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Abstract 

There is a strong interest in quantifying the amount of gas and its flow rate to facilitate better control of the 

processes involved in many industries. There are usually many sensors monitoring these processes, both intrusive 

and invasive, as well as non-invasive sensors which are usually clamped on to the process pipelines in which the 

multiphase flow occurs. In the multiphase flow rigs at Equinor and the University of South-Eastern Norway, 

experiments have been performed with different combinations and velocities of the phases and multiple sensors 

have been logged. The data from these sensors have been used to estimate volume fractions of the phases as well 

as their flow rates. This paper presents the estimated results of volume fractions and velocities of selected phases, 

obtained by fusing data from multiple sensors that monitor density, differential pressure, temperature, and acoustic 

emission using machine learning (ML) algorithms. These ML algorithms use neural networks with the non-linear 

input-output type with Levenberg-Marquardt training and provide estimates of volume fractions and phase 

velocities with RMSE values in the range of 4.6 to 16 m3/h, with the lowest RMSE for gas and the highest for 

multiphase flow. The total flow rate for the multiphase flow was in the range 30 to 120 m3/h. Results are compared 

with ML models using data from non-invasive sensors. 

1. Introduction 

It is desirable to know how much oil, water, and gas 

each well produces in an oil and gas installation. 

There are many good alternatives to measure single-

phase flow with high accuracy, but measuring 

multiphase flow is more challenging. The sand 

detectors used on Equinor’s oil and gas installations 

use a piezoelectric sensor to measure the acoustic 

emission caused by sand production, first reported in 

a publication of results based on an R&D project  

supported by STATOIL, the forerunner to the 

current Equinor, (Folkestad, Mylvaganam, 1990). A 

multiphase flow does also generate acoustic 

emission. Since sand detectors are both cheap and 

non-intrusive Equinor is interested in using their 

already installed sand detectors to measure acoustic 

emission from the multiphase flow and fuse this data 

possibly with other existing measurements for 

enhancing the process monitoring and control. 

Together with other available sensors,  the process 

industries are investigating the possibilities of 

determining the flow rates of individual phases as 

well the total flow  

Related works addressing flow regimes using the 

multiphase rig have addressed some of the 

possibilities of identifying flow regimes and flow 

velocities, , (addressing tomographic approach by 

Johansen et al, 2018; related to slug modeling and 

control by Pedersen et al, 2017; modeling single and 

two-phase flow at 90o bends in pipelines by Shoux 

et al 2021; and monitoring flow regime transitions 

with acoustic and electrostatic sensors in powder 

flow, Yang et al, 2019). This paper deals with some 

of the findings from the work done in collaboration 

with (Rasmussen, A.L., 2023). Some of the related 

work using the multiphase rig and extensive 

experiments, but with focus on flow regimes, is 

presented in the paper in SIMS 2023, (Syed Kazmi 

et al, 2023).  

 

1.1 System description – Multiphase flow rig with 

relevant measurands 

A dedicated multiphase flow rig has been in use for 

many years in the Equinor facilities. The system 

consists of feed pumps for gas, oil and water with 

the necessary measurements typical for flow related 

large scale experiments. In the current paper, the 

focus is only on a sensor suite consisting of the 

sensors, from which the data used in this study are 

acquired.  

A P&ID of Equinor’s multiphase rig is shown in 

Figure 1. Depending on the phase fractions and flow 

velocities of the different phases, the production 
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process can be monitored and controlled using a 

series of actuators placed near the reservoir 

(downhole) or at the entrance or exit of the 

separators.  

The volume flow of each medium is indicated by QO, 

QW and QG with the following equations for Gas 

Volume Fraction (GVF), Water Liquid Ratio (WLR) 

𝐺𝑉𝐹 =  
𝑄𝑔

𝑄𝑡𝑜𝑡

 

 

𝑊𝐿𝑅 =  
𝑄𝑤

𝑄𝑤 + 𝑄𝑜

 

 

with total flow consisting of all the three phases 

given by  

 

𝑄𝑡𝑜𝑡= 𝑄𝑤 + 𝑄𝑜+𝑄𝑔 

 

These process variables are of interest in the context 

of measurement while drilling as well as in process 

monitoring during the operations of three phase 

flows in experimental work and oil and gas 

distribution. These three parameters quantifying the 

flows and the derived quantities WLR and GVF will 

be studied using AI/ML techniques with 

measurements from various sensors, as shown in 

Figure 1.  This study is based on the experiments 

performed in the Equinor multiphase rig in Herøya, 

Porsgrunn in the municipality of Telemark.

 

Figure 1. Simplified P&ID (Piping and Instrumentation Diagram) of the Equinor multiphase flow rig with the sensor suite 

selected for the current study. PDI – Differential Pressure; XI-1, XI-2, XI-3, and XI-4 – Acoustic Emission Sensors 

(Accelerometers). Inlet can be a single (G, O, W), two-phase (GO, GW, OW), or three-phase flow (O, G, W), with G-Gas, O-

Oil, W-Water, with corresponding volume flow rates QG, QG and QW. These variables have been selected as input data for 

training the artificial neural network models: Density Krohne DI-1, dp 4m straight, Emco Venturi PDI-1, Wika Venturi PDI-

2, Accelerometer i (XI-i) with i =1, ..4, Temperature Difference (TI-1) –(TI-2), Pressure Difference (PDI-1) –(PDI-2).  

 

2. Acoustic emission sensors 

The sand detector uses a piezoelectric element to 

detect the ultrasonic energy from sand particles 

colliding with the pipe wall and convert it into 

electrical energy. The sand production can be 

calculated if the flow velocity is known for the same 

period. The accelerometers used in the experiments 

for this paper operate on the same principles as those 

used in the sand detector. The main difference is 

whether the sensor detects bubbles/droplets or sand 

particles. A wiring diagram for a typical sensing 

system based on acoustic emission is shown in 

Figure 2. 
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Figure 2. The main modules used in the experiment coupled together in a sensing system based on acoustic emission. I.S. 

barrier – Intrinsic Safety barrier, DAQ- Data AcQuisition Unit. The modules in the hazardous area are mounted on the 

pipe wall or in the vicinity of the multiphase rig, shown with the P&ID in Figure 1.

3. Data Analysis from Experiments 

The level of acoustic emission in the multiphase 

flow varies based on process conditions. When the 

flow is annular at the entry of the elbow, gas bubbles 

tend to move to the inner curvature of the bend. 

Also, the GVF (Gas Volume Fraction) in a gas-

liquid flow increases after a restriction in the 

flowline. Examples of flow restrictions are a Venturi 

channel or a choke valve. 

The experimental data are from 20 distinct 

experiments involving diverse flow regimes, phase 

velocities and compositions. In each experiment, the 

flow rate of the phases are kept constant. The 

sampling frequency of the accelerometer is 

51.2 kHz. Figure 3 presents experimental results 

involving combined oil and gas flow. 

 

3.1 Analysis of the Root Mean Square (RMS) 

value of the acoustic emission measurements 

The acoustic emission sensors give a voltage signal 

that can be used for further analysis. The Root Mean 

Square of voltages, VRMS, of the samples is 

calculated using equation (1). 

 𝑉𝑅𝑀𝑆 = √
1

𝑁
∑ |𝑉𝑛|2𝑁

𝑛=1                       (1) 

, where 𝑁 represents the total number of samples in 

each experiment, while 𝑉𝑛 refers to the voltage of 

the 𝑛th sample.  

Figure 3. The letters and numbers in the x-axis contain information about the experiments in dataset 1. The first two letters 

explain that the experiments are done on gas and oil (GO) flow. The numbers refer to the experiment number, e.g., GO01 – 

experiment #01 with Gas and Oil, GOC11 – Experiment #11 with Gas and Oil with Choke etc. Legends inserted in each plot 

indicate the parameters plotted for each experiment. The numbering of the different experiments is the same as in the paper 

SIMS 2023, (Syed Kazmi et al, 2023).
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The VRMS value is based on approximately 2000 

samples from each experiment in dataset 1. Each 

experiment was run under steady-state conditions. 

The hypothesis is that the VRMS value will correlate 

with the acoustic emission from the multiphase flow, 

as was reported in (Folkestad, Mylvaganam, 1990). 

Pure water flow seems to give low acoustic 

emission, while pure gas flow seems to give higher 

acoustic emission. However, pure oil flow seems to 

give much higher acoustic emission. The observed 

variations are possible attributed to the differences 

in the viscosity of the fluids. Significant adjustments 

in the choke position yield peaks in both total 

differential pressure and amplitudes of acoustic 

emission signals. This effect is particularly 

noticeable for the acoustic emission sensor 4, which 

is situated downstream of the choke valve, as 

indicated by the position of the sensor "XI-4" in 

Figure 1. 

Pure water flow Qw seems to generate low acoustic 

emission signals, and pure gas flow generates 

higher acoustic emission signals with gas flow  Qg 

and total flow Qtot.  

 

3.2 Frequency analysis of the acoustic emission 

sensors  

Figure 4 show the dominant frequency components 

when increasing the gas flow when the flow contain 

both gas and oil. Choke valve openings are indicated 

by percentages in Figure 5, which shows the 

dominant frequency components in the lower 

frequency range 3kHz-5 kHz for a completely open 

choke valve. When the choke valve is gradually 

closed, there is considerable reduction in the 

amplitudes of these frequency components. The 

dominant frequency components seem to be in the 

range of 0 – 11 kHz for oil and water flow. 

 

4. Preparing the dataset for the artificial neural 

networks 

In addition to the RMS value from the acoustic 

emission sensors, the selected variables for training 

the dataset are different density, differential 

pressure, and temperature measurements. The 

sampling frequency of the accelerometers is 51.2 

kHz, but the other measurements have a sampling 

frequency of 1 Hz. A code was therefore written to 

calculate one RMS value every second to get the 

same sampling frequency for all measurements. The 

acoustic emission sensors were calibrated for the 

background noise in the test rig before they were 

normalized. 

 

 

Figure 4. Results based on time series logged from 

Sensor 1v in GO -flow, as indicated by the position of 

"XI-1" in Figure 1. Spectrogram and power spectral 

density show incidents of increased flow in the pipe. 

 

Both linear scaling and Z-score normalization 

methods were used, but Z-score gave overall best 

results when testing the models on other datasets. 

The Z-score normalization method assumes no 

extreme outliers is given in equation (2). 

𝑥′ =
(𝑥−𝜇)

𝜎
                            (2) 

, with x representing the sample value, 𝜇 the 

ensemble average and 𝜎 the standard deviation. 
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Figure 5. Results from time series logged in from Sensor 

1, in OW-flow, as indicated by the position of "XI-1" in 

Figure 1. Both power spectral density plot and 

spectrogram show the effects of opening the choke valve 

as indicated by the circle and ellipse shown with the red 

dashed lines. 

 

5. Neural network for multiphase flow 

estimation 

The shallow nonlinear input-output network using 

Z-score normalization gave the best results. An 

example of a nonlinear input-output model is shown 

in Figure 6. The most important results use all four 

acoustic emission sensors "XI" and the differential 

pressure measurement over Venturi 2 "PDI-2" as 

inputs to the network. The sensors are all shown in 

the P&ID in Figure 1. There is one network each for 

gas, oil, water, and total flow rate. The GVF, and 

LWR (Water Liquid Ratio) are calculated from the 

flow rates. 

 

 

6. Results 

To illustrate the performance of the model, one set 

of plots comparing the actual and estimated 

parameters is shown in Figure 7. 

 

 
Figure 6. Nonlinear input-output neural network with one 

hidden layer and one output layer. This network is 

configured with a time delay of 1, 3 neurons in the 

hidden layer and 1 output in the output layer. Inputs, with 

reference to Figure 1: Differential pressures on two 

locations, acoustic emission signals (XI-I, i=1,2,3,4), 

density from DI-1, Difference of Temperatures TI1 and 

TI2. Output: gas flow rate. 

  

7. Discussion 

The frequency analysis indicates that pure oil flow 

gives a higher amount of acoustic emission than pure 

gas flow and that pure water flow gives almost zero 

acoustic emission. It is recommended to investigate 

this finding in future research since there may be a 

relationship between with the viscosity of the fluid, 

or some other variable that can be exploited. It 

seemed like the frequency range between 0 – 11 kHz 

contained the most important information. Since 

there was no clear conclusion in the frequency 

analysis all frequency components were kept 

avoiding the risk of filtering away important 

information. This decision may have been a mistake. 

Further investigation is needed on the frequency 

analysis to find out if some of the frequency 

components are due to noise, but also to research if 

there are some dominant frequency components in 

gas, oil, or water flow. If there is a dominant 

frequency component in, for instance, gas, then the 

amplitude of that frequency component may 

correlate with the gas flow rate. In the frequency 

analysis it was shown that there may be a 

relationship between frequency components around 

1.7 kHz and total and water flow, but this needs to 

be investigated further. 
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The models for gas, oil, water, and total flow were 

trained with shallow neural networks. It is 

recommended to use a deep neural network in future 

studies to improve the results. According to 

MATLAB documentation, the NARX model will 

give more accurate predictions than the nonlinear 

input-output models since it uses the additional 

information from previous values of y(t).

 
Figure 7. Comparison of estimated and actual results for WLR (Water Liquid Ratio) and GVF (Gas Volume Fraction). The 

5-inputs: are: datafrom the four acoustic emission sensors (XI-I, i=1,2,3,4) and differential pressure PDI-2 over Wika 

Venturi meter, based on the P&ID shown in Figure 1.

In this study, it was observed that the NARX models 

gave the best training results, but that after closing 

the loop and simulating the network on the testing 

matrix the results were not as good as expected. The 

Nonlinear Input-Output models gave the best results 

when using the testing matrix. This network does not 

use the previous values of y(t) as feedback as the 

NARX network does. This may indicate that there is 

no relationship between the measured flow rate and 

the previously measured flow rate. The models using 
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7-8 inputs, gave the best results. The models with 

only 5 inputs, were used since they gave similar 

results. The models with 5 inputs are recommended 

since they are a more cost-effective solution with 

respect to execution time and resources.  

There seems to be a direct relationship between the 

acoustic emission generated by the multiphase flow 

and the differential pressure, which again correlates 

with the total flow rate. The Root Mean Square Error 

(RMSE) values in Table 1 reveal that the RMSE for 

oil and water flow rate models are higher than for 

the gas flow rate model, implying less accuracy in 

the oil and water models which will need 

improvement. Since the total flow rate is the sum of 

oil, water, and gas flow rate, its RMSE value is 

higher, but the results are satisfactory. The GVF and 

WLR are calculated from flow rates and are 

therefore dependent on the accuracy of the flow rate 

models.  

 

The location of the acoustic emission sensors may 

be vital for the results. It was shown in other studies 

that the GVF is increased downstream of a flow 

restriction like a Venturi or choke valve. Note that 

this is only true in the pipe just after the flow 

restriction and not for the whole pipe downstream 

the flow restriction. If this is to be interpreted as 

something that can be exploited in future studies or 

if this should be conceived as measurement noise 

should be investigated. If a sand detector is chosen 

as the acoustic emission sensor, then the location 

may not be ideal since it is located to best detect sand 

particles that collide with the outer curvature of the 

pipe wall, while gas bubbles seem to flow closer to 

the inner curvature of a 90-degree bend.     

8. Conclusion 

We implemented shallow nonlinear input-output 

neural networks for gas, oil, water, and total flows. 

Although the inclusion of additional sensors 

marginally improved accuracy, the cost-effective 

solution using only five measurements as input was 

favored due to the insignificant difference. 

Equinor is keen on utilizing already installed huge 

number of sand detectors to measure flow velocities 

based on acoustic emission caused by the multiphase 

flow. This study suggests the potential of combining 

four acoustic emission sensors with differential 

pressure measurements over a Venturi meter to 

estimate multiphase flow velocities.  

Shallow nonlinear input-output neural networks 

were created for gas, oil, water, and total flow. While 

including more sensors did improve the accuracy, 

the difference was not substantial, leading to a 

preference for the more cost-effective solution that 

only required five input measurements. 

In future studies, it is recommended to use a deep 

neural network to improve the results to improve the 

results, and place greater emphasis on frequency 

analysis to identify dominant frequency 

components. The most interesting frequency range 

in this study appeared to be 0 – 11 kHz; however, 

due to the lack of a clear conclusion, all frequency 

components were retained throughout the study.  

 

 

Table 1. An overview of the RMSE, network algorithm and configuration. The models for oil and water flow have room for 

improvement, while the gas and total flow models have both good accuracy and low RMSE. Dataset 1 was only available in, 

but dataset 2 was preferred to be used for training the data. This was due to a higher sampling rate on measurements and 

more available sensors.  

 Network type Training 

algorithm 
Network configuration RMSE 

Gas flow 

model 

Nonlinear 

Input-Output model 

Levenberg-

Marquardt 
1 hidden layer with 2 

neurons 
4.62 

Oil flow 

model 

Nonlinear 

Input-Output model 

Levenberg-

Marquardt 
1 hidden layer with 2 

neurons 
11.40 

Water flow 

model 

Nonlinear 

Input-Output model 

Levenberg-

Marquardt 
1 hidden layer with 2 

neurons 
10.87 

Total flow 

model 

Nonlinear 

Input-Output model 

Levenberg-

Marquardt 
1 hidden layer with 2 

neurons 
16.65 
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