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Abstract 

 

Hydrogen fueled gas turbines are susceptible to rigorous health degradation in form of corrosion and erosion in 

the turbine section of a retrofitted gas turbine due to drastically different thermophysical properties of flue gas 

stemming from hydrogen combustion. In this context fault diagnosis of hydrogen fueled gas turbines becomes 

indispensable. To authors knowledge, there is a scarcity of fault diagnosis studies for retrofitted gas turbines 

considering hydrogen as a potential fuel.  The present study, however, develops an artificial neural network (ANN) 

based fault diagnosis model using MATLAB environment. Prior to fault detection, isolation and identification 

modules, physics-based performance data of 100 kW micro gas turbine (MGT) was synthesized using GasTurb 

tool. ANN based classification algorithm showed a 99.4% classification accuracy of fault detection and isolation. 

Moreover, the feedforward neural network-based regression algorithm showed quite good training, testing and 

validation accuracies in terms of root mean square error (RMSE). The study revealed that presence of hydrogen 

induced corrosion fault (both as single corrosion fault or as simultaneous fouling and corrosion) led to false alarms 

thereby prompting other wrong faults during fault detection and isolation modules. Additionally, performance of 

fault identification module for hydrogen fuel scenario was found to be marginally lower than that of natural gas 

case due to assuming small magnitudes of faults arising from hydrogen induced corrosion. 

 

1. Introduction 

The power sector was responsible for ~38% of the 

global carbon dioxide emissions in 2021. Natural 

gas (NG) reportedly contributed to ~22% of the 

electric power generation globally in 2021 

(EDGAR/JRC. 2022). By far, gas turbines are 

mainly burning NG for power generation resulting 

in greenhouse gas (GHG) emissions and climate 

change. Therefore, decarbonization of gas turbines 

becomes indispensable to meet global energy 

transition mandate. In this context, the gas turbine 

industry aims for 100% carbon neutral gas fired 

power generation using low carbon fuels such as 

hydrogen by 2030 (TURBINE). 

Nevertheless, utilization of hydrogen in gas turbines 

raises several technological and reliability 

challenges due to radically different thermophysical 

properties of hydrogen as compared to NG. For 

instance, hydrogen can potentially lead to flashback 

and thermoacoustic instabilities in lean premixed 

dry low emissions / dry low NOx (DLE/DLN) 

burners. Flashback can damage the upstream 

components of the burner. It is worth noticing that 

available DLN technologies are currently capable of 

burning up to 60% hydrogen (Noble et al. 2021). The 

utilization of 100% hydrogen needs reconfiguration 

of the gas turbine with a new hydrogen compliant 

burner and modified fuel system. However, high 

hydrogen utilization produces enhanced steam 

content in the combustion flue gas that in turn is 

responsible for high heat transfer to the metal parts, 

higher thermal conductivity, aggravated oxidation 

corrosion, increased creep and thermal fatigue 

damages of hot gas path components (Gazzani et al. 

2014). In this regard, hydrogen fueled gas turbines 

are susceptible to more health degradation caused by 

already mentioned problems. Especially, the 

retrofitted gas turbines, in which solely burner is 

replaced with hydrogen compliant burner keeping 

the existing turbomachinery, have more propensity 

of health degradation. Therefore, intelligent fault 

diagnosis, prognosis and health monitoring is of 

crucial importance for enhanced reliability and 

availability of hydrogen fueled gas turbines.  

Normally, as the operating hours of gas turbines 

increase, performance and health degrade due to 
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various components faults (Marinai, Probert, and 

Singh 2004). To carry out effective maintenance 

actions, timely fault detection and identification play 

a key role in assuring reliability of the engines. Fault 

d diagnosis has been used over the years for 

industrial and aero gas turbines. It started with 

Urban’s rudimentary concept of linear gas path 

analysis (GPA) (Urban 1975; Urban and Volponi 

1992). Nowadays, gas turbine gas path diagnostic is 

typically carried out via three methodologies, i.e., 

model based, data driven and hybrid approaches 

(Fentaye et al. 2019).  

For micro gas turbines, there are a few studies 

relevant to performance-based fault diagnosis that 

considered radial compressor fouling, turbine 

erosion and recuperator degradation phenomena, all 

considering NG fueled scenarios. Gomes et al., 

(Gomes et al. 2006) reported that presence of the 

recuperator in MGT increases the sensitivity of 

engine to compressor fouling and turbine erosion 

especially in variable speed operating mode. Hence, 

they conducted a comparative study of several single 

and multiple faults i.e., fouling, erosion, foreign 

object damage (FOD) and recuperator deterioration. 

The study adopted a model-based approach namely 

NLGPA technique using Pythia and Turbomatch 

tools for fault diagnosis. Another study conducted 

by Yoon et al., (Yoon et al. 2008) employed neural 

networks for prediction of degraded performance of 

a 30 kW MGT. Various kinds of single and multiple 

faults in compressor, turbine and recuperator were 

included in the study. The approach was found to be 

predicting the results with much accuracy even if 

some measurements data were missing.  

Talebi and Tousi (Talebi and Tousi 2017) attributed 

compressor fouling as one of the majorly occurring 

faults in the MGT engine and hence they 

investigated the effect of blade surface roughness on 

the performance degradation of radial 

turbomachinery in a 477 kW MGT. The study 

revealed that combustor inlet temperature and 

turbine outlet temperature were more sensitive to 

blade surface roughness because these 

measurements showed increased values than the 

allowable limits. However, compressor discharge 

temperature was found to be less sensitive to the 

roughness. In a similar study, Bauwens (Bauwens 

2015) also asserted that compressor fouling was a 

highly likely occurring fault in a 3 kW MTT MGT 

because of the possibility of oil ingestion in the 

compressor originating from de-aerating oil sump. 

Talebi et al., (Talebi et al. 2022) utilized artificial 

neural network (ANN) for fault detection and 

isolation of a 100 kW MGT considering the 

measurements uncertainties at different part load 

settings. 

After an in-depth literature study, it seems that 

corrosion study of MGTs fueled by NG is scarce. It 

was also found that hydrogen induced corrosion in 

hot gas path components of both larger gas turbines 

and MGTs had not been investigated before based 

on authors’ best knowledge. These research gaps 

paved the way for developing a fault detection, 

isolation, and identification model for a 100 kW 

MGT running with pure hydrogen fuel.  

The present study incorporates a thermodynamic 

model using the commercial tool GasTurb 14 for 

generating a validated design point and off design 

performance data. Data preprocessing was 

implicated for adding noise and correcting the data 

for ambient condition variations. Subsequently, the 

data was fed to classification and regression learner 

tools in MATLAB version 2022a for fault detection 

and diagnosis purposes using neural network 

approach.  

2. Methodology 

The overall methodology of the entire study consists 

of 7-steps as illustrated in Fig. 1. 

 

 
 

Figure 1: Detailed flow path of the methodology 

 

The process includes developing a physics-based 

performance model, validating the model with real 

time MGT data, implanting the physical faults using 

health parameters i.e., flow capacity and efficiency, 

processing of synthesized performance data, fault 

detection and isolation (FDI), fault identification, 
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and finally testing and validation of the algorithms. 

Data processing is further segregated into correcting 

the data against ambient conditions, finding 

measurement deltas of the signals, and noise 

addition. Subsequently, the corrected-measured-

noisy data of the signals are fed to ANN based 

classification and regression algorithms for 

developing a holistic fault diagnosis model. 

Different steps of the fault diagnosis process are 

illustrated in Fig. 1. The details of these steps are 

described in the following sub-sections. 

2.1. Baseline performance model 

A thermodynamic performance model of a 100 kW 

MGT was initially developed using commercial 

software tool GasTurb (Kurzke 2012) for physics-

based data generation. The schematic of the MGT 

with sensor measurement points at various gas path 

stations is illustrated in Fig. 2.  

 
Figure 2. Schematic of a 100 kW MGT 

The stations numbers have been identified at their 

respective positions such as 2 as compressor intake, 

3 as compressor exhaust, 35 as recuperator cold side 

exhaust, 4 as turbine inlet, 5 as turbine exhaust and 

6 as recuperator hot side exhaust. The design point 

calculations were optimized using random search 

algorithm to assure the accuracy of the baseline 

model. The off-design performance was calibrated 

with experimental data for accurate validation 

purposes. The experiments were conducted at 

different power settings varying from 50 to 100 kW 

with a step change of 10 kW. The ambient 

temperatures were noticed to be varying between 

281.15 to 287.15 K during the entire test campaign. 

The real time data were taken by installing different 

pressure and temperature sensors in form of probes. 

To measure gas path conditions at intake of 

compressor, five pressure and four temperature 

measuring sensors were installed. Similarly, at 

compressor exit, three pressure and three 

temperature measuring sensors were installed 120° 

apart at circumferential positions to measure the 

average values at the flow field. Additionally, 

combustor head was also encompassed with 

pressure and temperature sensors to measure the 

conditions of intake air preheated by the recuperator.  

The instruments used for measuring pressure at 

different points were Kiel probes installed ±35° 

apart. Pressure scanners were adopted to scan the 

pressure with an accuracy of 0.05 of full-scale 

output. Similarly for temperature measurements K-

type thermocouple with an accuracy of ±1 K were 

installed, and data acquisition (DAQ) device was 

utilized to get the measured data. Subsequently, the 

pressure scanner and DAQ were connected to a 

computer in parallel mode via two ports which led 

to data visualization through LabView software. The 

validated design point data is listed in Tab. 1.  
 

Table 1: Design point validation after optimization 

Parameter OEM 

data 

(TURBE

C 2017) 

Present 

study 

% 

Error 

Power output [kW] 100(±3) 100.1 0.09 

Electrical 

efficiency [%] 

30 (±1) 29.99 0.03 

Pressure ratio [-] 4.5 4.5 0 

Exhaust mass flow 0.8 0.799 0.12 

Exhaust gas 

temperature [K] 

543 556.83 2.5 

 

The validated off-design data at different part load 

power settings for different measurement points are 

illustrated in Fig. 3 and Fig. 4. Firstly, the engine 

was simulated by assuming NG as a working fuel 

that basically established a baseline for further 

model development. Subsequently, hydrogen was 

utilized as a fuel that was the prime objective of the 

study. Both simulation scenarios, i.e., NG and 

hydrogen fuel were further utilized for appending 

measurement uncertainties along with ambient 

temperature corrections. Finally, this data was made 

ready for classification learning and artificial neural 

network (ANN) to carry out fault detection, 

isolation, and identification. However, P3, T3, P35, 

T35, T4, and T5, measurement signals were identified 

as the most significant parameters for fault diagnosis 

purpose based on their deviating fault signatures.  

 
 

Figure 3. Shaft speed at different power settings 
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Figure 4: Different pressure and temperatures at various 

power settings 

2.2. Component level degradation  

The physical faults such as fouling, corrosion, 

erosion, and FOD occurring in different components 

of gas turbine systems lead to variations in engine 

health parameters or independent parameters i.e., 

flow capacity and isentropic efficiencies. These 

health parameters in turn stimulate deviations in 

engine measurements or dependent parameters such 

as pressure, temperature, fuel flow and shaft speed.  

The present study employs the nonlinear GPA 

(NLGPA) approach for gas path diagnostics of the 

MGT because of its added advantage over LGPA in 

terms of accuracy. This is a model-based diagnosis 

approach that employs a thermodynamic 

relationship between dependent and independent 

parameters addressing the nonlinearity of the gas 

turbine engine. The correlations are as follows,  

∆𝑍 =  𝐻. ∆�⃑� (1) 

∆Z⃑⃑ is a vector of measurement deviations of a 

degraded engine condition from clean condition. 

The clean condition is normally assumed as the 

healthy condition of the engine at design point. ∆X⃑⃑⃑ 

expresses the health parameters and H represents the 

influence coefficient matrix (ICM) that develops a 

correlation between ∆Z⃑⃑, and ∆X⃑⃑⃑. The further details 

can be found in the existing literature (Fentaye et al. 

2019; Tahan et al. 2017).  

The current study encompassed two kinds of 

component faults i.e., compressor fouling and 

turbine corrosion. The reason for choosing fouling is 

due mainly to a higher probability of occurring 

fouling in recuperated MGT as evidenced by the 

literature (Gomes et al. 2006; Bauwens 2015). 

Turbine corrosion was selected because hydrogen 

fuel leads to an enhanced steam content that can 

cause higher corrosion and heat transfer rates as 

compared to a NG fueled gas turbine (Oluyede and 

Phillips 2007). These hydrogen specific attributes 

can further lead to aggravated creep and material 

degradation in hot gas path components and hence 

to a reduced lifetime of the gas turbine. The 

quantification of components’ physical faults is 

carried out by developing scaling factors of the 

health parameters (Flow capacity:𝛤, Efficiency: 𝜂) 

as follows,  

 
𝛤𝑑𝑒𝑔 = 𝛤𝑐𝑙𝑒𝑎𝑛 (1 + 𝛥𝛤/100 ) (2) 

𝜂𝑑𝑒𝑔 = 𝜂𝑐𝑙𝑒𝑎𝑛 (1 + 𝛥𝜂/100) (3) 

 

In the above-mentioned equations, subscript “𝑑𝑒𝑔” 

represents degraded component condition while 

“𝑐𝑙𝑒𝑎𝑛” represents engine’s clean or healthy engine 

condition. Whereas health parameters are 

represented in their respective symbol as follows, 

(Flow capacity:𝛤, Efficiency: 𝜂). However, 𝛥 

denotes the change in health parameters. To develop 

fault diagnosis models for gas turbines, a variety of 

fault magnitudes have been assumed by the 

literature that show a relative change of flow 

capacity and isentropic efficiency from the clean 

condition in form of scaling or correction factors. 

Tab. 2 lists the values of compressor and turbine 

degradation magnitudes with the respective ratios. It 

is worth mentioning that the fault magnitude of the 

fouling has been assumed similar for both fuel 

scenarios while fault magnitude of the hydrogen fuel 

scenarios has been assumed higher as compared to 

NG scenarios. The assumption for steam induced 

corrosion has been borrowed from a study by 

Zwebek and Pilidis (Zwebek and Pilidis 2004; 

Zwebek and Pilidis 2003), that was conducted for 

fault diagnosis of the steam turbine. The reason lies 

in the fact that steam induced corrosion led by 

hydrogen fuel behaves similar for both steam turbine 

and gas turbine.  

 
Table 2: Quantification of various physical faults 

Fault FC 

(X) 

Eff. 

(Y) 

Ratios 

(X: Y) 

Ranges Ref. 

Natural gas case 
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CF Γ𝑐 ↓ 𝜂𝑡 ↓ ~3:1 [0, -7.5] 

[0, -2.5] 

(Qingc

ai et al. 

2016; 

Moham

madi 

and 

Montaz

eri-Gh 

2014) 

TC Γ𝑡 ↑ 𝜂𝑡 ↓ ~2:1 [0, 4] 

[0, -2] 

(Escher 

1995) 

Hydrogen case 

CF Γ𝑐 ↓ 𝜂𝑡 ↓ ~3:1 [0, -7.5] 

[0, -2.5] 

(Qingc

ai et al. 

2016; 

Moham

madi 

and 

Montaz

eri-Gh 

2014) 

TC Γ𝑡 ↑ 𝜂𝑡 ↓ ~2:1 [0, 5] 

[0, -2.5] 

(Zwebe

k and 

Pilidis 

2003; 

Gomes 

et al. 

2006) 
FC: Flow capacity, Eff.: Isentropic efficiency, CF: 

Compressor fouling, TC: Turbine corrosion 

2.3. Fault diagnosis 

The diagnosis of the gas turbines is normally 

performed into three steps i.e., fault detection, fault 

isolation and finally fault identification. Fault 

detection provides information about the presence of 

any imminent physical abnormality in the system. 

Fault isolation helps in determining the exact type 

and location of the fault. Fault identification 

determines the severity magnitude of the any 

physical fault. The present study incorporated all 

these steps involved in the diagnosis.  

2.3.1. Data processing 

Prior to fault diagnosis of the MGT the data 

generated from the performance model went through 

preprocessing phase. During preprocessing, the data 

was first segregated on fuel basis i.e., NG and 

hydrogen. Subsequently, a fault wise segregation 

(i.e., compressor fouling, turbine corrosion, and 

simultaneous compressor fouling and turbine 

corrosion) was carried out. Temperature corrections 

was also considered to avoid the influence of the 

ambient temperature variations on the measurement 

signals, as follows,  

               𝜃 =
𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

288.15𝐾
                      (4) 

The 𝜃, in above equation is the correction factor of 

the measured temperature (𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) with respect 

to ambient temperature that is 288.15 K. 

Measurement deviations of degraded conditions 

from clean condition of each signal i.e., P3, T3, P35, 

T35, T4, T5, and P5 were estimated using the 

following relation, 

Δ𝑍 =
(𝑍𝑑𝑒𝑔 − 𝑍𝑐𝑙𝑒𝑎𝑛)

𝑍𝑐𝑙𝑒𝑎𝑛

× 100 (5) 

Δ𝑍, in the above equation is the measurement 

deviation vector between the healthy/clean engine 

sensors data 𝑍𝑐𝑙𝑒𝑎𝑛, and degraded engine’s data i.e., 

𝑍𝑑𝑒𝑔.Furthermore, noise was added to the 

measurement deltas to account for measurement 

uncertainties that happen in the experimental data. 

The standard deviation for Gaussian distribution was 

assumed to be 1% for temperature signals, while 

0.5% for pressure signals. The equation involved in 

the noise generation using random function is as 

follows, 

𝑥 = −1 + 2 × 𝑟𝑎𝑛𝑑(1, 𝑁) (6) 

N expresses the number of sample points including 

clean and faulty engine data. A total of 800 sample 

points were generated, i.e., 400 samples for each NG 

and hydrogen fuel scenario.  

2.3.2. ANN based classification 

After accomplishing preprocessing of the data, data 

were fed to the ANN based classification learner in 

form of two separate data sets i.e., NG and hydrogen, 

using MATLAB tool. Using scenarios involved in 

the labeled data, a classification algorithm “learns” 

about classifying fresh observations through a 

supervised machine learning approach. Although, 

there are plenty of other algorithms for classification 

learning, the ANN was chosen in the present study. 

The ANN architecture is show in Fig. 5. The reason 

for choosing ANN lies in the inherent ability of this 

algorithm to (i) capture nonlinear behavior of engine 

performance efficiently (Fentaye et al. 2019), (ii) 

extract information in fast and simplistic way 

(Tahan et al. 2017), (iii) handle multiple and larger 

component faults in presence of sensors faults 

(Ogaji and Singh 2003), (iv) deal with measurement 

uncertainties (Marinai, Probert, and Singh 2004), 

and (v) perform diagnosis with scarcity in 

measurements (Singh 2003). In classification 

learner, a validation method needs to be chosen to 

assess the prediction accuracy of the fitted model. 

The validation not only provides performance 

estimations of the model on completely new dataset 

(as compared to the training dataset), but also helps 

in protecting against overfitting. The validation 

scheme chosen in the present study, however, is 𝑘-

folds cross validation. This scheme works by 

dissecting the training datasets into 𝑘 disjoint sets or 

partitions and then randomly shuffles them. For each 

round of training-validation, a certain partition is 

used for validation while the rest of the data is used 

for testing. Therefore, each partition is used once for 

validation while 𝑘 − 1, times for training. The 𝑘 was 

assumed 5 in the present case based on the data 
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samples. Cross validation helps in avoiding the 

overfitting of the training data so that the prediction 

accuracy might not be compromised. 

 
Figure 5: ANN architecture for both fault detection and 

isolation 

The classification algorithms finally provide a 

confusion matrix that determines the number of 

faults accurately predicted or wrongly predicted. 

Confusion matrix provides information about the 

performance of the selected classifier in each class 

i.e., True Class or Predicted Class. The rows in the 

matrix show True Class, while the columns 

represent Predicted Class. The diagonal cells depict 

the matching of both True and Predicted classes. The 

blue color in the diagonal cells illustrates that the 

classifier has classified the observations correctly. 

The confusion matrix plot is also accompanied with 

two more separated columns on the far-right hand 

side that show the performance of the classifier per 

class in terms of True Positive Rate (TPR) and False 

Negative Rates (FNR). TPR is basically the 

proportion of correctly classified observations per 

true class while FNR shows the proportion of the 

incorrectly classified observation per true class. 

Another way of determining the classifier 

performance is by observing the results per 

Predicted Class (instead of True Class) in terms of 

Positive Predictive Values (PPV) and False 

Discovery Rates (FDR). The PPV represents the 

proportion of correctly classified observations per 

predicted class. The FDR measures how many 

observations are classified wrongly for each 

predicted class. The confusion matrix now has 

summary rows far below the table when this choice 

was made. PPV for properly predicted points in each 

class are displayed in blue, and FDR for erroneously 

predicted points in each class are displayed in 

orange. 

2.3.3 ANN based fault identification 

The final step involved in an MGT diagnosis process 

is fault identification. The present study utilizes a 

multi-layer perceptron (MLP) for the intended 

component fault identification. MLP is a kind of 

feed forward neural network that works on the 

concept of supervised learning comprising of input 

layer, output layer, and one or more hidden layers. 

In the training phase of the ANN, the network 

manages to learn the correlations between the input 

and output data using back propagation algorithm. 

The current study utilizes a single layer MLP with 

10 nodes as shown in Fig. 6. In general, the fault 

identification is carried out by tracing the health 

parameters i.e., (Flow capacity: 𝛤, Efficiency: 𝜂) 

back from the deviated fault signatures. In Fig. 6, on 

the left-hand side of the ANN structure inputs are 

provided that have been derived from the equation 5 

while the outputs illustrated on right hand side of the 

structure have been derived from equation 2 and 3. 

The terms with Δ in the figure represent 

measurement deviations while 𝛤 and 𝜂 represents 

the flow capacity and efficiency of compressor and 

turbines. The network was trained on the three fault 

scenarios (CF, TC, CF+TC) to identify some 

suitable relationships from the fed samples thereby 

fine tuning the weights and biases. The performance 

of the training or prediction accuracy is determined 

by mean square error (MSE) by combining the 

results from both training and validation data sets. 

The training progress data and model summary of 

ANN algorithm have been listed in Tab. 3. 

 
Figure 6: Single layer MLP architecture 
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Table 3: ANN training progress data and model summary 

Criteria Indicators 

Total hidden layers 1 

Neurons in hidden layers 10 

Feeding approach Backpropagation 

Target limit of epochs 1000 

Performance accuracy target 0 

Performance gradient target 1.00e-07 

Activation function Sigmoid 

Training algorithm Levenberg-

Marquardt 

Performance indicator Mean square 

error 

 

3. Results and Discussion 

3.1. Fault detection and isolation 

For fault detection and isolation, ANN based 

classifier was employed. Two kinds of data sets 

were trained, and three fault scenarios were 

accounted for. For each data set, 70% of the data 

were utilized for training while the remaining 30% 

were employed for testing and validation (15% for 

each) of the algorithm. The performance of the 

classification algorithm is normally assessed by 

detection decision matrix and classification 

confusion matrix consisting of the main decision 

metrics parameters i.e., True Positive (TP), False 

Negative (FN), False Positive (FP), and True 

Negative (TN) as illustrated in Fig. 7. The main 

diagonal depicts correctly predicted faults while off 

diagonal show wrongly predicted elements. The 

detection rates of these decision parameters can be 

estimated through normalization that is done via 

dividing each matrix’ element by sum of its row’s 

elements as follows (Simon 2010),  

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100% (7) 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
× 100% (8) 

 

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
× 100% (9) 

 

𝑇𝑁𝑅 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
× 100% (10) 

 

 
Figure 7: Fault detection decision matrix 

The selected classification algorithm enables the 

classification of multiple faults, as shown in Fig. 8. 

The figure represents the confusion matrix of NG 

fueled scenario. The labels mentioned on x- and the 

y-axis represent different fault and no-fault 

conditions for predicted and true classes 

respectively, as listed in Tab. 4. 

Table 4: Labels of different physical conditions in the 

classification algorithm 

Label Designated physical condition 

0 No fault 

1 CF: Compressor fouling 

2 TC: Turbine corrosion 

3 CF+TC: Simultaneous 

 

It became evident from Fig. 8 that, at no fault 

condition, the classifier predicted 99.1% correctly as 

clean, while 0.9 % wrongly predicted as corrosion. 

Similarly, in row two, 98.2% data points were truly 

classified as faulty with compressor fouling, while 

1.8% was wrongly predicted as non-faulty. The third 

row depicts that 98.2% samples were correctly 

predicted as corroded, while 0.9% wrongly 

predicted as non-faulty and other 0.9% appeared to 

be wrongly predicting as simultaneous compressor 

fouling and turbine corrosion. The fourth row, 

however, shows that 95.5% of the data points were 

predicted as representing simultaneous fault 

(CF+TC), while 1.8% wrongly predicted as fouled, 

and 2.7% wrongly predicted corrosion. The overall 

positive prediction value (PPV) as shown in Fig. 8 

were found as follows, clean condition: 97.3%, 

fouled: 98.2%, corroded: 96.4%, and simultaneous 

fouled and corroded: 99.1%. However, the rest of 

the data samples showed a false detection rate 

(FDR). 
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Figure 8:Classification confusion matrix per true class 

for NG scenario 

 
Figure 9: Classification confusion matrix per predicted 

class for NG scenario 

The fault detection and isolation of hydrogen fuel 

scenario was conducted similarly as NG scenario. 

The classification confusion matrix of the hydrogen 

fuel scenario has been illustrated in Fig.10. At clean 

condition 0.9% wrong prediction of fouling has been 

indicated, while 99.1% of the data samples were 

correctly classified as no fault samples. At fouling 

condition (depicted in row two), 1.8% samples 

showed a wrong classification as non-faulty, 

whereas 98.2% were correctly classified as fouled 

samples. In the corrosion fault, 3.6% data samples 

were wrongly classified as non-faulty, while 96.4% 

showed a correct prediction of corrosion fault. 

Likewise, at simultaneous CF+TC fault, 93.6% data 

points indicated the simultaneous fault as correctly, 

while there was wrong prediction of 1.8% as non-

faulty, 1.8% as fouled, and 2.7% as corroded 

components faults.  

 
Figure 10: Classification confusion matrix per true class 

for hydrogen scenario 

 
Figure 11: Classification confusion matrix per predicted 

class for hydrogen scenario 

A comparison of Fig. 8 and 10 for corrosion fault 

shows that the percentage of wrongly classified 

faults in hydrogen fuel scenario (3.6%) is more than 

that of natural gas scenario (1.8%). Similarly, for a 

simultaneous fault, the utilization of hydrogen fuel 

is stimulating more wrongly classified fault 

scenarios i.e., one extra wrongly classified 

prediction of non-faulty case of 1.8%. The three blue 

and green dotted circles have been drawn on 

confusion matrix of both NG and hydrogen 

scenarios respectively. The green circles are 

showing extra anomalies in the data as compared to 

NG one. Among the two anomalies i.e., at cell (2,0), 

and (3,0) are representing deviation in two of the 

True classes i.e., corrosion and simultaneous CF+ 

TC. In case of TC, the True class is showing 3.6% 

wrongly identified faults as non-faulty that is almost 

double than the NG scenario. Similarly, the 

simultaneous CF+TC case, is also indicating 1.8% 

data as wrongly identified as non-faults in presence 

of the simultaneous CF+T fault. In contrast, in case 

of NG this wrong non faulty prediction was not 

observed. However, it is important to mention that 

the correctly predicted fault rates percentages of a 
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hydrogen fuel scenario are marginally lower than 

those of a NG scenario. Additionally, the 

comparison of Fig. 9 and 11 indicates that PPV of 

the hydrogen fuel scenario is 100%, while for NG 

scenario it was 99.1%. It implies that the hydrogen 

fuel scenario has more propensity of providing 

positive prediction of faults.  

During fault detection, the presence of hydrogen-

based corrosion fault led to increased level of 

incorrectly classified ‘no fault’ as hydrogen induced 

corrosion fault. Moreover, the simultaneous 

compressor fouling, and turbine corrosion faults 

prompted an extra non faulty prediction in contrast 

with the NG case. It means presence of the hydrogen 

induced corrosion fault might influence the fault 

detection process by giving wrong alarm of fault 

while there is no actual fault. 

3.2 Fault identification 

The fault identification of the MGT was carried out 

by using feed forward neural network. The 

computational framework of the MLP based ANN is 

through regression analysis. The regression plots of 

training, testing and validation have been illustrated 

in Fig. 12. The figure indicates that ANN was able 

to identify the physical faults parameters with quite 

good accuracy since the regression values are almost 

closer to 1. The performance of the ANN prediction 

is normally evaluated by level of error minimization 

with respect to the number of epochs (cycles). An 

epoch is basically the training process of ANN with 

all the available data at once for one cycle. It is 

always desirable to keep accuracy as high as 

possible during the training.   

 
Figure 12: Regression plots for training, testing and 

validation of a NG fuel ANN model 

Normally, a learning curve graph helps in 

visualizing the convergence of the training, testing 

and validation; and hence provides information 

about the accuracy in given epochs. The learning 

curve graph keeps on getting better until the model 

coverages with a minimized error, as shown in Fig. 

13.                                                                                                                                                                                                                         

 

 
Figure 13: Performance of the ANN training for the NG 

fuel scenario 

The regression of both NG and hydrogen fuel 

scenarios was found to be nearly identical with 

similar accuracy as can be observed from Fig. 14. 

The learning curve-based performance of hydrogen 

fuel scenario is shown in Fig. 15. The error 

minimization of the hydrogen scenario took 404 

epochs that was significantly greater than that of the 

NG scenario i.e., 202 epochs.  

 
Figure 14: Regression plots for training, testing, and 

validation of a hydrogen fuel ANN model 
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Figure 15: Performance of ANN training for the 

hydrogen fuel scenario 

The overall accuracy of the ANN training, testing 

and validation was determined by root mean square 

error (RMSE) using Equation 11. The 𝑛, involved in 

the equation expresses the total sample size, while 

𝑝𝑓, and 𝑡𝑓 represent the predicted and target fault 

values. The final results of both MSE and RMSE 

between the predicted and target values for both NG 

and hydrogen scenario are listed in Tab. 5. It became 

evident from the RMSE of the training, testing and 

validation phases of hydrogen were slightly higher 

than that of NG scenario.  

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑛
∑(𝑝𝑓 − 𝑡𝑓)

2
𝑛

𝑖=1

(11) 

 

Table 5: Analysis of the fault identification results in 

terms of RMSE  
MSE 

NG 

MSE 

Hydroge

n 

RMSE 

NG 

RMSE 

Hydroge

n 

Training 5.92e-4 0.0018 0.0243 0.0424 

Testing 6.41e-4 0.0022 0.0253 0.04694 

Validation 7.40e-4 0.0032 0.0271 0.0565 

 

4. Conclusion 

The study was aimed at developing a fault diagnosis 

model for a hydrogen fueled MGT in comparison 

with a NG fueled case. The study involved 

development of a physics-based model for data 

generation as an initial step. The data further went 

through preprocessing phase prior to the fault 

detection, isolation, and identification. Fault 

detection and isolation were carried out using an 

ANN based classification learner, while fault 

identification was performed using an MLP feed 

forward ANN. The detection and isolation module 

showed greater percentages of wrongly classified 

faults due to involvement of steam induced 

corrosion in hydrogen fueled scenario as compared 

to a NG fired MGT. The hydrogen scenario showed 

more propensity of positive prediction values too. 

The performance of fault identification was 

however, found to be similar for both NG and 

hydrogen-based scenarios. Further work is needed 

with increased level of fault severity rising due to 

steam induced corrosion for better fault 

identification in hydrogen fueled scenario. The 

study was part of an initial attempt towards fault 

diagnosis of hydrogen fueled micro gas turbines. 

However, further advancements might help the 

design and maintenance engineers in assuring 

optimum reliability and availability of the MGT. 
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