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Abstract

Wastewater treatment sector uses about 1 percent of total energy consumption in EuropeanUnion, hence development
of energy-efficient digital technologies is an urgent challenge. The aim of this article is to develop energy-efficient
control strategies for biogas production from sewage sludge at water resource recovery facilities (WRRF). The case
study is developed in collaboration Veas WRRF, Norway. The Veas biogas plant is operated semi-continuously in
mesophilic conditions. The process includes inlet sludge pumps, four anaerobic digesters, heat exchangers for sludge
heating, pumps for sludge recirculation and a compressor for gas recirculation. The process has two controlled
variables, biogas flowrate and digester temperature, the main disturbance is the inlet substrate composition. The
manipulated variables are flowrates of the inlet sludge, heating medium, and sludge recirculation. The real semi-
continuous operation approximated as continuous operation with two hour moving averaging. Transfer functions
were identified from the pre-processed data. The accuracy of the models was sufficient 14− 60%. The transfer
functions were used to design control strategies with PID-controllers and model predictive controller (MPC). The
results show that both control strategies can increase biogas production and decrease variability in controlled and
manipulated variables compared to the plant operation. MPC gave the best results, increasing biogas production up
to 10 % and decreasing variability in controlled variables by 50−80% and by 92−99% in manipulated variables.
These results indicate that implementation of advanced control technologies can improve the energy efficiency of
biogas production.

1 Introduction

Wastewater treatment sector uses about 1 percent
of total energy consumption in European Union,
generating a high energy bill covered by the taxpayers
(EuropeanCommission, 2022). The EU has set a
goal for energy-neutrality in the wastewater sector
by 2040 with renewable energy production, carbon
neutrality and a resource-efficient bioeconomy (Eu-
ropeanCommission, 2021b) (EuropeanCommission,
2021a). Norwegian wastewater industries have
ambitious targets to reduce the environmental impact
(NorskVann, 2017), therefore, investment in energy-
efficient biogas production is essential. Biogas can
replace diesel and other fossil energy carriers in
transport industry increasing the income for WRRFs
and reducing the environmental impacts associated
with biogas production and use. In our previous
work we have reviewed digital technologies that can
improve energy-efficiency in water industry to meet
these demands (Komulainen & Johansen, 2021).
Several complex models have been suggested and
applied for biogas production from sewage sludge.
Veas WRRF biogas production has previously been
modeled with the anaerobic digestion model nr 1,
ADM1, with complex influent characterization by

(Bergland & Bakke, 2016). (Attar & Haugen, 2019)
have continued the work adapting to a simpler AM2
model with two substrate types. The simplest first
principles modeling approach is continuous stirred
tank reactor, a chemostat, with only one substrate
type (Seborg et al., 2017). In recent master thesis
work in collaboration with Veas, Mukhtar (2023) used
the AM2 model to identify transfer function models
for the biogas production, and plant data to identify
models of the heat exchanger and pumps. Using these
transfer function models, Mukhtar (2023) developed
PID and MPC control algorithms for the Veas biogas
process.
As VEAS biogas process has only one online process
measurements related to the substrate, total suspended
solids, in this article, we continue Mukhtar’s work by
identifying transfer function models of the anaerobic
digestion process directly from plant data. Further,
we use the new transfer function models to develop
and test energy-efficient control strategies. Our
research question is ”Which control algorithms can
optimize energy consumption and maximize biogas
production?”
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Figure 1. Simplified Veas biogas process with instrumen-
tation

2 Materials and Methods

2.1 Software

Matlab software package version R2023a was used
for the control experiments and System Identifica-
tion Toolbox for estimation of the model parameters.
Simulink solver algorithm was ode23s with automatic
settings for the time step and error tolerance.

2.2 Biogas plant and instrumentation

A simplified illustration of the biogas plant and instru-
mentation is given in Figure 1. The Veas biogas plant
has sequential operation with four bioreactors. The
sequence for one bioreactor includes filling 5/6 of the
tank with fresh sludge, heating the sludge until biore-
actor temperature T reaches 37oC. The anaerobic di-
gestion process in mesophilic conditions is operated
for about three weeks. The bioreactor is constantly fed
with fresh sludge, flowrate Fin in and out of the biore-
actor are the same, i.e. the bioreactor tank has constant
hold-up. The sludge and biogas are semi-continuously
recirculated in the bioreactor to avoid sedimentation.
Measurements of all unit operations, except biogas re-
circulation rate are available, listed in Table 1.

2.3 Data collection and pre-processing

The online data set and laboratory data sets were col-
lected for a period of one month 30.6.2022-30.7.2022.
ABB Edge Insight was used to collect the online data
from the SCADA system in .csv format. The labora-
tory data set was in .xlsx format.
The outliers in the online data set were first removed.
Then, the missing values in the online data sets were
filled.

2.4 Modeling

Transfer functions can be used for simplified model-
ing and control strategy design. These linear models
can be developed following system identification pro-
cedure by (Ljung, 1999). The relationship between

Table 1. Online measurements

Symbol Description Unit

Fin Flowrate sludge inlet m3/h
T SSin Total suspended solids

in sludge at inlet g/m3

RPMin Pump speed inlet rpm
Tin Temperature sludge inlet oC

THX Temperature sludge after HX oC
T Temperature bioreactor oC

FHW Flowrate hot water in m3/h
THW1 Temperature hot water in oC
THW2 Temperature hot water out oC

R Flowrate sludge recirculation m3/h
FHX Flowrate sludge via

heat exchanger m3/h
RPMR Recycle pump speed rpm
FCH4 Biogas out m3/h

input variables Ui(t) and output variable Y (t) are as-
sumed to be first order models with gain (Kp), time
constant (Tp) and delay (Td), presented in Equation 1:

T F(s) =
Y (s)
Ui(s)

=
Kp

(Tps+1)
e−Tds (1)

2.5 Control methods

The transfer functionmodels identified fromVeas data
were used for parametrization and tuning of the PID
controllers and the MPC controllers. Tuning rules
were adapted from (Skogestad, 2003) and (Seborg et
al., 2017).

2.6 Error indices

The data-driven models are compared with each other
using the fitness index (FIT) and integral of ab-
solute error (IAE) between the real measurements
yi,measurement and the model calculated output yi,model
over N samples. The fitness index is calculated with
Equation 2, where norm is the Euclidean norm.

FIT = (1−
norm(yi,meas − yi,model)

norm(yi,meas − yi,mean)
)100 (2)

IAE =
∫ N

0
|yi,meas(t)− yi,model(t)|dt (3)

The control results are evaluated using the integral
of absolute error between the setpoint and measured
value

IAE =
∫ N

0
|ysp(t)− y(t)|dt (4)

and integral of absolute movement in manipulated
variables:

IAMV =
∫ N

0
|ui(t)−ui(t −1)|dt (5)
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Table 2. Mean, standard deviation and applied scaling of
process variables.

Variable Mean St.Dev Scaling
FIN 7.049 0.8763 120 min MA
FHX 42.2324 0.0541 120 min MA
TIN 21.4041 0.8398 120 min MA
THX 38.3261 0.5049 120 min MA

T SSIN 6.7175 0.7719 120 min MA
FHW 12.2306 7.7764 120 min MA
THW 52.9991 0.8505 120 min MA
FCH4 123.9211 13.7746 120 min MA

T 37.0662 0.0424 120 min MA

3 Results

3.1 Data description

For the modeling, online data from Veas WRRF were
used for period 30.6.2022-30.7.2022 with 10 minutes
sampling time. First half of the data was used for es-
timation and second half for validation of the transfer
function models. As the size of the data set is limited,
the same data set was used for the control experiments.
The process variables with mean and standard devia-
tion are presented in Table 2.

3.2 Data pre-processing

The outliers in the data set were identified based on
the three standard deviation rule, and removed. Then,
the missing values in the data sets were filled in using
Matlab knnimpute function based on nearest-neighbor
imputation method. The inlet temperature sensor TIN
is placed into a joint pipeline between inlet sludge and
recirculated sludge, where recirculation is on 30 min-
utes and off 30 minutes. Hence, for TIN before the
moving averaging, the inlet temperature values over
20 oC were removed and replaced with previous tem-
perature value under 20 oC.
Due to the sequential operation of the Veas biogas
plant, all the variables exhibit high variation. The
sampling interval is 10 minutes. Different moving av-
erage window sizes were tested, but considering the
process time constants of 300-2800 minutes, 120 min-
utes (12 samples) window was chosen as a window of
60minutes did not decrease significantly the high vari-
ation in the raw data.
A moving average of 120 minutes was applied to all
input and output data. Without the moving average,
the system identification did not work properly. Then,
the mean values, given in Table 2, were removed.

3.3 Modeling

For control purposes, the process was to be modeled
using transfer functions identified from plant data. To
allow control strategy design, the process was divided
into three subprocesses with one output variable each.
The controlled variables are (1) biogas flowrate FCH4
out of the bioreactor, (2) temperature T in bioreactor
and (3) recycled sludge outlet temperature THX after
a heat exchanger. Different combinations of input
variables were tested for the subprocesses. Some
of the input variables were omitted if the parameter
uncertainty got very high (thousand times larger than
the parameter value) or if the time constant was very
high (many thousands of minutes). For example,
recycle rate R, is dependent on heated sludge flow
rate FHX , and omitting R improved the modeling
results.

The biogas production FCH4 in the bioreactor is depen-
dent on inlet sludge flowrate F , inlet suspended solids
percentage T SSin, inlet temperature Tin and recircu-
lated and heated sludge flow rate FHX and temperature
THX . Surprisingly, inlet temperature Tin gave negative
relationship to biogas production and was omitted as
input variable. The model parameters and model fit-
ness are given in Table 3. The model prediction and
the measured value are illustrated in Figure 2. The
model prediction is following the main trends of the
biogas production. As an unmeasured part of the bio-
gas is recirculated back to the digesters, the measured
value has a rapid variation that the model cannot cap-
ture.

FCH4(s) = T F11(s)F(s)+T F12(s)T SSin(s)
+T F13(s)Tin(s)+T F14(s)FHX (s)+T F15(s)THX (s)

(6)

Temperature in the bioreactor T is dependent on the
same input variables, except inlet suspended solids
percentage T SSin. The model parameters and model
fitness are given in Table 4. The model prediction and
the measured value are illustrated in Figure 3. The
model prediction follows the main trends in the mea-
surement, but the rapid variation in the data was not
captured.

T (s) = T F21(s)F(s)+T F22(s)T SSin(s)
+T F23(s)Tin(s)+T F24(s)FHX (s)+T F25(s)THX (s)

(7)

Further, the heat exchanger was modeled as first or-
der transfer function between the HX outlet tempera-
ture THX and hot water variables FHW and THW1 and
sludge flowrate FHX and temperature T (s). The model
parameters and model fitness are given in Table 5.
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The model prediction and the measured value are il-
lustrated in Figure 4 . The model prediction follows
the main trends in the measurement.

THX (s) = T F31(s)FHW (s)+T F32(s)FHX (s)
+T F33(s)THW1(s)+T F34(s)T(s)

(8)

Table 3. Transfer function parameters for between FCH4
and inputs.

Input Kp Tp1 Td
[-] [min] [min]

Fin 12.76 1350 0
T SSin 11.80 101 167
Tinin 0 0 0
FHX -21.15 29 266
THX 4.77 432 0
Error FITest FITval
index % %

59.57 18.52

Table 4. Transfer function parameters for bioreactor tem-
perature T and inputs.

Input Kp Tp1 Td
[-] [min] [min]

Fin 1.549 ·10−3 0 298
T SSin 0 0 0
Tinin 31.05 ·10−3 853 233
FHX -171.6 ·10−3 20 87
THX 111.9 ·10−3 379 300
Error FITest FITval
index % %

17.00 14.24

Table 5. Transfer function parameters between heat ex-
changer outlet sludge temperature THX and in-
puts.

Input Kp Tp1 Td
[-] [min] [min]

FHX -0.19072 0 0
T 0 0 0

FHW 0.059157 0 0
THW1 0.650889 0 0
Error FITest FITval
index % %

47.04 48.27

Figure 2. Scaled biogas flowrate FCH4 data (black) and
model (blue), time in minutes.

Figure 3. Scaled bioreactor temperature T data (black)
and model (blue), time in minutes.

Figure 4. Scaled recycled sludge temperature out of heat
exchanger THX data (black) and model (ma-
genta), time in minutes.

3.4 Control

The control aim is to maximize biogas production
FCH4 and minimize costs for pumping inlet sludge Fin,
pumping recirculated sludge FHX and heating sludge
THX , while maintaining optimal temperature T in the
bioreactor. Controlled variables are biogas produc-
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tion FCH4, bioreactor temperature T and recirculated
sludge temperature THX . The manipulated variables
are flowrate of sludge in FHX , flowrate of recycled
and heated sludge FHX , and flowrate of hot water
FHW . The disturbance variables of the system are to-
tal suspended solids in T SSin, inlet sludge temperature
Tin and hot water temperature THW1 into the heat ex-
changer Two control strategies were designed based
on the existing control strategy at Veas WRRF and
a recent master thesis work (Mukhtar, 2023). The
first control strategy with three PID controllers is il-
lustrated in Figure 5 and, the second control strategy
with one model predictive controller is presented in
Figure 6.

Figure 5. Suggested PID control strategy.

Figure 6. Suggested MPC strategy.

3.4.1 PID controllers

The PID controllers were parametrized using Skoges-
tad tuning rules for first order system, the parameters
are given in Table 6. The minimum and maximum
limits for the PID controller outputs were minimum
and maximum values from the scaled data of the ma-
nipulated variables.

Table 6. PID parameters.

Controller Kc Ti tauc min max
PID1 0.5289 800 200 -2.03 1.45
PID2 -0.3998 19.7209 200 -0.14 0.19
PID3 0.0845 - 200 -12.00 15.48

3.4.2 Model Predictive Controller

The MPC controller tuning parameters are given in
Table 7. The settling time was calculated as average
between TFa and TFb. The MPC sampling time was
chosen to keep the model horizon N, a ratio between
settling time and sampling time under 120. Control
horizon M was chosen between 1/3 and 1/2 of N.
The prediction horizon was a sum of model horizon
N and control horizon M. The output variables bio-
gas flowrate FCH4 and bioreactor temperature T were
weighed 10:1 (Q) to give more importance for the
biogas production. Saturation limits for manipulated
variables were the same as for PID controllers. Move-
ments in the manipulated variables, Fin, FHX , were re-
stricted with Rd values. Tested Rd values included
1-1, 5-15, 10-60, 35-210, 50-300, 100-500. Through
extensive simulation tests 35-210 gave lowest values
on flowrate of inlet sludge Fin, reduced oscillations in
both flowrates, and avoided flowrates to remain at sat-
uration limits.

Table 7. MPC parameters.

MPC controller
MPC sampling time Ts 10

Model horizon N 22 ·T s
Control horizon M 11 ·T s
Prediction horizon P 33 ·T s

CV weights Q FCH4 T
2 1

MV saturation Fin FHX
limits

min -2.03 -0.14
max 1.45 0.19

MV rate Rd Fin FHX
weights 35 210

3.4.3 Controller testing

The controllers were tested using the transfer func-
tions as process model. The testing was performed us-
ing the plant data as disturbance variables (inlet sludge
temperature TIN , inlet sludge total suspended solids
T SSIN and hot water inlet temperature THW1). Set-
point for bioreactor temperature T and for recycled
and heated sludge THX to follow a 240 sample moving



SIMS 64 Västerås, Sweden, September 26-27, 2023

mean of the original data. As the aim is to improve
biogas production, setpoint for biogas flowrate FCH4
was created as 240 sample moving mean multiplied
by 1.00, 1.03, 1.05 and 1.10. Multiplication by 1.00
allows fair comparison between the real operation
(orig.) and the proposed control strategies, whereas
the increased biogas flowrate setpoint can show how
much increase production will affect the manipulated
variables. The integral of absolute error was calcu-
lated between setpoint and measurement for the con-
trolled variables biogas flowrate FCH4 and bioreactor
temperature T . Recycled and heated sludge THX is an
intermittent variable between the bioreactor and heat
exchanger, and therefore not added to the results ta-
ble. Integral of absolute movement in the manipulated
variables was calculated for inlet sludge flowrate FIN ,
sludge recirculation rate FHX and hot water flowrate
FHW .
The results for controlled variables in Table 8 show
that biogas production FCH4 can be increased up to
10 % and variability (IAE) in controlled variables de-
creased with both PID and MPC strategies. The re-
sults for manipulated variables in Table 9 show that
the MPC controller gives 92− 99% lower variability
(IAMV) in the manipulated variables than the original
control strategy, where as the PID strategy gives much
higher variablity (IAMV) in the inlet sludge flowrate
but 25 − 76% lower for the other manipulated vari-
ables than the original control strategy. The integral
of the scaled inlet sludge flowrate Fin and hot water
flowrate FHW have lowest values for the MPC con-
troller without setpoint increase. When the biogas
production setpoint is increased, naturally also inlet
sludge flowrate Fin is increased.
Hence, the best control results for both controlled and
manipulated variables are achievedwith theMPC con-
troller. The visual results for the scenario without set-
point increase are shown in Figures 7 - 11 .

Table 8. Control results CV

Control Int IAE IAE IAE
strategy FCH4 FCH4 T THX

·106 ·104 ·102 ·103

Orig. 2.50 6.51 7.06 8.17
PID 2.50 1.85 0.92 1.62

PID 3% 2.57 1.90 0.92 1.62
PID 5% 2.62 1.94 0.92 1.62
PID 10% 2.75 2.04 0.93 1.62
MPC 2.50 1.89 2.86 1.61

MPC 3% 2.58 2.06 3.05 1.61
MPC 5% 2.62 2.21 3.10 1.61
MPC 10% 2.73 3.31 3.71 1.61

Table 9. Control results MV

Control Int Int IAMV IAMV IAMV
strategy FIN FHW FIN FHX FHW

·103 ·103 ·103 ·103 ·103

Orig. -0.018 -0.003 5.85 1.06 185.7
PID -1.626 1.21 19.45 0.80 43.95

PID 3% 4.642 2.50 20.35 0.80 43.93
PID 5% 8.816 2.61 20.95 0.80 43.94
PID 10% 19.26 2.92 22.59 0.79 43.94
MPC -3.000 -1.32 0.46 0.040 1.92

MPC 3% 2.933 -1.60 0.45 0.039 1.91
MPC 5% 6.297 -2.92 0.45 0.037 1.92
MPC 10% 14.31 -5.21 0.31 0.025 1.93

4 Discussion and Summary

Development of energy-efficient control methods is
crucial to reach the EU waste water directive tar-
get of energy-neutral of WRRF operation. There-
fore, continuous efforts should be made to implement
novel control technologies at municipal and indus-
trial WRRFs. The work on modeling and control
strategy development has been done in collaboration
with Veas municipal WRRF in Norway. One of the
main challenges on for control strategy development
is availability of industrial measurements necessary
to parametrise a state-of-the-art anaerobic digestion
model. Hence, in this work a simplified approach with
linear dynamic models was chosen. Three transfer
function models were identified to model the biogas
production in a bioreactor, temperature in the biore-
actor and outlet temperature of the recirculation heat
exchanger. The modeling results show sufficient fit
14%−60% to the industrial data.
Based on the transfer functions, two control strategies
with PID and MPC controllers were designed. The
control results show that both PID and MPC strate-
gies decrease the variablity in the controlled and ma-
nipulated variables. MPC gave the best results, in-
creasing biogas production up to 10 % and decreas-
ing variability in controlled variables by 50−80% and
92 − 99% in manipulated variables. The answer to
our research question is both PID andMPC control al-
gorithms can optimize energy consumption and max-
imize biogas production. Best results can be achieved
with MPC algorithm. Our results indicate that imple-
mentation of advanced control technologies can im-
prove the energy-efficiency of biogas production at
WRRFs.
We suggest future modeling work estimate the bio-
gas recirculation rate, for example using a Kalman fil-
ter and research on modeling methods feasible for se-
quential operation. Other data-driven modeling meth-
ods could be tested for example using time-series
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Figure 7. Biogas flowrate FCH4 original data (red), 24sample-moving average setpoint (black) and MPC simuled value (blue).
Data is scaled, time in minutes.

Figure 8. Bioreactor temperature T original data (red), 24sample-moving average setpoint (black) and MPC simuled value
(blue). Data is scaled, time in minutes.

Figure 9. Inlet sludge flowrate Fin original data (red) and
MPC simuled value (blue). Data is scaled, time
in minutes.

models or Long-Short-Term-Memory networks could
be tested. Future work on control should include pre-

Figure 10. Hot water flowrate FHW original data (red) and
MPC simuled value (blue). Data is scaled, time
in minutes.

dictive control algorithms that can account for sludge
variations based on seasonality and weather progno-
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Figure 11. Sludge recirculation flowrate FHX original data
(red) and MPC simuled value (blue). Data is
scaled, time in minutes.

sis. Adaptive control with AI approach could be ex-
plored.
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