
SIMS 64 Västerås, Sweden, September 26-27, 2023

AN EMBEDDED INDUSTRIAL CONTROL SYSTEM

FRAMEWORK FOR MODEL PREDICTIVE CONTROL OF

A DISTRICT HEAT SUBSTATION

Joakim Örneskans a,*, Konstantinos Kyprianidis b, Stavros Vouros c, Gunnar Bengtsson d

a Mälardalen University, b Mälardalen University, c Mälardalen University, d First Control Systems AB

joakim.orneskans@mdu.se

Abstract

In this paper we present a standard platform XC05 for an Edge Controller based on an Industrial Control System,

where functions made in Modelica and Python can be run as an integrated part of an automation system. We

demonstrate how the platform is used to run a complex Model Predictive Control (MPC) strategy to optimize

indoor heating in a residential building. MPC strategies have been increasingly popular due to their ability to

handle nonlinear dynamics with constraints and multi-objective optimization. Since industrial control systems are

real-time based, consideration must also be taken to running security and the real-time characteristics and timing

of the overall system solution. We also show that heavy calculation, protected by the industrial control system

operative, can run safely together within fast automation using standard electronics. The controlled variable in the

MPC strategy is the supply water temperature (Space heating), and the objective is to keep the indoor temperature

at a predefined setpoint despite variations in outdoor weather conditions by using local measurements and weather

forecasts from the Swedish weather service SMHI. The model used in the MPC is trained automatically with real-

time data during running. We describe the controller architecture and briefly the model predictive control

algorithm, analyze the overall system performance regarding safety and real-time characteristics. The proposed

model predictive control application showed stable operation and expected real-time characteristics during

operation. Furthermore, a reduction in indoor temperature deviations was achieved.

1. Introduction

The XC05 automation platform was developed as an

activity in the DISTRHEAT research project where

the aim of the project is to demonstrate and test in

real operating environment (MPC) applied to

District Heating and Cooling networks. The

automation platform is in fact an “Edge controller”

as expressed in the standard Industry 4.0 i.e., a

highly intelligent unit interfacing the process or

machine. Such controllers are expected to replace

conventional PLC systems in the future. The details

of the software design are described below.

In the DISTRHEAT project we applied our ideas to

Model predictive control (MPC) for optimizing the

indoor temperature in residential buildings. Model

predictive control (MPC) is an optimal control

technique where the control actions minimize a cost

function over a finite specified time horizon.[1]

Using MPC for controlling different processes in the

heating sector has proven to be highly successful as

shown in [6] [7] [8] and [9]. To implement an MPC

in a conventional control system (PLC) has been

done [2] but requires deep understanding of the

underlying PLC language and is often limited to

special use-cases. The novelty of the proposed

solution is using well known languages and tools

which interact in a safe way with the time-critical

functions of the PLC software,

The research project includes all the basic steps of

development such as control methods, simulations,

and installation in a physical process.

The automation platform was developed to cover all

these aspects. It includes an industrial control system

(ICS) which is integrated with commonly used

research tools like Python scripts and Modelica

simulations. In XC05 we introduce a new standard

how to integrate research tools with an ICS system.

For this purpose, we developed a graphical tool,

FirstGraph where the objects in the ICS and the

extended Python and Modelica libraries can be

connected in a simple way. The tool is an extension

of what we previously have used in the ICS and is

understood by any process engineer. At each time

step, the MPC controller receives or estimates the

current state of the process being controlled. It then

calculates the sequence of control actions that

minimizes the cost over a specified time horizon by

solving a constrained optimization problem that

relies on an internal process model and the current

system state. The controller then applies the first

SIMS 64 Västerås, Sweden, September 26-27, 2023

computed control action for the building and the

procedure is then repeated each time instance. The

internal model in the MPC algorithm is

automatically updated from real-time data during

periodical learning periods which are run in parallel

to the control actions. Data are assembled and stored

by the ICS part. The temperatures in the building are

read from a local PLC via a standard Modbus TCP

communication line and the weather forecast are

read periodically from the Swedish Meteorological

and Hydrological Institute (SMHI).

This MPC application was a good test of the XC05

platform since it consists of both heavy calculations

in the MPC algorithm and fast real time data

handling. Moreover, the platform had to integrate

MPC software made by other researchers with the

ICS functions and safety supervision.

Before it was connected to the building, the MPC

application was run in a real-time simulation inside

the XC05 to verify the operation, capacity and safety

in the simple standard electronics used (Raspberry

4). Linux with the RT_PREEMPT patch is chosen

as the operative system because of its stable real-

time performance [3][4][5]. The MPC installation

has now been in operation for more than five months

without a single operation failure.

2.Methodology

The basic task was to integrate an ICS system with

functions created in Modelica and Python. The new

platform is based on the same principles that were

used in the ICS system, that is used as a base for the

platform.

2.1. Industrial control system

We choose our own ICS which has been used in

many industrial installations and therefore is very

safe and contains all the functions needed in an

automation task including our own version of

adaptive control. It is based on the self-tuning

concept and has been awarded by the IEEE. The ICS

is then transformed to the Linux operative with

necessary changes to preserve the original properties

of the ICS platform.

2.2. Python scripts

The python scripts are made in the normal way in a

standard PC and then loaded into the XC05 platform

where they are stored in a special library dedicated

to Python scripts. They must be supplied with simple

standard input/output functions to interface the ICS.

2.3. Modelica simulation

The Modelica simulation is designed in the normal

way on a standard PC and then loaded into the XC05

where it is compiled locally and stored in a special

library dedicated to Modelica models.

2.4. Supervision and safety

The Python scripts and the Modelica models are

external software which may contain errors.

Therefore, they must be supervised and

disconnected in case of malfunction or a software

error to prevent disturbance in the automation

system. The ICS part contains by itself safety

protection developed for very sensitive processes in

the steel and energy areas.

2.5. Functional integration

All functions in the platform are regarded as

“modules” or “objects” with specified inputs and

outputs according to the same standard as is used in

the ICS system. This means that much of the

software developed for the ICS can be reused in this

case.

2.6 MPC algorithm

The core focus of this paper is the ICS edge

controller, therefore only a brief description will be

provided for the MPC kernel that runs inside. The

MPC is a Python-based optimizer that is employing

a machine learning model for building heat demands

and thermal comfort. The objectives of the optimizer

comprise multiple indices related to energy

performance of the heating system or indoor

temperature in the apartments.

Anyone familiar with control theory knows that PID

technique developed for more than 50 years ago is

far too limiting in this case since its internal structure

is limited, not prepared for predictive control, and

does not support feedforward. According to the

internal model principle, any efficient control

algorithm must contain an internal model of the

process and its disturbances. A candidate would be

a general adaptive controller based on the self-

tuning principle, which is in fact an adaptive MPC

based on a linear dynamical model. Such a regulator

is available in the ICS part of XC05 and has been

used in many installations. In this case, however, an

MPC controller was favored since it is more general,

can handle nonlinear physical models and the

optimization algorithm can be adjusted to the

specific case. Such a solution has also a higher

development potential in the future. The drawback

is the computational burden caused by the

optimization and model training, but we have

demonstrated it is quite feasible within the

XC05Edge controller.

2.7 Experimental study

SIMS 64 Västerås, Sweden, September 26-27, 2023

An experimental study was conducted in a

residential building. The MPC algorithm was

developed and customized for the building's district

heat substation. It used real-time data from the local

PLC, such as temperature and outdoor weather

conditions, to optimize the operation of the system.

The MPC algorithm determined the optimal

setpoints for the forward temperature based on

keeping the indoor temperature at a fixed setpoint.

To evaluate the performance of the system, data

were collected at one- and sixty-minutes intervals

throughout the test period. Descriptive statistics,

such as mean value and standard deviations were

calculated before and after installation of the system.

3. Edge computing

The automation platform described in this paper is

an “Edge Controller” as expressed in Industry 4.0.

Such controllers are expected to replace

conventional PLC systems in the future.

An important issue is to spread research results to

ordinary process engineers. This means that the way

the engineer interfaces the new technology should

be according to the standards used in common

automation.

Our previously developed tool FirstGraph for the

ICS, which has been used by engineers for several

years, has been extended to the generalized XC05

platform. It provides a standard format where all

functions are regarded as “objects” which are

connected to each other. The platform then unifies

the automation functions in ICS with external

functions created in Modelica or Python.

The FirstGraph project tree has been extended with

two new libraries Modelica and Python.

Figure 1: The XC05 graphical programming

 interface for engineers.

The process engineer selects elements from the

extended libraries and connects them graphically to

the automation system as is illustrated in figure 7.

This can be done without stopping the running

control task. Note that a program change will be

active within about 0.5 msec after being loaded since

it is handled locally by the operative.

If there is an MPC function or a Modelica function

loaded to the library, the process engineer may

directly use it in the automation system which

creates a direct link between researchers and users.

This was an important factor in this development.

4.Proposed architecture

4.1. Embedded system Architecture

To make the entire system portable to different

hardware architectures all software are developed in

C99 targeting different Linux distributions. It is also

possible to port the framework to other operating

systems by using a simple API to interface the new

operating system.

The system consists of four main modules and a

supervisor where all are strictly prioritized based on

their different functionalities.

These modules are:

• Main controller task (ICS)

• Simulation executor

• Supervisor task

• Communication task

• Python executor

Figure 2: Embedded system architecture

The main controller task (ICS) handles all PLC

functionality and executes all user applications.

These applications could be run on eight different

priority levels depending on their purpose. It’s also

responsible for creating the different subtasks and

supervising these.

The simulation executor is responsible for running

simulation of user-defined models created in the

OpenModelica language and communication with

the main controller task by using shared memory.

All external communication is handled by the

communication task which supports a variety of

SIMS 64 Västerås, Sweden, September 26-27, 2023

industrial protocols like Modbus TCP/IP, Modbus

RTU and others. The Python executor handles the

execution of user defined python scripts and

communicates with the main controller task by using

POSIX queues. Each parent task in the systems

supervises and receives errors from subtasks. All

errors are forwarded to the supervisor task which

takes different actions depending on the severity of

the error. More detailed information about the

principles in the XC05 platform [10].

4.2 ICS task

The threads in the main controller task are strictly

prioritized with respect to their functionality.

Application level indicates nine different levels

(priority 67 to 75, 75 being the highest) where user-

applications could be executed at different priorities.

The system is strictly event based and the threads are

only woken when some external- or timer event

occurs. The main controller task has the highest

thread priorities in the system except for the

Supervisor task main thread. The communication

task main thread will inherit the same priority as the

thread handling the communication in the main

controller task (COMM1 and COMM2). To

minimize latency times, all threads which belong to

the main controller are directed to a single CPU-

core.

Name Type

RT-Priority

(80 highest)

MAIN System thread 80

TIMER System thread 79

PCHH System thread 76

APPLEVEL1 Application thread level 1 75

APPLEVEL2 Application thread level 2 74

APPLEVEL3 Application thread level 3 73

APPLEVEL4 Application thread level 4 72

APPLEVEL5 Application thread level 5 71

APPLEVEL6 Application thread level 6 70

APPLEVEL7 Application thread level 7 69

APPLEVEL8 Application thread level 8 68

APPLEVEL9 Application thread level 9 67

COMM1 System thread 65

COMM2 System thread 64

UDPIN System thread 63

MTCP System thread 62

MDUPOUT System thread 60

MTCPS System thread 58

PYTHONSUPERVISOR System thread 47

MODELICASUPERVISOR System thread 46

TERMIN System thread 44

TERMOUT System thread 42

CYCLIC System thread 38

FCOMMIN System thread 36

FCOMMOUT System thread 34

BACKCALC_HI System thread 32

PCHL System thread 30

OPCOM System thread 28

MODELCACOMP System thread 26

BACKCALC_LO System thread 24
Figure 3: Threads and priorities main controller task

The applications written in the ICS by the user are

executed on APPLEVEL1 – 9 which have among

the highest priorities in the system.

4.3 Simulation executor

The simulation executor is responsible for executing

code written in the Modelica language which is used

in various academic institutes as well in industry.

In order to accomplish this the complete

OpenModelica package is preinstalled on the

system. This includes the OpenModelica compiler,

the OpenModelica simulator and a large library of

predefined objects.

The simulation executor consists of two parts, the

Modelica compiler and the Modelica executor.

Figure 4: The simulation executor

The Modelica executor compiles the Modelica code

defined by the user into a shared library according to

the Function Mock-up Interface (FMI) into a

Functional Mock-up Unit (FMU). The main

controller task communicates with the simulation

executor using shared memory protected by POSIX

semaphores.

4.4. Python executor

The application thread of the main controller task is

responsible for creating each corresponding subtask

to the Python code that should be executed.

Each subtask is then supervised from python

supervision thread in the main controller.

Figure 5: Python sub task creation

In order to support different scenarios of how the

python code should be executed, two different

modes are introduced, synchronous and

asynchronous. In synchronous mode each subtask is

created at the same priority level as the calling

application thread which waits for an answer or a

SIMS 64 Västerås, Sweden, September 26-27, 2023

user defined timeout before it continues execution.

In asynchronous mode each subtask is created on

priority level 0 (background) and the calling thread

immediately continues execution and checks

periodically if an answer has been received. A fixed

limit of how many sub tasks that can be created has

been set in the system due to system limitations.

The python code is called by an interface function

defined in the python script by the user. The function

can have an arbitrary name but must be defined with

a specific number of arguments that corresponds to

the executing block in the ICS. The function consists

of a list of four which contains float, integer,

Boolean and text values. The last three arguments

are prepared to be returned by the python script and

contains real, integers and Booleans.

The data exchange between the ICS and python

executor is handled by POSIX message queues.

Each sample, set by the user in the ICS, the

corresponding ICS block checks if the python

subtask is Idle. If the Python subtask is idle a

message is sent to the message queue with the last

values from the ICS. The Python subtask then

receives the values, executes the script and returns

the result to the ICS. Depending on if the python sub

task is created in synchronous or asynchronous

mode the corresponding block in the ICS waits for

the answer or continues execution immediately.

The errors in the python script are handled by the

corresponding block in the ICS. Any syntax error

in the python script causes the python sub task to

end execution.

4.5. Supervisor

The main functionality of the supervisor is to

monitor all other sub tasks in the system. The

supervisor has the highest priority in the system and

is able to take predefined actions depending on if an

error state exists in some of the sub tasks. This could

be, for example, a controlled shutdown of all system

tasks, restart of a certain sub task or a complete halt

of the system. Each task communicates with the

supervisor task using a shared memory which

contains the current state of the specific task.

5. Test installation in a residential building

Figure 6: Test installation site

The experimental setup is performed at a district

heat substation in a residential building in an urban

area. The experiment is conducted in the heat season

to get reasonable data for the MPC algorithm.

Hardware and Technical Stack: The framework runs

on Linux (Debian 10) on a Raspberry Pi4. The

detailed system setup and technical specifications to

run the experiment are presented in Table 1.

Table: 1.

Parameters Values

OS
ARM based

Raspbian

OS Name Debian 10

OS Version
Linux 5.11 RT-

PREEMPT

Processor

Broadcom

BCM2711 SoC

with a 1.5 GHz

64-bit quad-core

ARM Cortex-

A72 processor

System RAM 2GB

We implement and evaluate the MPC algorithm

using the Scikit-learn2 library, SciPy library and

NumPy library for Python3. The data from different

sensors are fetched from the local PLC by using

Modbus TCP/IP with a time resolution of 50

milliseconds. The prediction of the local outdoor

temperature for the next 10 hours is fetched from the

Swedish weather service using SMHI API. The

MPC algorithm then calculates the setpoint for each

hour and writes it back to the local PLC by using

Modbus TCP/IP. The data is saved locally with one-

and sixty minutes time resolution for further analysis

and to be processed by the MPC algorithm. The

internal sample time of the ICS is set 10

milliseconds for each application task to register the

real-time behavior of the overall system.

Timestamps are recorded for each sample interval to

be used for further analysis.

SIMS 64 Västerås, Sweden, September 26-27, 2023

Figure 7: Application program in the ICS

6. Results of the test installation

The data gathering started at the end of January and

the controller was turned on February 6th.

The complete system showed stable real-time

characteristics during the whole test period

regardless of the heavy background load due to the

MPC computations. The ICS system functions were

performed within the time intervals set by the user,

which in this case was a sampling time of 10

milliseconds without any disturbances.

The Python-implemented MPC algorithm was

executed as expected on the proposed platform and

without interfering with the ICS system's

functionality. This includes updates of python

software, application changes including adding new

applications programs and functions. When

comparing the time required for a cycle's

calculations, these were performed on a normal PC

with a time consumption of approximately 4 minutes

and on the industrial control system, the time

consumption was approximately 8 minutes. This

depends on hardware capabilities and process

architecture.

The MPC algorithm performed very well and was

stable throughout the whole test period. The purpose

was to keep the indoor temperature at a predefined

set-point, in this case 21.5°C and minimize the

variations. The controlled variable was the supply

temperature (space heating) which was set to the

local PLC at site. As seen in figure 8 the indoor

temperature was reduced from a mean value of

22.5°C to 21.5°C about one day after the controller

was switched on. The variations were about +-0.2K.

Figure 8: MPC performance

The response in temperature can of course be made

much faster, but that would not have been

convenient for inhabitants in the building. In this

case, the control action is deliberately limited to

achieve an “acceptable change in temperature” as

was requested by the end user. The limit is only

active when large changes are required for instance

in a start-up as is shown in figure 8. During normal

operation, there are no limits in control action.

7. Summary and Discussions

In this paper we have attempted to form a standard

for “Edge computing” i.e. how advanced functions

created in research tools like Modelica and Python

can be included in automation. Such a standard is

necessary for broader use. As far as we know, the

attempts that have been done so far consist of special

programming in each individual case which is much

more costly and requires help from a software

specialist. With a standard setup as is described here,

the process engineer can use external functions

made by researchers in the automation system

without the assistance of software experts.

The proposed solution showed that it was feasible to

implement a MPC strategy together with an existing

industrial control system without interfering with its

critical functionality and real-time behavior. The

execution time for the MPC algorithm was

reasonable and it performed well for the specific

process. The Modelica simulator was not used in the

experimental setup in this case but may be used for

more complicated physical-based models as a local

“Digital Twin”. We have shown that the capacity is

sufficient for such solutions.

In this experiment the dynamics of the process being

controlled were slow which meant that the CPU

capacity was enough to calculate the setpoint once

per hour. Processes with faster dynamics may

require other approaches, for example other

hardware solutions, such as dedicated hardware, a

more simplified model for the MPC or different

solvers and optimizers. The Python interface to the

ICS could also be improved regarding data

conversion, messages, optimization etc.

The main idea about using python as a base for

MPC, and other types of control algorithms is that

implementations easily can be transferred from

construction and design phase to an ICS without any

further or very little modifications. Python is also a

well-known language which has many libraries

SIMS 64 Västerås, Sweden, September 26-27, 2023

available for different purposes and also has a huge

amount of support among the developer community.

Many other use-cases exist that can take advantages

of the introduction of Python in an ICS, for example

different ML-implementations which will directly

appear as new blocks in the ICS. Using ML in the

ICS with data-driven models could be an alternative

to the physics-based models implemented in the

simulation task. Future research should focus on

further validating the framework’s performance in

different industrial processes and explore the

scalability and reliability of the proposed solutions.

Acknowledgment

This work is supported by the District Heat project.

Further Thanks to the team at Mimer for their help

and support.

References

[1] Schwenzer M, Ay M, Bergs T, Abel D (2021) ‘Review on

predictive control: an engineering perspective’, The
International Journal of Advanced Manufacturing Technology

(2021) 117:1327–1349

.doi:10.1007/s00170-021-07682-3

[2] Krupa P, Limon D,Alamo T (2021) ‘Implementation of

Model Predictive Control in Programmable Logic Controllers´,
IEEE Transations on control systems technology, vol. 29, no. 3,

May 2021 pp 1117–1130.

doi:10.1109/TCST.2020.2992959

[3] de Oliveira DB, de Oliveira RS (2016) ‘Timing analysis of

the PREEMPT RT Linux kernel’.Software-practice &
experience , vol.46 issuse 6 pp 789-819.

doi:10.1002/spe.2333

[4] Adam, GK, Petrellis, N, Doulos, LT (2021). ‘Performance

Assessment of Linux Kernels with PREEMPT_RT on ARM-

Based Embedded Devices´. Electronics 2021, 10, 1331.
doi:10.3390/electronics10111331

[5] Carvalho AA, Machado CLD,, Moraes FS (2019).
‘Raspberry Pi performance analysis in real-time applications

with the RT-Preempt patch´. 2019 Latin american robotics

symposium, 2019 Brazilian symposium on robotics (SBR) and
2019 workshop on robotics in education. pp 162-167

doi:10.3390/electronics10111331

[6] Saletti C, Zimmerman N, Morini M, Kyprianidis K,

Gambarotta A (2021). ‘Enabling smart control by optimally
managing the State of Charge of district heating networks´.

Applied Energy, 283, p.116286.

doi:10.1016/j.apenergy.2020.116286

[7] Saletti C, Zimmerman N, Morini M, Kyprianidis K,

Gambarotta A (2022). ’A control-oriented scalable model for
demand side management in district heating aggregated

communities’. Applied Thermal Engineering, 201, p.117681

doi:10.1016/j.applthermaleng.2021.117681

[8] Zimmerman N, Kyprianidis K, Lindberg CF (2019).

’Achieving lower district heating network temperatures using
feed-forward MPC.’. Materials, 12(15), p.2465.

doi:10.3390/ma12152465

[9] Monghasemi N, Vouros S, Kyprianidis K, Vadiee A (2022)
‘A non-linear gray-box model of buildings connected to district

heating systems’. Energy Proceedings ,Vol 29

doi.org:10.46855/energy-proceedings-10497

Additional information

[10] First Control (2023) ‘XC05 operation manual for
researchers and engineers’

