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Abstract 
Monitoring the temperature of induction traction motors is crucial for the safe and efficient operation of railway 
propulsion systems. Several thermal models were developed to capture the thermal behaviour of the induction 
motors. With proper calibrating of the thermal model parameters, they can be used to predict the motor’s 
temperature. Moreover, calibrated thermal models can be used in simulation to evaluate the motor’s performance 
under different operating conditions and find the optimal control strategies. 
Parameterization of the thermal model is usually performed in dedicated labs where the induction motor is 
operated under predefined operating conditions and calibrating algorithms are then used to find the model’s 
parameters. With the development of digital tools, including smart sensors, Internet of Things (IoT) devices, 
software applications, and various data collection platforms, operational data can be collected and used later to 
calibrate the parameters of the thermal model. Nevertheless, calibrating the model’s parameters from operational 
data collected from different driving cycles is challenging as the model has to capture the thermal behaviour from 
all driving cycles’ data. 
In this paper, a data-driven reinforcement learning-based parametrization method is proposed to calibrate a 
thermal model in induction traction motors. First, the thermal behaviour of the induction motor is modelled as a 
thermal equivalent network. Second, a reinforcement learning (RL) agent is designed and trained to calibrate the 
model parameters using the data collected from multiple driving cycles. The proposed method is validated by 
numerical simulation results. The results showed that the trained RL agent came up with a policy that adeptly 
handles diverse driving cycles with different performance characteristics. 
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1. Introduction 
Traction motors are subjected to varying operating 
and environmental conditions due to the dynamic 
loads over the operation cycle. The transient loads 
may cause overloading of the drive components 
which causes extra heat load. Operations causing 
overheating of the motor parts are of significant 
concern as they may lead to stator winding failure 
and accelerated ageing. Furthermore, to be able to 
exploit the motor’s maximum utilization, it is 
essential that its operation is optimized to make it 
cost-effective. 
On the other hand, induction motors (IMs) are the 
most used motors in railway propulsion applications 
to date because of their mechanical robustness and 
high overload capabilities. The added advantages 
are their low cost and the possibility of employing 
multiple drives connected to a single converter 
(Nategh et al., 2020). However, their performance 
varies nonlinearly with temperature, frequency, 
saturation, and operating point which makes 

temperature monitoring essential for the safe and 
reliable operation of the motor. 
The thermal limits of these motors are associated 
with the winding insulation material which is 
classified based on its temperature withstanding 
capacity. There are several established direct or 
indirect means for estimating the temperature in 
motor parts. Direct methods such as installing 
contact-based sensors in the stator, and rotor are the 
simplest means for measurement. However, the data 
transmission in the rotating parts has to be carried 
out with the help of end slip rings, or telemetry 
means. Regardless, installing sensors requires 
integration effort and additional cost and adds 
complexity due to their inaccessibility for 
replacement in case of failures or detuning. Hence 
model-based measurement techniques have been 
rather focused in the past decade (Ramakrishnan et 
al., 2009; Wilson, 2010). Here the temperatures can 
be estimated from the temperature dependent 
electrical parameters both off-line and online 
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manner. In these approaches, it is imperative that the 
model dynamic behaviours are accurately accounted 
for to avoid any estimation errors. These are also 
invasive in nature and create disturbance to the 
normal operation. 
Computational fluid dynamics (CFD) and heat 
equation-based finite element analysis (FEA) are 
powerful techniques for accurate temperature 
estimation. However, due to their rigorous 
modelling effort and high computational power and 
time, they have been excluded from real-time 
monitoring upfront (Kirchgässner et al., 2021). 
An alternative and computationally light 
temperature estimation technique is using the 
lumped-parameter thermal network (LPTN) model. 
An LPTN model summarizes the heat transfer 
process and can be represented in thermal equivalent 
circuit diagrams with knowledge of the used 
material and geometry and based on heat transfer 
theory. In this model, the thermal parameters are 
thermal resistances and capacitance values (Chen et 
al., 2020). The LPTNs can be designed to estimate 
the temperatures at several or fewer locations in the 
motor. However, the LPTN model needs accurate 
distributed motor losses, surface contact thermal 
conductance and heat transfer convection 
coefficients information, hence, needs to be 
calibrated empirically (Huber et al., 2014). 
The complexity of LPTN models depends on the 
number of chosen nodes in the network. Generally, 
white box LPTN, based on pure analytical 
equations, are more accurate but are endowed with 
many thermal parameters, which could be complex 
to calculate in practice. A low-order structure with 
fewer nodes is computationally lightweight. In the 
past, several reduced order models categorized as 
light grey (5-15 nodes), and dark grey (2-5 nodes) 
LPTN models were structured to estimate the 
temperature with good accuracy. In this approach, 
only the dominant heat transfer pathways are 
represented, hence, expert domain knowledge is 
essential for the correct choice of not only their 
parameter values but also for their structural design 
(Wallscheid and Böcker, 2015). These models have 
proven to have good estimation performance, 
provided the parameters are identified appropriately. 
The use of a reduced order LPTN method would 
require estimations of many parameters that are not 
well known or possible to calculate using analytical 
equations. Thus, the identification of the parameters 
is an important step in these studies. 
To date, several research works on the 
parameterization of the LPTN model have been 
performed using empirical measurements by 
applying different methods (Guemo et al., 2013; 
Huber et al., 2014; Xiao and Griffo, 2020). The 
proposed identification procedure varies the 
parameter values until the used LPTN model gives 

the same results as the experimental ones.  As 
described by (Wallscheid, 2021), parameter 
identification can be made in a local approach or a 
global approach. In the work presented by (Huber et 
al., 2014), a three-node LPTN is parametrized based 
on a global approach. A sequence of interdependent 
identification steps was followed, and the 
experimental data are used to find the thermal 
parameters. The model uses the measurement-based 
loss inputs available with motor electronic control 
unit (ECU) quantities, such as motor speed and 
electric currents.  The parameter identification 
approach has been built on the idea of mapping the 
linear time-varying parameters to a set of time-
invariant models operating within a certain chosen 
environment.  Thus, a consistent parameter set for 
the whole operating region could be obtained with 
the adaptation of the relevant boundary conditions 
through various identification cycles. While the 
global approach is more robust in capturing all 
operating regions of the motor than the local 
approach, it can also be problematic if the parameter 
landscape to be identified is large and highly 
nonlinear in nature. Hence it is complex to find the 
parameter values near the global parameter optimum 
(Wallscheid, 2021). However, the global approach 
captures the nonlinearity in the form of a 
parametrizable function and, hence, they are 
potentially more versatile compared to the global 
and local approaches. 
The use of inverse methods is also popular for 
finding thermal parameters. In the work presented 
by (Guemo et al., 2013), the identification of the 
parameters is made by solving the optimization 
problem using determinist inverse-based methods 
such as the Gauss-Newton method, the Levenberg-
Marquardt method, and stochastic inverse-based 
methods such as the Genetic Algorithms. These 
concept methods are used to minimize the residuals 
between measured and calculated temperatures. 
(Sciascera et al., 2017) employed a tuning procedure 
based on a sequential quadratic programming 
iterative method for obtaining the uncertain thermal 
parameters of the thermal network. However, the 
computation cost of such tuning procedures is high 
due to the time-variant nature of the parameters. 
Furthermore, to improve computational efficiency, 
the dependence of the state matrix on the phase 
current is approximated with polynomial 
approximation. 
The temperature rise in the electric motor occurs due 
to the electro-mechanical power conversion losses. 
Winding and core losses and mechanical and 
windage losses are the prominent ones for an 
induction motor. The winding losses can be 
calculated for a given winding resistance and 
measured current. However, the winding resistance 
changes based on the temperature which is a state 
variable in the thermal matrix. Furthermore, the core 
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loss is not measurable. A usual approach to 
determining iron losses is measuring total power 
losses and subtracting winding losses. Hence, all 
errors in the determination of total and winding 
losses directly add up to an error in the iron losses 
values. To deal with these uncertainties, (Gedlu et 
al., 2020) used an extended iron loss model as input 
to a low-order LPTN model for temperature 
estimation. The loss inputs as a form of spatial loss 
model calculate individual core losses for each node. 
In addition to the heat transfer coefficients, the 
uncertain parameters in the core loss equations are 
calibrated in their possible searching space using 
particle swarm optimization (PSO) to minimize the 
estimation error in comparison to empirical 
measurements. 
Xiao and Griffo (Xiao and Griffo, 2020) in their 
work presented an online measurement-informed 
thermal parameter estimation using a recursive 
Kalman filter method. While a Pulse-Width 
Modulation (PWM)-based estimation method is 
utilized for rotor temperature measurement, the 
temperatures in three nodes such as stator core, 
winding, and rotor are predicted. The input losses for 
the LPTN model are derived based on a model-based 
approach and with the use of Finite Elements (FE) 
analysis. The identification problem is formulated as 
a state observer with eight states. Three of the states 
correspond to the nodes’ temperatures and the rest 
five states represent the unknown thermal 
resistances parameters in the LPT network.  The 
non-linearity of the model is dealt with continuous 
updated linearization the extended Kalman filter 
method. 
The growing interest and upsurge in machine 
learning (ML) techniques in the past decade make 
these potentially viable tools in the area of 
automated monitoring and motor drive control. A 
pure ML model, i.e. a model without expert 
knowledge of any classic fundamental heat theory, 
can be trained to estimate the temperature 
empirically. In this case, the model parameters are 
fitted based on collected testbench/observation data 
only (Kirchgässner et al., 2021; Wallscheid, 2017).  
The widely used ML algorithm is the linear 
regression technique which has low computational 
complexity and is used for temperature predictions 
(Kirchgässner et al., 2019; Zhu, 2019). However, as 
linear regression is a linear time-invariant, it does 
not capture the dynamics of the motor model. 
In the field of sequence learning tasks and in high 
dynamics, recurrent neural networks and 
convolutional neural networks are the state of the art 
in classification and estimation performance. In the 
study conducted by (Kirchgässner et al., 2019), deep 
recurrent and convolutional neural networks with 
residual connections are empirically evaluated for 

 
1 Models without expert knowledge. 

predicting temperature profile in the stator teeth, 
winding, and yoke as well. The concept is to 
parameterize neural networks entirely on empirical 
data, without being driven by the domain expertise. 
Furthermore, supervised ML models are also 
investigated for online parameter estimation such as 
rotor resistance and mutual inductance in the control 
system of an induction motor (Wlas et al., 2008).  In 
the presented work, a simple two-layer artificial 
neural network (ANN), consisting of an input layer, 
one hidden layer, and an output layer, is trained by 
minimizing the error between the rotor flux linkages 
based on an induction motor analytical voltage 
model and the output of the ANN-trained model. 
Feedforward and recurrent networks are used to 
develop an ANN as a memory for remembering the 
estimated parameters and for computing the 
electrical parameters during the transient state. 
While pure data-driven ML models1 are effective in 
predicting the temperature, their parameters are not 
interpretable and could not be designed with the low 
amount of model parameters as in an LPTN model 
at equal estimation accuracy. As a further 
development, to make expert knowledge-based 
calibration less desirable and to account for the 
uncertainties regarding the input power losses, 
(Kirchgässner W. W., 2023) proposed a deep 
learning-based temperature model where a thermal 
neural network is introduced, which unifies both 
consolidated knowledge in the form of heat-transfer-
based LPTNs, and data-driven nonlinear function 
approximation with supervised machine learning. 
The reinforcement learning (RL)-based methods are 
other promising data-driven techniques explored in 
the field of control of electric motor drives (Book et 
al., 2021). RL methods enable learning in a trial-
and-error manner and avoid supervision of each data 
sample. The algorithm requires a reward function to 
receive the reward signals throughout the learning 
process. Thus, the control policy could be improved 
on a continuous basis based on the measurement 
feedback (Sutton and Barto, 2018). 
In this paper, a data-driven reinforcement learning-
based parametrization method is proposed to 
calibrate a thermal model of an induction traction 
motor. 
The rest of the paper is organized as follows. Section 
2 presents the parametrization of an LPTN Model 
for an induction motor. Section 3 explains the 
developed RL framework to calibrate the parameters 
of the parametrized LPTN model. The dataset and 
the training process are given in Section 4. Section 5 
shows and discusses the results of the calibrated 
thermal model. Concluding remarks and future work 
are given in Section 6. 
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2. Parametrizing the Thermal Model 
From a thermal point of view, the motor is modelled 
with four nodes: stator winding (node 1), stator core 
(node 2), rotor winding (node 3) and rotor core (node 
4). The thermal equivalent network is illustrated in 
Figure 1 with thermal capacitances, to which a 
power (heat) source is connected, and with thermal 
conductance among the nodes and to the cooling air. 

 
Figure 1: Lumped Parameter Thermal Network Model 

Thermal capacitances C1𝑠𝑠, C2𝑠𝑠, C1𝑟𝑟, and C2𝑟𝑟 values 
are calculated analytically from the geometry and 
material information of the motor. The capacitance 
for stator yoke 𝐶𝐶1𝑠𝑠 is the sum of the capacitance of 
stator housing, stator back iron, stator tooth and 
flange mounted. The stator winding capacitance 
𝐶𝐶2𝑠𝑠 includes the capacitance for the stator winding 
and the end winding capacitances. The capacitance 
for stator yoke 𝐶𝐶1r is the sum of the capacitance of 
rotor yoke, and rotor bars. The rotor winding 
capacitance 𝐶𝐶2𝑟𝑟 includes the capacitance for the 
rotor winding and the end winding capacitances.  
The thermal conductance λ1s, λ2s, λ1r, λ2r   vary with 
the airflow due to the convection. The model shown 
in Figure 1 can be represented mathematically by the 
following first-order differential system:  

𝑃𝑃1= C1𝑠𝑠
𝑑𝑑𝑇𝑇1
dt + 𝜆𝜆1s(𝑇𝑇1 − 𝑇𝑇env) + 𝜆𝜆12s(𝑇𝑇1 − 𝑇𝑇2)   (1) 

𝑃𝑃2= C2𝑠𝑠
𝑑𝑑𝑇𝑇2
dt + 𝜆𝜆2s(𝑇𝑇2 − 𝑇𝑇env) + 𝜆𝜆12s(𝑇𝑇2 − 𝑇𝑇1)  (2) 

𝑃𝑃3= C1𝑟𝑟
𝑑𝑑𝑇𝑇3
dt + 𝜆𝜆1r(𝑇𝑇3 − 𝑇𝑇env) + 𝜆𝜆12r(𝑇𝑇3 − 𝑇𝑇4)  (3) 

𝑃𝑃4= C2𝑟𝑟
𝑑𝑑𝑇𝑇4
dt + 𝜆𝜆2r(𝑇𝑇4 − 𝑇𝑇env) + 𝜆𝜆12r(𝑇𝑇4 − 𝑇𝑇3)   (4) 

where Ti is the temperature at the corresponding 
node i. The temperatures of the cooling air at the four 
nodes (marked as sw, sc, rw and rc in Figure 1) are 
assigned to the environment (or ambient) 
temperature 𝑇𝑇env. 
The losses at the four nodes in Figure 1 are 
distributed as shown in Table 1 and they can be 
calculated as follows: 

𝑃𝑃1 = 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃𝑐𝑐𝑐𝑐1 +  𝐾𝐾𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠  

 + 𝐾𝐾ℎ𝑠𝑠𝑟𝑟𝑠𝑠𝑃𝑃ℎ𝑠𝑠𝑟𝑟𝑠𝑠 (5) 

𝑃𝑃2 = 𝐾𝐾𝑃𝑃𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑠𝑠               (6) 

𝑃𝑃3 = 𝐾𝐾𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃𝑐𝑐𝑐𝑐2 + (1 − 𝐾𝐾𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠)𝑃𝑃𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠  

+ (1 − 𝐾𝐾ℎ𝑠𝑠𝑟𝑟𝑠𝑠)𝑃𝑃ℎ𝑠𝑠𝑟𝑟𝑠𝑠 (7) 

𝑃𝑃4 = (1 − 𝐾𝐾𝑃𝑃𝑃𝑃𝑠𝑠) 𝑃𝑃𝑃𝑃𝑠𝑠  (8) 

where 𝑃𝑃𝑐𝑐𝑐𝑐1, 𝑃𝑃𝑐𝑐𝑐𝑐2, 𝑃𝑃𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠, 𝑃𝑃ℎ𝑠𝑠𝑟𝑟𝑠𝑠, 𝑃𝑃𝑃𝑃𝑠𝑠  are the stator 
copper loss, rotor copper loss, stray loss, harmonic 
loss, and iron loss respectively. The coefficients 
𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝐾𝐾𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝐾𝐾𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠, 𝐾𝐾ℎ𝑠𝑠𝑟𝑟𝑠𝑠 and 𝐾𝐾𝑃𝑃𝑃𝑃𝑠𝑠 are the 
corresponding losses coefficients. 

Table 1: Loss Distribution in the LPTN Model. 

Node Winding 
Losses 

Stray 
Losses 

Harmonic 
Losses 

Iron 
Losses 

1 x x x  
2    x 
3 x x x  
4    x 

 
The losses in Equations (5)-(8) can be calculated as 
follows (Kral et al., 2013; Filizadeh, 2013; 
Maroteaux, 2016; Nasir, 2020; IEC/TS, 2010): 

𝑃𝑃𝑐𝑐𝑐𝑐1 = 𝑅𝑅1 𝐼𝐼12            (9) 

𝑃𝑃𝑐𝑐𝑐𝑐2 = 𝑅𝑅21 𝐼𝐼212 (10) 

𝑃𝑃𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠 = 𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃  �
𝑃𝑃

𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛
�
1.5
 � 𝐼𝐼1

𝐼𝐼1,𝑛𝑛𝑛𝑛𝑛𝑛 
�
2

     (11) 

𝑃𝑃𝑃𝑃𝑠𝑠  =  𝐾𝐾𝑃𝑃 𝑓𝑓𝛼𝛼𝐵𝐵𝑠𝑠𝑠𝑠𝑚𝑚
𝛽𝛽 (12) 

where 𝐼𝐼1, 𝐼𝐼21 are the stator and rotor currents 
respectively, R1 and R2 are the stator and rotor 
winding resistances respectively which depend on 
the temperature according to following equations: 
𝑅𝑅1 = 𝑅𝑅1,20 ∗ (1 + 𝛼𝛼𝑅𝑅1 ∗ (𝑇𝑇1 − 20)                      (13) 

𝑅𝑅21 = 𝑅𝑅21,20 ∗ (1 + 𝛼𝛼𝑅𝑅2 ∗ (𝑇𝑇3 − 20)                  (14) 

where 𝑅𝑅1,20, 𝑅𝑅21,20 are the stator and rotor winding 
resistance at 20 °C and 𝛼𝛼𝑅𝑅1, 𝛼𝛼𝑅𝑅21 the temperature 
coefficient of stator and rotor respectively. In 
Equation (11), f is the stator frequency with a 
nominal value fnom, I1 is the stator current with a 
nominal value I1,nom and PSUP is equivalent rated 
input power. In Equation (12), Kf is a constant that 
depends on the material properties and the core 
geometry, f is the frequency of the magnetic field, 
Bmax is the peak magnetic flux density in the core and 
α and β are empirically determined constants. The 
harmonic losses 𝑃𝑃ℎ𝑠𝑠𝑟𝑟𝑠𝑠𝑎𝑎 is measured at few 
operation points and included as a look- up table in 
the loss model. 
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Figure 2: Reinforcement Learning Framework 

3. The Reinforcement Learning Framework 
The model developed in the previous subsection has 
been implemented as a parameterized model and 
employed within a reinforcement learning (RL) 
framework as shown in Figure 2. 
3.1. The Parameterized Model 
The parameterized model represents the dynamic 
evolution of the temperature in the induction motor 
according to the model developed in Section 2. The 
model inputs (the red signals) are the stator current, 
the stator frequency, the motor speed, the airflow of 
the cooling air and the ambient temperature. The 
model outputs (the green signals) are the 
temperatures (T1, T2, T3, T4) at the four nodes (P1, P2, 
P3, P4) respectively of the LPTN model shown in 
Figure 1. The blue signals in Figure 2 represent the 
parameters of Equations (1)-(14) explained in 
Section 2. 
3.2. The RL Framework 
The RL framework consists of the RL agent, the 
observations, the reward function and the actions. 
3.2.1. The Observations 
The observations represent the information that the 
RL agent can sense from the environment (the 
parameterized model) during the operation of the 
induction motor. Some observations, such as the 
motor speed (MS) and the motor torque (MT), are 

used directly by the agent to sense any changes in 
the motor’s operating conditions. Other 
observations, such as the measured stator and rotor 
temperatures (Ts, Tr) and the model outputs (T1, T3), 
are used to calculate the reward. It should be noted 
that T2 and T4 could be considered among the 
observations if there are related measurements. 
However, in this work, there are no measurements 
related to T2 and T4. 
3.2.2. The Reward Function 
The reward function produces a value that reflects 
the effectiveness of the agent's actions in the 
environment. This value serves as a critical signal 
guiding the agent's learning process towards 
achieving its goals effectively. The reward value 
encapsulates the objectives of the RL problem, 
which is, in our context, minimizing the error 
between the measured temperatures (Ts, Tr) and the 
model’s output temperatures (T1, T3). Hence, the 
reward function is given by: 

𝑟𝑟 =
−𝜔𝜔1

𝜔𝜔2|𝑇𝑇𝑠𝑠 − 𝑇𝑇1| + 𝜔𝜔3|𝑇𝑇𝑟𝑟 − 𝑇𝑇3| + 𝜔𝜔4
              (15)  

where ꞷ1, ꞷ2, ꞷ3 and ꞷ4 are positive weights. 
3.2.3. The Actions 
The actions represent all the possible values of the 
model parameters (the blue signals in the 
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parameterized model). Actions are computed by the 
agent based on the observations and the reward 
value and using a policy that is optimized during the 
training process to maximize the expected 
cumulative reward over time. The policy is 
essentially the agent's strategy for selecting actions 
in different situations to achieve its objectives 
efficiently. 
3.2.4. The RL Agent 
The RL agent is composed of two main elements: a 
policy and a learning algorithm. The policy maps the 
observations with actions to be taken while the 
learning algorithm updates the policy parameters, 
based on the actions, observations and rewards, to 
maximize the expected cumulative long-term 
reward. During the learning process and depending 
on the learning algorithm, the agent retains two 
types of models: critic and actor models. The critic 
model predicts the expected cumulative reward (Q-
Value) from a given observation and action that is 
later used by the actor model to return the action that 
maximizes the predicted discounted cumulative 
long-term reward (Sutton and Barto, 2018). 
In this work, a TD32 algorithm is used in the RL 
framework shown in Figure 2. TD3 agent works in 
a continuous environment and has improved policy 
model performance over time (Dankwa et al., 2019; 
Nicola and Nicola, 2021). Moreover, the episodic 
training paradigm enables the TD3 agent to select 
different training datasets after each episode. This 
will allow the agent to find the optimal policy (the 
thermal model parameters) from measurements 
recorded during different driving cycles, which is 
the main objective of this work. 
In the following section, the dataset and the training 
process are explained. 
4. Training the RL Agent 
4.1. The Dataset 
The dataset represents the data recorded from the 
induction motor during the operation of nine 
different driving cycles. It is composed of all the red 
signals shown in Figure 2, i.e., the motor speed, the 
motor torque, airflow, the stator current and 
frequency, the motor voltage, the stator winding 
temperature and the rotor winding temperature. 
It should be noted that the data are recorded at 
different sampling frequencies with some missing 
values that require resampling the dataset and 
interpolating the missing values. 
It should also be noted that the dataset is not used 
directly by the RL framework to train the agent, but 
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it is used in the parameterized model which is 
considered an unknown environment to the agent. 
4.2. The TD3 Structure 
The TD3 algorithm employs one actor model 
(network) and two critic models (networks) as 
shown in Figure 3. 

 
Figure 3: Simplified TD3 Structure 

The actor and critic models are approximation 
models, such as a deep neural network, that are 
trained from (Observations, Actions, Rewards) 
sampled from the experience replay buffer. 
4.3. The Training Process 
The RL agent is trained following an episodic 
scheme. Episodes are used to model the concept of 
a task or problem that the agent is trying to learn 
(Sutton and Barto, 2018). An episode refers to a 
single run of the agent's interaction with the 
environment, starting from an initial state and 
continuing until a terminal state is reached. 
Each episode consists of a specific number of 
discrete time steps. At each discrete time step: 

1. The actor applies an action based on the 
current observation and expected Q-value.  

2. The new observation, action and reward are 
stored in the experience replay buffer. 

3. A random batch of experiences is sampled 
from the experience replay buffer and used to 
update the parameters of the critic models by 
minimizing a loss function across all sampled 
experiences. 

4. After some specified steps, the parameters of 
the actor model are updated using a sampled 
policy gradient that maximizes the expected 
discounted reward. 

5. Results and Discussion 
5.1. Preprocessing the Dataset 
In this work, nine driving cycles have been used to 
represent the unknown environment which is used to 
train the agent to find the optimal values of the 
thermal conductance λ1s, λ2s, λ1r and λ2r. As 
mentioned previously, data are recorded at different 
sampling frequencies with some missing values that 
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require resampling the dataset and interpolating the 
missing values. 
Figure 4 shows a sample of measured motor speed 
and motor torque from one driving cycle (DC1) after 
resampling and interpolating the missing values. 

 
Figure 4: A Sample of Motor Speed and Torque (DC1) 

5.2. Training the RL Agent 
The RL agent was trained using the actor and critic 
deep neural network (DNN) models with the layers 
depicted in Figures 5 and 6. 

 
Figure 5: Layers of the Actor DNN Model 

 
Figure 6: Layers of the Critic 1 and 2 DNN Models 

The training steps explained in Subsection 4.2 were 
applied with the parameters shown in Table 2. 

Table 2: Training Parameters. 
Property Value 

Max Episodes 1000 

Max Steps per Episode  9990 
Averaging Window Length 100 

Stop Training Value -190 
Agent Sample Time 0.1 

 

Figure 5 shows the training process where the blue 
curve represents the episode reward, the red curve 
represents the average reward and the orange curve 
represents the estimated cumulative rewards at the 
beginning of each training episode. The figure 
shows that the agent learned an optimal policy 
(parameters) after 101 episodes.  

 
Figure 5: Training Process 

5.3. Validating the Trained Agent 
Validation of the RL agent usually involves 
periodically evaluating the learned policy directly in 
the environment. 
When evaluating the learned policy with different 
driving cycles, the agent came up with the following 
parameters: 
λ1sn = 1, λ1rn = 40, λ2sn = 20, λ2rn = 0.0001, Qn= 10-9 
Figures 7 and 8 show the measured and model 
temperatures for driving cycle 1 (DC1) and driving 
cycle 8 (DC8) respectively. 

 
Figure 7: Model Parameters and Measured and Model 

Temperatures for DC1 

 
Figure 8: Model Parameters and Measured and Model 

Temperatures for DC8 
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6. Conclusion and Future Work 
In the paper, a reinforcement learning framework is 
proposed for training an agent to find the parameters 
of the thermal model in induction traction motors. 
The framework has been applied to find the thermal 
conductance for the thermal network model from 
nine driving cycles. 
By running different driving cycles, the trained 
agent came up with a policy that produces the 
parameters for the different driving cycles. The 
model with the calibrated parameters showed a good 
estimation of stator and rotor temperature. 
In future work, other structures for the agent and the 
reward function will be considered to produce better 
temperature estimation. 
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