
SIMS 64 Västerås, Sweden, September 26-27, 2023

Information extraction from operator interface images using
computer vision and machine learning

Eirik Illing a,*, Nils-Olav Skeie b, Ole Magnus Brastein c

a Emerson Automation Solutions, b c University of South-Eastern Norway (USN)

eirik.illing@emerson.com

Abstract
In the process of system upgrades or migrations, the utilization of existing layouts and object structures for
designing new Human Machine Interfaces (HMI) can significantly save time and effort. Operator interface
images, commonly referred to as HMI´s, contain valuable information crucial to industrial operations, but access
to source code or design files can be limited. Modern frameworks for object detection and text recognition offer
a solution by extracting information directly from images. However, these methods require time-consuming data
acquisition and manual effort to initiate. This paper proposes a novel approach utilizing traditional Computer
Vision (CV) and Machine Learning (ML) techniques to extract objects from images. The extracted objects are
used as training data to transfer learn a ResNet model for multi-label image classification. The combination of
this model with techniques such as sliding window, pyramid scaling, and non-maximum suppression forms the
basis for a semi-automated annotation tool. This tool generates training data for more optimized object detection
methods, specifically the YOLO (You Only Look Once) one-stage object detector. The semi-automated
annotation tool allows engineers to manually refine the training data and export state-of-the-art training images
for YOLO. The YOLO model achieves an impressive mean Average Precision at IoU 50% (mAP50) score of
95.5% when transfer learned on the annotated data. Additionally, an Optical Character Recognition (OCR)
engine is utilized to extract text information from preprocessed images, followed by postprocessing to filter tag
data. An algorithm is then employed to link objects and tags together. The final solution is implemented in
software designed to optimize user interaction, resulting in an analysis document in Excel format, which can be
easily exported for end-user access. With the novel use of this software to automate image analysis, the time
required to analyze HMI images prior to migration or rebuild can be reduced by an estimate of 90%.
1. Introduction
The rapid advancement of technology has led to an
increasing reliance on operator interface images,
such as HMI [1] and Supervisory Control and Data
Acquisition [2] (SCADA) graphics, in various
industries. As the field advances the frameworks
for these interface technologies evolves, new and
improved design concepts are introduced, and
migration from old systems to new become a
necessity. These traditional operator interface
images contain a wealth of valuable information
related to production, process flows, and assembly
lines. However, accessing the underlying source
code or design files of these operator interface
images can often be challenging or limited. To
address this issue, modern frameworks for image
classification and object detection have emerged as
potential solutions, enabling the extraction of
pertinent information directly from these operator
interface images.
This paper explores the field of image classification
[3] and object detection [4] for the purpose of
extracting information from complex operator
interface images. The primary objective is to
develop a tool that can effectively analyze and
interpret industrial applications depicted in these
images. Specifically, the project will be conducted

in two iterations, each with distinct goals and
outcomes.
1.2. Previous work
Several studies have investigated the recognition
and extraction of information from industry related
documentation, particularly in the context of Piping
and Instrumentation Diagrams (P&IDs). Paliwal et
al. [5] proposed a method in 2021 that utilized a
Dynamic Graph Convolutional Neural Network
(DGCNN) to recognize line-drawn symbols in
P&IDs. Their approach involved constructing a
graph based on sampled pixels along contour
boundaries and incorporating ResNet-34
embeddings to improve classification accuracy.
They employed an Arcface loss function to address
misclassification issues caused by similar-looking
objects [6]. The presented research utilizes a single
image for each object, setting it apart from
conventional approaches that typically require
multiple images for training.
In an earlier paper, Paliwal et al. [7] developed an
end-to-end data extraction system for P&IDs using
fully convolutional networks. This involved
annotating multiple training images with
segmented pixels to identify different symbol
classes. The authors employed a pipeline approach,
separating text extraction and graphic object

SIMS 64 Västerås, Sweden, September 26-27, 2023

detection, and used minimum Euclidean distance to
link text and objects. Their system achieved
effective information extraction and demonstrated
the potential of performing extraction in multiple
steps or iterations.
Moon et al. [8], proposed a three-step method for
recognizing line objects and flow arrows in image-
format P&IDs. Their approach involved removing
outer borders and title boxes (considered noise),
then detecting continuous lines, line signs, and flow
arrows, and adjusting and merging lines
accordingly. They employed preprocessing
techniques to remove noise, applied thinning and
pixel processing for line detection, and utilized a
RetinaNet model to train on the line signs and flow
arrows.
These studies have made significant contributions
to the field of analyzing documentation,
specifically in addressing challenges related to
object recognition, noise reduction, and
information extraction. These studies primarily
focused on analyzing documentation in grayscale,
predominantly using standardized symbols and
texts. In contrast, the current project aims to tackle
similar challenges while dealing with operator
interface images that exhibit a wide variety of
complexities, such as color variations, scales, and
limited features, requiring different approaches for
object recognition and information extraction.
1.3. Outline of paper
System Description chapter explains how the
project was executed, including the system
overview and associated advantages and
challenges.
Methods chapter covers data collection, training
models, and tool development in detail.
Results and Discussion chapter present project
outcomes, including model performance,
effectiveness of data annotation tools, and
discussions regarding the aforementioned topics.
Future Work chapter explores improvement areas,
use cases, and opportunities for further
development.
Conclusion chapter summarizes key findings and
highlights the project's significance and potential
impact.
This paper is based on a Master's Thesis project [9]
conducted at USN and supported by Emerson
Automation Solutions.
2. System description
2.1. Project execution
In the first iteration, the project will focus on
training a ResNet50 [10] image classification
model. The model will be trained on custom data
extracted from existing operator interface images
using CV [11-12] techniques, manually sorted into

class folders for data labeling [13]. This phase aims
to explore different model configurations and
assess their performance in accurately classifying
industrial objects. An annotation tool is developed
to aid in the labeling of training data. This tool will
streamline the annotation process and lay the
foundation for subsequent iterations.
The second iteration will leverage the annotated
data generated from the previous phase to train a
one-stage [14] YOLOv8 [15-16] model for object
detection. The goal is to accurately identify and
locate objects within the operator interface images.
Furthermore, text extraction techniques such as
Pytesseract OCR [17] will be employed to retrieve
textual information from these images, which will
then be linked to the respective objects detected
using Minimum Euclidean Distance calculations.
The text extraction will require extensive image
preprocessing to ensure high acquisition accuracy,
and a custom text-format library is embedded in the
software to filter relevant information. To ensure
usability and accessibility, the solutions developed
in this project will be combined into one software
solution tool that is accessible through a web
interface. All development is done using Python
and the Flask web framework.
Users will be able to upload operator interface
images to the tool, which will then process the
images and generate an analysis document as
output. This document will provide a representation
of the information extracted from the images,
facilitating informed decision-making and analysis
for industrial applications. To illustrate the benefits
and advancements offered, the flowchart provided
in Figure 1 compares the proposed analysis process
with conventional approaches involving source-
code tools or manual analysis.

Figure 1: Comparing conventional approaches using
source-code tools or manual analysis with the object

detection tool suggested in this research.

2.2. Advantages
Performing object detection on computer drawn
images, such as drawings and documentations, is in

SIMS 64 Västerås, Sweden, September 26-27, 2023

some ways easier than real-world images. The
traditional challenges associated with factors [18]
like lighting conditions, object angles, line of sight,
dirt, and other real-life variables are non-existent in
these 2D images. However, these types of images
also present unique challenges that need to be
addressed.
2.3. Challenges
Operator interface images contain a large number
of objects, lines, and text that represent various
types of information. This abundance of visual
elements introduces challenges related to noisiness
and limited features. Due to the similarities
between objects, there is a higher probability of
misclassification. In general, there is a lack of true
standardization in both object and image design, as
well as tag structure within these images.
3. Methods
3.1. Data collection
If source-code or design files is unavailable,
extracting training data objects directly from raw
image files may be necessary. To streamline this
process, a Python script is developed for object
extraction, eliminating the need for manual
snipping tool usage. OpenCV [19] offers various
methods simplifying the extraction of training,
validation, and test set objects from raw operator
interface images.
The script will convert input images to grayscale,
apply thresholding and dilation, and identify
contours using the "find contours" method in
OpenCV. These contours are then enclosed in
bounding boxes using a different method from the
OpenCV library. Each bounding box represented
an object and is snipped from the full-scale image
into a separate folder. While some of these objects
are suitable for training, validation, and test sets,
others are incomplete or contain noise. Although
this method is not perfect, it provides a foundation
for the subsequent manual sorting of objects into
class folders for labeling purposes.
Following the extraction of individual objects from
the full-scale images using the Python script, a
manual process is undertaken to organize and label
the extracted objects. This involves moving the
extracted objects into separate folders, with each
folder representing a different object class. By
separating the objects into distinct folders, it
becomes simpler to manage and track the defined
classes. Additionally, labeling is achieved by
associating each object within a class folder with its
corresponding label. While going through the
extracted data it is important to check that the
objects put into class folders represents the data
that the model needs to learn. An example of a
clear represented object with the label “valve_p”
for valve pneumatic is shown in Figure 2.

Figure 2: Clean pneumatic valve object.

The objects are separated into single-label and
multi-label folders. In the single-label folders, each
folder is named according to a single class label. In
the multi-label folders, the folder names consist of
all class labels representing the labels of the objects
contained within, separated by spaces.
The multi-label classifier requires the data
converted from this folder structure into a single
folder with a specification file defining name, label
and validation set. This is achieved through a
Python script which also randomly choose 20% of
objects from each class as validation data. An
example of the comma-separated values (CSV)
specification file is shown in Table 1. The entire
data collection process is summarized in Figure 3.

Table 1: CSV specification file format for multi-label
classification. 20% validation (validation column “yes”).

fname label validation
object1.png pump no
object2.png valve yes
object3.png valve no

Figure 3: Data collection and preparation for training

image classification models.

Data for object detection is attained through image
annotation and will be a resulting part of the
developed semi-automated annotation tool.
3.2. Image classification
In this project, the primary focus for the application
of single-label classification is to assess the
performance improvement of a pretrained
ResNet50 model. The objective is to evaluate the
effectiveness of transfer learning with custom data
in comparison to training a fresh model. For more
information on this topic, please refer to the
Master’s thesis [9]. The single-label classifiers used
in this study were trained on approximately 1000
object images.
In the future task of classifying objects within a
region of interest (RoI), the utilization of multi-
label classification with the ResNet50 model
proves to be advantageous. This approach enables
the classifier to detect multiple objects within the
RoI, while also taking into account situations where
no objects are present, thus minimizing the
occurrence of misclassifications. The multi-label
classifier is trained on approximately 1400 object
images, where 1000 of these are single-label object
images. It is important to ensure that for all multi-
label object classes, there exist good representative

SIMS 64 Västerås, Sweden, September 26-27, 2023

single-label object classes. For instance, if a multi-
label object image contains both a valve and a line,
it is necessary to have separate single-label object
images for both the valve and the line classes. This
approach enables the model to effectively
distinguish between different objects and enhance
its classification capabilities.
3.3. Semi-automated annotation
Combining three computer vision techniques:
sliding window, image pyramid scaling, and Non-
Maximum Suppression (NMS), to extract objects
from an image. The sliding window divides the
image into overlapping windows, generating
potential RoI’s. The image pyramid scaling ensures
object detection at different scales. NMS eliminates
redundant detections, selecting the most accurate
bounding boxes. Extracted image snippets are
classified using a multi-label classification model
derived in the previous step. This approach serves
as the foundation for the pre-analysis stage in the
development of a semi-automated annotation tool.
The requirements and functionality desired for this
tool include the ability to upload images, perform
preprocessing, conduct pre-analysis using the
above-mentioned method, manually adjust the pre-
analysis annotations, and export the annotated data
in a format suitable for one-stage or two-stage
object detectors. Specifically, the tool should
provide the option to export the annotations in a
text file format compatible with the YOLO
detector.
3.4. YOLOv8 object detector
The annotation process for generating training and
validation data for modern object detectors has now
been optimized. It is well-established that one-stage
detectors are faster but often yield lower accuracy
compared to two-stage detectors [20]. At the time
of undertaking this project, a new one-stage
detector for YOLO was introduced, promising
improved mAP scores and better results on tiny
objects. Considering the goal of analyzing a large
volume of images in a single run, speed is crucial.
Consequently, the latest YOLOv8 architecture
provided by Ultralytics [21] have been chosen.
Ultralytics provides different sizes of their model.
As a general guideline, larger models are capable
of capturing more features than smaller ones [22-
23]. After checking this guideline by evaluating the
medium, large, and extra-large models using the
same dataset, the largest model was selected. This
testing process is listed in Table 2.

Table 2: Model sizes tested using custom dataset of 21
train and 3 validation images. 1000 epochs of training.

Model Early stopping mAP50

medium 270 epochs 80.8%
large 388 epochs 83.0%
xlarge 326 epochs 90.5%

3.5. Extracting tags
OCR involves preprocessing the image, localizing
text, character segmentation and recognition, and
post-processing. The focus is on utilizing the
recognition part of the Pytesseract OCR library,
excluding post-processing dictionary translation.
The tags in operator interface images consist of
combinations of numbers, letters, and symbols. To
filter out unwanted combinations, a custom
dictionary is created. The recognized tags and their
positions relative to the image are stored in a text
file, with positions normalized between 0 and 1.
Initially, OCR on the raw image did not provide
valuable information due to small tag sizes, random
placement, and low contrast. To address this, the
image is divided/split into sections, a scale pyramid
is applied, and preprocessing steps such as
grayscale conversion, blurring, edge detection, and
dilation are performed as shown in Figure 4. This
significantly improves the OCR results as shown in
Table 3.

Figure 4: Preprocessing images to only identify tags and

high contrast lines.

Table 3: Showing a small part of OCR result before and
after preprocessing the image.

No image
preprocessing

Custom image
preprocessing

2341 0.090365 0.093981 0.003385
0.002315

LSH-1300 0.089461 0.689971
0.030979 0.020058

0201 0.533594 0.083912 0.004687
0.002546

XS-1323 0.183917 0.687645 0.025043
0.020058

0201 0.611393 0.083796 0.003255
0.001852

P-1302 0.258107 0.683430 0.019687
0.023256

3.6. Linking objects and tags
The concept behind tag extraction in conjunction
with object detection is to establish a relationship
between tags and objects based on their respective
locations. It is reasonable to assume that tags and
objects located close to each other are associated.
However, there are certain arguments against this
generalization. For instance, tags may be situated
far from an object due to unobservable status
variables associated with the object in the current
image state. This distance may even exceed the
distance between the tag and an unrelated object.
Consequently, in this scenario, a single tag can be
linked to multiple objects.
As demonstrated in the previous step, the OCR
engine extracts texts and converts their positions to
a normalized scale ranging from 0 to 1, matching
the YOLOv8 object detection location scale. To
determine the distance between the center of the tag
location and the object location, the Minimum

SIMS 64 Västerås, Sweden, September 26-27, 2023

Euclidean Distance calculation is employed. Visual
representation of the distance calculation is shown
in Figure 5.

Figure 5: Visualized linking of object and tags.

3.7. ICE - Industrial Component Extraction tool
An analysis software that encompasses all the
components, including the object detector, OCR
and minimum Euclidean distance calculator, is
created. Additionally, the software will provide a
defined export format that allows users to easily
view the final analysis. The final solution is
structured as shown in the use case diagram in
Figure 6.

Figure 6: Use Case Diagram for final analysis software

ICE – Industrial Component Extraction.

4. Results and Discussion
4.1. Multi-label image classification
A learner is defined, with minor data augmentation
such as vertical and horizontal flipping, as well as
zero-padding. Since the data never will be warped,
and all information within the image is relevant, no
further augmentation is needed. Figure 7 displays a
sample from a training data minibatch.

Figure 7: Sample of a minibatch.

When dealing with multi-label image classification,
it is crucial to establish an appropriate multi-
accuracy threshold. A threshold value of 0.8 is
selected which is heigh and within a smoothness of
FastAI’s [24] threshold finders’ curve for this
function thus ensuring no outliers are selected [25].
After finetuning the ResNet50 model for 11 epochs
(4 freeze and 7 un-freeze), an accuracy of 99.33%
is achieved. By analyzing the loss plot shown in
Figure 8 both the validation- and training-loss
flattens. There is no indication of overfitting, so a

score of 99.33% is acceptable and training is
stopped after the 11th epoch.

Figure 8: Multi-label classification loss plot.

4.2. Semi-automated annotation tool
The multi-label classifier in combination with
pyramid scaling, sliding window and soft NMS
results in a multi-class object detector. A
customized version of the soft NMS is required to
only allow same type labels to suppress each other,
shown in Equation (1).

𝐽𝑙𝑎𝑏𝑒𝑙(𝐴𝑙𝑎𝑏𝑒𝑙, 𝐵𝑙𝑎𝑏𝑒𝑙) =	
|𝐴𝑙𝑎𝑏𝑒𝑙⋂𝐵𝑙𝑎𝑏𝑒𝑙|
|𝐴𝑙𝑎𝑏𝑒𝑙⋃𝐵𝑙𝑎𝑏𝑒𝑙|

(1)

Figure 9: Small extract (snippet) of the multi-class object

detector result.

From the image displayed in Figure 9, this method
appears sub-optimal as it scores poorly on both
position and classification. The resulting custom
mAP50 calculation score of 5 individual images was
11.36%. More on how this custom accuracy
calculation was performed in Master’s thesis [9].
This method provides a reference to the object and
its location, serving the purpose as a pre-analysis
step for the semi-automated annotation tool. The
goal is to enhance efficiency in annotating data for
modern object detectors.
The annotation tool is developed as specified by the
requirements, where a user can upload an image,
pre-analyze it using the multi-class object detector
with the multi-label classifier model trained in
chapter 4.1, and further make modifications and
improve the annotation. The user can now export a
state-of-the-art annotation file for the object
detector. It is estimated an 75% increased
efficiency using this tool compared to traditional
third-party tool due to the pre-analysis which

SIMS 64 Västerås, Sweden, September 26-27, 2023

provides classes and a starting point for the user to
annotate.
The tool was later modified to also take pre-
annotated images, if existing. Which would give a
good starting point of annotation (no pre-analysis
needed by multi-class object detector).
4.3. YOLOv8 object detector
To prevent aliasing due to downscaling when
loading the training and validation datasets to the
object detector, the image and annotation data was
split with a custom script. Thus, increasing the
training data. This resulted in a better model.
At the final iteration, the YOLOv8 model was
transfer learned on 59 training and 11 validation
images from three different sites to improve
generalization. An overview of the training
iterations can be seen in Table 4.

Table 4: Iterations of training and validating the
YOLOv8 transfer learned model. All runs are performed
with parameters: patience=150, batch=8, model=xlarge.

Runs Dataset N Sites mAP50 Note
1 21 train, 3

val 1 90.5% Tag classes included

2 21 train, 3
val 1 87.1% Removed tag classes,

fixed some errors

3 40 train, 8
val 1 97.2% Realized non-

generalized model

4 59 train,
11 val 3 95.5% Added more data

from different sites
Since the object detector returns an annotation file
during testing on new data, sub-optimal tests that
detect only a small percentage of objects can be fed
back to the semi-automated annotation tool for
improvement. Consequently, new test images are
transformed into training and validation images,
necessitating the need for more data. This created

the idea of modifying the annotation tool to include
the YOLOv8 object detector as a pre-analysis step
instead of the multi-class object detector.
In summary, the misclassifications of the YOLOv8
model shown to the left in Figure 10 is strongly
related to number of representatives in the dataset
shown to the right in Figure 10.
4.4. ICE - Industrial Component Extraction tool
Combining the custom YOLOv8 object detector
model with OCR and linking objects and tags leads
to the development of effective analysis software.
The software is designed based on the requirements
and use case diagram depicted in Figure 6. The
resulting software exhibits an estimated
improvement in efficiency, approximately 10 times
greater than manual analysis.
The Pytesseract OCR engine only extracts
approximately 50% of tags due to non-customized
model (depending on image to text size ratio). OCR
image preprocessing is also the most time-
consuming part of the analysis. Analyzing 12
images takes 1 minute and 20 seconds, where the
object detection only uses approximately 25ms (on
average) for each image. Image preprocessing and
OCR account for most of the remaining time
required.
The analysis results are exported in an Excel
document format, which includes a summary sheet
as the first page, providing an overview of the
analyzed images and the detected objects in each
image. Additionally, separate sheets are generated
for each image, displaying the bounding box
objects with labels within the images, shown in
Figure 11. Moreover, a data sheet for each image is

Figure 10: YOLOv8 confusion matrix (left) and number of instances (right), run 4.

SIMS 64 Västerås, Sweden, September 26-27, 2023

included, showing each detected object snipping
along with its associated tag and information in a
table format, shown in Figure 12.

Figure 11: Individual image analysis sheet with bounding

boxes.

Figure 12: Adjacent image data sheet with information.

5. Future Work
5.1. Improvements to current solutions
The OCR tag extraction method used in this project
can be improved by exploring alternative extraction
methods or adding tags as a separate label class in
the object detector. Treating tags as a separate class
would require more training data but could improve
text extraction by individually feeding tag objects
to the OCR engine. The poor performance in the
current solution is due to the small size and random
placement of text compared to other objects.
Multiple image scales and preprocessing were used
to improve detection, but this increases computing
power and is time consuming.
To enhance the final ICE software, incorporating
features from the annotation tool would be
beneficial. Users could perform pre-analysis on a
portion of customer images using the YOLOv8
model, make manual adjustments to the detection,
and retrain the model. Then upload the rest of the
images and get an improved analysis with the
improved model. This iterative process improves
model generalization and user experience. It would
be valuable to have these features available for all
users of the ICE software for daily image analysis.
Including more annotated images from various sites
would enhance the model's performance and
generalization. Alternatively, modifying the
YOLOv8 network architecture by substituting the
classification network with the multi-label image
classification model could eliminate the need for
annotating more images.
5.2. Opportunities for future development
Combining the developed product with pixel
processing for pipeline detections, as discussed by
Moon et al. [8], could provide a solution for

documenting structured image flows. Further
training a large language model (LLM) on the
source-code libraries for operator interface image
designs would enable features for mapping of
detected objects to generate prompts that results in
automatically generating code for new images.
Extending this concept to configuration and
documentation such as system control diagrams
(SCDs), and P&IDs, by training the LLM on
relevant data, and improving models for detection
and text extraction, could automate the process of
redesign/migrating operator interface images
entirely.
A solid object detection model for process graphics
can also monitor real-time system images and
extract information without direct system logic
interaction. For instance, it can be useful in
situations where integration with communication
protocols is not feasible. As an example, placing a
web camera in front of old HMI panels and
extracting data to a cloud solution offers a solution
when integration or modernization is not an option.
These advancements hold potential for diverse
applications, improving efficiency in challenging
environments.
6. Conclusion
In this project, an object detection system was
developed for operator interface images, with a
focus on optimizing data acquisition, annotation,
model training, and software integration. The
approach involved a semi-automated annotation
tool that utilized multi-label classification and
traditional computer vision techniques, resulting in
an estimated 75% efficiency improvement
compared to traditional tools. The tool supports
both two-stage and one-stage detectors, allowing
manual adjustments to analysis and exporting
annotations in popular formats.
Next, the utilization of the YOLOv8 model from
Ultralytics was explored, and it was trained with
custom data generated using the semi-automated
annotation tool. After multiple iterations and
preprocessing techniques on 70 images, a mAP50
score of 95.5% was achieved. The final model was
then integrated into a user-friendly web application
that enables users to upload images, perform
analyses, and obtain downloadable results in an
Excel format. This tool streamlines project
planning, improves efficiency, and facilitates cost
estimation for migration projects. Estimating a
reduction of time spent analyzing HMI by 90%
compared to the manual approach.
The project successfully established a novel
foundation for object detection in operator interface
images, providing an efficient semi-automated
annotation tool and a high-performing YOLOv8
model. The developed software application has the

SIMS 64 Västerås, Sweden, September 26-27, 2023

potential to enhance project planning efficiency and
accuracy, benefiting various industries. However, it
is essential to emphasize the need for thorough data
collection and testing to ensure the accuracy and
generalizability of the model.
Acknowledgment
Thanks to industrial partner and employer Emerson
Automation Solutions.
References

[1] C. C. Editor, “Human-Machine Interface (HMI) - Glossary

| CSRC.”
https://csrc.nist.gov/glossary/term/human_machine_interfa
ce (accessed Jun. 04, 2023).

[2] Inductive Automation, “What is SCADA?,” Inductive
Automation.
http://www.inductiveautomation.com/resources/article/wh
at-is-scada (accessed May 05, 2023).

[3] K. Balaji and K. Lavanya, “Image Classification - an
overview | ScienceDirect Topics.”
https://www.sciencedirect.com/topics/engineering/image-
classification (accessed May 08, 2023).

[4] Z. Zou, K. Chen, Z. Shi, Y. Guo, and J. Ye, “Object
Detection in 20 Years: A Survey.” arXiv, Jan. 18, 2023.
Accessed: Mar. 23, 2023. [Online]. Available:
http://arxiv.org/abs/1905.05055

[5] S. Paliwal, M. Sharma, and L. Vig, OSSR-PID: One-Shot
Symbol Recognition in P&ID Sheets using Path Sampling
and GCN. 2021.

[6] J. Deng, J. Guo, J. Yang, N. Xue, I. Kotsia, and S.
Zafeiriou, “ArcFace: Additive Angular Margin Loss for
Deep Face Recognition,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 44, no. 10, pp. 5962–5979, Oct. 2022,
doi: 10.1109/TPAMI.2021.3087709.

[7] R. Rahul, S. Paliwal, M. Sharma, and L. Vig, “Automatic
Information Extraction from Piping and Instrumentation
Diagrams:,” in Proceedings of the 8th International
Conference on Pattern Recognition Applications and
Methods, Prague, Czech Republic: SCITEPRESS -
Science and Technology Publications, 2019, pp. 163–172.
doi: 10.5220/0007376401630172.

[8] Y. Moon, J. Lee, D. Mun, and S. Lim, “Deep Learning-
Based Method to Recognize Line Objects and Flow
Arrows from Image-Format Piping and Instrumentation
Diagrams for Digitization,” Applied Sciences, vol. 11, no.
21, Art. no. 21, Jan. 2021, doi: 10.3390/app112110054.

[9] E. Illing, “Object detection, information extraction and
analysis of operator interface images using computer
vision and machine learning.,” Masters Thesis, University
of South-Eastern Norway, Porsgrunn, Norway, 2023.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual
Learning for Image Recognition.” arXiv, Dec. 10, 2015.
Accessed: Mar. 29, 2023. [Online]. Available:
http://arxiv.org/abs/1512.03385

[11] V. Wiley and T. Lucas, “Computer Vision and Image
Processing: A Paper Review,” International Journal of
Artificial Intelligence Research, vol. 2, p. 22, Feb. 2018,
doi: 10.29099/ijair.v2i1.42.

[12] Nichole Peterson, “History of Computer Vision and Its
Principles | alwaysAI Blog | alwaysAI.”
https://www.alwaysai.co/blog/history-computer-vision-
principles (accessed Mar. 23, 2023).

[13] IBM, “What is Data Labeling? | IBM.”
https://www.ibm.com/topics/data-labeling (accessed Jun.
04, 2023).

[14] Jeremy Jordan, “An overview of object detection: one-
stage methods.,” Jeremy Jordan, Jul. 11, 2018.
https://www.jeremyjordan.me/object-detection-one-stage/
(accessed Jun. 04, 2023).

[15] Sovit Rath, “YOLOv8 Ultralytics: State-of-the-Art YOLO
Models,” Jan. 10, 2023.

https://learnopencv.com/ultralytics-yolov8/ (accessed Mar.
24, 2023).

[16] J. Solawetz, F. JAN 11, and 2023 10 Min Read, “What is
YOLOv8? The Ultimate Guide.,” Roboflow Blog, Jan. 11,
2023. https://blog.roboflow.com/whats-new-in-yolov8/
(accessed Mar. 24, 2023).

[17] Zelic Filip and Anuj Sable, “Tesseract OCR in Python
with Pytesseract & OpenCV,” Nanonets AI & Machine
Learning Blog, Aug. 09, 2022.
https://nanonets.com/blog/ocr-with-tesseract/ (accessed
Feb. 23, 2023).

[18] exposit_marketing, “Computer Vision Object Detection:
challenges faced,” Exposit, Apr. 20, 2021.
https://www.exposit.com/blog/computer-vision-object-
detection-challenges-faced/ (accessed Jun. 04, 2023).

[19] T. OpenCV, “About,” OpenCV. https://opencv.org/about/
(accessed Feb. 23, 2023).

[20] X. Lu, Q. Li, B. Li, and J. Yan, “MimicDet: Bridging the
Gap Between One-Stage and Two-Stage Object
Detection,” in Computer Vision – ECCV 2020, A.
Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds., in
Lecture Notes in Computer Science, vol. 12359. Cham:
Springer International Publishing, 2020, pp. 541–557. doi:
10.1007/978-3-030-58568-6_32.

[21] Ultralytics, “Quickstart - YOLOv8 Docs.”
https://docs.ultralytics.com/quickstart/ (accessed Mar. 24,
2023).

[22] A. Kumar, “Model Complexity & Overfitting in Machine
Learning,” Data Analytics, May 29, 2022.
https://vitalflux.com/model-complexity-overfitting-in-
machine-learning/ (accessed Jun. 04, 2023).

[23] T. FastAI, “FastAI 05_pret_breeds.”
https://colab.research.google.com/github/fastai/fastbook/bl
ob/master/05_pet_breeds.ipynb (accessed May 08, 2023).

[24] J. H. and S. Gugger, “fast.ai - fastai A Layered API for
Deep Learning.” https://www.fast.ai/posts/2020-02-13-
fastai-A-Layered-API-for-Deep-Learning.html (accessed
Feb. 23, 2023).

[25] T. FastAI, “FastAI 06_multicat.”
https://colab.research.google.com/github/fastai/fastbook/bl
ob/master/06_multicat.ipynb#scrollTo=invs-Qyn8lSC
(accessed Feb. 27, 2023).

