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Abstract 

 

Building energy models are developed to describe energy performance. The energy performance of buildings is 

influenced by physical and human influenced factors. Therefore, to improve energy efficiency and renewable 

energy implementation in buildings on large scale, there is a need to analyze buildings on a large scale. In this 

study, URBANopt, a multi-building energy evaluation tool, was used to develop an accurate Multi building 

scale energy model for a university campus. This model will be useful in the future work to evaluate various 

available and emerging building-level and district-level technologies and retrofitting options to improve energy 

performance. URBANopt is a unique tool that leverages high-fidelity simulations of buildings, community-scale 

systems, distributed energy resources, and the associated interactions with local distribution electric 

infrastructure. A university campus in Norway was chosen as a case study. Results obtained from URBANopt 

were compared with a typical building energy simulation model in IDA-ICE for a representative building. This 

representative building was developed based on building characteristics, functionality, and geographic location, 

including indoor and outdoor climate conditions. Both models were validated by using measurement data. The 

results showed better simulation accuracy of the multi-building method of URBANopt with the measurement 

data, mainly due to the averaging of the characteristics of all buildings in the development of the representative 

building. Furthermore, the URBANopt allowed assigning a different scenario of technologies and retrofit 

options to each building in the evaluation process, which is impossible in the typical model due to its nature. 

However, it should be pointed out that the computational time of the model developed in URBANopt was 

higher and will increase more with the increased number of buildings. 

 

1. Introduction 

The rapid urbanization has led to an increasing 

demand for energy in urban areas. The building 

sector consumes a significant portion of the energy 

used in urban areas, accounting for 30-40% of 

global energy use (Li, Zhou et al. 2017). As a 

result, modeling building energy use at an urban 

scale has become a crucial task in achieving energy 

efficiency in urban areas. Urban building energy 

modeling (UBEM) refers to the process of 

predicting urban building energy use using 

computer simulations. UBEM is an essential tool 

for predicting energy use and evaluating energy 

efficiency strategies in urban policy (Wang, 

Ferrando et al. 2022). 

In order to create a reliable building energy model 

of a new or existing neighborhood, the task can be 

broken into the following subtasks: simulation 

input organization (data input), thermal model 

generation and execution (thermal modeling) as 

well as result validation (validation) (Reinhart and 

Cerezo Davila 2016). The simulation input 

organization is concerned with the collection and 

integration of data from various sources, such as 

weather data, building design data, and energy use 

data, to create a comprehensive and accurate input 

dataset for the model (Wang, Ferrando et al. 2022). 

Once the input data has been collected and 

integrated, the thermal model generation and 

execution stage involves creating a mathematical 

model of the energy use of the buildings in the 

urban area, which can then be simulated and tested 

under various conditions (Wang, Ferrando et al. 

2022). 

Several different types of energy models have been 

proposed for modeling urban building energy use 

over the past few decades, each with their own 

strengths and weaknesses (Li, Zhou et al. 2017). 

Physics-based, bottom-up models are one of the 

most common types of models used for this 

purpose. These models rely on detailed physical 

data, such as the building's geometry, construction 

materials, and HVAC system, to generate a 

comprehensive model of the energy use of the 

building. These models are typically accurate but 

can be time-consuming to develop and require a lot 

of detailed data (Li, Zhou et al. 2017). 



SIMS 64  Västerås, Sweden, September 26-27, 2023 

Another approach to modeling urban building 

energy use involves coupling bottom-up physics 

models with geographic information systems (GIS) 

techniques. This approach involves using GIS to 

integrate the physical data of the building with the 

spatial data of the urban area to create a more 

comprehensive model. One study that used this 

approach modeled urban building energy use and 

CO2 emissions for Indianapolis-Marion County, IN 

by integrating their energy use model, eQUEST, 

with GIS techniques (Li, Zhou et al. 2017). 

In addition to physics-based models, statistical 

models have also been used for modeling urban 

building energy use. These models rely on 

statistical analysis of data to generate a model of 

the energy use of the buildings in the urban area. 

While these models are typically faster and require 

less detailed data than physics-based models, they 

are also generally less accurate (Li, Zhou et al. 

2017). 

One important aspect of modeling building energy 

use at an urban scale is the development of 

archetype libraries. Archetype libraries are 

collections of building models that have been 

grouped into homogenous groups based on their 

characteristics, such as building type, size, and 

construction materials. These libraries can be used 

to streamline the modeling process by providing 

pre-existing models that can be easily adapted to 

new urban areas (Mohammadiziazi, Copeland et al. 

2021). 

The benefits of modeling building energy use at an 

urban scale are numerous. By accurately modeling 

the energy use of buildings in an urban area, 

policymakers and energy planners can identify 

areas of high energy use and develop targeted 

strategies for improving energy efficiency. This can 

lead to reduced energy use, lower energy costs, and 

reduced greenhouse gas emissions. In addition, 

modeling building energy use at an urban scale can 

also help to identify areas of the urban environment 

that are particularly vulnerable to heat waves and 

other extreme weather events and validate the 

performance of UBEMs. These validation 

techniques can range from comparing the simulated 

energy use with measured energy use data, to 

comparing the simulated thermal loads with real 

weather data (Li, Zhou et al. 2017). 

One interesting application of UBEMs is the study 

of waste heat from buildings and its contribution to 

urban heat islands. A study conducted by the US 

Department of Energy found that during heat 

waves, waste heat from air conditioning can 

increase the amount of heat being dispersed from 

buildings to the urban environment by up to 20% 

(Luo, Vahmani et al. 2020). UBEMs can be used to 

simulate the impact of waste heat on urban 

temperatures, which can help policymakers develop 

strategies to reduce urban heat island effects. 

Detailed building energy data and existing 

buildings that match prototypical building energy 

models (BEMs) are essential factors for the current 

UBEM development. There are several instances 

where building energy data are unavailable due to 

privacy concerns, lack of civic energy disclosure 

requirements, or properties that do not meet 

reporting threshold requirements. As highlighted by 

different studies (Holloway and Bunker 2006, 

Abrahamse and Steg 2009, Chen, Xu et al. 2017, 

Chen, Feng et al. 2022), establishing a correlation 

between energy usage and factors like 

socioeconomic status, climate, and building 

characteristics has been challenging. This may 

result in significant differences between a model 

based solely on prototype BEMs and a real 

community. This paper investigated the situation 

where energy data is only available at the aggregate 

district level, and current prototype BEMs do not 

account for actual energy usage in the community. 

This work aimed to establish a pathway for precise 

district-level building energy model creation with 

limited data. 

Based on literature, UBEM, while valuable, has 

several limitations, three important ones are: 

Data Availability: Gathering comprehensive and 

up-to-date data for large-scale urban models can be 

challenging. Limited data can lead to less accurate 

simulations.  

Complexity: Urban environments are complex and 

dynamic, making it difficult to capture all factors 

affecting energy use accurately. This complexity 

can lead to simplified models that may not 

represent reality well.  

Computational Intensity: Simulating energy use in 

large urban areas requires substantial 

computational resources, and it can be time-

consuming. This limits the ability to perform real-

time simulations or analyze numerous scenarios 

quickly. 

The existing literature may be enriched by the 

present work, which illustrates how to create a 

reliable multi-building-scale energy model 

(MBSEM) for an untypical district when detailed 

energy data are unavailable. By highlighting 

essential datasets, tools, and partnerships, this 

addition establishes a roadmap for developing a 

model on a district scale. This contribution is 

accomplished through a university campus case 

study in Trondheim, Norway. The Urban scale 

energy simulation tool URBANopt (Polly, Chuck 

Kutscher et al. 2016, Kontar, Ben Polly et al. 2020) 

was used. The current effort is focused on 

describing the model development process. 

 

2. Methodology  

This section describes the case study, the 

URBANopt tool, and the MBSEM development. 
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2.1. Gløshaugen campus 

The case study case in this paper is a university 

campus located in Trondheim, Norway. In the 

Gløshaugen campus, the system supplies heat to a 

total building area of 300,000 m², and the main 

functions of these buildings are education, offices, 

laboratories, and sports. The campus district 

heating (DH) system is connected to the city DH 

system by the main substation (MS). Apart from 

the heat supply from the city DH system, part of 

the annual heat supply comes from waste heat 

recovered from the university's data center (DC) 

(Li, Hou et al. 2021). According to the 

measurements from June 2017 to May 2018, the 

total heat supply for the campus DH system was 

32.8 GWh. About 80% of the heat supply came 

from the central DH system through the MS. The 

other 20% came from the waste heat recovery from 

the DC (Li 2022). Map of the Gløshaugen campus 

is shown in Figure 2. 

 

2.2. URBANopt tool 

URBANopt is a physics-based energy modeling 

platform for districts and communities (Polly, 

Chuck Kutscher et al. 2016, Kontar, Ben Polly et 

al. 2020). URBANopt is a modular, open-source 

SDK, built on DOE tools such as EnergyPlus, 

OpenStudio, and Spawn of EnergyPlus. 

URBANopt includes capabilities and workflows 

that enable multi-building analysis at a 

neighborhood, district, or campus scale (generally 

10 s to 100 s of buildings) and connections to other 

tools and engines that allow for the analysis of 

shared energy systems, distributed energy resources 

(DER), and the electric distribution systems, 

including interactions and impacts with building 

efficiency and demand flexibility strategies 

(Laboratory, 2022). Figure 1 (Fallahi, Sammy 

Houssainy et al. 2022) shows the structure of 

different tools in URBANOpt SDK. 

 

 
Figure 1. URBANopt SDK Gem structure 

URBANopt helps manage geospatial information 

for modeling a community and automates the 

creation of detailed physics-based models for 

baseline scenarios (e.g., existing conditions) and 

advanced performance scenarios (e.g., retrofit 

upgrades). It exchanges data with other tools, 

manages simulations, and evaluates and compares 

scenarios. In this study one GeoJSON file describes 

Gløshaugen campus buildings, energy systems, and 

end uses, one CSV file tunes and implements 

scenarios, and another CSV file links building 

models to scenarios. URBANopt workflows for 

generating commercial building models were 

described in (Kontar, Ben Polly et al. 2020, Charan, 

Mackey et al. 2021). 

 

 
Figure 2. Aerial image and building cluster for the 

Gløshaugen campus.  

 

2.3. Multi-building scale energy model 

development 

This section describes the process of developing 

the Gløshaugen campus MBSEM, emphasizing 

critical datasets and resources. The objective of 

model development is to generate a precise and 

physics-based representation of energy use in the 

district. The first critical dataset is actual utility 

usage data for the district. There is a dataset for the 

campus DH demand for 2017, as shown in Figure 

3.  

 

 
Figure 3. Hourly buildings heat demand for the year 

2017 
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The assembly of the MBSEM was carried out in six 

steps. First, GeoJSON format was used to define 

building geometry, construction sets, and energy 

systems, which were then used for the URBANopt 

modeling platform. Second, OpenStudio measures 

were utilized to define building energy systems. 

Examples of these included HVAC, hydronic 

heating system types, and component efficiencies. 

Third step was the development of baseline 

predictions for building heat demand. In the fourth 

step, heat demands were adjusted for BEM end-

users developed in step 3. The fifth step looked at 

BEM heat demands and compared to DH data 

shown in Figure 3. Finally, errors were found and 

the MBSEM was modified in the sixth step. This 

workflow is presented graphically in Figure 4, 

showing data sources and inputs. The different data 

used to develop the tuned MBSEM presented in 

this work can be broken down into three categories:  

1. Building structure: Geometry (location, area, 

no. of stories etc.) and materials used in 

walls, windows, and building exterior. 

2. Building energy systems: The performance 

characteristics of end use energy systems for 

heating, such as HVAC, domestic hot water 

(DHW), and all other 

devices/systems/appliances powered by 

district heating. 

3. Aggregated building heat demand: Patterns 

that define how and when heat is needed on 

campus. 

 

2.3.1. Building structure 

Building geometries were developed using aerial 

images, Mazemap1, and site visits. This information 

along with some building regulations, were used as 

input to develop the GeoJSON file as the first step 

of model development (Figure 4). The GeoJSON 

format was used to describe geometries. Building 

stories were determined using Mazemap and site 

visits. The campus buildings arrangement is 

displayed in Figure 5, modeled in GeoJSON 

format. The two assumptions were made for 

geometry development in buildings with mixed-use 

and asymmetric floor areas in some multi-story 

buildings. First, the current building workflow did 

not account for mixed-use buildings. In these 

instances, new uses were added to the library of the 

tool. For buildings with asymmetric floor areas by 

story, these buildings were split and modeled as 

separate buildings with symmetric floor areas. 

 

 
Figure 5. Gløshaugen campus (GeoJSON format)  

 
1 MazeMap Indoor Navigation App. MazeMap Indoor 

Navigation. (n.d.). https://link.mazemap.com/fSPmwDL1 

Figure 4. Summary of model development and tuning process, including data sources 

used to develop simulation result targets. 

https://link.mazemap.com/fSPmwDL1
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2.3.2. Building energy systems 

Building energy systems address the properties of 

space conditioning and domestic hot water (DHW) 

systems. Trondheim, where the case study is 

located, has a Nordic climate, meaning space 

heating accounts for the majority of energy usage 

in these buildings. Therefore, the focus of this 

study was on heating demand and energy systems 

associated with it. Energy systems data, weather 

data, and other building information were used as 

inputs to create the baseline model of the campus 

from the pre-developed GeoJSON file, as shown in 

Figure 4.  

 

2.3.3. Aggregated building heat demand 

The entire campus's aggregated heat demand was 

utilized as input for model tuning and validation. 

Hourly space heating demand and DHW usage 

over one year make up this data. 

 

2.3.4. Baseline load  

Collected data on building structures and energy 

systems described in Sections 2.3.1 and 2.3.2 were 

converted to a GeoJSON format used by 

URBANopt to create a base model. Some key 

parameters defined in (Nord, Sandberg et al. 2019) 

were used for creating the base model. These input 

parameters included characterization of the 

building envelope, occupancy behavior, and 

building functionality. This initial model was used 

to create a baseline heat demand of the campus as 

an input in the tuning process of the model (3rd step 

in Figure 4). 

 

2.3.5. Baseline tuning 

OpenStudio measures were applied to tune 

URBANopt simulation results to match the 

baseline load described in Section 2.3.4 with 

aggregate heat demand described in Section 2.3.3. 

TMY3 weather data files for Trondheim, Norway, 

were used in this work. 

Tuning occurred in two steps (model tuning part in 

Figure 4). First, total conditioned floor area was 

tuned to match heat demand values. After area 

tuning, the complete district-scale energy model 

was benchmarked against the measured data shown 

in Figure 3 by adjusting the model thermostat 

values. 

For example, in one part of the tuning process, the 

initial thermostat set point for the model was a 

variable set point. 21°C for working hours and 

15°C for non-working hours. The initial results 

showed a large difference between the simulation 

output and the measured data, especially in non-

working hours. For this reason, each time, by 

increasing the temperature of the thermostat during 

non-working hours in the model with a step of one 

degree, the output of the model and the measured 

data were compared. Finally, the set point 

temperature of 19°C for non-working hours 

achieved the best adaptation in the results. 

 

3. MBSEM simulation results 

Results from the MBSEM are presented in two 

sections. In the first section, the accuracy of the 

simulation is measured by comparing the results 

with the actual heat demand data shown in Figure 

3. The second section compares the heat demand 

produced in the MBSEM simulation against a 

typical building energy simulation model in the 

IDA-ICE tool, developed as a representative 

building for Gløshaugen campus (Nord, Sandberg 

et al. 2019). This representative building was 

developed based on building characteristics, 

functionality, and geographic location, including 

indoor and outdoor climate conditions. 

 

3.1. Simulation accuracy 

The evaluation of building energy models' accuracy 

is a necessary task, as it allows for the 

implementation and investigation of energy-saving 

strategies while maintaining human comfort. 

ASHRAE Guideline 14-2014, the International 

Performance Measurement and Verification 

Protocol (IPMVP), and the Federal Energy 

Management Program (FEMP) are the most widely 

recognized methodologies for evaluating the 

accuracy of these models (Ruiz and Bandera 2017). 

Normalized Mean Bias Error (NMBE), Coefficient 

of Variation of the Root Mean Square Error 

(CV(RMSE)), and coefficient of determination (R²) 

are the principal accuracy indices used in these 

standards. This study used NMBE and CV(RMSE) 

as error indicators for our simulation results.  

Table 1 shows the total annual heat demand based 

on measured data and simulation outputs. There is 

a 4 GWh underestimation in simulation results for 

the total heat demand on campus. Table 2 shows 

the accuracy indicators on an hourly and monthly 

basis. According to ASHRAE Guideline 14, the 

acceptance criteria for these indicators are +5% 

NMBE and 15% CV(RMSE) for hourly data and 

+10% NMBE and 30% CV(RMSE) for monthly 

data. Therefore, the simulation results could be 

acceptable, considering that the output is heat 

demand for a MBSEM instead of an individual 

BEM. 
Table 1. Annual heat demand 

 Heat Demand 

Actual 32.8 GWh 

Simulation 28.8 GWh 

 

Table 2. Simulation error 

Data type MBE  CV (RMSE)  

Hourly 8% 35% 

Monthly 8% 12% 
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Figure 6 shows actual and simulation heat demand 

for a typical winter week starting from Saturday. 

The simulation provided an accurate forecast of 

hourly heat demand for both weekdays and 

weekends. The model's heat demand was at a 

minimum value during the night on working days, 

resulting in a significant difference. This also led to 

high peaks at the start of the working hours. Tuning 

process can reduce the difference by adjusting the 

thermostat of each building.   

 

 
Figure 6. Heat demand for a typical winter week (starting 

from Saturday) 

Figure 7 shows the monthly heat demand for both 

measured and simulation data. According to this, 

the underestimation in heat demand can also be 

seen in monthly data. The underestimation was 

more common in the cold season, when the demand 

for heat came mainly from space heating. However, 

during summer, when heat demand is solely for 

DHW, the developed model showed better 

prediction.as a result, an alternative approach may 

be necessary for adjusting thermostats despite 

sufficient input data for building energy systems. 

 

 
Figure 7. A comparison of actual monthly heat demand 

versus simulated data 

3.2. MBSEM and IDA ICE typical building 

comparison 

Using typical/reference buildings is another 

approach to deal with district-level building energy 

analysis. The most frequent building design in the 

examined area forms the foundation of the district's 

reference model. For the Gløshaugen campus, 

based on the average geometry, building envelope 

parameters, occupancy behavior, etc., a reference 

model was built in IDA-ICE simulation software 

(Nord, Sandberg et al. 2019).  

To create the IDA-ICe model, information about 

the distribution of areas and rooms was provided by 

the Technical Management Section at NTNU.. It 

was found that the total area was divided by 140 

rooms and 18 zones. Eventually, all zones have 

been combined to form the nine most 

representative: office, reading hall, lecture hall, 

laboratory, traffic area, technical room, workshop, 

cleaning and sanitary room and other. some zones 

with similar functionality were combined for 

creating the model and finally, the geometry and 

size have been selected for reference building. 

Table 3 summarizes key information of the 

Reference model building areas. The simulation 

model and the floor area distribution are shown in 

Figure 8. 

 
Table 3. Reference model building areas 

Building 

geometry 
Parameter 

Reference 

model 

General Total area [m²] 7220.00 

Heated are gross [m²] 7159.20 

Floor area [m²] 1805.00 

Number of floors 4 

Total 

zone area/  

per floor 

area 

Office [m²] 
1967.60 / 

491.90 

Library [m²] 
545.20 / 

136.30 

Educational facilities 

[m²] 

282.00 / 

70.50 

Special room [m²] 
2321.20 / 

580.30 

Traffic area [m²] 
2043.20 / 

510.80 
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Figure 8. Simulation model developed in IDA-ICE 

Based on the geometry and building envelope 

parameters, the model was built in IDA-ICE 

simulation software. Building envelope parameters 

and other important values were defined as 

weighted averages and shown in Table 4. 

 

Table 4. building envelope parameters for IDA-ICE 

model 

Category Parameter Reference 

model 

U-value 

 

 

 

 

 

 

External wall 

[W/m2K] 

0.57 

Internal wall [W/m2K] 0.62 

External floor 

[W/m2K] 

0.19 

Internal floor 

[W/m2K] 

2.39 

Windows [W/m2K] 2.19 

Doors [W/m2K] 1.09 

Roof [W/m2K] 0.48 

General 

for façade  

 

 

Normalized thermal 

bridge value [W/m2K] 

0.10 

Infiltration [l/h]  3.07 

Total windows area 

[%] 

13.16 

 

Since the conditioned floor area of this building is 

about 7 200 m², an area adjustment took place to 

calculate the total heat demand of the campus, 

based on this model. After this adjustment, the total 

annual heat demand of the Gløshaugen campus was 

25.5 GWh (7.2 GWh less than the measured data). 

The monthly heat demand of the campus, based on 

IDA ICE, MBSEM, and measured data, is shown in 

Figure 9.  

 

 
Figure 9. A comparison of actual monthly heat demand 

versus simulated data and IDA ICE results 

Despite the MBSEM, the IDA ICE model 

overestimated the heat demand during the summer. 

During the cold season, especially in December, 

February, and March, there was a significant 

difference between IDA ICE results and measured 

data. The reason for this could be less heat loss 

through building envelope by aggregating all 

buildings in one typical building. This is something 

that should be considered in developing 

representative buildings. 

This work aimed to demonstrate a replicable and 

scalable method for simulating multi-building scale 

energy models with minimum data available. 

Results from the URBANopt simulation tool 

showed good accuracy with measured heat 

demand. In general, the developed model 

underestimated the heat demand for campus (could 

be obtained from Table 1 and Figure 7). Adding 

more details of buildings' structure and energy 

systems and better adjustment in the tunning 

process could result in better accuracy of developed 

MBSEM. Furthermore, results obtained from the 

typical model showed even more underestimation 

of the heat demand of the Gløshaugen campus. 

This was mainly due to neglecting some properties 

of buildings in averaging process. However, it 

should be pointed out that the computational time 

of the model developed in URBANopt was higher 

and will increase more with the increased number 

of buildings, especially in the first stage, which is 

generating building energy models. 
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5. Summary and conclusions 

This paper presents a process for developing a 

MBSEM for a university campus in Trondheim, 

Norway. The modeled district includes 24 

educational, office, and laboratory buildings. The 

district-scale energy model includes individual 

BEM for all buildings. MBSEM tuning is 

accomplished through the matching heat demand 

values using local datasets. The developed model 

had acceptable accuracy on both monthly and 

hourly basis. MBSEM compared with a typical 

BEM developed for the same case study. The 

results showed better simulation accuracy of the 

MBSEM compared to typical BEM, mainly due to 

the averaging of the characteristics of all buildings 

in the development of this model. The approach 

facilitates detailed load construction to prepare for 

analyzing energy efficiency measures, 

electrification, onsite renewable energy conversion, 

and storage technologies. 
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