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Abstract 

 

In this paper we present a standard platform XC05 for an Edge Controller based on an Industrial Control System, 

where functions made in Modelica and Python can be run as an integrated part of an automation system. We 

demonstrate how the platform is used to run a complex Model Predictive Control (MPC) strategy to optimize 

indoor heating in a residential building. MPC strategies have been increasingly popular due to their ability to 

handle nonlinear dynamics with constraints and multi-objective optimization. Since industrial control systems are 

real-time based, consideration must also be taken to running security and the real-time characteristics and timing 

of the overall system solution. We also show that heavy calculation, protected by the industrial control system 

operative, can run safely together within fast automation using standard electronics. The controlled variable in the 

MPC strategy is the supply water temperature (Space heating), and the objective is to keep the indoor temperature 

at a predefined setpoint despite variations in outdoor weather conditions by using local measurements and weather 

forecasts from the Swedish weather service SMHI. The model used in the MPC is trained automatically with real-

time data during running. We describe the controller architecture and briefly the model predictive control 

algorithm, analyze the overall system performance regarding safety and real-time characteristics. The proposed 

model predictive control application showed stable operation and expected real-time characteristics during 

operation. Furthermore, a reduction in indoor temperature deviations was achieved. 

 

1. Introduction 

The XC05 automation platform was developed as an 

activity in the DISTRHEAT research project where 

the aim of the project is to demonstrate and test in 

real operating environment (MPC) applied to 

District Heating and Cooling networks. The 

automation platform is in fact an “Edge controller” 

as expressed in the standard Industry 4.0 i.e., a 

highly intelligent unit interfacing the process or 

machine. Such controllers are expected to replace 

conventional PLC systems in the future. The details 

of the software design are described below. 

In the DISTRHEAT project we applied our ideas to 

Model predictive control (MPC) for optimizing the 

indoor temperature in residential buildings. Model 

predictive control (MPC) is an optimal control 

technique where the control actions minimize a cost 

function over a finite specified time horizon.[1] 

Using MPC for controlling different processes in the 

heating sector has proven to be highly successful as 

shown in [6] [7] [8] and [9]. To implement an MPC 

in a conventional control system (PLC) has been 

done [2] but requires deep understanding of the 

underlying PLC language and is often limited to 

special use-cases. The novelty of the proposed 

solution is using well known languages and tools 

which interact in a safe way with the time-critical 

functions of the PLC software, 

The research project includes all the basic steps of 

development such as control methods, simulations, 

and installation in a physical process.  

The automation platform was developed to cover all 

these aspects. It includes an industrial control system 

(ICS) which is integrated with commonly used 

research tools like Python scripts and Modelica 

simulations. In XC05 we introduce a new standard 

how to integrate research tools with an ICS system. 

For this purpose, we developed a graphical tool, 

FirstGraph where the objects in the ICS and the 

extended Python and Modelica libraries can be 

connected in a simple way. The tool is an extension 

of what we previously have used in the ICS and is 

understood by any process engineer. At each time 

step, the MPC controller receives or estimates the 

current state of the process being controlled. It then 

calculates the sequence of control actions that 

minimizes the cost over a specified time horizon by 

solving a constrained optimization problem that 

relies on an internal process model and the current 

system state. The controller then applies the first 
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computed control action for the building and the 

procedure is then repeated each time instance. The 

internal model in the MPC algorithm is 

automatically updated from real-time data during 

periodical learning periods which are run in parallel 

to the control actions. Data are assembled and stored 

by the ICS part. The temperatures in the building are 

read from a local PLC via a standard Modbus TCP 

communication line and the weather forecast are 

read periodically from the Swedish Meteorological 

and Hydrological Institute (SMHI). 

This MPC application was a good test of the XC05 

platform since it consists of both heavy calculations 

in the MPC algorithm and fast real time data 

handling. Moreover, the platform had to integrate 

MPC software made by other researchers with the 

ICS functions and safety supervision. 

Before it was connected to the building, the MPC 

application was run in a real-time simulation inside 

the XC05 to verify the operation, capacity and safety 

in the simple standard electronics used (Raspberry 

4). Linux with the RT_PREEMPT patch is chosen 

as the operative system because of its stable real-

time performance [3][4][5]. The MPC installation 

has now been in operation for more than five months 

without a single operation failure.  

 

2.Methodology 

The basic task was to integrate an ICS system with 

functions created in Modelica and Python. The new 

platform is based on the same principles that were 

used in the ICS system, that is used as a base for the 

platform.  

 

2.1. Industrial control system 

 

We choose our own ICS which has been used in 

many industrial installations and therefore is very 

safe and contains all the functions needed in an 

automation task including our own version of 

adaptive control. It is based on the self-tuning 

concept and has been awarded by the IEEE. The ICS 

is then transformed to the Linux operative with 

necessary changes to preserve the original properties 

of the ICS platform. 

 

2.2. Python scripts 

 

The python scripts are made in the normal way in a 

standard PC and then loaded into the XC05 platform 

where they are stored in a special library dedicated 

to Python scripts. They must be supplied with simple 

standard input/output functions to interface the ICS.   

 

2.3. Modelica simulation 

 

The Modelica simulation is designed in the normal 

way on a standard PC and then loaded into the XC05 

where it is compiled locally and stored in a special 

library dedicated to Modelica models.  

 

2.4. Supervision and safety 

 

The Python scripts and the Modelica models are 

external software which may contain errors.  

Therefore, they must be supervised and 

disconnected in case of malfunction or a software 

error to prevent disturbance in the automation 

system. The ICS part contains by itself safety 

protection developed for very sensitive processes in 

the steel and energy areas. 

 

2.5. Functional integration 

 

All functions in the platform are regarded as 

“modules” or “objects” with specified inputs and 

outputs according to the same standard as is used in 

the ICS system. This means that much of the 

software developed for the ICS can be reused in this 

case. 

 

2.6 MPC algorithm 

 

The core focus of this paper is the ICS edge 

controller, therefore only a brief description will be 

provided for the MPC kernel that runs inside. The 

MPC is a Python-based optimizer that is employing 

a machine learning model for building heat demands 

and thermal comfort. The objectives of the optimizer 

comprise multiple indices related to energy 

performance of the heating system or indoor 

temperature in the apartments. 

Anyone familiar with control theory knows that PID 

technique developed for more than 50 years ago is 

far too limiting in this case since its internal structure 

is limited, not prepared for predictive control, and 

does not support feedforward. According to the 

internal model principle, any efficient control 

algorithm must contain an internal model of the 

process and its disturbances. A candidate would be 

a general adaptive controller based on the self-

tuning principle, which is in fact an adaptive MPC 

based on a linear dynamical model.  Such a regulator 

is available in the ICS part of XC05 and has been 

used in many installations. In this case, however, an 

MPC controller was favored since it is more general, 

can handle nonlinear physical models and the 

optimization algorithm can be adjusted to the 

specific case.  Such a solution has also a higher 

development potential in the future. The drawback 

is the computational burden caused by the 

optimization and model training, but we have 

demonstrated it is quite feasible within the 

XC05Edge controller. 

 

 

2.7 Experimental study 
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An experimental study was conducted in a 

residential building. The MPC algorithm was 

developed and customized for the building's district 

heat substation. It used real-time data from the local 

PLC, such as temperature and outdoor weather 

conditions, to optimize the operation of the system. 

The MPC algorithm determined the optimal 

setpoints for the forward temperature based on 

keeping the indoor temperature at a fixed setpoint. 

To evaluate the performance of the system, data 

were collected at one- and sixty-minutes intervals 

throughout the test period. Descriptive statistics, 

such as mean value and standard deviations were 

calculated before and after installation of the system. 

 

3. Edge computing 

The automation platform described in this paper is 

an “Edge Controller” as expressed in Industry 4.0. 

Such controllers are expected to replace 

conventional PLC systems in the future.  

An important issue is to spread research results to 

ordinary process engineers. This means that the way 

the engineer interfaces the new technology should 

be according to the standards used in common 

automation.  

Our previously developed tool FirstGraph for the 

ICS, which has been used by engineers for several 

years, has been extended to the generalized XC05 

platform. It provides a standard format where all 

functions are regarded as “objects” which are 

connected to each other. The platform then unifies 

the automation functions in ICS with external 

functions created in Modelica or Python. 

 

The FirstGraph project tree has been extended with 

two new libraries Modelica and Python.  

 

 
Figure 1: The XC05 graphical programming 

 interface for engineers. 

 

The process engineer selects elements from the 

extended libraries and connects them graphically to 

the automation system as is illustrated in figure 7. 

This can be done without stopping the running 

control task. Note that a program change will be 

active within about 0.5 msec after being loaded since 

it is handled locally by the operative. 

If there is an MPC function or a Modelica function 

loaded to the library, the process engineer may 

directly use it in the automation system which 

creates a direct link between researchers and users. 

This was an important factor in this development. 

 

4.Proposed architecture 

 

4.1. Embedded system Architecture 

 

To make the entire system portable to different 

hardware architectures all software are developed in 

C99 targeting different Linux distributions. It is also 

possible to port the framework to other operating 

systems by using a simple API to interface the new 

operating system. 

The system consists of four main modules and a 

supervisor where all are strictly prioritized based on 

their different functionalities. 

These modules are: 

 

• Main controller task (ICS) 

• Simulation executor 

• Supervisor task 

• Communication task 

• Python executor 

 

 
Figure 2: Embedded system architecture 

 

The main controller task (ICS) handles all PLC 

functionality and executes all user applications. 

These applications could be run on eight different 

priority levels depending on their purpose. It’s also 

responsible for creating the different subtasks and 

supervising these. 

The simulation executor is responsible for running 

simulation of user-defined models created in the 

OpenModelica language and communication with 

the main controller task by using shared memory. 

All external communication is handled by the 

communication task which supports a variety of 
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industrial protocols like Modbus TCP/IP, Modbus 

RTU and others. The Python executor handles the 

execution of user defined python scripts and 

communicates with the main controller task by using 

POSIX queues. Each parent task in the systems 

supervises and receives errors from subtasks. All 

errors are forwarded to the supervisor task which 

takes different actions depending on the severity of 

the error.  More detailed information about the 

principles in the XC05 platform [10]. 

 

4.2 ICS task  

 

The threads in the main controller task are strictly 

prioritized with respect to their functionality. 

Application level indicates nine different levels 

(priority 67 to 75, 75 being the highest) where user- 

applications could be executed at different priorities. 

The system is strictly event based and the threads are 

only woken when some external- or timer event 

occurs. The main controller task has the highest 

thread priorities in the system except for the 

Supervisor task main thread. The communication 

task main thread will inherit the same priority as the 

thread handling the communication in the main 

controller task (COMM1 and COMM2). To 

minimize latency times, all threads which belong to 

the main controller are directed to a single CPU-

core. 

 

Name Type

RT-Priority 

(80 highest)

MAIN System thread 80

TIMER System thread 79

PCHH System thread 76

APPLEVEL1 Application thread level 1 75

APPLEVEL2 Application thread level 2 74

APPLEVEL3 Application thread level 3 73

APPLEVEL4 Application thread level 4 72

APPLEVEL5 Application thread level 5 71

APPLEVEL6 Application thread level 6 70

APPLEVEL7 Application thread level 7 69

APPLEVEL8 Application thread level 8 68

APPLEVEL9 Application thread level 9 67

COMM1 System thread 65

COMM2 System thread 64

UDPIN System thread 63

MTCP System thread 62

MDUPOUT System thread 60

MTCPS System thread 58

PYTHONSUPERVISOR System thread 47

MODELICASUPERVISOR System thread 46

TERMIN System thread 44

TERMOUT System thread 42

CYCLIC System thread 38

FCOMMIN System thread 36

FCOMMOUT System thread 34

BACKCALC_HI System thread 32

PCHL System thread 30

OPCOM System thread 28

MODELCACOMP System thread 26

BACKCALC_LO System thread 24  
Figure 3: Threads and priorities main controller task 

 

The applications written in the ICS by the user are 

executed on APPLEVEL1 – 9 which have among 

the highest priorities in the system. 

 

4.3 Simulation executor 

 

The simulation executor is responsible for executing 

code written in the Modelica language which is used 

in various academic institutes as well in industry. 

In order to accomplish this the complete 

OpenModelica package is preinstalled on the 

system. This includes the OpenModelica compiler, 

the OpenModelica simulator and a large library of 

predefined objects. 

The simulation executor consists of two parts, the 

Modelica compiler and the Modelica executor. 

 

 
Figure 4: The simulation executor 

The Modelica executor compiles the Modelica code 

defined by the user into a shared library according to 

the Function Mock-up Interface (FMI) into a 

Functional Mock-up Unit (FMU). The main 

controller task communicates with the simulation 

executor using shared memory protected by POSIX 

semaphores. 

 

4.4. Python executor 

 

The application thread of the main controller task is 

responsible for creating each corresponding subtask 

to the Python code that should be executed. 

Each subtask is then supervised from python 

supervision thread in the main controller. 

 

 
Figure 5: Python sub task creation 

 

In order to support different scenarios of how the 

python code should be executed, two different 

modes are introduced, synchronous and 

asynchronous. In synchronous mode each subtask is 

created at the same priority level as the calling 

application thread which waits for an answer or a 



SIMS 64  Västerås, Sweden, September 26-27, 2023 

user defined timeout before it continues execution. 

In asynchronous mode each subtask is created on 

priority level 0 (background) and the calling thread 

immediately continues execution and checks 

periodically if an answer has been received. A fixed 

limit of how many sub tasks that can be created has 

been set in the system due to system limitations. 

The python code is called by an interface function 

defined in the python script by the user. The function 

can have an arbitrary name but must be defined with 

a specific number of arguments that corresponds to 

the executing block in the ICS. The function consists 

of a list of four which contains float, integer, 

Boolean and text values. The last three arguments 

are prepared to be returned by the python script and 

contains real, integers and Booleans. 

The data exchange between the ICS and python 

executor is handled by POSIX message queues. 

Each sample, set by the user in the ICS, the 

corresponding ICS block checks if the python 

subtask is Idle. If the Python subtask is idle a 

message is sent to the message queue with the last 

values from the ICS. The Python subtask then 

receives the values, executes the script and returns 

the result to the ICS. Depending on if the python sub 

task is created in synchronous or asynchronous 

mode the corresponding block in the ICS waits for 

the answer or continues execution immediately. 

The errors in the python script are handled by the 

corresponding block in the ICS. Any syntax error 

in the python script causes the python sub task to 

end execution. 

 

4.5. Supervisor 

 

The main functionality of the supervisor is to 

monitor all other sub tasks in the system. The 

supervisor has the highest priority in the system and 

is able to take predefined actions depending on if an 

error state exists in some of the sub tasks.  This could 

be, for example, a controlled shutdown of all system 

tasks, restart of a certain sub task or a complete halt 

of the system. Each task communicates with the 

supervisor task using a shared memory which 

contains the current state of the specific task.  

 

5.  Test installation in a residential building 

 

 
Figure 6: Test installation site 

 

The experimental setup is performed at a district 

heat substation in a residential building in an urban 

area. The experiment is conducted in the heat season 

to get reasonable data for the MPC algorithm. 

Hardware and Technical Stack: The framework runs 

on Linux (Debian 10) on a Raspberry Pi4. The 

detailed system setup and technical specifications to 

run the experiment are presented in Table 1.  

 
Table: 1. 

Parameters Values  

OS 
ARM based 

Raspbian 

OS Name Debian 10 

OS Version 
Linux 5.11 RT-

PREEMPT 

Processor 

Broadcom 

BCM2711 SoC 

with a 1.5 GHz 

64-bit quad-core 

ARM Cortex-

A72 processor 

System RAM 2GB 

 

We implement and evaluate the MPC algorithm 

using the Scikit-learn2 library, SciPy library and 

NumPy library for Python3. The data from different 

sensors are fetched from the local PLC by using 

Modbus TCP/IP with a time resolution of 50 

milliseconds. The prediction of the local outdoor 

temperature for the next 10 hours is fetched from the 

Swedish weather service using SMHI API. The 

MPC algorithm then calculates the setpoint for each 

hour and writes it back to the local PLC by using 

Modbus TCP/IP. The data is saved locally with one- 

and sixty minutes time resolution for further analysis 

and to be processed by the MPC algorithm. The 

internal sample time of the ICS is set 10 

milliseconds for each application task to register the 

real-time behavior of the overall system. 

Timestamps are recorded for each sample interval to 

be used for further analysis. 
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Figure 7: Application program in the ICS 

 

6. Results of the test installation 

The data gathering started at the end of January and 

the controller was turned on February 6th.  

The complete system showed stable real-time 

characteristics during the whole test period 

regardless of the heavy background load due to the 

MPC computations. The ICS system functions were 

performed within the time intervals set by the user, 

which in this case was a sampling time of 10 

milliseconds without any disturbances. 

The Python-implemented MPC algorithm was 

executed as expected on the proposed platform and 

without interfering with the ICS system's 

functionality. This includes updates of python 

software, application changes including adding new 

applications programs and functions. When 

comparing the time required for a cycle's 

calculations, these were performed on a normal PC 

with a time consumption of approximately 4 minutes 

and on the industrial control system, the time 

consumption was approximately 8 minutes. This 

depends on hardware capabilities and process 

architecture.  

The MPC algorithm performed very well and was 

stable throughout the whole test period. The purpose 

was to keep the indoor temperature at a predefined 

set-point, in this case 21.5°C and minimize the 

variations. The controlled variable was the supply 

temperature (space heating) which was set to the 

local PLC at site. As seen in figure 8 the indoor 

temperature was reduced from a mean value of 

22.5°C to 21.5°C about one day after the controller 

was switched on. The variations were about +-0.2K.  

 

 

 
Figure 8: MPC performance 

  

The response in temperature can of course be made 

much faster, but that would not have been 

convenient for inhabitants in the building.  In this 

case, the control action is deliberately limited to 

achieve an “acceptable change in temperature” as 

was requested by the end user. The limit is only 

active when large changes are required for instance 

in a start-up as is shown in figure 8. During normal 

operation, there are no limits in control action. 

 

7. Summary and Discussions 

In this paper we have attempted to form a standard 

for “Edge computing” i.e.  how advanced functions 

created in research tools like Modelica and Python 

can be included in automation. Such a standard is 

necessary for broader use. As far as we know, the 

attempts that have been done so far consist of special 

programming in each individual case which is much 

more costly and requires help from a software 

specialist. With a standard setup as is described here, 

the process engineer can use external functions 

made by researchers in the automation system 

without the assistance of software experts. 

The proposed solution showed that it was feasible to 

implement a MPC strategy together with an existing 

industrial control system without interfering with its 

critical functionality and real-time behavior. The 

execution time for the MPC algorithm was 

reasonable and it performed well for the specific 

process. The Modelica simulator was not used in the 

experimental setup in this case but may be used for 

more complicated physical-based models as a local 

“Digital Twin”. We have shown that the capacity is 

sufficient for such solutions. 

In this experiment the dynamics of the process being 

controlled were slow which meant that the CPU 

capacity was enough to calculate the setpoint once 

per hour. Processes with faster dynamics may 

require other approaches, for example other 

hardware solutions, such as dedicated hardware, a 

more simplified model for the MPC or different 

solvers and optimizers. The Python interface to the 

ICS could also be improved regarding data 

conversion, messages, optimization etc. 

The main idea about using python as a base for 

MPC, and other types of control algorithms is that 

implementations easily can be transferred from 

construction and design phase to an ICS without any 

further or very little modifications. Python is also a 

well-known language which has many libraries 
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available for different purposes and also has a huge 

amount of support among the developer community. 

Many other use-cases exist that can take advantages 

of the introduction of Python in an ICS, for example 

different ML-implementations which will directly 

appear as new blocks in the ICS. Using ML in the 

ICS with data-driven models could be an alternative 

to the physics-based models implemented in the 

simulation task. Future research should focus on 

further validating the framework’s performance in 

different industrial processes and explore the 

scalability and reliability of the proposed solutions. 
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