
SIMS 64  Västerås, Sweden, September 26-27, 2023 

Information extraction from operator interface images using 
computer vision and machine learning 

 
Eirik Illing a,*, Nils-Olav Skeie b, Ole Magnus Brastein c 

  
a Emerson Automation Solutions, b c University of South-Eastern Norway (USN) 

eirik.illing@emerson.com 

 
Abstract 
In the process of system upgrades or migrations, the utilization of existing layouts and object structures for 
designing new Human Machine Interfaces (HMI) can significantly save time and effort. Operator interface 
images, commonly referred to as HMI´s, contain valuable information crucial to industrial operations, but access 
to source code or design files can be limited. Modern frameworks for object detection and text recognition offer 
a solution by extracting information directly from images. However, these methods require time-consuming data 
acquisition and manual effort to initiate. This paper proposes a novel approach utilizing traditional Computer 
Vision (CV) and Machine Learning (ML) techniques to extract objects from images. The extracted objects are 
used as training data to transfer learn a ResNet model for multi-label image classification. The combination of 
this model with techniques such as sliding window, pyramid scaling, and non-maximum suppression forms the 
basis for a semi-automated annotation tool. This tool generates training data for more optimized object detection 
methods, specifically the YOLO (You Only Look Once) one-stage object detector. The semi-automated 
annotation tool allows engineers to manually refine the training data and export state-of-the-art training images 
for YOLO. The YOLO model achieves an impressive mean Average Precision at IoU 50% (mAP50) score of 
95.5% when transfer learned on the annotated data. Additionally, an Optical Character Recognition (OCR) 
engine is utilized to extract text information from preprocessed images, followed by postprocessing to filter tag 
data. An algorithm is then employed to link objects and tags together. The final solution is implemented in 
software designed to optimize user interaction, resulting in an analysis document in Excel format, which can be 
easily exported for end-user access. With the novel use of this software to automate image analysis, the time 
required to analyze HMI images prior to migration or rebuild can be reduced by an estimate of 90%.
1. Introduction 
The rapid advancement of technology has led to an 
increasing reliance on operator interface images, 
such as HMI [1] and Supervisory Control and Data 
Acquisition [2] (SCADA) graphics, in various 
industries. As the field advances the frameworks 
for these interface technologies evolves, new and 
improved design concepts are introduced, and 
migration from old systems to new become a 
necessity. These traditional operator interface 
images contain a wealth of valuable information 
related to production, process flows, and assembly 
lines. However, accessing the underlying source 
code or design files of these operator interface 
images can often be challenging or limited. To 
address this issue, modern frameworks for image 
classification and object detection have emerged as 
potential solutions, enabling the extraction of 
pertinent information directly from these operator 
interface images. 
This paper explores the field of image classification 
[3] and object detection [4] for the purpose of 
extracting information from complex operator 
interface images. The primary objective is to 
develop a tool that can effectively analyze and 
interpret industrial applications depicted in these 
images. Specifically, the project will be conducted 

in two iterations, each with distinct goals and 
outcomes. 
1.2. Previous work 
Several studies have investigated the recognition 
and extraction of information from industry related 
documentation, particularly in the context of Piping 
and Instrumentation Diagrams (P&IDs). Paliwal et 
al. [5] proposed a method in 2021 that utilized a 
Dynamic Graph Convolutional Neural Network 
(DGCNN) to recognize line-drawn symbols in 
P&IDs. Their approach involved constructing a 
graph based on sampled pixels along contour 
boundaries and incorporating ResNet-34 
embeddings to improve classification accuracy. 
They employed an Arcface loss function to address 
misclassification issues caused by similar-looking 
objects [6]. The presented research utilizes a single 
image for each object, setting it apart from 
conventional approaches that typically require 
multiple images for training. 
In an earlier paper, Paliwal et al. [7] developed an 
end-to-end data extraction system for P&IDs using 
fully convolutional networks. This involved 
annotating multiple training images with 
segmented pixels to identify different symbol 
classes. The authors employed a pipeline approach, 
separating text extraction and graphic object 
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detection, and used minimum Euclidean distance to 
link text and objects. Their system achieved 
effective information extraction and demonstrated 
the potential of performing extraction in multiple 
steps or iterations. 
Moon et al. [8],  proposed a three-step method for 
recognizing line objects and flow arrows in image-
format P&IDs. Their approach involved removing 
outer borders and title boxes (considered noise), 
then detecting continuous lines, line signs, and flow 
arrows, and adjusting and merging lines 
accordingly. They employed preprocessing 
techniques to remove noise, applied thinning and 
pixel processing for line detection, and utilized a 
RetinaNet model to train on the line signs and flow 
arrows. 
These studies have made significant contributions 
to the field of analyzing documentation, 
specifically in addressing challenges related to 
object recognition, noise reduction, and 
information extraction. These studies primarily 
focused on analyzing documentation in grayscale, 
predominantly using standardized symbols and 
texts. In contrast, the current project aims to tackle 
similar challenges while dealing with operator 
interface images that exhibit a wide variety of 
complexities, such as color variations, scales, and 
limited features, requiring different approaches for 
object recognition and information extraction. 
1.3. Outline of paper 
System Description chapter explains how the 
project was executed, including the system 
overview and associated advantages and 
challenges. 
Methods chapter covers data collection, training 
models, and tool development in detail. 
Results and Discussion chapter present project 
outcomes, including model performance, 
effectiveness of data annotation tools, and 
discussions regarding the aforementioned topics. 
Future Work chapter explores improvement areas, 
use cases, and opportunities for further 
development. 
Conclusion chapter summarizes key findings and 
highlights the project's significance and potential 
impact. 
This paper is based on a Master's Thesis project [9] 
conducted at USN and supported by Emerson 
Automation Solutions.  
2. System description 
2.1. Project execution 
In the first iteration, the project will focus on 
training a ResNet50 [10] image classification 
model. The model will be trained on custom data 
extracted from existing operator interface images 
using CV [11-12] techniques, manually sorted into 

class folders for data labeling [13]. This phase aims 
to explore different model configurations and 
assess their performance in accurately classifying 
industrial objects. An annotation tool is developed 
to aid in the labeling of training data. This tool will 
streamline the annotation process and lay the 
foundation for subsequent iterations.  
The second iteration will leverage the annotated 
data generated from the previous phase to train a 
one-stage [14] YOLOv8 [15-16] model for object 
detection. The goal is to accurately identify and 
locate objects within the operator interface images. 
Furthermore, text extraction techniques such as 
Pytesseract OCR [17]  will be employed to retrieve 
textual information from these images, which will 
then be linked to the respective objects detected 
using Minimum Euclidean Distance calculations. 
The text extraction will require extensive image 
preprocessing to ensure high acquisition accuracy, 
and a custom text-format library is embedded in the 
software to filter relevant information. To ensure 
usability and accessibility, the solutions developed 
in this project will be combined into one software 
solution tool that is accessible through a web 
interface. All development is done using Python 
and the Flask web framework.  
Users will be able to upload operator interface 
images to the tool, which will then process the 
images and generate an analysis document as 
output. This document will provide a representation 
of the information extracted from the images, 
facilitating informed decision-making and analysis 
for industrial applications. To illustrate the benefits 
and advancements offered, the flowchart provided 
in Figure 1 compares the proposed analysis process 
with conventional approaches involving source-
code tools or manual analysis. 

 
Figure 1: Comparing conventional approaches using 
source-code tools or manual analysis with the object 

detection tool suggested in this research. 

2.2. Advantages 
Performing object detection on computer drawn 
images, such as drawings and documentations, is in 
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some ways easier than real-world images. The 
traditional challenges associated with factors [18] 
like lighting conditions, object angles, line of sight, 
dirt, and other real-life variables are non-existent in 
these 2D images. However, these types of images 
also present unique challenges that need to be 
addressed.  
2.3. Challenges 
Operator interface images contain a large number 
of objects, lines, and text that represent various 
types of information. This abundance of visual 
elements introduces challenges related to noisiness 
and limited features. Due to the similarities 
between objects, there is a higher probability of 
misclassification. In general, there is a lack of true 
standardization in both object and image design, as 
well as tag structure within these images.  
3. Methods 
3.1. Data collection 
If source-code or design files is unavailable, 
extracting training data objects directly from raw 
image files may be necessary. To streamline this 
process, a Python script is developed for object 
extraction, eliminating the need for manual 
snipping tool usage. OpenCV [19] offers various 
methods simplifying the extraction of training, 
validation, and test set objects from raw operator 
interface images. 
The script will convert input images to grayscale, 
apply thresholding and dilation, and identify 
contours using the "find contours" method in 
OpenCV. These contours are then enclosed in 
bounding boxes using a different method from the 
OpenCV library. Each bounding box represented 
an object and is snipped from the full-scale image 
into a separate folder. While some of these objects 
are suitable for training, validation, and test sets, 
others are incomplete or contain noise. Although 
this method is not perfect, it provides a foundation 
for the subsequent manual sorting of objects into 
class folders for labeling purposes. 
Following the extraction of individual objects from 
the full-scale images using the Python script, a 
manual process is undertaken to organize and label 
the extracted objects. This involves moving the 
extracted objects into separate folders, with each 
folder representing a different object class. By 
separating the objects into distinct folders, it 
becomes simpler to manage and track the defined 
classes. Additionally, labeling is achieved by 
associating each object within a class folder with its 
corresponding label. While going through the 
extracted data it is important to check that the 
objects put into class folders represents the data 
that the model needs to learn. An example of a 
clear represented object with the label “valve_p” 
for valve pneumatic is shown in Figure 2. 

 
Figure 2: Clean pneumatic valve object. 

The objects are separated into single-label and 
multi-label folders. In the single-label folders, each 
folder is named according to a single class label. In 
the multi-label folders, the folder names consist of 
all class labels representing the labels of the objects 
contained within, separated by spaces.  
The multi-label classifier requires the data 
converted from this folder structure into a single 
folder with a specification file defining name, label 
and validation set. This is achieved through a 
Python script which also randomly choose 20% of 
objects from each class as validation data. An 
example of the comma-separated values (CSV) 
specification file is shown in Table 1. The entire 
data collection process is summarized in Figure 3. 

Table 1: CSV specification file format for multi-label 
classification. 20% validation (validation column “yes”). 

fname label validation 
object1.png pump no 
object2.png valve yes 
object3.png valve no 

 
Figure 3: Data collection and preparation for training 

image classification models. 

Data for object detection is attained through image 
annotation and will be a resulting part of the 
developed semi-automated annotation tool. 
3.2. Image classification 
In this project, the primary focus for the application 
of single-label classification is to assess the 
performance improvement of a pretrained 
ResNet50 model. The objective is to evaluate the 
effectiveness of transfer learning with custom data 
in comparison to training a fresh model. For more 
information on this topic, please refer to the 
Master’s thesis [9]. The single-label classifiers used 
in this study were trained on approximately 1000 
object images. 
In the future task of classifying objects within a 
region of interest (RoI), the utilization of multi-
label classification with the ResNet50 model 
proves to be advantageous. This approach enables 
the classifier to detect multiple objects within the 
RoI, while also taking into account situations where 
no objects are present, thus minimizing the 
occurrence of misclassifications. The multi-label 
classifier is trained on approximately 1400 object 
images, where 1000 of these are single-label object 
images. It is important to ensure that for all multi-
label object classes, there exist good representative 
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single-label object classes. For instance, if a multi-
label object image contains both a valve and a line, 
it is necessary to have separate single-label object 
images for both the valve and the line classes. This 
approach enables the model to effectively 
distinguish between different objects and enhance 
its classification capabilities. 
3.3. Semi-automated annotation 
Combining three computer vision techniques: 
sliding window, image pyramid scaling, and Non-
Maximum Suppression (NMS), to extract objects 
from an image. The sliding window divides the 
image into overlapping windows, generating 
potential RoI’s. The image pyramid scaling ensures 
object detection at different scales. NMS eliminates 
redundant detections, selecting the most accurate 
bounding boxes. Extracted image snippets are 
classified using a multi-label classification model 
derived in the previous step. This approach serves 
as the foundation for the pre-analysis stage in the 
development of a semi-automated annotation tool.  
The requirements and functionality desired for this 
tool include the ability to upload images, perform 
preprocessing, conduct pre-analysis using the 
above-mentioned method, manually adjust the pre-
analysis annotations, and export the annotated data 
in a format suitable for one-stage or two-stage 
object detectors. Specifically, the tool should 
provide the option to export the annotations in a 
text file format compatible with the YOLO 
detector. 
3.4. YOLOv8 object detector 
The annotation process for generating training and 
validation data for modern object detectors has now 
been optimized. It is well-established that one-stage 
detectors are faster but often yield lower accuracy 
compared to two-stage detectors [20]. At the time 
of undertaking this project, a new one-stage 
detector for YOLO was introduced, promising 
improved mAP scores and better results on tiny 
objects. Considering the goal of analyzing a large 
volume of images in a single run, speed is crucial. 
Consequently, the latest YOLOv8 architecture 
provided by Ultralytics [21] have been chosen. 
Ultralytics provides different sizes of their model. 
As a general guideline, larger models are capable 
of capturing more features than smaller ones [22-
23]. After checking this guideline by evaluating the 
medium, large, and extra-large models using the 
same dataset, the largest model was selected. This 
testing process is listed in Table 2. 

Table 2: Model sizes tested using custom dataset of 21 
train and 3 validation images. 1000 epochs of training. 

Model Early stopping mAP50 

medium 270 epochs 80.8% 
large 388 epochs 83.0% 
xlarge 326 epochs 90.5% 

3.5. Extracting tags 
OCR involves preprocessing the image, localizing 
text, character segmentation and recognition, and 
post-processing. The focus is on utilizing the 
recognition part of the Pytesseract OCR library, 
excluding post-processing dictionary translation. 
The tags in operator interface images consist of 
combinations of numbers, letters, and symbols. To 
filter out unwanted combinations, a custom 
dictionary is created. The recognized tags and their 
positions relative to the image are stored in a text 
file, with positions normalized between 0 and 1. 
Initially, OCR on the raw image did not provide 
valuable information due to small tag sizes, random 
placement, and low contrast. To address this, the 
image is divided/split into sections, a scale pyramid 
is applied, and preprocessing steps such as 
grayscale conversion, blurring, edge detection, and 
dilation are performed as shown in Figure 4. This 
significantly improves the OCR results as shown in 
Table 3. 

 
Figure 4: Preprocessing images to only identify tags and 

high contrast lines. 

Table 3: Showing a small part of OCR result before and 
after preprocessing the image. 

No image 
preprocessing 

Custom image 
preprocessing 

2341 0.090365 0.093981 0.003385 
0.002315 

LSH-1300 0.089461 0.689971 
0.030979 0.020058 

0201 0.533594 0.083912 0.004687 
0.002546 

XS-1323 0.183917 0.687645 0.025043 
0.020058 

0201 0.611393 0.083796 0.003255 
0.001852 

P-1302 0.258107 0.683430 0.019687 
0.023256 

 
3.6. Linking objects and tags 
The concept behind tag extraction in conjunction 
with object detection is to establish a relationship 
between tags and objects based on their respective 
locations. It is reasonable to assume that tags and 
objects located close to each other are associated. 
However, there are certain arguments against this 
generalization. For instance, tags may be situated 
far from an object due to unobservable status 
variables associated with the object in the current 
image state. This distance may even exceed the 
distance between the tag and an unrelated object. 
Consequently, in this scenario, a single tag can be 
linked to multiple objects. 
As demonstrated in the previous step, the OCR 
engine extracts texts and converts their positions to 
a normalized scale ranging from 0 to 1, matching 
the YOLOv8 object detection location scale. To 
determine the distance between the center of the tag 
location and the object location, the Minimum 
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Euclidean Distance calculation is employed. Visual 
representation of the distance calculation is shown 
in Figure 5. 

 
Figure 5: Visualized linking of object and tags. 

3.7. ICE - Industrial Component Extraction tool 
An analysis software that encompasses all the 
components, including the object detector, OCR 
and minimum Euclidean distance calculator, is 
created. Additionally, the software will provide a 
defined export format that allows users to easily 
view the final analysis. The final solution is 
structured as shown in the use case diagram in 
Figure 6. 

 
Figure 6: Use Case Diagram for final analysis software 

ICE – Industrial Component Extraction. 

4. Results and Discussion 
4.1. Multi-label image classification 
A learner is defined, with minor data augmentation 
such as vertical and horizontal flipping, as well as 
zero-padding. Since the data never will be warped, 
and all information within the image is relevant, no 
further augmentation is needed. Figure 7 displays a 
sample from a training data minibatch. 

 
Figure 7: Sample of a minibatch. 

When dealing with multi-label image classification, 
it is crucial to establish an appropriate multi-
accuracy threshold. A threshold value of 0.8 is 
selected which is heigh and within a smoothness of 
FastAI’s [24] threshold finders’ curve for this 
function thus ensuring no outliers are selected [25].  
After finetuning the ResNet50 model for 11 epochs 
(4 freeze and 7 un-freeze), an accuracy of 99.33% 
is achieved. By analyzing the loss plot shown in 
Figure 8 both the validation- and training-loss 
flattens. There is no indication of overfitting, so a 

score of 99.33% is acceptable and training is 
stopped after the 11th epoch. 

 
Figure 8: Multi-label classification loss plot. 

4.2. Semi-automated annotation tool 
The multi-label classifier in combination with 
pyramid scaling, sliding window and soft NMS 
results in a multi-class object detector. A 
customized version of the soft NMS is required to 
only allow same type labels to suppress each other, 
shown in Equation (1). 

𝐽𝑙𝑎𝑏𝑒𝑙(𝐴𝑙𝑎𝑏𝑒𝑙, 𝐵𝑙𝑎𝑏𝑒𝑙) =	
|𝐴𝑙𝑎𝑏𝑒𝑙⋂𝐵𝑙𝑎𝑏𝑒𝑙|
|𝐴𝑙𝑎𝑏𝑒𝑙⋃𝐵𝑙𝑎𝑏𝑒𝑙|

(1) 

 

 
Figure 9: Small extract (snippet) of the multi-class object 

detector result. 

From the image displayed in Figure 9, this method 
appears sub-optimal as it scores poorly on both 
position and classification. The resulting custom 
mAP50 calculation score of 5 individual images was 
11.36%. More on how this custom accuracy 
calculation was performed in Master’s thesis [9]. 
This method provides a reference to the object and 
its location, serving the purpose as a pre-analysis 
step for the semi-automated annotation tool. The 
goal is to enhance efficiency in annotating data for 
modern object detectors.  
The annotation tool is developed as specified by the 
requirements, where a user can upload an image, 
pre-analyze it using the multi-class object detector 
with the multi-label classifier model trained in 
chapter 4.1, and further make modifications and 
improve the annotation. The user can now export a 
state-of-the-art annotation file for the object 
detector. It is estimated an 75% increased 
efficiency using this tool compared to traditional 
third-party tool due to the pre-analysis which 
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provides classes and a starting point for the user to 
annotate. 
The tool was later modified to also take pre-
annotated images, if existing. Which would give a 
good starting point of annotation (no pre-analysis 
needed by multi-class object detector). 
4.3. YOLOv8 object detector 
To prevent aliasing due to downscaling when 
loading the training and validation datasets to the 
object detector, the image and annotation data was 
split with a custom script. Thus, increasing the 
training data. This resulted in a better model.  
At the final iteration, the YOLOv8 model was 
transfer learned on 59 training and 11 validation 
images from three different sites to improve 
generalization. An overview of the training 
iterations can be seen in Table 4. 

Table 4: Iterations of training and validating the 
YOLOv8 transfer learned model. All runs are performed 
with parameters: patience=150, batch=8, model=xlarge. 

Runs Dataset N Sites mAP50 Note 
1 21 train, 3 

val 1 90.5% Tag classes included 

2 21 train, 3 
val 1 87.1% Removed tag classes, 

fixed some errors 

3 40 train, 8 
val 1 97.2% Realized non-

generalized model 

4 59 train, 
11 val 3 95.5% Added more data 

from different sites 
Since the object detector returns an annotation file 
during testing on new data, sub-optimal tests that 
detect only a small percentage of objects can be fed 
back to the semi-automated annotation tool for 
improvement. Consequently, new test images are 
transformed into training and validation images, 
necessitating the need for more data. This created 

the idea of modifying the annotation tool to include 
the YOLOv8 object detector as a pre-analysis step 
instead of the multi-class object detector. 
In summary, the misclassifications of the YOLOv8 
model shown to the left in Figure 10 is strongly 
related to number of representatives in the dataset 
shown to the right in Figure 10. 
4.4. ICE - Industrial Component Extraction tool 
Combining the custom YOLOv8 object detector 
model with OCR and linking objects and tags leads 
to the development of effective analysis software. 
The software is designed based on the requirements 
and use case diagram depicted in Figure 6. The 
resulting software exhibits an estimated 
improvement in efficiency, approximately 10 times 
greater than manual analysis.  
The Pytesseract OCR engine only extracts 
approximately 50% of tags due to non-customized 
model (depending on image to text size ratio). OCR 
image preprocessing is also the most time-
consuming part of the analysis. Analyzing 12 
images takes 1 minute and 20 seconds, where the 
object detection only uses approximately 25ms (on 
average) for each image. Image preprocessing and 
OCR account for most of the remaining time 
required. 
The analysis results are exported in an Excel 
document format, which includes a summary sheet 
as the first page, providing an overview of the 
analyzed images and the detected objects in each 
image. Additionally, separate sheets are generated 
for each image, displaying the bounding box 
objects with labels within the images, shown in 
Figure 11. Moreover, a data sheet for each image is 

Figure 10: YOLOv8 confusion matrix (left) and number of instances (right), run 4. 
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included, showing each detected object snipping 
along with its associated tag and information in a 
table format, shown in Figure 12. 

 
Figure 11: Individual image analysis sheet with bounding 

boxes. 

 
Figure 12: Adjacent image data sheet with information. 

5. Future Work 
5.1. Improvements to current solutions 
The OCR tag extraction method used in this project 
can be improved by exploring alternative extraction 
methods or adding tags as a separate label class in 
the object detector. Treating tags as a separate class 
would require more training data but could improve 
text extraction by individually feeding tag objects 
to the OCR engine. The poor performance in the 
current solution is due to the small size and random 
placement of text compared to other objects. 
Multiple image scales and preprocessing were used 
to improve detection, but this increases computing 
power and is time consuming. 
To enhance the final ICE software, incorporating 
features from the annotation tool would be 
beneficial. Users could perform pre-analysis on a 
portion of customer images using the YOLOv8 
model, make manual adjustments to the detection, 
and retrain the model. Then upload the rest of the 
images and get an improved analysis with the 
improved model. This iterative process improves 
model generalization and user experience. It would 
be valuable to have these features available for all 
users of the ICE software for daily image analysis. 
Including more annotated images from various sites 
would enhance the model's performance and 
generalization. Alternatively, modifying the 
YOLOv8 network architecture by substituting the 
classification network with the multi-label image 
classification model could eliminate the need for 
annotating more images. 
5.2. Opportunities for future development 
Combining the developed product with pixel 
processing for pipeline detections, as discussed by 
Moon et al. [8], could provide a solution for 

documenting structured image flows. Further 
training a large language model (LLM) on the 
source-code libraries for operator interface image 
designs would enable features for mapping of 
detected objects to generate prompts that results in 
automatically generating code for new images. 
Extending this concept to configuration and 
documentation such as system control diagrams 
(SCDs), and P&IDs, by training the LLM on 
relevant data, and improving models for detection 
and text extraction, could automate the process of 
redesign/migrating operator interface images 
entirely. 
A solid object detection model for process graphics 
can also monitor real-time system images and 
extract information without direct system logic 
interaction. For instance, it can be useful in 
situations where integration with communication 
protocols is not feasible. As an example, placing a 
web camera in front of old HMI panels and 
extracting data to a cloud solution offers a solution 
when integration or modernization is not an option. 
These advancements hold potential for diverse 
applications, improving efficiency in challenging 
environments. 
6. Conclusion 
In this project, an object detection system was 
developed for operator interface images, with a 
focus on optimizing data acquisition, annotation, 
model training, and software integration. The 
approach involved a semi-automated annotation 
tool that utilized multi-label classification and 
traditional computer vision techniques, resulting in 
an estimated 75% efficiency improvement 
compared to traditional tools. The tool supports 
both two-stage and one-stage detectors, allowing 
manual adjustments to analysis and exporting 
annotations in popular formats. 
Next, the utilization of the YOLOv8 model from 
Ultralytics was explored, and it was trained with 
custom data generated using the semi-automated 
annotation tool. After multiple iterations and 
preprocessing techniques on 70 images, a mAP50 
score of 95.5% was achieved. The final model was 
then integrated into a user-friendly web application 
that enables users to upload images, perform 
analyses, and obtain downloadable results in an 
Excel format. This tool streamlines project 
planning, improves efficiency, and facilitates cost 
estimation for migration projects. Estimating a 
reduction of time spent analyzing HMI by 90% 
compared to the manual approach. 
The project successfully established a novel 
foundation for object detection in operator interface 
images, providing an efficient semi-automated 
annotation tool and a high-performing YOLOv8 
model. The developed software application has the 
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potential to enhance project planning efficiency and 
accuracy, benefiting various industries. However, it 
is essential to emphasize the need for thorough data 
collection and testing to ensure the accuracy and 
generalizability of the model. 
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