The average 

time constant over the entire data set for Building A 

is 209 hours, and for Building B 120 hours.  

Compared to the values given in Tab. 1., these are 

reasonable. 

As illustrated in Fig. 5. & Fig. 6., the simulated heat 

supply and indoor temperature generated by the 

model are reasonably well correlated to the 

historical data, as shown in Tab. 2. 

 

 

 
Figure 5: Verification of model for Building A 

 

 

 

 
Figure 6: Verification of model for Building B 

 

 

Table 2: Verification results: comparison between 

simulated and historical data for heat supply 

 Building A Building B 

Correlation coefficient 85% 77% 

RRMSE  8% 9% 

 

The fact that the simulated heat supply and the 

historical heat supply do not match each other 

perfectly is not of concern, since it is the trend that 

is of interest. 

 

3.2. Utilization potential 

Fig. 7. shows the cumulative distribution of the heat 

supplied during the simulation period. 

 

 
Figure 7: Load duration curve for peak shaving in 

Building A 

 

 

The frequency describes how often (how many 

hours) the corresponding heat supply is reached for 

each investigated frequency. In general terms, by 

increasing the flexibility of the indoor temperature, 

less variation in the supplied heat and a lower peak 

power is achieved. 

In Tab. 3. the results for different temperature 

flexibilities are presented. It shows that in general 

when implementing the peak shaving control 

strategy there is also an overall reduction in heat 

supply. However, this is mainly due to a reduction 

in the set indoor temperature as the simulated 

historical data has an average indoor temperature of 

22.6 °C. Therefor it can’t be concluded that utilizing 

peak shaving results in energy savings, it can 

however reduce emissions. If utilized by DH 

companies, peak shaving could reduce the need for 

a fossil fuel boiler during peak hours and thereby 

reduce overall emissions and the dependency on 

expensive and harmful fossil fuels. 
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Table 3: Results from peak shaving compared to the 

simulated historical data 

Temperature 

flexibility 

[°C] 

Peak 

power 

decreased  

Energy 

consumption 

decreased 

Average 

indoor 

temperature 

[°C] 

±0.25 30 10 22 

±0.50 35 10 22 

±0.75 35 12 21.9 

±1.00 36 9 22 

±1.25 38 14 21.9 

±1.50 40 7 22.2 

±1.75 42 7 22.3 

±2.00 45 6 22.3 

 

As seen in Tab. 3. a temperature flexibility of ±1.25 

°𝐶 generates the most energy savings, however in a 

survey by Renström et al. (2021) including 88 

respondents it was found that approximately 40 % of 

respondents thought they would not be affected by 

an variable indoor temperature of ±1 °𝐶 whilst 

approximately 60 % thought they would be 

negatively affected by a variable temperature of ±1.5 

°𝐶. This might intel that even though the comfort 

impact will be minimal, it will be difficult to 

convince consumers to use the developed approach 

with higher variability. Renström et al. (2021) even 

found that 20 % of respondents believed they would 

be negatively affected already at ±0.5 °𝐶. 

To determine the appropriate flexibility a 

normalized economics analysis is done, the results 

are presented in Fig. 8. 

 

 
Figure 8: Normalized economics analysis results 

 

As the percentage of the available area is made up of 

the difference between the historical peak and the 

shaved peak, the magnitude of the baseload is 

directly correlated to the possible savings. From the 

combined knowledge presented in Fig. 8.Error! R

eference source not found. A higher baseload 

results in larger savings, this is demonstrated clearly 

in Fig. 9. 

 

 

 

 
Figure 9: A moving baseload’s impact on savings 

 

In Fig. 9., one can determine that choosing an 

appropriate baseload is crucial when it comes to the 

economic benefits of peak shaving. The savings in 

the fixed cost of the peak consumption depends on 

how much of the peaks are above the baseload. 

Therefore, the higher baseload reaches savings of 

100% since the new peak is below the baseload. In 

the lower baseloads, where the new peak never is 

below the baseload, the preferred choice of 

temperature flexibility is ±0.5°𝐶. Due to this a 

temperature flexibility of ±0.5°𝐶 is chosen as the 

preferred interval. Fig. 10. and Fig. 11. shows the 

potential of peak shaving by allowing a flexibility in 

the indoor temperature with ±0.5 °𝐶 for Building A 

and B. 

 

 
Figure 10: Peak shaving, Tin = 22°C ±0.5, prediction 

horizon = 48, Building A 

 

Fig. 10. shows that the highest peak in the heat 

supply during the simulation decreased from 26 𝑘𝑊 

to 16 𝑘𝑊 for Building A, and the total energy 

consumed during the simulation decreased from 12 

100 𝑘𝑊ℎ to 11 000 𝑘𝑊ℎ. 
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Figure 11: Peak shaving, Tin = 22°C ±0.5, prediction 

horizon = 48, Building B 

 

For Building B as shown in Fig. 11. the highest peak 

was decreased from 29 𝑘𝑊 to 22 𝑘𝑊, and the total 

energy consumed was increased from 14 700 𝑘𝑊ℎ 

to 16 000 𝑘𝑊ℎ. 

 

4. Discussion and conclusions 

 

4.1. Discussion 

The FOTM and the constructed optimizer is a 

general model with a low execution time. Since the 

model was developed using the data from Building 

A and then also tested on data from Building B, the 

generality requirement was met. Execution time has 

not been an issue in the tests (448 seconds for a 

simulation period of 1085 hours). However, there 

are some concerns regarding the reliability when 

using online adaptation, since there are certain rules 

that must be considered for parameter estimation, 

which have not been developed. This have mainly 

been the parameter estimation of 𝑅 and 𝑄𝑝𝑎𝑠𝑠𝑖𝑣𝑒. 

When estimating these parameters, the most 

important part is that the indoor temperature is stable 

and does not vary over time. When adapting peak 

shaving it is never stable. Vice versa if the indoor 

temperature is kept steady 𝐶𝑒𝑓𝑓 is hard to estimate 

since it requires change within the indoor 

temperature to be determined. Examining how these 

issues might be solved belongs to the future works. 

For the results presented the parameters 𝑅𝑝𝑎𝑠𝑠𝑖𝑣𝑒  and 

𝐶𝑒𝑓𝑓 has been determined on the training set and the 

assumed constant for the entire simulation period. 

This gives reliable results for the available data as 

shown.  

By utilizing a control strategy similar to the one 

suggested in this work there is a possibility of 

increasing the amount of electricity produced in a 

CHP plant. A reduction in heat demand from the 

consumers yields a larger portion of the produced 

heat at the plant available for electricity production. 

Currently, most renewable sources cannot keep up 

with the higher electricity demand during the winter 

where DH companies normally can’t produce any 

electricity due to the high heat demand. By 

decreasing the heat demand and increasing the 

electricity production the revenue can be greatly 

increased.  

The authors   suggest that a new subscription format 

is produced in which the customers subscribe to a 

certain comfort interval rather than a certain heat 

flux. The authors also believe that customer 

participation and engagement should be an integral 

part of future business models to ensure customer 

satisfaction. The authors also suggest adding a safety 

margin in the subscription range.   

 

4.2. Conclusions 

In this work a data driven physics-based model has 

been produced which directly quantifies the steady 

state heat loss, the heat capacity, the time constant 

and the passive heating. These parameters are 

essential for determining a building’s thermal 

storage ability. The model has a RRMSE of 8% for 

Building A and 9% for Building B. By having access 

to the thermal dynamics of a buildings storage 

potential the buildings heating system can be 

controlled from a peak shaving perspective which 

utilizes over- and underheating to charge and 

discharge the building around peaks in heat demand 

generated by changes in the external temperature. 

Utilizing a peak shaving control strategy has been 

shown to generate savings in energy consumption of 

up to 14 % and 45 % in peak consumption 

(depending on the set indoor temperature and 

allowed flexibility). The authors suggest allowing 

the customers to choose their preferred flexibility to 

ensure their comfort, but also point out that a 

beneficial control can be found at an indoor 

temperature of 22 ±0.5 °C. 

There are four aspects to be considered when 

allowing for a flexible indoor temperature, comfort, 

energy consumption, peak shaving, and economics. 

All aspects are correlated and to find an optimal 

strategy, compromises must be made. The authors 

have shown that economic savings and peak shaving 

can be achieved by allowing for small variations in 

the indoor temperature to the detriment of comfort 

and in some cases energy consumption. 
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