
SIMS 64 Västerås, Sweden, September 26-27, 2023

Traceable System of Systems Explorations Using RCE

Workflows

Jorge Lovacoa,*, Ingo Staackb, Petter Krusa

a Department of Management and Engineering (IEI), Linköpings university, Sweden, b Institute of Aircraft Design and

Lightweight Structure (IFL), Technische Universität Braunschweig.

jorge.lovaco@liu.se

Abstract

The System of Systems (SoS) framework plays a pivotal role in delimiting aircraft design spaces by examining

interactions among its Constituent Systems (CS). Each CS has a distinct collection of capabilities, some of which

may be shared with other CS. The framework explores emergent behaviours that arise from communication

between the CS within the SoS. These emergent behaviours are characterized by their unattainability by any

individual CS and result from their collaborative nature. The identification of these emergent behaviours enables

System of Systems Engineering (SoSE) to pinpoint the most valuable configurations of the SoS, thereby

maximizing the collective value. Furthermore, these emergent behaviours aid in stipulating design requirements

for new systems based on the capabilities outlined in the SoS study. To map the relationship between needs,

capabilities, requirements, and behaviours, maintaining traceability throughout the study is paramount.

This research employs workflows created using the Remote Component Environment (RCE), a specialized tool

for structured and automated task development. The objective is to showcase RCE's integration capabilities-

specifically for software tools and Python scripts- with task scheduling. This integration enables swift extraction

of results, making them available at every step, thus augmenting analysis efficiency. The study focuses on the

perspective of an aircraft designer during the early concept generation phase, specifically applied to the

development of an electric Unmanned Aerial Vehicle (UAV) concept for wildfire detection.

Keywords: System of Systems, Aircraft Conceptual Design, Wildfire Detection, Agent-Based Simulation, Systems

Engineering.

1. Introduction

The System of Systems (SoS) analysis has become

an important part of systems engineering (Staack,

2019). An SoS is defined as a system that consists of

several Constituent Systems (CS) and shares the

following characteristic properties (Maier, 2014):

• Each of the CS can operate by itself and execute

its mission as an individual.

• Each of the CS is managed independently,

which means that each one of them is acquired

and maintained within its own budget

constraints.

• The CS are under a geographic distribution,

with the distance large enough to require a non-

physical communication.

• Communication and interaction between CS

results in emergent behaviours, which can be

not only difficult to predict but also unattainable

by any single CS.

• There is an evolution throughout time of the

SoS, either by adding or removing CS,

upgrading or renewing them, or integrating CS

different from the ones in the original

composition.

Modelling and simulation become an obvious choice

for finding emergent behaviours in an SoS

configuration and to study its evolution when the CS

arrangement changes.

With an SoS being a complex assembly of systems,

large numbers of possible combinations might be

found during the different analyses. Thus, the

requirement spaces must be meticulously managed

to prevent confusion and ensure traceability at every

step of the process (Mori, 2018). Traceability

ensures that the customer needs are correctly

understood and linked to requirements and use cases

(Luzeaux & Ruault et al., 2013). Requirement

traceability also supports greatly the analysis of an

SoS. It narrows down the design space and enhances

trade-off analysis (Staack, 2019), from the top level

of the SoS, down to the subsystem level of the CS in

an asynchronous manner (Dahmann, 2008). Poor

traceability makes it difficult to identify purposes or

goals resulting in the less convenient “bureaucracy-

driven architectures” (Maier, 2014). Enhancing

traceability helps also to propagate changes among

SIMS 64 Västerås, Sweden, September 26-27, 2023

different levels, namely concepts, requirements,

specifications as well as take decisions or perform

better impact studies. Traceability involves matrix-

based methods (Krus, 2006) for mapping customer

needs and requirements, design parameters and

system behaviour. These methods allow re-

evaluations in case of requirement changes

(Luzeaux & Ruault et al., 2013). Besides

traceability-oriented methods, it is possible to find

requirements for traceability of SoS capabilities

(Tekinerdogan, 2017).

A wildfire detecting SoS is used in the present work

to illustrate some of the modelling and simulations

considerations needed to develop traceable

workflows. The scenario map, its environmental

conditions, and the CS included must be allowed to

change or evolve to study the SoS under different

conditions. The outcome of the simulated scenarios

is to be analysed for obtaining a set of requirements

to constrain the design space of an electric

Unmanned Aerial Vehicle (UAV). For the SoS

explorations, the feasibility of Remote Component

Environment (RCE) workflows will be evaluated

with a focus on traceability. This paper aims to

assess the convenience of using RCE’s workflows in

terms of traceability.

2. A Workflow-based Modelling Environment

The Remote Component Environment (RCE) is an

open-source application developed by the German

Aerospace Center (DLR) for design and simulation

of systems (Boden, 2021). Serving as a flexible and

scalable platform, it utilizes object-components,

which represent a series of tasks to be executed in a

specific order at predetermined intervals. RCE

provides a graphical user interface for configuring

the workflows, empowering users to define inputs,

outputs, and the sequence of individual tasks. This

structure ensures systematic and efficient

experiments.

2.1. RCE Components

RCE features a range of components for different

functions such as simulation, data processing and

visualization. Central to these components available

in RCE is the Design of Experiments (DoE)

component, which allows users to define sets of

input parameters with specific ranges and

distributions, to set up and run experiments.

RCE also supports the incorporation of Python

scripts as workflow components. This feature

leverages Python’s versatility, extending the range

of tasks beyond the capabilities of the default RCE

components. For example, conduct intricate

calculations, manipulate data or files, or generate

plots during the workflow runtime.

Additionally, RCE enables the integration of

external tools as components in its workflows. This

means that users can add their own software

packages to RCE- for instance, by adding external

tools for data acquisition, simulation, or analysis-

and incorporate them into a workflow with built-in

components for optimization.

2.2. System of Systems Experiments

Conducting SoS experiments for Aircraft

Conceptual Design (ACD) is a complex application

that requires the integration of multiple components

for considering the CSs and their respective

subsystems. The SoS experiments aim at optimizing

requirements for a new aircraft, considering factors

such as performance, safety, and cost. To achieve

this, the DoE component within RCE is used to

orchestrate and execute a series of experiments that

delve into the compromises inherent between

varying requirements and capabilities. The results of

these experiments can then be analysed using

Python scripts and external tools to identify the most

promising design options. An example of an SoS

workflow is shown in Fig. 1.

Figure 1: Structured workflow in RCE for SoS

experiments.

3. SoS Workflow Construction

This section describes the different disciplines

involved as block components in the assembly of the

RCE workflow for wildfire detecting SoS

exploration. Detection hinges on the subsystems

nested within the CS. For this study, these

subsystems encompass visual sensors with a

resolution range. When a smoke plume is captured

within the sensor's visual cone, detection is

confirmed, marking the SoS's operation as

successful and stopping the simulation.

3.1. Ontology Modelling

Ontologies serve as an instrument to formally

encapsulate knowledge specific to a domain,

including the concepts, relationships, and

constraints that define it (Knöös Franzén, 2023).

They provide a shared vocabulary and

understanding for a group of people working on a

common task, enabling more effective

communication and reasoning about the domain. By

defining a common ontology of the components,

interfaces, and behaviours of the systems in the

SIMS 64 Västerås, Sweden, September 26-27, 2023

study, it becomes easier for everyone involved to

reason about how different systems interact with one

another, and how changes done to one system will

affect the others. Additionally, ontologies can

facilitate the tracing of requirements, decisions, and

outcomes across the SoS, which is important for

understanding the impact of changes and making

informed decisions (Lovaco, 2023). For visual

clarity, Fig. 2 shows the ontology structure of a

surveillance UAV. One ontology definition example

(used for defining the present scenario) can be seen

in Fig. 3.

Figure 2: Partial ontology structure of a surveillance

UAV.

Figure 3: Ontology definitions of a surveillance UAV.

3.2. Clustering

Clustering can be described as the process of

grouping a set of objects in such a way that objects

in the same group (called a cluster) are in some

manner more alike than those in different groups

(clusters). Clustering is needed for navigation

purposes since the flight paths will be defined

afterwards based on the clusters to be visited.

The K-Means clustering algorithm is a popular

method for clustering (Pedregosa, 2011). It

partitions N data points into K clusters gauging their

proximity to the centroids. Fig. 4 shows an example

of the centres generated after clustering a given data

set. However, determining the optimal number of

clusters often poses a challenge. The method for

determining the optimal number of clusters in K-

Means clustering is explained in the section below.

3.2.1. Objective Function

The objective function of K-Means is to minimize

the sum of squared distances between each data

point and its assigned centroid:

 ∑ 𝑚𝑖𝑛𝜇𝑗∈𝐶‖x𝑖 − 𝜇𝑗‖
2

𝑛

𝑖=0

(1)

The time complexity of K-Means is O(KNT),

where N is the number of data points and T the

iteration number (Pedregosa, 2011).

Figure 4: Centre points after clustering data.

A method for estimating the optimal number of

clusters involves plotting the Within-Cluster Sum of

Squares (WCSS) against the number of clusters and

selecting the point where the WSS starts to level off

(Pedregosa, 2011). The WCSS is defined as the sum

of squared distances between each data point and its

assigned centroid:

𝑊𝐶𝑆𝑆 = ∑(∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑑𝑖 , 𝐶𝑘)2

𝑑𝑚

𝑑𝑖𝑖𝑛𝐶𝑖

)

𝐶𝑛

𝐶𝑘

(2)

Where C is the cluster centroid, d the data point and

n the number of clusters.

The optimal number of clusters can be determined

by inspecting the plot of WCSS as a function of the

number of clusters, shown below in Fig. 5.

Typically, the plot will show a steep decrease in

WCSS as the number of clusters increases, followed

by a levelling off. The "Elbow point" is the number

of clusters at which the WCSS starts to level off. For

the plot shown below, approximately 5 clusters yield

a value of 0.2·108.

While visually perusing these plots is feasible, it

might prove tedious and suboptimal, especially in

large-scale simulations. In contrast, the use of a

convergence analysis provides an automated and

systematic approach. This allows for quicker

identification of convergence behaviour and

facilitates the exploration of design spaces in a more

efficient and reliable manner.

SIMS 64 Västerås, Sweden, September 26-27, 2023

A straightforward, yet more automation-friendly

approach is to take the computed sum of squared

distances and average it using the amount of data

collected in that group. The result is compared with

the squared value of a convenient parameter, which

for the present case is the squared value of the

distance that the sensors in the UAV can see.

Figure 5: Evolution of the inertia depending on the

number of clusters used.

3.3. Graph Theory for Finding the Shortest

Navigation Path

The Traveling Salesman Problem (TSP) is a well-

known combinatorial optimization problem that

involves finding the shortest path to visit a set of

points exactly once and return to the origin (Reinelt,

2003). One prevailing technique to tackle the TSP is

by using graph theory (Euler, 1741), which provides

an efficient and scalable solution (Hagberg, 2008).

In this method, the TSP is modelled as a complete

graph, where each point is represented by a node,

and the edges represent the distances between them.

The objective is to find the Hamiltonian cycle,

which is a path that visits all nodes exactly once and

returns to the starting node. Various algorithms,

such as Christofides algorithm (Christofides, 1976),

Simulated Annealing (Kirkpatrick, 1983), and

Threshold Accepting (Dueck, 1990), can be used to

find the shortest path. By using graph theory, the

TSP can be solved with high accuracy, making it a

useful tool for solving optimization problems in

various fields. For the SoS use case, the centroids

found in the previous step are clustered again

depending on the number of CSs to be used, which

for the present case is the number of UAVs. The TSP

is solved for each aircraft to generate the navigation

path for patrolling over an area. The Christofides

algorithm is the chosen one for the present work, and

it is used over a complete graph G to generate paths

such as the one shown in Fig. 6. The initial node for

the path is 0, but the nodes are not necessarily visited

in the same order as they are numbered. The

Christofides algorithm consists of the following

steps (Goodrich & Tamassia et al., 2015):

1. A minimum spanning tree, M, is

constructed for G.

2. Compute the set W with the vertices with

odd degree from M. Form a new graph H

with these vertices and the edges

connecting them in G. Compute a

minimum-weight matching P in this

subgraph H.

3. Then H and P are combined into G’

keeping repeated edges.

4. Find an Eulerian path C.

5. Finally convert C into a tour by skipping

each vertex that has already been visited.

Figure 6: Hamiltonian cycle generated from a TSP

solution.

3.4. Agent-Based Simulations for SoS Exploration

Agent-Based simulations (ABS) are a distinctive

modelling and simulation technique that focuses on

the behaviour of individual agents. Agents are

entities with the ability to perceive their

environment, make decisions, and act on their

environment.

ABS boasts several advantages when compared to

other modelling and simulation techniques. For one,

ABS allows for the modelling of heterogeneity

among agents, they can have different attributes,

behaviours, and interactions, which makes the

system more realistic (Lovaco, 2022). Moreover,

ABS also allows to observe emergence, which is the

phenomenon where the behaviour of the SoS is

unequal to the sum of its individual parts. It must be

noted that the resulting emergent behaviour should

be judged as an increase or decrease of the SoS

group value. Consequently, ABS is a promising

approach to exploring the behaviour of interacting

systems.
The exploration of complex SoS requires

sophisticated tools for modelling and simulation.

The tool used for this paper is NetLogo, an open-

source ABS software with a drag-and-drop interface

to create Agent-Based Models (ABM) (Tisue,

1999). Fig. 7 shows a NetLogo model interface

created for firefighting SoS studies. NetLogo has

several built-in capabilities for creating and

manipulating agents, defining their behaviours, and

visualizing simulation results.

SIMS 64 Västerås, Sweden, September 26-27, 2023

Figure 7: Agent-Based Model Interface.

3.5. Functional Mockup Units

The results extracted from the ABS can be analysed

to find, for example, range and endurance

requirements for UAVs. Once these specifications

are distinctly outlined, cyber-physical UAV models

with higher fidelity than the ones defined in the ABS

are more suitable for ACD. These high-fidelity

models can be made tool independent by using

Functional Mockup Units (FMUs). Gaining traction

in contemporary engineering and modelling sectors,

FMUs are software modules that enshroud a specific

functionality of a larger model of a system

(Blochwitz, 2011). The main objective of FMUs is

to enable model share and exchange between

different tools and platforms in a standardized way.

This means that models developed in one software

environment can be easily integrated and used in

another, without the need for custom integration

code. FMUs are designed to be platform and

language independent, they can be used across

different operating systems and hardware

architectures. This positions FMUs as a pivotal asset

to share work and collaborate on interdisciplinary

complex modelling and simulation projects (Braun,

2013).

4. SoS Case study and Results

This section presents the case study of a

homogeneous forest-fire spotting SoS that consists

exclusively of UAVs patrolling a given area to

detect wildfires. Their respective flight trajectories,

however, are derived uniquely by harnessing the K-

Means clustering algorithm—which groups

proximate trees—and subsequently deploying the

TSP to delineate the Hamiltonian cycle for every

UAV. Clustering is performed using the radius

around each centroid determined by the visual

sensor proficiency of the UAV. To evaluate different

SoS configurations, the DoE uses a Latin Hypercube

Sampling (LHS) method to generate different CS for

the scenario. The UAV capabilities and scenario

parameters not generated using LHS are extracted

from the ontology, which is stored in an XML file.

The simulations are executed in Netlogo with the

wildfire initial geographic position being at a

random point in the map. The fire detection success

or failure is reported for each scenario. The flight

missions for each UAV are simulated using a high-

fidelity model FMU to evaluate the State of Charge

(SoC) of the batteries and determine if the UAV

configuration can achieve their mission (Krus,

2012). The workflow diagram of this case study was

shown in Fig. 1, which from left to right starts by

loading and reading the ontology; then the DoE

component generates the different CS; the

vegetation data is clustered afterwards to generate

the UAVs flight paths; the NetLogo ABS executes

the different SoS configurations; finally, the high-

fidelity FMUs are executed to evaluate the

performance of each aircraft concept. The workflow

cycle is repeated as many times as initially defined

in the DoE component. All the outputs forwarded at

each step of the workflow are stored by RCE and

accessible for the user once the experiment is

completed, which is key for traceability.

4.1. Experiment Workflow

An ontology akin the represented in Fig. 2 is used to

describe the scenario. The ontology XML file is read

to extract the information needed for the SoS

experiments. For this paper the values extracted

from the ontology are the scaling factor, the fire

detection time limit, position of the fire, wind

velocity and wind direction. The number of UAVs

used, and their capabilities are generated using the

LHS and are catalogued in Tab. 1. This data is

pivotal in tailoring the ABS, enabling a thorough

examination of the ramifications stemming from

diverse SoS layouts.

Table 1: LHS Generated Experiments.

ID UAVS
Sensor

Range [km]

Velocity

[km/h]

1 6 1 88

2 7 2 106

3 9 1 153

4 4 2 190

Navigation routes are formulated in alignment with

methodologies delineated in Sections 3.2 and 3.3.

The paths depend on the sensor visual range and the

quantity of UAVs defined. Fig. 4 shows the

discerned centroids and Fig. 6 offers a glimpse into

one such navigation route. The nondimensional

ranges computed are shown in Tab. 2. The “Min

Range” and “Max Range” values in the table

represent respectively the minimum and maximum

nondimensional distance flown by the UAVs in the

SoS configuration. The scaling factor aids in

converting these nondimensional distances into SI

units.

SIMS 64 Västerås, Sweden, September 26-27, 2023

Table 2: Nondimensional Ranges and Map Scaling

Factor.

ID Min Range Max Range
Scaling

Factor [m]

1 329 465 100

2 278 454 100

3 224 346 100

4 364 623 100

The ABS is performed for a map, as depicted in Fig.

8, where different surveillant agents can be seen.

The map geography is generated importing elevation

points into the model. The vegetation is dispersed

randomly under certain topographic criteria, such as

lake zones, resulting into the data distribution shown

previously in Fig. 4. The geography and the fire

location intend to relate to a real fire case (MSB,

2014). The arrow in the figure indicates the source

of the smoke plume and the coloured lines represent

a fraction of the flight paths taken by the aircraft

systems.

Figure 8: Agent-Based simulation visualization.

The scenario was simulated using a quartet of

different SoS configurations, each of which was

executed ten times with wildfires initialized

randomly, accumulating a total of 40 runs. Tab. 3

outlines the detection success rate and the averaged

time required to spot the smoke plume for each SoS

configuration.

Following the workflow sequence from Fig. 1, a

high-fidelity aircraft model available in the cyber-

physical high-performance simulation tool Hopsan

(Krus, 2012) (which is similar to e.g., Modelica) was

simulated through an FMU. This was done to

ascertain the SoC of the battery, as well as the

propeller diameter required to achieve the necessary

velocity.

Table 3: Detection success and time.

ID
Success Rate

[%]

Avg.

Detection

Time[min]

1 100 92

2 100 139

3 90 128

4 90 70

The necessary endurance, corresponding to the most

extensive range for each UAV setup, is calculated

and used to define the stop time for each FMU

simulation. Tab. 4 summarizes the results extracted

from these simulations: the battery SoC, the required

diameter for the propeller, and the required

endurance to complete just one loop of the

predefined flight path.

Table 4: Aircraft FMU values.

ID SoC [%]
Propeller Ø

[cm]

Endurance

[min]

1 73.0 28 32

2 78.2 28.5 26

3 86.5 31.5 14

4 78.1 34 20

5. Summary and Discussion

The workflow created ran all the 40 cases to study a

firefighting SoS in 39 minutes real time. The

obtained results can be used for constraining the

design space to generate aircraft concepts, as well as

discussing the trade-offs needed to achieve the

capabilities of the desired aircraft concept. For a

good trade-off analysis, a more extensive set of

results is needed. But the procedure is exemplified

in this section. First, Tab. 5 shows the collection of

different CS capabilities.

Table 5: Constituent Systems Specifications.

CS
Sensor

Range

[km]

Velocity

[km/h]

Range

[km]
Prop.

Ø [cm]

Endurance

[min]

1 1 88 46.5 28 32

2 2 106 45.4 28.5 26

3 1 153 34.6 31.5 14

4 2 190 62.3 34 20

Then a comparison of SoS capabilities with their

success rates (Tab. 4) helps in ranking requirements.

This ranking can be subjective, based on the success

rates, or on customer pre-defined criteria,

culminating in a priority matrix. In Tab. 6, values 2,

1, or 0 denote higher, equal, or lower importance.

Notably, below the diagonal, values swap between 0

and 2, while 1 stays constant. The trade-offs,

discussed by rows are as following: Sensor Range

(SR) holds higher significance than CS Velocity (V)

since a higher speed does not increase the success;

SIMS 64 Västerås, Sweden, September 26-27, 2023

comparison of SR with Range (R) or Endurance (E)

needs more data for a decision hence it is assumed

equal importance; SR, however, is seen as more

crucial than Propeller Diameter (Ø) for fire

detection.

The comparison is only exemplified here since it is

beyond the current aim. It needs to be mentioned

that, after identifying and discussing trade-offs to

prioritize requirements, the ranking is eventually

combined with methods such as the House of

Quality (HoQ) or Quality Function Deployment

(QFD) (Ulrich & Eppinger et al., 2016).

Table 6: Customer Requirement Priorities.

SR

[km]

V

[km/h]
R [km]

Ø

[cm]

E

[min]

SR 2 1 2 1

V 0 0 2 1

R 1 2 2 2

Ø 0 0 0 1

E 1 1 0 1

Fig. 9 shows an approximate curve representing the

achieved cruise velocity as a function of the

propeller diameter for a specified aircraft body

geometry, which once they are obtained it is possible

to find feasible regions for the design spaces.

Figure 9: Achieved UAV cruise velocity as a function of

the propeller diameter.

From the analysis, a notable topic is the aircraft's

taxiing time. As indicated in Tab. 4, the aircraft can

complete several missions along its flight path

before needing to taxi, with the goal of preserving a

SoC above 20% ideally. If this is not achieved, there

might be a need to redesign the battery and aircraft

to lessen their weight. This reduction can decrease

both cruise speed and associated costs, potentially

prompting another iteration of ACD.

For battery sizing, the drag forces over the mission

can be extracted from the FMU results as well. Fig.

10 shows the flight altitude, and the aircraft drag

over mission time. By knowing the altitude, it is

possible to obtain the atmosphere properties. By

understanding the forces that the aircraft needs to

overcome to sustain the flight, it is possible to obtain

the work and energy needed to fulfil the mission, and

thus size a battery accordingly. Furthermore,

studying the drag forces can reveal the parts of the

geometry with the higher contribution to them and

initiate a subsystem optimization process. These

results can be obtained thanks to the use of a high-

fidelity FMU in the workflow. It helps to explain, for

example, the reduction over time of the drag forces

observable in Fig. 10, which can be attributed to the

decreasing energy in the battery that is translated

into a reduced cruise velocity over the mission time.

Figure 10: Aircraft altitude and drag forces values

throughout time.

6. Future Work

The SoS studies for ACD can be expanded through

the compatibility of RCE with XML files and

CPACS files (Alder, 2020). CPACS files are

designed for storing information related to aircraft

concept generation. They can be used for

encapsulating data pertinent to aircraft concept

development, present a means to consolidate and

disseminate expertise across diverse engineering

domains, encompassing aerodynamics, propulsion,

and structures.

RCE is equipped with dedicated features for the

integration and utilization of other CPACS

compatible tools in its workflows. One example of a

tool designed to work seamlessly with CPACS files

is TiGL (Siggel, 2019). TiGL is open-source and

uses geometry libraries to visualize the 3D

geometric representations of data extracted from

CPACS. TiGL is also capable to export to several

computer-aided design (CAD) formats.

Another promising future inquiry hinges on

multidisciplinary optimization. The results of the

SoS exploration studies can be analysed using HoQ

and QFD methods for creating SoS value and system

cost functions from the requirements. Subsequently

analysing the balance between SoS value and CS

cost to set the stage for a clearly delineated design

space, marked by discernible requirement

constraints, primed for preliminary concept

evolution and optimization.

SIMS 64 Västerås, Sweden, September 26-27, 2023

7. Conclusion

The research presented here using RCE workflows

offers a robust method for tracing requirements and

capabilities in SoS studies. A case study for aircraft

concept generation to be used for wildfire detection

was introduced to illustrate the created workflow.

From parameters generated using LHS, navigation

routes were generated from areas clustered based on

the UAVs visual subsystems capabilities. The

aircraft concepts and their routes were simulated to

compare SoS mission success rates and constrain the

design space of the aircraft concepts. Overall, this

work illustrates how RCE workflows can be used for

aircraft requirement generation by providing easy

access to the results of every experiment allowing to

sustain a high level of traceability.

Acknowledgment

The authors would like to acknowledge the Swedish

Innovation agency (VINNOVA) for its financial

support through the grant 2019-05371.

References

Mori, M., Ceccarelli, A., Lollini, P., Frömel, B., Brancati, F., &
Bondavalli, A. (2018). Systems‐of‐systems modeling using a

comprehensive viewpoint‐based SysML profile. Journal of

Software: Evolution and Process, 30(3), e1878.

Staack, I., Amadori, K., & Jouannet, C. (2019). A holistic
engineering approach to aeronautical product development. The

Aeronautical Journal, 123(1268), 1545-1560.

Dahmann, J. S., & Baldwin, K. J. (2008, April). Understanding

the current state of US defense systems of systems and the

implications for systems engineering. In 2008 2nd Annual IEEE

Systems Conference (pp. 1-7). IEEE.

Maier, M. W. (2014). The role of modeling and simulation in

system of systems development. Modeling and simulation

support for system of systems engineering applications, 11-41.

Krus, P. (2006, September). Aircraft System Optimization and

Analysis for Traceability in Design. In 11th AIAA/ISSMO

Multidisciplinary Analysis and Optimization Conference (p.

7017).

Tekinerdogan, B., & Erata, F. (2017, April). Modeling

traceability in system of systems. In Proceedings of the

Symposium on Applied Computing (pp. 1799-1802).

Blochwitz T., Otter M., Arnold M., Bausch C., Clauß C.,

Elmqvist H., Junghanns A., Mauss J., Monteiro M., Neidhold T.,

Neumerkel D., Olsson H., Peetz J.-V., Wolf S. (2011): The
Functional Mockup Interface for Tool independent Exchange of

Simulation Models. 8th International Modelica Conference,

Dresden 2011.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., ... & Duchesnay, E. (2011). Scikit-learn:

Machine learning in Python. the Journal of machine Learning

research, 12, 2825-2830.

Hagberg, A., Swart, P., & S Chult, D. (2008). Exploring
network structure, dynamics, and function using NetworkX (No.

LA-UR-08-05495; LA-UR-08-5495). Los Alamos National

Lab.(LANL), Los Alamos, NM (United States).

Lovaco, J., Staack, I., & Krus, P. (2022). Environmental Agent-
Based Modelling For A Firefightingsystem Of Systems. In

ICAS2022.

Lovaco, J. L., Franzén, L. K., & Krus, P. (2023, April). Agent-
Based Simulation and Ontology Integration for System-of-

System Exploration. In Proceedings of IDEAS 2022:

Interdisciplinary Conference on Innovation, Design,
Entrepreneurship, and Sustainable Systems (pp. 13-23). Cham:

Springer International Publishing.

Axin, M., Braun, R., Dell'Amico, A., Eriksson, B., Nordin, P.,

Pettersson, K., ... & Krus, P. (2010). Next generation simulation
software using transmission line elements. In Fluid Power and

Motion Control, 15th-17th September, Bath, England, UK (pp.

265-276). Centre for Power Transmission and Motion Control.

Modelica Association. Modelica - A unified ObjectOriented
Language for Physical Systems Modeling Language

Specification - Version 3.2, 03 2010.

Krus, P., Braun, R., Nordin, P., & Eriksson, B. (2012). Aircraft

system simulation for preliminary design. In 28th International
Congress of the Aeronautical Sciences, Brisbane, Australia, 23-

28 September, 2012 (pp. Art-nr). Optimage Ltd.

Braun, R., & Krus, P. (2013). Tool-independent distributed

simulations using transmission line elements and the Functional
Mock-up Interface. In 53rd SIMS conference on Simulation and

Modelling, October 4-6, Reykjavik, Iceland.

Alder, M., Moerland, E., Jepsen, J., & Nagel, B. (2020). Recent

advances in establishing a common language for aircraft design

with CPACS.

Siggel, M., Kleinert, J., Stollenwerk, T., & Maierl, R. (2019).

TiGL: an open source computational geometry library for
parametric aircraft design. Mathematics in Computer Science,

13(3), 367-389.

Boden, B., Flink, J., Först, N., Mischke, R., Schaffert, K.,

Weinert, A., ... & Schreiber, A. (2021). RCE: an integration
environment for engineering and science. SoftwareX, 15,

100759.

Myndigheten för samhällsskydd och beredskap (MSB).

Skogsbranden i Västmanland 2014. MSB798, 2015. ISBN: 978-

91-7383-527-5

Tisue, S., & Wilensky, U. (1999). Center for Connected

Learning and Computer-Based Modeling Northwestern

University, Evanston, Illinois. NetLogo: A Simple Environment

for Modeling Complexity, Citeseer.

Christofides, N. (1976). Worst-case analysis of a new heuristic

for the travelling salesman problem. Carnegie-Mellon Univ

Pittsburgh Pa Management Sciences Research Group.

Dueck, G., & Scheuer, T. (1990). Threshold accepting: A
general purpose optimization algorithm appearing superior to

simulated annealing. Journal of computational physics, 90(1),

161-175.

Kirkpatrick, S., Gelatt Jr, C. D., & Vecchi, M. P. (1983).
Optimization by simulated annealing. science, 220(4598), 671-

680.

Knöös Franzén, L. (2023). A System of Systems View in Early

Product Development: An Ontology-Based Approach (Doctoral

dissertation, Linköping University Electronic Press).

Euler, L. (1741). Solutio problematis ad geometriam situs

pertinentis. Commentarii academiae scientiarum Petropolitanae,

128-140.

T. Reinelt, G. (2003). The traveling salesman: computational

solutions for TSP applications (Vol. 840). Springer.

Goodrich, M. T., & Tamassia, R. (2015). Algorithm design and

applications (Vol. 363). Hoboken: Wiley.

Luzeaux, D., & Ruault, J. R. (Eds.). (2013). Systems of systems.

John Wiley & Sons.

Ulrich, K. T., & Eppinger, S. D. (2016). Product design and

development. Boston: McGraw-Hill higher education.

