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SIMS EUROSIM 2021

Preface

The first SIMS EUROSIM conference on Simulation and Modelling (SIMS EUROSIM 2021) and 62nd SIMS
conference on Simulation and Modelling (SIMS 2021) were organized as a joint virtual conference. Originally,
this conference was planned to be organized in Oulu, Finland. The COVID-19 pandemic presented tremendous
challenges for the global research community and for the entire world. The organizers were first postponing
the deadlines and keeping the plan of organizing the conference in person. Since the pandemic was continuing
strongly, the plans were changed: the conference was decided to organize as a virtual conference in September
2021.

The Scandinavian Simulation Society consists of members from five Nordic countries: Denmark, Finland,
Norway, Sweden, and Iceland. The goal of SIMS is to further develop the science and practice of modelling
and simulation in all application areas and to be a forum for information interchange between professionals
and non-professionals in the Nordic countries. SIMS is a member society of The Federation of European
Simulation Societies (EUROSIM) was set up in 1989. The purpose of EUROSIM is to provide a European
forum for regional and national simulation societies to promote the advancement of modelling and simulation
in industry, research and development. EUROSIM consists of 17 European Simulation Societies. The
Scandinavian simulation society (SIMS) had Board and Annual Meetings during the conference.

The conference program consisted of three keynote presentations, 68 regular presentations and a panel
discussion. The proceedings include 67 full papers. The keynotes are included as abstracts. The call for papers
resulted in 83 submissions prepared by 152 authors from nine countries. The reviews of all submissions were
done by four chairs, 19 IPC members and 37 international reviewers. Full papers were selected on the grounds
of academic merit and relevance to the conference theme. Each submission had 2-4 reviews and the acceptance
rate was 83% for the full papers published in the proceedings.

The SIMS 61 conference covered broad aspects of simulation, modeling and optimization in engineering
applications, including many papers on multivariate data analysis, machine learning, control, diagnostics,
decision making, power plants, energy storage, oil and gas industry, CO; capture, computational fluid dynamic,
wastewater treatment, biosystems and epidemiological models.

Panel discussions were organized on modelling and simulation in tackling challenges of the climate change.
The discussion focused on three areas: biofuels, renewable energy sources and quality of measurements. The
audience asked about next generation nuclear systems, biogas and CO, emissions. The virtual conference did
not include technical tours. Industrial and environmental applications, development of modelling and
simulation tools and strong support for PhD students continue for stimulating process development model-
based automation.

We would like to express our sincere thanks to the keynote speakers, authors, session chairs, members of the
program committee and additional reviewers who made this conference such an outstanding success. Finally,
we hope that you will find the proceedings to be a valuable resource in your professional, research, and
educational activities whether you are a student, academic, researcher, or a practicing professional.

Esko Juuso, Bernt Lie, Erik Dahlquist, and Jari Ruuska
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Conferences location
The conference was organized as a virtual event.
Opening, 21 September 2021

Opening of The First SIMS EUROSIM Conference on Simulation and Modelling SIMS EUROSIM 2021
The 62nd International Conference of Scandinavian Simulation Society (SIMS):

- SIMS President, Prof. Bernt Lie, University of South-Eastern Norway, Norway
- Adj. prof. Esko Juuso, Conference Chair, University of Oulu, Finland

Keynote presentations

How process automation is making the world more resource and energy efficient — future trends
Digital Lead Martin Bjornmalm, Hub North Europe, Process Industries Division. ABB, Sweden

How to lead the process industry to a safe and sustainable future?
Head of Product Management Jyri Lindholm, NAPCON, Neste Engineering Solutions Oy, Finland

The Road to SMARTER and not BIGGER on Data problems in Transportation

Assoc. prof. Miguel Mujica-Mota, Eurosim President, Aviation Academy, Amsterdam University of
Applied Sciences, The Netherland

Conference topics

The Proceedings includes 68 articles in five tracks including ten topics:

Topics Pages
Multivariable data analysis and modelling 1-75
Machine learning 76 - 122
Control, diagnostics and decision making 123 - 195
Power plants and energy storage 196 - 240
Oil and gas industry 241 - 278
CO; capture and use 279 - 324
Computational fluid dynamics (CFD) 325-397
Wastewater treatment 398 - 443
Biosystems 444 - 480
Epidemiological models 481 -512
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Panel discussion on Future challenges and possibilities for simulation, 23 September 2021
Chair: Adj. prof. Jari Ruuska, University of Oulu, Finland

Panelists:
Hub Manager Bjorn Jonsson, ABB, Sweden
Head of Product Management, Jyri Lindholm, Neste Engineering Solutions Oy, Finland
Assoc. prof. Miguel Mujica-Mota, Eurosim President, Amsterdam University of Applied Sciences,
The Netherlands
Prof. Bernt Lie, University of South-Eastern Norway, Norway
Senior prof. Erik Dahlquist, Mdlardalen University, Sweden
Adj. prof. Esko Juuso, University of Oulu, Finland

Conference program

Each conference day started with a keynote and continued with three parallel sessions. The Annual
SIMS meeting was in the end of the first day. The third day ended with the panel discussion. More
information is available at SIMS website (https://www.scansims.org/).

Conference General Chair

Adjuct prof. Esko Juuso, University of Oulu, Finland

International Program Committee

Prof. Bernt Lie, University of South-Eastern Norway, Prof. Juan Ignacio Latorre-Biel, Public University of

Norway, Chair Navarre, Spain
Adj. prof. Esko Juuso, University of Oulu, Finland, Prof. Kauko Leiviska, University of Oulu, Finland

Co-Chair Prof. Miguel Mujica-Mota, Amsterdam University of
Prof. Erik Dahlquist, Malardalen University, Sweden, Applied Sciences, The Netherlands

Co-Chair Adj. prof. Esa Muurinen, University of Oulu, Finland
Adj. pg)g‘)._éigilr?uuska, University of Oulu, Finland, Dr. Markku Ohenoja, University of Oulu, Finland

Prof. Felix Breitenecker, Vienna University of Prof. Kim Sérensen, Alborg University, Denmark

Technology, Austria Dr. Satu Tamminen, University of Oulu, Finland
Prof. Lars Eriksson, Linképing University, Sweden  Adj. prof. Kai Zenger, Aalto University, Finland

Dr. David Hastbacka, Tampere University, Finland  Prof. Borut Zupancic¢, University of Ljubljana,

Prof. Tiina Komulainen, Oslo Metropolitan Slovenia

University, Norway Prof. Lars Erik @i, University of South-Eastern

Dr. Andreas Koérner, Vienna University of Norway, Norway

Technology, Austria

National Organizing Committee

Adj. prof. Jari Ruuska, University of Oulu, Finland, Chair

Adj. prof. Esko Juuso, University of Oulu, Finland, Co-Chair

Ms. Anu Randén-Siippainen, Finnish Automation Society, Finland
Mr. Marko Vuorio, Finnish Automation Society, Finland
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How process automation is making the world more resource

Abstract

The world is facing major challenges in coping with the supply of food and other necessities to all people,
while ensuring a sustainable and environmentally friendly future. To improve industry processes, meet the
increasing efficiency, safety and quality demands, new digital technology and advanced automation are the

and energy efficient — future trends

Martin Bjornmalm

Digital Lead, Northern Europe, Process Industries, Process Automation
ABB, Sweden

most effective means. With relatively small investments, great effects can be achieved.

Today, the collection of data from the entire plant can be done faster and more accurately, while in the same
time it is processed using various algorithms, advanced control systems or cloud services. It provides decision
support to operators and predicted maintenance. It enables production planning based on customer orders from
raw materials, overall production steps to distribution of the product and model-based control and optimization
of not only individually processes, but entire factories or even entire corporations via Collaborative Operation

Centers by the supplier's experts around the world 365/24.

Biography

Education

2015

Master of Science in Engineering Physics, Royal Institute of Technology, Stockholm,
Sweden

Professional Experience

2020 to date | Digital Lead Process Industries — Process Industries, Northern Europe, ABB
2020 to date | Head of Advanced Services — Process Industries, Sweden
2019 - 2020 | Digital Solutions Manager — Process Industries, Sweden
2018 - 2019 | Sales and Business Development Digital Operations —
ABB, Sweden
2017 - 2019 | Business Development & Digital Lead — Country Service
Organisation ABB, Sweden
2016 -2017 | Graduate Trainee — ABB, Sweden
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How to lead the process industry to a safe and sustainable
future?

Jyri Lindholm

Head of Product Management
NAPCON, Neste Engineering Solutions Oy, Finland

Abstract

Process safety is an integral part of sustainable business. Operating a process plant is high demanding work
and mostly teamwork. This means that cooperation and communication between people throughout the shift
is a key part of safety. How can we improve this with training? Using an integrated training environment where
high fidelity dynamic training simulator and Reality Capture technology is integrated to the one training
environment enables the panel and field operators to train together in one session. This kind of environment
enables development of communication and cooperation between operators. One other added value is that
there may be the situation that practices and procedures are poorly documented for the field operators so this
kind of environment is a useful tool also for developing those.

Training environments are normally used to improve process safety. The training usually covers the handling
of a wide range of abnormal situations, equipment maintenance procedures, such as the replacement of the
pump and compressor with spare pumps, the replacement of the heat exchanger during the cleaning period.
From the other hand there should be high motivation to invest in the training environments also from the
environmental aspect. How about the emission during the hazards? Plant operators are the pilots who control
the plant operations and it’s obvious that there is a direct link between operators actions and emissions. It is
really important that the operator also takes this environmental aspect into account in normal use. By
minimizing malfunctions and hazards, emissions are also reduced. Naturally, minimizing flaring and driving
as economically as possible will also reduce emissions. These aspects bring new challenges to building
comprehensive training programs to meet environmental considerations.

Important questions are how individuals learn best and how they want to learn and where or when they have
time to train. Gamification increases motivation and fun factor of learning. However the comprehensive
operator training simulator (OTS) environments are difficult to gamificate and on the other hand, the training
environment needs to be very realistic for the experienced operators. Anyhow, educational games fit very well
for beginners and students. Referring to other questions, companies are international and have production
facilities in several countries and experts around the world, so the demand for location-independent training is
growing. Nowadays Technology allows us to build a fully functional multi user cloud OTS environment where
several operators and specialists can train simultaneously from different locations.

How to make better operators - would it be possible to increase human capabilities with Artificial
Intelligence? Would it be possible to develop one new safety layer which is powered by AI? One solution was
presented where an Al solution helps operators to run plants as optimally as possible. The implementation is
for distillation columns used in oil refining. The solution supports operators and production engineers to
maximize the yield of most valuable products.

High fidelity Unit OTS data and scenarios were used for developing the ML model in the first steps. The
challenge for the future is whether the high fidelity simulators can be used to train ML models to detect
different kinds of process anomalies and abnormal behaviours which are very rare in real life. In
addition,would it be possible to use OTS data to build Al models that provide guidance to operators on how to
run more energy efficiencently and how to minimize emissions?

DOI: 10.3384/ecp21185 Proceedings of SIMS EUROSIM 2021 Vi
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Biography

Jyri Lindholm has extensive experience in managing the performance, resources, training, development and
innovation of Neste Engineering uSolution Automation Technology. He has more than 15 years of experience
in various management ositions. Jyri has long experience in cooperating with relevant engineering partners
and universities. He is currently responsible for NAPCON product management in the NAPCON business
unit. He is responsible for looking at the overall picture of the NAPCON product range and leading Product
Lines to create and implement a winning development plan that secures and enables both commercial success
and high customer satisfaction for NAPCON and related services. Jyri Lindholm has more than 20 years of
work experience from advanced industrial process control engineering, especially in training simulator
environments. He has been responsible for projects’ cost stimation, project management, definition, design,
engineering, integration, commissioning and model development in multiple Training Simulator Systems for
oil refining, biorefining, and polymer plant sites. Also he has been responsible for control application design
of distributed Control Systems applications and act as a Project Manager of the Process Computer System
implementation in several petrochemical units.

NAPCON Ileads the process industry to a safe and sustainable future. We offer a wide range of innovative
solutions to enhance your production spanning from operational intelligence and advanced process
optimization solutions to boosting your competence through simulators and games. As part of Neste
Engineering Solutions that offers engineering, procurement, construction and project management services for
the Oil & Gas, Petrochemicals and Bio-industries, we apply our extensive process know-how on modern
software engineering to fulfil your needs in the areas of availability, production optimization, sustainability
and safety. In addition to our head office in Porvoo, Finland, we operate in international Neste locations such
as Singapore and Rotterdam. Altogether we employ over 800 engineering professionals. For more information,
please visit: www.napconsuite.com
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Education
M. Sc., Process Engineering, automation and information technology University of Oulu, 1996. Thesis on
Fitting of a dynamic simulator to process measurement and development of a real time estimator.

Employment History
2017 Head of Product Management of NAPCON and Member of NAPCON Supervisory Board,
Neste Engineering Solution Oy, Porvoo, Finland
2015 -2017 | Product Manager of NAPCON Suite product family. Neste Jacobs Oy, NAPCON Business
Unit, Porvoo, Finland
2013 -2015 | Head of Automation Technology, Neste Jacobs Oy, Competence Center of Technology and
Process, Porvoo, Finland
2011 -2013 | Manager, Dynamic Simulation and Real Time Optimization, Neste Jacobs Oy, Competence
Center of Technology and Process, Porvoo, Finland
2010-2011 | Manager, Automation Technology, Neste Jacobs Oy, Automation and Electrical
Engineering, Porvoo, Finland
2006 -2010 | Section Manager, Application Engineering, Neste Jacobs Oy, Automation Engineering,
Porvoo, Finland
1996 - 2006 | Process Control Engineer, Neste Engineering Oy, Automation Engineering, Porvoo,
Finland

Trophy

Viva Automation Recognition Prize awarded to a team from Neste Jacobs. Finnish Society of Automation
2011.

Fields of Competence

Product Management, Business Management, Line Management, Project Management, Resource
Management, Development Management, Application Engineering, Training Simulator Systems, On-line
Process Calculations

Technology

Automation Technology, NAPCON Technology

Techniques

Dynamic Simulation, Real Time Optimization, Training Simulator System, On-line process calculations,
Process Computer System, Multivariable Process Control, Distributed Control System
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The Road to SMARTER and not BIGGER on Data problems
in Transportation

Miguel Mujica Mota

Eurosim President, Assoc. prof., Aviation Academy,
Amsterdam University of Applied Sciences, The Netherlands

Abstract

In This talk, I will discuss the role of M&S in the new ecosystem of techniques for data analysis; the
audience will get some light on how I consider the different techniques should be coupled to solve current
real problems in different transport modalities ranging from Road to Aviation. This talk will give also
direction to young professionals on what are the key areas to put focus on if they want to pursue a successful
career in the future using current techniques like Al, Big Data, Process and Data Mining, optimization,
Statistical analysis and of course simulation.

Biography

Associate Professor, Simulation/optimization (Aviation Academy, Amsterdam U. of Applied Sciences
School of Technology)

Visiting Professor at University of Aviation in Queretaro (UNAQ), 2016

Visiting Professor at The National University of Mexico

Visiting Professor at the Ecole National De L’ Aviation Civile, Tolouse France

Work experience

2013 - Associate Professor, Aviation Academy, Amsterdam University of Applied Sciences

2011 -2013 | Post-Doc Researcher, Sub-director of the Aeronautical Management studies, Universitat
Autonoma de Barcelona, Spain

2005 -2011 | Master/PhD Student, Teaching Assistant, Sub-director of the Aeronautical Management
studies, Universitat Autonoma de Barcelona, Spain

2000 - 2004 | Master Production Planner and Scheduler (Supply Chain Department), Avon Cosmetics
Mexico, Celaya, Guanajuato, Mexico

2003 Lecturer, Universidad Nacional Auténoma de México; Ciudad Universitaria, Mexico
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Education and training

2013 Accredited Evaluator of the Iberoamerican Database of Evaluators: Sector Engineering and
Industry

2012 Professional Certification (ACTIVE)

2008 -2011 | PhD Industrial Informatics, Thesis Title: “Systems Optimization based on the Exploration
of Timed Coloured Petri Nets State Space”, research that contribute to the
simulation/optimization approach, Universitat Autdbnoma de Barcelona, Spain

2004 -2011 | PhD Operations Research, graduated with Honours, Universidad Nacional Autéonoma de
México, Mexico

2005 - 2008 | MSc in Industrial Informatics/Advanced Studies Diploma, graduated with Honours, Thesis:
“Optimization of a Coloured Petri Net Simulator”, Universitat Autonoma de Barcelona,
Spain

1996 - 1998 | MSc in Operations Research, Thesis: “Simulation as an Analysis and Optimization Tool in
Manufacture Processes”, Universidad Nacional Auténoma de México, Mexico

1992 - 1996 | Chemical Engineering, Thesis: “Development of a Photo catalytic Reactor of fluidized bed
for Decomposition of pollutants in Waste Water Treatment”, Universidad Auténoma
Metropolitana, México
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Panel discussion:
Modelling and simulation in tackling challenges of the climate

change
Chair: Adj. prof. Jari Ruuska, University of Oulu, Finland

Panelists:

Hub Manager Bjorn Jonsson, ABB, Sweden
Head of Product Management, Jyri Lindholm, Neste Engineering Solutions Oy,

Finland

Prof. Bernt Lie, University of South-Eastern Norway, Norway
Senior prof. Erik Dahlquist, Mdlardalen University, Sweden
Adj. prof. Esko Juuso, University of Oulu, Finland

The panel discussion was the last part the
conference. The panelist were the keynote
presenters, the current and two past presidents of
SIMS, including the chair of the conference, who
is also the past president of Eurosim. The chair of
the national organizing committee was the chair of
the panel. The discussion focused on five
questions: simulation, energy systems, big data,
environment and simulation toolboxes. The
questions were presented by the panel chair.

1 Can we get enough biofuels and how could
we use them as efficiently as possible?

Bjérn: Extremely interesting topic. It is very clear
that people can change behavior when absolutely
needed but it is not enough. Largest impact comes
from companies and industry. Industry together
with universities can create great initiatives to
tackle climate change e.g., LKAB sustainable
underground mining and transition to hydrogen-
based production in green steel making. Many
initiatives in papermaking and other areas as well.
Simulation and modeling capabilities are important
in developing these new important technologies.

Erik: What resources do we have and how we can
utilize them more efficiently. LKAB Hydrogen
production example where hydrogen is then used
to reduce ion oxide to metallic ion. We are
producing lots of electrical vehicles now. If you
replace one carbon molecule in steel reduction you
have to put in roughly 2.5 times more energy but if
you like to replace one carbon molecule in
electrical vehicle you only need 30% of energy
compared to fossil alternative. How can you utilize
limited resources in long run and increasing
demand when looking from overall perspective?
We as researchers can help politicians and society

to do some prioritization.

Esko: We have lots of possibilities what we can do.
First step is that we must assess whether we can do
it; E. g. in steel industry we have areas where
hydrogen does not work. Then as a second step we
need to assess how fast we can do it as there is
always some dynamics that needs to be accounted.
Third step after that is that we need to think about
the life cycle since we have already solutions, and
we need to consider whether it is reasonable to
move into new solutions. Simulations and
modeling can help decision making,.

Bernt: There is a connection between my Covid
related presentation. In Norway there are
approximately 400 thousand people that are
refusing vaccinations. Even among in well-
educated people there are ones that deny covid. It
is very difficult to convince them as denial is so
strong that even facts will not help. It is very hard
to convince large fraction of people and that is the
challenge.

Jyri: There is an increasing race to find new kind
of feedstocks. Recycling materials are important in
future to make sure do not outrun resources.
Economic and logistics modeling helps in finding
reasonable solutions for their utilization.

Erik: There has been a lot of discussion about meat
and that we should eat less of it. Livestock
produces methane which creates 5 — 10% of global
warming equivalents. You can extract almost all
the methane using activated carbon when indoors.
Methane production of livestock correlates with
1100 TWh of heating power annually. This could
be possibility to create a good solution.

Bernt: One of the concerns in fossil fuels is that you
introduce a new carbon source into atmosphere.

Proceedings of SIMS EUROSIM 2021

Virtual, Finland, 21-23 September 2021
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When it comes to cows, they are not a fossil source
but recirculation of biomass. Interesting question is
that will we have the same problem if we use
biomass for fuel? If you harvest wood early in life,
they grow faster. Increasing cycle of biomass
generates more CO2 into atmosphere. Better
economic system controls population number
which affects climate change. Better health system
and economy correlates with fewer children for
some reason. This is very ethical question.

Jari: Resource sharing evenly globally is
politically impossible but ethically right.

Esko: Living environment of people has great
impact on climate change. We need to think where
specific resources are produced and how they are
transported. How the food is produced, what
livestock is eating and how food is transported.
Organizing this optimally is important. We need to
think the whole system instead some isolated part
of it.

Erik: The lack of measurements makes simulating
difficult. We should work together to make good
measurement structures and identify how we can
measure important variables to make modeling
possible.

Bernt: Convincing general population is easier
when you can show measurements to support your
claims. Yara uses satellite data to help local
farmers in optimal watering and fertilizer use.
Successful circular economy puts huge demand for
the models and simulations because systems will
interact in a way that is impossible for person to
predict.

Jari: Measurements are needed but most important
measurements are usually quite challenging to get.

Bjorn: Affecting on individual people is important
as they select the decision makers who make the
overall decisions. Everything is interconnected and
it is important to get people understand this. E.g.
we cannot have electrical vehicles without mining.
It is important to get everybody to understand this
connection between things. New innovations and
technologies that we develop here in north have
great impact when we transfer them to other places
globally. It is important to build strong foundation
for investments in industry and development
activities.

Proceedings of SIMS EUROSIM 2021

2 Jari: How we can get enough renewable
energy sources?

Bernt: In corona virus case, people say that fewer
have died than in normal influenza and that lock-
down and other precautions are pointless. It is very
hard to make people understand that mortality rate
is low because of these precautions. Corona virus
is an unstable system that is being controlled using
lock down. Without lock down Norway could have
had ten times higher mortality rate. It is hard to
convince people that has certain view and are
refusing to change it. Same thing with climate that
it is very hard to convince people that something
has to be done.

Erik: Hydrogen system total efficiency is 50%
(from electricity produced to mechanical output)
today which is too inefficient compared to batteries
which has 90% efficiency. On the other hand,
production of batteries takes lots of energy. Cost of
using some technology can be totally separated
from the efficiency. There is a competition between
different technologies and where certain
technology should be used. E.g., Volvo ab thinks
hydrogen cells should be used in heavy vehicles
and Scania relies on batteries. The price will be the
final driving factor.

Esko: Fair competition and where we are going to
use each technology. Green electricity has lots of
fluctuations. In hydrogen production this might not
be too big of a problem. Optimization is needed to
balance production according to some variable.

Bernt: Batteries use rare earth metals found in
specific location which is a challenging problem.
Fast charging 3000 vehicles simultaneously would
require all the energy produced by Hoover Dam in
US, so it is not realistic. Lifecycle of great number
of batteries creates new challenges as well. In
Norway there was an initiative where they used
windmill for producing hydrogen. People fear that
hydrogen cells can have leakages which are
dangerous. Oil is not good in long term, but it is
still needed now and in transition period. Future of
energy will be a mixture of many technologies.

Bjérn: Agree with Bernt. There will be hydrogen,
oil, batteries together. Technologies are involving.
As all these technologies are involving, this is very
interesting simulation task for universities — price
point, sources coming in, technology development,
scaling, ... What technology to use and when?

Virtual, Finland, 21-23 September 2021
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3 Jari: What kind of measurements we are
lacking in order to get good data?

Erik: We had a train case where battery needed to
be operated between 30 to 70% capacity. How to
do a good prediction model for this case. We need
to have good measurements from environment and
system to model how we can go from A to B
without stopping and to minimize the battery.
Simulation models are important for this kind of
case.

Jyri: Future is in mixture of different fuels. Some
of fuels can be used in near future and some can be
left for future.

Jari: Does anybody in audience have any
questions?

Esko: We do not have to find global optimum. We
have local differences e.g., in airplane usage like
distances and support. We need to think about what
we are doing. Electric car is very good if you are
do not need to drive long distances and have easy
access to electricity for loading batteries. We need
to consider attributes of specific areas.

Bernt: What is a measurement? Most people accept
the temperature as a measurement. Thermometer
can have length of a mercury column which has a
correlation with temperature. Combining several
classical measurements creates new measurements.
We can use indirect measurements like smart
sensors or soft sensors with some sort of a model.
When we have evermore intelligent sensors in
future, will people develop distrust towards their
data or information?

Erik: We had a diploma thesis worker in Skelleftea
working on how you can utilize power more
efficiently considering transporting of batteries,
degradation, etc... Al systems could be used for
optimizing this soft of operations and systems.

Esko: 1 had a discussion about what is a
measurements and indirect measurement where
somebody said that you should not use indirect
measurements but real measurements. Is
temperature a real measurement? If you can
reliably calculate value from another then it can be
considered as a measurement.

4 Question from the audience 1: Very
interesting discussion! What are your
thoughts on next generation nuclear as a
solution both to produce green energy and
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to burn the nuclear waste already
produced?

Erik: In nuclear system you want to extract
unwanted things and increase uranium to wanted
level. Principally great solution but needs a lot of
wet chemistry with very active components and
therefore it is difficult because you cannot have any
corrosion or leakages. Maintenance and upkeep are
very difficult in this process.

Bernt: Norway has only two small nuclear reactors
for research purposes. Norway is skeptical towards
nuclear energy. One proposition is to produce
Ethanol in nuclear reactors, but you might need to
use all the fresh water in the world to make it work.
We need to have mixture of several energy sources
including solar energy which have improved a lot
lately. With intermittent energy like solar and wind
you have variations in production, and you might
need to develop some new operational
developments.

5 Question from the audience 2: Why does
biogas get so little attention, even though
there have been cars using it for a couple of
decades already and you can produce it
quite efficiently from biowaste from
communities and farms?

Erik: 1 have a biogas car myself and I wonder also
why we do not use more of it. We do not have
strong drivers for biogas as for the energy forms. In
Germany the biogas is used in heating and power,
and you get paid for what you have produced.

6 Question from the audience 3: How can we
best approach CO2 emissions globally?
(China 28%, USA 15%, India 7%). We
should focus on where we can make the
most difference?

Bjorn: What we do here does have impact all
around the world since we introduce new
technologies and prove their reliability here and
those are then adapted in other parts of the world,
and this has a massive impact. We have project
with company doing recycling of clothes and site
which can be replicated globally to make massive
impact. Focus on Nordics and export technology.

Esko: Electricity is just a part of the possible energy
sources. Direct heat sources like solar and
geothermal should be utilized better. This frees
energy capacity as well..
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7 Jari: Short comment from everybody on
what is in your opinion the best way to use
modeling and simulation to tackle climate
change?

Jari: We should be able to build global models with
accurate enough sub-models that tell us what parts
we should concentrate on. In Eurosim society we
could then showcase how to make difference.

Erik: Most important thing is to try to optimize
processes so that you can utilize resources as
efficiently as possible. Simulation can be used to
present possibilities for the society what we can do,
and we need to assess reliability of measurements
to understand how reliable our predictions are.

Jyri: Old or existing way to use simulations to
simulate processes to make processes as efficient
as possible is very important. Global things are
important but optimal driving of existing processes
is very important.

Esko: Main thing of modeling and simulation is to
develop ways to compare alternative and then
comes optimization which can be done in several
levels.

Bernt: 700-year-old paper was optimistic in
predicting future which is very interesting. There is
a fight in the society that we do not understand of
believe in science anymore. Models should be
made familiar to young people to increase
understanding in modeling and simulation.
Transparency and honesty is important to increase
general trust in modeling. Short term predictions
are more important than what is going to happen in
100 years. Modeling and simulation use for energy
planning and usage is interesting and new sensors
makes new models possible through Big Data.
Modeling and simulation is very important topic
and groups like SIMS will be needed in future.

Bjorn: It is important to continue increasing
collaboration between people from academic and
industry people.

Jari: closing words.

8 Conclusions

The discussion covered well the modelling and
simulation in tackling challenges of the climate
change. The panel was a highly valuable conclusion
for the conference in linking the keynotes and topics
of the regular papers with the history and the future
of the simulation.
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Abstract

Energy efficiency is increasingly being considered as a
critical measure of process performance due to its
importance both in production costs and in
environmental footprint. In this work, an indirect energy
efficiency estimator was developed for the Tennessee
Eastman (TE) benchmark process for the first time. The
TE model was first modified to provide the reference
values of energy efficiency. A sophisticated model
selection scheme was then applied to build the
surrogate-model. The results indicate reasonable model
performance with mean absolute prediction error around
1.7%. The results also highlight the limitations present
in the training set, which are, together with other
practical implementation issues, discussed in this work.

Keywords: Chemical Process Engineering, Tennessee
Eastman, Energy Efficiency, PLSR models, Model
adaptation

1 Introduction

Energy efficiency is an important factor to consider in
modern chemical process engineering; the efficiencies
often are concentrated to reducing energy costs per
product. Higher energy prices strongly contribute to
increasing operating and manufacturing  costs.
Additionally, inefficiencies in energy usage also
contribute to higher greenhouse gas emissions and
environmental footprint. It has been concluded that the
improvements in energy efficiency require pragmatic
and holistic approaches (Drumm et al., 2012).

The increased computational resources have enabled
energy efficiency estimation and monitoring using large
data sets collected from process plants. The dynamic
losses (difference between the current energy
consumption and the historical or theoretical energy
consumption) can be estimated from the process data
and visualized to the plant operators (Drumm et al.,
2012). The predictive soft sensors could also assist in
the selection of process paths at least with a suboptimal
energy efficiency (Nikula et al., 2016). However, with
large and complex data sets, the development of soft
sensors is not straightforward. It should be also
mentioned that regardless of the suboptimality, typically
large energy savings can be realized in the chemical

DOI: 10.3384/ecp211851

industry because of the high production volumes
(Saygin et al., 2011).

This study demonstrates the development of a real-
time data-driven energy efficiency estimator using an
artificial data set. For this aim, a multivariate simulation
study with the Tennessee Eastman (TE) process
benchmark is carried out. The TE process is a multi-step
chemical process with relatively slow dynamics and
consequently large delays. After introducing a step
change, the settling time is approximately 24-48 hours,
severely complicating the analysis (Downs and Fogel,
1993). The TE process has five main unit comprising an
exothermic reactor, a condenser, a compressor, a
separator, and a stripper. The operating cost of the TE
process is related to the loss of product and reactants (in
purge and product streams), steam utilization and the
compressor work (Konge et al., 2020).

Being an open-loop unstable process, the TE process
has been extensively used to develop and test plant-wide
control strategies (e.g. Larsson et al., 2001; Jamsa,
2018). The scenarios embedded to the benchmark model
have also resulted as humerous studied aimed for fault
detection and diagnosis (e.g. Kulkarni et al., 2005; Xie
and Bai, 2015; Zou et al., 2018). In addition, the plant-
wide, nonlinear nature of the TE process has gained
attention for developing surrogate models; For example,
Tran and Georgakis (2018) wused Net-elastic
regularization and D-optimal designs to reach steady-
state surrogate models with reduced complexity. Sheta
et al. (2019) developed dynamic NNARX models with
interpretable structures for four TE outputs. Recently,
Konge et al. (2020) proposed several machine learning
based regression modeling techniques for building
lower dimensional subsystems and performing process
operability analysis to the TE process.

However, the energy efficiency estimation of the TE
process is still an unexplored topic. The energy balances
for the reactor, the product separator, the stripper and the
mixing zone were introduced by Jockenlhével et al.
(2003).

2 Material and methods

2.1 Energy efficiency

Energy efficiency is here defined as the energy
consumed by the process divided by the amount of
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product produced. Hence, the value should be
minimized in order to minimize the energy usage per
produced tons. Both terms should also involve possible
losses related to production and energy utilization,
having negative effect to the energy efficiency, namely
increasing the value. In TE process model, the product
losses are negligible (less than 0.7%) and the model does
not account for the energy losses. Therefore, the
simplified definition of the instantaneous energy
efficiency for the product component n at time instant k
is calculated as in Eq. (1):
k PCk) 1
M (k) () )

Where #n is the energy efficiency with respect to
component n at time instance k, P [MJ/h] is the energy
consumed per hour by the compressor and reboiler, and
my [ton/h] is the amount of produced component n per
hour. In TE process, the components of interest are the
liquid products G and H.

In order to extract the instantaneous, real value of the
energy efficiency from the TE model, a set of
modifications to the simulation were required:

1. The average liquid densities of the product streams
were calculated based on the measured molar
fractions, and component liquid densities given in
Downs and Vogel (1993),

2. The product mass flows were calculated from the
average liquid densities and the measured product
volumetric flows,

3. The reboiler energy was calculated from the
measured steam mass flow according to
Jockenhovel et al. (2003).

The product stream’s molar fractions were the delay
and disturbance free model outputs, while the other
measurements consisted of the default delays and noise
levels of TE benchmark. The energy efficiency
described above represents the reference (target) signal
for the surrogate model.

2.2 Simulation scenario

In TE process, gaseous reactants A, C, D and E are
converted into liquid products G and H, and byproduct
F (Downs and Vogel, 1993). TE model by Balthelt et al.
(2015) is used in this study to generate the simulated
process data. In the simulation, the base case operational
mode of the TE process is considered, where the target
product mass ratio of G and H is set to 50/50. The
simulation was run with disturbance flags disabled and
using the decentralized control strategy included in the
TE simulator.

First, a subset of manipulated variables was selected
using first order finite difference-based sensitivity
analysis of the inputs with respect to 7¢ and #n (energy
efficiency of components G and H). The ranges for the
selected variables were determined based on
simulations and earlier findings from the literature. It is
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well known that the ranges of inputs need to be reduced
as the number of inputs is increased (Konge et al., 2020;
Tran and Georgakis, 2018). Table 1 lists the selected
variables and their feasible ranges applied to this study.

Next, a Monte Carlo type simulation scenario is
formulated. There, the TE process is simulated for two
months (60 days, 1440 h) to mimic a typical set of
routine process data. The set points of the manipulated
and operational variables are changed pseudo randomly
to illustrate the effect of sudden changes in the
production and on the energy consumption.

The simulation was performed in a following way;
Firstly, a random number generator was initialized.
Secondly, a random time instant between 24 and 48
hours was selected from an even distribution. Then, one
to four manipulated variables are randomly selected to
the adjusted time step. Finally, their values are randomly
chosen from an even distribution and previously
adjusted variables are changed back to nominal values
to keep the process within control range.

The time spans for the set points changes were chosen
to occur between 24 and 48 hours after the previous
change in order to ensure robust process behavior and
following the recommendations in original TE model
(Downs and Vogel, 1993). Using a step size of five
seconds, the resulting data matrix consist of 1,036,801
rows (time instants) and 43 columns (simulated process
variables).

Table 1. Setpoints of the manipulated variables and their
range in TE simulation.

Manipulated Nominal Lower Upper
variable value bound bound
Production rate

[mh] 22.9 20.5 24.0

Stripper level (%) 50.0 40.0 60.0

Component G in
product (mole-%)
Component A in
reactor feed 55.0 495 65.9
(mole-%)

Components

A&C in reactor 58.6 52.7 64.4
feed (mole-%)

Reactor

temperature [*C]

53.7 51.0 57.0

120.0 118.0 125

2.3 Data preprocessing

The simulated data had a substantial start-up transient.
Hence, the first 1000 data points (1.39 h) were excluded
from the training set prior to modeling.

The data matrix was then down-sampled to reduce the
effect of delays and measurement noise present in the
simulated process measurements. The down-sampling
was performed with 6-minute averaging, resulting as a
data matrix with 14,400 x 43 (41 inputs, 2 reference
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outputs). Then, each of the input variables were delay-
compensated using a discrete time shift with a maximum
lag of 30 minutes (i.e., 5 different time shifts with a 6-
minute sampling time). Consequently, before filtering
there were 41 x 5 = 205 input variable candidates.

Prior to model selection the down-sampled data set
was divided into training and testing sets. The division
was simply made with respect to simulation time,
reserving the latter 30% for testing.

2.4 Model selection and validation

In the second phase, a dynamic surrogate model for the
operational mode one is constructed based on the
training data (70% of the whole set) to estimate the
energy efficiency. Prior to model selection, the input
data space was normalized such that X = {0,1} using the
min-max-scaling.

The model structure here is based on the partial least-
squares (PLS) regression. The estimator is selected
based on a sufficiently representative training set of 40
days and tested with an independent time series of 20
days. The delay analysis and input variable selection are
carried out using out signal correlation-based filtering,
using linear correlation with the desired output and the
time compensated signals as the filtering metric. In
filter-based variable selection, the rule for variable
inclusion or exclusion is given as

=y

where i is the logical iterator, R is the linear Pearson
product-moment correlation coefficient and T is the
manually selected threshold. In this study, the threshold
was set heuristically to T = 0.25. Consequently, the
filtered estimator is

R>T
R<T @

y = Xbps + ¢, (3)

where bp; g is the estimated parameter vector with the
PLS algorithm, X is the input data matrix, y is the
estimated output and the ¢ is the residual term with
N(0, 62). The PLS parameter estimation is performed
for the filtered matrix, i.e. X[i=1] with the algorithm
presented in de Jong (1993). The number of PLS
components was selected using a grid search with cross-
validation, consequently resulting as 4 and 3 selected
components for the models of »¢ and #n, respectively.
The objective function in selection was based on k-fold
sequential cross-validation. After testing different
values of the k-fold, a 3-fold cross-validation was
selected.

The model performance was evaluated with the
following figures of merit including R, RMSE (root
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mean squared error) and MAPE (mean absolute
prediction error).

3 Results and discussion

3.1 Model Selection

Using the presented model selection procedure, a
feasible model was identified. The figures of merit for
the model training and testing results for the two energy
efficiencies are shown in Table 2. For the g, the figures
of merit for the out of sample data set (test set) can be
considered sufficient for process control purposes. The
predictions can be considered to be within +0.0028
MJ/ton (2.8 kJ/ton) with 95.4% confidence. Similarly,
for the final product component H, the model
performance is comparable to the previous model with
slightly higher correlation coefficient. The 95.4%
confidence interval for energy efficiency model for
component H was +0.0032 MJ/ton (3.2 kJ/ton). In
addition, it can be seen that the model’s testing set
performance metrics are quite optimistic for the
component H, which can be seen as a higher correlation
coefficient and lower error values compared to the
training set.

Table 2. Figures of merit for the identified PLSR models.

Criteria Training Testing
Product G H G H

R 086 088 085 0.89
RMSE, ki/fton 1.6 1.6 1.6 1.6
MAPE, % 1.7 1.7 1.7 1.6

3.2 Model applicability

The test set estimations using the selected models for 7c
and nn are presented in Figure 1 and Figure 2,
respectively, with corresponding confidence intervals of
the selected estimators.

According to Figures 1 and 2, the testing set shows
decreased performance, and for some regions the output
value seems to interpolate poorly. In data-driven
modeling, this often could indicate overfitting the model
during the training phase, which means that the model
parameters are biased because of estimating the noise in
the system rather than the true dependencies. Utilization
of an overly complex model as the estimator is a
common cause of this behavior. (Hastie et al., 2009)

In the modeling case of this study, the lack of fit in
the test set seems to be at least partially explained with
the non-similar distributions of the training and testing
input data sets, often referred as the covariate shift
(Moreno-Torres et al., 2012). This issue is discussed in
the following.
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Figure 1. Measured and estimated energy efficiency for component G with corresponding confidence intervals. Only
every 50 sample is plotted for the sake of clarity.
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Figure 2. Measured and estimated energy efficiency for component H with corresponding confidence intervals. Only
every 50 sample is plotted for the sake of clarity.
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The difference between the training and test sets was
further analyzed using Euclidean histogram distance
(Ma et al., 2010) and histogram intersection similarity
(Swain and Ballard, 1991) and Kullback-Leibler (KL)
divergence (Mathiassen et al., 2002) in sliding windows
for each m inputs used in the PLSR model. Using these,
a novel metric is presented and denoted as the l,. The I,
is given here as

m
Iy = 2 bPLs,j(O-’Dj - Sj): (4)
=

where  D; = Dj(X¢rqins Xtest) i the Euclidean
distance between the training and test set histograms for
input j and s; = 5;(X¢rgin, Xeese) 1S the similarity
between the train and test set histograms for input j. It
was found that the KL divergence provided practically
the same information as the presented distance metric,
thus it was intentionally left out from the definition of
the index. However, the KL divergence was found also
to give a qualitative indication of the data drift. The ¢;
for an input variable is defined as the fraction of samples
out of range in a test set window. The global parameter
a is the maximum of all g;’s. It can be seen from the Eq.
(4) that the proposed metric highlights the variables with
more significant effect on the input. In addition, the a
thresholds the Euclidean histogram distance, and the s;

acts as a penalty if the train and the test set have non-
similar histograms. It should be noted that the higher
index values I, indicate a higher covariate shift, and thus
higher histogram similarity needs to decrease the value
of the proposed index.

The applied metrics are illustrated together with the
RMSE for component G in Figure 3. The visual
inspection in the Figure 3 shows that in fact that the
training set might not be representative, as some of the
model inputs diverge from the training data set. It can be
seen from the Figure 3 that it is apparent that the
covariate shift correlates well with the observed
modelling error with testing data. Thus, monitoring the
input space could be at least partially used to aid in the
decision-making concerning the need of soft sensor
maintenance. De facto, in actual use this issue would
have to be fixed with model adaptation (or model re-
training) to a more comprehensive training set.
However, the recognition and tackling not only the
covariate shift, but also the other type of dataset shifts
such as the prior probability shift and the contextual
shift (Moreno-Torres et al., 2012) in real-time demands
further studies on model adaptation. From these, the
prior probability shift is the most of obvious to be dealt
with, especially in the case of models with single output.
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Figure 3. llustration on the possibility of monitoring the soft sensor’s covariate shift (1., red line) and its effect on
the RMSE with testing data (black line). The illustration is computed with the sliding window size of 50 samples
for the component G.
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3.3 Practical Implications

The results of the study give guidelines to soft sensor
selection in monitoring of energy intensive production
processes with large input delays. Monitoring of the
energy efficiency provide basis for real-time
optimization of the processes also with respect to energy
consumption. Hence, the study contributes to life-cycle
analysis theme of the multi-step chemical processes, and
by that demonstrates how the soft sensors could be
utilized to lower the carbon footprint of an industrial
process. In order to comprehend the analysis from the
process engineering point of view, some further
considerations related to practical implementation to TE
process are required.

First of all, the surrogate model developed here
utilizes a rather simple approach. Although a more
sophisticated variable construction, delay estimation
and variable selection methods may enhance the
estimator performance, in industrial applications it is
often beneficial to have a model structure in a
representable format. In case of PLSR model, and with
limited number of projections, this requirement can be
met.

Additionally, it is important to give insight on the
explanatory variables used in the model. In the case
presented, after the correlation-based filtering the subset
of 18 and 14 variables for the two surrogate models were
used in PLS model estimation. From these, the most
important ones were found to be:

e Component F, G and H mol-% in product stream,
e Component D mol-% in purge stream,

o Reactor temperature (°C),

e Product separator underflow (mé/h),

e Stripper underflow (mh),

o Compressor power (W),

o Condenser cooling water outlet temperature (°C).
Based on the presented list, the liquid molar fraction
measurements of the final product components (G, H) in
the product stream, together with the by-product F are
needed. In TE model, these are sampled with relative
high frequency of 0.25 h and 0.25 h delay. The soft
sensor approach utilized in this paper considered a
maximum lag of 0.5 h, suggesting that the indirect
energy efficiency estimation is strongly based to recent
analysis results from the product composition.
Similarly, the purge stream molar fraction of reactant D
is assumed to be measured with interval of 0.1 h and
delay of 0.1 h in TE model. These assumptions set high
requirements for the online gas and liquid analyzers.
As indicated by Konge et al. (2020), the steam cost
in overall cost-efficiency of the TE process is relatively
small. On the other hand, it might have more important
effect to the energy efficiency. This cannot be directly
seen from the most important variables selected to the
energy efficiency model. However, the product
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separator underflow is used as an explanatory variable
and this liquid stream is directed to the stripper, having
impact to required steam consumption. Utilization of
temperature measurements from several process points
and the compressor work as explanatory variables also
have natural connection to process energy efficiency.
Finally, the surrogate model also uses the production
rate (stripper underflow) as an input. Thus, the model
incorporates most of the variables affecting to the
energy efficiency by definition given in Eq. (1).

Finally, it was highlighted in this work, and also in
previous studies related to surrogate modeling of TE
process (e.g. Sheta et al., 2019), that the selection of the
training data deserves attention. Sheta et al. (2019)
suggest approaches such as peak shaving and smoothing
of intensive changes as pre-processing methods to avoid
overfitting problems. However, as indicated in Section
3.2, the implementations in real systems typically need
to include also efficient model adaptation as all the
process points are seldom available in the training data.

Development of ensemble models can also help to
reduce the estimator uncertainties and to overcome the
challenges related to unseen process points (Hastie et
al., 2009). In addition, gradual changes due to fouling
and wear of equipment, or even process design changes
(which could be expected if the training set is extended
over very long time period) set challenges to any
surrogate models. Hence, maintenance of the soft sensor
to ensure its performance over time is in fact a very
interesting and important topic to study.

4 Conclusions

In this work, an indirect energy efficiency estimator was
developed for the Tennessee Eastman (TE) benchmark.
For this aim, the TE benchmark was modified to be
suited for generating the necessary data with a realistic
simulation scheme. Based on the simulated data, a
surrogate-model was selected using a sophisticated
model selection scheme. The final model structure was
the Partial Least-Squares (PLS) regression. With these,
a reasonable model performance was obtained. By
monitoring the histogram similarity metrics along with
the test set estimation error, it was found that the
applicability of the estimator could be partially limited
because of the covariate shift. All and all, the data drift
was identified to be an important factor that plausibly
could complicate the use of soft sensors in industrial
applications. In this simulation study, this was attributed
to multivariable nature of the process and motivate the
future research towards selection and maintenance of
soft sensors.
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Abstract

System level testing generally lacks coverage due to cost
of performing realistic tests on the “system as a whole”.
This lack in test coverage gives rise to seemingly
emergent behaviour at system level. The interactions
between multiple sub-systems lead to “the whole being
greater than the sum of its parts”, which is a famous
saying dated back to the time of the Greek philosopher
Avristotle. Either we should test more extensively at
system level, or we should test smarter. The company
needs to validate its current test regime to see if the
current way of testing detects the emergent behaviours
in question. We seek to validate the company’s system
integration test regime to see if it can detect a given set
of emergent behaviours. This paper aims to find the
probabilities of detecting specified types of emergent
behaviour in the way the company performs system
integration testing today and compare that to alternative
test regimes. A model is set-up to find the probabilities
of the emergent behaviour types in the different test
regimes, and to simulate the corresponding detection
rates and related uncertainties. The results show that the
company could benefit from changing to an alternative
test regime, which has higher probability of detecting a
given set of unwanted behaviours emerging through
system integration testing.

Keywords: Bayes’ theorem, emergent behaviour,
experimental design, statistical inference, system
integration testing.

1 Introduction

System level testing generally lacks coverage due to cost
of performing realistic tests on the “system as a whole”.
This lack in test coverage gives rise to seemingly
emergent behaviour at system level. The interactions
between multiple sub-systems lead to “the whole being
greater than the sum of its parts”, which is a famous
saying dated back to the time of the Greek philosopher
Avristotle. Either we should test more extensively at
system level, or we should test smarter. The company
needs to validate its current test regime to see if the
current way of testing detects the emergent behaviours
in question.
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This paper looks at how well the system-level test
regime detects unwanted behaviours for an autonomous
underwater vehicle (AUV) that uses a camera to capture
images of the current seabed.

We seek to validate the company’s system integration
test regime’s ability to detect a given set of emergent
behaviours. This paper aims to find the probabilities of
detecting specified types of emergent behaviour in the
way the company performs system integration testing
today and compare that to alternative test regimes.

1.1 Problem Statement

The company performs system integration testing based
on manual operations, which is a bottleneck for them to
ensure mature and robust products (Haugen and
Mansouri, 2020).

Analysts in the company do not have enough time to
analyse all available test results from performed test
executions / simulations. Roughly, system domain
experts analyse 10% of test results on average. About
80% of tests analysed contain no errors. Around 20% of
tests with errors detected include behaviour-related
errors (Kjeldaas et al., 2021). lllustration in Figure 1.

\

A
[ |

Errors: ..\A

A
[
Behaviour errors: @)@

Figure 1. Portion of tests with detected behaviour related
errors.

Analysis:

We believe the company tests too many “sunny day”
scenarios compared to “rainy day” scenarios. This test
strategy fails to trigger the system’s inherent emergent
behaviours to the extent that we can collect enough data
on them through testing to perform effective analyses of
these behaviour issues.

The AUV uses available map data to plan missions.
The map data varies in quality, which may give
problems for the accuracy of the planning functionality.
Map areas lacking data works as tripwires for the
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planning system and could cause the planning to fail if
it is not possible to avoid these areas, ref. Figure 2.

Figure 2. Principle sketch of issue with lacking (black
areas) map data.

The AUV plans route segments within available fuel
limit, including departure from -and arrival to the
mothership. Complex ocean currents yield large fuel
calculation error margins. Reaching fuel point of no
return forces the AUV to abandon mission and return to
mothership, ref. Figure 3.

ANTARCTICA

CURRENTS DURING NORTHERN HEMISPHERE WINTER
[ codcurems  [[0] womecumenms — — kISt direcion
SPEED OF CURRENTS (1 knot = 1 nau ile 16.076 feet] per ho

—e+ Less than 05 knots. —s  05-08knots —e Grester than 0.8 knots

Figure 3. Principle sketch of issue with complex ocean
currents (Cenedese and Gordon, 2021).

The height information available of the seabed have
varying uncertainty, which is a critical factor for the
AUV’s ability to capture seabed images of sufficient
quality. To ensure desired quality in the photograph of a
given area, the AUV needs a minimum number of
pictures of the same area. If the slope of a ridge is too
steep, the AUV does not have time to photograph the
slope with sufficient quality, or photograph it at all,
without special considerations in planning the route, ref.
Figure 4.
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Vertical distance

Horizontal distance

Figure 4. Principle sketch of issue with steep ridges.

The AUV uses an acoustic positioning system (APS) to
keep on track with the planned route. If the AUV APS
information is lost due to some interferences, the AUV
drifts from its planned route depending on the inertial
navigation system (INS) and terrain correlation, ref.
Figure 5.

A

Position error

Time

Figure 5. Principle sketch of issue with navigation drift.

The company assumes the AUV system is complicated
and even complex. Complex systems are understood
only in retrospect and do not usually repeat, while
complicated systems can be understood by reductionism
and detailed analysis. The company assumes that the
AUV system exhibits weak emergence, and potentially
strong emergence. Strong emergence is unpredictable
and inconsistent in simulations, while weak emergence
is predictable and consistently reproducible in
simulations (Mittal et al., 2018).

1.2 Methods

The company uses the Changing One Single Thing at a
time (COST) or Only one Factor At a Time (OFAT)
model (Montgomery, 2017). We use the COST/OFAT
principle for the first test regime in this paper.

For the second test regime, we use a two-level full
factorial design (Dunn, 2021) and (Montgomery, 2017).
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For the third test regime, we use an optimum design
for maximizing the probability of detecting the
emergent behaviours in question.

We seek to answer the following research questions:

e How well is the company able to detect a given
set of emergent behaviours?

e What is the probability of the company
detecting a given set of emergent behaviours in
the current company test regime?

e How much can the company increase the
detection of a given set of emergent behaviours
in an alternative test regime?

1.3 Literature Review

The Only one Factor Ata Time (OFAT) method consists
of selecting a starting point, or baseline set of levels, for
each factor, and then successively varying each factor
over its range with the other factors held constant at the
baseline level (Montgomery, 2017).

For a two-level full factorial design, we run the
complete set of 2k experiments, where k is the number
of factors and 2 is the number of levels for each factor.
The results of the experiments we use to quantify the
importance of each factor. Indeed, for this purpose,
linear regression models, considering both the single
factor and two-factor effects are used in this paper. For
example, in the case of two factor model, the following
fitted regression model can be used to determine the
importance of each factor (Dunn, 2021).

Y = Bo + Baxa + Bexp + BapXas ey

In the following, the total probability is calculated based
on the inclusion-exclusion principle when the different
emergent behaviours are independent but not disjoint
events. We calculate the total probability by formulas
regarding different number of factors (Allenby and
Slomson, 2010):

P(A+B) = P(A) + P(B) — P(4,B) (2)

P(A+B+C)=P(A) +P(B)+ P(C) €)
—P(4,B) — P(4,0)
—P(B,C)+ P(4,B,C)

P(A; + A, ...+ 4,) 4)

= z P(A) — Z P(A; 4))
i=1 i<j
+ z P(A;, A}, Ay) + -
i<j<k
FEDM Y P4, Ay
i<-<n
The union of a four-factor probability is illustrated in

Figure 6.
The Bayes’ theorem is expressed as
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P(Y|X,D) P(X|)
P(Y|D

where X is our hypothesis, Y is our data, and | is relevant
available information. The various terms in Bayes’
theorem have formal names. The quantity on the far
right, P(X|I), is called the prior probability; it represents
our state of knowledge (or ignorance) about the truth of
the hypothesis before we have analysed the current data.
This is modified by the experimental measurements
through the likelihood function, or P(Y|X, I), and yields
the posterior probability, P(X|Y,I), representing our
state of knowledge about the truth of the hypothesis in
the light of the data. In a sense, Bayes’ theorem
encapsulates the process of learning. The denominator
is often simply a normalization constant (not depending
explicitly on the hypothesis). In some situations, like in
model selection, this term plays a crucial role. For that
reason, it is sometimes given the special name of
evidence (Sivia and Skilling, 2006).

PX|Y,I) = ()

AB /peC BC
A ABD  ABCD B C

AD AD/ D

Figure 6. Inclusion-exclusion illustrated by a Venn
diagram for four sets (Concept Draw, 2021).

2 Design of Experiment

This paper explores the probabilities and detections of a
given set of emergent behaviours in different test
regimes, the current company test regime and two other
alternatives.

2.1 Data

We select a set of emergent behaviour types for study in
this paper. The emergent behaviour types are:
e F1: Planning failure [0...1]
F2: Fuel exceeded [0...1]
F3: Photo quality degradation [0...1]
F4: Photo coverage deviation [0...1]
G: Any emergent behaviour [0...1]
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For the purpose of this study, we have focused our
efforts on a set of four dichotomous variables, which can
take only two possible values (low and high). These are:

e A: Navigation quality [Low, High]

e B: Map delta height [Low, High]

e C: Real world environmental delta [Low, High]

e D: Map quality [Low, High]
Further, based on previous experience with comparable
systems, we have selected a set of probabilities for this
study. Accordingly, based on expert knowledge within
the company, the probabilities of the emergent
behaviours are assumed to be [%]:

e P(F1)=0.15

e P(F2)=125

e P(F3)=1.88

e P(F4)=0.31

e P(G)=3.59
Moreover, based on the available data in the company’s
database, we will assume the following [%]:

e P(D|F1) =10

e P(D'|F1) =90
e P(C|F2)=55
e P(BD|F3) =25
e P(BD'|F3)=175
e P(A'|F4) =100
e P(D)=098

e P(DHY=2

e P(C)=10

e P(BD)=18

e P(BD)=2

e PAN=1

In general, we are interested in the probabilities for the
different emergent behaviours at different factor levels.
For example, we are interested in probability of
planning failure (F1) under the condition that the map
quality is high (D). That is, we are interested in
P(F1|D). This probability can be calculated using the
Bayes’ theorem (5),
P(DIF1)P(F1) 10%0.15

P(D) ~ 98
The probabilities [%] of other emergent behaviours can
similarly be calculated

e P(F1|D") =6.75

e P(F2|C) =6.88

e P(F3|BD) =26

e P(F3|BD") =7031

e P(F4|A") = 31.25

2.2 Test Regime 1

The test regime 1 is the current company test regime and
is the baseline for comparison with the other alternative
test regimes. There are 16 possible combinations, using
two values for 4 parameters. However, the company
does not test all 16 cases. The principle is to start with a
reference case and add cases with level-change in only

P(F1|D) = =1.5%10"2

one factor at a time as compared to the reference. This
COST/OFAT principle makes it easier to analyse the
effect of the level-change in one factor. Table 1 shows
the company’s selected test case types. Test case type 1
is the reference experiment type, and to reduce the
number of test set-ups the company re-uses this as much
as possible to verify system requirements. The company
uses the test case types 2-5 to analyse the impact of the
factors C, B, BD, and A, respectively.

Table 1. Scenario factor levels for test regime 1.

Test Case Type A|B|C|D]| #Runs
1 + | - -+ 245
2 + | - |+ |+ 6
3 + |+ - |+ 60
4 + |+ -] - 6
5 -l -] -]+ 3

2.3 Test Regime 2

The test regime 2 is the first alternative test regime,
which is also known as two-level full factorial
experiment. The two-level full factorial design has four
factors with two levels, which gives 2* = 16
experiments. Table 2 shows the experiment set-up for
test regime 2 with the yield for each test case type based
on expert opinion that we choose for this study. The
yield is the total number of emergent behaviour
detections in 20 runs per test case type. Further, in the
test regime 2, each test case is run equal number of
times. For the purpose of comparison, we choose the
total number of runs to be the same for both test regime
land 2.

Table 2. Scenario factor levels for test regime 2, full
factorial design.
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TestCase Type | A | B | C | D | Yield | # Runs
1 -l -1-1- 8 20
2 + -1 -] - 1 20
3 -+ -] - 22 20
4 + 1+ -1- 15 20
5 -l -+ - 9 20
6 + -1+ - 3 20
7 -+ ]+ - 23 20
8 + |+ ]|+ - 17 20
9 - -] -]+ 6 20
10 + -] -1+ 0 20
11 -+ -]+ 7 20
12 + 1+ -1+ 1 20
13 - -+t 8 20
14 + -+t 1 20
15 - | +F [+ ]+ 8 20
16 + |+ |+ ]+ 2 20
11
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2.3.1 Effect of Experiment Factors

One way to find the effect of each factor on yield is by
conducting a regression analysis based on the test
results. In the case of the test regime 2, the Equation (1)
has 16 parameters. The first coefficient being the
average of all the vyield values, while the other
coefficients represent the effects of the different factors
and factor interactions. Estimating the parameters with
respect to the observed yield, results in the following
relation with only six non-zero coefficients,

y = 8.14 — 3.13xA + 3.65xB + O.69xC - 4.06xD
- 3.39xBD

Pareto plot

o1

c; I
ADA Sign of ceefficients
C:DA Megative

ACDA . Paositive

Effect name

AB:C:DA
B:C:D A
AB:CH

0 1 2 3
Magnitude of effect

Figure 7. Magnitude of the effect of the factors.

The coefficient —3.13x, of factor A means that A at
high level has a negative effect on the detection of the
emergent behaviour. The coefficients are calculated for
one step, but the regression model uses two steps from
low to high. Therefore, the test regime 2 gives on
average 6.25 more detections of any emergent behaviour
type on a test case run 20 times with factor A at low level
compared to high level. We can see the calculated factor
coefficients in a Pareto plot (see Figure 7). Factor D has
the highest impact on the detection of emergent
behaviour among the main factors, while factor C has
the lowest impact. The only active two-factor
interaction is BD.

2.4 Test Regime 3

The test regime 3 is the second alternative test regime
and is designed to optimize the detection of the given
emergent behaviour types. The optimum way of
detecting the emergent behaviours in question is to run
the test case type(s) which have the highest probability
of detecting the different emergent behaviour types. The
probabilities for the different emergent behaviours were
calculated based on Bayes’ theorem in Section 2.1.
From Table 3 we see that test case type number 7 is
the optimal test case type for triggering all emergent
behaviour types. In the test regime 3, one runs only the
case type number 7. However, the number of replicates
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is the same as the total number of tests run in other test
regimes.

Table 3. Scenario factor levels and probabilities [%] for
test regime 3, optimizing test design.

Proceedings of SIMS EUROSIM 2021

Test |A|B|C|D| F1 F2 F3 F4
Case

Type
1 -l -|-]-] 675 0 0 31.25
2 +|-|-1|-1 675 0 0 0
3 -l +|-]-]| 675 0 |70.31]31.25
4 +|+]-|-1] 675 0 |7031 0
5 - +| -] 6.75 | 6.88 0 31.25
6 +|-|+|-] 675 |6.88 0 0
7 - |+|+]|-| 675 |6.88]| 7031|3125
8 +|+|+|-1] 675|688 7031 0
9 -] -]-]14+10015| O 0 31.25
10 |+|-|-]+]0015| O 0 0
11 - +/0015| O 2.6 | 31.25
12 | + -1 +]0015| O 2.6 0
13 | -|-|+|+]0.015] 6.88 0 31.25
14 |+ |-|+|+]0.015]6.88 0 0
15 | - +|+1]0015|6.88| 26 |31.25
16 |+ +|+]0015|6.88| 26 0

3 Results

In this section the capability of the different test regimes
in detecting any given emergent behaviour types is
evaluated. The emergent behaviour type F1 has a single
factor dependency in D. The formula for finding the
probability of emergent behaviour type F1 in test regime
1, follows from the application of the marginalisation
and product rule of the probability theory (Sivia and
Skilling, 2006):

P(F1|T1) = P(F1,D|T1) + P(F1,D’|T1)
= P(F1|D,T1)P(D|T1) (6)
+ P(F1|D",T1)P(D’|T1)

Further note that
P(D'|T1) =1—P(D|T1) (7)
thus

P(F1|T1) = P(F1|D',T1)
+ (P(F1|D,T1)P(D|T1) (8)
— P(F1|D',T1))P(D|T1)

and hence
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P(F1|T1)
P(F1|D',T1)

- (1 )

P(F1|D,T1)

_P(F1|D’,T1))P(D|T1)

Since the detection of the emergent behaviours depends
only on the factors, then P(F1|D',T1) = P(F1|D’).
The specific probabilities like P(F1|D") are determined
based on the abovementioned method in Section 2.1. We
can then use a more general formula where we can
separate the physical processes that we cannot control
from the test set-up that we can control. The formula for
finding the probability of emergent behaviour type F1 in
test regime 1 is then:

P(F1|T1) _ _( P(F1|D)

~ P(F1|D)

m = )P(DlTl) (10)

Using the results in Section 2.1 we get:

0.015
6.75

Note that we have a generalized formula where we can
replace T1 with T2 or T3. Indeed, on the right-hand side
of the Equation (10), the choice of test regime only
changes P(D|T1). On the left-hand side, the
denominator is fixed, which means that the change on
the right-hand side can only affect P(F1|T1).
Consequently, we can then calculate the lower and
upper bounds for detecting the emergent behaviour
types by setting P(D|T1) = 0 and P(D|T1) =1, ref.
Table 5. The same principle applies to all emergent
behaviour types with a single factor dependency (F1 and
D, F2and C, F4 and A) in the different test regimes (T1,
T2, and T3).

The emergent behaviour type F3 has a two-factor
dependency in BD. Although the final formula is
different, it is also derived from the sum and product
rule of the probabilities. Indeed, the formula for the
probability of emergent behaviour type F3 in test regime
lis:

P(F3|T1) = P(F3,BD|T1) + P(F3,BD'|T1)

P(F1|T1) = (1—(1— )*98)*6.75 =0.15

P(F3|T1)

P(F3|BD',T1) + P(F3|B'D’,T1)
B P(F3|BD,T1)
~ P(F3|BD’,T1) + P(F3|B'D’,T1)
N P(F3|BD',T1) PEDITD)
P(F3|BD’,T1) + P(F3|B'D’,T)
P(F3|B'D,T1)

P(F3|BD',T1) + P(F3|B'D’,T1)
P(F3|B'D’,T1)

+
P(F3|BD’,T1) + P(F3|B'D',T1)
Given the information:

P(F3|B'D,T1) = P(F3|B'D',T1) = P(B'D|T1)
=P(B'D'|IT1) =0
Furthermore, using the results in Section 2.1 we get:

P(BD|T1)

(16)

P(B'D|T1)

P(B'D'IT1)

2.6
P(F3|T1) = (m *18 + 2) *70.31 = 1.87

The same principle applies to all other test regimes (T2,
and T3). See Table 4 for the complete set of probabilities
from the model.

Table 4. Calculated probabilities [%] for emergent
behaviour types.

TR1 TR2 TR3
Fl 0.15 3.38 6.75
F2 0.69 3.44 6.88
F3 1.87 18.29 70.31
F4 0.31 15.62 31.25
G 3 36.84 89.17

We see from Table 4 and Table 5 that test regime 3 is at
the upper bound and are the optimum way of testing to
maximize detection of the emergent behaviour types.
The total (G) is calculated using the inclusion-exclusion
principle for the probability (Allenby and Slomson,
2010). The optimum test regime for detecting the given
set of emergent behaviours has a probability of ~89% of
detecting any given emergent behaviour, while the
current test regime has only probability of ~3%. The test
regime 3 can be used as the baseline in order to evaluate
the capabilities of the other test regimes (see Table 5).
Test regime 2 is detecting about half of the given

i Iljgg g’g’l|7;"11)) (1) emergent behaviours compared to Test Regime 3, while
’ the test regime 1 is barely detecting any emergent
Further note that: behaviours at all.
P(F3,BD|T1) = P(F3|BD,T1)P(BD|T1) (12) Table 5. Calculated lower and upper bounds and relative
frequencies for emergent behaviour types.
P(F3,BD'|T1) = P(F3|BD',T)P(BD'|T1)  (13) % | Lower Upper | TR1| TR2 | TR3
’ , , bound bound
P(F3,B'D|T1) = P(F3|B'D,T1)P(B'D|T1) (14) F1 015 6.75 222 | 501 | 100
P(F3,B"'|T1) = P(F3|B™, T1)P(B™|T1) (15) |[F2L O 688 | 10 | 50 | 100
F3 0 70.31 2.67 | 26.01 | 100
thus
DOI: 10.3384/ecp211858 Proceedings of SIMS EUROSIM 2021 13
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% Lower Upper TR1 | TR2 | TR3
bound bound

F4 0 31.25 1 50 100

G 0.15 89.17 3.37 | 41.31 | 100

The probabilities in Table 4 can be used to answer many
questions related to emergent behaviours. For example,
if one chooses a test regime consisting of n runs, how
many emergent failures of different types are expected
to be detected? For each run, the probability of detecting

T=T1. n=320, p=0.15%

2 4 6 8 10 12 o 2 4 6 8

T=T1. n=320, p=0.69%

T=T2, n=320, p=3.38% T=T2, n=320, p=3.44%
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< ]
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00inast] hhv-.-. 0002291 | TP
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a failure, say F1 in test regime 1, is P(F1|T1). In each
run, one either detects F1 or not. Moreover, since the
runs are independent, then the probability of detecting k
failures of type F1, follows a binomial distribution (n,
p), for which P = P(F1|T1).
simulated the probabilities for the detections of the
different failures for the aforementioned three test
regimes in 320 runs to find the detection rates of the
emergent behaviours and the related uncertainties.

In Figure 8, we have

T=T1. n=320, p=1.B7% T=T1, n=320, p=0.31%

0.5 0.35
0.30
0.10 025
0.20
0.15
0.05 0.10
1] ‘ [ it ‘ 1
0.00m 1. s 0.00 LI W
o 4 6 o 2 4

2 8 10 12 L] 8 10 12

T-T2, n=320, p-18.20% T-T2, n-320, p=15.62%
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.
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T=T3, n=320, p=70.31% T=T3, n=320, p=31.25%
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Figure 8. The probabilities of detections of emergent behaviours in different test regimes. Each row, from top to bottom,
corresponds to a given test regime, T1, T2 and T3, respectively. Each column corresponds to a given failure type. In the
present case the total number of simulated runs is 320.

4 Discussion

The company should increase the test analysis coverage
at system level in their projects. The current test analysis
coverage is in-sufficient to detect all emergent
behaviour types of the system under test. The company
cannot increase the test analysis coverage without
automating the test result analysis. The test result
analysis is the main bottleneck of the test system, and it
is therefore crucial to make the analysis work more
efficient.

For the company to stay competitive in the future
underwater industry market they need to be able to run
projects faster and run more projects in parallel. The
automation of test result analysis is necessary to make
the transition from the current test system to the desired
future test system.

For the company not to have latent undesired
emergent behaviour in their products, the test analysis
needs to detect these with high enough probabilities.
The test regime needs to change in the direction of
triggering more of the emergent behaviour types of the
system and trigger them with higher probabilities. The

company will have better data to perform analysis of the
emergent behaviours if the test regime triggers all
emergent behaviour types of the system sufficient times
in different scenarios. The company can get more
insight into why the emergent behaviour types are
triggered through deductive logic (Sivia and Skilling,
2006), and decide if they can do something to prevent or
reduce the unwanted behaviours or the unwanted
effects.

A combination of the different test regimes analysed
in this paper may be the best approach for the company
to deal with this problem of emergent behaviours. Test
regime 3 triggers most emergent behaviours but does
not see the effect of different settings. Test regime 3
satisfies the need to detect emergent behaviours by
triggering emergent behaviours in about 89% of the
tests. Test regime 2 sees the effect of different settings
but does not trigger as much emergent behaviours as test
regime 3. Test regime 2 also satisfies the need to detect
emergent behaviours by triggering emergent behaviours
in about 37% of the tests. Test regime 1 only sees the
effect of a limited set of different settings and does not
trigger as much emergent behaviours as either of the
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other two alternatives. We consider Test regime 1 not
satisfactory for detection of the emergent behaviours in
question. Since it is only capable of detecting emergent
behaviours in about 3% of the tests.

If we are to select only a few “rainy day” scenarios to
complement “sunny day” verification testing, we should
choose test cases with factor C at high level to ensure
the test regime will detect the emergent behaviour type
F2. This is the least probable behaviour to detect, based
on the effect of factors found in Section 2.3.1. We
should further include some test cases with factor B at
high level, factor A at low level, and factor D at low
level.

In all statistical inference, we use an idealized model
to approximate a real-world process that interests us
(Lambert, 2018). The model for exploring probabilities
in this paper is no exception, leaving some residual risk
for the operational phase of the product.

5 Conclusion

The results show that the company could benefit from
changing to an alternative test regime, which has higher
probability of detecting a given set of unwanted
behaviours emerging through system integration testing.
The current test regime does not sufficiently trigger the
emergent behaviours explored in this paper, but an
alternative test regime indicates that the company
should be able to sufficiently detect the given set of
emergent behaviours.

6 Further Work

The company must perform further analysis to find the
optimum test regime to meet all the requirements
considering the different needs from integration,
verification, and validation testing.
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Notations
Table 6. Nomenclature.
Notation Description
[0...1] Not present (0) or present (1)
A Factor A at high level [+]
A’ Factor A at low level [-]
B4 Coefficient of factor A
F1 Emergent behaviour type 1
G Any emergent behaviour type
P(A) Probability of factor A at high level
P(A) Probability of factor A at low level
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P(AB) Probability of both factor A and B at
high level
P(F1) Probability of emergent behaviour
type 1
T1 Test regime 1
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Abstract

Chemical absorption of carbon dioxide (CO;) using amine
solution is considered as the readiest technology avail-
able for capturing CO; gas from industrial processes.
The well-known amine for this process is 2-aminoethanol
(MEA) which is normally mixed with water to a typical
concentration of 30 wt%. MEA degrades over time pro-
ducing non-reactive chemicals such as 2-oxazolidinone
(OZD) due to exposure to impurities and high process
temperature. It is thus important to find a suitable method
for OZD qualification and quantification. In this work, we
approach this challenge by means of Raman spectroscopy
and multivariate data analysis. We started by collecting
Raman spectra of 40 OZD samples and applying Principal
Component Analysis to study these samples.

Keywords: multivariate data analysis, MEA, Raman spec-
troscopy, CO; capture, degradation

1 Introduction

Due to the economic development and the subsequent in-
crease in world population, the global demand for energy
will continue to rise in the following decades. The depen-
dence on fossil fuels, the primary source of energy, emit-
ting copious amount of CO;, is the main cause of global
warming. Even if large investments are underway to de-
carbonise the world energy production, renewable elec-
tricity may not be suitable for certain applications, such as
the cement, iron and steel, and chemical sectors.

Carbon capture and storage (CCS) and its ability to
avoid CO, emissions at their source, represents a solution
in the fight against climate change. Among all the differ-
ent alternatives, post-combustion capture by using amine-
based solvent is considered to be the most advanced tech-
nology (Sexton and Rochelle, 2011). This process relies
on the ability of the amine solution to chemically reacts
with CO; in the flue gas. The best absorbents are the ones
with high net cyclic capacity, fast reaction with CO;, low
heat of reaction, high chemical stability, low vapor pres-
sure and minimally corrosive (Hartono et al., 2017). Of

the many solvents tested, 2-aminoethanol (MEA) is the
most used due to its good operational properties and rela-
tively low price. The solvent used in operating plants sim-
ply consists of water and amines, whose concentration is
usually made based on operating experience (typical con-
centration range values goes from 12% wt to a maximum
of 32% wt (Kohl and Nielsen, 1997)).

A typical chemical absorption process for CO; capture
plant is shown in Figure 1.

To CO,
compression

Treated flue gas

L

Condenser

Absorber Stripper

Rich-lean
b Heat exchanger

Flue gas —p»|

L~

Lean-loaded
solution

Rich-loaded Reboiler

solution

Figure 1. Schematic of a chemical absorption process for CO;
capture.

After a preliminary purification from NOy, SOy,
and particulate matter, the flue gas enters the absorber.
Through contact with MEA solvent, part of CO in the
flue gas is absorbed into amine solution, forming a weakly
bonded and quite stable compound, carbamate. The
scrubbed gas is then washed with water to remove the
solvent and discharged into the atmosphere. Then, the
rich-loading solvent (with absorbed CO,) passed through
a cross-heat exchanger and pumped up to the head of the
stripper. In the stripper, the high temperature and pressure
generated by a reboiler cause the carbamate to dissociate
back to MEA and CO,. The obtained product stream with
high CO; purity is conveyed to compression for trans-
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portation to storage sites. At the bottom of the stripper,
the high temperature lean-loading is conveyed to a heat
exchanger to decrease the temperature of the lean-loading
solution before entering the absorber again.

The entire process chemistry is complex, and the two
main reactions taking place in the absorber and the stripper
are:

CO; absorption: 2R-NH; + CO;, — R-NH3" +

R-NH-COO~
MEA regeneration: R-NH-COO~ + R—-NH3* Heat,
CO, +2R-NH;

For simplicity, MEA is expressed by R-NH;, where R
stands for OH-CH,-CH,. The first reaction shows that
only half a mole of CO; is absorbed per mole of MEA,
leading to the formation of carbamate. In the second equa-
tion, under the application of heat, the carbamate dissoci-
ates to give back CO, and amine sorbent.

However, there is a main problem associated with this
process, which is degradation of the solvent caused by
heat exposure and impurities in the exhaust gas. This leads
to foaming, fouling, increased viscosity, corrosion and for-
mation of different degradation compounds that are unre-
active towards CQO,. In the case of MEA, one of the main
degradation products is 2-oxazolidinone (OZD), a hetero-
cyclic five-membered ring organic compound, which for-
mation pathway is shown in Figure 2.

R’ R' R

) ! 0
N co, g NS
Ho ™~y 22 o~ N o HOQ//N,\fO ng closure RLN)LO
“H,0
o ony M J/

oxazolidinone

Figure 2. Oxazolidinones formation (R', R%: H, alkyle) (Lep-
aumier et al., 2009).

The formation of OZD starts with a reaction between
MEA and CO,, which leads to the formation of carbamate
complex, as shown in the first equation above. Elimination
of a water molecule from the carbamate complex during a
ring closure reaction yields an OZD molecule. The forma-
tion of OZD is a problem because it is unstable and will
react giving other degradation products (namely HEEDA,
HEIA, AEHEIA, BHEI (Gouedard et al., 2012)) that must
be purged from the system to prevent their build-up.

For this purpose, it is essential to find a procedure for
the conversion of the molecule to its precursor amine.
This requires a preliminary identification and quantifica-
tion step.

Raman spectroscopy is a valuable technique for quali-
tative and quantitative analyses, since there is a relation-
ship between intensity of the Raman band, chemical infor-
mation and the concentration of a sample being analyzed
(Larkin, 2011). Raman spectrums are generally plotted
as intensity against Raman Shift (or wavenumber). Vi-
brations of functional groups of a molecule appear in a
Raman spectrum at characteristic Raman shift, which is
similar for all molecules containing the same functional

group.
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Chemometric multivariate analysis is an advanced sta-
tistical method that can be used to extract this huge infor-
mation by building specific model for specific chemical
species.

The approach in this paper started with the analysis
of OZD samples at different concentrations using Raman
spectrometer. Principal component analysis (PCA) was
then performed on these samples to check for any outliers,
relevant peaks for OZD, and monitor changes in the OZD
at different concentrations.

2 Materials & Methods

2.1 Sample preparation and Raman analysis

The first big part of this work consisted of sample prepa-
ration. Stock solution of OZD was prepared dissolving 2-
Oxazolidinone (Sigma-Aldrich, purity 98%) in Milli-Q ©
water (18.2 MQ -cm at 25°C). Samples of increasing con-
centration from 5 to 815 mM were then prepared by dilut-
ing the stock solution in ditilled water.

The amount of OZD and water needed were weighted
using a Mettler-Toledo MS 105 balance.

The Raman scans were taken using a Kaiser Raman
Rxn2 analyzer of 785 nm laser wavelength, 400 mW laser
power and 150-3425 cm™ ! spectral range. In a typical ex-
periment, a vial containing OZD solution was placed in-
side a black sample holder to avoid light disturbance and
the top part of the sample holder was also covered with
aluminum foil to further reduce any possible disturbance
from fluorescence of external light sources. A fiber-optic
immersion probe (optic of % inch) from Kaiser Optical
Systems Inc. was used for the measurement. To avoid
contamination, the probe was first washed with deion-
ized water followed by acetone before each measurement
to remove any possible impurities/leftovers on the probe
tip. The Raman probe was kept at the same depth and
same temperature (20 °C) for all the measurements to en-
sure consistency and to avoid changes of acquisition back-
ground. In order to improve sample sensitivity for off-
line analysis of each measurement, maximum laser power
(400 W) was used with exposure time of 30 seconds and
an average of six scans. iC Raman software from Kaiser
Optical Systems Inc. was used for the acquisition of the
spectra.

2.2 Principal Component Analysis (PCA)

PCA is a data simplification technique used in multivariate
statistics. The aim of the technique is to reduce the high
number of variables describing a set of data to a smaller
number of compressed variables, called Principal Compo-
nents, PCs, which describe the variation and structure of
the data. The PCs can then be plotted to visualize the re-
lationship between samples and variables through the use
of scores (which describe the relationship between obser-
vations) and loading plots (which show the relationship of
the variables) (Wold et al., 1987).

The data is seen as a matrix, called data matrix or X
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matrix, composed by n objects (samples) and p variables
(the measurement for each object) (Esbensen, 2012). This
data matrix can be represented in a Cartesian co-ordinate
system of dimension p. Considering the first variable, X 1,
its entries can be plotted along a 1-dimensional axis. This
approach can be extended considering the next variable,
X2, resulting in a 2-dimensional plot and so on, until all
p variables are covered. This p-dimensional co-ordinate
system is the variable space.

To better understand, it is assumed an X matrix with n
objects and 3 variables. Its variable space will be com-
posed by 3 axes: one for each variable. And for each
object in the variable space, its x-value will be plotted,
meaning that all the objects can be as a point in the vari-
able space. When all the points are plotted, the result is
a swarm of points. It is then possible to recognize a lin-
ear behaviour, which can be described by a line that lies
along the direction of maximum variance in the data set,
called the first Principal Component, PC1. Further PCs
can be plotted; the second principal component will lie
along the direction of the second largest variance, and it
will be orthogonal to the first PC. The third PC will be or-
thogonal to both PC1 and PC2, lying along the direction
of the third largest variance and so on for the subsequent
PCs. This PCs system will constitute a new coordinate
system, where each PC will represent successively smaller
and smaller variances. The PCs are uncorrelated with each
other since they are mutually orthogonal.

There are two main parameters used in PCA: loadings
and scores. The loadings are coefficient of linear combi-
nation for each PC, namely p;,, where k is the index for
p variables and a is the index for principal component di-
rection coefficients. All the loadings constitute a matrix,
P, which expresses the transformation between the ini-
tial variable space and the new space formed by the PCs.
These loading vectors, namely the columns in P, are or-
thogonal. In synthesis, loadings describe the relationship
between the initial p variables and the PCs.

The score is the distance between the object and its pro-
jection into the PC, and it is called score for object i, t;1, if
it refers to PC1. The projection of object i onto PC2 will
give the score t;>, and so on. The projected object i will
correspond to a point in the new co-ordinate system, an
A-dimensional surface. Each object will thus have its own
set of scores in this dimensionality-reduced subspace. The
NIPALS (Nonlinear Iterative Partial Least Squares) algo-
rithm (Wold, 1966) is one of the several methods used
to find the score and loading vectors. In this study, NI-
PALS algorithm was applied when using PLS toolbox
with MATLAB © software.

3 Results & Discussion

3.1 Pre-processing of raw spectra

Raw spectra from 40 different OZD samples in water at
different concentration are shown in Figure 3.
The raw spectra contain important information on
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Figure 3. Raman raw data of the 40 analysed samples.

chemical fingerprints of the samples but also noise from
background and instrument. Pre-processing of the raw
spectra can be applied to extract useful information and
to remove offset and irrelevant signals.

The raw spectra were subjected to a baseline correc-
tion technique by applying Automatic Whittaker filter
with lambda equals to 100 and P equals to 0.001. The
Whittaker filter used is an extended version of Eilers,
2003, available in the PLS toolbox in MATLAB, where a
weighted least square method was applied to remove base-
line variations and background noise. The factor lambda
controls the curvature allowed for the baseline, while the
P factor governs the extent of asymmetry required of the
fit (Eilers, 2003).

Baseline corrected spectra of OZD samples are shown
in Figure 4. As can be seen, as the concentration of OZD
increases, the intensity values of some peaks also increase,
suggesting that OZD concentration is proportional to the
peak intensity, according to the Beer-Lambert law.
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Figure 4. Baseline corrected Raman spectra of the 40 analysed
samples.

The peaks that change according to changes in the OZD
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concentration are now easily identified and their signals
and band assignments are listed in Table 1.

Observed frequency [em '] Vibrational mode

719 C-C stretch
928 C-C stretch
1083 C-H; rock
1216 C-H, twist

1333, 1261 C-H, wag
1436 C-H; scissor
1495 C’-N stretch; C=0 stretch
1733 C=0 stretch
2932 C-H, symetric stretch
3003 C-H; asymetric stretch

Table 1. Vibrational assignments of OZD (McDermott, 1986)
(C’= carbonyl carbon).

All the band assignments were referenced to earlier
work from McDermott (1986) from the spectra of Y-
butyrolactone and 2-pyrrolidinones, which are cyclic es-
ters, like 2-oxazolidinone.

There are also strong peaks at wavelengths 418, 577,
and 750 cm™! that do not change according to the changes
in OZD concentration and these peaks can be assigned to
the noise from the Raman instrument. These peaks were
also seen previously in earlier publication from Jinadasa
(2019).

Concerning water, its characteristic peaks are cut off
from the range of interest, since it usually shows bands be-
low 300 cm™! corresponding to the hydrogen bond bend-
ing and stretching motions and strong bands above 3000
cm~! typical of the O-H stretching region; the low in-
tensity peak at 1650 cm™~! arises from the intramolecular
bending motion (Franks, 1972).

3.2 Initial PCA Analysis

Using the whole spectra as a starting point, the pre-
processed OZD spectra were then subjected to initial PCA
analysis. Figure 5 illustrates the cumulative variance of
the PCA model. PCl is defined as the first principal com-
ponent which relates to the maximum variance of the data,
while PC2 is the second principal component which corre-
sponds to the second largest variance. The number of PCs
corresponds to the number of orthogonal variables in the
spectral data set. As can be seen, PC1 explains 92.58%
of the total variance, while PC2 describes an additional
6.88%. These two PCs make up 99.46% of the variation
in the model, suggesting that they are probably sufficient
to determine the most important variables for the descrip-
tion of OZD samples.

In Figure 6, a score plot of PC1 versus PC2 for the pre-
processed OZD spectra is shown. The dotted circle rep-
resents a 95% confidence level. As can be seen, one of
the samples is outside the area of interest meaning that
this sample is most likely an outlier. By checking the raw
spectra of OZD samples, this sample is confirmed to be an
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Figure 5. Cumulated percentage variation explained.

outlier and it is probably coming from an error when using
the Raman instrument. The outlier was thus removed.

The pre-processed OZD spectra as shown in Figure 4
also show some noise in the region of >3000 cm™~! Raman
shift and this region was also removed in the next PCA
analysis.
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Figure 6. PCA analysis for preprocessed Raman data, first score
plot of PC1 vs PC2.

The loading plot for PC 1 for the PCA model is shown
in Figure 7. As mentioned by Wold et al. (1987), loading
plots define what a principal component represents. The
higher the loading value, the higher the contribution of the
variable to the PC. In the case of this work, these plots
will represent OZD concentrations in the samples. Figure
7 indicates that significant contribution comes from peaks
at 418, 577, and 750 cm~!. These peaks however do not
correspond to OZD or water, and thus most likely coming
from the instrument. The fact that these peaks have higher
loading values even though they do not really represent
the actual components in the samples necessitates further
correction to the PCA model. These peaks were therefore
excluded from the model.

19

Virtual, Finland, 21-23 September 2021



SIMS EUROSIM 2021

0.3 T T T T T T

0.25 - 1

0.15 ‘

PC 1 (92.58%)

0.1F ‘

0.05 il M
) H\‘ i il ‘

0 J’,"I’”,‘zc\,/“, ‘L“, ‘L“\,\.A_‘_g,x; |

B NN | VNN | B 0./ PN E&[Lm,&m

500

-0.05

2000 1500 1000

Raman Shift (cm-1)

3000 2500

Figure 7. Loading plot for PC1.

3.3 Optimized PCA with Variable Selection

Based on earlier considerations, the PCA model was re-
calibrated, and Figure 8 displays the new cumulative vari-
ance of the model. PCA model was recalibrated by select-
ing the variable range of OZD to optimize the PC1, which
mainly describes the OZD concentration variation.

100

80

60

40

Cumulative Varience (%)

20

Principal Component (PC)

Figure 8. Cumulated percentage variation for different principal
components.

The new score plot is shown in Figure 9. Based on the
figure, PC1 and PC2 account for 99.78 and 0.17% of the
model variance, respectively. These two principal compo-
nents already make up 99.95% of the cumulative variance
for the model suggesting that it is very likely that the OZD
changes are sufficiently described by PC1.

With the elimination of outliers, all samples are now at
95% confidence level. Values of PC1 are always positive,
whilst values of PC2 change from positive to negative for
all the samples. The samples also show a linear trend sug-
gesting that there is a linear trend between Raman inten-
sity and OZD concentration and that the PCA model can
be used to classify OZD.

The loading plot for PC1 is illustrated in Figure 10.
According to the plot, the sharp OZD peak at 928 cm ™!
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Figure 9. PCA analysis for preprocessed Raman data, score plot
of PC1 vs PC2 after removal of variables below 650 cm™~!.

gives the highest contribution to PC1. This indicates that
this peak can be used as an indicator for the presence
or changes in OZD concentration in a sample. Other
peaks that positively contribute to PC1 loading plot in-
clude 3003, 2933, 1736, 1496, and 720 cm~! and these
peaks are observed as relevant functional group peaks for
OZD, as shown in Table 1.
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Figure 10. Loading plot for PC1 with variable selection.

4 Conclusion

This paper aims to analyze Raman spectra of 2-
oxazolidinone samples by using Principal Component
Analysis to detect relevant peaks, monitor changes in the
samples at different concentrations and remove outliers.
After spectra acquisition and a preliminary baseline
correction, the data were subjected to PCA analysis. The
first two PCs, which made up 99.46% of the variation in
the model, were considered for the analysis. After that,
outlier removal was performed and the PCA model was
recalibrated by selecting relevant variable range of OZD
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to optimize PC1, which describes the OZD concentration
variation. With these considerations, the two PCs made
up 99.95% of the cumulative variance, an increase of 0.49
percentage point.

Finally, according to the loading plot for PCI, it was
found out that the sharp OZD peak at 928 cm™! gave the
highest contribution to PC1, indicating that this peak can
be used as an indicator for the presence or changes in OZD
concentration in a sample.

By using PCA, we have shown in this work that we can
systematically identify with precision any outliers, rele-
vant peaks for OZD, and monitor changes in the OZD at
different concentrations.
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Abstract

In the study, a new non-intrusive approach based on
acoustic chemometrics, which includes vibration signal
collection using glued-on accelerometers, was assessed
for the classification of the different flow (breakup)
regimes spanning a whole range of fluids (water and air)
flow rates in this twin-fluid atomizer (one-analyte
system). This study aims to determine the flow regimes
based on the dimensionless number (B), whose unique
values correspond to different flow (breakup) regimes.
The principal component analysis (PCA) was employed
to visually classify the breakup regimes through cluster
formation using score plots. The model prediction
performance was studied using PLS-R, RMSEP values
show error ranges within acceptable limit when tested
on independent data. The present acoustic study can
serve as a good alternative to the imaging methods
employed for flow classification.

Keywords: Multivariate Regression, Acoustic
Chemometrics, Principal Component Analysis, Flow
Regimes

1 Introduction

Twin-fluid atomizers have been widely used atomizers
in various applications such as the aerospace industry,
internal combustion engines, process industry, spray
drying, etc. Classification of the flow regimes using a
high-speed imaging setup is quite common, as
mentioned in different twin-fluid studies (Choi, 1997,
Leboucher et al., 2010). While it is a fairly convenient
way to categorize flow regimes for a laboratory-scale
test setup using imaging setup (Adzic et al., 2001; Li et
al., 1999), it can be a greater concern for industrial-scale
atomizers due to the significantly larger fluid flow rates.
Acoustic chemometrics, thoroughly applied (Esbensen
et al., 1999; Halstensen et al., 2000) lately has proved to
be a decent approach for tackling fluid-related problems.
The applications for acoustic chemometrics are
multitude, ranging from qualitative analysis to process
monitoring. The ambit of acoustic analysis lies in the
fact that all flow processes comprise
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some form of energy output emission in the form of
signals that can be tapped and analyzed. The flow in the
nozzles gives rise to certain vibrations for a particular
set of fluid flow rates. By recording those signals
through a data acquisition device using sensors
(accelerometers) and performing signal analysis, useful
qualitative information can be extracted by multivariate
analysis.

To suffice the currently used imaging methods for
flow regimes classification, an experimental setup,
including novel twin-fluid atomizers, is investigated
with real-time monitoring of the acoustic signal data.
This study aims to assess the feasibility of the acoustic
chemometrics approach for this air-assisted spray
atomizer problem. The main objective is to determine
the flow regimes based on the dimensionless number B,
whose unique set of values corresponds to different flow
(breakup) regimes. This analysis will further cater to
whether the acoustics chemometrics approach,
including both unsupervised learning technique (PCA)
and supervised learning technique (PLS-R), is suitable
for extracting valuable information through recorded
vibration signals.

2 Materials and Methods

sensor 2

/

sensor 3
sensor 1

Figure 1. Schematic of the novel atomizer attached at the
end of the lance, along with the accelerometers (in red).
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2.1 Experimental Method
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Figure 2. Schematic of the experimental setup along with the acoustic chemometrics flow chart (in box).

The experiments were carried out in a laboratory-scale
experimental test rig in the process energy laboratory at
the USN. The test rig consists of the lance, which is
mounted at the traversing system, at whose end a twin-
fluid atomizer (Figure 1) with 3.0 mm orifice (throat)
diameter for core air was attached. The sensors in the
three-axis (x, y, and z) were glued onto the atomizer.
The liquid (water) was flowing in an annular manner
through a slit of 280 um along with the high-speed air
core with the aid of hoses and pipes attached to the lance
(Figure 2).

The high-speed imaging performed using the
CMOS Photron camera SA-Z and two 250 W each
Halogen lights from Dedocool Dedolight renders the
different flow regimes visible at certain different fluid
flow rates (Figure 3). Certain breakup regimes or modes
were found at specific air-to-liquid mass ratios (ALR)
and Weber number (We) based on liquid sheet velocity.
ALR is defined as:

ALR = Zair_ (1)

Miiquid
where mass flow rate in kg/hr.

Weber number is defined as:

We =2 )
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Where p is liquid density (1000 kg/md), U is sheet
velocity calculated through mass flow rate, o is surface
tension, and t is sheet thickness (280 pm).

A new dimensionless number (B) (depicted in Table
1) was employed, which is defined as:

B =We-ALR ©)

Annular sheet disintegrati Lig: t-type breakup

Pure Pulsating breakup

Figure 3. Different breakup regimes based on different
fluid mass flow rates.
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Table 1. Breakup regimes and the corresponding non-dimensional number values

Breakup Regimes B ALR We
Annular sheet disintegration 2.586 0.150 17.24
Ligament type breakup 6.035 0.350 17.24
Wavy sheet breakup 9.052 0.0428 211.2
Pure-pulsating breakup 21.12 0.10 211.2

Both fluid flow rates were measured and monitored
using Coriolis flowmeters. Two air flow rates (15 kg/hr
and 35 kg/hr) were employed as per the visualization
study and manually operated through the pressure
regulator. 100 kg/hr corresponds to Weber number (We)
of 17.24, whereas 350 kg/hr corresponds to Weber
number (We) value of 211.2. The liquid (water) flow
rates taken were low flow rate (100 kg/hr) and high flow
rate (350 kg/hr), which were altered through a
frequency-based flow rate controller. The air-to-liquid
ratio varied from 0.0428 to 0.35, depending on the
combination of fluid flow rates as depicted in Table 1.
At lower flow rates, annular sheet disintegration was
visualized, whereas it reached pure-pulsating breakup
mode at higher flow rates for both air and water.
Ligament type breakup corresponds to high airflow rates
& low liquid flow rates, whereas wavy sheet breakup
corresponds to high airflow rates & low liquid flow
rates, as mentioned in Figure 3.

2.2 Acoustic chemometrics

sensor (Glue-on Data Acquistion Time-domain S'g"al adaplmn Frequency
Accelerometer) & control (DAC) signal (averaged; (am| Ilfcatlon domain ultivariate analysi:
xv.2) NI USB-6363 replicates) rﬁenng) signal (FFT) (PCA, PLS-R)

Figure 4. Block diagram of the acoustic analysis in-flow
process from the vibration data collection.

The name acoustic chemometrics (Esbensen et al.,
1998) implies that the information extraction from the
data recorded in vibrational energy is measured using
some acoustic sensors (say, accelerometers). Some
inherent advantages related to acoustic chemometrics
are:

e Non-intrusive technology system
e Real-time monitoring of signals
e Easy sensor deployment (glued-on)

o Relatively inexpensive technology

DOI: 10.3384/ecp2118522
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e Prediction of several parameters from the same
acoustic spectrum

The acoustic measurements in this study were taken
using sensors (accelerometer, which is a piezoelectric
type 4518) from Bruel & Kjer, Denmark. Three sensors
are utilized in the test experiments to tap the
noise/vibration data from all three axes (x, y, and z), as
depicted in Figure 1. The fluid flow ejected out of the
atomizer outlet forces the atomizer a sudden backward
blow, recorded in an electrical signal proportional to the
vibration acceleration. A signal amplification unit, a
data acquisition device (NI USB-6363) from National
Instruments and a personal laptop were employed. NI
USB-6363 data acquisition device (DAQ) was utilized
to acquire the signal, where the signal converted from
analog to digital. A digital signal is required for the
signal amplification unit for further processing. The
frequency range used for this study is (0 - 200 kHz).

For the acoustic chemometrics signal collection and
signal conditioning, the LabVIEW-based in-house
created interface (Halstensen et al., 2019) was used. The
signal processing was carried out in few steps. Firstly,
time series of 4096 samples were recorded from the
sensor. The time-series signal was multiplied by a
window (Blackman Harris), which cancels the end of
the series to avoid spectral leakage in the acoustic
spectrum. This signal is finally transformed into the
frequency domain using Discrete Fourier Transform
(DFT). The Discrete Fourier Transform transforms a

sequence of N complex numbers {Xn}:= Xo,X1,...,Xn-1 iNtO
another sequence of complex numbers, {Xy}:=
X0,X1,...,Xn-1, Which is defined by equation:

X = Xisix, e”2mn/N g =0, ,N -1 (4)

A more advanced and efficient form of the DFT is
the Fast Fourier Transform (FFT) (Ifeachor et al., 1993),
which was implemented in the LabVIEW interface for
fast real-time calculation. The whole in-flow acoustic
analysis process from signal conditioning to domain
transformation from time to frequency and then
supervised (PLS-R) and unsupervised (PCA)
multivariate analysis techniques are mentioned in a
block diagram (Figure 4).
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2.3 Principal Component Analysis (PCA)

Principal component analysis (PCA) analyses
multivariate data by examining the common variances.
Large multivariate data sets can be noisy and difficult to
interpret.  PCA projects mean-centred data (X)
consisting of variables (columns) and samples (rows)
onto a new plane. The new plane is represented by
scores (T) and loadings (P). E is the notation of the data
not explained by the model, the residuals, given by the
equation:

X=TPT+E (5)

PCA uses an orthogonal transformation to convert
correlated variables into few linearly uncorrelated
variables called principal components. The method is
called the unsupervised method due to no guidance to
the singular value decomposition from the data. The
nonlinear lterative Partial Least Squares (NIPALS)
algorithm developed earlier (Wold et al., 1987) was used
because of its many advantages. It works on matrices
with moderate amounts of randomly distributed missing
observations. The other advantage of NIPALS is that it
is less time-consuming than Singular value
decomposition (SVD), as the former allows defining the
number of components to calculate.

2.4 Partial Least Squares Regression

Partial least squares regression (PLS-R) is a supervised
method used for calibrating the predicting models,
which is well explained in (Geladi et al., 1986).

PLS-R is a good alternative to other regression
techniques due to its robustness. The model parameters
do not change much even when new calibration samples
are taken from the population. It relies on representing
training data for two-variable blocks X and Y,
respectively. In the present work, the X data matrix
contains the acoustic frequency spectra, and Y is a
vector containing the non-dimensional number B values
that define the breakup regimes.

The NIPALS algorithm is the most widely used in
the PLS regression technique. In this algorithm, PLS-R
allows modelling both the X and Y simultaneously,
which might raise orthogonality issues. For low
precision data, PLS-R gives more accurate results than
other regression methods. A simplified version of the
NIPALS algorithm is presented in earlier studies (Ergon
et al., 2001), where A is an optimal number of
components. A step-wise NIPALS algorithm is
described in some detail (Halstensen, 2020).

In evaluating the regression model, the root mean
squared error of prediction RMSEP offset, slope and
correlation coefficient are commonly used. Besides

these, visual evaluation of the relevant T-U score plots,
loading weights plots, explained variance plots also
provide useful information for calibrating and
developing the prediction model. The root mean square
is given by:

Z‘inz (371 redicted~Yire erence)z
RMSEP :‘/ L 6)
Where, i = sample index number
n = total number of samples
RMSEP = Root Mean Squared Error of Prediction.

3 Results and Discussion

3.1 PCA results
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PCA score-plots depicts how the acoustic spectrum and . Predicted vs. Reference
different breakup regimes are correlated based on the Elements: 120 ¢
tests carried out at various flow rates. A colour indicates 207 Stope: et | . :
each breakup regime in the data-centred score plot. The 18 Corlation:  0.9114192 g
score plots show a cluster of points for a particular type 2161 Rsquare: 0826051 .
of breakup regime/mode for principal component 1. The 8141 G Gaseart|  °° .
score plot shows a trend in the data from low airflow 5 12 B 01062417 | o 0 " . :
rates on the left side (blue) to the high air flow rates on S 10] . t " .
the right side (pink). g sl .. N A e

The score plots were obtained with the whole E 61 4 A : .
frequency spectrum for all three sensors deployed. The 4y 2 e
score plots depicting two different atomizer type- 2L ph
converging and converging-diverging (CD) atomizer. 0

To avoid repeatability, both converging and converging- 0 2 4 6 8 10 12 14 16 18 20 22
diverging (CD) atomizer are shown in a single score plot Reference Y (C1, Factor-6)

as a 2-D plot (Figure 5) and for better visualization as in _ ]

a 3-D plot (Figure 6). The loading plot (Figure 7) shows Figure 8. Predicted Vs. Reference (B) value. The target

that the information based on the frequencies recorded line (black) and regression line (red) are indicated.
from sensor 2 is different from the other two sensors, 55 Residual Validation Variance
provided that sensor 2 is located opposite to the fluid
flow direction, which is relevant in this case. 30
Loadings 25
-§ 20
S

-
(&)}
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Figure 9. Residual validation variance plot.

-0,1

C1 Ca41 C1086 C1777 C2468 C3159 C3851 C4542 C5233 C5911 Based on the residual validation variance plot

Xvariables (PC-1) (37%) (Figure 9), six components can be fixed as optimal for
. . model prediction. The same results can be plotted as
Figure 7. Loadings plot for all three sensors. samples taken in time (Figure 10). The green line is the
reference line for non-dimensional number (B), and the

o blue line is the prediction line.
3.2 PLS-R prediction for the breakup

regimes "
PLS-R was employed to do model prediction based on 18
the acquired acoustic spectra. The non-dimensional 16

number (B) values were used as the reference values
(Figure 8). The acoustic spectra used to calibrate the
PLS-R model was a 240x2048 matrix containing 240
frequency spectra for each sensor. The test set validation
was performed for alternate data matrix values, 50 %
(120) of the total column set. Each spectrum consisted
of 2048 frequencies ranging from 0 to 200 kHz. The
statistical parameters that evaluate the model prediction

Predicted and Reference
(C1, Factor-6)

are slope and RMSEP. Both slope and RMSEP define Samples
the model's quality fitting the reference data; in this _ _
case, their value is reasonably within permissible limits. Figure 10. Predicted and Reference (B) values for

samples taken in time.
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4 Conclusions

To corroborate the visualization study performed for
breakup regimes identification, the non-invasive
acoustic/vibrations  study incorporating  sensors
(accelerometer) with an appropriate signal processing
system was performed, allowing the estimation of the
flow breakup modes. The feasibility of this approach for
fluid flow classification is the main objective of this
study, rendering relevant information about the flow
breakup regimes for various fluid flow rates. The
acoustic measurements provide valuable insight into the
regime classification based on a derived dimensionless
number (B) from other fluid-based non-dimensional
numbers. The pattern study using principal component
analysis provides relevant information through the
clusters formed for each breakup regime. The
chemometric method provided sufficiently good model
prediction with slope and RMSEP values within
acceptability limits. The main advantage of this non-
invasive acoustic method is that it renders the
visualization study for different breakup modes optional
for industrial-scale atomizers for flow regime prediction
which can be implemented on the industrial-scale setup.
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RESOURCE SIMULATOR - a tool for scenario studies on limited
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Abstract

In this paper global resources have been gathered from
different sources. From these resources scenarios have
been made to get an overview of what resources will last
at the present annual usage, as well as if we assume all
individual would utilize the same amount or the
difference between regions and populations. The most
critical metal is according to this Zn, while also Cu, U,
Co and Mn are relatively limited with reserves lasting in
the range of 100 years. Some elements like P is not
limited as such, but there is always a trade-off between
total amount and at what concentration the extraction is
made. For biomass and food we have enough resources
if used efficiently. Wind, sun and hydropower are in
reality unlimited resources for electricity production.
We also have huge amounts of biomass. A question is
what biomass should be used for. First it can be as a
building material, then for chemical production and
paper/packaging and last as energy source seems
reasonable.

Keywords:  resources, simulation, predictions

1 Introduction

There is a limited amount of resources available at
Earth. Some of these are fossil, others renewable. Most
resources utilized can be reused or recycled to a greater
or smaller extent. The situation with respect to resources
varies from country to country but can principally be
grouped with respect to UN’s World Bank Statistics
(2020) where data for each country (total 213) is
collected but also grouped into “low income countries”,
“middle income countries” and ‘“high income
countries”. We also look at regions of the world. Data
from this is used in this paper for the resource simulation
with respect to energy and environmental emissions.
Other data from many different sources are
complemented, and more detailed specification for
specific factors described more in detail. The author has
collected data during many years and published in books
and papers. References are made to these as the data has
been refined compared to original sources. These are
then used for extrapolation to cover use today and
possible scenarios for the future for countries in the
three income groups. The simulations are made where
the structure is set, but the use of resources varied.
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2 Overview different resources

The most important input factors are Primary Energy
sources, crops and raw materials (inorganics like
metals). These are then utilized for heating, electricity
production, transportation, food production and
industrial use. In this section the resources are calculated

and extrapolated into the UN grouping after income.

2.1 Energy

Primary energy is from Oil, Coal, Natural gas, Biomass,
Waste, Sun, Wind, Hydropower and Geothermal
energy. These resources are converted (Tomas-Aparicio
et al., 2020) into useful forms like electricity, heat,
cooling, transport work, industrial production, food
production, building houses and other infrastructure.
For these uses we also have input energy to manufacture
wind power towers, PV-cell systems, thermal power
plants, hydro power plants etc (Tomas-Aparicio et al.,
2020). For transportation we can utilize fossil fuels and
diesel or benzine vehicles, but also electric vehicles are
coming fast (Irena, 2019; MacDicken et al., 2016). For
the future we also see both more efficient engines as
well as new energy conversion techniques like Fuel
Cells utilizing Hydrogen as fuel. Biofuels can replace
fossil fuels, but also replace use of oil or other fossil
fuels for all kind of applications like production of
plastics, chemicals, building materials etc. (Chaudhary
etal., 2019; Larsson et al., 2018).

2.2 Other resources:

Recycling of materials is affecting the true input of both
materials and energy. We have limited resources of
metals and other inorganic materials as well as
Phosphorous, while Nitrogen is a non-limited resource
(Martinsen et al., 2020). On the other hand, conversion
of Nitrous gas (N2) to ammonia (NH3) for e.g. use as
fertilizer as well as “destruction” of ammonium
compounds in waste water treatment plants consume
huge amounts of electric energy.

In Table 1, we see the available resources as reserves,
the annual use globally as well as the per capita use of
important materials. We also see how much energy is
used for production per kg related to virgin material or
recycled material at typical recovery rates today in
OECD countries.
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Table 1. Important resources — annual extraction, reserves, and energy for processing.

Material Prod Mt/y Resery MtRecycled kglcy Erergy | p Energy | p GHG emis Reserves
Harvest  worlkd kWh/kg kWhikg kgl02/ kg last years
% wIrgn recycied  virgin

"II

&l B3 3Ib/EG 5 B2 B3 315 5346

Ca 135 164286 163 033 1314

(u 1.3 160K B0 F. 1B &7 24 5

fe 1889 FEL) LI . A30 L 444 19 124

in 15 234 15 1.7 14.5 148 A 18

Co 0,14 15 1,014 107

Li 0,082 0 o011 244

M 0l 114 0,013 118

RE

u S 5, 1- 20 B4

v 17 2.2

N 110 dz,2 1.7

¥ i3 11000 43 45 3354

plasTic 29N 90 ] 24

paper Bcardboard 4.0 65 BT 1.9 1.015

pulp 180 13,5 4

ewaste 418 54

stee] {S0% recycled 1860 05 36 37 1A% 1.9

oEmiEnt 4100 534 3 a1 1.25

Tol cereak 2 00 1.9

Table 2. Annual crop production; use of fertilizers and energy; GDP per capita and population in different regions and
income groups.

20170 2016 2015 2014 2014 20145 2015
Function ton cerealfertilizer Elfr % fossilof el energ usiGhp population
Region per ha kgfha  fossll % all energy % kWh/capkoe/cap USS/cap
wirhd 41 140.5 65,2 EL 3132 1922 11442 Jad3534
East asia & pacific 51 331 745 a7 % 578 2135 11530 2340609
Europé & central asla 39 20,7 A% 16 S3FF 316 2ata4q 921141
Latin america & caribian 4,7 140,2 43,8 879 2158 1380 HAgD G831
Middle east & N Africa 25 04,8 88,9 979 2856 14%0 7991 458707
Subsaharan Africa 15 16.1 Aid,1 398 487 Ry 1596 1106957
South Aska 32 1603 a0 71,5 oG 574 1957 1835777
Morth America 7A 1272 B0& 815 13257 BHRG 53344 365893
High income 60 1366 59,3 79.1 A529 4506 44518 1235852
Middle incame 39 1881 71,1 By 2045 13450 5573 5789225
Low income 14 104 222 234 810 GERA55

The most critical metal is according to this Zn, while

also Cu, U, Co and Mn are relatively limited with 2.3 Emissions

reserves lasting in the range of 100 years at present Conversion of fossil fuels release CO, that has been
consumption level. Some elements like P are not limited bound in earth for millions of years. When released we
as such, but there is always a trade-off between total get a greenhouse effect. For biomass we have a release
amount and what concentrations there are where the of CO; as well, but this CO; is bound back into new
extraction is made. With more efficient separation crops through photo synthesis. It is then interesting to
methods, the available amounts are increasing. Still, we evaluate how much biomass we have as a “storage”
should know the estimates of available resources of g]oballyj and what happens if we take out biomass or
different elements are built on a limited number of just let it degrade in nature. There are voices saying that
measurements, especially for the rarer elements. we should let the forests stand to store CO; long term.

In a few decades perspective this is correct, but long
term the trees stop growing and will not absorb more
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CO,. When the trees finally dies, they are degraded by
microorganisms and fungi while releasing both CO; and
CHs. CH4 is approximately 25 times stronger as
greenhouse gas than COa. Also, N2O may be released
simultaneously, especially if there is a deficiency of
oxygen. If we take out a certain amount of wood and let
the forest reproduce itself continuously, we will get
material for use in many ways. In Table 2, we can see
that cereal productivity varies a lot between regions and
this correlates to climate differences and use of
fertilizers generally. GDP/capita is dramatically
different, but the differences are reduced by time. In
Table 3, we see that renewable energy is dominating in
low-income countries and especially in Africa south of

Sahara. We can also see that electricity from fossil fuels
is highest in middle income countries. High income
countries have reduced the fossil part significantly,
while low-income countries use a lot of especially hydro
power, aside of biomass.

From this we can see that there is a huge potential to
increase productivity in low income countries but also
that CO, emissions are many times higher in high
income countries than low income countries. The
challenge will be to reduce CO; emissions in high
income countries and increase yields in low-income
countries without increasing CO, emissions.

Table 3. Distribution of REN (PV and wind), Hydro + Nuclear power respectively fossil fuels and CO, emission per

capita in different regions and income groups.

Function CO2emiss Energ Use El fr El fr il NG Hydro+
Region ton/capita fr REN % REN % Coal % Muclear %
warld 4.6 18,1 2249 65,2 11,9
East asia & pacific 6,1 13,9 20,4 74,6 5
Europe & central asia 6,9 13,1 28 49 23
Latin america & caribian 29 27,6 51,7 43,8 45
Middle east & N Africa 6 1,56 2,7 88,9 8.4
Subsaharan Africa 02 70,1 26,6 64,1 93
South Asia 1.5 383 16,9 80 3,1
Morth America 155 10,2 20 &0,8 19,2
High income 10,4 113 213 59,3 19,4
Middle income 3.7 21,2 239 71,1 5
Low income 03 76,2 66,4 22,2 11,4

(]

3 Scenarios for the future
development — Results and
Discussions

What would happen if we replace all fossil fuels with
biomass? Will there be enough biomass to cover all
demands?

In Worldbank database we can find the area in
different countries and regions given in km2 or ha. This
is for Agricultural land, arable land and forests, as well
as more detailed data on how many ha are used for
production of different cereals, which is the major food
for humans. We can see a very strong development in
cereal production last 60 years. This is depending on
increased use of fertilizers, irrigation, and better crop
species. In Table 4, we can see such balances for Europe
where we have assumed 5 ton DS cereal grain/ha,y, but
also assume some additional (2.5-) 5 ton DS/y as straw
and root system. 5.4 MWh/ton DS for the heating value
has been used.

The production can be significantly higher, but also
in more arid areas lower. For forests in northern boreal
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areas the production is in the range 2 ton DS/hay as
“productive biomass”, with an additional 1 ton DS/ha,y
at least as roots, bark and leaves. In sub-tropical and
tropical areas these values are normally higher, and for
some species significantly higher like up to 10 ton
DS/ha,y for Salix, Eucalyptus, Acacia and similar.
Probably the production in Russia is significantly lower
than the average due to colder climate.

The annual forest growth is calculated to be 121
miljoner m3sk/y if only logs are included. If we include
also roots and branches this corresponds to 93-million-
ton DS. 84 million m3 are taken out by harvest and
another 12 degraded in the forest. This means that the
annual storage volume is increasing with 25 million
m3/y corresponding to 25-million-ton CO». This can be
compared to the total emissions of CO; in Sweden of 53-
million-ton CO; according to Skogforsk (2019). We
have a similar situation in most boreal forests, where the
biomass storage is increasing.

For subtropic and tropical forests though the outtake
of biomass is often larger than the growth rate. The
IPCC report (2019) presents the global balance for CO,
for year 2005: Emission to air due to change of land use
is estimated to be 1.6 Gton C/y, while increase of
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biomass in forests 2.6 Gton C/y. This can be compared
to annual emissions through combustion of fossil fuels,
6.4 Gton C/y. From 2005 to 2014, the sum of the
national GHG inventories net emission is estimated to
be 0.1 £ 1.0 GtCO2/y, while the mean of two global
bookkeeping models is 5.2 £ 2.6 GtCO,/y (likely range).

Global net removals is estimated to be 11.2 £ 2.6
GtCO»/y (likely range) during 2007— 2016. The sum of
the net removals due to