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Abstract 
 
District heating system often consists of a long, complex network of piping carrying heat from a power plant to 
the consumers. The supply temperature from the plant is either controlled by the operator from experience or a 
predefined curve based on the outdoor temperature. An optimized supply temperature which would be lower 
than the one obtained traditionally would lead to lower heat loss and reduced peak load on the power plant. In 
this paper, we investigate the machine learning models for heat load forecasting which is a crucial parameter in 
the optimizing process. Models are generated using supervised machine learning algorithms: Linear models 
(Linear Regression, Ridge and Gaussian Process Regressor), Random Forest Regressor, Support Vector 
Machine (SVM) and Long Short-Term Memory (LSTM) recurrent neural network (RNN). Data-driven models 
are used extensively in the literature to predict heat load prediction based on the weather and the time effect on a 
fixed training set, however, in this study, we model the heat load in the network in real-time scenarios i.e., 
adaptive training and forecasting. The model is adaptively updated as well as the training of the machine 
learning model in real time. It provides a “plug-and-play” solution for real-time prediction without significant 
pre-tuning requirements. The results of all the models are compared with various time horizons i.e., 6 hrs, 10 
hrs, 24 hrs and 1 week, using the district heating data obtained for the city of Vasteras in Sweden. The 
performance of the prediction algorithms is evaluated using Mean Absolute Percentage Error (MAPE) and Root 
Mean Squared Error (RMSE). An algorithm with the best accuracy is selected based on the performance 
comparison. Also, models suitable for short-term and long-term forecasting are discussed towards the end of the 
article.  
 
1. Introduction 
Optimizing district heating systems using machine 
learning (ML) techniques has gained significant 
interest in recent research. ML models can help 
improve the efficiency and operation of district 
heating systems by optimizing heat distribution and 
consumption. ML models can be used to predict 
heat demand patterns in buildings or areas 
connected to the district heating system. By 
analyzing historical data, weather conditions, and 
other relevant factors, these models can forecast 
heat demand accurately. This enables more 
efficient planning and optimization of heat supply 
from the plant and distribution, reducing energy 
waste and costs.  
The focus of this article is a combined heat and 
power (CHP) plant, also known as a cogeneration 
plant, a type of district heating (DH) system that 
simultaneously generates electricity and useful heat 
from a single energy source. The CHP plant uses a 
primary energy source, such as natural gas, 
biomass, or waste heat, to produce electricity and 
heat in a combined process. The primary energy 
source drives a generator to produce electricity, 

while the waste heat generated during electricity 
generation is captured and used for heating 
purposes. The waste heat produced during 
electricity generation in the CHP plant is captured 
and utilized for district heating. This waste heat is 
typically recovered through heat exchangers and 
transferred to a heat distribution network. The heat 
distribution network consists of insulated pipes that 
transport hot water from the CHP plant to 
connected buildings and areas. Heat exchanges and 
control valves regulate the flow and temperature of 
the heat within the network. Buildings and 
residential areas connect to the district heating 
network through heat exchangers in the consumer 
substation. Heat exchangers transfer the heat from 
the hot water in the network to the building's 
internal heating system, providing space heating 
and sometimes domestic hot water. Currently, the 
supply temperature from the plant is governed by 
the operator’s expertise and knowledge based on 
historical consumption data. Due to temperature 
delay in the piping network, the operator injects 
heat into the network without any clarity on actual 
heat demand at the end user. The drawback of this 
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strategy is that, although satisfying consumer 
expectations, the return temperature in the network 
would be higher than necessary. This suggests that 
lowering the network supply temperature has a 
significant potential to reduce the load on DH 
plants in addition to the fact that the supply 
temperature is frequently greater than is necessary. 
The optimum peak supply temperature, which is 
lower than the historical supply temperature, would 
facilitate more electricity production for the CHP 
plant. Such energy optimization could result in a 
district-wide reduction in greenhouse gas emissions 
given the rising worries about climate change.  
Heating load forecasting plays an essential role in 
reducing network losses and performance 
optimization (reduced plant supply and return 
temperature). Supervised machine learning (SL) 
techniques are widely researched for heat demand 
forecasting in district heating systems while 
Reinforcement learning(RL) is suitable for optimal 
control and load balancing strategies (Idowu, 
Åhlund and Schelén, 2014). These methods 
leverage historical data, weather information, and 
other relevant factors to predict future heat demand 
accurately. Researchers have studied various ML 
models such as Regression models, Support vector 
Machine (SVM), Nature inspired, Artificial Neural 
network (ANN) etc. (Idowu et al., 2014) presented 
a data-driven heat load forecasting for multi-family 
buildings using four ML methods – SVM, ANN, 
Multiple Linear regression(MLR) and 
Classification and Regression Tree (CART).   The 
forecasting model was evaluated for horizon values 
of 1, 3, 6, 12, 18 and 24-h. The SVR method was 
found to be the best performing followed by MLR. 
The authors were able to achieve a 5.6% (best-
performing) Mean Absolute Percentage Error 
(MAWP). The use of a context-based regression 
approach model for average and individual user 
consumption is shown to be effective (Rongali et 
al., 2015). Dalipi et al (Dalipi, Yildirim Yayilgan 
and Gebremedhin, 2016) have performed a 
comparison of ML models for heat load forecasting 
for multiple buildings and showed SVR to be the 
best-performing one.  Idowu et al (Idowu et 
al., 2016) evaluated and compared different ML 
methods such as SVM, FFNN, MLR and regression 
trees. The models are produced and evaluated using 
data observed from 10 district heating substations 
for five multi-family apartments and five 
commercial buildings. They included outdoor 
temperature, day of the week, hour of the day, 
historical values of thermal load and the physical 
parameters of a substation (supply temperature, 
difference between supply and return temperature 
and flow rate) for a forecast horizon up to 48 hr. 
They found that SVM gave the best prediction 
performance, with FFNN and MLR having similar 
error rates as SVM and Regression tree models 

with higher performance error rates. Suryanarayana 
et al (Suryanarayana et al., 2018) have shown that 
the linear models can be very powerful for heat 
load forecasting outperforming some of the 
advanced models like SVR (Support Vector 
Regressor) and Gradient-Boosted Trees (GBT). 
They achieved an MAWP of as low as 8.77 with 
linear models and 8.07 with DNN. Ntakolia et al 
(Ntakolia et al., 2022) did a comprehensive review 
of machine learning models used for heat load 
forecasting and concluded that ANN and SVM are 
found to be the most frequent models used for heat 
load prediction.  
Accurate heating load forecasting is a precondition 
to the optimization and control of district heating 
systems. Zhao et al. (Zhao, Li and Shan, 2021) 
have used SVM in their study to forecast heat load 
to optimize the DH system using Model predictive 
control (MPC). They have shown a reduction in 
energy peak and total energy consumption of the 
system. Similarly, Zimmerman et al. (Zimmerman, 
Kyprianidis and Lindberg, 2019) demonstrated a 
reduction in network supply and return 
temperatures by using MPC with feed-forward with 
CHP heat load reduction of 12.5% to 13.7%. 
However, the weakest point of the paper was that a 
realistic heat-load model was missing. The machine 
learning models studied in the literature for heat 
load predictions are for fixed training sets and not 
adaptive for real-time scenarios which creates the 
motivation for the present study. 
The objective of this paper is to compare machine 
learning models to forecast heat load for the DH 
system of the city of Västerås in Sweden, for 
adaptive and real-time forecasting. The model 
created should not require any pre-tuning for use in 
the DH system. Following machine learning 
techniques have been considered in this paper: 

1. Linear models: linear regression (LR), 
Ridge Regression(RR), Gaussian Process  
regression(GPR) 

2. Support Vector Regressor (SVR) 
3. Random Forest (RF) 
4. LSTM (Long-Short-Term Memory) 

The model is developed for a single substation 
(Tillberga) and then validated with another 
substation (Skultuna) present in Västerås city 
(explained in the next section). 
The paper is organized as follows. Firstly, the DH 
system is described followed by a modelling 
approach and an overview of the considered 
algorithms is presented. Secondly, the methodology 
is described, including the training, validation and 
test periods. The accuracy of the different models is 
then investigated and compared using experimental 
data from a real-world DH plant. 
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2. Methodology  
In this section, to emphasize the motivation behind 
this work, a brief overview of the DH system is 
provided first. The dataset, ML models and 
methods, variables, and their structure are then 
explained. 
 
2.1. District heating system 
The DH system presented in this study is from the 
city of Västeås and its surrounding region. A 
typical DHS has three main parts - The heat 
generation - which usually consists of a co-
generation plant and/or a heat-only boiler station, 
the Distribution network - which consists of 
insulated pipes of varying diameters carrying hot 
water through the entire network and the 
substations - where heat is transferred from the 
primary to the secondary network via a heat-
exchanger. Fig. 1(top) shows the basic schematic 
drawing of a CHP plant and a DH system. The red 
and blue lines denote supply and return pipes 
respectively. Fig. 1(bottom) shows the schematic 
illustration of the city of Västerås with a CHP plant 
connected with different regions around the city.  
 

 

 
Figure 1: (top)A schematic diagram showing a district 

heating system network with substations connected to the 
regions (bottom) Schematic illustration of regions 

connected with the DH system to the CHP in the city of 
Västerås and its surrounding regions 

The supply temperature of the hot water is 
controlled directly from the plant’s control room 
based on the outdoor temperature and it follows 
mostly a given operation temperature curve. The 
return temperature, on the other hand, depends 
mainly on the customer’s heat usage. The current 
DH system is 3rd generation where the temperature 

level varies between 70 and 120∘C, particularly 
during the winter season. The heat load in district 
heating systems is the sum of all heat loads that are 
connected to the network and distribution and other 
losses in the network. 
The heat load ML model is created using the DH 
system of the region Tillberga, which is 
approximately 14.5 km from the CHP. The reasons 
for choosing Tillberga are due to the fact of having 
access to historical network measurements for 
multiple years. The ML model will be validated 
both with Tillberga and Skultuna of the city of 
Västerås. 
The heat consumption at the substation, Qsb 
delivered to the region is mainly a function of the 
supply temperature, Ts, the return temperature, Tr, 
and the flow rate, m, as shown in Eq. (1). 
 

𝑄𝑄𝑠𝑠𝑠𝑠 =  𝑚𝑚.𝐶𝐶. (𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑟𝑟) (1) 
 
Where, Qsb is heat consumption at the substation, C 
is the specific heat of hot water, Ts is supply 
temperature and Tr is the return temperature at the 
substation. 
 
2.2. Dataset 
The data used in this study are provided by 
Mälarenergi who operates the CHP plant. These 
data are measured and collected by regular 
measurements that are part of the control system in 
a DH plant. The measurements consist of the time 
of day, supply temperature (ST), return temperature 
(RT), flow rate (FR), and heat load (HL) at the 
individual substations with 1-hour time step 
intervals. The data used in this study are for the 
winter season:  January 1st 2019 to March 31st 2019 
for model selection and January 1st 2022 to March 
31st 2022 of Tillberga and Skultuna for testing. 
Before building a machine learning model, it is 
important to preprocess the data and remove or 
replace any missing values or outliers. The data is 
preprocessed to remove and replace any missing 
data/outliers (outside ±3-standard deviation) that 
could cause problems with the ML model, such as 
biased results or inaccurate forecasting. We used 
interpolation to replace the missing/outlier data. 
Another step in the data preprocessing is to scale 
the data. Scaling means changing the range of data 
so that all the values are within a similar range. The 
data is scaled using the ‘MinMaxScaler() 
(sklearn.preprocessing.MinMaxScaler)’ function 
from the Python library which scales and translates 
each feature individually such that it is in the given 
range on the training set, e.g. between zero and 
one. 
The data is then split into training, validation, and 
test sets. This is because we want to train our 
models on the training data, validate them on the 
validation data, and then test them on the test data. 
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In this model, we have used a 70-30 split for 
training and testing respectively to assess the 
model. 
 
2.3. Input variables 
The heating demand of a consumer depends on 
several types of factors such as climate and weather 
conditions, timestamp information, and historical 
information. In this work, we use the data which is 
readily available from most of the plants which are 
limited to weather, historical, and time-stamp 
information. 

a. Historical heat load data 
b. Weather input variables: Outdoor air 

temperature 
c. Time-stamp variables: hour of the day and 

day of the week  
 
2.4. Machine learning models 
The following ML models are studied in this paper 
which are found to be more suitable for the heat 
load forecasting problem (Ntakolia et al., 2022). In 
this study, we have used supervised ML models 
which use a set of input variables to forecast the 
values of an output variable.  In these models, we 
look at historical data to train a model to learn the 
relationships between variables and a target 
(output), the thing we’re trying to forecast. This 
way, when new data comes in, we can use the input 
values to make a good prediction of the output 
(target). We have studied the four most widely used 
supervised learning algorithms: Linear models 
(LM), Random Forest (RF): a Tree-based model, 
SVM and LSTM: ANN based model.  
 
Linear models: Linear ML models are simple (old-
school) algorithms that make predictions based on 
linear relationships between the input variables and 
the target variable. The relationship between the 
inputs and the target is represented by a linear 
function. The following three LMs are used in this 
study: 

a. LR: Linear regression models the 
relationship between the inputs (features) 
and target by fitting a linear equation to 
the observed data. It aims to minimize the 
sum of squared residuals between the 
predicted and actual target values. 

b. Ridge Regression (RR): Ridge regression 
is a regularized version of LR that adds a 
penalty term to the cost function, aiming 
to reduce the model's complexity and 
prevent overfitting. 

c. Gaussian Process Regression (GPR): GPR 
is a non-parametric Bayesian regression 
technique that can be used for regression. 
It models the relationship between the 
input and the target variable as a 

distribution over functions rather than a 
single function. 

 
Random Forest (RF): RF is a tree-based algorithm 
that combines multiple decision trees to make 
predictions. It belongs to the ensemble learning 
family, where multiple models are combined to 
improve overall performance and generalization. 
 
Support Vector Regressor (SVR): SVM, based on a 
statistical learning theory, are one of the most 
successful and widely applied ML methods, for 
solving regression problems. SVR is a method of 
SVM for regressions. SVR is a powerful approach 
for handling non-linear regression problems by 
mapping the input variables into a higher-
dimensional space and finding an optimal 
hyperplane that fits as many data points as possible 
within a specified margin. 
 
Long-Short-Term Memory (LSTM): LSTM is a 
type of recurrent neural network (RNN) 
architecture that is widely used for sequential data 
analysis, such as time series forecasting, natural 
language processing, and speech recognition. They 
introduce specialized memory cells and gating 
mechanisms that allow the network to selectively 
remember or forget information over time. LSTM 
networks have been proven effective in modelling 
and predicting sequences with long-term 
dependencies (Schaefer, Udluft and Zimmermann, 
2008). 
 
Hyperparameter analysis is a crucial step in 
machine learning to optimize model performance. 
It involves tuning the hyperparameters of a 
machine learning algorithm to find the best 
combination that yields the highest accuracy or 
lowest error on a given dataset. In this study, an 
automated grid search was conducted for each 
specific ML model by selecting the 
hyperparameters of the ML model. Grid search is a 
popular technique for hyperparameter optimization 
in machine learning. It involves exhaustively 
searching through a specified grid of 
hyperparameter values to find the combination that 
yields the best model performance. 
Table 1 shows the hyperparameters used in each 
ML model. 
All the ML models are assessed using open-source 
software like Python with  packages like Scikit-
Learn (scikit-learn: machine learning in Python — 
scikit-learn 1.2.2 documentation, 2023) and 
Tensorflow (TensorFlow, 2023).  
 
2.5. Performance metrics 
In this work, we considered commonly used 
metrics for evaluating the performance of the 
proposed models. These are the Root Mean-Square 
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Error (RMSE), the Mean Absolute Percentage 
Error (MAPE) and the Correlation coefficient (Corr 
Coef). In this paper, we have used MAPE and 
RMSE for performance evaluation.  
RMSE is commonly used to measure the difference 
between a model’s predicted values and actual 
values observed (the average prediction error over 
all time instants) and is computed as: 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  ��
1
𝑛𝑛
�(𝑦𝑦𝚤𝚤� − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

� (2) 

 
Table 1: ML models and hyperparameters 

 
 
 
MAPE estimates how close forecast values are to 
actual values in percentage and is computed as: 

𝑅𝑅𝑀𝑀𝑀𝑀𝑅𝑅 =  
100
𝑛𝑛

�
|𝑦𝑦𝚤𝚤� − 𝑦𝑦𝑖𝑖|

|𝑦𝑦𝑖𝑖|

𝑛𝑛

𝑖𝑖=1

(3) 

 
where 𝑦𝑦𝚤𝚤�   is the estimated value in a forecasting 
model, 𝑦𝑦𝑖𝑖   is the measured value and n is the total 
number of forecasted data points in each forecast 
horizon.  
 
2.6. Model workflow 
As mentioned earlier, we have used two datasets 
from different years to build and test the models in 
adaptive learning and real-time scenarios. The first 
dataset i.e. dataset from region Tillberga from 2019 
is used to test the performance of different ML 
models. The decision is taken based on their 
performance metrics and the best model is selected 

for adaptive learning. Figure 3 shows the workflow 
of the development of the heat load forecasting 
model. The selected model with optimized 
hyperparameters will be used in the dataset of the 
year 2022 for Tillberga and Skultuna of Västerås 
City. The final model is trained adaptively as the 
new data adds to the historical set and the training 
set. The training set moves as the new data is 
available i.e., the model which dynamically adapts 
to the new patterns in the data.  
 

 
Figure 2: Workflow for machine learning model 

selection and heat load forecasting 
 
3. Results 
In this section, results are presented in two 
subsections: a) the performance of different models 
and selection for the testing data b) the 
performance of selected models in adaptive 
learning.  
 
3.1 Performance comparison of ML models 
The performance of all the ML models mentioned 
above is evaluated for the dataset of the Tillberga 
substation. The data is from the winter season from 
1 January 2019 to 31 January 2019. Table 2 shows 
the performance of different ML models for the 
testing dataset. Amongst the linear models, GPR 
shows very good performance in prediction with 
4.77% MAPE with LR and RR showing similar 
performance. GPR can capture the complex and 
non-linear relationship between input features and 
output. The high accuracy of GPR suggests that 
there might be a non-linear relationship between 
features and output.  

Table 2: ML models and hyperparameters 

 

ML model Hyperparamete Definition Defined Parameter

LR (Linear ֊ ֊ ֊
RR (Ridge 
Regression)

alpha (α) the regularization 
parameter

0.01 - 10

Kernel type    the Kernel function  RBF(Radial Basis 
Function)    

 length_scale Smootheness of the 
kernel

0.1- 10

alpha (α)                  Regularization 
Parameter   

0.001-10

n_estimators number of decision 
trees in the random 

100-500

max_depth the maximum 
depth of each 

0-10

Kernel type    the Kernel function RBF(Radial Basis 
Function)   

C the penalty paramete0.1- 10

epsilon the margin of 
tolerance around 
the predicted value 

0.01-1

units the number of 
memory cells or 
hidden units in the 
LSTM layer

10-500

activation Activation Function relu
Batch Size ֊ 8-64
Number of 
Epochs ֊

50-500

Loss Function ֊ mean_squared_error
optimizer ֊ adam

GPR (Gaussian 
Process 
Regression)

RF (Random 
Forest)

SVR (Support 
Vector 

Regressor)

LSTM (Long-
Short-Term 
Memory)

ML model MAPE, % RMSE
LR (Linear Regression) 8.22 394.8
RR (Ridge Regression) 8.26 388.5
GPR (Gaussian Process 
Regression) 4.77 242.4

RF (Random Forest) 4.30 233.8

SVR (Support Vector Regressor) 4.28 225.8

LSTM (Long-Short-Term 
Memory) 5.50 279.9
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Table 1 also shows that the best-performing model 
is SVR with 4.28% MAPE which suggests that 
predicted heat loads with SVR are closer to the 
actual heat consumption as also seen in Figure 3.  
The best performance of the SVR over the other 
methods is associated with efficient feature space 
modelling and the fact that SVR is less prone to 
overfitting. It can be concluded that the GPR, RF 
and SVR can be effectively applied to the 
prediction of heat load in the DH system. In this 
study, we select SVR for adaptive training in real 
real-time scenario of heat load forecasting. 
 
3.2 Adaptive modelling and performance 
The SVR model is applied to the dataset of 
Tillberga and Skultuna region of Västerås city for 
adaptive learning and heat load prediction. The data 
is taken for the winter season from 1st January to 
31st March 2022. The performance is evaluated for 

the adaptive training set of two weeks and four 
weeks. Figure 4 shows an example of the 
performance execution for the Tillberga region. 
The Fig, black line represents the measured data of 
the heat load of Tillberga against which predicted 
values (green line) are plotted. The training set is 
shown in the red line which adaptively moves with 
the addition of new data. The blue line represents 
the predicted horizon (6 hrs, 10 hrs, 24 hrs or 1 
Week). The hours in the period are plotted on the 
x-axis which represents the total time duration. 
Figures 5 and 6 show results of actual heat load and 
heat load prediction for 24 hrs, based on the SVR 
algorithm for Tillberga and Skultuna respectively. 
The figures also show the performance indicators 
(MAPE and RMS) for two different training set 
lengths i.e., 2-weeks and 4-weeks.  

 
Figure 3: Performance comparison of actual and forecasted heat load for testing data for ML models 
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Figure 4: Adaptive learning of model to predict heat load  

 
Figure 5: Forecasted heat load and Performance indicators (MAPE and RMSE) for Tillberga region with data from 1st Jan 

2022 to 31st March 2022 with 24 hr of prediction horizon 

 
Figure 6:  Forecasted heat load and Performance indicators (MAPE and RMSE) for the Skultuna region with data from 1st 

Jan 2022 to 31st March 2022 with 24-hour prediction horizon 
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As can be seen from Figure 5, the predicted HL 
with SVR is closer to the actual energy 
consumption, with a MAPE value fluctuating 
between 3 to 10%. The high error at the initial 
predictions is due to the small training set available 
for the forecasting model. However, as the training 
set achieves the 2-week/4-week data, the accuracy 
improves. Also, the 4-week training data shows 
better performance than the 2-week training data 
which follows the intuition. The high error shown 
by the 2-week training data at around hour 27650 is 
due to the exclusion of the low outdoor temperature 
data. The 4-week training data captures the low 
outdoor temperature hence the more accurate 
predictions. The RMSE plot shows similar 
behaviour, and no deviations are observed. This 
confirms the good performance of the SVR for 
adaptive learning with good accuracy.  
The model is adaptively updated as well as the 
training of the machine learning model in real time. 
It provides a “plug-and-play” solution for real-time 
prediction without significant pre-tuning 
requirements. This claim is validated by applying 
the SVR model to a completely different data set of 
another region i.e., Skultuna. Figure 6 shows the 
forecasted heat load and Performance indicators 
(MAPE and RMSE) for data from 1 Jan 2022 to 31 
March 2022. The performance is quite like seen in 
the previous case of Tillberga region. The MAPE is 
within the range of 3-10%.  
The performance discussed above was for 24 24-
hour forecast horizon. The performance with 6 
hours, 10 hours and 1 week is also evaluated and 
presented in the appendix section of the paper. It 
can be seen that for the short forecasting horizons, 
6 hrs and 10 hrs, the errors are slightly higher than 
the long forecast horizon. The error in the long 
forecasting horizon seems to be more stable.  
 
4. Conclusion 
In this paper, six ML algorithms for the heat load 
prediction in the DH network of Västerås city are 
developed, compared and analyzed. The algorithms 
studied are LR, RR, GPR, RF, SVR and LSTM. 
Hyperparameter analysis is carried out to find the 
optimized values for each model. The performance 
of the models was compared using data from 2019 
for the winter season. The predicted hourly results 
were compared with actual heat load data.  
The SVR algorithm proved to be the most efficient 
one, producing the best performance in terms of 
MAPE and RMSE. The SVR model is then 
selected for adaptive learning and heat load 
forecasting in real-time scenarios. The model is 
tested for the actual data from the winter of 2022 of 
the Tillberga region. The results are also compared 
with shorter (2-week) and longer (4-week) training 
sets. The model, overall, shows good performance 
with MAPE ranging from 3 to 10%. To provide a 

“plug-and-play” solution for real-time prediction 
without significant pre-tuning requirements, the 
model is tested also with completely different 
regions on winter data. The performance shows 
similar accuracies to that in the Tillberga region. It 
proves that the developed SVR method is 
appropriate for adaptive learning and application in 
heat load prediction. In future, we intend to use this 
model to predict heat load in real-time scenario for 
the optimization of DH network supply and return 
temperature.  
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Figure 7: Forecasted heat load and Performance indicators (MAPE and RMSE) for Tillberga region with data from 1st 

Jan 2022 to 31st March 2022 with 6 hr prediction horizon 

 
Figure 8: Forecasted heat load and Performance indicators (MAPE and RMSE) for Tillberga region with data from 1st Jan 

2022 to 31st March 2022 with 10 hr prediction horizon 
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Figure 9: Forecasted heat load and Performance indicators (MAPE and RMSE) for Tillberga region with data from 1st Jan 

2022 to 31st March 2022 with 1-week prediction horizon 

 
Figure 10: Forecasted heat load and Performance indicators (MAPE and RMSE) for Skultuna region with data from 1st Jan 

2022 to 31st March 2022 with 6 hr prediction horizon 
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Figure 11: Forecasted heat load and Performance indicators (MAPE and RMSE) for Skultuna region with data from 1st Jan 

2022 to 31st March 2022 with 10 hr prediction horizon 

 
Figure 12: Forecasted heat load and Performance indicators (MAPE and RMSE) for Skultuna region with data from 1st Jan 

2022 to 31st March 2022 with 1-week prediction horizon 


