
SIMS 64  Västerås, Sweden, September 26-27, 2023 

 

 

Traceable System of Systems Explorations Using RCE 

Workflows 
 

Jorge Lovacoa,*, Ingo Staackb, Petter Krusa 

  
a Department of Management and Engineering (IEI), Linköpings university, Sweden, b Institute of Aircraft Design and 

Lightweight Structure (IFL), Technische Universität Braunschweig. 

jorge.lovaco@liu.se 

 

Abstract 

 

The System of Systems (SoS) framework plays a pivotal role in delimiting aircraft design spaces by examining 

interactions among its Constituent Systems (CS). Each CS has a distinct collection of capabilities, some of which 

may be shared with other CS. The framework explores emergent behaviours that arise from communication 

between the CS within the SoS. These emergent behaviours are characterized by their unattainability by any 

individual CS and result from their collaborative nature. The identification of these emergent behaviours enables 

System of Systems Engineering (SoSE) to pinpoint the most valuable configurations of the SoS, thereby 

maximizing the collective value. Furthermore, these emergent behaviours aid in stipulating design requirements 

for new systems based on the capabilities outlined in the SoS study. To map the relationship between needs, 

capabilities, requirements, and behaviours, maintaining traceability throughout the study is paramount.  

This research employs workflows created using the Remote Component Environment (RCE), a specialized tool 

for structured and automated task development. The objective is to showcase RCE's integration capabilities- 

specifically for software tools and Python scripts- with task scheduling. This integration enables swift extraction 

of results, making them available at every step, thus augmenting analysis efficiency. The study focuses on the 

perspective of an aircraft designer during the early concept generation phase, specifically applied to the 

development of an electric Unmanned Aerial Vehicle (UAV) concept for wildfire detection.  

Keywords: System of Systems, Aircraft Conceptual Design, Wildfire Detection, Agent-Based Simulation, Systems 

Engineering. 

 

 

1. Introduction 

The System of Systems (SoS) analysis has become 

an important part of systems engineering (Staack, 

2019). An SoS is defined as a system that consists of 

several Constituent Systems (CS) and shares the 

following characteristic properties (Maier, 2014):  

• Each of the CS can operate by itself and execute 

its mission as an individual.  

• Each of the CS is managed independently, 

which means that each one of them is acquired 

and maintained within its own budget 

constraints. 

• The CS are under a geographic distribution, 

with the distance large enough to require a non-

physical communication.  

• Communication and interaction between CS 

results in emergent behaviours, which can be 

not only difficult to predict but also unattainable 

by any single CS.  

• There is an evolution throughout time of the 

SoS, either by adding or removing CS, 

upgrading or renewing them, or integrating CS 

different from the ones in the original 

composition.  

Modelling and simulation become an obvious choice 

for finding emergent behaviours in an SoS 

configuration and to study its evolution when the CS 

arrangement changes.  

With an SoS being a complex assembly of systems, 

large numbers of possible combinations might be 

found during the different analyses. Thus, the 

requirement spaces must be meticulously managed 

to prevent confusion and ensure traceability at every 

step of the process (Mori, 2018). Traceability 

ensures that the customer needs are correctly 

understood and linked to requirements and use cases 

(Luzeaux & Ruault et al., 2013). Requirement 

traceability also supports greatly the analysis of an 

SoS. It narrows down the design space and enhances 

trade-off analysis (Staack, 2019), from the top level 

of the SoS, down to the subsystem level of the CS in 

an asynchronous manner (Dahmann, 2008). Poor 

traceability makes it difficult to identify purposes or 

goals resulting in the less convenient “bureaucracy-

driven architectures” (Maier, 2014). Enhancing 

traceability helps also to propagate changes among 
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different levels, namely concepts, requirements, 

specifications as well as take decisions or perform 

better impact studies. Traceability involves matrix-

based methods (Krus, 2006) for mapping customer 

needs and requirements, design parameters and 

system behaviour. These methods allow re-

evaluations in case of requirement changes 

(Luzeaux & Ruault et al., 2013). Besides 

traceability-oriented methods, it is possible to find 

requirements for traceability of SoS capabilities 

(Tekinerdogan, 2017). 

A wildfire detecting SoS is used in the present work 

to illustrate some of the modelling and simulations 

considerations needed to develop traceable 

workflows. The scenario map, its environmental 

conditions, and the CS included must be allowed to 

change or evolve to study the SoS under different 

conditions. The outcome of the simulated scenarios 

is to be analysed for obtaining a set of requirements 

to constrain the design space of an electric 

Unmanned Aerial Vehicle (UAV). For the SoS 

explorations, the feasibility of Remote Component 

Environment (RCE) workflows will be evaluated 

with a focus on traceability. This paper aims to 

assess the convenience of using RCE’s workflows in 

terms of traceability.  

 

2. A Workflow-based Modelling Environment  

The Remote Component Environment (RCE) is an 

open-source application developed by the German 

Aerospace Center (DLR) for design and simulation 

of systems (Boden, 2021). Serving as a flexible and 

scalable platform, it utilizes object-components, 

which represent a series of tasks to be executed in a 

specific order at predetermined intervals. RCE 

provides a graphical user interface for configuring 

the workflows, empowering users to define inputs, 

outputs, and the sequence of individual tasks. This 

structure ensures systematic and efficient 

experiments. 

2.1. RCE Components 

RCE features a range of components for different 

functions such as simulation, data processing and 

visualization. Central to these components available 

in RCE is the Design of Experiments (DoE) 

component, which allows users to define sets of 

input parameters with specific ranges and 

distributions, to set up and run experiments. 

RCE also supports the incorporation of Python 

scripts as workflow components. This feature 

leverages Python’s versatility, extending the range 

of tasks beyond the capabilities of the default RCE 

components. For example, conduct intricate 

calculations, manipulate data or files, or generate 

plots during the workflow runtime. 

Additionally, RCE enables the integration of 

external tools as components in its workflows. This 

means that users can add their own software 

packages to RCE- for instance, by adding external 

tools for data acquisition, simulation, or analysis- 

and incorporate them into a workflow with built-in 

components for optimization. 

2.2. System of Systems Experiments 

Conducting SoS experiments for Aircraft 

Conceptual Design (ACD) is a complex application 

that requires the integration of multiple components 

for considering the CSs and their respective 

subsystems. The SoS experiments aim at optimizing 

requirements for a new aircraft, considering factors 

such as performance, safety, and cost. To achieve 

this, the DoE component within RCE is used to 

orchestrate and execute a series of experiments that 

delve into the compromises inherent between 

varying requirements and capabilities. The results of 

these experiments can then be analysed using 

Python scripts and external tools to identify the most 

promising design options. An example of an SoS 

workflow is shown in Fig. 1. 

 
Figure 1: Structured workflow in RCE for SoS 

experiments. 

3. SoS Workflow Construction  

This section describes the different disciplines 

involved as block components in the assembly of the 

RCE workflow for wildfire detecting SoS 

exploration. Detection hinges on the subsystems 

nested within the CS. For this study, these 

subsystems encompass visual sensors with a 

resolution range. When a smoke plume is captured 

within the sensor's visual cone, detection is 

confirmed, marking the SoS's operation as 

successful and stopping the simulation.  

 

3.1. Ontology Modelling 

Ontologies serve as an instrument to formally 

encapsulate knowledge specific to a domain, 

including the concepts, relationships, and 

constraints that define it (Knöös Franzén, 2023). 

They provide a shared vocabulary and 

understanding for a group of people working on a 

common task, enabling more effective 

communication and reasoning about the domain. By 

defining a common ontology of the components, 

interfaces, and behaviours of the systems in the 
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study, it becomes easier for everyone involved to 

reason about how different systems interact with one 

another, and how changes done to one system will 

affect the others. Additionally, ontologies can 

facilitate the tracing of requirements, decisions, and 

outcomes across the SoS, which is important for 

understanding the impact of changes and making 

informed decisions (Lovaco, 2023). For visual 

clarity, Fig. 2 shows the ontology structure of a 

surveillance UAV. One ontology definition example 

(used for defining the present scenario) can be seen 

in Fig. 3. 

 

 
Figure 2: Partial ontology structure of a surveillance 

UAV. 

 
Figure 3: Ontology definitions of a surveillance UAV. 

3.2. Clustering 

Clustering can be described as the process of 

grouping a set of objects in such a way that objects 

in the same group (called a cluster) are in some 

manner more alike than those in different groups 

(clusters). Clustering is needed for navigation 

purposes since the flight paths will be defined 

afterwards based on the clusters to be visited.  

The K-Means clustering algorithm is a popular 

method for clustering (Pedregosa, 2011). It 

partitions N data points into K clusters gauging their 

proximity to the centroids. Fig. 4 shows an example 

of the centres generated after clustering a given data 

set. However, determining the optimal number of 

clusters often poses a challenge. The method for 

determining the optimal number of clusters in K-

Means clustering is explained in the section below. 

 

3.2.1. Objective Function 

The objective function of K-Means is to minimize 

the sum of squared distances between each data 

point and its assigned centroid: 

 ∑ 𝑚𝑖𝑛𝜇𝑗∈𝐶‖x𝑖 − 𝜇𝑗‖
2

𝑛

𝑖=0

(1) 

The time complexity of K-Means is O(KNT), 

where N is the number of data points and T the 

iteration number (Pedregosa, 2011). 

 
Figure 4: Centre points after clustering data. 

A method for estimating the optimal number of 

clusters involves plotting the Within-Cluster Sum of 

Squares (WCSS) against the number of clusters and 

selecting the point where the WSS starts to level off 

(Pedregosa, 2011). The WCSS is defined as the sum 

of squared distances between each data point and its 

assigned centroid:  

𝑊𝐶𝑆𝑆 =  ∑( ∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑑𝑖 , 𝐶𝑘)2

𝑑𝑚

𝑑𝑖𝑖𝑛𝐶𝑖

)

𝐶𝑛

𝐶𝑘

(2) 

Where C is the cluster centroid, d the data point and 

n the number of clusters.  

The optimal number of clusters can be determined 

by inspecting the plot of WCSS as a function of the 

number of clusters, shown below in Fig. 5. 

Typically, the plot will show a steep decrease in 

WCSS as the number of clusters increases, followed 

by a levelling off. The "Elbow point" is the number 

of clusters at which the WCSS starts to level off. For 

the plot shown below, approximately 5 clusters yield 

a value of 0.2·108.  

While visually perusing these plots is feasible, it 

might prove tedious and suboptimal, especially in 

large-scale simulations. In contrast, the use of a 

convergence analysis provides an automated and 

systematic approach. This allows for quicker 

identification of convergence behaviour and 

facilitates the exploration of design spaces in a more 

efficient and reliable manner. 
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A straightforward, yet more automation-friendly 

approach is to take the computed sum of squared 

distances and average it using the amount of data 

collected in that group. The result is compared with 

the squared value of a convenient parameter, which 

for the present case is the squared value of the 

distance that the sensors in the UAV can see. 

 
Figure 5: Evolution of the inertia depending on the 

number of clusters used. 

3.3. Graph Theory for Finding the Shortest 

Navigation Path 

The Traveling Salesman Problem (TSP) is a well-

known combinatorial optimization problem that 

involves finding the shortest path to visit a set of 

points exactly once and return to the origin (Reinelt, 

2003). One prevailing technique to tackle the TSP is 

by using graph theory (Euler, 1741), which provides 

an efficient and scalable solution (Hagberg, 2008). 

In this method, the TSP is modelled as a complete 

graph, where each point is represented by a node, 

and the edges represent the distances between them. 

The objective is to find the Hamiltonian cycle, 

which is a path that visits all nodes exactly once and 

returns to the starting node. Various algorithms, 

such as Christofides algorithm (Christofides, 1976), 

Simulated Annealing (Kirkpatrick, 1983), and 

Threshold Accepting (Dueck, 1990), can be used to 

find the shortest path. By using graph theory, the 

TSP can be solved with high accuracy, making it a 

useful tool for solving optimization problems in 

various fields. For the SoS use case, the centroids 

found in the previous step are clustered again 

depending on the number of CSs to be used, which 

for the present case is the number of UAVs. The TSP 

is solved for each aircraft to generate the navigation 

path for patrolling over an area. The Christofides 

algorithm is the chosen one for the present work, and 

it is used over a complete graph G to generate paths 

such as the one shown in Fig. 6. The initial node for 

the path is 0, but the nodes are not necessarily visited 

in the same order as they are numbered. The 

Christofides algorithm consists of the following 

steps (Goodrich & Tamassia et al., 2015): 

1. A minimum spanning tree, M, is 

constructed for G. 

2. Compute the set W with the vertices with 

odd degree from M. Form a new graph H 

with these vertices and the edges 

connecting them in G. Compute a 

minimum-weight matching P in this 

subgraph H. 

3. Then H and P are combined into G’ 

keeping repeated edges. 

4. Find an Eulerian path C. 

5. Finally convert C into a tour by skipping 

each vertex that has already been visited. 

 

 
Figure 6: Hamiltonian cycle generated from a TSP 

solution. 

3.4. Agent-Based Simulations for SoS Exploration 

Agent-Based simulations (ABS) are a distinctive 

modelling and simulation technique that focuses on 

the behaviour of individual agents. Agents are 

entities with the ability to perceive their 

environment, make decisions, and act on their 

environment.  

ABS boasts several advantages when compared to 

other modelling and simulation techniques. For one, 

ABS allows for the modelling of heterogeneity 

among agents, they can have different attributes, 

behaviours, and interactions, which makes the 

system more realistic (Lovaco, 2022). Moreover, 

ABS also allows to observe emergence, which is the 

phenomenon where the behaviour of the SoS is 

unequal to the sum of its individual parts. It must be 

noted that the resulting emergent behaviour should 

be judged as an increase or decrease of the SoS 

group value. Consequently, ABS is a promising 

approach to exploring the behaviour of interacting 

systems.  
The exploration of complex SoS requires 

sophisticated tools for modelling and simulation. 

The tool used for this paper is NetLogo, an open-

source ABS software with a drag-and-drop interface 

to create Agent-Based Models (ABM) (Tisue, 

1999). Fig. 7 shows a NetLogo model interface 

created for firefighting SoS studies. NetLogo has 

several built-in capabilities for creating and 

manipulating agents, defining their behaviours, and 

visualizing simulation results. 
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Figure 7: Agent-Based Model Interface. 

3.5. Functional Mockup Units 

The results extracted from the ABS can be analysed 

to find, for example, range and endurance 

requirements for UAVs. Once these specifications 

are distinctly outlined, cyber-physical UAV models 

with higher fidelity than the ones defined in the ABS 

are more suitable for ACD. These high-fidelity 

models can be made tool independent by using 

Functional Mockup Units (FMUs). Gaining traction 

in contemporary engineering and modelling sectors, 

FMUs are software modules that enshroud a specific 

functionality of a larger model of a system 

(Blochwitz, 2011). The main objective of FMUs is 

to enable model share and exchange between 

different tools and platforms in a standardized way. 

This means that models developed in one software 

environment can be easily integrated and used in 

another, without the need for custom integration 

code. FMUs are designed to be platform and 

language independent, they can be used across 

different operating systems and hardware 

architectures. This positions FMUs as a pivotal asset 

to share work and collaborate on interdisciplinary 

complex modelling and simulation projects (Braun, 

2013).  

 

4. SoS Case study and Results 

This section presents the case study of a 

homogeneous forest-fire spotting SoS that consists 

exclusively of UAVs patrolling a given area to 

detect wildfires. Their respective flight trajectories, 

however, are derived uniquely by harnessing the K-

Means clustering algorithm—which groups 

proximate trees—and subsequently deploying the 

TSP to delineate the Hamiltonian cycle for every 

UAV. Clustering is performed using the radius 

around each centroid determined by the visual 

sensor proficiency of the UAV. To evaluate different 

SoS configurations, the DoE uses a Latin Hypercube 

Sampling (LHS) method to generate different CS for 

the scenario. The UAV capabilities and scenario 

parameters not generated using LHS are extracted 

from the ontology, which is stored in an XML file. 

The simulations are executed in Netlogo with the 

wildfire initial geographic position being at a 

random point in the map. The fire detection success 

or failure is reported for each scenario. The flight 

missions for each UAV are simulated using a high-

fidelity model FMU to evaluate the State of Charge 

(SoC) of the batteries and determine if the UAV 

configuration can achieve their mission (Krus, 

2012). The workflow diagram of this case study was 

shown in Fig. 1, which from left to right starts by 

loading and reading the ontology; then the DoE 

component generates the different CS; the 

vegetation data is clustered afterwards to generate 

the UAVs flight paths; the NetLogo ABS executes 

the different SoS configurations; finally, the high-

fidelity FMUs are executed to evaluate the 

performance of each aircraft concept. The workflow 

cycle is repeated as many times as initially defined 

in the DoE component. All the outputs forwarded at 

each step of the workflow are stored by RCE and 

accessible for the user once the experiment is 

completed, which is key for traceability. 

 

4.1. Experiment Workflow 

An ontology akin the represented in Fig. 2 is used to 

describe the scenario. The ontology XML file is read 

to extract the information needed for the SoS 

experiments. For this paper the values extracted 

from the ontology are the scaling factor, the fire 

detection time limit, position of the fire, wind 

velocity and wind direction. The number of UAVs 

used, and their capabilities are generated using the 

LHS and are catalogued in Tab. 1. This data is 

pivotal in tailoring the ABS, enabling a thorough 

examination of the ramifications stemming from 

diverse SoS layouts.  

 
Table 1: LHS Generated Experiments. 

ID UAVS 
Sensor 

Range [km] 

Velocity 

[km/h] 

1 6 1 88 

2 7 2 106 

3 9 1 153 

4 4 2 190 

 

Navigation routes are formulated in alignment with 

methodologies delineated in Sections 3.2 and 3.3. 

The paths depend on the sensor visual range and the 

quantity of UAVs defined. Fig. 4 shows the 

discerned centroids and Fig. 6 offers a glimpse into 

one such navigation route. The nondimensional 

ranges computed are shown in Tab. 2. The “Min 

Range” and “Max Range” values in the table 

represent respectively the minimum and maximum 

nondimensional distance flown by the UAVs in the 

SoS configuration. The scaling factor aids in 

converting these nondimensional distances into SI 

units. 
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Table 2: Nondimensional Ranges and Map Scaling 

Factor. 

ID Min Range Max Range 
Scaling 

Factor [m] 

1 329 465 100 

2 278 454 100 

3 224 346 100 

4 364 623 100 

 

The ABS is performed for a map, as depicted in Fig. 

8, where different surveillant agents can be seen. 

The map geography is generated importing elevation 

points into the model. The vegetation is dispersed 

randomly under certain topographic criteria, such as 

lake zones, resulting into the data distribution shown 

previously in Fig. 4. The geography and the fire 

location intend to relate to a real fire case (MSB, 

2014). The arrow in the figure indicates the source 

of the smoke plume and the coloured lines represent 

a fraction of the flight paths taken by the aircraft 

systems. 

 

 
Figure 8: Agent-Based simulation visualization. 

The scenario was simulated using a quartet of 

different SoS configurations, each of which was 

executed ten times with wildfires initialized 

randomly, accumulating a total of 40 runs. Tab. 3 

outlines the detection success rate and the averaged 

time required to spot the smoke plume for each SoS 

configuration.  

Following the workflow sequence from Fig. 1, a 

high-fidelity aircraft model available in the cyber-

physical high-performance simulation tool Hopsan 

(Krus, 2012) (which is similar to e.g., Modelica) was 

simulated through an FMU. This was done to 

ascertain the SoC of the battery, as well as the 

propeller diameter required to achieve the necessary 

velocity. 

 

Table 3: Detection success and time. 

ID 
Success Rate 

[%] 

Avg. 

Detection 

Time[min] 

1 100 92 

2 100 139 

3 90 128 

4 90 70 

 

The necessary endurance, corresponding to the most 

extensive range for each UAV setup, is calculated 

and used to define the stop time for each FMU 

simulation. Tab. 4 summarizes the results extracted 

from these simulations: the battery SoC, the required 

diameter for the propeller, and the required 

endurance to complete just one loop of the 

predefined flight path. 

 
Table 4: Aircraft FMU values. 

ID SoC [%] 
Propeller Ø 

[cm] 

Endurance 

[min] 

1 73.0 28 32 

2 78.2 28.5 26 

3 86.5 31.5 14 

4 78.1 34 20 

 

5. Summary and Discussion 

The workflow created ran all the 40 cases to study a 

firefighting SoS in 39 minutes real time. The 

obtained results can be used for constraining the 

design space to generate aircraft concepts, as well as 

discussing the trade-offs needed to achieve the 

capabilities of the desired aircraft concept. For a 

good trade-off analysis, a more extensive set of 

results is needed. But the procedure is exemplified 

in this section. First, Tab. 5 shows the collection of 

different CS capabilities.  

 
Table 5: Constituent Systems Specifications. 

CS 
Sensor 

Range 

[km] 

Velocity 

[km/h]  

Range 

[km] 
Prop. 

Ø [cm] 

Endurance 

[min] 

1 1 88 46.5 28 32 

2 2 106 45.4 28.5 26 

3 1 153 34.6 31.5 14 

4 2 190 62.3 34 20 

 

Then a comparison of SoS capabilities with their 

success rates (Tab. 4) helps in ranking requirements. 

This ranking can be subjective, based on the success 

rates, or on customer pre-defined criteria, 

culminating in a priority matrix. In Tab. 6, values 2, 

1, or 0 denote higher, equal, or lower importance. 

Notably, below the diagonal, values swap between 0 

and 2, while 1 stays constant. The trade-offs, 

discussed by rows are as following: Sensor Range 

(SR) holds higher significance than CS Velocity (V) 

since a higher speed does not increase the success; 



SIMS 64  Västerås, Sweden, September 26-27, 2023 

 

comparison of SR with Range (R) or Endurance (E) 

needs more data for a decision hence it is assumed 

equal importance; SR, however, is seen as more 

crucial than Propeller Diameter (Ø) for fire 

detection.  

The comparison is only exemplified here since it is 

beyond the current aim. It needs to be mentioned 

that, after identifying and discussing trade-offs to 

prioritize requirements, the ranking is eventually 

combined with methods such as the House of 

Quality (HoQ) or Quality Function Deployment 

(QFD) (Ulrich & Eppinger et al., 2016). 

 
Table 6: Customer Requirement Priorities. 

 
SR 

[km] 

V 

[km/h]  
R [km] 

Ø 

[cm] 

E 

[min] 

SR  2 1 2 1 

V 0  0 2 1 

R 1 2  2 2 

Ø 0 0 0  1 

E 1 1 0 1  

 

Fig. 9 shows an approximate curve representing the 

achieved cruise velocity as a function of the 

propeller diameter for a specified aircraft body 

geometry, which once they are obtained it is possible 

to find feasible regions for the design spaces. 

 

 
Figure 9: Achieved UAV cruise velocity as a function of 

the propeller diameter. 

From the analysis, a notable topic is the aircraft's 

taxiing time. As indicated in Tab. 4, the aircraft can 

complete several missions along its flight path 

before needing to taxi, with the goal of preserving a 

SoC above 20% ideally. If this is not achieved, there 

might be a need to redesign the battery and aircraft 

to lessen their weight. This reduction can decrease 

both cruise speed and associated costs, potentially 

prompting another iteration of ACD.  

For battery sizing, the drag forces over the mission 

can be extracted from the FMU results as well. Fig. 

10 shows the flight altitude, and the aircraft drag 

over mission time. By knowing the altitude, it is 

possible to obtain the atmosphere properties. By 

understanding the forces that the aircraft needs to 

overcome to sustain the flight, it is possible to obtain 

the work and energy needed to fulfil the mission, and 

thus size a battery accordingly. Furthermore, 

studying the drag forces can reveal the parts of the 

geometry with the higher contribution to them and 

initiate a subsystem optimization process. These 

results can be obtained thanks to the use of a high-

fidelity FMU in the workflow. It helps to explain, for 

example, the reduction over time of the drag forces 

observable in Fig. 10, which can be attributed to the 

decreasing energy in the battery that is translated 

into a reduced cruise velocity over the mission time.   

 
Figure 10: Aircraft altitude and drag forces values 

throughout time. 

6. Future Work 

The SoS studies for ACD can be expanded through 

the compatibility of RCE with XML files and 

CPACS files (Alder, 2020). CPACS files are 

designed for storing information related to aircraft 

concept generation. They can be used for 

encapsulating data pertinent to aircraft concept 

development, present a means to consolidate and 

disseminate expertise across diverse engineering 

domains, encompassing aerodynamics, propulsion, 

and structures.  

RCE is equipped with dedicated features for the 

integration and utilization of other CPACS 

compatible tools in its workflows. One example of a 

tool designed to work seamlessly with CPACS files 

is TiGL (Siggel, 2019). TiGL is open-source and 

uses geometry libraries to visualize the 3D 

geometric representations of data extracted from 

CPACS. TiGL is also capable to export to several 

computer-aided design (CAD) formats.  

Another promising future inquiry hinges on 

multidisciplinary optimization. The results of the 

SoS exploration studies can be analysed using HoQ 

and QFD methods for creating SoS value and system 

cost functions from the requirements. Subsequently 

analysing the balance between SoS value and CS 

cost to set the stage for a clearly delineated design 

space, marked by discernible requirement 

constraints, primed for preliminary concept 

evolution and optimization.  
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7. Conclusion 

The research presented here using RCE workflows 

offers a robust method for tracing requirements and 

capabilities in SoS studies. A case study for aircraft 

concept generation to be used for wildfire detection 

was introduced to illustrate the created workflow. 

From parameters generated using LHS, navigation 

routes were generated from areas clustered based on 

the UAVs visual subsystems capabilities. The 

aircraft concepts and their routes were simulated to 

compare SoS mission success rates and constrain the 

design space of the aircraft concepts. Overall, this 

work illustrates how RCE workflows can be used for 

aircraft requirement generation by providing easy 

access to the results of every experiment allowing to 

sustain a high level of traceability. 
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