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Abstract

The recently updated European Union’s Urban Waste Water Treatment Directive proposal, European Green Deal,

Biodiversity Strategy for 2030, and EU’s Energy System Integration highlight a pressing need for innovative biolog-

ical nutrient removal processes and energy-efficient control methods to reduce pollution and minimize the carbon

footprint at water resource recovery facilities. The aim of the PACBAL research project is to develop estimation

methods for nutrient profile in a novel industrial Moving Bed Biofilm Reactor (MBBR) process. This study devises

and assesses a range of data-driven methods to estimate effluent phosphorus concentration by utilizing a combina-

tion of real sensors with software models. The resulting virtual sensor could facilitate the design of energy-efficient

control strategies. The case study data are collected from the MBBR process at Hias water resource recovery facility

in Norway. Data sets from December 2022 to March 2023 include varying weather conditions, such as rain, dry, and

snow. The Hias Process consists of three anaerobic and seven aerobic zones, where biomass carriers removes over

90 percent of the phosphorus from the wastewater in simultaneous biological processes. The industrial online mea-

surements include wastewater flowrate, aeration rates, dissolved oxygen and nutrients COD and NO2/ NO3 at inlet

and total suspended solids at outlet. Dynamic data-driven models indluding transfer functions, state-space models

and ARX models, were developed and compared to estimate the outlet phosphorus concentration. Model fitness

to validation data was around 7% with ARX models, and up to 18% with tranfer function models and state-space

models. The first and second order models gave similar results. The state-space models will be developed further

and implemented to into virtual sensors that will enable energy-efficient control strategy development.

1 Introduction

There is a significant demand for novel biological nu-

trient removal processes and energy-effective control

methods for minimization of carbon footprint and en-

vironmental pollution at wastewater resource recovery

facilities (WRRF). As the European Commission has

proposed an updated urban waste water treatment di-

rective (EuropeanCommission, 2022), stricter require-

ments will be set for the removal of nutrients such

as phosphorus, carbon and nitrogen. Water resource

recovery facilities use approximately one percent of

the total energy consumption in the European union.

EU plan on energy system integration (EuropeanCom-

mission, 2021) requires actions on energy efficiency

that are necessary to convert the WRRFs from an en-

ergy consumer to energy-neutral user, or even an en-

ergy producer. At the municipal WRRF the primary

wastewater treatment, clarification, is followed by a

secondary treatment process, which removes nutrients

such as phosphorus, carbon and nitrogen. The sec-

ondary treatment process relies either on chemical ad-

ditions or biological process. Hias How2O has devel-

oped a novel continuous-flow moving bed biofilm re-

actor process with enhanced biological phosphorus re-

moval (MBBR-EBPR) and simultaneous nitrification

and denitrification as described in Rudi et al. (2019).

This process is an alternative to the biological process

with an activated sludge. In the Hias Process, large

amounts of small biofilm carriers, submerged in the

wastewater, circulate through the ten process stages

while the nutrients are removed from the wastewa-

ter in simultaneous biological processes in different

layers of the biofilm. Soluble phosphorus (PO4) in

wastewater is removed biologically by phosphorus ac-

cumulating organisms (PAO) that grow on biofilm

carriers.

The first step towards energy-effective control is de-

velopment of dynamic models between the Hias Pro-

cess inputs and effluent nutrient composition. Hence,

we need to develop a dynamic model that can repro-

duce effluent nutrient composition accurately enough

based on the Hias process inputs.

Moving bed bioreactor process can be modeled with

ASM2D model as described by Henze et al. (1999).

Application of the ASM2Dmodel for the Hias Process

with ten stages, would require estimation of 430 pa-

rameters and simultaneous solution of 210 rate equa-

tions. Hence, ASM2D model in its original form is

too complicated with the current instrumentation.
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Nair et al. (2019) have simplified the ASM2D model

to include 8 components and 7 process rate equations,

2 stoichiometric constants, 11 saturation coefficients

and 7 rate constants for both anaerobic and aerobic

stages. Therefore, the ASM2D model, as it currently

stands, is overly complex given the available instru-

mentation. The ASM2D model is further simplified

for anaerobic basins with 3 components and 3 rate

equations in Nair et al. (2020). Nair et al have demon-

strated soft-sensor concept with Kalman filter for lab-

oratory pilot system with one tank. Due to the avail-

able instrumentation in theHias Process, this approach

cannot be tested either.

Data-drivenmethods do not require a specific set of in-

strumentation, and several recent papers have reported

successful applications to effluent prediction using

multivariate linear regression (Tomperi & Leiviskä,

2018), feedforward-backpropagation networks (El-

Rawy et al., 2021), and time-series models and ma-

chine learning models (Ly et al., 2022). In a recent

master thesis (Nermo, 2023) transfer function models

were developed to predict the Hias Process effluent

phosphorus. In this article we continue Nermo’s work

by refining the input variable set and developing time-

series models and state-space models.

1.1 Aim and research questions

The main obstacles for development of novel en-

ergy and emission efficient control strategies are the

scarcity and cost of online measurements of nutrients

in municipal WRRFs. Control strategy development

requires models that sufficiently reproduce the nutri-

ent dynamics of the plant based on available measure-

ments. Hence, the aim of this work is to develop and

compare different data-driven modeling approaches

that enable control strategy development. Research

question: Which data-driven models are most effec-

tive in predicting nutrient variations in the Hias Pro-

cess effluent?

2 Materials and methods

2.1 Software

Matlab software package version R2023awas used for

the simulations and System Identification Toolbox for

modeling. The simulation method was ode23s with

automatic settings for the time step and error toler-

ance.

2.2 The Hias Process and instrumentation

The Hias Process with instrumentation is illustrated in

Figure 1. The clarified influent and the recirculated

biofilm carriers on a conveyor belt enter the anaerobic

basins. The water and biofilm carriers float through

the process with gravity. The three anaerobic basins

Figure 1. The Hias Process with instrumentation

are mixed to ensure sufficient distribution of biofilm

carriers in the water. Aeration in the following seven

basins ensures sufficient dissolved oxygen concentra-

tions for aerobic nutrient removal. The Hias Process

instrumentation includes continuous measurements of

flowrates and nutrients compositions. Influent COD,
NO2 and NO3 are measured continuously with the

spectrophotometric instrument. Effluent phosphorus

is measured using an online-analyzer with 10 minutes

sampling time. These measurement as listed in Table

1.

Table 1. Online measurements

Symbol Description Unit

F Water flowrate inlet m3/h
T Temperature inlet oC

COD COD inlet, basin7 g/m3

NOX NO2 + NO3 g/m3

inlet, basin7

FOi Aeration rate basin 4-10 m3/h
DOi Oxygen basin 4-10 m3/h

T SSout Total suspended solids g/m3

out Hias Process

T SSdisc Total suspended solids g/m3

after disc filter

PO4out PO4 effluent g/m3

2.3 Data collection and pre-processing

The Industrial IoT platform KYB, developed by Dig-

itread Connect, was used for uploading and standard-

izing operational data. The online data sets and labo-

ratory data sets were collected in .csv format. The out-

liers in the online data set were first removed. Then,

the missing values in the online data sets were filled.

The correlations between variables were studied with

a heatmap.
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2.4 Data-driven dynamic models

The data-driven models suitable for control strategy

design are desirable for the project, hence transfer

function models, state-space models and time-series

models were chosen. These linear models can be de-

veloped by following the system identification proce-

dure by (Ljung, 1999). First, the data sets for model-

ing and validation are chosen. Then, a set of input and

output variables is composed, and time delays are cal-

culated between each input variables and output vari-

able. The data is imported to the Matlab System Iden-

tification toolbox andmodel type is chosen. Lower or-

der models are preferable to avoid modeling of noise.

The identified models are compared using the fitness

index and mean square error.

A first order transfer function model between inputs

Ui(s) and output Y (s) consist of gain (Kp), delay (Td),

and time constant (Tp1) is presented in Equation 1:

T F(s) =
Y (s)
Ui(s)

=
Kp

(Tp1s+1)
e−Tds (1)

The time series model, an auto-regressive model with

exogenous inputs (ARX) are presented in the equation

2. The model output y(t) has order of 2, and the model
inputs u(t) have order of 2 with time delay td.

y(t)−a1y(t −1)−a2y(t −2)
= bi1u(t − td)+bi2u(t − td −1)+ e(t)

(2)

A state-space model is presented in equation 3. The

derivative of the state x(t) is related to the model in-

puts u(t) with delays td via coefficient matrices A and

B, and to the model error e(t) with coefficient K. The

measurement y(t) is related to the state x(t) via ma-

trix C. The error e(t) is calculated as difference be-

tween the model prediction and the real measurement.

Themeasurement y(t) is not affected by inputs u(t) and

hence, D matrix is zero.

dx(t)
dt

= Ax(t)+Bu(t − td)+Ke(t)

y(t) =Cx(t)+Du(t − td)+ e(t)

(3)

The data-driven models are compared with each other

using the fitness index (FIT) between the real mea-

surements yi,meas, the mean values of the real measure-

ments yi,mean, and the model calculated output yi,model
in Equation 4, where norm is the Euclidean norm.

FIT = (1−
norm(yi,meas − yi,model)

norm(yi,meas − yi,mean)
)100 (4)

Table 2. Pre-processing of input and output variables

Variable Scaling Scaled Scaled

mean stdev

F 3.6/1000 0.3184 0.0777

COD /1000 0.4602 0.1015

NOX /10 0.3566 0.1548

FO5 /1000 1.7614 0.7151

FO8 /1000 0.7833 0.2815

∆T SS /1000 0.1552 0.0323

PO4out no scaling 0.2236 0.1024

3 Results

3.1 Data collection and selection of test data

The data was screened and quality of measurements

were assessed. Due to many missing measurements,

inlet temperature, COD and NOX in basin 7 were

omitted from the data set. The estimation period was

1.12.2022-31.1.2023 and the validation period was

1.2.2023-31.3.2023.

3.2 Data pre-processing

The outliers in the data set were identified based on

the three standard deviation rule, and removed. Then,

the missing values in the data sets were filled in using

Matlab knnimpute function based on nearest-neighbor

imputation method. The data was analyzed with pair

plot (not included here), which shows that the data is

highly nonlinear, and thus z-normalization cannot be

applied. The data were scaled by scalar multiplication

as given in Table 2 and the means (Table 2) were re-

moved.

3.3 Output variable

The only available output variable in the data sets is

effluent phosphorus concentration PO4out .

3.4 Input variable selection

The measured input variables include: inlet wastewa-

ter flowrate F , inlet carbon COD, inlet nitrate and ni-
trite NOX , aeration rates FO4 ... FO10.The dissolved

oxygen concentration in aerobic basins DO4... dO9
are dependent on aeration rate. Results of Nermo’s

Master’s Thesis (Nermo, 2023) pointed into careful

selection of input variables, and creation of extra vari-

able representing the biomass storage capacity. The

biomass carrier’s storage capacity is based on phos-

phorus removal during previous biomass carrier cycle

around the ten basins. The storage capacity was mod-

eled with the difference of total suspended solids be-

tween treated water out of the Hias Process T SSout and



SIMS 64 Västerås, Sweden, September 26-27, 2023

the total suspended solids after the disc filter T SSdisc,

as in Equation 5:

∆T SS(t) = T SSout(t)−T SSdisc(t) (5)

A heat map of correlations between the variables was

plotted in Figure 2.

The heat map shows that aeration rates in basins 4

- 10 (FO4... FO10) are highly correlated with each

other and PO4out . Hence, we selected two aeration

rates, FO5 and FO8 for input variables representing

the manipulated variables of the system. Dissolved

oxygen measurements are not included as these are

state variables and highly correlated with the aera-

tion rates. Inlet wastewater flow rate (F), inlet carbon
(COD), inlet nitrite and nitrate concentration (NOX)
and total suspended solids (∆T SS) are the measured
disturbance variables of the system. The biological

mechanism of (COD) is improving phosphorus re-

moval whereas (NOX) would hinder phosphorus re-

moval. It is surprising that both are correlated posi-

tively with PO4out , hence both are included as input

variables. Storage capacity (∆T SS) is mildly corre-

lated with PO4out , and included as input variable. The

inlet flowrate (F) should have an effect on the PO4out ,

but the correlation is low. However, (F) is included as
input variable. Based on the biological phosphorus re-

moval process (MBBR-EBPR), we could expect that

increased flowrate would dilute PO4out (- sign), NOX

to hinder removal and increase the PO4out (+ sign),

aeration rates (FOi to improve the removal and de-

crease the PO4out (- sign), and storage capacity ∆T SS
to improve the removal and decrease the PO4out (-

sign). Based on laboratory measurements, inlet COD
is very correlated with inlet phosphorus PO4in, and in-

crease in COD means increase in PO4in, which in turn

increases PO4out (+sign). However, the heat map in

Figure 2 gives positive correlations between PO4out
and the selected inputs.

3.5 Input delays and sampling time

The Hias process has significant time delays between

the process inlet and outlet. The delay can be cal-

culated as volume of ten basins divided by average

wastewater flowrate Faverage as in Equation 6. The

time delay is time variant, but in this work estimated

as time invariant.

T d =
Vtotal

Faverage
=

10 ·215m3

5.58m3/min
= 385min (6)

The six input variables consists of inlet water flowrate

F , the inlet carbon compositionCOD, inlet nitrate and
nitrite composition NOX and total suspended solids

∆T SS all four with a delay of 385min, aeration rate in

basin 5 FO5 with delay of 270 min, and aeration rate

in basin 8 FO8 with delay of 115 min. The data was

imported to Matlab system identification toolbox with

sampling time of 10 minutes.

3.6 Transfer functions

The estimated transfer function model parameters and

error indices for estimation and validation data sets are

given in Table 3 for TF0, a pure gain with a delay, and

Table 4 for TF1, a first order model with delay. Time

constants and delay are given in minutes. The signs

of the gains Kp in the TF0 model are not quite as ex-

pected, but the modeling results are acceptable for es-

timation data (7%) and validation data (18%) and the

model follows dynamic trends. The first order transfer

function model follows the dynamic trends in the data

as illustrated in Figure 3. The time constants Tp of

the second order model TF1 4 are unacceptable large

and give no physical interpretation, however the re-

sults for estimation and validation data are acceptable.

We choose further to use the first order transfer func-

tion model TF0.

3.7 Time-series models

Time-series models in the format of auto-regressive

with exogenous inputs were developed and tested.

The input and output variables, and input delays were

the same as for the transfer functions. The parame-

ters and fitness index are shown in Table 5 for first

order ARX110 model and in Table 6 for second order

ARX220 model. The signs of the coefficients bi1 in

the ARX110 model are not quite as expected, as coef-

ficients for the aeration rates FOi are positive. How-

ever the modeling results are very good for estimation

data (69%) and acceptable for validation data (7%)

and the model follows most of the dynamic trends in

Figure 4. The results for the second order ARXmodel

are similar to the first order model (70% and 7%),

hence we work further with the first order model.

3.8 State-space models

State-space models were developed and tested. The

input and output variables, and input delays, were the

same as for the transfer functions. A first order (SS1)

and a second order (SS2) state space model were iden-

tified. The parameters and results are shown in Table

7 for the SS1. The results for the second order state-

space model were not successful. The signs of the co-

efficients bi1 in the SS1model are logical for the phos-

phorus removal phenomena, except for aeration rates

FO5 and FO8. Coefficient A for previous phosphorus

measurements is ten fold compared to the input coef-

ficients B, which implicates that the model is relies

heavily on the previous effluent phosphorus measure-

ments. As the data set is rather large, the parameter

uncertainties for A, B and C are also very large. How-

ever, the modeling results are sufficient for estimation
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Figure 2. Heatmap between variables

data (6%) and good for validation data (18%) and the

model follows dynamic trends in Figure 5. Hence, we

work further with the first order state-space model.

Table 3. TF0 parameters

Input Td Kp

F 385 -6.68 ·10−2
COD 385 0.9857 ·10−2
NOX 385 8.989 ·10−2
FO5 270 2.317 ·10−2
FO8 115 7.627·10−2

∆T SS 385 23.24 ·10−2
FITest 6.518

FITval 17.67

Table 4. TF1 parameters

Input Td Kp Tp

F 385 0.293 327.5

COD 385 2.5 24838

NOX 385 0.24 159611

FO5 270 1.27 6.21e-7

FO8 115 2.6 20177

∆ TSS 385 -11.3 27322

FITest 15.89

FITval 10.46

Table 5. ARX110 parameters

Output constant a1

PO4,out 1 0.9497

Input delay bi1
F 385 6.067 ·10−3

COD 385 4.392·10−3
NOX 385 0.6784·10−3
FO5 270 0.3634·10−3
FO8 115 4.21·10−3

∆T SS 385 -3.26·10−3
FITest 68.85

FITval 6.743

Table 6. ARX220 parameters

Output constant a1 a2

PO4,out 1 0.6529 0.3123

Input delay bi1 bi2

F 385 11.09 ·10−3 -3.206 ·10−3
COD 385 6.826 ·10−3 - 3.953 ·10−3
NOX 385 -2.044 ·10−3 + 1.693 ·10−3
FO5 270 0.7614 ·10−3 - 0.7147 ·10−3
FO8 115 0.7298 ·10−3 + 3.233 ·10−3

∆T SS 385 -37.75 ·10−3 + 43.62 ·10−3
FITest 70.42

FITval 6.5
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Figure 3. Scaled PO4,out measurement with black and TF0 estimate with blue, time in minutes.

Figure 4. Scaled PO4,out measurement with black and ARX110 estimate with blue, time in minutes.
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Figure 5. Scaled PO4,out measurement with black and SS1 estimate with blue, time in minutes.

Table 7. SS1 parameters

State - a1

x(t) - -72.92 ·10−4
Inputs delay bi1
F 385 -3.731 ·10−4

COD 385 0.256 ·10−4
NOX 385 1.548 ·10−4
FO5 270 0.139 ·10−4
FO8 115 0.973 ·10−4

∆T SS 385 -1.624 ·10−4
Output - c1
PO4,out - 7.578

FITest 6.178

FITval 18.3

4 Discussion and summary

Three data-driven modeling methods were tested for

the four months data set fromHias municipal water re-

source recycling facility. Selection of input variables

and determination of the input delays had most effect

on the modeling accuracy. Using all the aeration rates

and inlet flowrate, COD and NOX with the fitness in-

dex was around 1 % and the model was vaguely fol-

lowing the dynamics in the data (Nermo, 2023). Intro-

ducing the storage capacity estimated with difference

of total suspended solids ∆T SS and reducing number

of input variables (aeration rates FOi) and fixing the

input delay increased the fitness index significantly.

We tried to reduce the number of inputs further by

omitting the other aeration rate FO8, but this did not

improve the results.

The model fitness to estimation data was best with

time-series models, around 70%. The model fitness

to validation data was best with state-space models,

18%. All the first order models follow the dynamic

changes in the data. The model parameter signs did

not have quite the logical interpretation to the biologi-

cal phosphorus removal phenomena between the input

and output variables. As the data set is rather large,

the parameter uncertainty is large, and an estimation

method updating the model output, such as Kalman

filter, could be developed for the online application.

The answer to our research question is: state-space

model can reproduce nutrient variations in the Hias

Process with sufficient accuracy. Hence, we work fur-

ther with the first order state space model and prepare

an online application estimating the effluent nutrient

concentration.

Further work

Further work will encompass work on data pre-

processing methods suitable for online use. We will

test different input variables sets, possibly excluding

FO8 and including dissolved oxygen DO5 as state

variable for state-space model. With this model we

will develop and test novel control strategies for the

Hias Process.

Further work is suggested on developing sub-models

for the Hias Process that estimate phosphorus PO4,out
concentration in basins with newly installed conduc-

tivity and redox-potential measurements. Potentially

these virtual measurements of phosphorus in the

process can then be used as inputs for the outlet

phosphorus modeling.
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