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Abstract

The harsh operating environment in a wastewater treatment process (WWTP) makes sensor faults commonplace.

Detecting these faults can be challenging due to the complex process dynamics, unknown inputs, and general noise

in the process andmeasurements. Comparing sensor readings against predictions from a physics-based or data-driven

model of the WWTP is a common strategy for detecting such faults. In this work sensor measurements are directly

modelled using Gaussian process (GP) regression, a data-driven multivariate approach. These GP sensor models

are, with a generalised product of experts, combined into a dedicated fault isolation scheme resembling traditional

observer bank methods. The residuals are monitored with a multivariate exponentially weighted moving average

chart which is used for fault detection and isolation. The method is evaluated using simulated data generated with

the Benchmark Simulation Model No. 1 WWTP. Fault detection performance is reported using several standard

metrics such as false alarms, missed detections, time to detection, and successful fault isolations, with emphasis

on reporting across a wide range of sensors and faults to provide a point of comparison for future studies. The

proposed approach performs well across these metrics. Given sufficient data representative of normal operation,

this approach can easily be adapted across a wide variety of plant configurations and can be used to create operator-

friendly diagnostics resembling classical control charts.

1 Introduction

Wastewater treatment plants (WWTPs), like many

critical components of public infrastructure, are grad-

ually shifting to higher levels of automation in process

operation. This is in part driven by global incentives

to shift towards water resource recovery facilities, in

conjunction with progress in regulation of the environ-

mental impact of WWTPs, and typical cost incentives

of reducing energy and material consumption. How-

ever, as in any process, automation depends on reli-

able process supervision; this is particularly challeng-

ing in WWTPs as sensors are often sparse and subject

to harsh operating conditions.

A key task in a process supervision system is fault

detection (FD). A common model-based FD strategy

is to generate a residual signal from the difference

between model predictions and actual sensor mea-

surements (Chen & Patton, 1999). Predictions can

stem from physics-based or data-drivenmodels. Data-

driven methods have risen in popularity as they gen-

erally require less extensive process-specific knowl-

edge. However, forgoing process-specific knowledge

means that more data is required for fitting data-driven

models. Moreover, data-driven methods - neural net-

works as an archetypal example - can exhibit out-of-

distribution overconfidence and in-distribution sensi-

tivity to adversarial examples (Szegedy et al., 2014).

Gaussian processes (GPs) are a class of data-driven

models which explicitly model uncertainty, and pro-

vide clear avenues - see for example (Jidling et al.,

2017) - for reintroducing domain knowledge into

learned models (Rasmussen et al., 2006). This prin-

cipled treatment of uncertainty in the process model

is useful as typically the residual generation process

is complicated by requirements to reject model uncer-

tainty and process disturbances while remaining sen-

sitive to faults (Witczak, 2007).

Fault isolation (FI) - which requires FD - also requires

further structure in the generated residuals. Two such

structures are common: dedicated schemes - wherein

each residual in a set is only sensitive to a single fault -

and generalised schemes - wherein each residual is in-

sensitive to only a single fault (Witczak, 2007; Chen&

Patton, 1999). In WWTPs these schemes have previ-

ously been applied using physics-based state estima-

tors configured in banks of observers (Nejjari et al.,

2008; Nagy-Kiss&Schutz, 2013). However, the com-

plexity of the process makes data-driven state estima-

tion attractive - as in other fields (Palma et al., 2005;

Sina Tayarani-Bathaie & Khorasani, 2015).

An issue which arises in using these schemes for FI

is that the sets of residuals that need to be monitored

for FD become large (one set per observer). The use of
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multivariate statistical process monitoring techniques,

such as the Hotelling T 2 chart (Hotelling, 1947) and

the multivariate exponentially weighted moving av-

erage (MEWMA) chart (Lowry et al., 1992), can al-

leviate some of these difficulties. The latter is often

more sensitive to smaller faults and slow drift faults

(Montgomery, 2009). Creating a single, interpretable,

and easily visualisable FD statistic for monitoring is

of high priority in the WWTP industry; which is tra-

ditionally dominated by operator expertise.

In this work we illustrate the feasibility of the use of

GP regression based sensor models combined using

a generalised product of experts into an dedicated FI

scheme for sensor fault detection in a standard bio-

logical WWTP. The ability to detect sensor faults on

both controlled variable sensors, and ordinary mon-

itored variables, is shown for two fault profiles and

varying fault sizes and durations. The diagnostic per-

formance is based on the number of faults detected,

time to detection, number and duration of false alarms,

as well as the number of faults correctly isolated.

2 Background

This section describes relevant ideas and theoretical

perquisites to clarify the method section. In §2.1 FI

schemes in general and the modification using direct

sensor models proposed in this work are described.

§2.2 concerns GP regression; used to create the afore-

mentioned sensor models. Thereafter §2.3 covers

products of experts, which combine several GP mod-

els into a dedicated FI scheme. Finally, §2.4 describes

the MEWMA chart used for monitoring the residuals.

2.1 Dedicated FI Schemes without State Estimation

In a typical dedicated FI scheme residuals are gen-

erated from a bank of state estimators, where each

estimator in the bank is ignorant of one of the sen-

sors (Chen & Patton, 1999; Witczak, 2007). This

is shown in (1): a sequence of measurements y−i,1:t
from time 1 to t (where y−i,t denotes the vector

[y1, . . . ,yi−1,yi+1, . . . ,yn]t) is used to estimate the state

x̂−i
t from which a sensor model estimates the sensor

measurements ŷ−i
t . The notation −i in a superscript

indicates a state/sensor estimate is ignorant of mea-

surements from sensor i, whereas a subscript indicates
a vector missing state/sensor i.

y−i,1:t
state estimation−−−−−−−−→ x̂−i

t
sensor model−−−−−−−→ ŷ−i

t (1)

This estimate is used to compute a residual between

the sensor estimates and measurements for FD/FI.

However, performing this state estimation in the

WWTP is often difficult. In response to this difficulty

the feasibility of directly estimating ŷ−i
t from y−i,1:t

is considered. However, if the sequence y−i,1:t is as-

sumed to be Markovian, the problem can be further

simplified by instead considering the estimation of ŷ−i
i,t

directly fromy−i,t . There is a problemwith this: in the

scheme shown in (1) if there is a fault in sensor i this
appear as a) a residual in ŷ−i

i,t , and b) in all ŷ
− j
t for i 6= j.

This asymmetry is what allows FI from the residuals in

(1). Directly estimating ŷ−i
i,t from y−i,t eliminates this

property - a fault on sensor i affects every estimate.

This can be remedied by repeating the leave-out-one

pattern in the original scheme. In this work we pro-

pose using a bank of n(n − 1) models M−i j where

i 6= j where each model estimates ŷi,t from all sensors

except i and j. Given theMarkov assumption the time

subscripts are omitted:

y−i j
sensor model−−−−−−−→

M−i j
ŷ−i j

i . (2)

For each i this creates n− 1 estimates ŷ−i j
i , each in-

sensitive to a fault in a different sensor j 6= i. This

reestablishes the required asymmetry for FI.

2.2 Gaussian Process Regression

Gaussian process (GP) regression (Williams & Ras-

mussen, 1995; Rasmussen et al., 2006) is a non-

parametric regression method which assumes the tar-

get function f : Y−i j → R to be a stochastic (Gaus-

sian) process and conditions this prior process on ob-

servations to obtain a posterior distribution over func-

tions that explain the observations. A Gaussian dis-

tribution is fully specified by its mean vector and co-

variance matrix. Analogously, a GP is fully specified

by a mean function m−i j : Y−i j → R and a covariance

function k−i j
f : Y−i j ×Y−i j → R. This is typically de-

noted f ∼ GP(m−i j,k−i j
f ). Assuming the observa-

tions y−i j
i (y−i j) = f (y−i j)+ ε of f are perturbed by

Gaussian noise ε ∼N (0,σ2
n ), the measurement pro-

cess is also Gaussian and is denoted,

y−i j
i ∼ GP

(
m−i j,k−i j) . (3)

Here, the measurement covariance k−i j is a sum of the

‘base’ covariance of f and the noise of the observation
process: k−i j(y−i j,y′−i j) = k−i j

f (y−i j,y′−i j)+δyy′σ
2
n

where δyy′ is the Kronecker delta on y−i j = y′−i j.

Like many forms of Bayesian inference, GP regres-

sion has historically been associated with heavy com-

putational costs. However, frameworks such as GPy-

Torch (Gardner et al., 2018), taking advantage ofmod-

ern hardware and theoretical progress, allow practical

use of GPs with standard covariance functions.

2.3 Generalised Products of Experts

Taken in combination, §2.1 and §2.2 suggest using GP

regression to learn a bank of modelsM−i j. Structure

in this bank can be exploited for FI, but in order to
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allow for clear visualisation and interpretation by op-

erators the signals from these n× (n−1)models must

ideally be used to generate a single FD statistic.

One method of obtaining a combined predictive dis-

tribution pc(y|x) from several GP posteriors pi(y|x) is
the (generalised) product of experts (GPoE/PoE) (Cao

& Fleet, 2015),

pc(y|x) =
1
Z ∏

i
pαi(x)(y|x), (4)

where Z is a normalisation constant. The annealing

parameters αi are used to amplify or diminish the im-

portance of eachmodel’s contribution to the combined

distribution. The simplest parameters, corresponding

to a PoE, αi(x) = 1, are used in this study. If each

model in the product is Gaussian the combined distri-

bution is also Gaussian with mean and covariance

m−i
c (x) = k−i

c (x,x)∑
j

m−i j(x)α j(x)λ−i j(x), (5)

k−i
c (x,x) =

(
∑

j
α j(x)λ−i j(x)

)−1

. (6)

Where λ−i j(x) := 1/k−i j(x,x). Combining the predic-

tions from the bank in this way produces a combined

posterior for each sensor,

y−i
i ∼ GP(m−i

c ,k−i
c ). (7)

The vector ŷ = [y−1
1 , . . . ,y−n

n ]T denotes the full esti-

mate of the sensor state obtained from the GPoE.

2.4 Multivariate Process Monitoring

The multivariate exponentially weighted moving av-

erage (MEWMA) chart, first proposed by Lowry et

al. (1992), utilises information from successive sam-

ples and is therefore relatively sensitive to small shifts

in the mean of the monitored variable. In this applica-

tion, that is the standardised residual vector rt , where

the raw residuals are r̃t = yt −E[ŷt ]. The relevant

parameters are defined as (Montgomery, 2009)

Zt = λrt +(1−λ )Zt−1 (8)

where 0 ≤ λ ≤ 1 andZ0 = 0. The statistic monitored

on the chart is

T 2
t = ZT

t Σ
−1
Zt
Zt (9)

where

ΣZt =
λ

2−λ

[
1− (1−λ )2t]Σ. (10)

Σ represents the covariance of r from a collection of

samples when the process is known to be operating

normally. The performance of the MEWMA chart is

tuned by adjusting λ , the smoothing factor, as well as

the limit H.

When T 2
t > H the limit is violated, indicating a fault.

The source of the deviation can be determined by de-

composition of the MEWMA statistic, described by

VandenHul (2002). This requires recalculating T 2
t

for the value of t at which the limit is violated based

on r−i := [r1, . . . ,ri−1,ri+1, . . . ,rn]
T , thus generating n

values for T 2,−i
t . By observing which T 2,−i

t decreases

the most compared to T 2
t the responsible residual can

be isolated.

3 Methodology

The high-level strategy proposed for performing and

evaluating FD/FI using banks of GPs is as follows.

Data, with and without faults, is generated in simula-

tion (§3.1) and used to train a bank of GP sensor mod-

els (§3.2). These models are combined in a GPoE, and

the combined predictions used to generate aMEWMA

chart on the residuals. FD/FI statistics are calculated

over a set of 320 faults per sensor (12 total) in a typical

sensor set - parameterised by fault type, size, duration,

and start time.

3.1 Simulation

The Benchmark Simulation Model No.1 (BSM1) was

used to simulate the operation of the WWTP. The

simulation platform consists of two anoxic reactors

of 2000 m3 and three aerated reactors of 3999 m3 fol-

lowed by a secondary settler of 6000 m3 (Gernaey et

al., 2014). The BSM1 process contains two standard

control loops: SNO control in the second reactor with

set-point of 1 gNm−3 and SO control in the fifth reac-

tor with set-point 2 gO2 m−3 (Gernaey et al., 2014).

Sensor measurements of dissolved oxygen (SO), alka-

linity (SALK), total suspended solids (T SS), nitrate/ni-
trite nitrogen (SNO), and ammonium/ammonia nitro-

gen (SNH), at several points in the process were

recorded at 15-minute intervals. These are hereafter

denoted: SNH,1, SNO,2, SO,3, SNO,3, SNH,3, SO,4, SNH,4,

T SS4, SO,5, SNO,e, SALK,e, T SSe where the subscripts

denote that the measurements are taken in the indi-

cated tank number (1 to 5) or in the effluent (e). The
the two controller outputs, uNO,2 and uO,5 were also

recorded. The sensors were selected based on the

approach in Marais, Zaccaria, Ivan, & Nordlander

(2022); Ivan (2023).

The simulations used the BSM1 dry weather influ-

ent file, simulating two weeks of operation. The first

week of simulated data was used as training data for

GP training (§3.2) and chart calibration (§2.4, §3.4).

The second week was held-out for testing FD/FI,

where data from the eighth day was used for chart

tuning and faults were introduced starting in the ninth

day. Two fault types, bias and drift, were used with
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Table 1. Fault parameters used for testing performance.

All 320 parameter combinations were tested.

Size
Bias [σ ] 1.5 2 3 5

Drift [µ/Day] 0.1 0.25 0.5 1

Direction + −
Start Time [Day] 8.75 9.5 10.25 11

Duration [Day] 0.5 1 1.5 2 2.5

varying parameters shown in Table 1. All combina-

tions of size-direction-start-duration were simulated

for each fault type for a total of 320 faults per sen-

sor. The fault sizes are specified in proportion to the

standard deviation (bias faults) and mean (drift fault)

of the sensor signal as determined from the training

data. All measurements are also standardised w.r.t.

these statistics, yi,t = (ỹi,t − avgt ỹi,t)/stdt ỹi,t where ỹ
denotes the raw measurements.

3.2 Individual GP Sensor Models

The simulated sensor measurements D = (yt)
T
t=1 are

split into training and test data as described in §3.1.

In order to create a supervised learning problem with

FI asymmetry (see §2.1), n× (n−1) training sets are
derived from this data. Each model M−i j thus has

associated datasets

D−i j = {(x j,yi) : x j = y−i j,y ∈D}. (11)

As the measurements are standardised (§3.1), a GP

prior with zero mean is placed over all models,

y−i j
i ∼ GP(0,k−i j). (12)

The covariance k−i j for each model is a sum of a linear

kernel with noise parameter ψ−i j and a squared expo-

nential kernel with independent lengthscales φ−i j for

each input dimension and scale parameter σ−i j:

k−i j(x j,x
′
j) = σ

−i jk−i j
SE (x j,x

′
j)

+ k−i j
LIN(x j,x

′
j)+σ

2
n δ j j′ , (13)

k−i j
SE (x j,x

′
j) = exp

(
−1

2
dT

j Φ
−2
−i jd j

)
, (14)

k−i j
LIN(x j,x

′
j) = ψ

−i jxT
j x

′
j, (15)

where d j =x j−x′
j and Φ−i j := diagφ−i j. The initial

covariance parameters are shown in Table 2. These

GPs were defined using GPyTorch (Gardner et al.,

2018) and each set of hyperparameters was indepen-

dently optimised until convergence with respect to the

marginal log-likelihood of each model. Optimisation

was performed using the ADAM algorithm (Kingma

& Ba, 2017) with learning rate 0.1 and learning rate

decay 0.99.

Table 2. Initial covariance parameters and optimisation

constraints.

Param. Initial Value(s) Optimisation Bounds

σ−i j 1.0 (0,10)
ϕ−i j Random ∈ (0.5,1.5) (0,10)
ψ−i j 1.0 (0,10)
σ2

n 1.0 (0.01,∞)

3.3 Sensor Residuals via PoE

The GP posteriors are composed in a PoE, obtaining a

combined estimate y−i
i for each sensor:

y−i
i (y−i) ∼ N (m−i

c ,k−i
c ), (16)

m−i
c (y−i) = k−i

c (y−i,y−i)∑
j

m−i j
λ

(y−i j), (17)

k−i
c (y−i,y−i) =

(
∑

j
λ
−i j(y−i j)

)−1

, (18)

where m−i j
λ

(y−i j) := m−i j(y−i j)λ
−i j(y−i j). The

model residuals are obtained from the PoE output at

each timestep, ŷt , as described in §2.4.

3.4 MEWMA Chart

As in §2.4, the residuals are standardised based on the

training data:

rt,i = (r̃t,i − avgt r̃t,i)/stdt r̃t,i. (19)

The covariance of the standardised residuals Σ was

used to calibrate the chart according to (10). Small

values for the smoothing factor, λ = 0.05,0.1,0.2,
were evaluated; which in principle allow for the de-

tection of smaller faults (Montgomery, 2009). For

each value of λ the mean and standard deviation of

the T 2 statistic was calculated during day 8 of the sim-

ulation data (§3.1) to determine an appropriate limit

size H. Three values were tested for the limit size

H = avgt T 2 +hstdt T 2, for h = 2,3,4.
Charts with each combination of (λ ,h) were used to

monitor the performance of the process using (8) and

(9). Every limit violation was treated as a fault alarm.

In the case of correct fault detections, isolation was

performed by constructing reduced charts of the per-

senor T 2-statistic, T 2,−i, as described in §2.4.

3.5 Diagnostics

As described in §2.4, a fault is detected when the chart

limit H is crossed by the MEWMA T 2 statistic during

the fault. For each pair of chart limit and smooth-

ing factor the following statistics were recorded for

all faults in Table 1: a) correct violation of H during

a fault - fault detection (FD), b) number of incorrect
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Figure 1. Illustration of the MEWMA chart showing the chart limit, the statistic, and limit violations. The time period during

which the fault is occurring is highlighted. Top: Drift fault on SO,5 with a rate of -0.25, Bottom: Drift fault on SO,5
with a rate of -0.1.

chart limit violations - false alarms (#FAs), c) dura-

tion of false alarms (FA), d) time taken to detect the

fault (TTD), and e) successful fault isolation (FI).

The MEWMA chart requires some time to return to

normal after a fault stops. As such time spent above

the chart limit immediately following a successful

fault detection is not reported in the FA statistic. Note,

defining a detection by crossing of the limit means that

a false alarm preceding a fault which continues into the

start of the fault does not constitute a detection.

Fault isolation was performed based on the mean of

the T 2-decomposition during the first hour after viola-

tion. Only the T 2,−i deviating most from T 2 was used

for isolation. Isolation of faults of the controlled vari-

able sensors was performed by monitoring the con-

troller outputs, not the sensor measurements. For a

discussion of ‘fault hiding’ on controlled variables see

Marais, Zaccaria, & Odlare (2022).

4 Results and Discussion

Two MEWMA charts are shown in Figure 1 for two

different drift faults on the SO,5 sensor. It is clear

that the smaller fault is harder to detect, shown by the

longer detection time and the smaller values of T 2 rel-

ative to those of normal operation. Natural variation

in the residuals, and therefore the T 2, can worsen the

situation. For example, the T 2 statistic is low around

day 10 - faults occurring near this point will be harder

to detect due to the statistic being below its mean. This

may be improved by reducing the nominal variance of

the chart, requiring improved sensor estimates.

Overall the chart is clear and provides a good start-

ing point for operator-friendly FD. With regard to

FI, Figure 2 shows an example of an isolation plot,

which could be shown to operators continuously us-

ing a rolling window on the decomposed T 2 statistic.

The isolation chart shows clearly which residuals are

contributing to variations in the MEWMA chart.
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Figure 2. Example of an isolation plot for the drift fault in

Figure 1-Top showing the mean of T 2,−i (resid-

ual i excluded from T 2) during the isolation pe-

riod. “None” denotes T 2: no residual excluded.

Figure 2 shows the mean value of T 2,−uO,5 (i.e. the T 2

value calculated excluding uO,5, the controller output

for the SO,5 controller) during the isolation period has

the lowest value. This indicates the violation can be

attributed to uO,5, and therefore SO,5.

The following sections present a more detailed analy-

sis across chart parameters; fault types, sizes, and du-

rations; and across different sensors.

4.1 Impact of MEWMA Chart Parameters

Broadly, the different values of (λ ,h) affect FD/FI in
accordance with theoretical expectations. As the limit

size, h, increased detection becomes slower and less

consistent, false alarms decrease, but FI becomes eas-

ier. As the smoothing factor, λ , increases the oppo-

site occurs; smaller faults become detectable, but FI

on these faults is more difficult, and false alarms in-

crease. Small drift faults, in particular, are most sen-

sitive to the change in the smoothing factor. These

results are summarised in Table 3.

Table 3 clearly shows the expected trade-off that must
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Table 3. Summary of diagnostics performance parame-

ters, averaged over all fault types and character-

istics, for the different chart parameters.

λ h FD [%] FI [%] TTD [d] FA [d] #FAs

0.20 2 0.98 0.69 0.16 0.33 15.31

0.20 3 0.90 0.82 0.28 0.07 4.64

0.20 4 0.87 0.85 0.30 0.01 1.13

0.10 2 0.95 0.70 0.22 0.24 11.07

0.10 3 0.90 0.80 0.28 0.04 2.88

0.10 4 0.87 0.85 0.31 0.00 0.14

0.05 2 0.94 0.72 0.24 0.30 7.04

0.05 3 0.92 0.79 0.27 0.08 5.04

0.05 4 0.89 0.83 0.31 0.02 1.16

be made in the MEWMA chart design: improved de-

tectability comes at the expense of isolability and false

alarms. For a given smoothing factor, detection rates

decrease by between 5 % to 11 % and isolation rates

increase by 15 % to 23 % as the limit size is increased.

Detection times increase by 30 % to 46 % while the

number and duration of false alarms decreases by 83 %
to 97 %. Smaller smoothing factors are less sensitive

to the limit size.

It is worth noting that a real FD system can reasonably

run several combinations of chart parameters with the

strengths and weaknesses of each chart in mind. Bal-

ancing these trade-offs, the remaining analysis pro-

ceeds with (λ ,h) = (0.1,3).

4.2 Performance of Diagnostics

Table 4 shows a comparison between bias and drift

type faults, averaged across all fault parameters and

sensors. The false alarms are not included as they do

not differ from those presented in Table 3; false alarms

are chart-dependent, not fault-dependent.

The drift faults are, as expected, harder to detect and

require a longer time on average before the faults are

detected. However, the isolation of drift faults is not

substantially lower than that of bias faults.

The relative difficulty of detecting and isolating faults

in different sensors can be seen in Figure 3 where, av-

eraged over all fault parameters, detection and isola-

tion statistics are shown. The most challenging faults

to isolate occur in the controlled variable sensors, that

is SNO,2 and SO,5, the lowest average detection rate

among all sensors also occurs in the former. This is

expected: the controller works to keep these sensor

values at the set-point, obfuscating the effects of the

sensor faults on the sensor itself. The proposed resid-

ual scheme relies on the use of the controller output,

as mentioned previously, to reliably circumvent this

issue.

Figure 3 also shows that faults in sensors T SS4, SALK,e,

and SNO,e have some of the highest detection and isola-

tion rates and shortest detection times. This is of spe-

cial importance as sensors in the effluent are important

for monitoring limits related to environmental regula-

tions. In general, sensors which have high isolation

rates, such as SALK,e and SNO,e, should be subject to

further careful monitoring as it is possible that they are

often the target of an incorrect isolation. In the faults

tested these two sensors were responsible for 26 % of

incorrect isolation cases.

In order to evaluate the effects of different fault sizes

and durations on detectability and isolability, the re-

sults for a single sensor (SNO,2 - a controlled variable)

are shown in Figure 4.

Considering the bias faults first: all the faults are de-

tected, and as the size of the fault increases the time

to detection decreases to a minimum of 0.026 d, or
37 min. It might be expected that the isolation rate in-

crease with the size of the fault, however, it is impor-

tant to note that this fault occurs on a controlled vari-

able sensor. This type of fault impacts the operation

of the entire process through the control system, there-

fore, larger faults can have a larger impact on other

process variables. This can make these faults more

challenging to isolate as they disrupt other variables

in the process.

The chaotic behaviour of the smallest drift fault likely

has similar explanation - slow drift is corrected by the

controller and propagates non-linearly throughout the

system. Apart from this exception, the behaviour of

the drift faults is unsurprising: larger faults are de-

tected more reliably and more rapidly, and when a

fault persists for longer it is both easier to detect and

easier to isolate. The minimum detection time of the

drift faults is around 0.44 d, or 10 h.
Comparing the results for faults on the SNO,2 sensor

to those in Marais, Zaccaria, & Odlare (2022), where

a univariate EWMA chart is used, the detection times

for the bias faults are slightly longer but the time for

drift fault detection has been decreased by several

hours. The number of false alarms are in the same or-

der of magnitude, and the detection rate of drift faults

has increased from 56 % to 64 % to between 75 % and

100 % for faults longer than 1 d. In Marais, Zaccaria,

& Odlare (2022) the results were not broken down

by duration of fault so this comparison is not exhaus-

tive. Further comparisons with the broader literature

are difficult due to inconsistencies in how results are

reported, varying fault sizes, and incomparable plant

configurations. A cursory comparison with Luca et al.

(2021, 2023) shows detection times in similar ranges

with possibly better performance on the bias faults.

5 Conclusions and Recommendations

Direct modelling of sensors using GP regression in

a dedicated residual scheme and monitoring with a

MEWMA chart can be used for FD/FI in a WWTP.

Clear comparison with the broader literature is diffi-
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Figure 3. Detection and isolation rates, and time to detection split across bias and drift faults for each individual sensor.
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Figure 4. Detection and isolation rates, and time to detection across all faults on the SNO,2 sensor. The bars represent a combi-

nation of fault type, size, and duration, and are grouped according to type and size.

Table 4. Detection and isolation statistics by fault type.

FD [%] FI [%] TTD [d]

Bias 100 83 0.047

Drift 80 77 0.564

cult, as standardised reporting of performance evalu-

ation parameters in studies performed in this field is

lacking. In response to this difficulty, testing on a

wide range of faults across many standard sensors has

been reported in the hopes of facilitating future com-

parisons.

The method improves over a previous study using a

univariate approach, and the results are comparable to

other multivariate methods for FD/FI. Critically, the

proposed approach is easy to visualise; a priority when

developing FD/FI methods for an industry that relies

heavily on operator expertise and shies away from un-

interpretable automation.

The proposed approach leaves a great deal of room for

further study. Without methodological changes, re-

sults across the each tested sensor can be documented,

performance on out-of-distribution test data such as

the BSM1 wet weather influent data can be evaluated,

and more detailed FI studies carried out. The sensor

models themselves can likely be simplified and made

more interpretable by sharing parameters across mod-

els. Annealing the GPoE distributions, directly using

the pre-GPoE sensor models in a generalised scheme,

or other similar modifications to the sensor models

could also yield improvements.
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