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Preface 
 
The first SIMS EUROSIM conference on Simulation and Modelling (SIMS EUROSIM 2021) and 62nd SIMS 
conference on Simulation and Modelling (SIMS 2021) were organized as a joint virtual conference. Originally, 
this conference was planned to be organized in Oulu, Finland. The COVID-19 pandemic presented tremendous 
challenges for the global research community and for the entire world. The organizers were first postponing 
the deadlines and keeping the plan of organizing the conference in person. Since the pandemic was continuing 
strongly, the plans were changed: the conference was decided to organize as a virtual conference in September 
2021. 

The Scandinavian Simulation Society consists of members from five Nordic countries: Denmark, Finland, 
Norway, Sweden, and Iceland. The goal of SIMS is to further develop the science and practice of modelling 
and simulation in all application areas and to be a forum for information interchange between professionals 
and non-professionals in the Nordic countries. SIMS is a member society of The Federation of European 
Simulation Societies (EUROSIM) was set up in 1989. The purpose of EUROSIM is to provide a European 
forum for regional and national simulation societies to promote the advancement of modelling and simulation 
in industry, research and development. EUROSIM consists of 17 European Simulation Societies. The 
Scandinavian simulation society (SIMS) had Board and Annual Meetings during the conference.  

The conference program consisted of three keynote presentations, 68 regular presentations and a panel 
discussion. The proceedings include 67 full papers. The keynotes are included as abstracts. The call for papers 
resulted in 83 submissions prepared by 152 authors from nine countries. The reviews of all submissions were 
done by four chairs, 19 IPC members and 37 international reviewers. Full papers were selected on the grounds 
of academic merit and relevance to the conference theme. Each submission had 2-4 reviews and the acceptance 
rate was 83% for the full papers published in the proceedings. 

The SIMS 61 conference covered broad aspects of simulation, modeling and optimization in engineering 
applications, including many papers on multivariate data analysis, machine learning, control, diagnostics, 
decision making, power plants, energy storage, oil and gas industry, CO2 capture, computational fluid dynamic, 
wastewater treatment, biosystems and epidemiological models.  

Panel discussions were organized on modelling and simulation in tackling challenges of the climate change. 
The discussion focused on three areas: biofuels, renewable energy sources and quality of measurements. The 
audience asked about next generation nuclear systems, biogas and CO2 emissions. The virtual conference did 
not include technical tours. Industrial and environmental applications, development of modelling and 
simulation tools and strong support for PhD students continue for stimulating process development model-
based automation. 
 
We would like to express our sincere thanks to the keynote speakers, authors, session chairs, members of the 
program committee and additional reviewers who made this conference such an outstanding success. Finally, 
we hope that you will find the proceedings to be a valuable resource in your professional, research, and 
educational activities whether you are a student, academic, researcher, or a practicing professional.  
 
Esko Juuso, Bernt Lie, Erik Dahlquist, and Jari Ruuska 
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Conferences location   
 
The conference was organized as a virtual event.   

Opening, 21 September 2021 

Opening of The First SIMS EUROSIM Conference on Simulation and Modelling SIMS EUROSIM 2021 

The 62nd International Conference of Scandinavian Simulation Society (SIMS): 

- SIMS President, Prof. Bernt Lie, University of South-Eastern Norway, Norway 
- Adj. prof. Esko Juuso, Conference Chair, University of Oulu, Finland 

Keynote presentations 

How process automation is making the world more resource and energy efficient – future trends      
Digital Lead Martin Björnmalm, Hub North Europe, Process Industries Division. ABB, Sweden 

How to lead the process industry to a safe and sustainable future?       
Head of Product Management Jyri Lindholm, NAPCON, Neste Engineering Solutions Oy, Finland 

The Road to SMARTER and not BIGGER on Data problems in Transportation     
Assoc. prof. Miguel Mujica-Mota, Eurosim President, Aviation Academy, Amsterdam University of 
Applied Sciences, The Netherland 

Conference topics 

The Proceedings includes 68 articles in five tracks including ten topics: 

Topics Pages 

Multivariable data analysis and modelling 1 - 75 

Machine learning 76 - 122 

Control, diagnostics and decision making 123 - 195 

Power plants and energy storage 196 - 240 

Oil and gas industry 241 - 278 

CO2 capture and use 279 - 324 

Computational fluid dynamics (CFD) 325 - 397 

Wastewater treatment 398 - 443 

Biosystems 444 - 480 

Epidemiological models 481 - 512 
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Panel discussion on Future challenges and possibilities for simulation, 23 September 2021 

Chair: Adj. prof. Jari Ruuska, University of Oulu, Finland 

Panelists: 
Hub Manager Björn Jonsson, ABB, Sweden 
Head of Product Management, Jyri Lindholm, Neste Engineering Solutions Oy, Finland 
Assoc. prof. Miguel Mujica-Mota, Eurosim President, Amsterdam University of Applied Sciences, 

The Netherlands 
Prof. Bernt Lie, University of South-Eastern Norway, Norway 
Senior prof. Erik Dahlquist, Mälardalen University, Sweden 
Adj. prof. Esko Juuso, University of Oulu, Finland 

Conference program 

Each conference day started with a keynote and continued with three parallel sessions. The Annual 
SIMS meeting was in the end of the first day. The third day ended with the panel discussion. More 
information is available at SIMS website (https://www.scansims.org/).   

 
 

Conference General Chair 
 

Adjuct prof. Esko Juuso, University of Oulu, Finland 
 

International Program Committee 
 

Prof. Bernt Lie, University of South-Eastern Norway, 
Norway, Chair 

Adj. prof. Esko Juuso, University of Oulu, Finland, 
Co-Chair 

Prof. Erik Dahlquist, Malardalen University, Sweden, 
Co-Chair 

Adj. prof. Jari Ruuska, University of Oulu, Finland, 
Co-Chair 

Prof. Felix Breitenecker, Vienna University of 
Technology, Austria  

Prof. Lars Eriksson, Linköping University, Sweden 

Dr. David Hästbacka, Tampere University, Finland 

Prof. Tiina Komulainen, Oslo Metropolitan 
University, Norway 

Dr. Andreas Körner, Vienna University of 
Technology, Austria 

 

 

Prof. Juan Ignacio Latorre-Biel, Public University of 
Navarre, Spain 

Prof. Kauko Leiviskä, University of Oulu, Finland 

Prof. Miguel Mujica-Mota, Amsterdam University of 
Applied Sciences, The Netherlands 

Adj. prof. Esa Muurinen, University of Oulu, Finland 

Dr. Markku Ohenoja, University of Oulu, Finland 

Prof. Kim Sörensen, Alborg University, Denmark 

Dr. Satu Tamminen, University of Oulu, Finland 

Adj. prof. Kai Zenger, Aalto University, Finland 

Prof. Borut Zupančič, University of Ljubljana, 
Slovenia 

Prof. Lars Erik Øi, University of South-Eastern 
Norway, Norway 

 

National Organizing Committee 
 

Adj. prof. Jari Ruuska, University of Oulu, Finland, Chair 

Adj. prof. Esko Juuso, University of Oulu, Finland, Co-Chair 

Ms. Anu Randén-Siippainen, Finnish Automation Society, Finland 

Mr. Marko Vuorio, Finnish Automation Society, Finland 
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International Reviewers 
 

  

Title Givenname Surname Affiliation Country 

Dr. Sailesh Abburu SINTEF Norway 
Assoc. prof. W.K. Hiromi Ariyaratne University of South-Eastern Norway Norway 
Assoc. prof. Wenche Hennie Bergland University of South-Eastern Norway Norway 
Dr. Ole Magnus Brastein BEDCO AS Norway 
Assoc. prof. Carlos Dinamarca University of South-Eastern Norway Norway 
Prof. Jo Eidsvik NTNU Norway 
Assoc. prof. André Vagner  Gaathaug University of South-Eastern Norway Norway 
Prof. Maths Halstensen University of South-Eastern Norway Norway 
M.Sc. Petri Hietaharju University of Oulu Finland 
Prof. Yrjö Hiltunen University of Eastern Finland Finland 
M.Sc. Heikki Hyyti Aalto University Finland 

M.Sc. Esin Iplik Mälardalen University Sweden 

M.Sc. Antti Koistinen University of Oulu Finland 
Prof. Juho Könnö University of Oulu Finland 
Prof. Hailong Li Mälardalen University Sweden 

Dr. Toni Liedes University of Oulu Finland 
Dr. Jean-Nicolas Louis University of Oulu Finland 
Assoc. prof. Joachim Lundberg University of South-Eastern Norway Norway 
M.Sc. Heidi Marais Mälardalen University Sweden 

M.Sc. Madeleine Martinsen ABB Service Sweden 

Prof. Britt Moldestad University of South-Eastern Norway Norway 
M.Sc. Riku-Pekka Nikula University of Oulu Finland 
Dr. Wathsala Perera CEMIT Group Norway 
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Dr.  Aki Sorsa University of Oulu Finland 
Prof. Eva Thorin Mälardalen University Sweden 

Assoc. prof. Kristian Thorsen University of Stavanger Norway 
Dr. Jani Tomperi University of Oulu Finland 
Dr. Cansu Uluseker University of Stavanger Norway 
Dr. Stavros Vouros Mälardalen University Sweden 

Dr. Ari Vuokila University of Oulu Finland 

Dr. Petri Österberg University of Oulu Finland 
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How process automation is making the world more resource 
and energy efficient – future trends 

 
Martin Bjornmalm 

Digital Lead, Northern Europe, Process Industries, Process Automation 
ABB, Sweden 

 
Abstract 

The world is facing major challenges in coping with the supply of food and other necessities to all people, 
while ensuring a sustainable and environmentally friendly future. To improve industry processes, meet the 
increasing efficiency, safety and quality demands, new digital technology and advanced automation are the 
most effective means. With relatively small investments, great effects can be achieved. 

Today, the collection of data from the entire plant can be done faster and more accurately, while in the same 
time it is processed using various algorithms, advanced control systems or cloud services. It provides decision 
support to operators and predicted maintenance. It enables production planning based on customer orders from 
raw materials, overall production steps to distribution of the product and model-based control and optimization 
of not only individually processes, but entire factories or even entire corporations via Collaborative Operation 
Centers by the supplier's experts around the world 365/24. 
 

Biography  

 
Education  
 

2015 Master of Science in Engineering Physics, Royal Institute of Technology, Stockholm, 
Sweden 

 
 
 Professional Experience  
 

2020 to date Digital Lead Process Industries – Process Industries, Northern Europe, ABB 
2020 to date Head of Advanced Services – Process Industries, Sweden 
2019 - 2020 Digital Solutions Manager – Process Industries, Sweden 
2018 - 2019 Sales and Business Development Digital Operations –  

ABB, Sweden 
2017 - 2019 Business Development & Digital Lead – Country Service  

Organisation ABB, Sweden 
2016 - 2017 Graduate Trainee – ABB, Sweden 
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How to lead the process industry to a safe and sustainable 
future? 

 

Jyri Lindholm 

Head of Product Management 

NAPCON, Neste Engineering Solutions Oy, Finland 

 

Abstract 

Process safety is an integral part of sustainable business. Operating a process plant is high demanding work 
and mostly teamwork. This means that cooperation and communication between people throughout the shift 
is a key part of safety. How can we improve this with training? Using an integrated training environment where 
high fidelity dynamic training simulator and Reality Capture technology is integrated to the one training 
environment enables the panel and field operators to train together in one session. This kind of environment 
enables development of communication and cooperation between operators. One other added value is that 
there may be the situation that practices and procedures are poorly documented for the field operators so this 
kind of environment is a useful tool also for developing those. 

Training environments are normally used to improve process safety. The training usually covers the handling 
of a wide range of abnormal situations, equipment maintenance procedures, such as the replacement of the 
pump and compressor with spare pumps, the replacement of the heat exchanger during the cleaning period. 
From the other hand there should be high motivation to invest in the training environments also from the 
environmental aspect. How about the emission during the hazards? Plant operators are the pilots who control 
the plant operations and it’s obvious that there is a direct link between operators actions and emissions. It is 
really important that the operator also takes this environmental aspect into account in normal use. By 
minimizing malfunctions and hazards, emissions are also reduced. Naturally, minimizing flaring and driving 
as economically as possible will also reduce emissions. These aspects bring new challenges to building 
comprehensive training programs to meet environmental considerations. 

Important questions are how individuals learn best and how they want to learn and where or when they have 
time to train. Gamification increases motivation and fun factor of learning. However the comprehensive 
operator training simulator (OTS) environments are difficult to gamificate and on the other hand, the training 
environment needs to be very realistic for the experienced operators. Anyhow, educational games fit very well 
for beginners and students. Referring to other questions, companies are international and have production 
facilities in several countries and experts around the world, so the demand for location-independent training is 
growing. Nowadays Technology allows us to build a fully functional multi user cloud OTS environment where 
several operators and specialists can train simultaneously from different locations. 

How to make better operators - would it be possible to increase human capabilities with Artificial 
Intelligence? Would it be possible to develop one new safety layer which is powered by AI? One solution was 
presented where an AI solution helps operators to run plants as optimally as possible. The implementation is 
for distillation columns used in oil refining. The solution supports operators and production engineers to 
maximize the yield of most valuable products. 

High fidelity Unit OTS data and scenarios were used for developing the ML model in the first steps. The 
challenge for the future is whether the high fidelity simulators can be used to train ML models to detect 
different kinds of process anomalies and abnormal behaviours which are very rare in real life. In 
addition,would it be possible to use OTS data to build AI models that provide guidance to operators on how to 
run more energy efficiencently and how to minimize emissions? 
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Biography  

 

 
Jyri Lindholm has extensive experience in managing the performance, resources, training, development and 
innovation of Neste Engineering uSolution Automation Technology. He has more than 15 years of experience 
in various management ositions. Jyri has long experience in cooperating with relevant engineering partners 
and universities. He is currently responsible for NAPCON product management in the NAPCON business 
unit. He is responsible for looking at the overall picture of the NAPCON product range and leading Product 
Lines to create and implement a winning development plan that secures and enables both commercial success 
and high customer satisfaction for NAPCON and related services. Jyri Lindholm has more than 20 years of 
work experience from advanced industrial process control engineering, especially in training simulator 
environments. He has been responsible for projects’ cost stimation, project management, definition, design, 
engineering, integration, commissioning and model development in multiple Training Simulator Systems for 
oil refining, biorefining, and polymer plant sites. Also he has been responsible for control application design 
of distributed Control Systems applications and act as a Project Manager of the Process Computer System 
implementation in several petrochemical units. 
       NAPCON leads the process industry to a safe and sustainable future. We offer a wide range of innovative 
solutions to enhance your production spanning from operational intelligence and advanced process 
optimization solutions to boosting your competence through simulators and games. As part of Neste 
Engineering Solutions that offers engineering, procurement, construction and project management services for 
the Oil & Gas, Petrochemicals and Bio-industries, we apply our extensive process know-how on modern 
software engineering to fulfil your needs in the areas of availability, production optimization, sustainability 
and safety. In addition to our head office in Porvoo, Finland, we operate in international Neste locations such 
as Singapore and Rotterdam. Altogether we employ over 800 engineering professionals. For more information, 
please visit: www.napconsuite.com  
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Education 
M. Sc., Process Engineering, automation and information technology University of Oulu, 1996. Thesis on 
Fitting of a dynamic simulator to process measurement and development of a real time estimator. 

 
Employment History  

2017 Head of Product Management of NAPCON and Member of NAPCON Supervisory Board, 
Neste Engineering Solution Oy, Porvoo, Finland 

2015 - 2017 Product Manager of NAPCON Suite product family. Neste Jacobs Oy, NAPCON Business 
Unit, Porvoo, Finland 

2013 - 2015 Head of Automation Technology, Neste Jacobs Oy, Competence Center of Technology and 
Process, Porvoo, Finland 

2011 - 2013 Manager, Dynamic Simulation and Real Time Optimization, Neste Jacobs Oy, Competence 
Center of Technology and Process, Porvoo, Finland 

2010 - 2011 Manager, Automation Technology, Neste Jacobs Oy, Automation and Electrical 
Engineering, Porvoo, Finland 

2006 - 2010 Section Manager, Application Engineering, Neste Jacobs Oy, Automation Engineering, 
Porvoo, Finland 

1996 - 2006 Process Control Engineer, Neste Engineering Oy, Automation Engineering, Porvoo, 
Finland 

 
 
 
Trophy 
Viva Automation Recognition Prize awarded to a team from Neste Jacobs. Finnish Society of Automation 
2011. 
Fields of Competence 
Product Management, Business Management, Line Management, Project Management, Resource 
Management, Development Management, Application Engineering, Training Simulator Systems, On-line 
Process Calculations 
Technology 
Automation Technology, NAPCON Technology 
Techniques 
Dynamic Simulation, Real Time Optimization, Training Simulator System, On-line process calculations, 
Process Computer System, Multivariable Process Control, Distributed Control System  
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The Road to SMARTER and not BIGGER on Data problems 
in Transportation  

Miguel Mujica Mota 

Eurosim President, Assoc. prof., Aviation Academy, 
Amsterdam University of Applied Sciences, The Netherlands 

 
Abstract 

In This talk, I will discuss the role of M&S in the new ecosystem of techniques for data analysis; the 
audience will get some light on how I consider the different techniques should be coupled to solve current 
real problems in different transport modalities ranging from Road to Aviation. This talk will give also 
direction to young professionals on what are the key areas to put focus on if they want to pursue a successful 
career in the future using current techniques like AI, Big Data, Process and Data Mining, optimization, 
Statistical analysis and of course simulation. 
 
 
Biography 
 

 

Associate Professor, Simulation/optimization (Aviation Academy, Amsterdam U. of Applied Sciences | 
School of Technology)  

 Visiting Professor at University of Aviation in Queretaro (UNAQ), 2016   
 Visiting Professor at The National University of Mexico  
 Visiting Professor at the Ecole National De L’Aviation Civile, Tolouse France  
 
Work experience 
 

2013 - Associate Professor, Aviation Academy, Amsterdam University of Applied Sciences 
2011 - 2013 Post-Doc Researcher, Sub-director of the Aeronautical Management studies, Universitat 

Autònoma de Barcelona, Spain 
2005 - 2011 Master/PhD Student, Teaching Assistant, Sub-director of the Aeronautical Management 

studies, Universitat Autònoma de Barcelona, Spain 
2000 - 2004 Master Production Planner and Scheduler (Supply Chain Department), Avon Cosmetics 

Mexico, Celaya, Guanajuato, Mexico 
2003  Lecturer, Universidad Nacional Autónoma de México; Ciudad Universitaria, Mexico 
 

  

SIMS EUROSIM 2021

XDOI: 10.3384/ecp21185     Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021



Education and training 
 

2013  Accredited Evaluator of the Iberoamerican Database of Evaluators: Sector Engineering and 
Industry 

2012 Professional Certification (ACTIVE) 
2008 - 2011 PhD Industrial Informatics, Thesis Title: “Systems Optimization based on the Exploration 

of Timed Coloured Petri Nets State Space”, research that contribute to the 
simulation/optimization approach, Universitat Autònoma de Barcelona, Spain 

2004 - 2011 PhD Operations Research, graduated with Honours, Universidad Nacional Autónoma de 
México, Mexico 

2005 - 2008 MSc in Industrial Informatics/Advanced Studies Diploma, graduated with Honours, Thesis: 
“Optimization of a Coloured Petri Net Simulator”, Universitat Autònoma de Barcelona, 
Spain 

1996 - 1998 MSc in Operations Research, Thesis: “Simulation as an Analysis and Optimization Tool in 
Manufacture Processes”, Universidad Nacional Autónoma de México, Mexico 

1992 - 1996 Chemical Engineering, Thesis: “Development of a Photo catalytic Reactor of fluidized bed 
for Decomposition of pollutants in Waste Water Treatment”, Universidad Autónoma 
Metropolitana, México 
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Panel discussion: 
 Modelling and simulation in tackling challenges of the climate 

change  
                  Chair: Adj. prof. Jari Ruuska, University of Oulu, Finland 

Panelists: 
Hub Manager Björn Jonsson, ABB, Sweden 
Head of Product Management, Jyri Lindholm, Neste Engineering Solutions Oy, 
Finland 
Prof. Bernt Lie, University of South-Eastern Norway, Norway 
Senior prof. Erik Dahlquist, Mälardalen University, Sweden 
Adj. prof. Esko Juuso, University of Oulu, Finland 
 

The panel discussion was the last part the 
conference. The panelist were the keynote 
presenters, the current and two past presidents of 
SIMS, including the chair of the conference, who 
is also the past president of Eurosim. The chair of 
the national organizing committee was the chair of 
the panel. The discussion focused on five 
questions: simulation, energy systems, big data, 
environment and simulation toolboxes. The 
questions were presented by the panel chair. 

1 Can we get enough biofuels and how could 
we use them as efficiently as possible? 

Björn: Extremely interesting topic. It is very clear 
that people can change behavior when absolutely 
needed but it is not enough. Largest impact comes 
from companies and industry. Industry together 
with universities can create great initiatives to 
tackle climate change e.g., LKAB sustainable 
underground mining and transition to hydrogen-
based production in green steel making. Many 
initiatives in papermaking and other areas as well. 
Simulation and modeling capabilities are important 
in developing these new important technologies. 

Erik: What resources do we have and how we can 
utilize them more efficiently. LKAB Hydrogen 
production example where hydrogen is then used 
to reduce ion oxide to metallic ion. We are 
producing lots of electrical vehicles now. If you 
replace one carbon molecule in steel reduction you 
have to put in roughly 2.5 times more energy but if 
you like to replace one carbon molecule in 
electrical vehicle you only need 30% of energy 
compared to fossil alternative. How can you utilize 
limited resources in long run and increasing 
demand when looking from overall perspective? 
We as researchers can help politicians and society 

to do some prioritization.  

Esko: We have lots of possibilities what we can do. 
First step is that we must assess whether we can do 
it; E. g. in steel industry we have areas where 
hydrogen does not work. Then as a second step we 
need to assess how fast we can do it as there is 
always some dynamics that needs to be accounted. 
Third step after that is that we need to think about 
the life cycle since we have already solutions, and 
we need to consider whether it is reasonable to 
move into new solutions. Simulations and 
modeling can help decision making. 

Bernt: There is a connection between my Covid 
related presentation. In Norway there are 
approximately 400 thousand people that are 
refusing vaccinations. Even among in well-
educated people there are ones that deny covid. It 
is very difficult to convince them as denial is so 
strong that even facts will not help. It is very hard 
to convince large fraction of people and that is the 
challenge. 

Jyri: There is an increasing race to find new kind 
of feedstocks. Recycling materials are important in 
future to make sure do not outrun resources. 
Economic and logistics modeling helps in finding 
reasonable solutions for their utilization.  

Erik: There has been a lot of discussion about meat 
and that we should eat less of it. Livestock 
produces methane which creates 5 – 10% of global 
warming equivalents. You can extract almost all 
the methane using activated carbon when indoors. 
Methane production of livestock correlates with 
1100 TWh of heating power annually. This could 
be possibility to create a good solution. 

Bernt: One of the concerns in fossil fuels is that you 
introduce a new carbon source into atmosphere. 
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When it comes to cows, they are not a fossil source 
but recirculation of biomass. Interesting question is 
that will we have the same problem if we use 
biomass for fuel? If you harvest wood early in life, 
they grow faster. Increasing cycle of biomass 
generates more CO2 into atmosphere. Better 
economic system controls population number 
which affects climate change. Better health system 
and economy correlates with fewer children for 
some reason. This is very ethical question. 

Jari: Resource sharing evenly globally is 
politically impossible but ethically right. 

Esko: Living environment of people has great 
impact on climate change. We need to think where 
specific resources are produced and how they are 
transported. How the food is produced, what 
livestock is eating and how food is transported. 
Organizing this optimally is important. We need to 
think the whole system instead some isolated part 
of it. 

Erik: The lack of measurements makes simulating 
difficult. We should work together to make good 
measurement structures and identify how we can 
measure important variables to make modeling 
possible.   

Bernt: Convincing general population is easier 
when you can show measurements to support your 
claims. Yara uses satellite data to help local 
farmers in optimal watering and fertilizer use. 
Successful circular economy puts huge demand for 
the models and simulations because systems will 
interact in a way that is impossible for person to 
predict.  

Jari: Measurements are needed but most important 
measurements are usually quite challenging to get.  

Björn: Affecting on individual people is important 
as they select the decision makers who make the 
overall decisions. Everything is interconnected and 
it is important to get people understand this. E.g. 
we cannot have electrical vehicles without mining. 
It is important to get everybody to understand this 
connection between things. New innovations and 
technologies that we develop here in north have 
great impact when we transfer them to other places 
globally. It is important to build strong foundation 
for investments in industry and development 
activities. 

 

2 Jari: How we can get enough renewable 
energy sources? 

Bernt: In corona virus case, people say that fewer 
have died than in normal influenza and that lock-
down and other precautions are pointless. It is very 
hard to make people understand that mortality rate 
is low because of these precautions. Corona virus 
is an unstable system that is being controlled using 
lock down. Without lock down Norway could have 
had ten times higher mortality rate. It is hard to 
convince people that has certain view and are 
refusing to change it. Same thing with climate that 
it is very hard to convince people that something 
has to be done.  

Erik: Hydrogen system total efficiency is 50% 
(from electricity produced to mechanical output) 
today which is too inefficient compared to batteries 
which has 90% efficiency. On the other hand, 
production of batteries takes lots of energy. Cost of 
using some technology can be totally separated 
from the efficiency. There is a competition between 
different technologies and where certain 
technology should be used. E.g., Volvo ab thinks 
hydrogen cells should be used in heavy vehicles 
and Scania relies on batteries. The price will be the 
final driving factor. 

Esko: Fair competition and where we are going to 
use each technology. Green electricity has lots of 
fluctuations. In hydrogen production this might not 
be too big of a problem. Optimization is needed to 
balance production according to some variable. 

Bernt: Batteries use rare earth metals found in 
specific location which is a challenging problem. 
Fast charging 3000 vehicles simultaneously would 
require all the energy produced by Hoover Dam in 
US, so it is not realistic. Lifecycle of great number 
of batteries creates new challenges as well. In 
Norway there was an initiative where they used 
windmill for producing hydrogen. People fear that 
hydrogen cells can have leakages which are 
dangerous. Oil is not good in long term, but it is 
still needed now and in transition period. Future of 
energy will be a mixture of many technologies.  

Björn: Agree with Bernt. There will be hydrogen, 
oil, batteries together. Technologies are involving. 
As all these technologies are involving, this is very 
interesting simulation task for universities – price 
point, sources coming in, technology development, 
scaling, … What technology to use and when? 
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3 Jari: What kind of measurements we are 
lacking in order to get good data? 

Erik: We had a train case where battery needed to 
be operated between 30 to 70% capacity. How to 
do a good prediction model for this case. We need 
to have good measurements from environment and 
system to model how we can go from A to B 
without stopping and to minimize the battery. 
Simulation models are important for this kind of 
case. 

Jyri: Future is in mixture of different fuels. Some 
of fuels can be used in near future and some can be 
left for future. 

Jari: Does anybody in audience have any 
questions?  

Esko: We do not have to find global optimum. We 
have local differences e.g., in airplane usage like 
distances and support. We need to think about what 
we are doing. Electric car is very good if you are 
do not need to drive long distances and have easy 
access to electricity for loading batteries. We need 
to consider attributes of specific areas. 

Bernt: What is a measurement? Most people accept 
the temperature as a measurement. Thermometer 
can have length of a mercury column which has a 
correlation with temperature. Combining several 
classical measurements creates new measurements. 
We can use indirect measurements like smart 
sensors or soft sensors with some sort of a model. 
When we have evermore intelligent sensors in 
future, will people develop distrust towards their 
data or information?  

Erik: We had a diploma thesis worker in Skellefteå 
working on how you can utilize power more 
efficiently considering transporting of batteries, 
degradation, etc... AI systems could be used for 
optimizing this soft of operations and systems.  

Esko: I had a discussion about what is a 
measurements and indirect measurement where 
somebody said that you should not use indirect 
measurements but real measurements. Is 
temperature a real measurement? If you can 
reliably calculate value from another then it can be 
considered as a measurement. 

4 Question from the audience 1: Very 
interesting discussion! What are your 
thoughts on next generation nuclear as a 
solution both to produce green energy and 

to burn the nuclear waste already 
produced? 

Erik: In nuclear system you want to extract 
unwanted things and increase uranium to wanted 
level. Principally great solution but needs a lot of 
wet chemistry with very active components and 
therefore it is difficult because you cannot have any 
corrosion or leakages. Maintenance and upkeep are 
very difficult in this process.  

Bernt: Norway has only two small nuclear reactors 
for research purposes. Norway is skeptical towards 
nuclear energy. One proposition is to produce 
Ethanol in nuclear reactors, but you might need to 
use all the fresh water in the world to make it work. 
We need to have mixture of several energy sources 
including solar energy which have improved a lot 
lately. With intermittent energy like solar and wind 
you have variations in production, and you might 
need to develop some new operational 
developments. 

5 Question from the audience 2: Why does 
biogas get so little attention, even though 
there have been cars using it for a couple of 
decades already and you can produce it 
quite efficiently from biowaste from 
communities and farms? 

Erik: I have a biogas car myself and I wonder also 
why we do not use more of it. We do not have 
strong drivers for biogas as for the energy forms. In 
Germany the biogas is used in heating and power, 
and you get paid for what you have produced.  

6 Question from the audience 3: How can we 
best approach CO2 emissions globally? 
(China 28%, USA 15%, India 7%). We 
should focus on where we can make the 
most difference? 

Björn: What we do here does have impact all 
around the world since we introduce new 
technologies and prove their reliability here and 
those are then adapted in other parts of the world, 
and this has a massive impact. We have project 
with company doing recycling of clothes and site 
which can be replicated globally to make massive 
impact. Focus on Nordics and export technology. 

Esko: Electricity is just a part of the possible energy 
sources. Direct heat sources like solar and 
geothermal should be utilized better. This frees 
energy capacity as well..  
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7 Jari: Short comment from everybody on 
what is in your opinion the best way to use 
modeling and simulation to tackle climate 
change? 

Jari: We should be able to build global models with 
accurate enough sub-models that tell us what parts 
we should concentrate on. In Eurosim society we 
could then showcase how to make difference. 

Erik: Most important thing is to try to optimize 
processes so that you can utilize resources as 
efficiently as possible. Simulation can be used to 
present possibilities for the society what we can do, 
and we need to assess reliability of measurements 
to understand how reliable our predictions are. 

Jyri: Old or existing way to use simulations to 
simulate processes to make processes as efficient 
as possible is very important. Global things are 
important but optimal driving of existing processes 
is very important. 

Esko: Main thing of modeling and simulation is to 
develop ways to compare alternative and then 
comes optimization which can be done in several 
levels.  

Bernt: 700-year-old paper was optimistic in 
predicting future which is very interesting. There is 
a fight in the society that we do not understand of 
believe in science anymore. Models should be 
made familiar to young people to increase 
understanding in modeling and simulation. 
Transparency and honesty is important to increase 
general trust in modeling. Short term predictions 
are more important than what is going to happen in 
100 years. Modeling and simulation use for energy 
planning and usage is interesting and new sensors 
makes new models possible through Big Data. 
Modeling and simulation is very important topic 
and groups like SIMS will be needed in future. 

Björn: It is important to continue increasing 
collaboration between people from academic and 
industry people.  

Jari: closing words. 

8 Conclusions 

The discussion covered well the modelling and 
simulation in tackling challenges of the climate 
change. The panel was a highly valuable conclusion 
for the conference in linking the keynotes and topics 
of the regular papers with the history and the future 
of the simulation. 
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Abstract 
Energy efficiency is increasingly being considered as a 

critical measure of process performance due to its 

importance both in production costs and in 

environmental footprint. In this work, an indirect energy 

efficiency estimator was developed for the Tennessee 

Eastman (TE) benchmark process for the first time. The 

TE model was first modified to provide the reference 

values of energy efficiency. A sophisticated model 

selection scheme was then applied to build the 

surrogate-model. The results indicate reasonable model 

performance with mean absolute prediction error around 

1.7%. The results also highlight the limitations present 

in the training set, which are, together with other 

practical implementation issues, discussed in this work. 

Keywords:    Chemical Process Engineering, Tennessee 
Eastman, Energy Efficiency, PLSR models, Model 

adaptation 

1 Introduction 

Energy efficiency is an important factor to consider in 

modern chemical process engineering; the efficiencies 

often are concentrated to reducing energy costs per 

product. Higher energy prices strongly contribute to 

increasing operating and manufacturing costs. 

Additionally, inefficiencies in energy usage also 

contribute to higher greenhouse gas emissions and 

environmental footprint. It has been concluded that the 

improvements in energy efficiency require pragmatic 

and holistic approaches (Drumm et al., 2012).  

The increased computational resources have enabled 

energy efficiency estimation and monitoring using large 

data sets collected from process plants. The dynamic 

losses (difference between the current energy 

consumption and the historical or theoretical energy 

consumption) can be estimated from the process data 

and visualized to the plant operators (Drumm et al., 

2012). The predictive soft sensors could also assist in 

the selection of process paths at least with a suboptimal 

energy efficiency (Nikula et al., 2016). However, with 

large and complex data sets, the development of soft 

sensors is not straightforward. It should be also 

mentioned that regardless of the suboptimality, typically 

large energy savings can be realized in the chemical 

industry because of the high production volumes 

(Saygin et al., 2011).  

This study demonstrates the development of a real-

time data-driven energy efficiency estimator using an 

artificial data set.  For this aim, a multivariate simulation 

study with the Tennessee Eastman (TE) process 

benchmark is carried out. The TE process is a multi-step 

chemical process with relatively slow dynamics and 

consequently large delays. After introducing a step 

change, the settling time is approximately 24–48 hours, 

severely complicating the analysis (Downs and Fogel, 

1993). The TE process has five main unit comprising an 

exothermic reactor, a condenser, a compressor, a 

separator, and a stripper. The operating cost of the TE 

process is related to the loss of product and reactants (in 

purge and product streams), steam utilization and the 

compressor work (Konge et al., 2020).  

Being an open-loop unstable process, the TE process 

has been extensively used to develop and test plant-wide 

control strategies (e.g. Larsson et al., 2001; Jämsä, 

2018). The scenarios embedded to the benchmark model 

have also resulted as numerous studied aimed for fault 

detection and diagnosis (e.g. Kulkarni et al., 2005; Xie 

and Bai, 2015; Zou et al., 2018). In addition, the plant-

wide, nonlinear nature of the TE process has gained 

attention for developing surrogate models; For example, 

Tran and Georgakis (2018) used Net-elastic 

regularization and D-optimal designs to reach steady-

state surrogate models with reduced complexity. Sheta 

et al. (2019) developed dynamic NNARX models with 

interpretable structures for four TE outputs. Recently, 

Konge et al. (2020) proposed several machine learning 

based regression modeling techniques for building 

lower dimensional subsystems and performing process 

operability analysis to the TE process. 

However, the energy efficiency estimation of the TE 

process is still an unexplored topic. The energy balances 

for the reactor, the product separator, the stripper and the 

mixing zone were introduced by Jockenlhövel et al. 

(2003).   

2 Material and methods 

2.1 Energy efficiency 

Energy efficiency is here defined as the energy 

consumed by the process divided by the amount of 
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product produced. Hence, the value should be 

minimized in order to minimize the energy usage per 

produced tons. Both terms should also involve possible 

losses related to production and energy utilization, 

having negative effect to the energy efficiency, namely 

increasing the value. In TE process model, the product 

losses are negligible (less than 0.7%) and the model does 

not account for the energy losses. Therefore, the 

simplified definition of the instantaneous energy 

efficiency for the product component n at time instant k 

is calculated as in Eq. (1): 

𝜂𝑛(𝑘) =
𝑃(𝑘)

𝑚𝑛(𝑘)
 (1) 

Where ηn is the energy efficiency with respect to 

component n at time instance k, P [MJ/h] is the energy 

consumed per hour by the compressor and reboiler, and 

mn [ton/h] is the amount of produced component n per 

hour. In TE process, the components of interest are the 

liquid products G and H. 

In order to extract the instantaneous, real value of the 

energy efficiency from the TE model, a set of 

modifications to the simulation were required: 

1. The average liquid densities of the product streams 

were calculated based on the measured molar 

fractions, and component liquid densities given in 

Downs and Vogel (1993), 

2. The product mass flows were calculated from the 

average liquid densities and the measured product 

volumetric flows, 

3. The reboiler energy was calculated from the 

measured steam mass flow according to 

Jockenhövel et al. (2003). 

The product stream’s molar fractions were the delay 

and disturbance free model outputs, while the other 

measurements consisted of the default delays and noise 

levels of TE benchmark. The energy efficiency 

described above represents the reference (target) signal 

for the surrogate model. 

2.2 Simulation scenario 

In TE process, gaseous reactants A, C, D and E are 

converted into liquid products G and H, and byproduct 

F (Downs and Vogel, 1993). TE model by Balthelt et al. 

(2015) is used in this study to generate the simulated 

process data. In the simulation, the base case operational 

mode of the TE process is considered, where the target 

product mass ratio of G and H is set to 50/50. The 

simulation was run with disturbance flags disabled and 

using the decentralized control strategy included in the 

TE simulator.  

First, a subset of manipulated variables was selected 

using first order finite difference-based sensitivity 

analysis of the inputs with respect to ηG and ηH (energy 

efficiency of components G and H). The ranges for the 

selected variables were determined based on 

simulations and earlier findings from the literature. It is 

well known that the ranges of inputs need to be reduced 

as the number of inputs is increased (Konge et al., 2020; 

Tran and Georgakis, 2018). Table 1 lists the selected 

variables and their feasible ranges applied to this study. 

Next, a Monte Carlo type simulation scenario is 

formulated. There, the TE process is simulated for two 

months (60 days, 1440 h) to mimic a typical set of 

routine process data. The set points of the manipulated 

and operational variables are changed pseudo randomly 

to illustrate the effect of sudden changes in the 

production and on the energy consumption. 

The simulation was performed in a following way; 

Firstly, a random number generator was initialized. 

Secondly, a random time instant between 24 and 48 

hours was selected from an even distribution. Then, one 

to four manipulated variables are randomly selected to 

the adjusted time step. Finally, their values are randomly 

chosen from an even distribution and previously 

adjusted variables are changed back to nominal values 

to keep the process within control range.  

The time spans for the set points changes were chosen 

to occur between 24 and 48 hours after the previous 

change in order to ensure robust process behavior and 

following the recommendations in original TE model 

(Downs and Vogel, 1993). Using a step size of five 

seconds, the resulting data matrix consist of 1,036,801 

rows (time instants) and 43 columns (simulated process 

variables).  

Table 1. Setpoints of the manipulated variables and their 

range in TE simulation. 

Manipulated 

variable 

Nominal 

value 

Lower 

bound 

Upper 

bound 

Production rate 

[m3/h] 
22.9 20.5 24.0 

Stripper level (%) 50.0 40.0 60.0 

Component G in 

product (mole-%) 
53.7 51.0 57.0 

Component A in 

reactor feed 

(mole-%) 

55.0 49.5 65.9 

Components 

A&C in reactor 

feed (mole-%) 

58.6 52.7 64.4 

Reactor 

temperature [⸰C] 
120.0 118.0 125 

2.3 Data preprocessing 

The simulated data had a substantial start-up transient. 

Hence, the first 1000 data points (1.39 h) were excluded 

from the training set prior to modeling. 

The data matrix was then down-sampled to reduce the 

effect of delays and measurement noise present in the 

simulated process measurements. The down-sampling 

was performed with 6-minute averaging, resulting as a 

data matrix with 14,400 x 43 (41 inputs, 2 reference 
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outputs). Then, each of the input variables were delay-

compensated using a discrete time shift with a maximum 

lag of 30 minutes (i.e., 5 different time shifts with a 6-

minute sampling time). Consequently, before filtering 

there were 41 x 5 = 205 input variable candidates.   

Prior to model selection the down-sampled data set 

was divided into training and testing sets. The division 

was simply made with respect to simulation time, 

reserving the latter 30% for testing. 

2.4 Model selection and validation 

In the second phase, a dynamic surrogate model for the 

operational mode one is constructed based on the 

training data (70% of the whole set) to estimate the 

energy efficiency. Prior to model selection, the input 

data space was normalized such that X = {0,1} using the 

min-max-scaling.  

The model structure here is based on the partial least-

squares (PLS) regression. The estimator is selected 

based on a sufficiently representative training set of 40 

days and tested with an independent time series of 20 

days. The delay analysis and input variable selection are 

carried out using out signal correlation-based filtering, 

using linear correlation with the desired output and the 

time compensated signals as the filtering metric. In 

filter-based variable selection, the rule for variable 

inclusion or exclusion is given as 

 

𝑖 =  {
1,         𝑅 ≥ 𝑇
0, 𝑅 < 𝑇

, (2) 

 

where i is the logical iterator, R is the linear Pearson 

product-moment correlation coefficient and T is the 

manually selected threshold. In this study, the threshold 

was set heuristically to T = 0.25. Consequently, the 

filtered estimator is 

 

�̂� = X𝑏PLS + 𝜀, (3) 

 

where 𝑏PLS is the estimated parameter vector with the 

PLS algorithm, X is the input data matrix, �̂� is the 

estimated output and the 𝜀 is the residual term with 

N(0, 𝜎2). The PLS parameter estimation is performed 

for the filtered matrix, i.e. X[i=1] with the algorithm 

presented in de Jong (1993). The number of PLS 

components was selected using a grid search with cross-

validation, consequently resulting as 4 and 3 selected 

components for the models of ηG and ηH, respectively. 

The objective function in selection was based on k-fold 

sequential cross-validation. After testing different 

values of the k-fold, a 3-fold cross-validation was 

selected.  

The model performance was evaluated with the 

following figures of merit including R, RMSE (root 

mean squared error) and MAPE (mean absolute 

prediction error).  

3 Results and discussion 

3.1 Model Selection 

Using the presented model selection procedure, a 

feasible model was identified. The figures of merit for 

the model training and testing results for the two energy 

efficiencies are shown in Table 2. For the ηG, the figures 

of merit for the out of sample data set (test set) can be 

considered sufficient for process control purposes. The 

predictions can be considered to be within ±0.0028 

MJ/ton (2.8 kJ/ton) with 95.4% confidence. Similarly, 

for the final product component H, the model 

performance is comparable to the previous model with 

slightly higher correlation coefficient. The 95.4% 

confidence interval for energy efficiency model for 

component H was ±0.0032 MJ/ton (3.2 kJ/ton). In 

addition, it can be seen that the model’s testing set 

performance metrics are quite optimistic for the 

component H, which can be seen as a higher correlation 

coefficient and lower error values compared to the 

training set.  

Table 2. Figures of merit for the identified PLSR models. 

Criteria Training Testing 

Product G H G H 

R 0.86 0.88 0.85 0.89 

RMSE, kJ/ton 1.6 1.6 1.6 1.6 

MAPE, % 1.7 1.7 1.7 1.6 

3.2 Model applicability  

The test set estimations using the selected models for ηG 

and ηH are presented in Figure 1 and Figure 2, 

respectively, with corresponding confidence intervals of 

the selected estimators.  

According to Figures 1 and 2, the testing set shows 

decreased performance, and for some regions the output 

value seems to interpolate poorly. In data-driven 

modeling, this often could indicate overfitting the model 

during the training phase, which means that the model 

parameters are biased because of estimating the noise in 

the system rather than the true dependencies. Utilization 

of an overly complex model as the estimator is a 

common cause of this behavior. (Hastie et al., 2009)  

In the modeling case of this study, the lack of fit in 

the test set seems to be at least partially explained with 

the non-similar distributions of the training and testing 

input data sets, often referred as the covariate shift 

(Moreno-Torres et al., 2012). This issue is discussed in 

the following. 
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Figure 1. Measured and estimated energy efficiency for component G with corresponding confidence intervals. Only 

every 50 sample is plotted for the sake of clarity. 

 
Figure 2. Measured and estimated energy efficiency for component H with corresponding confidence intervals. Only 

every 50 sample is plotted for the sake of clarity. 

 

SIMS EUROSIM 2021

DOI: 10.3384/ecp211851 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

4



The difference between the training and test sets was 

further analyzed using Euclidean histogram distance 

(Ma et al., 2010) and histogram intersection similarity 

(Swain and Ballard, 1991) and Kullback-Leibler (KL) 

divergence (Mathiassen et al., 2002) in sliding windows 

for each m inputs used in the PLSR model. Using these, 

a novel metric is presented and denoted as the Iα. The Iα 

is given here as 

𝐼𝛼 = ∑ 𝑏PLS,𝑗(𝛼𝐷𝑗 − 𝑠𝑗)

𝑚

𝑗=1

, (4) 

where 𝐷𝑗 = 𝐷𝑗(𝑋𝑡𝑟𝑎𝑖𝑛, 𝑋𝑡𝑒𝑠𝑡) is the Euclidean 

distance between the training and test set histograms for 

input j and 𝑠𝑗 = 𝑠𝑗(𝑋𝑡𝑟𝑎𝑖𝑛, 𝑋𝑡𝑒𝑠𝑡) is the similarity 

between the train and test set histograms for input j. It 

was found that the KL divergence provided practically 

the same information as the presented distance metric, 

thus it was intentionally left out from the definition of 

the index. However, the KL divergence was found also 

to give a qualitative indication of the data drift. The αj 

for an input variable is defined as the fraction of samples 

out of range in a test set window.  The global parameter 

α is the maximum of all αj’s. It can be seen from the Eq. 

(4) that the proposed metric highlights the variables with 

more significant effect on the input. In addition, the α 

thresholds the Euclidean histogram distance, and the 𝑠𝑗 

acts as a penalty if the train and the test set have non-

similar histograms. It should be noted that the higher 

index values Iα indicate a higher covariate shift, and thus 

higher histogram similarity needs to decrease the value 

of the proposed index. 

The applied metrics are illustrated together with the 

RMSE for component G in Figure 3. The visual 

inspection in the Figure 3 shows that in fact that the 

training set might not be representative, as some of the 

model inputs diverge from the training data set. It can be 

seen from the Figure 3 that it is apparent that the 

covariate shift correlates well with the observed 

modelling error with testing data. Thus, monitoring the 

input space could be at least partially used to aid in the 

decision-making concerning the need of soft sensor 

maintenance. De facto, in actual use this issue would 

have to be fixed with model adaptation (or model re-

training) to a more comprehensive training set. 

However, the recognition and tackling not only the 

covariate shift, but also the other type of dataset shifts 

such as the prior probability shift and the contextual 

shift (Moreno-Torres et al., 2012) in real-time demands 

further studies on model adaptation.  From these, the 

prior probability shift is the most of obvious to be dealt 

with, especially in the case of models with single output. 

 
Figure 3. Illustration on the possibility of monitoring the soft sensor’s covariate shift (Iα, red line) and its effect on 

the RMSE with testing data (black line). The illustration is computed with the sliding window size of 50 samples 

for the component G. 
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3.3 Practical Implications 

The results of the study give guidelines to soft sensor 

selection in monitoring of energy intensive production 

processes with large input delays. Monitoring of the 

energy efficiency provide basis for real-time 

optimization of the processes also with respect to energy 

consumption. Hence, the study contributes to life-cycle 

analysis theme of the multi-step chemical processes, and 

by that demonstrates how the soft sensors could be 

utilized to lower the carbon footprint of an industrial 

process. In order to comprehend the analysis from the 

process engineering point of view, some further 

considerations related to practical implementation to TE 

process are required. 

First of all, the surrogate model developed here 

utilizes a rather simple approach. Although a more 

sophisticated variable construction, delay estimation 

and variable selection methods may enhance the 

estimator performance, in industrial applications it is 

often beneficial to have a model structure in a 

representable format. In case of PLSR model, and with 

limited number of projections, this requirement can be 

met.  

Additionally, it is important to give insight on the 

explanatory variables used in the model. In the case 

presented, after the correlation-based filtering the subset 

of 18 and 14 variables for the two surrogate models were 

used in PLS model estimation. From these, the most 

important ones were found to be:  

• Component F, G and H mol-% in product stream, 

• Component D mol-% in purge stream, 

• Reactor temperature (⸰C), 

• Product separator underflow (m3/h), 

• Stripper underflow (m3/h), 

• Compressor power (W), 

• Condenser cooling water outlet temperature (⸰C). 

Based on the presented list, the liquid molar fraction 

measurements of the final product components (G, H) in 

the product stream, together with the by-product F are 

needed. In TE model, these are sampled with relative 

high frequency of 0.25 h and 0.25 h delay. The soft 

sensor approach utilized in this paper considered a 

maximum lag of 0.5 h, suggesting that the indirect 

energy efficiency estimation is strongly based to recent 

analysis results from the product composition. 

Similarly, the purge stream molar fraction of reactant D 

is assumed to be measured with interval of 0.1 h and 

delay of 0.1 h in TE model. These assumptions set high 

requirements for the online gas and liquid analyzers.  

As indicated by Konge et al. (2020), the steam cost 

in overall cost-efficiency of the TE process is relatively 

small. On the other hand, it might have more important 

effect to the energy efficiency. This cannot be directly 

seen from the most important variables selected to the 

energy efficiency model. However, the product 

separator underflow is used as an explanatory variable 

and this liquid stream is directed to the stripper, having 

impact to required steam consumption. Utilization of 

temperature measurements from several process points 

and the compressor work as explanatory variables also 

have natural connection to process energy efficiency. 

Finally, the surrogate model also uses the production 

rate (stripper underflow) as an input. Thus, the model 

incorporates most of the variables affecting to the 

energy efficiency by definition given in Eq. (1). 

Finally, it was highlighted in this work, and also in 

previous studies related to surrogate modeling of TE 

process (e.g. Sheta et al., 2019), that the selection of the 

training data deserves attention. Sheta et al. (2019) 

suggest approaches such as peak shaving and smoothing 

of intensive changes as pre-processing methods to avoid 

overfitting problems. However, as indicated in Section 

3.2, the implementations in real systems typically need 

to include also efficient model adaptation as all the 

process points are seldom available in the training data.  

Development of ensemble models can also help to 

reduce the estimator uncertainties and to overcome the 

challenges related to unseen process points (Hastie et 

al., 2009). In addition, gradual changes due to fouling 

and wear of equipment, or even process design changes 

(which could be expected if the training set is extended 

over very long time period) set challenges to any 

surrogate models. Hence, maintenance of the soft sensor 

to ensure its performance over time is in fact a very 

interesting and important topic to study. 

4 Conclusions 

In this work, an indirect energy efficiency estimator was 

developed for the Tennessee Eastman (TE) benchmark. 

For this aim, the TE benchmark was modified to be 

suited for generating the necessary data with a realistic 

simulation scheme. Based on the simulated data, a 

surrogate-model was selected using a sophisticated 

model selection scheme. The final model structure was 

the Partial Least-Squares (PLS) regression. With these, 

a reasonable model performance was obtained. By 

monitoring the histogram similarity metrics along with 

the test set estimation error, it was found that the 

applicability of the estimator could be partially limited 

because of the covariate shift. All and all, the data drift 

was identified to be an important factor that plausibly 

could complicate the use of soft sensors in industrial 

applications. In this simulation study, this was attributed 

to multivariable nature of the process and motivate the 

future research towards selection and maintenance of 

soft sensors. 
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Abstract 

System level testing generally lacks coverage due to cost 

of performing realistic tests on the “system as a whole”. 

This lack in test coverage gives rise to seemingly 

emergent behaviour at system level. The interactions 

between multiple sub-systems lead to “the whole being 

greater than the sum of its parts”, which is a famous 

saying dated back to the time of the Greek philosopher 

Aristotle. Either we should test more extensively at 

system level, or we should test smarter. The company 

needs to validate its current test regime to see if the 

current way of testing detects the emergent behaviours 

in question. We seek to validate the company’s system 

integration test regime to see if it can detect a given set 

of emergent behaviours. This paper aims to find the 

probabilities of detecting specified types of emergent 

behaviour in the way the company performs system 

integration testing today and compare that to alternative 

test regimes. A model is set-up to find the probabilities 

of the emergent behaviour types in the different test 

regimes, and to simulate the corresponding detection 

rates and related uncertainties. The results show that the 

company could benefit from changing to an alternative 

test regime, which has higher probability of detecting a 

given set of unwanted behaviours emerging through 

system integration testing. 

Keywords:     Bayes’ theorem, emergent behaviour, 

experimental design, statistical inference, system 

integration testing. 

1 Introduction 

System level testing generally lacks coverage due to cost 

of performing realistic tests on the “system as a whole”. 

This lack in test coverage gives rise to seemingly 

emergent behaviour at system level. The interactions 

between multiple sub-systems lead to “the whole being 

greater than the sum of its parts”, which is a famous 

saying dated back to the time of the Greek philosopher 

Aristotle. Either we should test more extensively at 

system level, or we should test smarter. The company 

needs to validate its current test regime to see if the 

current way of testing detects the emergent behaviours 

in question.  

This paper looks at how well the system-level test 

regime detects unwanted behaviours for an autonomous 

underwater vehicle (AUV) that uses a camera to capture 

images of the current seabed.  

We seek to validate the company’s system integration 

test regime’s ability to detect a given set of emergent 

behaviours. This paper aims to find the probabilities of 

detecting specified types of emergent behaviour in the 

way the company performs system integration testing 

today and compare that to alternative test regimes.   

1.1 Problem Statement 

The company performs system integration testing based 

on manual operations, which is a bottleneck for them to 

ensure mature and robust products (Haugen and 

Mansouri, 2020). 

Analysts in the company do not have enough time to 

analyse all available test results from performed test 

executions / simulations. Roughly, system domain 

experts analyse 10% of test results on average. About 

80% of tests analysed contain no errors. Around 20% of 

tests with errors detected include behaviour-related 

errors (Kjeldaas et al., 2021). Illustration in Figure 1. 

Analysis:          

 

Errors: 

 

Behaviour errors: 

Figure 1. Portion of tests with detected behaviour related 

errors. 

We believe the company tests too many “sunny day” 

scenarios compared to “rainy day” scenarios. This test 

strategy fails to trigger the system’s inherent emergent 

behaviours to the extent that we can collect enough data 

on them through testing to perform effective analyses of 

these behaviour issues.  

The AUV uses available map data to plan missions. 

The map data varies in quality, which may give 

problems for the accuracy of the planning functionality. 

Map areas lacking data works as tripwires for the 
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planning system and could cause the planning to fail if 

it is not possible to avoid these areas, ref. Figure 2.  

 

Figure 2. Principle sketch of issue with lacking (black 

areas) map data. 

The AUV plans route segments within available fuel 

limit, including departure from -and arrival to the 

mothership. Complex ocean currents yield large fuel 

calculation error margins. Reaching fuel point of no 

return forces the AUV to abandon mission and return to 

mothership, ref. Figure 3.  

 

Figure 3. Principle sketch of issue with complex ocean 

currents (Cenedese and Gordon, 2021). 

The height information available of the seabed have 

varying uncertainty, which is a critical factor for the 

AUV’s ability to capture seabed images of sufficient 

quality. To ensure desired quality in the photograph of a 

given area, the AUV needs a minimum number of 

pictures of the same area. If the slope of a ridge is too 

steep, the AUV does not have time to photograph the 

slope with sufficient quality, or photograph it at all, 

without special considerations in planning the route, ref. 

Figure 4.  

 

 

Figure 4. Principle sketch of issue with steep ridges. 

The AUV uses an acoustic positioning system (APS) to 

keep on track with the planned route. If the AUV APS 

information is lost due to some interferences, the AUV 

drifts from its planned route depending on the inertial 

navigation system (INS) and terrain correlation, ref. 

Figure 5.  

 

Figure 5. Principle sketch of issue with navigation drift. 

The company assumes the AUV system is complicated 

and even complex. Complex systems are understood 

only in retrospect and do not usually repeat, while 

complicated systems can be understood by reductionism 

and detailed analysis. The company assumes that the 

AUV system exhibits weak emergence, and potentially 

strong emergence. Strong emergence is unpredictable 

and inconsistent in simulations, while weak emergence 

is predictable and consistently reproducible in 

simulations (Mittal et al., 2018). 

1.2 Methods 

The company uses the Changing One Single Thing at a 

time (COST) or Only one Factor At a Time (OFAT) 

model (Montgomery, 2017). We use the COST/OFAT 

principle for the first test regime in this paper.  

For the second test regime, we use a two-level full 

factorial design (Dunn, 2021) and (Montgomery, 2017). 
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For the third test regime, we use an optimum design 

for maximizing the probability of detecting the 

emergent behaviours in question.  
We seek to answer the following research questions: 

• How well is the company able to detect a given 

set of emergent behaviours? 

• What is the probability of the company 

detecting a given set of emergent behaviours in 

the current company test regime? 

• How much can the company increase the 

detection of a given set of emergent behaviours 

in an alternative test regime? 

1.3 Literature Review 

The Only one Factor At a Time (OFAT) method consists 

of selecting a starting point, or baseline set of levels, for 

each factor, and then successively varying each factor 

over its range with the other factors held constant at the 

baseline level (Montgomery, 2017). 

For a two-level full factorial design, we run the 

complete set of 2k experiments, where k is the number 

of factors and 2 is the number of levels for each factor. 

The results of the experiments we use to quantify the 

importance of each factor. Indeed, for this purpose, 

linear regression models, considering both the single 

factor and two-factor effects are used in this paper. For 

example, in the case of two factor model, the following 

fitted regression model can be used to determine the 

importance of each factor (Dunn, 2021). 

𝑦 = 𝛽0 + 𝛽𝐴𝑥𝐴 + 𝛽𝐵𝑥𝐵 + 𝛽𝐴𝐵𝑥𝐴𝐵 (1) 

In the following, the total probability is calculated based 

on the inclusion-exclusion principle when the different 

emergent behaviours are independent but not disjoint 

events. We calculate the total probability by formulas 

regarding different number of factors (Allenby and 

Slomson, 2010): 

𝑃(𝐴 + 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴, 𝐵) (2) 

𝑃(𝐴 + 𝐵 + 𝐶) = 𝑃(𝐴) + 𝑃(𝐵) + 𝑃(𝐶)

− 𝑃(𝐴, 𝐵) − 𝑃(𝐴, 𝐶)

− 𝑃(𝐵, 𝐶) + 𝑃(𝐴, 𝐵, 𝐶) 

(3) 

𝑃(𝐴1 + 𝐴2 … + 𝐴𝑛)

= ∑ 𝑃(𝐴𝑖) − ∑ 𝑃(𝐴𝑖, 𝐴𝑗)

𝑖<𝑗

𝑛

𝑖=1

+ ∑ 𝑃(𝐴𝑖 , 𝐴𝑗 , 𝐴𝑘) + ⋯

𝑖<𝑗<𝑘

+ (−1)𝑛−1 ∑ 𝑃(𝐴1, 𝐴2 … , 𝐴𝑛)

𝑖<⋯<𝑛

 

(4) 

The union of a four-factor probability is illustrated in 

Figure 6. 

The Bayes’ theorem is expressed as 

𝑃(𝑋|𝑌, 𝐼) =
𝑃(𝑌|𝑋, 𝐼) 𝑃(𝑋|𝐼)

𝑃(𝑌|𝐼)
 (5) 

where X is our hypothesis, Y is our data, and I is relevant 

available information. The various terms in Bayes’ 

theorem have formal names. The quantity on the far 

right, 𝑃(𝑋|𝐼), is called the prior probability; it represents 

our state of knowledge (or ignorance) about the truth of 

the hypothesis before we have analysed the current data.  

This is modified by the experimental measurements 

through the likelihood function, or 𝑃(𝑌|𝑋, 𝐼), and yields 

the posterior probability, 𝑃(𝑋|𝑌, 𝐼), representing our 

state of knowledge about the truth of the hypothesis in 

the light of the data. In a sense, Bayes’ theorem 

encapsulates the process of learning. The denominator 

is often simply a normalization constant (not depending 

explicitly on the hypothesis). In some situations, like in 

model selection, this term plays a crucial role. For that 

reason, it is sometimes given the special name of 

evidence (Sivia and Skilling, 2006). 

 

Figure 6. Inclusion-exclusion illustrated by a Venn 

diagram for four sets (Concept Draw, 2021). 

2 Design of Experiment 

This paper explores the probabilities and detections of a 

given set of emergent behaviours in different test 

regimes, the current company test regime and two other 

alternatives.  

2.1 Data 

We select a set of emergent behaviour types for study in 

this paper. The emergent behaviour types are: 

• F1: Planning failure [0...1] 

• F2: Fuel exceeded [0...1] 

• F3: Photo quality degradation [0...1] 

• F4: Photo coverage deviation [0...1] 

• G: Any emergent behaviour [0…1] 
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For the purpose of this study, we have focused our 

efforts on a set of four dichotomous variables, which can 

take only two possible values (low and high). These are:  

• A: Navigation quality [Low, High] 

• B: Map delta height [Low, High] 

• C: Real world environmental delta [Low, High] 

• D: Map quality [Low, High] 

Further, based on previous experience with comparable 

systems, we have selected a set of probabilities for this 

study. Accordingly, based on expert knowledge within 

the company, the probabilities of the emergent 

behaviours are assumed to be [%]: 

• 𝑃(𝐹1) = 0.15 

• 𝑃(𝐹2) = 1.25 

• 𝑃(𝐹3) = 1.88 

• 𝑃(𝐹4) = 0.31 

• 𝑃(𝐺) = 3.59 

Moreover, based on the available data in the company’s 

database, we will assume the following [%]: 

• 𝑃(𝐷|𝐹1) = 10 

• 𝑃(𝐷′|𝐹1) = 90 

• 𝑃(𝐶|𝐹2) = 55 

• 𝑃(𝐵𝐷|𝐹3) = 25 

• 𝑃(𝐵𝐷′|𝐹3) = 75 

• 𝑃(𝐴′|𝐹4) = 100 
• 𝑃(𝐷) = 98 

• 𝑃(𝐷′) = 2 

• 𝑃(𝐶) = 10 

• 𝑃(𝐵𝐷) = 18 

• 𝑃(𝐵𝐷′) = 2 

• 𝑃(𝐴′) = 1 
In general, we are interested in the probabilities for the 

different emergent behaviours at different factor levels. 

For example, we are interested in probability of 

planning failure (F1) under the condition that the map 

quality is high (D). That is, we are interested in 

𝑃(𝐹1|𝐷). This probability can be calculated using the 

Bayes’ theorem (5), 

𝑃(𝐹1|𝐷) =
𝑃(𝐷|𝐹1)𝑃(𝐹1)

𝑃(𝐷)
=

10 ∗ 0.15

98
= 1.5 ∗ 10−2 

The probabilities [%] of other emergent behaviours can 

similarly be calculated 

• 𝑃(𝐹1|𝐷′) = 6.75 

• 𝑃(𝐹2|𝐶) = 6.88 

• 𝑃(𝐹3|𝐵𝐷) = 2.6 

• 𝑃(𝐹3|𝐵𝐷′) = 70.31 

• 𝑃(𝐹4|𝐴′) = 31.25 

2.2 Test Regime 1 

The test regime 1 is the current company test regime and 

is the baseline for comparison with the other alternative 

test regimes. There are 16 possible combinations, using 

two values for 4 parameters. However, the company 

does not test all 16 cases. The principle is to start with a 

reference case and add cases with level-change in only 

one factor at a time as compared to the reference. This 

COST/OFAT principle makes it easier to analyse the 

effect of the level-change in one factor. Table 1 shows 

the company’s selected test case types. Test case type 1 

is the reference experiment type, and to reduce the 

number of test set-ups the company re-uses this as much 

as possible to verify system requirements. The company 

uses the test case types 2-5 to analyse the impact of the 

factors C, B, BD, and A, respectively. 

Table 1. Scenario factor levels for test regime 1.  

Test Case Type A B C D # Runs 

1 + - - + 245 

2 + - + + 6 

3 + + - + 60 

4 + + - - 6 

5 - - - + 3 

 

2.3 Test Regime 2  

The test regime 2 is the first alternative test regime, 

which is also known as two-level full factorial 

experiment. The two-level full factorial design has four 

factors with two levels, which gives 24 = 16 

experiments. Table 2 shows the experiment set-up for 

test regime 2 with the yield for each test case type based 

on expert opinion that we choose for this study. The 

yield is the total number of emergent behaviour 

detections in 20 runs per test case type. Further, in the 

test regime 2, each test case is run equal number of 

times. For the purpose of comparison, we choose the 

total number of runs to be the same for both test regime 

1 and 2. 

Table 2. Scenario factor levels for test regime 2, full 

factorial design.  

Test Case Type A B C D Yield # Runs 

1 - - - - 8 20 

2 + - - - 1 20 

3 - + - - 22 20 

4 + + - - 15 20 

5 - - + - 9 20 

6 + - + - 3 20 

7 - + + - 23 20 

8 + + + - 17 20 

9 - - - + 6 20 

10 + - - + 0 20 

11 - + - + 7 20 

12 + + - + 1 20 

13 - - + + 8 20 

14 + - + + 1 20 

15 - + + + 8 20 

16 + + + + 2 20 
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2.3.1 Effect of Experiment Factors 

One way to find the effect of each factor on yield is by 

conducting a regression analysis based on the test 

results. In the case of the test regime 2, the Equation (1) 

has 16 parameters. The first coefficient being the 

average of all the yield values, while the other 

coefficients represent the effects of the different factors 

and factor interactions. Estimating the parameters with 

respect to the observed yield, results in the following 

relation with only six non-zero coefficients, 

𝑦 = 8.14 − 3.13𝑥𝐴 + 3.65𝑥𝐵 + 0.69𝑥𝐶 − 4.06𝑥𝐷

− 3.39𝑥𝐵𝐷 

 

Figure 7. Magnitude of the effect of the factors. 

The coefficient −3.13𝑥𝐴 of factor A means that A at 

high level has a negative effect on the detection of the 

emergent behaviour. The coefficients are calculated for 

one step, but the regression model uses two steps from 

low to high. Therefore, the test regime 2 gives on 

average 6.25 more detections of any emergent behaviour 

type on a test case run 20 times with factor A at low level 

compared to high level. We can see the calculated factor 

coefficients in a Pareto plot (see Figure 7). Factor D has 

the highest impact on the detection of emergent 

behaviour among the main factors, while factor C has 

the lowest impact. The only active two-factor 

interaction is BD. 

2.4 Test Regime 3  

The test regime 3 is the second alternative test regime 

and is designed to optimize the detection of the given 

emergent behaviour types. The optimum way of 

detecting the emergent behaviours in question is to run 

the test case type(s) which have the highest probability 

of detecting the different emergent behaviour types. The 

probabilities for the different emergent behaviours were 

calculated based on Bayes’ theorem in Section 2.1. 

From Table 3 we see that test case type number 7 is 

the optimal test case type for triggering all emergent 

behaviour types. In the test regime 3, one runs only the 

case type number 7. However, the number of replicates 

is the same as the total number of tests run in other test 

regimes. 

Table 3. Scenario factor levels and probabilities [%] for 

test regime 3, optimizing test design. 

Test 

Case 

Type 

A B C D F1 F2 F3 F4 

1 - - - - 6.75 0 0 31.25 

2 + - - - 6.75 0 0 0 

3 - + - - 6.75 0 70.31 31.25 

4 + + - - 6.75 0 70.31 0 

5 - - + - 6.75 6.88 0 31.25 

6 + - + - 6.75 6.88 0 0 

7 - + + - 6.75 6.88 70.31 31.25 

8 + + + - 6.75 6.88 70.31 0 

9 - - - + 0.015 0 0 31.25 

10 + - - + 0.015 0 0 0 

11 - + - + 0.015 0 2.6 31.25 

12 + + - + 0.015 0 2.6 0 

13 - - + + 0.015 6.88 0 31.25 

14 + - + + 0.015 6.88 0 0 

15 - + + + 0.015 6.88 2.6 31.25 

16 + + + + 0.015 6.88 2.6 0 

 

3 Results 

In this section the capability of the different test regimes 

in detecting any given emergent behaviour types is 

evaluated. The emergent behaviour type F1 has a single 

factor dependency in D. The formula for finding the 

probability of emergent behaviour type F1 in test regime 

1, follows from the application of the marginalisation 

and product rule of the probability theory (Sivia and 

Skilling, 2006): 

𝑃(𝐹1|𝑇1) = 𝑃(𝐹1, 𝐷|𝑇1) + 𝑃(𝐹1, 𝐷′|𝑇1)

= 𝑃(𝐹1|𝐷, 𝑇1)𝑃(𝐷|𝑇1)
+ 𝑃(𝐹1|𝐷’, 𝑇1)𝑃(𝐷’|𝑇1) 

(6) 

Further note that 

𝑃(𝐷′|𝑇1) = 1 − 𝑃(𝐷|𝑇1) (7) 

thus 

𝑃(𝐹1|𝑇1) = 𝑃(𝐹1|𝐷′, 𝑇1)

+ (𝑃(𝐹1|𝐷, 𝑇1)𝑃(𝐷|𝑇1)

− 𝑃(𝐹1|𝐷′, 𝑇1))𝑃(𝐷|𝑇1) 

(8) 

and hence 
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𝑃(𝐹1|𝑇1)

𝑃(𝐹1|𝐷′, 𝑇1)
= 1

− (1

−
𝑃(𝐹1|𝐷, 𝑇1)

𝑃(𝐹1|𝐷′, 𝑇1)
) 𝑃(𝐷|𝑇1) 

(9) 

Since the detection of the emergent behaviours depends 

only on the factors, then  𝑃(𝐹1|𝐷′, 𝑇1) = 𝑃(𝐹1|𝐷′). 
The specific probabilities like 𝑃(𝐹1|𝐷′) are determined 

based on the abovementioned method in Section 2.1. We 

can then use a more general formula where we can 

separate the physical processes that we cannot control 

from the test set-up that we can control. The formula for 

finding the probability of emergent behaviour type F1 in 

test regime 1 is then: 

𝑃(𝐹1|𝑇1)

𝑃(𝐹1|𝐷′)
= 1 − (1 −

𝑃(𝐹1|𝐷)

𝑃(𝐹1|𝐷′)
) 𝑃(𝐷|𝑇1) (10) 

Using the results in Section 2.1 we get: 

𝑃(𝐹1|𝑇1) = (1 − (1 −
0.015

6.75
) ∗ 98) ∗ 6.75 = 0.15 

Note that we have a generalized formula where we can 

replace T1 with T2 or T3. Indeed, on the right-hand side 

of the Equation (10), the choice of test regime only 

changes 𝑃(𝐷|𝑇1). On the left-hand side, the 

denominator is fixed, which means that the change on 

the right-hand side can only affect 𝑃(𝐹1|𝑇1). 

Consequently, we can then calculate the lower and 

upper bounds for detecting the emergent behaviour 

types by setting 𝑃(𝐷|𝑇1) = 0 and 𝑃(𝐷|𝑇1) = 1, ref. 

Table 5. The same principle applies to all emergent 

behaviour types with a single factor dependency (F1 and 

D, F2 and C, F4 and A) in the different test regimes (T1, 

T2, and T3). 

The emergent behaviour type F3 has a two-factor 

dependency in BD. Although the final formula is 

different, it is also derived from the sum and product 

rule of the probabilities. Indeed, the formula for the 

probability of emergent behaviour type F3 in test regime 

1 is: 

𝑃(𝐹3|𝑇1) = 𝑃(𝐹3, 𝐵𝐷|𝑇1) + 𝑃(𝐹3, 𝐵𝐷′|𝑇1)
+ 𝑃(𝐹3, 𝐵′𝐷|𝑇1)
+ 𝑃(𝐹3, 𝐵′𝐷′|𝑇1) 

(11) 

Further note that: 

𝑃(𝐹3, 𝐵𝐷|𝑇1) = 𝑃(𝐹3|𝐵𝐷, 𝑇1)𝑃(𝐵𝐷|𝑇1) (12) 

𝑃(𝐹3, 𝐵𝐷′|𝑇1) = 𝑃(𝐹3|𝐵𝐷′, 𝑇1)𝑃(𝐵𝐷′|𝑇1) (13) 

𝑃(𝐹3, 𝐵′𝐷|𝑇1) = 𝑃(𝐹3|𝐵′𝐷, 𝑇1)𝑃(𝐵′𝐷|𝑇1) (14) 

𝑃(𝐹3, 𝐵′𝐷′
|𝑇1) = 𝑃(𝐹3|𝐵′𝐷′

, 𝑇1)𝑃(𝐵′𝐷′
|𝑇1) (15) 

thus 

𝑃(𝐹3|𝑇1)

𝑃(𝐹3|𝐵𝐷′, 𝑇1) + 𝑃(𝐹3|𝐵′𝐷′, 𝑇1)

=
𝑃(𝐹3|𝐵𝐷, 𝑇1)

𝑃(𝐹3|𝐵𝐷′, 𝑇1) + 𝑃(𝐹3|𝐵′𝐷′, 𝑇1)
𝑃(𝐵𝐷|𝑇1)

+
𝑃(𝐹3|𝐵𝐷′, 𝑇1)

𝑃(𝐹3|𝐵𝐷′, 𝑇1) + 𝑃(𝐹3|𝐵′𝐷′, 𝑇)
𝑃(𝐵𝐷′|𝑇1)

+
𝑃(𝐹3|𝐵′𝐷, 𝑇1)

𝑃(𝐹3|𝐵𝐷′, 𝑇1) + 𝑃(𝐹3|𝐵′𝐷′, 𝑇1)
𝑃(𝐵′𝐷|𝑇1)

+
𝑃(𝐹3|𝐵′𝐷′, 𝑇1)

𝑃(𝐹3|𝐵𝐷′, 𝑇1) + 𝑃(𝐹3|𝐵′𝐷′, 𝑇1)
𝑃(𝐵′𝐷′|𝑇1) 

(16) 

Given the information: 

𝑃(𝐹3|𝐵′𝐷, 𝑇1) = 𝑃(𝐹3|𝐵′𝐷′, 𝑇1) = 𝑃(𝐵′𝐷|𝑇1)
= 𝑃(𝐵′𝐷′|𝑇1) = 0 

Furthermore, using the results in Section 2.1 we get:  

𝑃(𝐹3|𝑇1) = (
2.6

70.31
∗ 18 + 2) ∗ 70.31 = 1.87 

The same principle applies to all other test regimes (T2, 

and T3). See Table 4 for the complete set of probabilities 

from the model. 

Table 4. Calculated probabilities [%] for emergent 

behaviour types. 

 TR1 TR2 TR3 

F1 0.15 3.38 6.75 

F2 0.69 3.44 6.88 

F3 1.87 18.29 70.31 

F4 0.31 15.62 31.25 

G 3 36.84 89.17 

 

We see from Table 4 and Table 5 that test regime 3 is at 

the upper bound and are the optimum way of testing to 

maximize detection of the emergent behaviour types. 

The total (G) is calculated using the inclusion-exclusion 

principle for the probability (Allenby and Slomson, 

2010). The optimum test regime for detecting the given 

set of emergent behaviours has a probability of ~89% of 

detecting any given emergent behaviour, while the 

current test regime has only probability of ~3%. The test 

regime 3 can be used as the baseline in order to evaluate 

the capabilities of the other test regimes (see Table 5). 

Test regime 2 is detecting about half of the given 

emergent behaviours compared to Test Regime 3, while 

the test regime 1 is barely detecting any emergent 

behaviours at all. 

Table 5. Calculated lower and upper bounds and relative 

frequencies for emergent behaviour types. 

% Lower 

bound 

Upper 

bound 
TR1 TR2 TR3 

F1 0.15 6.75 2.22 50.1 100 

F2 0 6.88 10 50 100 

F3 0 70.31 2.67 26.01 100 
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% Lower 

bound 

Upper 

bound 
TR1 TR2 TR3 

F4 0 31.25 1 50 100 

G 0.15 89.17 3.37 41.31 100 
 

The probabilities in Table 4  can be used to answer many 

questions related to emergent behaviours. For example, 

if one chooses a test regime consisting of n runs, how 

many emergent failures of different types are expected 

to be detected? For each run, the probability of detecting 

a failure, say F1 in test regime 1, is 𝑃(𝐹1|𝑇1). In each 

run, one either detects F1 or not. Moreover, since the 

runs are independent, then the probability of detecting k 

failures of type F1, follows a binomial distribution (n, 

p), for which 𝑃 = 𝑃(𝐹1|𝑇1).  In Figure 8, we have 

simulated the probabilities for the detections of the 

different failures for the aforementioned three test 

regimes in 320 runs to find the detection rates of the 

emergent behaviours and the related uncertainties. 
 

 

Figure 8. The probabilities of detections of emergent behaviours in different test regimes. Each row, from top to bottom, 

corresponds to a given test regime, T1, T2 and T3, respectively.  Each column corresponds to a given failure type.  In the 

present case the total number of simulated runs is 320.

4 Discussion 

The company should increase the test analysis coverage 

at system level in their projects. The current test analysis 

coverage is in-sufficient to detect all emergent 

behaviour types of the system under test. The company 

cannot increase the test analysis coverage without 

automating the test result analysis. The test result 

analysis is the main bottleneck of the test system, and it 

is therefore crucial to make the analysis work more 

efficient. 

For the company to stay competitive in the future 

underwater industry market they need to be able to run 

projects faster and run more projects in parallel. The 

automation of test result analysis is necessary to make 

the transition from the current test system to the desired 

future test system. 

For the company not to have latent undesired 

emergent behaviour in their products, the test analysis 

needs to detect these with high enough probabilities. 

The test regime needs to change in the direction of 

triggering more of the emergent behaviour types of the 

system and trigger them with higher probabilities. The 

company will have better data to perform analysis of the 

emergent behaviours if the test regime triggers all 

emergent behaviour types of the system sufficient times 

in different scenarios. The company can get more 

insight into why the emergent behaviour types are 

triggered through deductive logic (Sivia and Skilling, 

2006), and decide if they can do something to prevent or 

reduce the unwanted behaviours or the unwanted 

effects.  

A combination of the different test regimes analysed 

in this paper may be the best approach for the company 

to deal with this problem of emergent behaviours. Test 

regime 3 triggers most emergent behaviours but does 

not see the effect of different settings. Test regime 3 

satisfies the need to detect emergent behaviours by 

triggering emergent behaviours in about 89% of the 

tests. Test regime 2 sees the effect of different settings 

but does not trigger as much emergent behaviours as test 

regime 3. Test regime 2 also satisfies the need to detect 

emergent behaviours by triggering emergent behaviours 

in about 37% of the tests. Test regime 1 only sees the 

effect of a limited set of different settings and does not 

trigger as much emergent behaviours as either of the 
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other two alternatives. We consider Test regime 1 not 

satisfactory for detection of the emergent behaviours in 

question. Since it is only capable of detecting emergent 

behaviours in about 3% of the tests. 

If we are to select only a few “rainy day” scenarios to 

complement “sunny day” verification testing, we should 

choose test cases with factor C at high level to ensure 

the test regime will detect the emergent behaviour type 

F2. This is the least probable behaviour to detect, based 

on the effect of factors found in Section 2.3.1. We 

should further include some test cases with factor B at 

high level, factor A at low level, and factor D at low 

level. 

In all statistical inference, we use an idealized model 

to approximate a real-world process that interests us 

(Lambert, 2018). The model for exploring probabilities 

in this paper is no exception, leaving some residual risk 

for the operational phase of the product. 

5 Conclusion 

The results show that the company could benefit from 

changing to an alternative test regime, which has higher 

probability of detecting a given set of unwanted 

behaviours emerging through system integration testing. 

The current test regime does not sufficiently trigger the 

emergent behaviours explored in this paper, but an 

alternative test regime indicates that the company 

should be able to sufficiently detect the given set of 

emergent behaviours. 

6 Further Work 

The company must perform further analysis to find the 

optimum test regime to meet all the requirements 

considering the different needs from integration, 

verification, and validation testing. 
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Notations 

Table 6. Nomenclature.  

Notation Description 

[0…1] Not present (0) or present (1) 

A Factor A at high level [+] 

A’ Factor A at low level [-] 

𝛽𝐴 Coefficient of factor A 

F1 Emergent behaviour type 1 

G Any emergent behaviour type 
P(A) Probability of factor A at high level 

P(A’) Probability of factor A at low level 

P(AB) Probability of both factor A and B at 

high level 

P(F1) Probability of emergent behaviour 

type 1 

T1 Test regime 1 
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Abstract
Chemical absorption of carbon dioxide (CO2) using amine
solution is considered as the readiest technology avail-
able for capturing CO2 gas from industrial processes.
The well-known amine for this process is 2-aminoethanol
(MEA) which is normally mixed with water to a typical
concentration of 30 wt%. MEA degrades over time pro-
ducing non-reactive chemicals such as 2-oxazolidinone
(OZD) due to exposure to impurities and high process
temperature. It is thus important to find a suitable method
for OZD qualification and quantification. In this work, we
approach this challenge by means of Raman spectroscopy
and multivariate data analysis. We started by collecting
Raman spectra of 40 OZD samples and applying Principal
Component Analysis to study these samples.
Keywords: multivariate data analysis, MEA, Raman spec-
troscopy, CO2 capture, degradation

1 Introduction
Due to the economic development and the subsequent in-
crease in world population, the global demand for energy
will continue to rise in the following decades. The depen-
dence on fossil fuels, the primary source of energy, emit-
ting copious amount of CO2, is the main cause of global
warming. Even if large investments are underway to de-
carbonise the world energy production, renewable elec-
tricity may not be suitable for certain applications, such as
the cement, iron and steel, and chemical sectors.

Carbon capture and storage (CCS) and its ability to
avoid CO2 emissions at their source, represents a solution
in the fight against climate change. Among all the differ-
ent alternatives, post-combustion capture by using amine-
based solvent is considered to be the most advanced tech-
nology (Sexton and Rochelle, 2011). This process relies
on the ability of the amine solution to chemically reacts
with CO2 in the flue gas. The best absorbents are the ones
with high net cyclic capacity, fast reaction with CO2, low
heat of reaction, high chemical stability, low vapor pres-
sure and minimally corrosive (Hartono et al., 2017). Of

the many solvents tested, 2-aminoethanol (MEA) is the
most used due to its good operational properties and rela-
tively low price. The solvent used in operating plants sim-
ply consists of water and amines, whose concentration is
usually made based on operating experience (typical con-
centration range values goes from 12% wt to a maximum
of 32% wt (Kohl and Nielsen, 1997)).

A typical chemical absorption process for CO2 capture
plant is shown in Figure 1.

Figure 1. Schematic of a chemical absorption process for CO2
capture.

After a preliminary purification from NOX , SOX ,
and particulate matter, the flue gas enters the absorber.
Through contact with MEA solvent, part of CO2 in the
flue gas is absorbed into amine solution, forming a weakly
bonded and quite stable compound, carbamate. The
scrubbed gas is then washed with water to remove the
solvent and discharged into the atmosphere. Then, the
rich-loading solvent (with absorbed CO2) passed through
a cross-heat exchanger and pumped up to the head of the
stripper. In the stripper, the high temperature and pressure
generated by a reboiler cause the carbamate to dissociate
back to MEA and CO2. The obtained product stream with
high CO2 purity is conveyed to compression for trans-
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portation to storage sites. At the bottom of the stripper,
the high temperature lean-loading is conveyed to a heat
exchanger to decrease the temperature of the lean-loading
solution before entering the absorber again.

The entire process chemistry is complex, and the two
main reactions taking place in the absorber and the stripper
are:

CO2 absorption: 2R – NH2 + CO2 −−→ R – NH3
+ +

R – NH – COO–

MEA regeneration: R – NH – COO– + R – NH3
+ Heat−−→

CO2 + 2R – NH2

For simplicity, MEA is expressed by R-NH2, where R
stands for OH-CH2-CH2. The first reaction shows that
only half a mole of CO2 is absorbed per mole of MEA,
leading to the formation of carbamate. In the second equa-
tion, under the application of heat, the carbamate dissoci-
ates to give back CO2 and amine sorbent.

However, there is a main problem associated with this
process, which is degradation of the solvent caused by
heat exposure and impurities in the exhaust gas. This leads
to foaming, fouling, increased viscosity, corrosion and for-
mation of different degradation compounds that are unre-
active towards CO2. In the case of MEA, one of the main
degradation products is 2-oxazolidinone (OZD), a hetero-
cyclic five-membered ring organic compound, which for-
mation pathway is shown in Figure 2.

Figure 2. Oxazolidinones formation (R1, R2: H, alkyle) (Lep-
aumier et al., 2009).

The formation of OZD starts with a reaction between
MEA and CO2, which leads to the formation of carbamate
complex, as shown in the first equation above. Elimination
of a water molecule from the carbamate complex during a
ring closure reaction yields an OZD molecule. The forma-
tion of OZD is a problem because it is unstable and will
react giving other degradation products (namely HEEDA,
HEIA, AEHEIA, BHEI (Gouedard et al., 2012)) that must
be purged from the system to prevent their build-up.

For this purpose, it is essential to find a procedure for
the conversion of the molecule to its precursor amine.
This requires a preliminary identification and quantifica-
tion step.

Raman spectroscopy is a valuable technique for quali-
tative and quantitative analyses, since there is a relation-
ship between intensity of the Raman band, chemical infor-
mation and the concentration of a sample being analyzed
(Larkin, 2011). Raman spectrums are generally plotted
as intensity against Raman Shift (or wavenumber). Vi-
brations of functional groups of a molecule appear in a
Raman spectrum at characteristic Raman shift, which is
similar for all molecules containing the same functional
group.

Chemometric multivariate analysis is an advanced sta-
tistical method that can be used to extract this huge infor-
mation by building specific model for specific chemical
species.

The approach in this paper started with the analysis
of OZD samples at different concentrations using Raman
spectrometer. Principal component analysis (PCA) was
then performed on these samples to check for any outliers,
relevant peaks for OZD, and monitor changes in the OZD
at different concentrations.

2 Materials & Methods
2.1 Sample preparation and Raman analysis
The first big part of this work consisted of sample prepa-
ration. Stock solution of OZD was prepared dissolving 2-
Oxazolidinone (Sigma-Aldrich, purity 98%) in Milli-Q ®

water (18.2 MΩ ·cm at 25°C). Samples of increasing con-
centration from 5 to 815 mM were then prepared by dilut-
ing the stock solution in ditilled water.

The amount of OZD and water needed were weighted
using a Mettler-Toledo MS 105 balance.

The Raman scans were taken using a Kaiser Raman
Rxn2 analyzer of 785 nm laser wavelength, 400 mW laser
power and 150-3425 cm−1 spectral range. In a typical ex-
periment, a vial containing OZD solution was placed in-
side a black sample holder to avoid light disturbance and
the top part of the sample holder was also covered with
aluminum foil to further reduce any possible disturbance
from fluorescence of external light sources. A fiber-optic
immersion probe (optic of ¼ inch) from Kaiser Optical
Systems Inc. was used for the measurement. To avoid
contamination, the probe was first washed with deion-
ized water followed by acetone before each measurement
to remove any possible impurities/leftovers on the probe
tip. The Raman probe was kept at the same depth and
same temperature (20 °C) for all the measurements to en-
sure consistency and to avoid changes of acquisition back-
ground. In order to improve sample sensitivity for off-
line analysis of each measurement, maximum laser power
(400 W) was used with exposure time of 30 seconds and
an average of six scans. iC Raman software from Kaiser
Optical Systems Inc. was used for the acquisition of the
spectra.

2.2 Principal Component Analysis (PCA)
PCA is a data simplification technique used in multivariate
statistics. The aim of the technique is to reduce the high
number of variables describing a set of data to a smaller
number of compressed variables, called Principal Compo-
nents, PCs, which describe the variation and structure of
the data. The PCs can then be plotted to visualize the re-
lationship between samples and variables through the use
of scores (which describe the relationship between obser-
vations) and loading plots (which show the relationship of
the variables) (Wold et al., 1987).

The data is seen as a matrix, called data matrix or X
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matrix, composed by n objects (samples) and p variables
(the measurement for each object) (Esbensen, 2012). This
data matrix can be represented in a Cartesian co-ordinate
system of dimension p. Considering the first variable, X1,
its entries can be plotted along a 1-dimensional axis. This
approach can be extended considering the next variable,
X2, resulting in a 2-dimensional plot and so on, until all
p variables are covered. This p-dimensional co-ordinate
system is the variable space.

To better understand, it is assumed an X matrix with n
objects and 3 variables. Its variable space will be com-
posed by 3 axes: one for each variable. And for each
object in the variable space, its x-value will be plotted,
meaning that all the objects can be as a point in the vari-
able space. When all the points are plotted, the result is
a swarm of points. It is then possible to recognize a lin-
ear behaviour, which can be described by a line that lies
along the direction of maximum variance in the data set,
called the first Principal Component, PC1. Further PCs
can be plotted; the second principal component will lie
along the direction of the second largest variance, and it
will be orthogonal to the first PC. The third PC will be or-
thogonal to both PC1 and PC2, lying along the direction
of the third largest variance and so on for the subsequent
PCs. This PCs system will constitute a new coordinate
system, where each PC will represent successively smaller
and smaller variances. The PCs are uncorrelated with each
other since they are mutually orthogonal.

There are two main parameters used in PCA: loadings
and scores. The loadings are coefficient of linear combi-
nation for each PC, namely pka, where k is the index for
p variables and a is the index for principal component di-
rection coefficients. All the loadings constitute a matrix,
P, which expresses the transformation between the ini-
tial variable space and the new space formed by the PCs.
These loading vectors, namely the columns in P, are or-
thogonal. In synthesis, loadings describe the relationship
between the initial p variables and the PCs.

The score is the distance between the object and its pro-
jection into the PC, and it is called score for object i, ti1, if
it refers to PC1. The projection of object i onto PC2 will
give the score ti2, and so on. The projected object i will
correspond to a point in the new co-ordinate system, an
A-dimensional surface. Each object will thus have its own
set of scores in this dimensionality-reduced subspace. The
NIPALS (Nonlinear Iterative Partial Least Squares) algo-
rithm (Wold, 1966) is one of the several methods used
to find the score and loading vectors. In this study, NI-
PALS algorithm was applied when using PLS toolbox
with MATLAB ® software.

3 Results & Discussion
3.1 Pre-processing of raw spectra
Raw spectra from 40 different OZD samples in water at
different concentration are shown in Figure 3.

The raw spectra contain important information on

Figure 3. Raman raw data of the 40 analysed samples.

chemical fingerprints of the samples but also noise from
background and instrument. Pre-processing of the raw
spectra can be applied to extract useful information and
to remove offset and irrelevant signals.

The raw spectra were subjected to a baseline correc-
tion technique by applying Automatic Whittaker filter
with lambda equals to 100 and P equals to 0.001. The
Whittaker filter used is an extended version of Eilers,
2003, available in the PLS toolbox in MATLAB, where a
weighted least square method was applied to remove base-
line variations and background noise. The factor lambda
controls the curvature allowed for the baseline, while the
P factor governs the extent of asymmetry required of the
fit (Eilers, 2003).

Baseline corrected spectra of OZD samples are shown
in Figure 4. As can be seen, as the concentration of OZD
increases, the intensity values of some peaks also increase,
suggesting that OZD concentration is proportional to the
peak intensity, according to the Beer-Lambert law.

Figure 4. Baseline corrected Raman spectra of the 40 analysed
samples.

The peaks that change according to changes in the OZD
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concentration are now easily identified and their signals
and band assignments are listed in Table 1.

Observed frequency [cm−1] Vibrational mode
719 C-C stretch
928 C-C stretch
1083 C-H2 rock
1216 C-H2 twist

1333, 1261 C-H2 wag
1436 C-H2 scissor
1495 C’-N stretch; C=O stretch
1733 C=O stretch
2932 C-H2 symetric stretch
3003 C-H2 asymetric stretch

Table 1. Vibrational assignments of OZD (McDermott, 1986)
(C’= carbonyl carbon).

All the band assignments were referenced to earlier
work from McDermott (1986) from the spectra of γ-
butyrolactone and 2-pyrrolidinones, which are cyclic es-
ters, like 2-oxazolidinone.

There are also strong peaks at wavelengths 418, 577,
and 750 cm−1 that do not change according to the changes
in OZD concentration and these peaks can be assigned to
the noise from the Raman instrument. These peaks were
also seen previously in earlier publication from Jinadasa
(2019).

Concerning water, its characteristic peaks are cut off
from the range of interest, since it usually shows bands be-
low 300 cm−1 corresponding to the hydrogen bond bend-
ing and stretching motions and strong bands above 3000
cm−1 typical of the O-H stretching region; the low in-
tensity peak at 1650 cm−1 arises from the intramolecular
bending motion (Franks, 1972).

3.2 Initial PCA Analysis
Using the whole spectra as a starting point, the pre-
processed OZD spectra were then subjected to initial PCA
analysis. Figure 5 illustrates the cumulative variance of
the PCA model. PC1 is defined as the first principal com-
ponent which relates to the maximum variance of the data,
while PC2 is the second principal component which corre-
sponds to the second largest variance. The number of PCs
corresponds to the number of orthogonal variables in the
spectral data set. As can be seen, PC1 explains 92.58%
of the total variance, while PC2 describes an additional
6.88%. These two PCs make up 99.46% of the variation
in the model, suggesting that they are probably sufficient
to determine the most important variables for the descrip-
tion of OZD samples.

In Figure 6, a score plot of PC1 versus PC2 for the pre-
processed OZD spectra is shown. The dotted circle rep-
resents a 95% confidence level. As can be seen, one of
the samples is outside the area of interest meaning that
this sample is most likely an outlier. By checking the raw
spectra of OZD samples, this sample is confirmed to be an

Figure 5. Cumulated percentage variation explained.

outlier and it is probably coming from an error when using
the Raman instrument. The outlier was thus removed.

The pre-processed OZD spectra as shown in Figure 4
also show some noise in the region of >3000 cm−1 Raman
shift and this region was also removed in the next PCA
analysis.

Figure 6. PCA analysis for preprocessed Raman data, first score
plot of PC1 vs PC2.

The loading plot for PC 1 for the PCA model is shown
in Figure 7. As mentioned by Wold et al. (1987), loading
plots define what a principal component represents. The
higher the loading value, the higher the contribution of the
variable to the PC. In the case of this work, these plots
will represent OZD concentrations in the samples. Figure
7 indicates that significant contribution comes from peaks
at 418, 577, and 750 cm−1. These peaks however do not
correspond to OZD or water, and thus most likely coming
from the instrument. The fact that these peaks have higher
loading values even though they do not really represent
the actual components in the samples necessitates further
correction to the PCA model. These peaks were therefore
excluded from the model.
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Figure 7. Loading plot for PC1.

3.3 Optimized PCA with Variable Selection
Based on earlier considerations, the PCA model was re-
calibrated, and Figure 8 displays the new cumulative vari-
ance of the model. PCA model was recalibrated by select-
ing the variable range of OZD to optimize the PC1, which
mainly describes the OZD concentration variation.

Figure 8. Cumulated percentage variation for different principal
components.

The new score plot is shown in Figure 9. Based on the
figure, PC1 and PC2 account for 99.78 and 0.17% of the
model variance, respectively. These two principal compo-
nents already make up 99.95% of the cumulative variance
for the model suggesting that it is very likely that the OZD
changes are sufficiently described by PC1.

With the elimination of outliers, all samples are now at
95% confidence level. Values of PC1 are always positive,
whilst values of PC2 change from positive to negative for
all the samples. The samples also show a linear trend sug-
gesting that there is a linear trend between Raman inten-
sity and OZD concentration and that the PCA model can
be used to classify OZD.

The loading plot for PC1 is illustrated in Figure 10.
According to the plot, the sharp OZD peak at 928 cm−1

Figure 9. PCA analysis for preprocessed Raman data, score plot
of PC1 vs PC2 after removal of variables below 650 cm−1.

gives the highest contribution to PC1. This indicates that
this peak can be used as an indicator for the presence
or changes in OZD concentration in a sample. Other
peaks that positively contribute to PC1 loading plot in-
clude 3003, 2933, 1736, 1496, and 720 cm−1 and these
peaks are observed as relevant functional group peaks for
OZD, as shown in Table 1.

Figure 10. Loading plot for PC1 with variable selection.

4 Conclusion
This paper aims to analyze Raman spectra of 2-
oxazolidinone samples by using Principal Component
Analysis to detect relevant peaks, monitor changes in the
samples at different concentrations and remove outliers.

After spectra acquisition and a preliminary baseline
correction, the data were subjected to PCA analysis. The
first two PCs, which made up 99.46% of the variation in
the model, were considered for the analysis. After that,
outlier removal was performed and the PCA model was
recalibrated by selecting relevant variable range of OZD
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to optimize PC1, which describes the OZD concentration
variation. With these considerations, the two PCs made
up 99.95% of the cumulative variance, an increase of 0.49
percentage point.

Finally, according to the loading plot for PC1, it was
found out that the sharp OZD peak at 928 cm−1 gave the
highest contribution to PC1, indicating that this peak can
be used as an indicator for the presence or changes in OZD
concentration in a sample.

By using PCA, we have shown in this work that we can
systematically identify with precision any outliers, rele-
vant peaks for OZD, and monitor changes in the OZD at
different concentrations.
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Abstract 
In the study, a new non-intrusive approach based on 

acoustic chemometrics, which includes vibration signal 

collection using glued-on accelerometers, was assessed 

for the classification of the different flow (breakup) 

regimes spanning a whole range of fluids (water and air) 

flow rates in this twin-fluid atomizer (one-analyte 

system). This study aims to determine the flow regimes 

based on the dimensionless number (B), whose unique 

values correspond to different flow (breakup) regimes. 

The principal component analysis (PCA) was employed 

to visually classify the breakup regimes through cluster 

formation using score plots. The model prediction 

performance was studied using PLS-R, RMSEP values 

show error ranges within acceptable limit when tested 

on independent data. The present acoustic study can 

serve as a good alternative to the imaging methods 

employed for flow classification. 

Keywords: Multivariate Regression, Acoustic 

Chemometrics, Principal Component Analysis, Flow 
Regimes 

1 Introduction 

Twin-fluid atomizers have been widely used atomizers 

in various applications such as the aerospace industry, 

internal combustion engines, process industry, spray 

drying, etc. Classification of the flow regimes using a 

high-speed imaging setup is quite common, as 

mentioned in different twin-fluid studies (Choi, 1997; 

Leboucher et al., 2010). While it is a fairly convenient 

way to categorize flow regimes for a laboratory-scale 

test setup using imaging setup (Adzic et al., 2001; Li et 

al., 1999), it can be a greater concern for industrial-scale 

atomizers due to the significantly larger fluid flow rates. 

Acoustic chemometrics, thoroughly applied (Esbensen 

et al., 1999; Halstensen et al., 2000) lately has proved to 

be a decent approach for tackling fluid-related problems. 

The applications for acoustic chemometrics are 

multitude, ranging from qualitative analysis to process 

monitoring. The ambit of acoustic analysis lies in the 

fact that all flow processes comprise  

 

 

some form of energy output emission in the form of 

signals that can be tapped and analyzed. The flow in the 

nozzles gives rise to certain vibrations for a particular 

set of fluid flow rates. By recording those signals 

through a data acquisition device using sensors 

(accelerometers) and performing signal analysis, useful 

qualitative information can be extracted by multivariate 

analysis.  

To suffice the currently used imaging methods for 

flow regimes classification, an experimental setup, 

including novel twin-fluid atomizers, is investigated 

with real-time monitoring of the acoustic signal data. 

This study aims to assess the feasibility of the acoustic 

chemometrics approach for this air-assisted spray 

atomizer problem. The main objective is to determine 

the flow regimes based on the dimensionless number B, 

whose unique set of values corresponds to different flow 

(breakup) regimes. This analysis will further cater to 

whether the acoustics chemometrics approach, 

including both unsupervised learning technique (PCA) 

and supervised learning technique (PLS-R), is suitable 

for extracting valuable information through recorded 

vibration signals. 

2 Materials and Methods 

                    
 

Figure 1. Schematic of the novel atomizer attached at the 

end of the lance, along with the accelerometers (in red). 
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2.1 Experimental Method

       

Figure 2. Schematic of the experimental setup along with the acoustic chemometrics flow chart (in box). 

The experiments were carried out in a laboratory-scale 

experimental test rig in the process energy laboratory at 

the USN. The test rig consists of the lance, which is 

mounted at the traversing system, at whose end a twin-

fluid atomizer (Figure 1) with 3.0 mm orifice (throat) 

diameter for core air was attached. The sensors in the 

three-axis (x, y, and z) were glued onto the atomizer. 

The liquid (water) was flowing in an annular manner 

through a slit of 280 µm along with the high-speed air 

core with the aid of hoses and pipes attached to the lance 

(Figure 2). 

The high-speed imaging performed using the 

CMOS Photron camera SA-Z and two 250 W each 

Halogen lights from Dedocool Dedolight renders the 

different flow regimes visible at certain different fluid 

flow rates (Figure 3). Certain breakup regimes or modes 

were found at specific air-to-liquid mass ratios (ALR) 

and Weber number (We) based on liquid sheet velocity.  

ALR  is defined as: 

 

     𝐴𝐿𝑅 =
𝑚𝑎𝑖𝑟

𝑚𝑙𝑖𝑞𝑢𝑖𝑑
                                                        (1) 

 where mass flow rate in kg/hr. 

 

Weber number is defined as:  

 

    𝑊𝑒 =  
𝜌 𝑈2𝑡

𝜎
                                                                (2) 

Where 𝜌 is liquid density (1000 kg/m3), U is sheet 

velocity calculated through mass flow rate, 𝜎 is surface 

tension, and t is sheet thickness (280 µm). 

A new dimensionless number (B) (depicted in Table 

1) was employed, which is defined as: 

 

 𝐵 = 𝑊𝑒 ⋅ 𝐴𝐿𝑅                                                         (3) 

 

                
                  

Figure 3. Different breakup regimes based on different 

fluid mass flow rates. 
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Table 1. Breakup regimes and the corresponding non-dimensional number values  

Breakup Regimes B  ALR We 

Annular sheet disintegration 2.586 0.150 17.24 

Ligament type breakup 6.035 0.350 17.24 

Wavy sheet breakup 9.052 0.0428 211.2 

Pure-pulsating breakup 21.12 0.10 211.2 

Both fluid flow rates were measured and monitored 

using Coriolis flowmeters. Two air flow rates (15 kg/hr 

and 35 kg/hr) were employed as per the visualization 

study and manually operated through the pressure 

regulator. 100 kg/hr corresponds to Weber number (We) 

of 17.24, whereas 350 kg/hr corresponds to Weber 

number (We) value of 211.2. The liquid (water) flow 

rates taken were low flow rate (100 kg/hr) and high flow 

rate (350 kg/hr), which were altered through a 

frequency-based flow rate controller. The air-to-liquid 

ratio varied from 0.0428 to 0.35, depending on the 

combination of fluid flow rates as depicted in Table 1. 

At lower flow rates, annular sheet disintegration was 

visualized, whereas it reached pure-pulsating breakup 

mode at higher flow rates for both air and water. 

Ligament type breakup corresponds to high airflow rates 

& low liquid flow rates, whereas wavy sheet breakup 

corresponds to high airflow rates & low liquid flow 

rates, as mentioned in Figure 3. 

 

2.2 Acoustic chemometrics  

 

 
 

Figure 4. Block diagram of the acoustic analysis in-flow 

process from the vibration data collection. 

The name acoustic chemometrics (Esbensen et al., 

1998) implies that the information extraction from the 

data recorded in vibrational energy is measured using 

some acoustic sensors (say, accelerometers). Some 

inherent advantages related to acoustic chemometrics 

are: 

• Non-intrusive technology system  

• Real-time monitoring of signals 

• Easy sensor deployment (glued-on) 

• Relatively inexpensive technology 

• Prediction of several parameters from the same 

acoustic spectrum 

The acoustic measurements in this study were taken 

using sensors (accelerometer, which is a piezoelectric 

type 4518) from Bruel & Kjær, Denmark. Three sensors 

are utilized in the test experiments to tap the 

noise/vibration data from all three axes (x, y, and z), as 

depicted in Figure 1. The fluid flow ejected out of the 

atomizer outlet forces the atomizer a sudden backward 

blow, recorded in an electrical signal proportional to the 

vibration acceleration. A signal amplification unit, a 

data acquisition device (NI USB-6363) from National 

Instruments and a personal laptop were employed. NI 

USB-6363 data acquisition device (DAQ) was utilized 

to acquire the signal, where the signal converted from 

analog to digital. A digital signal is required for the 

signal amplification unit for further processing. The 

frequency range used for this study is (0 - 200 kHz).   

For the acoustic chemometrics signal collection and 

signal conditioning, the LabVIEW-based in-house 

created interface (Halstensen et al., 2019) was used. The 

signal processing was carried out in few steps. Firstly, 

time series of 4096 samples were recorded from the 

sensor. The time-series signal was multiplied by a 

window (Blackman Harris), which cancels the end of 

the series to avoid spectral leakage in the acoustic 

spectrum. This signal is finally transformed into the 

frequency domain using Discrete Fourier Transform 

(DFT). The Discrete Fourier Transform transforms a 

sequence of N complex numbers {xn}:= x0,x1,...,xn-1 into 

another sequence of complex numbers, {Xk}:= 

X0,X1,...,XN-1, which is defined by equation: 

 

𝑋𝑘 =  ∑ 𝑥𝑛 𝑒−𝑖2𝜋𝑘𝑛/𝑁𝑛−1
𝑛=0  𝑘 = 0, … , 𝑁 − 1               (4) 

 

A more advanced and efficient form of the DFT is 

the Fast Fourier Transform (FFT) (Ifeachor et al., 1993), 

which was implemented in the LabVIEW interface for 

fast real-time calculation. The whole in-flow acoustic 

analysis process from signal conditioning to domain 

transformation from time to frequency and then 

supervised (PLS-R) and unsupervised (PCA) 
multivariate analysis techniques are mentioned in a 

block diagram (Figure 4).   
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2.3 Principal Component Analysis (PCA) 

 

Principal component analysis (PCA) analyses 

multivariate data by examining the common variances. 

Large multivariate data sets can be noisy and difficult to 

interpret. PCA projects mean-centred data (X) 

consisting of variables (columns) and samples (rows) 

onto a new plane. The new plane is represented by 

scores (T) and loadings (P). E is the notation of the data 

not explained by the model, the residuals, given by the 

equation: 

𝑋 = 𝑇 𝑃𝑇 + 𝐸                                                            (5) 

PCA uses an orthogonal transformation to convert 

correlated variables into few linearly uncorrelated 

variables called principal components. The method is 

called the unsupervised method due to no guidance to 

the singular value decomposition from the data. The 

nonlinear Iterative Partial Least Squares (NIPALS) 

algorithm developed earlier (Wold et al., 1987) was used 

because of its many advantages. It works on matrices 

with moderate amounts of randomly distributed missing 

observations. The other advantage of NIPALS is that it 

is less time-consuming than Singular value 

decomposition (SVD), as the former allows defining the 

number of components to calculate. 

2.4 Partial Least Squares Regression 

 

Partial least squares regression (PLS-R) is a supervised 

method used for calibrating the predicting models, 

which is well explained in (Geladi et al., 1986). 

PLS-R is a good alternative to other regression 

techniques due to its robustness. The model parameters 

do not change much even when new calibration samples 

are taken from the population. It relies on representing 

training data for two-variable blocks X and Y, 

respectively. In the present work, the X data matrix 

contains the acoustic frequency spectra, and Y is a 

vector containing the non-dimensional number B values 

that define the breakup regimes. 

The NIPALS algorithm is the most widely used in 

the PLS regression technique. In this algorithm, PLS-R 

allows modelling both the X and Y simultaneously, 

which might raise orthogonality issues. For low 

precision data, PLS-R gives more accurate results than 

other regression methods. A simplified version of the 

NIPALS algorithm is presented in earlier studies (Ergon 

et al., 2001), where A is an optimal number of 

components. A step-wise NIPALS algorithm is 

described in some detail (Halstensen, 2020). 

In evaluating the regression model, the root mean 

squared error of prediction RMSEP offset, slope and 

correlation coefficient are commonly used. Besides  

 

 

these, visual evaluation of the relevant T-U score plots, 

loading weights plots, explained variance plots also 

provide useful information for calibrating and 

developing the prediction model. The root mean square 

is given by: 

RMSEP = 
√𝛴𝑖=1

𝑛  (�̂�𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝑦𝑖,𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒)
2

𝑛
                     (6) 

Where,  i = sample index number  

             n = total number of samples  

      RMSEP = Root Mean Squared Error of Prediction. 

 

3 Results and Discussion 

 

3.1 PCA results  

 
Figure 5. Score plot t1-t2 for both atomizer. 

 

 

Figure 6. 3-D Score plot t1-t2 for both atomizers. 
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PCA score-plots depicts how the acoustic spectrum and 

different breakup regimes are correlated based on the 

tests carried out at various flow rates. A colour indicates 

each breakup regime in the data-centred score plot. The 

score plots show a cluster of points for a particular type 

of breakup regime/mode for principal component 1. The 

score plot shows a trend in the data from low airflow 

rates on the left side (blue) to the high air flow rates on 

the right side (pink).  

The score plots were obtained with the whole 

frequency spectrum for all three sensors deployed. The 

score plots depicting two different atomizer type- 

converging and converging-diverging (CD) atomizer. 

To avoid repeatability, both converging and converging-

diverging (CD) atomizer are shown in a single score plot 

as a 2-D plot (Figure 5) and for better visualization as in 

a 3-D plot (Figure 6). The loading plot (Figure 7) shows 

that the information based on the frequencies recorded 

from sensor 2 is different from the other two sensors, 

provided that sensor 2 is located opposite to the fluid 

flow direction, which is relevant in this case. 

 

 

Figure 7. Loadings plot for all three sensors. 

 

3.2 PLS-R prediction for the breakup 

regimes 

PLS-R was employed to do model prediction based on 

the acquired acoustic spectra. The non-dimensional 

number (B) values were used as the reference values 

(Figure 8). The acoustic spectra used to calibrate the 

PLS-R model was a 240x2048 matrix containing 240 

frequency spectra for each sensor. The test set validation 

was performed for alternate data matrix values, 50 % 

(120) of the total column set. Each spectrum consisted 

of 2048 frequencies ranging from 0 to 200 kHz. The 

statistical parameters that evaluate the model prediction 

are slope and RMSEP. Both slope and RMSEP define 

the model's quality fitting the reference data; in this 

case, their value is reasonably within permissible limits.  

 

 

Figure 8. Predicted Vs. Reference (B) value. The target 

line (black) and regression line (red) are indicated. 

 

Figure 9. Residual validation variance plot. 

Based on the residual validation variance plot 

(Figure 9), six components can be fixed as optimal for 

model prediction. The same results can be plotted as 

samples taken in time (Figure 10). The green line is the 

reference line for non-dimensional number (B), and the 

blue line is the prediction line. 

         

Figure 10. Predicted and Reference (B) values for 

samples taken in time. 
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4 Conclusions  

To corroborate the visualization study performed for 

breakup regimes identification, the non-invasive 

acoustic/vibrations study incorporating sensors 

(accelerometer) with an appropriate signal processing 

system was performed, allowing the estimation of the 

flow breakup modes. The feasibility of this approach for 

fluid flow classification is the main objective of this 

study, rendering relevant information about the flow 

breakup regimes for various fluid flow rates. The 

acoustic measurements provide valuable insight into the 

regime classification based on a derived dimensionless 

number (B) from other fluid-based non-dimensional 

numbers. The pattern study using principal component 

analysis provides relevant information through the 

clusters formed for each breakup regime. The 

chemometric method provided sufficiently good model 

prediction with slope and RMSEP values within 

acceptability limits. The main advantage of this non-

invasive acoustic method is that it renders the 

visualization study for different breakup modes optional 

for industrial-scale atomizers for flow regime prediction 

which can be implemented on the industrial-scale setup.  
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Abstract 
In this paper global resources have been gathered from 
different sources. From these resources scenarios have 
been made to get an overview of what resources will last 
at the present annual usage, as well as if we assume all 
individual would utilize the same amount or the 
difference between regions and populations. The most 
critical metal is according to this Zn, while also Cu, U, 
Co and Mn are relatively limited with reserves lasting in 
the range of 100 years. Some elements like P is not 
limited as such, but there is always a trade-off between 
total amount and at what concentration the extraction is 
made. For biomass and food we have enough resources 
if used efficiently. Wind, sun and hydropower are in 
reality unlimited resources for electricity production. 
We also have huge amounts of biomass. A question is 
what biomass should be used for. First it can be as a 
building material, then for chemical production and 
paper/packaging and last as energy source seems 
reasonable.  

Keywords:     resources, simulation, predictions 

1 Introduction 
There is a limited amount of resources available at 
Earth. Some of these are fossil, others renewable. Most 
resources utilized can be reused or recycled to a greater 
or smaller extent. The situation with respect to resources 
varies from country to country but can principally be 
grouped with respect to UN´s World Bank Statistics 
(2020) where data for each country (total 213) is 
collected but also grouped into “low income countries”, 
“middle income countries” and “high income 
countries”. We also look at regions of the world. Data 
from this is used in this paper for the resource simulation 
with respect to energy and environmental emissions. 
Other data from many different sources are 
complemented, and more detailed specification for 
specific factors described more in detail. The author has 
collected data during many years and published in books 
and papers. References are made to these as the data has 
been refined compared to original sources. These are 
then used for extrapolation to cover use today and 
possible scenarios for the future for countries in the 
three income groups. The simulations are made where 
the structure is set, but the use of resources varied. 

2 Overview different resources 
The most important input factors are Primary Energy 
sources, crops and raw materials (inorganics like 
metals). These are then utilized for heating, electricity 
production, transportation, food production and 
industrial use. In this section the resources are calculated 
and extrapolated into the UN grouping after income. 

2.1 Energy 
Primary energy is from Oil, Coal, Natural gas, Biomass, 
Waste, Sun, Wind, Hydropower and Geothermal 
energy. These resources are converted (Tomas-Aparicio 
et al., 2020) into useful forms like electricity, heat, 
cooling, transport work, industrial production, food 
production, building houses and other infrastructure. 
For these uses we also have input energy to manufacture 
wind power towers, PV-cell systems, thermal power 
plants, hydro power plants etc (Tomas-Aparicio et al., 
2020). For transportation we can utilize fossil fuels and 
diesel or benzine vehicles, but also electric vehicles are 
coming fast (Irena, 2019; MacDicken et al., 2016). For 
the future we also see both more efficient engines as 
well as new energy conversion techniques like Fuel 
Cells utilizing Hydrogen as fuel. Biofuels can replace 
fossil fuels, but also replace use of oil or other fossil 
fuels for all kind of applications like production of 
plastics, chemicals, building materials etc. (Chaudhary 
et al., 2019; Larsson et al., 2018).   

2.2 Other resources:  
Recycling of materials is affecting the true input of both 
materials and energy. We have limited resources of 
metals and other inorganic materials as well as 
Phosphorous, while Nitrogen is a non-limited resource 
(Martinsen et al., 2020). On the other hand, conversion 
of Nitrous gas (N2) to ammonia (NH3) for e.g. use as 
fertilizer as well as “destruction” of ammonium 
compounds in waste water treatment plants consume 
huge amounts of electric energy.  

In Table 1, we see the available resources as reserves, 
the annual use globally as well as the per capita use of 
important materials. We also see how much energy is 
used for production per kg related to virgin material or 
recycled material at typical recovery rates today in 
OECD countries. 
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Table 1. Important resources – annual extraction, reserves, and energy for processing. 

 
Table 2. Annual crop production; use of fertilizers and energy; GDP per capita and population in different regions and 
income groups. 

 
 
The most critical metal is according to this Zn, while 

also Cu, U, Co and Mn are relatively limited with 
reserves lasting in the range of 100 years at present 
consumption level. Some elements like P are not limited 
as such, but there is always a trade-off between total 
amount and what concentrations there are where the 
extraction is made. With more efficient separation 
methods, the available amounts are increasing. Still, we 
should know the estimates of available resources of 
different elements are built on a limited number of 
measurements, especially for the rarer elements. 

2.3 Emissions 
Conversion of fossil fuels release CO2 that has been 

bound in earth for millions of years. When released we 
get a greenhouse effect. For biomass we have a release 
of CO2 as well, but this CO2 is bound back into new 
crops through photo synthesis. It is then interesting to 
evaluate how much biomass we have as a “storage” 
globally, and what happens if we take out biomass or 
just let it degrade in nature. There are voices saying that 
we should let the forests stand to store CO2 long term.  

In a few decades perspective this is correct, but long 
term the trees stop growing and will not absorb more 
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CO2. When the trees finally dies, they are degraded by 
microorganisms and fungi while releasing both CO2 and 
CH4. CH4 is approximately 25 times stronger as 
greenhouse gas than CO2. Also, N2O may be released 
simultaneously, especially if there is a deficiency of 
oxygen. If we take out a certain amount of wood and let 
the forest reproduce itself continuously, we will get 
material for use in many ways. In Table 2, we can see 
that cereal productivity varies a lot between regions and 
this correlates to climate differences and use of 
fertilizers generally. GDP/capita is dramatically 
different, but the differences are reduced by time. In 
Table 3, we see that renewable energy is dominating in 
low-income countries and especially in Africa south of 

Sahara. We can also see that electricity from fossil fuels 
is highest in middle income countries. High income 
countries have reduced the fossil part significantly, 
while low-income countries use a lot of especially hydro 
power, aside of biomass. 

From this we can see that there is a huge potential to 
increase productivity in low income countries but also 
that CO2 emissions are many times higher in high 
income countries than low income countries. The 
challenge will be to reduce CO2 emissions in high 
income countries and increase yields in low-income 
countries without increasing CO2 emissions.   

 

 

Table 3. Distribution of REN (PV and wind), Hydro + Nuclear power respectively fossil fuels and CO2 emission per 
capita in different regions and income groups. 

 
 

3 Scenarios for the future 
development – Results and 
Discussions 

What would happen if we replace all fossil fuels with 
biomass? Will there be enough biomass to cover all 
demands?   
 

In Worldbank database we can find the area in 
different countries and regions given in km2 or ha. This 
is for Agricultural land, arable land and forests, as well 
as more detailed data on how many ha are used for 
production of different cereals, which is the major food 
for humans. We can see a very strong development in 
cereal production last 60 years. This is depending on 
increased use of fertilizers, irrigation, and better crop 
species. In Table 4, we can see such balances for Europe 
where we have assumed 5 ton DS cereal grain/ha,y, but 
also assume some additional (2.5-) 5 ton DS/y as straw 
and root system. 5.4 MWh/ton DS for the heating value 
has been used. 

The production can be significantly higher, but also 
in more arid areas lower. For forests in northern boreal 

areas the production is in the range 2 ton DS/ha,y as 
“productive biomass”, with an additional 1 ton DS/ha,y 
at least as roots, bark and leaves. In sub-tropical and 
tropical areas these values are normally higher, and for 
some species significantly higher like up to 10 ton 
DS/ha,y for Salix, Eucalyptus, Acacia and similar. 
Probably the production in Russia is significantly lower 
than the average due to colder climate.  

The annual forest growth is calculated to be 121 
miljoner m3sk/y if only logs are included. If we include 
also roots and branches this corresponds to 93-million-
ton DS. 84 million m3 are taken out by harvest and 
another 12 degraded in the forest. This means that the 
annual storage volume is increasing with 25 million 
m3/y corresponding to 25-million-ton CO2. This can be 
compared to the total emissions of CO2 in Sweden of 53-
million-ton CO2 according to Skogforsk (2019). We 
have a similar situation in most boreal forests, where the 
biomass storage is increasing.  

For subtropic and tropical forests though the outtake 
of biomass is often larger than the growth rate. The 
IPCC report (2019) presents the global balance for CO2 
for year 2005: Emission to air due to change of land use 
is estimated to be 1.6 Gton C/y, while increase of 
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biomass in forests 2.6 Gton C/y. This can be compared 
to annual emissions through combustion of fossil fuels, 
6.4  Gton C/y. From 2005 to 2014, the sum of the 
national GHG inventories net emission is estimated to 
be 0.1 ± 1.0 GtCO2/y, while the mean of two global 
bookkeeping models is 5.2 ± 2.6 GtCO2/y (likely range). 

Global net removals is estimated to be 11.2 ± 2.6 
GtCO2/y (likely range) during 2007– 2016. The sum of 
the net removals due to this response and the AFOLU 
net emissions gives a total net land-atmosphere flux that 
removed 6.0 ± 3.7 GtCO2/y during 2007–2016 (likely 
range) (IPCC, 2019).  

 

Table 4. Balance between energy use and crop production in Northern Europe as TWh/year. 

 
 

If we look at a scenario where productivity in forests 
would be globally as in Sweden we can see that today 
harvested forests globally is 2997 Mt/y (see Table 5) 
with an annual growth of 0.8 m3/ha,y and a harvested 
production of 260 kg Wood/capita,y. In Sweden the 
annual growth is 1300 kg/capita,y and 4 m3/ha,y, that is 
five times higher. With the same growth rate at average 
globally it would mean 14 985 Mt/y. With a heating 
value of 5.4 MWh per tDS wood this corresponds to 16 
183 TWh with today´s harvests but 80 919 TWh/y if we 
could reach Sweden´s average. The reported value today 
in World bank data base is 21 800 TWh/y for biomass 
plus waste. If we summarize the probable production 
(annual growth) from all crops today we come to 
approximately 250 000 TWh/y assuming 5.4 MWh/ton 
DS. 

This is more than the approximately 160 000 TWh 
energy we use annually, from which approximately 80-
85 % is coming from fossil fuels, and only 10% from 
biomass in official statistics.   

As can be seen the potential for increasing biomass 
production is significant if we would optimize with 
respect to optimal amount of water, fertilizer and light, 
as well as temperature and suitable species. This gives a 
huge potential for production also indoor in buildings 
like in the cellars and at roof tops. This also would be 
needed as a lot of productive land has been destroyed by 
buildings and road systems.  

 
How will different technologies like wind and PV affect 
the system?   

 
Sun is the major energy resource. It is driving weather 

systems like wind and hydro power, as well as PV 
systems. The only other source we have is nuclear 
reactions directly in the ground or after refinement in 
nuclear reactors. Neither sun nor nuclear are 
renewables, but both can be considered as being it as the 
time perspective is very long. The fossil fuels were 
produced from biomass more than 100 million years ago 
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and due to this is affecting the climate due to greenhouse 
effects when burned, and thus should be avoided. The 
biomass is emitting CO2 but is incorporated back into 
crops continuously, and thus do not give increased 

temperature long term (range 100 years), at a balance 
point.  If we look at the energy resources we use today 
it looks like in Table 6. 

 

 

Table 5. Annual global production, harvest and stock of crops totally (Mton/y) and as per capita and year. 

 
 
We can see that 82-83% of the primary energy 

(totally 167 588 TWh/y) is with fossil fuels. For 
electricity production (totally 25 418 TWh/y) the figure 
is 65 % from fossil fuels. What is remarkable is that 
wind power and solar power is increasing so 
dramatically fast. Today (2021) the installed capacity 
for solar power (629 GW) and wind power (651 GW) is 
together in the same range as hydro power (1308 GW). 
If we add all non-fossil power production capacities, we 
get 2978 GW while for fossil fuels we have 
approximately 3900 GW. This means 44 % installed 
capacity from non-fossil technologies. It is true that the 
capacity factor is lower for the non-fossil techniques, 
but this is increasing a lot due to much higher wind 
power towers taking wind from where it is stronger. 
Also, PV cells becomes more efficient, almost twice as 
high per m2 as 15 years ago. With high power 
transmission lines, it should be possible to balance 

demand to wind and sunshine over larger regions in the 
future. The capacity factor is in the same range for 
offshore wind power at the North Sea as for coal fueled 
power plants, around 50 %! Concerning biomass only 
10% of the total primary energy demand is used 
globally, although the production could principally 
cover all demands. There will be significant increase in 
electricity demand when going from internal 
combustion engines to electric motors in vehicles, but 
also significantly less primary energy use as electric 
engines are so efficient. If electricity is stored in 
batteries or as fuel (H2) and used in fuel cells both 
alternatives will be complementary. 
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Table 6. Global power generation and installed capacity 
by different methods. 

 
 

3.1 Use of resources  
In Table 7, we see the distribution of different resources 
for Sweden per capita as MWh/y,c.   

All materials together amount to approximately 7 
MWh out of 43, which means 16%. The electricity is 
also including power for industry and will increase 
further as electric power will replace fossil fuels, while 
the heat will go down due to more heat efficient 
buildings. As we get more electric vehicles the energy 
for transportation will also go down.  

 
What are limiting resources and how could these be 
recycled long term – Phosphorous, Nitrogen, rare 
metals, other materials?   

 

Table 7. Energy use per capita and year for the average 
Swede, MWh/capita,year. 

 
 
Phosphorous (P) and Nitrogen (N) are key elements 

in all biological bodies and crops, aside of primarily C, 
H and O. This means that all crops we grow to produce 
food demand a certain amount of P and N per kg 
product. Today we recirculate manure from animals, but 
also a lot of additional P is coming from mineral 
resources from e.g. Spanish Sahara/Morocco. Available 
resources have been gatherd in (Dahlquist, 2013; 
Dahlquist and Hellstrand, 2017; Sigson and Dahlquist 
2017). There are also large amounts available in other 
minerals like Thomas Phosphate in iron ores in e.g. 
Northern Sweden. Still, the available amount is a 

limiting factor for crop production, and we should 
recycle as much as possible. This demands recovery 
from wastewater treatment plants, organic residues in 
sludges etc. It would also be interesting to recover 
Nitrogen in wastewater treatment plants (Caballero et 
al., 2012). The energy to produce ammonia is 
approximately 13 kWh/kg, while the electricity needed 
for degrading NH4 to N2 in activated sludge processes 
is also approximately 13 kWh/kg. If we could reuse N 
instead of destroying NH4/NO3 and recycle back sludge 
to farmland we thus could save 2*13= 26 kWh/kg 
principally!! Still, today there are no efficient processes 
for this, but the Anamox process at least reduces the 
energy demand for the destruction to half. But by using 
selected species of microorganisms, it should be 
possible, to reach at least much further than today. Here 
advanced control and learning systems will be very 
interesting in the future (Dahlquist et al., 2021).  

Other limited elements are e.g. rare earth metals and 
similar. A problem here is that these are not equally 
distributed in the ground and a few countries control 
production which may cause political problems in the 
future. In Table 1, we see how long known reserves of 
different elements would last at today´s extraction rates. 
For Cobolt, Niob and Zink we have quite limited 
resources, but also for Iron because it is used in such 
large volumes. This concerning mines with relatively 
high concentration of iron. 

3.2 Industrial use and possibilities  
We are using 39 kg/capita,y of plastics at average 
globally. Will there be enough wood to replace fossil 
fuels for plastic and chemical products production?   

 
We have 260 kg Wood/capita,y available, so 

principally there should be no problem. The Swedish 
consumption of plastics and chemicals is 1.2 
MWh/capita,y which corresponds to 48 kg plastic and 
chemicals. To produce this from wood we would need 
some 75-100 kg wood/capita,y.  

 
Can we replace coal with hydrogen in steel production?  

 
The global steel production today is 1869 Mton/y 

with use of 3,7 kWh/kg for virgin iron production and 
0,44 kWh/kg if recycled assuming recycling rate of 
88%. It would be 1,85 kWh/kg if the recycling rate was 
50% instead. This means 1869 Mt/y *3.7 MWh/ton iron 
or 6915 TWh/y. With 0.44 MWh/t it would be 822 
TWh/y. Today almost only fossil fuels, especially coal, 
are used giving huge fossil CO2 emissions. 
Approximately 1.9 t CO2 is emitted per ton steel at 
average. The total emission then is 1869 Mt/y*1.9 
tCO2/t = 3 551 Mt CO2/y. The global anthropogeny CO2 
emission is estimated to be 36 000 Mt/y and thus 
approximately 10% is coming from steel production if 
all is from virgin iron. If we instead could utilize 
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Hydrogen for the reduction, we principally need 1 kg H2 
to replace 3 kg C (2 H2 +O2 – 2H2O compared to 1 C+ 
O2 – 1 CO2, but 2 H2 has molar weight 4 while 1 C has 
molar weight 12. Ratio 12/4=3). 1 kg H2 demand 58 
kWh electricity for the electrolysis today. 3 kg C as coal 
contain 3*7 kWh/kg = 21 kWh. This means 58/21 = 2.76 
times more energy. For virgin iron it would mean 19086 
TWh/y but 2270 TWh/y if we use 88% recycled iron. 
The total annual wind power production is 1430 TWh 
and thus the energy demand would be 13 times the total 
annual production of wind assuming only virgin iron, 
but with 88% recycled iron 1.6 times more than total 
production. Still, this shows that replacing fossil fuels in 
steel reduction is less rewarding than replacing fossil 
fuels in vehicles.   

 
Can use biomass instead, or as a complement for 
reduction of iron oxide? 

 
For reduction of iron ore (oxides) an alternative is to 

gasify biomass. Also raw material for bio-diesel and 
chemicals could be produced from pyrolysis of biomass 
combined with gasification in CHP plants. Here we then 
can utilize the reaction heat for district heating/cooling 
and produce electricity as a balancing production when 
there is little wind and sun. We probably need at least 
twice as much biomass for the production, although the 
rest also will be utilized. This means some 15 500 
TWh/y. If we look at the potential biomass production 
with same productivity as Swedish forests, it means 
80900 TWh/y. This means that there should be a good 
potential to do this also in reality.  

 
What would the impact be on material use and energy 
demand for transportation if we go for electric vehicles 
with batteries compared to replacing fossil fuels with 
biofuels/renewables (including Hydrogen) ?  

 
For transport sector we today have almost all fuels 

being fossil, 30 200 TWh/y globally. The electric 
engines are much more efficient so to replace the fossil 
fuels we demand approximately 25-30% of that energy 
only. This means that we need 30 200 TWh/y *0,25 = 7 
550 TWh electricity to replace the fossil fuels. Here the 
replacement of fossil fuels with electricity makes much 
sense! For use of Hydrogen we will need less kWh/km 
if we use fuel cells with high efficiency. We can expect 
up to 80% efficiency in the future, but significantly 
lower today. Even the compression of the hydrogen 
consumes some 15-20 % of the heating value. So here 
batteries look better from a system perspective if all 
materials are recycled at end of life. (Ottorino editor, 
2017).  

 
How much resources are we utilizing per capita and 
what would happen if everyone would have access to 

same amount of resources as the one spending most, 
average or least?   

 
Some metals are very common in the earth crust, like 

iron and aluminum. These are very important for 
production of machinery, vehicles, and buildings. For 
others like Cobolt, Niob and Litium we have limited 
resources. These are important for production of high 
efficiency motors in wind power plants and for 
production of Litium ion batteries. When we want to 
scale up the production of new technologies, we will see 
either increased price due to limited supply or a transfer 
to use of other materials or combination of materials. 
Probably we will se a combination of these.   

 
What is the impact if everything is produced locally 
compared to a free market where a lot of goods is 
transported longer or shorter distances?   

 
If we produce most products locally, we will reduce 

the amount of fossil fuels used for transportation. At the 
same time the competition will be lowered and thus the 
prizes higher. This can be seen clearly in Sweden. 
Before joining EU Sweden was producing most food 
like meet in Sweden. After joining EU the price on meat 
was lowered to roughly and thus the import became 
important and is now approximately 50% of what is 
consumed (SCB, 2020). For some product like fish 
fingers long chains are seen, where fish can be taken up 
in the North Sea. Filets are made in France. These are 
sent to China where they are cut and covered by bread 
crisp. After this back again to Europe for packaging and 
distribution to end customers. It is difficult to claim that 
one alternative is better than the other generally, but we 
should act in a rational way. Then different regulations 
on energy and resources might be a way to direct how 
we should act.  

 
How would food production look like if we produce 
much more in our cellars or at the roof in aquatic 
systems without soil compared to only at farmland? Can 
insect larvae produced from waste be a new food?   

 
There are several projects going on in many parts of 

the world to produce vegetables and spices in buildings. 
One example is Swegreen, who produce vegetables for 
shops in Stockholm in the cellar of a sky scraper and 
recently inside a shop in Gothenburg (Swegreen, 2020). 
Other examples are roof top plantations in New York, 
Gothenburg, Stockholm and other cities. In Eskilstuna 
food waste is converted into larvae of Black Soldier 
Flies. A yield of 30-36 % from waste to larvae has been 
achieved with high content of protein (40%) and fat 
(30%) (Lalander et al., 2020). The plan is to use as fish 
fodder at first, but later also for other animals and 
possibly also for humans.  
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To produce meat, consume a lot of fodder for the 
animals. The Lancet commission (Willet et al., 2019)  
has concluded that we should reduce the intake of 
especially red meat significantly, both for health 
reasons, and to enhance the efficiency from crop to 
humane use. One kg of beef may consume 19.8 kg of 
fodder (Lesschen et al., 2011). At the same time cows 
emit a lot methane, some 135 kg CH4/cow,y. There are 
approximately 1000 million cows (Statista, 2020), 
which means 135 million tons CH4/y. The global impact 
then would be 3 375 million CO2 eq. By absorbing most 
of this, 85 %, in active coal filters could then reduce 
emissions by 2 870 million ton CO2eq/y. At the same 
time the heating value of the recovered CH4 would be 
approximately 1150 TWh/y, all non-fossil biogas!  

  
What is the potential to make more efficient buildings 
and more efficient industrial processes. 
 

 Sun has been utilized to heat buildings since long, 
but due to poor design there is a much wider potential. 
By having large windows heating can be achieved 
during spring and autumn but shaded off during summer 
to avoid overheating. In the EU project PLEEC, 
planning of energy efficient cities, good examples of 
both technologies, behavior changes and also 
organization of work in cities was reviewed go find best 
possible methodology for different type of cities 
(Dahlquist et al, 2015; Kullman et al, 2016). Concerning 
more efficient industries EU SPIRE program has had 
several projects on this, where Fudipo can be 
mentioned. The potential savings for EU process 
industries is in the range of 300- 500 TWh/y (Dahlquist 
et al., 2021).  
 
How can we make energy balances where no fossil fuel 
is used on different levels from regions to countries and 
globally?  

 
In several articles we have made energy balances for 

regions, countries and globally. They are presented in 
e.g. (Dahlquist et al., 2012). The general conclusion is 
that there are enough resources, but we need to use these 
in a fair and knowledgeable way. This means use 
methods guaranteeing biodiversity and a fair 
distribution of the resources to all humans, but also give 
animals and crops reasonable conditions for the future. 

4 Results an discussion 
How can the simulator be used?  
 
In Tables 1-7, we find a lot of basic information: 

Table 1 shows annual consumption vs total resources for 
important materials, and in Table 5 consumption of food 
species. In Table 2, we have key data on population and 
use per capita for energy use, income and crop 
production per capita. Table 3 and 4 are energy 

conversion related while Table 7 shows distribution 
between different human needs in a high-income 
country. With the simulator you principally multiply per 
capita use (Xc) with number of people (Pi) in a region or 
income group (i). Consumption per capita (Ci) is 
assumed to be proportional to income in an income 
group to high income group (Ch). Total consumption for 
a group (Xt) then is calculated as:  

Xt = Xc * Pi * Ci/Ch (1) 
 
With Y% recycling of materials we can get a net 

consumption of virgin materials and resources (Xt,r) as:  
Xt,r= Xt * (1-Y) (2) 

 
The global consumption (Xg) then will be for all 

regions or all income groups (i):  
 

Xg = ∑𝑛 𝑋𝑡, 𝑟, 𝑖𝑖 (3) 
 
What could be mechanisms to drive a society in one 

direction or the other?   
 
Different economic incentives and regulation, CO2 

tax and similar is one way. Information campaigns and 
showing good examples another.  How different 
mechanisms have been successful or not can be 
discussed from a historical perspective. Freons and 
Montreal protocol was successful, while Kyoto protocol 
not so successful. In the first case there was principally 
only one supplier of Freons, Dupont. Then it was easy 
to push this company. The Kyoto protocol should reduce 
the use of fossil fuels, where countries like China, the 
US, Poland and Germany all have strong interests in 
domestic resources. Then national interests stand 
against global ones. Sulphur tax versus emission rights 
on a regional level have both been successful, but in 
different time scales. Carbon tax in Sweden has been 
very successful to move over from oil to biomass and a 
governmental drive for nuclear power replaced half of 
the major primary energy source oil from 1970 to 1990. 
This is showing that it is possible to make changes, but 
it is tough to get everyone “on-board”.  

Concerning information campaigns and similar it has 
not been so successful to really achieve long-lasting 
changes, although it paves the road for the other 
regulatory mechanisms, which is important! If good 
examples can be demonstrated and regulations give the 
incentive, we can get fast changes like the introduction 
of wind power and solar power on a large scale last 20 
years! 

5 Conclusions 
There are huge possibilities to make the globe 

sustainable. In this paper it is shown how different 
actions could be used. There are mostly several different 
technical solutions giving the same result and thus it is 
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best if we can develop several different technologies in 
parallel and have mechanisms driving towards the 
primary goal to reduce global warming more general. 
International regulations and agreements are important. 
Information and mass-media has an impact, but mostly 
to give the politicians incentives to “make the right 
decisions”. The simulations in this paper are not strict 
mathematical but more discussions around different 
scenarios. It should be noticed that this is an alternative 
type of simulation that could be utilized more. 
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Abstract
For large-scale systems, the number of possible vari-
able combinations becomes very large. Variable group-
ing means finding feasible groups of variables for mod-
elling. Systems can be divided into subsystems but even
then the number of available variables is often impracti-
cally high to be used with the data-based methods. Inter-
active variable selection and grouping by comparing the
performance of the model alternatives is a good solution
if there are not too many variables. This paper describes
possibilities of variable selection in large-scale industrial
systems. It classifies the variable selection and grouping
into four categories: knowledge-based grouping, group-
ing with data analysis, decomposition, and model-based
grouping and selection. The data analysis part consists
of correlation analysis and handling of high dimension
data with principal components. These originally linear
methodologies were extended to nonlinear systems by us-
ing the nonlinear scaling approach. Decomposition can
be realised with various clustering methods or learning
with case-based reasoning. The multimodel systems are
handled with fuzzy set systems. Numerous studies based
on linear multivariate statistical modelling have been re-
ported in literature. The methodologies approaches have
been tested in several applications: bioprocesses, contin-
uous brewing, condition monitoring, web break sensitiv-
ity analysis and wastewater treatment. Industrial process
data, a pilot system and a test rig were used in the analysis.
Uncertainty handling is a part of the analysis method: un-
certainty is represented with the degrees of membership.
Keywords: variable selection and grouping, data analysis,
intelligent methods, data-driven modelling

1 Introduction
Data-driven modelling always requires variable grouping
and selection. In small systems, expert knowledge gives
a clear basis for the variable selection since possible in-
teractions and causal effects are known fairly well. For
these cases, few modelling alternatives can be compared
interactively. Variable selection becomes important when
the number of variables increases, especially when normal
process data is used. In large-scale systems, the number of
possible variable combinations becomes easily very large
(Figure 1), This rapidly increasing number of combina-

tions, known as the combinatorial explosion (Pyle, 1999),
can easily defeat even powerful computers.

In big data processing, the analysis is even more chal-
lenging (Hashem et al., 2015). The amount of different
types of data generated from different sources is increas-
ing fast. Discovering hidden values from these large het-
erogeneous datasets requires versatile methodologies (Ju-
uso, 2020a). Neural deep learning methods provide highly
complex structures (Schmidhuber, 2015) but because of a
huge set of parameters they are not easy to assess with
expert knowledge.

The model assessment becomes easier through the bet-
ter process insight provided by the modules based on ana-
lyzed variable groups. Already, the development and tun-
ing require that the models should not include too many
variables. In practical cases, variable selection is neces-
sary either because it is computationally infeasible to use
all available variables, or when limited data samples have
numerous variables. Finding feasible groups and com-
binations of variables for modelling is closely connected
with data clustering since the interactions can depend on
the operating area. Variable selection, also known as sub-
set selection or feature selection, is a process commonly
used in machine learning, wherein a subset of the features
available from the data are selected for application of a
learning algorithm.

Systems can be divided into subsystems but even the
number of available variables is often impractically high
to be used with the data-based methods. Interactive vari-
able selection and grouping by comparing the perfor-
mance of the model alternatives is a good solution if there
are not too many variables. This approach can be extended
to a wider set of variables by evolutionary computation.
As the number of variables becomes too big even for these
methods, the number of alternatives must be reduced be-
fore model development.

There is a lot of literature on both the model and data-
based techniques. Spectroscopic data, multi-sensor sys-
tems, multivariate analysis and modelling of large-scale
systems seem to require efficient methods for variable
selection. A large number of different methods have
also been used in process monitoring (Venkatasubrama-
nian et al., 2003). Commonly used data-based mon-
itoring methods are reviewed in (Vermasvuori, 2006).
Partitioning-based clustering algorithms are compared in
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Figure 1. Variable combinations (Juuso and Ahola, 2008).

(Äyrämö and Kärkkäinen, 2006). A literature review of
inference and decision making methods in fault diagnosis
is presented in (Cheng, 2006).

The final selection and grouping step is based on mod-
elling. Multivariate statistical modelling and structural re-
lationships are widely used. In linguistic equation (LE)
models, nonlinear scaling is used together with one or
more linear equations (Juuso, 2004). Equations can be
generated for all the combinations, e.g. three-variable
combinations, or selected combinations. Selected com-
binations can be constructed also for several groups of
variables by generating all the combinations within each
variable group. The set of variable groups may also con-
tain groups with different number of variables. For small
systems, these groups can be defined manually. Non-
informative groups can be removed manually but the vari-
able selection need to be partially automated for large-
scale systems.

This paper focuses on the methodologies of variable
selection for large-scale modelling. The analysis starts
with knowledge-based methods (Section 2) before going
to data-based grouping (Section 3). Decomposition is
needed for more complex structures (Section 4). The se-
lection and grouping are finalized with modelling (Section
5). Several applications are discussed in Section 6. The
classification of methodologies is discussed in Section 7.
Conclusions and future studies are presented in Section 8.

2 Knowledge-based variable grouping
Knowledge-based information is essential for all types of
variable selection and grouping. For small systems, only
expert knowledge is needed. In large-scale systems, ex-
pertise is used for selecting variable combinations which
should be avoided, e.g. calculated variables should not be
used together with the variables used in calculating them.
This is important if indirect measurements are used. A
group containing a controlled variable and its set point is
not usually appropriate. These problems are avoided by
defining the inappropriate groups as non-groups, i.e. as
variable groups which should not be a part of any accept-
able variable group.

Figure 2. Variable selection (Juuso et al., 2008).

Too few variables mean that models cannot capture the
phenomena. Too many variables may cause overfitting
and models which are difficult to understand and evalu-
ate. This is especially important for frequency range anal-
ysis. Redundancy, i.e. practically the same measurement
is obtained by several sensors, the measurements can be
combined as a weighted sum. However, sensor failures
must be taken into account in real-time applications.

Knowledge-based information can effect in many ways
on the variable grouping, which reduces strongly the vari-
able combinations. For large-scale systems, some vari-
ables are suitable for the system decomposition and some
for developing specialized models. The working point
variables, which are used for defining different operating
areas, are not necessarily in the corresponding specialized
models. The specialized models can be totally different in
different operating conditions.

Each equation has normally from three to five variables,
and the FuzzEqu Toolbox (Juuso, 2000) is designed for
analyzing these variable groups (Figure 2). The generation
of the alternatives is based on three variable groups: one
variable is selected to be in all four variable groups, and
two variables are selected to be in all five variable groups.

The interactive variable grouping shown in Figure 2 can
be used as a tool in learning the system. Three variable
groups are the basic elements. The subsets of the variables
and the important variables in the four and five variable
groups can be based on process knowledge. This analysis
already reduces the number of alternatives with 70 percent
(Juuso et al., 2008).
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3 Grouping with data analysis
Correlation analysis provides methods for pruning vari-
ables. Principal component analysis (PCA) is a well-
known method for variable selection in large data sets.
PCA explains variations within one data set.

3.1 Correlation analysis
Correlation coefficients are indicators of the strength of
the linear relationship between two variables. The most
common coefficient is called Pearson’s product-moment
correlation coefficient (Ranta et al., 1999; Karttunen,
1994). Statistical correlations are not indications of real
causal interactions. Statistical reasoning based on corre-
lation coefficients presumes bivariate normal distribution
between variables (Ranta et al., 1999). This assumption is
fairly seldom true in process data.

Binary correlations and their combinations are used for
pruning the set of acceptable groups defined by domain
expertise (Section 2). For forecasting models, input vari-
ables should have high correlation to the output variable
but low correlation between each other. For case detec-
tion, this requirement is not necessary (Section 3.3).

Low correlation may be caused by noise and observa-
tion errors. The result is improved by using appropriate
filtering and correct time delays between the variables.
Moving averages, medians or value ranges have time de-
lays which depend on the calculation window and the ap-
plied methodology.

3.2 Correlations in nonlinear systems
For the nonlinear systems, basic correlation analysis and
rank correlation methods like Spearman rank correlation
coefficients and Kendall rank correlation coefficient do not
give reliable results although Spearman correlation coef-
ficient can sometimes identify also nonlinear interaction
between variables (Ranta et al., 1999).

There are extensions of the analysis to nonlinear sys-
tems (Juuso et al., 2008). A nonlinear correlation of a bi-
nary relationship can be implemented for example by us-
ing time sequential joint transfer correlation (JTC), mor-
phological correlation (MC) and sliced orthogonal non-
linear generalized decomposition (SONG) (Oton et al.,
2005). A weighted SONG (WSONG) correlation has been
presented in (Garcia-Martinez et al., 2002). The WSONG
correlation is based on the sum of many linear correlations
between binary images.

The nonlinear scaling brings measurements and fea-
tures to the same scale by using monotonously increas-
ing scaling functions x j = f (X j) where x j is the vari-
able and X j the corresponding scaled variable. The func-
tion f () consist of two second order polynomials, one for
the negative values of X j and one for the positive val-
ues, respectively. The corresponding inverse functions
X j = f−1(x j) based on square root functions are used for
scaling to the range [-2, 2], denoted as linguistification.
The monotonous functions allow scaling back to the real

values by using the function f (). (Juuso, 2004)
The nonlinear scaling functions are developed by using

central tendencies, statistical dispersion and shape of the
data distribution. The data-based method for developing
the scaling functions is presented in (Juuso and Lahdelma,
2010). Nonlinear models can be developed by using these
scaled values and linear relationships. This approach ex-
tends the correlation analysis for curvilinear relationships.

3.3 Correlations in variable groups
For the multivariable correlation, Kendall’s coefficient of
concordance is a measure of agreement among raters is
often used (Ranta et al., 1999). It is based on the rank val-
ues of observations. In variable group correlation analysis,
the scaled values of variables are used and the evaluation
of interaction is based on multivariate regression.

Combinations of the binary correlation coefficients are
used in the FuzzEqu Toolbox. The methodology depends
on the model type. For forecasting models, the correla-
tions between the input variables should be low, and each
input variable and the output variable should have high
correlation. For detecting operating conditions, there are
not necessarily any output variable, i.e. also groups where
several variables have high correlation between each other
are acceptable. Both alternative approaches are used for
variable grouping for the detection of operating condi-
tions.

3.4 High-dimensional data
Principal component analysis (PCA) is a data reduction
method using mathematical techniques to identify patterns
in a data matrix. The principal components are a small set
of new orthogonal, i.e. non-correlated, variables derived
from a linear combination of the original variables. They
do not necessarily have any meaning as they are combina-
tions of initial variables. However, these new axes provide
the angles to see the data by representing the directions of
the data which explain a maximal amount of variance.

The main element of this approach consists of the con-
struction of PCAs which compres the data by reducing the
number of dimensions with minor losses of information.
Each principal component is a linear combination of the
original variables.

The full set is as large as the original set of variables
but it is common that the sum of the variances of the first
few principal components to exceed 80 percent of the total
variance of the original data. All the principal components
are orthogonal to each other so there is no redundant in-
formation. The plots of these new variables help to under-
stand the driving forces of the system.

Principal components can be used In data-based pro-
cess monitoring by tracking how well the data points are
explained with the PCA model (Vermasvuori, 2006).

Testing of loadings and their estimated standard uncer-
tainties are used to calculate significance on each variable
for each component (Westad et al., 2003). Variable se-
lection can also mean identifying a k-subset of a set of
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original variables that is optimal for a given criterion that
adequately approximates the whole data set (Cadima et al.,
2004).

The static PCA can be extended to dynamic systems
by using several past measurements. The number of the
lagged variables is selected in tuning (Ku et al., 1995; Li
and Qin, 2001; Vanhatalo et al., 2017). Another variant
is moving PCA developed by (Kano et al., 2001) for de-
tecting changes in operating conditions. A special multi-
way approach has been developed for analyzing variations
from the normal trajectories in batch processes (Nomikos
and MacGregor, 1994). Multiscale PCA combines PCA
with wavelet decompositions (Bakshi, 1998; Aminghafari
and Cheze, 2006).

PCA is a linear method, which does not produce ac-
curate results for nonlinear processes. Linguistic princi-
pal component analysis (LPC) extends the linear combi-
nations for nonlinear systems by combining the nonlinear
scaling with PCA. In the FuzzEqu Toolbox, the scaling
functions can be used also for the normal principal com-
ponents.

4 Decomposition
A modelling problem can be divided into smaller parts by
developing separate models for independent subprocesses.
In addition to spatial or logical blocks decomposed mod-
elling can be based on different frequency ranges. Dif-
ferent operating conditions can be detected with cluster
analysis, model-based reasoning, rule-based reasoning, or
learned with case-based reasoning. Fuzzy set systems pro-
vide feasible techniques for handling the resulting par-
tially overlapping models.

4.1 Clustering
Clustering consists of partitioning a data set into subsets
(clusters), so that the data in each subset share common
similarities or proximities for some defined distance mea-
sures. Cluster analysis, also called segmentation analysis
or taxonomy analysis, is a way to create groups of objects,
or clusters, in such a way that the profiles of objects in the
same cluster are very similar and the profiles of objects in
different clusters are quite distinct. Similarity criteria (dis-
tance based, associative, correlative, probabilistic) among
the several clusters facilitate the recognition of patterns
and reveal otherwise hidden structures.

• Hierarchical clustering groups data, simultaneously
over a variety of scales, by creating a cluster tree.
The tree is not a single set of clusters, but rather a
multi-level hierarchy, where clusters at one level are
joined as clusters at the next higher level. Hierarchi-
cal clustering produce a set of solutions with differ-
ent numbers of clusters. The level or scale of cluster-
ing is chosen according to the application.

• Partitioning-based clustering algorithms minimize a
given clustering criterion by iteratively relocating

data points between clusters until a (locally) opti-
mal partition is attained. In a basic iterative algo-
rithm, such as K-means- or K-medoids, convergence
is local and the globally optimal solution can not be
guaranteed. (Äyrämö and Kärkkäinen, 2006) The
fuzzy c-means algorithm imposes a spherical shape
on the clusters, regardless of the actual data distribu-
tion (Babuška, 1998).

• Fuzzy clustering -based clustering algorithms mini-
mize a given clustering criterion by iteratively relo-
cating data points between clusters until a (locally)
optimal partition is attained (Bezdek, 1981). In a
basic iterative algorithm, such as K-means- or K-
medoids, convergence is local and the globally op-
timal solution can not be guaranteed. (Äyrämö and
Kärkkäinen, 2006)

• Neural computing can be used for clustering. Self-
organising maps (SOM) (Kohonen, 1995) can be
used for finding operating conditions or simply for
clustering. Also radial basis networks (Chen et al.,
1991) combine clustering with models.

• Nonlinear clustering is aimed to detect clusters of
different geometrical shapes. (Gustafson and Kessel,
1979) extended the standard fuzzy c-means algo-
rithm for this. The nonlinear scaling extends the
clustering methods to different shapes.

• Robust clustering uses spatial medians to reduce ef-
fects of erroneous and missing values (Äyrämö and
Kärkkäinen, 2006).

4.2 Reasoning
Decision making between different operating conditions is
based on different types of reasoning. These methods can
also be considered as inference fault diagnosis methods
(Cheng, 2006).

Model-based reasoning. Causal directed graphs rep-
resent physical cause-effect relations between variables.
Fault tree analysis provides graphical models of the path-
ways within a system that interconnect the basic cause
events and conditions using standard symbols, and lead
to a foreseeable, critical event. Bayesian networks repre-
sents probability relations among random variables as a
graphical model to be used in probability inference.

Rule-based reasoning. Rule-based systems use IF-
THEN rules representing domain expertise. Inference
methods are data-driven forward chaining and goal-driven
backward chaining. Conflict resolution is applied to select
one rule out of the active ones. Preferences and priori-
ties may be utilized in the conflict resolution. Fuzzy logic
provides feasible solutions for resolving the conflicts and
handling the uncertainty.
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Case-based reasoning. Case-based reasoning (CBR) is
a problem solving paradigm for finding out the solution
to a new problem by remembering previous similar sit-
uations and by reusing information and knowledge of
that situation (Aamodt and Plaza, 1994). The solutions
are maintained in carefully indexed memory. The case
base containing the previous cases with possible general
knowledge of the problem area and the problem solving
starts with the identification of the current problem situa-
tion (Figure 3). With information on new cases, the most
similar case is retrieved from the case base. The retrieved
case is reused to solve the current problem. During the
revise step the suggested solution is evaluated to get the
confirmed solution. Finally, the useful solutions with re-
lated case information are retained as new learned cases to
the case base.

Figure 3. Case-based reasoning (CBR) (Aamodt and Plaza,
1994).

5 Model-based selection and grouping
Multivariate statistical tools are used for analyzing data
matrices with regression and/or pattern recognition tech-
niques. These methodologies are primarily linear. Non-
linear systems can be handled with fuzzy set systems, ar-
tificial neural networks or their combinations. In LE mod-
els, linear methodologies are combined with the nonlinear
scaling discussed in Section 3.2.

Multivariate statistical modelling. The application of
principal component regression (PCR) to the trajecto-
ries of the process variables (block-wise PCR) has given
straightforward results without requiring a deep knowl-
edge of the process (Zarzo and Ferrer, 2004). Partial

least squares (PLS), also known as projection to latent
structures, is a robust multivariate generalized regression
method using projections to summarize multitudes of po-
tentially collinear variables (Gerlach et al., 1979).

Fuzzy set systems. Different types of fuzzy set sys-
tems have been compared in (Juuso, 2004). Prior knowl-
edge can be used in constructing rule-based fuzzy models:
qualitative knowledge can be incorporated in linguistic
fuzzy models (Driankov et al., 1993), or in fuzzy relational
models if there are several alternative rules (Pedrycz,
1984); locally valid linear models can be collected by
Takagi-Sugeno (TS) fuzzy models (Takagi and Sugeno,
1985).

Artificial neural networks. Artificial neural networks
(ANNs) are commonly used in modelling of large scale
systems. ANNs are nonlinear and aimed for strongly non-
linear systems. Multilayer perceptrons (MLPs) are super-
vised feedforward networks, which are mainly used for
approximating nonlinear behaviour. Another popular net-
work, the self-organising map (SOM) (Kohonen, 1995)
based on unsupervised competitive learning, can be con-
sidered as a clustering method (Section 4.1). Radial basis
networks (Chen et al., 1991) provide an interesting alter-
native as they can be used both as a clustering tool and a
modelling tool.

Neurofuzzy methods. Neurofuzzy methods provide
various techniques for generating fuzzy set systems, e.g.
ANFIS method (Adaptive-Network-based Fuzzy Infer-
ence Systems) is a well-known neurofuzzy method which
is suitable for tuning of membership functions (Jang,
1993). Partitioning clustering is used in this tuning (Sec-
tion 4.1).

Linguistic equations. The nonlinear scaling transforms
the nonlinear problem to a linear one. A LE model with
several equations is represented as a matrix equation

AX +B = 0, (1)

where the interaction matrix A contains all coefficients Ai j
and the bias vector B all bias terms Bi. Each equation has
from two to five variables.

6 Application cases
The variable selection and grouping methods described
above have been tested in several applications.

Bioprocesses. Batch bioprocesses are difficult to model
due to strong nonlinearities, dynamic behaviour, lack of
complete understanding and unpredictable disturbances.
The fed-batch fermentation model has three growth
phases, each including three interactive models.A decision
system based on fuzzy logic to provide smooth gradual
changes between phases. (Juuso, 2019)

Continuous brewing. Brewing is based on ethanol fer-
mentation but the most important aim is a balanced flavour
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Figure 4. Subprocesses with interactions (Juuso, 2008).

not the highest possible ethanol yield. The desired tra-
ditional flavour is based on a balance of numerous com-
pounds. Experiments with immobilized yeast were carried
out in a pilot scale. The LE models were generated for five
variable groups, each group contains two of the three con-
trol variables (air, CO2 and flow) and three flavour com-
pounds or attenuation. Fluctuations from the normal op-
eration are detected to warn process operators. (Juuso and
Kronlöf, 2005).

Condition monitoring. Reliability of operation, high
quality, safety and environmental issues are increasingly
important and machine condition monitoring enables re-
liable and economical way of action. Overhaul before a
breakdown is in many cases more effective than run to
failure. The earlier model-based approach discussed in
(Juuso et al., 2008) was an interesting case for variable se-
lection and grouping. New features and indicators have
completely changed in this application. The methodolo-
gies have been tested in test rigs and industrial processes.
(Juuso, 2017).

Paper machine. The ambition to increase the produc-
tion of paper has made the paper machine runnability im-
portant. The paper web breaks when the strain on it is
greater than the strength of paper. The machine can be
run at the desired speed with the least possible number of
breaks if the runnability is good. The web break sensitivity
indicator was developed as a CBR application which com-
bines LE models and fuzzy logic (Juuso et al., 1998; Ahola
et al., 2003). The analyses are based on the online process
data. There are several runnability categories, each includ-
ing several case models defined by several equations based
on up to five scaled variables. The final selection of the
active cases, corresponding categories and the value of the
break sensitivity are obtained by fuzzy logic (Juuso and
Ahola, 2008).

Wastewater treatment. In the biological wastewater
treatment, the model consists of three interactive models
(Figure 5): the biomass quality obtained in Model B has a

Figure 5. Subprocesses with interactions (Juuso, 2009).

Figure 6. Multimodel LE system with a fuzzy decision module
(Juuso, 2020b).

strong effect on the treatment (Model C). In Model A, the
effects of the incoming wastewater and return sludge are
combined. The chemical oxygen demand (COD) and sus-
pended solids are used in the calculations. Nutrients, oxy-
gen and temperature effect on both the biomass (Model
B) and operating conditions Model C. The condition of the
biomass has a key effect on the treatment performance (Ju-
uso, 2009). Long periods of high load reduce the biomass
quality which deteriorates the treatment performance and
it takes time to get the good performance back.

7 Discussion
Variable selection was in all cases started with manual
methods, continued with data analysis, and the final vari-
able selection is based on generated alternative interac-
tions assessed with domain expertise. The automatic anal-
ysis has several phases and alternative approaches. Cor-
relation analysis is used for selecting interesting groups
from the acceptable groups and principal components ex-
tend this analysis to the high dimensional systems. Several
clustering methods are used for dividing the data sets into
different operating areas. The nonlinear scaling provides
new possibilities for these analysis methods as an essential
part of the model-based analysis of interactions.

In these cases, the submodels are based on LE models
Smooth operation and high quality products are the main
goals of all these applications, and this can be achieved

SIMS EUROSIM 2021

43DOI: 10.3384/ecp2118538 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021



by combining the LE models with fuzzy logic. Paramet-
ric LE models can make the model structure very compact
(Figure 6). For diagnostics, the degree of membership cal-
culated for the normal operation is a good indicator. This
was used for the brewing case. The memberships of dif-
ferent faults are used in the condition monitoring. In the
paper machine case, the case structure is highly compli-
cated.

The data-based grouping provide high performance so-
lutions but the phases, cases and interactions between
models reduce the automatic analysis to the submodels.
Also, the indirect measurements based on a set of mea-
surements needs to be analyzed separately. New indica-
tors can combine several measurements and several new
features can be developed from individual signals. These
case types which require decomposition are challenging
for machine learning.

8 Conclusions and future studies
Variable selection and grouping are an essential part in the
developing model-based applications. Domain expertise
is used for removing useless combinations of variables.
Data-based methods are divided into three classes: data
analysis, decomposition and modelling. The model-based
analysis is the final step. The originally linear method-
ologies were extended to nonlinear systems by using the
nonlinear scaling approach. Applications are based on
integrated approaches which combine all the techniques.
The presented classification of methodologies was suc-
cessfully used in the case studies.

Future studies are needed for applying these method-
ologies iteratively for the expanding heterogeneous data
available in big data.
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Abstract 
This article describes modelling and simulation of 

heating and calcination of raw meal particles. The 

purpose is to determine the time required to obtain a 

certain calcination degree for particles that are exposed 

to surroundings with a specified temperature. The 

impact of applying different reactor temperature values 

and different particle sizes is investigated. The 

aggregated calcination degree as a function of time is 

calculated for a typical raw meal with a specified 

particle size distribution and with different contents of 

CaCO3 in different size classes. The developed model 

can be used as a basis for determining the required size 

of potential new calciner reactor types.  

Keywords: Raw meal, Heat transfer, Calcination, 

Particle size distribution 

1 Introduction 

Raw meal is a finely ground mixture of solid materials 

used as the main feed in modern cement kilns. It usually 

contains 75-80 wt% calcium carbonate, CaCO3. The rest 

is a mixture of mainly SiO2, Al2O3 and Fe2O3 as well as 

some MgO, K2O and Na2O (Duda, 1985). 

One of the key reactions occurring in the kiln system 

is calcination, in which the calcium carbonate 

decomposes into calcium oxide and carbon dioxide; 

CaCO3(s) → CaO(s) + CO2(g). This is an endothermic 

reaction that needs a temperature of around 900 °C to 

occur. After completion of calcination, further heating 

and partly melting of the solid material will take place. 

However, during the calcination process, which is the 

focus in this article, the other components in the meal 

(SiO2, Al2O3, etc.) can be considered inert. 

In a modern cement kiln system, the decarbonation 

reaction will be done in a separate calcination reactor. In 

the calciner, the particles are exposed to high 

temperature surroundings in the form of heat transfer 

surfaces, flames and hot combustion gases. Thermal 

radiation, convection and conduction all contribute in 

the heat transfer process. 

Most calciners operate in the pneumatic conveying 

regime (Tokheim, 1999), i.e., the particles are vertically 

entrained by hot gases while being calcined. Such 

calciners typically have a gas residence time of 2-6 

seconds, whereas the particle residence time may be 

several times longer due to internal recycling of particles 

inside the calciner. A long residence time is particularly 

important in cases where lumpy alternative fuels are to 

be utilized (Tokheim, 2006). The particle calcination 

process will benefit from a long residence time, meaning 

that a lower calcination temperature may be used. 

Other types of calciners, operating in other regimes, 

for example bubbling fluidized bed (BFB) calciners 

(Samani et al., 2020) or drop tube calciners (Hills, 2017; 

Hodgson, 2018) may be of interest in cases where 

combustion gases are absent and the heat transfer is to 

be provided mainly through radiation from hot surfaces. 

Such reactors are of special relevance if the calcination 

process is to be electrified (Tokheim et al., 2019). 

When designing new reactor types for the calcination 

process, it is necessary to understand the dynamic 

behavior of the calcining particles in order to size the 

reactor. The time required for calcination will largely 

depend on the particle size and the temperature in the 

reactor of interest. The size of the raw meal particles 

ranges from about 1 to 500 µm, and the median is 

typically 20-30 µm. 

The purpose of this paper is to 1) develop a dynamic 

model of the heating and calcination of raw meal 

particles of difference size, and 2) combine this model 

with experimental data on particle size and chemical 

composition, in order to 3) determine the time required 

to obtain a certain calcination degree for an industrial 

raw meal exposed to a specified reactor temperature. 

The contribution of this study is to provide a model 

that can be applied to industrial raw meal mixtures with 

a typical distribution of particle size and chemical 

composition. It will apply to systems with any CO2 

concentration in the calciner, including those operating 

with pure CO2. The latter is relevant for electrically 

heated calciners. 

2 Dynamic model of a particle being 

heated and calcined 

In this section, the system is described, the mathematical 

model equations are explained, the discretized model 

equations are given and the model input values are 

listed. 
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2.1 System description 

The heat transfer from the isothermal surroundings (e.g., 

a hot, temperature-controlled wall) to the particle mainly 

occurs through radiation. The supplied thermal energy 

is used for heating and calcining the particles.  

The particle enters the calciner in a preheated state. 

When the particle is exposed to an environment with a 

higher temperature than the particle, it will be further 

heated. The environment for a particle is typically a gas 

surrounding the particle, a reactor wall constituting the 

boundary of the heat transfer domain, as well as other 

particles. 

As the particle temperature increases, CaCO3 will 

decompose; CaCO3(s) → CaO(s) + CO2(g). The higher 

the temperature, the faster the calcination. The 

calcination is endothermic, and the typical calcination 

temperature is around 900 °C, depending on the process 

conditions. 

After a certain time, the calcination will be complete, 

and the particle is pure CaO (plus any inert 

components), as all CO2 has been driven out. Any heat 

supplied after this, will result in further heating of the 

calcined particle, and the particle will gradually 

approach the temperature of the surroundings and hence 

reach a new constant level. However, in general, a 

calcination degree of 90-95 % is targeted, so the particle 

will in general not exceed the calcination temperature. 

The process described above, is illustrated in 

Figure 1, where 𝑇𝑐𝑎𝑙𝑐 indicates the temperature at which 

conversion from CaCO3 (blue) to CaO (red) starts. 

 

 

 

 

 

 

 

 

 

 
Figure 1. Heating and calcination of a CaCO3 particle. 

 

It should be noted that in an industrial process, the 

calcination degree (also called the degree of calcination, 

DoC) of the meal in the calciner should not exceed 90-

95 %. This is because complete conversion will lead to 

a fast temperature increase in the reactor, and this may 

in turn cause unwanted sintering effects due to partial 

melt formation. In traditional calciner systems operating 

with fuel as the energy source, the DoC is kept in the 

range 90-95 % by adjusting the fuel feed rate to obtain a 

certain exit temperature, which by experience is found 

to give a suitable DoC value. The DoC value is checked 

regularly by sampling and laboratory analyses. A 

similar control concept can be applied for an electrified 
system, but then the electric power input is adjusted to 

comply with the temperature setpoint. Interlocks based 

on local wall temperatures should also be implemented

to make sure overheating is avoided.

The uncalcined particle has a specified mass density

and volume, i.e., a certain mass. During decarbonation,

the particle mass will gradually decrease as CO2 is

driven out. However, according to shrinking core model

(Levenspiel, 1989), the volume of the particle is

believed to stay approximately unchanged whereas the

porosity will increase, meaning that the effective

particle density will decrease.

There are many experimental studies on calcination

kinetics available, typically involving the use of

thermogravimetric analysis (TGA) to determine the

mass loss as a function temperature and time (Ar et al.,

2001; Garcia-Labiano et al., 2002; Valverde et al., 2015;

Maya et al., 2018; Fedunik-Hoffman et al., 2019). Other

types of furnaces are also used (Hu and Scaroni, 1996;

Wang et al., 2007; Ghiasi et al., 2021). Many of these

refer to Silcox et al. (1989), who developed a model to

take into account decarbonation of CaCO3 at the

reactant-product interface, diffusion of CO2 through the

growing CaO layer and sintering of CaO. Some studies

(for example, Hu and Scaroni,1996; Wang et al., 2005;

Valverde et al., 2015) also apply scanning electron

microscope (SEM) analyses to study how the structure

of the limestone changes during the process. CaO

sintering effects will reduce the porosity of the particles

and thereby reduce the effective decompostion rate. The

effect increases with increasing partial pressure of CO2.

As pointed out above, different factors contribute to

particle heat-up. However, in this study, only radiation

heat transfer from the wall is considered. Convection

and radiation heat transfer from the gas to the particle

are neglected, as these contributions are believed to be

quite small compared to the wall contribution, at least in

the main energy-consuming phase, i.e., the calcination

phase. Furthermore, radiation (and conduction) from

other particles are neglected as all particles will likely

have approximately the same temperature.

As the particles are small, spatial temperature

gradients inside the particles are neglected, i.e., the

particle temperature is assumed to depend on time only.

For larger particles, the model should be used with

caution.

Sintering effects, which may be significant for larger

particles, are not included in this study, but may be

implemented at a later stage.

In a real system, the particles will have different

shapes. In this study, however, spherical particles are

assumed. This makes it easy to calculate the surface area

and the volume of the particle. The surface area is

important because the heating is an area-specific

process. The volume is required to calculate the initial

mass of the particle.

CaCO3(s) CaO(s) 

T = T0 

T = Tcalc 

T(t) 

t 
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2.2 Model equations 

An energy balance of the particle may be given as in 

Equation 1, where 𝐸 means energy [J], �̇� means energy 

flow [W] and 𝑡 is time [s]: 

 

�̇�𝑖𝑛 − �̇�𝑜𝑢𝑡 + �̇�𝑔𝑒𝑛 =
𝑑𝐸

𝑑𝑡
 (1) 

 

The inflow of energy, �̇�𝑖𝑛, can be described as the 

product of the heat flux, 𝑞" [W/m²], and the surface area 

of the particle, 𝐴𝑝 [m²]: 

  

�̇�𝑖𝑛 = 𝑞"𝐴𝑝 (2) 

 

Assuming that the particle is completely enclosed in 

large isothermal surroundings, the heat flux inflow can 

be expressed in terms of the radiation flux from the wall 

to the particle, which is a function of the wall 

temperature 𝑇𝑤𝑎𝑙𝑙 [K], the particle temperature (a 

variable input parameter), 𝑇 [K], and the emissivity of 

the particle,  [-]: 
  

𝑞" = (𝑇𝑤𝑎𝑙𝑙
4 − 𝑇4) (3) 

 

 is the Stefan-Boltzmann constant, which has a value 

of 5.67·10-8 W/(m²K4). The surface area is a function of 

the particle diameter, 𝐷𝑝 [m] (another variable input 

parameter): 

  

𝐴𝑝 = 𝐷𝑝
2 (4) 

 

The outflow of energy will be zero as only heating is 

modelled in this study. This means that the term �̇�𝑜𝑢𝑡 in 

Equation 1 can be deleted. 

The term �̇�𝑔𝑒𝑛 in Equation 1 is a source term. In this 

case, the source term is a sink, i.e., it represents the 

endothermic reaction happening during calcination, and 

can be formulated as in equation 5, where 𝑟 is the 

reaction rate [mol/(m²·s)], 𝑀𝐶𝑂2
 is the molecular mass 

of CO2 [kg/mol] (constant) and 𝐻𝑐𝑎𝑙𝑐 is the specific 

calcination enthalpy [J/kg] (another constant): 

  

�̇�𝑔𝑒𝑛 = 𝑟𝐴𝑝𝑀𝐶𝑂2
𝐻𝑐𝑎𝑙𝑐 (5) 

 

The transient term (right-hand side) in Equation 1, can 

be re-written as:  

  

𝑑𝐸

𝑑𝑡
=

𝑑(𝑚𝑐𝑇)

𝑑𝑡
= 𝑇𝑐

𝑑𝑚

𝑑𝑡
+ 𝑚𝑐

𝑑𝑇

𝑑𝑡
 (6) 

 

Here, 𝑐 is the specific heat capacity of the particle 

[J/(kg·K)], whereas 𝑚 is the particle mas [kg]. The 

specific heat capacity is a weak temperature function, 

but here it is taken as a constant. The temperature 

dependence is moderate, so this simplification should 

not give a big error if a representative mean temperature 

is applied. 

The time derivative of the mass is included in 

Equation 6. By utilizing the mass balance of the particle, 

the term 
𝑑𝑚

𝑑𝑡
 may be replaced by an algebraic expression: 

 

𝑑𝑚

𝑑𝑡
= −𝑟𝐴𝑝𝑀𝐶𝑂2

 (7) 

 

By combining equations 1–6, the following first order 

differential equation is found: 

 

𝑑𝑇

𝑑𝑡
=

𝐴𝑝

𝑚𝑐
(𝑇𝑤𝑎𝑙𝑙

4 − 𝑇4) −
𝐴𝑝𝑟𝑀𝐶𝑂2

𝐻𝑐𝑎𝑙𝑐

𝑚𝑐

+
𝑇

𝑚
𝑟𝐴𝑝𝑀𝐶𝑂2

 

(8) 

 

The reaction rate in equation 8 may be expressed as a 

function of a rate constant, 𝐾𝑑 [mol/(m²·s·Pa)], the 

equilibrium pressure of CO2, 𝑝𝐶𝑂2,𝑒𝑞 [Pa], and the partial 

pressure of CO2 in the gas surrounding the particle, 𝑝𝐶𝑂2
 

[Pa] (which will be given by the process conditions): 

 

𝑟 = 𝐾𝑑(𝑝𝐶𝑂2,𝑒𝑞 − 𝑝𝐶𝑂2
) (9) 

 

The rate constant is a function of the temperature and 

two model constants, i.e. a frequency factor, 𝐴𝑑 

[mol/(m²·s·Pa)], an activation energy, 𝐸𝑑 [J/mol], and 

the universal gas constant, 𝑅 (8.314 J/(mol·K):  

 

𝐾𝑑 = 𝐴𝑑𝑒−
𝐸𝑑
𝑅𝑇 (10) 

 

The equilibrium pressure of CO2 is also a function of the 

temperature and two model constants, 𝐴𝑒𝑞 

[mol/(m²·s·Pa)] and 𝐸𝑒𝑞 [J/mol]:  

 

𝑝𝐶𝑂2,𝑒𝑞 = 𝐴𝑒𝑞𝑒−
𝐸𝑒𝑞

𝑅𝑇  (11) 

 

Equation 7 shows that the mass will drop if the reaction 

rate is positive, but will increase if the reaction rate is 

negative. The latter will occur if the equilibrium 

pressure of CO2 is lower than the partial pressure – then 

carbonation (CaO(s)+CO2 → CaCO3(s)) will happen 

instead of calcination. However, the mass may not have 

higher values than the initial (uncalcined) mass 𝑚0 [kg] 

and not lower values than the minimum mass 𝑚𝑚𝑖𝑛 [kg], 

which will be reached when all CO2 has been expelled 

from the particle. These two constraints must be 

implemented in the model. The minimum mass may be 

calculated through equation 12, where 𝑀𝐶𝑎𝐶𝑂3
 is the 

molecular mass of calcium carbonate [kg/mol] and 

𝑤𝐶𝑎𝐶𝑂3
 is the weight fraction of calcium carbonate:  
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𝑚𝑚𝑖𝑛 = 𝑚0 (1 −
𝑀𝐶𝑂2

𝑀𝐶𝑎𝐶𝑂3

𝑤𝐶𝑎𝐶𝑂3
) (12) 

 

The initial mass may be calculated based on the particle 

volume, 𝑉𝑝 [m³], and the initial particle density, 
𝑝,0

 

[kg/m³]: 

 

𝑚0 = 
𝑝,0

𝑉𝑝 (13) 

 

The particle volume is assumed constant, as a shrinking 

core model is assumed, and can be calculated as:  

 

𝑉𝑝 =


6
𝐷𝑝

3 (14) 

 

The particle density, 
𝑝
 [kg/m³], is a function of the 

particle mass and the particle volume:  

 


𝑝

=
𝑚

𝑉𝑝

 (15) 

 

The degree of calcination, 𝐷𝑜𝐶, is a function of the 

initial particle mass, the minimum particle mass and the 

time-dependent particle mass:  

 

𝐷𝑜𝐶 =
𝑚0 − 𝑚

𝑚0 − 𝑚𝑚𝑖𝑛

100% (16) 

 

Equation 8 shows that the temperature is impacted by 

three terms: i) the wall temperature term, which always 

gives a positive temperature contribution, ii) the 

calcination enthalpy term, which is negative during 

calcination (if 𝑝𝐶𝑂2,𝑒𝑞 > 𝑝𝐶𝑂2
), meaning that 𝑟 > 0), but 

positive during carbonation if 𝑝𝐶𝑂2,𝑒𝑞 < 𝑝𝐶𝑂2
, meaning 

that 𝑟 < 0); iii) the mass loss term, which gives a positive 

contribution during calcination, but negative during 

carbonation. 

2.3 Discretized model equations 

The first-order differential equations, Equation 7 and 8, 

can be discretized according to Euler’s forward method 

(with index k):  

 

(
𝑇

𝑡
)

𝑘
=

𝐴𝑝

𝑚𝑘𝑐
((𝑇𝑤𝑎𝑙𝑙

4 − 𝑇𝑘
4)

− 𝑟𝑘𝑀𝐶𝑂2
𝐻𝑐𝑎𝑙𝑐

+ 𝑇𝑘𝑟𝑐𝑀𝐶𝑂2
) 

(17) 

 

𝑇𝑘+1 = 𝑇𝑘 + (
𝑇

𝑡
)

𝑘
 (18) 

(
𝑚

𝑡
)

𝑘
= −𝑟𝑘𝐴𝑝𝑀𝐶𝑂2

 (19) 

𝑚𝑘+1 = 𝑚𝑘 + (
𝑚

𝑡
)

𝑘
 

(20) 

 

In addition to equations 17 – 20, the algebraic equations 

given in equations 9 – 11 and 15 – 16 are solved for each 

time step, i.e., for each value of 𝑇𝑘. 

2.4 Input values 

Model constants, temperature dependent data and true 

constants are given in Table 1, whereas Table 2 gives 

input values for calculation of a base-case. 

A particle size of 300 µm is within the range of the 

raw meal particle size distribution and is used here just 

as an example (other particle sizes are investigated 

later). A temperature of 658 °C was selected based on 

calculations carried out in a previous phase of the 

project (Tokheim et al., 2019), and this value is within 

the typical variation range of a modern cement kiln 

system. The CaCO3 content of 77% is also a typical 

value for cement plants producing ordinary Portland 

cement. Finally, the partial pressure in current cement 

kiln systems is typically 0.2-0.3 atm in the calciner, but 

in this study, a value of 1 atm is used because 100 % 

CO2 is the relevant case for calciners with indirect heat 

transfer from hot surfaces. In such cases, no combustion 

gases will be mixed with the CO2 coming from the 

decarbonation. 

 

Table 1. Values of model constants, thermophysical data 

and true constants used in the calcination model. 

Symbol Unit Value Remark 

𝐴𝑑 
mol/(m²s·

Pa) 
1.2·10-5 

Stanmore and 

Gilot (2005); 

Wang et al. 

(2007) 

𝐸𝑑/ 𝑅 K 4 026 

𝐴𝑒𝑞 Pa 4.19·1012 

𝐸𝑒𝑞/ 𝑅 K 20 474 

𝑐 J/(kg K) 850 Approx. value 

 - 0.9 Approx. value 


𝑝,0

 kg/m³ 2 700 Typical value 

𝐻𝑐𝑎𝑙𝑐 J/kg 3.6·106 Typical value 

𝑀𝐶𝑂2
 kg/mol 0.044 Constant 

𝑀𝐶𝑎𝐶𝑂3
 kg/mol 0.100 Constant 

 

Table 2. Base case input parameters in the model. 

Symbol Unit Value 

𝐷𝑝 µm 300 

𝑇𝑤𝑎𝑙𝑙 
°C 1 050 

𝑇0 °C 658 

𝑤𝐶𝑎𝐶𝑂3
 wt% 77% 

𝑝𝐶𝑂2
 atm 1 

𝑡 ms 20 
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The input variables are independent parameters that may 

take different values. Table 3 shows ranges to be applied 

in order to investigate how variations in some of these 

will affect the behavior of the particle. 

The particle size variations reflects the variation in an 

industrial raw meal (cf. Section 1). A typical value for 

the wall temperature may be 1050°C. However, the 

maximum allowed value depends on the wall material, 

so lower and higher values are also investigated. 

 

Table 3. Variation in input parameter values. 

Symbol Unit Value 

𝐷𝑝 µm 1 – 300 

𝑇𝑤𝑎𝑙𝑙 
°C 950 – 1100 

 

Table 4 shows that different size fractions in raw meal 

have different chemical compositions. The size classes 

were determined by manual sieving, and the weight 

fractions (wi) in the raw meal as well as the CaCO3 

content in each size class were back calculated from 

XRF-measured values of CaO content in each size class.  

This means that the fraction of material to calcine is 

different in different size classes, and this will influence 

the required calcination time. 

 

Table 4. Content of CaCO3 (wCaCO3,i) in different size 

fractions (wi) in raw meal. 

Dp,i [µm] wCaCO3,i wi [wt%] 

16 80.5 % 54.9 

48 78.9 % 26.1 

77 73.0 % 9.4 

108 64.0 % 4.4 

163 54.6 % 3.6 

600 48.4 % 1.7 

  

3 Results and discussion 

First, a base case is simulated, using the values given in 

Table 1 and 2. Next, selected input parameters are varied 

according to ranges given in Table 3. Finally, the 

calcination of a raw meal consisting of different particle 

sizes with different chemical composition is simulated 

for typical process conditions in an industrial calciner, 

as indicated in Table 4. 

3.1 Base case 

Figure 2 shows that the temperature first increases from 

the initial (inlet) temperature of 658 °C.  This is due to 

the heat flux from the wall. As the temperature 

increases, the equilibrium pressure increases and 

reaches a stable plateau value after about 0.6 s. From 

then on, the temperature (and accordingly also the 

equilibrium pressure) stays constant at about 1005 °C 

until about 6.2 s. After this, the temperature rises to a 

new plateau, corresponding to the wall temperature, i.e. 

1050 °C. The system has now reached the state of 

thermal equilibrium. 

 

 
Figure 2. Temperature and equilibrium pressure as a 

function of time. 

Figure 3 shows that the rate constant follows the same 

trend as the equilibrium pressure (cf. Figure 2), as the 

expressions given in equations 10 and 11 are both of a 

similar exponential nature. Moreover, the temperature 

gradient gradually drops and reaches a constant value, 

which abruptly increases for a short time when the 

calcination is complete. At equilibrium, it goes back to 

zero. 

 

 
Figure 3. Rate constant and temperature gradient as a 

function of time. 

 

Figure 4 shows that the particle mass is initially more or 

less constant for short period (about 0.1 s). This is 

because the reaction rate is low as the temperature is 

initially rather low. However, when the temperature and 

the reaction rate increase, the mass starts to drop. The 

mass reduction is linear in the period with a constant 

reaction rate. After about 6.2 s, the particle mass flattens 

out on a level corresponding to the minimum mass, as 

all CO2 has been driven out of the particle, i.e. the 

calcination is complete. After this, the reaction rate 

drops to zero. 
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Figure 4. Particle mass and reaction rate as a function 

of time. 

 

Figure 5 illustrates the co-variation of the temperature 

and the heat flux. Initially, the heat flux is extremely 

high, as there is a big difference between the wall 

temperature (1050 °C) and the particle temperature 

(658 °C). However, as the particle heats up, the flux 

drops quickly and reaches a constant level of about 20 

kW/m² during the calcination period with a constant 

particle temperature. After completion of calcination, 

the particle temperature increases, which means that the 

driving force for the heat transfer drops, and eventually 

the flux reaches a zero value when the thermal 

equilibrium has been reached after about 7 s. However, 

as was mentioned in system description section, in a real 

system, the calcination process will be stopped before 

complete conversion occurs, so that high temperature 

levels and sintering effects are avoided. 

 

 
Figure 5. Heat flux and temperature as a function of 

time. 

 

Figure 6 shows that the particle density drops from the 

initial level of 2700 kg/m³ to 1785 kg/m³ when the 

calcination is complete. After a very short period (about 

0.6 s) with virtually no calcination, as the equilibrium 

pressure is lower than the partial pressure of CO2, the 

calcination degree increases from 0 % to 100 %. 

 

 
Figure 6. Particle density and calcination degree (DoC) 

as a function of time. 

 

3.2 Variable particle size and temperature 

Figure 7 shows that the reactor temperature and the 

particle size both have a big impact on the time required 

for complete calcination. 

As an example, with a wall temperature of 1050 °C, 

a 100-µm particle needs 2.1 s to be completely calcined. 

If the wall temperature is 1100 °C, the required time is 

only 1.3 s. A very low wall temperature of 950 °C, on 

the other hand, increases the required conversion time to 

9 s for this particle size. Similar differences are found 

for other particle sizes. 

 

 
Figure 7. The impact of temperature and particle size on 

calcination time (𝑇0=658 °C, 𝑝𝐶𝑂2
=1 atm, 𝑤𝐶𝑎𝐶𝑂3

=1). 

 

The calcination time is linearly dependent on the particle 

size. At a reactor temperature of 1050 °C, the 

calcination time increases from 2.1 s for a 100-µm 

particle to 6.3 s for a 300-µm particle.  

 

3.3 Raw meal calcination 

The calculated values of CaCO3 content and weight 

fraction specified in Table 4 are used in the model to 

calculate the aggregated degree of calcination of the 

calcined meal at different residence times in the 

calciner. 
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The results are shown in Figure 8. The 𝐷𝑜𝐶 values 

(calcination degree) seem to fit well with typical values 

in industrial calciners, in which 90-95 % conversion 

typically takes a few seconds (Tokheim, 1999). 

 

 
Figure 8. Raw meal calcination time (𝑇0=658 °C, 

𝑝𝐶𝑂2
=1 atm, 𝑇𝑤𝑎𝑙𝑙=1050 °C, composition and particle 

size as given in Table 4). 

4 Conclusion 

The particle size and the reactor temperature are key 

variables controlling the calcination time for raw meal 

particles. A typical raw meal will be completely 

calcined in about 5 s when exposed to isothermal 

surroundings at 1050 °C. At lower temperatures, the 

calcination time will increase – and vice versa. 

The model can be used as a basis for determining the 

required size of a potential new calcination reactor type, 

as different reactor types will operate at different 

temperatures. Developing a new reactor type is of 

particular interest in electrification of the calcination 

process, a concept that is currently being investigated 

aiming at a significant reduction in CO2 emissions from 

cement plants employing electrified calcination. 
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Abstract
Steel structures are light and durable, but in the build-
ing envelope they can transfer heat energy easily from the
building interior to outside and hinder the energy perfor-
mance of the building. In this study, we simulate the ther-
mal performance of cold-formed steel panels that can be
used as prefabricated units in building envelopes. More
precisely, the thermal performance of hollow cold-formed
steel elements filled with thermal insulation is studied with
varying panel geometry. The focus is on stainless steel but
also mild steel is briefly considered. Attention is paid es-
pecially to the thermal bridges associated to the relatively
high thermal conductivity of steel materials. The influence
of the width, depth and the height of the panel to thermal
bridging is assessed and panel geometries with reasonable
thermal performance are found. By considering also the
moisture transport, the overall hygrothermal performance
of the panels is then evaluated.
Keywords: cold-formed steel, hygrothermal simulation,
thermal bridge, stainless steel, prefabricated elements

1 Introduction
Cold-Formed Steel (CFS) cross-sections are used exten-
sively in the construction industry as secondary loads-
carrying members, such as roof purlins and girts in framed
walls. These sections are manufactured by bending flat
sheets with thickness ranging typically from 0.4 mm to 6.4
mm in Europe and North America (Dubina et al., 2012;
Hancock et al., 2001). Nowadays, CFS sections are em-
ployed increasingly also as primary structural elements in
framing systems of single-story industrial buildings with
short to intermediate spans.

Use of prefabricated wall panels provides an answer
to environmental and economic demands of sustainabil-
ity and quality by reducing mis-fabrication and time con-
sumption on building sites particularly regarding the ther-
mal insulation process in cold and humid as well as in
hot and moist weather conditions. Thin cold-formed steel
sheets are suitable for this purpose because they can be
formed in the shape of hollow sections and transported rel-
atively easily. When compared with traditional construc-
tion materials such as timber, or ordinary steel frames,
which use mineral wool as insulation material, the cold-
formed panels offer distinct benefits in construction pro-

cess, quality control, cost-effectiveness as well and sus-
tainability.

However, the high thermal conductivity of steel means
that the heat flow must be carefully controlled with insula-
tion and that attention must be paid to thermal bridges, i.e.
areas where the heat flow is locally increased. If not con-
trolled properly, the thermal bridges may lead to higher
energy costs, moisture problems and thermal discomfort
of the building occupants.

The earlier study by Soares et al. reviews the main fea-
tures of steel-framed construction from the point of view
of life cycle energy consumption (Soares et al., 2017).
The overview indicates some strategies for reducing ther-
mal bridges and improving the thermal resistance of steel
structures in the building envelope. Furthermore, the ef-
fectiveness of insulation with respect to its position in the
steel-framed wall with CFS elements and non-structural
panels has been recently discussed in (Roque and Santos,
2017; Roque et al., 2020; Kapoor and Peterman, 2021).
By comparing CFS framing and hybrid-frame construc-
tion, the authors have observed that the location of the in-
sulation significantly affects thermal bridges and the over-
all thermal performance of the wall.

Hollow tubes and other shapes can be used as structural
elements in lightweight steel frames. Our study is focused
on prefabricated hollow CFS wall panels that

• can be easily insulated thermally and acoustically
due to the core space inside

• are easily recyclable

• have high mechanical strength combined with light
weight

• reduce the risk of moisture problems because of dry
construction environment

• can be transported economically

• are easy and fast to assemble

We present a family of such panels where the geometry
is varied parametrically and evaluate the thermal and hy-
grothermal performance of the building constructions in
northern conditions. It should be noted that due to their
large slenderness, i.e. width-to-thickness ratio, such ele-
ments are inherently susceptible to local, distortional and

SIMS EUROSIM 2021

DOI: 10.3384/ecp2118554 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

54



Figure 1. 3D sketch of the hollow CFS unit.

global buckling phenomena. We do not consider the struc-
tural integrity in this study but the insulation is expected
to help to prevent local buckling.

The structure of the paper is as follows. The proposed
wall element is introduced in the next section. Section 3
describes the models and the numerical simulation used
to analyze and optimize the thermal performance of the
wall element and contains the main results of the paper.
Moisture transport is then considered in Section 4 and the
paper ends with conclusions and remarks in Section 5.

2 Proposed Wall Element
The prefabricated wall element that we propose and an-
alyze consists of a hollow cold-formed section filled with
insulation as shown in Figure 1. Such prefabricated panels
can be easily assembled at the construction site, and they
form the main core of wall. This concept could be used
to substitute traditional construction techniques in heated
and non-heated buildings like the one shown in Figure 2.
The final assembly of such wall elements shall then in-
clude e.g. a gypsum board and a suitable weather protec-
tion or cladding on the inner and outer face of the core
wall respectively as shown in Figure 3.

Based on the practical demands and dimensional rec-
ommendations of the cold-formed steel industry, we
choose six different panel geometries for comparison by
simulation. The interior gypsum board and the weather
protection layer remain unchanged as they do not con-
tribute significantly to the overall assessment of the wall
element. The studied wall elements are labeled based on

Figure 2. Storage building in Oulu, Finland.

Figure 3. Conceptual model of the corner of the building made
of CFS units and temperature boundary conditions.

their characteristic geometric information (width, depth,
and thickness) and are listed in Table 1.

Table 1. Geometric parameters of the wall assemblies.

Label Width Depth Thickness
[cm] [cm] [cm]

W100-30-0.1 100 30 0.1
W100-30-0.2 100 30 0.2
W100-30-0.3 100 30 0.3
W100-15-0.2 100 15 0.2
W050-30-0.1 50 30 0.2
W150-30-0.1 150 30 0.2

Assuming a density of 7500 kg/m3 for steel and a den-
sity of 30 kg/m3 for the insulation, the unit masses of the
different assemblies per square meter of building envelope
are shown in Table 2 to demonstrate their practicality.

Table 2. Unit masses of the wall assemblies.

Label Unit Mass
[kg/m2]

W100-30-0.1 39
W100-30-0.2 58.4
W100-30-0.3 77.8
W100-15-0.2 44.2
W050-30-0.1 67.4
W150-30-0.1 55.4

3 Heat Transfer Analysis
The thermal analysis is based on a steady-state heat trans-
fer simulation of the selected wall assemblies using the
COMSOL software. The basic model takes into account
only heat conduction so that the governing partial differ-
ential equation is elliptic. Then the finite element method
produces the best approximation of the exact temperature
distribution on a given mesh. Two-dimensional models of
the wall assembly were created near a rectangular corner
which is the critical area concerning heat transfer in build-
ings and the finite element mesh was refined enough so
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that the thin structural components of the assembly can be
analyzed.

The main quantity of interest and optimization criterion
in the thermal analysis is the linear thermal transmittance
[W/(m2K)] defined typically in the building codes as

ψ = L2D −∑
j

U j · l j, (1)

where U j is the thermal transmittance [W/(m2K)], l j is the
length [m] over which U j applies and L2D is the thermal
coupling coefficient [W/(m2K)].

In our study, the thermal coupling coefficient L2D is ob-
tained by integrating the heat flow rate obtained from the
numerical simulation over the interior surface including
the corner and the thermal transmittances U1 and U2 are
determined similarly as the average heat flow rate of the
straight periodic wall segments. Because of symmetry,
U1 =U2 =U in our case.

3.1 Material Properties and Boundary Condi-
tions

One of the key elements in the present analysis is the ther-
mal transmittance due to the relatively high thermal con-
ductivity of steel. However, there is a considerable differ-
ence between the thermal conductivities of stainless and
mild steels. We use the value the value 15W/(mK) for
stainless steel and the value 50W/(mK) for mild steel.

The thermal conductivities of the gypsum board and the
weather protection layer are taken as 0.21W/(mK) and
0.06W/(mK), respectively. Furthermore, the convective
heat flux boundary conditions are used on the external and
internal sides of the wall by taking 1/0.04 and 1/0.13 as
the external and internal heat transfer coefficients, respec-
tively (Hopkin et al., 2011).

3.2 Results
Figure 4 shows as an example the steady-state temperature
distribution and the finite element mesh for the assembly
W100-30-0.2 with stainless steel. The thermal bridges at
the corner as well as near the junction of two neighboring
steel sections lead to slightly cooler temperatures at the
interior surface of the wall.

As expected, the temperature distribution is influenced
by the steel elements that have a very high thermal con-
ductivity as compared with the insulation. The phe-
nomenon becomes even more clear, if we look at the dis-
tribution of the heat flow rate over the interior surface of
the wall assembly. Figure 5 shows the heat flow rates cal-
culated along the interior wall surface for the wall assem-
blies W100-30-0.1, W150-30-0.2, and W100-15-0.2, re-
spectively. The geometry affects somewhat significantly
the heat flow rate near the corner as well as its overall dis-
tribution along the wall assembly.

The different wall element geometries are then com-
pared in Table 3 in terms of their U-value and the thermal
transmittance ψ at the corner according to Equation (1).
The comparison of the assemblies shows that increasing

Table 3. Comparison of thermal characteristics of different wall
assemblies.

Label U ψ

[W/m2] [W/(mK)]]

W100-30-0.1 0.18 0.03
W100-30-0.2 0.21 0.09
W100-30-0.3 0.26 0.06
W100-15-0.2 0.39 0.05
W050-30-0.2 0.30 0.03
W150-30-0.2 0.19 0.01

the thickness of the steel sheet strengthens the thermal
bridges between neighboring elements and hence the av-
erage U-value of the wall. Increasing the width of the wall
unit reduces the U-value but it cannot be increased exces-
sively because of practical reasons regarding economy and
transport. On the other hand, the relationship between the
geometric parameters and the thermal admittance at the
corner is more complex and the performance assessment
requires engineering judgement.

The influence of the specific steel type to the overall
thermal characteristics of the wall assembly is addressed
in Table 4 showing the thermal characteristics of the panel
W100-30-0.1 made of mild steel with thermal conductiv-
ity 50W/(mK). Comparing these values with the first line
of Table 3 shows that the higher thermal conductivity is
reflected in the average U-value of the wall assembly and
especially in the thermal bridge at the corner.

Table 4. Thermal characteristics of a wall assembly made of
mild steel.

Label U ψ

[W/m2] [W/(mk)]]

W100-30-0.1
(mild)

0.26 0.13

4 Hygrothermal Analysis
A time-dependent heat and moisture transport simulation
of the wall assembly was carried out again by the COM-
SOL software. The outdoor boundary conditions for the
temperature and the relative humidity were taken from the
values recorded by the Finnish Meteorological Institute in
Oulu, Finland for the year 2020. Indoor conditions were
represented by temperature and relative humidity derived
from the outdoor conditions according to the guidelines
by the Finnish Association of Civil Engineers (Suomen
Rakennusinsinöörien Liitto RIL ry, 2012). The simulation
was performed for a period of two years by replicating the
same boundary condition data. The reason for this is to ne-
glect any impact of the initial conditions on the obtained
results. Material properties required for coupled heat and
moisture transfer analysis are thermal conductivity, heat
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Figure 4. Temperature distribution for the assembly W100-30-0.2 with stainless steel.

Figure 5. Temperature distribution for the assemblies W100-
30-0.1 (top), W150-30-0.2 (middle), and W100-15-0.2 (bottom)
with stainless steel.

capacity, density, water vapor resistance factor, and mois-
ture isotherm. These were determined according to the
ISO 14056:2007 standard (International Organization for
Standardization, 2007).

Figure 6. Distribution of the relative humidity over the wall
cross section at the first day of each month.

Figure 6 shows the distribution of relative humidity
computed across the cross section at the center of a wall
element at the first day of each month. The relative hu-
midity has a tendency to decrease towards the interior of
the building. This is caused by diffusion that is mostly
transporting humidity from inside to outside, because the
indoor temperature exceeds the outdoor temperature for
most of the time. The distribution of the humidity in the
cross-section does not indicate humidity levels that might
lead to excessive condensation. However, humidity lev-
els around 90% are detected on the interior surface of the
outside metal sheet. This is natural since the steel sheet
cannot absorb moisture.

To investigate this phenomenon in more detail, we show
in Figure 7 the temperature and relative humidity on the
inner surface of outer metal sheet during one full year.
The relative humidity remains below 90 % for most of the
time so that the risk of condensation seems to be relatively
small.
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Figure 7. Temperature and relative humidity at the inner surface
of the outside metal sheet during one year simulation.

Figure 8. Relative humidity distribution in cross-section
1 (through joint between two elements) and cross-section 2
(through middle of an element).

A more detailed assessment of the hygrothermal per-
formance of the wall was carried out by using a two-
dimensional simulation model. In this case, a steady-state
simulation was performed to detect whether there is a risk
of excessive humidity at the joint between two elements.
The boundary conditions were specified identically to the
dynamic approach except that temperature and relative hu-
midity which were set to 20◦C and 50% for the inside and
to 0◦C and 90% for the outside, respectively.

As in the dynamic 1D case, the relative humidity does
not seem to reach condensation levels under the defined
conditions. However, as Figure 8 shows, higher relative
humidity is found at the joint between two elements near
the indoor wall. One possible reason for the humidity
accumulation is the contact of permeable thermal insula-
tion and the metal sheet. However, because the high level
of relative humidity (>90%) is located near the indoor
and the temperature should never drop below the freez-
ing point there, the risk of freezing will remain small at
this location.

5 Concluding Remarks
Cold-formed steel members in the building envelope can
form thermal bridges that may affect the overall hy-
grothermal performance of the building quite consider-
ably. We have introduced and studied a family of hol-
low cold-formed steel panels filled with insulation and
parametrized with respect to their main structural dimen-

sions. Thermal performance of six unique panel geome-
tries was examined computationally by using the COM-
SOL software while keeping the insulation properties
fixed. The heat transfer analysis was based on well-
established 2D steady state finite element analysis with
typical boundary conditions.

The thermal analysis revealed a clear correlation be-
tween the thickness of the hollow section and the thermal
bridging at the panel intersections. On the other hand, it
is more difficult to assess fairly the influence of the panel
thickness, width and depth to thermal bridging at build-
ing corners because the overall performance is influenced
by the internal thermal bridges. We also showed that the
notable difference between the thermal conductivities of
stainless and mild steels is clearly reflected in the thermal
performance of the corresponding wall assemblies.

We also performed time-dependent and steady-state hy-
grothermal analyses of the panels based on recent meteo-
rological data from Oulu, Finland. The results showed that
the hygrothermal conditions inside the studied elements
do not give raise to a significant risk for excessive humid-
ity and/or water condensation. However, it is of high im-
portance to avoid any surface condensation on the interior
surface of the wall, especially in the vicinity of thermal
bridges e.g. by providing well-ventilated indoor environ-
ment and/or by adding thermal insulation on the exterior
side of the wall assembly.

Our work provides the foundations for a further para-
metric optimization study of the structural elements where
also local and global buckling phenomena of the thin
sheets are considered. Further optimization of thermal
and hygrothermal performance can also be carried out by
refining the parametric space and developing novel opti-
mization algorithms.

Acknowledgements
This research has been supported by the Kolartic-CBC
project KO1089 Green Arctic Building. This support is
gratefully acknowledged.

References
Dan Dubina, Viorel Ungureanu, and Raffaele Landolfo. De-

sign of Cold-formed Steel Structures: Eurocode 3: Design
of Steel Structures. Part 1-3 – Design of Cold-formed Steel
Structures. ECCS – European Convention for Constructional
Steelwork, 2012.

Gregory J Hancock, Thomas Murray, and Duane S Ellifrit. Cold-
formed Steel Structures to the AISI Specification. CRC Press,
2001.

D.J. Hopkin, J. El-Rimawi, V. Silberschmidt, and T. Lennon. An
effective thermal property framework for softwood in para-
metric design fires: Comparison of the Eurocode 5 parametric
charring approach and advanced calculation models. Con-
struction and Building Materials, 25(5):2584–2595, 2011.
doi:10.1016/j.conbuildmat.2010.12.002.

SIMS EUROSIM 2021

DOI: 10.3384/ecp2118554 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

58

https://doi.org/10.1016/j.conbuildmat.2010.12.002


International Organization for Standardization. ISO10456:2007
Building materials and products – Hygrothermal properties –
Tabulated design values and procedures for determining de-
clared and design thermal values. International Organization
for Standardization, 2007.

Divyansh R. Kapoor and Kara D. Peterman. Quantifica-
tion and prediction of the thermal performance of cold-
formed steel wall assemblies. Structures, 30:305–315, 2021.
doi:10.1016/j.istruc.2020.12.060.

Eduardo Roque and Paulo Santos. The effectiveness
of thermal insulation in lightweight steel-framed walls
with respect to its position. Buildings, 7(1):13, 2017.
doi:10.3390/buildings7010013.

Eduardo Roque, Rui Oliveira, Ricardo M.S.F. Almeida, Romeu
Vicente, and Antonio Figueiredo. Lightweight and prefab-
ricated construction as a path to energy efficient buildings:
thermal design and execution challenges. International Jour-
nal of Environment and Sustainable Development, 19(1):1–
32, 2020. doi:10.1504/IJESD.2020.105465.

N. Soares, P. Santos, H. Gervásio, J.J. Costa, and L. Simões
Da Silva. Energy efficiency and thermal performance of
lightweight steel-framed (LSF) construction: A review. Re-
newable and Sustainable Energy Reviews, 78:194–209, 2017.
doi:10.1016/j.rser.2017.04.066.

Suomen Rakennusinsinöörien Liitto RIL ry. RIL 107-2012
Rakennusten veden- ja kosteudeneristysohje (in Finnish).
Suomen Rakennusinsinöörien Liitto RIL ry, 2012.

SIMS EUROSIM 2021

DOI: 10.3384/ecp2118554 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

59

https://doi.org/10.1016/j.istruc.2020.12.060
https://doi.org/10.3390/buildings7010013
https://doi.org/10.1504/IJESD.2020.105465
https://doi.org/10.1016/j.rser.2017.04.066


 

Modeling of Artificial Snow Production Using Annular twin-fluid 

nozzle 

Malene Nordbø1     Odd Ivar Lindløv2     Joachim Lundberg1 
1Department of Process, Energy and Environmental Technology, University of South-Eastern Norway, Norway, 

Joachim.lundberg@usn.no 
2Nedsnødd AS, Norway 

 

 

 

 

Abstract 
Nedsnødd AS develops a system for generating artificial 

snow. The concept is to optimize snow production for 

geographical locations where so-called ‘marginal’ 

conditions for snow production dominate the weather 

picture. To produce artificial snow, liquid water in a 

spray is exposed to cold air and becomes an agglomerate 

of frozen droplets. The basic idea is to improve the 

atomization of water to enhance the snow production 

capability. This work develops a model for the cooling 

process of the water droplets to simulate the processes 

determining the capabilities for snow production 

equipment. 

Keywords:     heat transfer, mass transfer, droplets  

1 Introduction 

Nedsnødd AS is a company specialized in nozzles for 

artificial snow production in climatically marginal 

regions. Marginal conditions mean that the climate is 

close to 0°C and the humidity is high. To produce 

artificial snow, liquid water is discharged as a spray to 

cold air and becomes an agglomerate of frozen droplets. 

The basic mechanism of natural snow generation is 

kernel growth, in contrast to artificial snow where multi-

droplet agglomeration is dominant. The trajectory of 

natural snow is several orders of magnitude longer than 

artificial snow. Several factors affect the production of 

artificial snow: air temperature and humidity, water 

temperature and velocity, droplet size distribution, and 

possible amount of nucleation kernels to enhance 

growth.  

Current equipment for snow production has the 

disadvantage of high energy consumption (Techno 

Alpin, 2021) and the tendency to produce too wet snow 

at marginal conditions. By enhancing water 

atomization, artificial snow is produced at reduced water 

and air pressures, which reduce the energy consumption 

and ultimately the cost of the snow.  

The artificial snow production technology started in 

the 1940s by a mistake where Dr. Ray Ringer studied 

the effect of rime icing on a jet engine in Canada. In 

1961, Alden Hanson designed and patented a so-called 

snow fan machine for the generation of artificial snow 

by the addition of nucleation agents. Later on, several 

inventors have developed snow machines based on 

developed technology in addition to trial-and-error tests 

(Bellis, 2020).  

Today, artificial snowmaking products are available 

worldwide, but the theory behind technology and 

process is not well documented or published. For this 

study, datasheets from different vendors and 

experimental studies performed in the Austrian Alps 

(Olefs et al., 2010) and at NTNU (Berg, 2017) have been 

used to understand how artificial snow production 

technology works. 

Olefs et al. (2010) investigated the maximum wet-

bulb temperature for producing artificial snow in the 

Alps. The study's author recommends that the maximum 

air temperature for producing snow is -1°C with 75% 

relative humidity but do not specify what weather 

conditions resulted in the snow density of 400 𝑘𝑔/𝑚3. 

They also indicated that relative humidity plays an 

essential role in the freezing process, where the amount 

of cooling is directly proportional to the relative 

humidity. If the humidity decrease, the evaporative 

cooling increases which give better snowmaking 

conditions.  

Berg (2017) investigated techniques for artificial 

snow production aimed at Granåsen ski resort with an 

altitude of 180 m in Trondheim, which is in marginal 

conditions. The equipment of the study is a Northwind 

450 snow fan, produced by DemacLenco with a water 

pressure of 30 bar(g). The estimate for the production of 

artificial snow was 52 𝑚3/ℎ of snow. The lowest snow-

density was found to be 811-936 𝑘𝑔/𝑚3. The study was 

performed in March, but ambient relative humidity and 

temperature are not specified. 

Current work uses a novel twin-fluid nozzle 

developed by Nedsnødd AS. The nozzle is applied to a 

lance using low pressure (<5 bar(g)) air and water. An 

expanding air jet is aimed onto a deflector plate where 

an annular water sheet meets the high-velocity air jet. 

The result is enhanced droplet breakup and the droplets 

are expected to be smaller than for traditionally flat fan 

sprays. The nozzle design is similar to Lundberg et al. 

(2019). 
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A model is developed to simulate the behavior of the 

Nedsnødd artificial snow nozzle and the outcomes are 

discussed. The model is supported by experimental 

measurements. An image of the setup for the artificial 

snow spray is given in Figure 1. 

               

Figure 1. Experimental setup and artificial snow spray 

located in Arabygdi. 

2 Materials and methods 

Artificial snow consists of cold small water droplets, 

that stick together to make agglomerates of droplets to 

imitate natural snow. In this work, an annular sheet 

twin-fluid nozzle is used to generate the droplets (Figure 

2). The nozzle utilizes compressed air to accelerate the 

flow through a venture-type nozzle aimed at an external 

deflection cone. An annular water sheet is exposed to 

the deflected high-velocity airflow. Due to the high 

velocity of the air, the water sheet breaks up into fine 

water droplets with a high initial velocity. Traveling 

from the nozzle the droplets are exposed to ambient air 

where both mass (evaporation) and heat (convection) 

transfer occur. Depending on the surrounding air 

temperature and relative humidity, the droplets may 

freeze or remain as a liquid until it reaches the ground.  

               

Figure 2. Split drawing of the Nedsnødd AS nozzle. 

2.1 Modeling 

The model is limited to single-sized droplets with 

ambient air at constant relative humidity, pressure, and 

temperature. In addition, the collision between the 

droplets throughout the trajectory and the interaction 

between other droplets are neglected. The models for 
atomization air from the nozzle, the water droplets, and 

the surrounding air are combined to output droplet 

behaviors like heat transfer, mass transfer, and droplet 

trajectory.  

An important parameter in artificial snowmaking is 

relative humidity. It can be found by Cengel et al. (2015) 

using the vapor pressure of the water in the ambient air 

(𝑃𝑣) divided by the saturation vapor pressure (𝑃𝑣,𝑠𝑎𝑡@𝑇) 

at the ambient pressure using: 

𝑅𝐻% =
𝑃𝑣

𝑃𝑣,𝑠𝑎𝑡@𝑇
 (1) 

The saturated vapor pressure is calculated using Buck's 

formula (Xu et al., 2012). It is assumed that the 𝑅𝐻% is 

constant. 

The velocity of the atomization air is modeled using 

thermodynamic relations for compressible flow (Cengel 

et al., 2015) as: 

𝑢𝑎,0 = √𝛾𝑅𝑎𝑇𝑎,0 (2) 

where 𝛾, 𝑅𝑎, and 𝑇𝑎,0 is the heat capacity ratio, specific 

gas constant, and initial atomization air temperature, 

respectively.  

The initial velocity of the water sheet is modeled using: 

𝑢𝑠ℎ𝑒𝑒𝑡 =
�̇�𝑤

𝜌𝑑𝐴𝑠ℎ𝑒𝑒𝑡
 (3) 

where 

𝐴𝑠ℎ𝑒𝑒𝑡 =
𝜋

4
 ((𝑑𝑎𝑛𝑛𝑢𝑙𝑎𝑟 + 𝜖)

2 − 𝑑𝑎𝑛𝑛𝑢𝑙𝑎𝑟
2  ). (4) 

𝑑𝑎𝑛𝑛𝑢𝑙𝑎𝑟 is the internal diameter of the sheet and 𝜖 is the 

sheet thickness. �̇�𝑤 is the mass flow of water and 𝜌𝑑 is 

the water or droplet density. 

Using Equations 2 and 3 indicates the initial droplet 

velocity, nevertheless the air velocity is in the order of 

300 m/s and the sheet in the order of 10 m/s. The 

droplets are assumed to have an initial velocity of 10% 

of the air velocity with the directional vector: 

𝑢𝑑,𝑥0 = 0.1 ⋅ 𝑢𝑎,0 cos(𝜃) (5) 

𝑢𝑑,𝑦0 = 0.1 ⋅ 𝑢𝑎,0 sin(𝜃) (6) 

where the angle 𝜃 is the deflection angle of the cone. 

The density of surrounding air is modeled as Tracy et 

al. (1980) like: 

𝜌𝑎𝑚𝑏 =
𝑃

287.04(𝑇𝑎𝑚𝑏 + 273.15)
 (7) 

where 𝑃 is the atmospheric pressure and 𝑇𝑎𝑚𝑏 is the 

ambient temperature. 

2.1.1 Motion (droplet trajectory) 

An expression for the trajectory is found by applying 

Newton’s second law on a droplet, as shown in Figure 

3. Here, the drag, gravity, and buoyancy forces are 

included. Notice that if the drag force is equal to the 

gravity force, the acceleration becomes zero, gives the 

terminal velocity (Young & Freedman, 2014). The 

differential equations for calculating the acceleration of 

the droplet in x and y-direction are obtained, as shown 

in Equations 8 and 9 (Dehghani-Sanij et al., 2018). 
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The droplet velocity in the x-direction 𝑑𝑥/𝑑𝑡 and y-

direction /𝑑𝑡 , equals 𝑢𝑥 and 𝑢𝑦, respectively. Further, 

the velocity of ambient air in the x and y-direction is 

represented by 𝑢𝑟𝑥 and 𝑢𝑟𝑦. 𝑑 represents the droplet 

diameter. 

               

Figure 3. Free body diagram of a water droplet. 

𝑑2𝑥
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= −

3

4

𝐶𝑑
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(
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+ (
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(8) 

𝑑2𝑦

𝑑𝑡2
= 𝑔(

𝜌𝑎𝑚𝑏
𝜌𝑑

− 1) −
3

4

𝐶𝑑
𝑑

𝜌𝑎𝑚𝑏
𝜌𝑑

(
𝑑𝑦

𝑑𝑡
− 𝑢𝑟𝑦)

⋅ √(
𝑑𝑥

𝑑𝑡
− 𝑢𝑟𝑥)

2

+ (
𝑑𝑦

𝑑𝑡
− 𝑢𝑟𝑦)

2
 (9) 

In this paper, the air represents a mixture of entrained 

air from the surroundings and air from the nozzle. This 

is simplified by adding an initial ambient air velocity. 

The droplet velocity is then calculated by using 

Equation 10 (Dehghani-Sanij et al., 2018). 

𝑢𝑑 = √𝑢𝑥2 + 𝑢𝑦2 (10) 

To determine the drag coefficient 𝐶𝑑, which is a function 

of the droplet Reynolds number 𝑅𝑒𝑑, the Schiller 

Neumann model is applied similar to Dehghani-Sanij et 

al. (2018): 

𝐶𝑑 =

{
 
 

 
 

24

Red
𝑅𝑒𝑑 ≤ 1

24

Red
(1 + 0.15Red

0.687) 1 < 𝑅𝑒𝑑 ≤ 1000

0.44 𝑅𝑒𝑑 > 1000

 (11) 

𝑅𝑒𝑑 =
𝜌𝑎𝑚𝑏𝑑𝑢𝑒𝑓𝑓

𝜇𝑎
 (12) 

where 𝑢𝑒𝑓𝑓 is the relative motion of the droplets to the 

ambient air and 𝜇𝑎 is the dynamic viscosity of air. 

2.1.2 Heat transfer 

When the droplets are discharged from the nozzle, the 

heat transfer influences the droplet size. In this model, 

convection and evaporation are considered, while 

conduction and radiation are neglected. It is assumed 

that the droplet evaporated from positive centigrade 

until it obtains 0°C. When this temperature is reached, 

the droplets are considered to be frozen at 0°C.  

The following expression is used to calculate the 

change of the droplet temperature, given in Dehghani-

Sanij et al. (2018) as: 

𝑑𝑇𝑑
𝑑𝑡

= [
6(
𝑑𝑚𝑑

𝑑𝑡
)

𝜋𝜌𝑑𝑑
3
] 𝑇𝑑 −

6

𝜌𝑑𝑐𝑝,𝑑𝑑
(𝑄𝑒 + 𝑄𝑐) (13) 

where the convective heat loss can be found in 

Lozowski et al. (2000) using  

𝑄𝑐 = ℎ𝑐(𝑇𝑑 − 𝑇𝑎𝑚𝑏). (14) 

The heat transfer coefficient ℎ𝑐 is modeled as  

ℎ𝑐 =
𝑁𝑢 ⋅ 𝑘𝑎
𝑑

 (15) 

with the Nusselt number 𝑁𝑢 and the thermal 

conductivity of air 𝑘𝑎. 

𝑁𝑢 = 2.0 + 0.6𝑃𝑟0.33𝑅𝑒𝑑
0.5 (16) 

𝑘𝑎 = 9.027 ∙ 10
−5 𝑇𝑎𝑚𝑏 + 0.0246 (17) 

The Prandtl number 𝑃𝑟 is modeled like Bergman et al. 

(2011) using the dynamic viscosity of air µ𝑎 and the 

thermal diffusivity 𝛼𝑎 of air. 

𝑃𝑟 =
𝜇𝑎

𝜌𝑎𝑚𝑏 ⋅ 𝛼𝑎
 (18) 

𝜇𝑎 = 𝜇0 [
𝑇0 + 120

𝑇𝑎𝑚𝑏 + 120
(
𝑇𝑎𝑚𝑏
𝑇𝑜

)
1.5

] (19) 

𝛼𝑎 =
1

57736 − 585.78 𝑇𝑎𝑚𝑏
 (20) 

2.1.3 Mass transfer 

From Equation 13 𝑄𝑒 is used. This is the heat loss due 

to vaporization (Bergman et al., 2011) and is modeled 

as: 

𝑄𝑒 = ℎ𝑐 (
𝑃𝑟

𝑆𝑐
)
0.63 𝐸 ⋅ Δ𝐻𝑣𝑎𝑝

𝑃 ⋅ 𝑐𝑝,𝑎𝑚𝑏
𝑃𝑣  (21) 

where 

𝑆𝑐 =
𝜇𝑎

𝜌𝑎𝑚𝑏𝐷𝑑,𝑎𝑚𝑏
 (22) 

𝐸 is the ratio of molar weight, Δ𝐻𝑣𝑎𝑝 is the heat of 

vaporization, and 𝐷𝑑,𝑎𝑚𝑏 is the binary diffusion 

coefficient of water into the air at atmospheric pressure 

(Incropera, 2017) 

𝐷𝑑,𝑎𝑚𝑏 = 0.26𝑥10
−4 (

𝑇𝑎𝑚𝑏 + 273.15

273.15
) .1,5 (23) 

The heat capacities for the airflow water and entrained 

air are assumed constant throughout the process. The 

change of the droplet diameter is calculated by using 

Equation 24. 

𝑑d

𝑑𝑡
= −

(
𝑑𝑚𝑑

𝑑𝑡
)

𝜌𝑑𝜋𝑑2
 (24) 
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where (
𝑑𝑚𝑑

𝑑𝑡
) is calculated according to Horjen (2013) 

using: 

(
𝑑𝑚𝑑

𝑑𝑡
) =

𝑄𝑒
Δ𝐻𝑣𝑎𝑝

𝐴𝑑 (25) 

𝐴𝑑 is the surface area of the droplet. 

2.1.4 Constants 

The constants for the modeling are summarized in Table 

1 where the reference is indicated. 

Table 1. The table presents constants and initial 

conditions are used in the model. 

 Value Units References 

𝑐𝑝,𝑎𝑚𝑏 1.005 [J/kg K] Cengel et al. (2015) 

𝑐𝑝,𝑑 4180 [J/kg K] Cengel et al. (2015) 

𝑑𝑎𝑛𝑛𝑢𝑙𝑎𝑟 1.4 ⋅ 10
−2 [m] Measured 

E 0.6215 [-] 
(Dehghani-Sanij et 

al., 2018) 

𝑔 9.81 [𝑚/𝑠2] Cengel et al. (2015) 

Δ𝐻𝑣𝑎𝑝 22.6 ∙ 105 [ 𝐽/𝑘𝑔] Cengel et al. (2015) 

𝑃 101325 [𝑃𝑎] Cengel et al. (2015) 

𝑅𝑎 287 [J/kg K] Cengel et al. (2015) 

𝑅𝐻% 79 [−] Measured 

𝑇𝑎𝑚𝑏 −3 [ °𝐶] Measured 

𝑇𝑜 296.16 [ 𝐾] 
(Dehghani-Sanij et 

al., 2018) 

𝛾 1.4 [-] Cengel et al. (2015) 

𝜖 50 [µm] Measured 

𝜇0 1.8325 ∙ 10−5 [𝑃𝑎 ∙ 𝑠] 
(Dehghani-Sanij et 

al., 2018) 

𝜌𝑑 1000 [ 𝐾𝑔/𝑚3] Cengel et al. (2015) 

Initial conditions   

𝑥0 0 [𝑚] Defined 

𝑦0 1.324 [𝑚] Measured 

𝑢𝑟𝑥 1.0 [m/s] Defined 

𝑢𝑟𝑦 0 [m/s] Defined 

𝜃 50 [°] Measured 

𝑇𝑑,0 1 [°𝐶] Measured 

𝑇𝑎,0 −37.19 [ °𝐶] Nordbø (2021) 

𝑑0 40,50,120,170,360 [µ𝑚] Defined 

𝑡 6 [𝑠] Defined 

2.2 Experimental setup 

Nedsnødd AS is using a transportable snow-producing 

rig on a car trailer. In short, the rig contained two 

aggregates, a water tank, a pump, a compressor, an 

electric converter, a dryer, water, and air hoses, sensors, 
lance, and a nozzle. The experimental rig is described in 

detail in Nordbø (2021).  

The experimental measurement intends to compare 

and adjust the model. The model demands an input on 

bulk flow velocity, droplet sizes, and droplet velocity 

distribution.  

The measurements were performed using a LED-

based shadow imaging technique developed in the work 

by Lundberg et al. (2019). Back-illuminated images 

were captured by a high-speed camera where the 

droplets were manually counted by mouse-clicking on 

the image. The velocity was found from the adjacent 

frame. The same procedure was performed for 77 

droplets used in the experimental measurements. The 

camera settings are shown in Table 2. 

Table 2. High-speed camera settings. 

Fastcam – APX RS model 250K  
Frame rate 5000 fps 

Shutter velocity 1/50000 sec 

Resolution 512 x 1024 

Recording time 0.1144 sec 

3 Results and discussion 

3.1 Experimental 

The model developed in this work is based on three 

experiments (Porsgrunn, Arabygdi, and Kviteseid). The 

only experiment yielding snow is the Arabygdi 

experiment. The ambient conditions and the pressure 

parameters in each experiment are given in Table 3. 

The experimental measurement in Arabygdi gives the 

droplet size distribution in Figure 4 compared to a 

Rosin-Rammler distribution (solid line). Figure 5 shows 

the quality of the fit in an ln-ln plot. The fit does not 

represent the largest droplets very well and can benefit 

from a higher number of samples. It is important to 

consider that this is from a single location in the flow 

and might be different in other locations. The location 

in the spray is 41 cm from the nozzle and 16 cm radially. 

Table 3. Experimental parameters. 

Place Porsgrunn  Arabygdi Kviteseid  

Date  13.03.2021 18-19.03.21 21.03.2021 

Altitude 7 m 687 m 307 m 

T-Ambient  -2.6 °C -2.5 to -4 °C -1 to 1 °C 

RH% 96% 79 % 64 % 

U-wind 0-0.8 m/s 0-1.7 m/s 5 m/s 

P-Water 2.66 bar(g)  4.64 bar(g)  4.64 bar(g)  

T-Water  ~10 °C 1 °C 2 °C 

P-Air 5.38 bar(g)  1.95 bar(g)  1.95 bar(g)  

T-Air 10 °C 10 °C 10 °C 

T-Wet-bulb -3.05 °C - 4.6 °C -3.64 °C 
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Figure 4. Droplet distribution of experiments in Arabygdi 

compared to an optimized Rosin-Rammler distribution. 

               

Figure 5. ln-ln plot of the quality of fit for the experiment 

in Arabygdi, where CDF is the cumulative distribution 

function. 

               

Figure 6. The velocity of the droplets from the 

experiment in Arabygdi. 

The velocity of the droplets (Figure 6) shows a weak 

tendency of increased velocity with increasing diameter. 

Nevertheless, the measurements show that the bulk 

velocity is approximately constant in this region of the 

spray.  

     Visual considerations during the experiment 

confirmed that the nozzle produced artificial snow at 

given parameters. From the image shown in Figure 7, 

the droplets form large agglomerates according to 

theory.  

               

Figure 7. Rime-shaped snow in Arabygdi. 

3.2 Simulation  

The trajectory, flight time, velocity- and temperature 

profile using the initial conditions are shown for 

droplets with the diameter of 40, 50, 120, 170, and 360 

μm. The range of 40 – 170 μm droplet sizes is defined 

based on the image processing performed in Arabygdi. 

The 360 μm is to investigate how larger droplets 

influence heat and mass transfer. 

The initial angle of the droplet angle is set to 50°. 

Also, the initial height of the droplets is defined as 1.324 

m, based on the nozzle position measured during the 

experiment.  

The droplets of 40 μm and 50 μm obtain the most 

significant displacement with more or less neutral 

gravitational force. The droplet of 360 μm shows weak 

affection of the entrapped air velocity following a 

ballistic pattern. The 360 μm droplet shows a higher 

influence of the gravitational force while the other 

droplets are drag force driven. This is shown in Figure 8 

and Figure 9. The velocity profile of each droplet is 

shown in Figure 10.  

The initial temperature of the droplets is 1 °C based 

on experimental measurements. The droplets are cooled 

down to 0 °C within microseconds due to evaporation 

before the temperature is further decreased. Figure 11 

shows how the temperature of the droplets converges to 

its final temperature. 

Figure 11 shows that the 360 μm droplet does not 

reach the same final temperature as the other droplets. 

All droplets, except the 360 μm droplet, cool down to a 

temperature just below the ambient temperature of - 3°C 

before hitting the ground. The droplet temperature as a 

function of travel length is illustrated in Figure 11. 
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Figure 8. Predicted flight time that is obtained by the 

modeled droplets. 

               

Figure 9. Position/trajectory of the modeled droplets. 

               

Figure 10. Velocity profile of the modeled droplets 

concerning the x-position of the droplets. 

               

Figure 11. Temperature change concerning the motion of 

modeled droplets in the x-direction. 

The airflow temperature inside the nozzle's throat was 

calculated to be -37.19 °C, assuming an isentropic 

process, compressible gas, and the stagnation 

temperature from the compressor to be 10°C. A 

thermographic photo captured in Arabygdi shows that 

the material at the nozzle tip is - 37.5°C, which indicates 

this to be a reasonable assumption. On the other hand, 

the amount of water flow was three times greater than 

the airflow through the nozzle, and the water was 

assumed to be 1 °C. The heat transfer of the water 

contributes more significantly to the mixture 

temperature of the ejected droplets.  

A thermographic photograph of the discharged water 

sheet, 1 cm out from the nozzles exit plane in Arabygdi, 

indicated that the water was reduced to roughly -1.4 °C. 

The temperature simulation of the droplets showed that 

the droplets rapidly decreased at this point of the nozzle. 

As the thermographic camera used has an accuracy of ± 

2°, the result seems reasonable. In addition, the 

temperature simulation showed that all droplets reached 

0 °C within 150 μs and could freeze before they reached 

the ground. Here, the definition of evaporative heat loss 

comes into sight. It was defined to stop when the surface 

temperature of the droplets had reached 0°C. Thus, the 

water molecules of high internal energy would stop 

ejecting themselves from the droplets and thereby 

stabilize the temperature of the droplets. The wet-bulb 

temperature, measured to be –4.6 °C by using the 

weather conditions in Arabygdi, was thereby not 

reached.  

Changes in the relative humidity RH% were not 

simulated in this work. As an effect of this, the 

evaporative heat transfer was expected to be larger than 

in the experiment. In the experiments, the humidity from 

the evaporation is expected to saturate the air rapidly 

after the atomization.  

The diameter 40 and 360 droplets were reduced by 

0.04 and 0.06 %, respectively. The experiment in 

Arabygdi gave snow density of 490 𝑘𝑔/𝑚3 in the other 
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locations, no snow was produced. There may have been 

other factors that influenced the product. The 

experiment in Porsgrunn was not performed within a 

continuous cold period like the experiment performed in 

Arabygdi. Thus, the ground in Porsgrunn was probably 

not frozen and heated the falling droplets. 

The snow shape obtained in Arabygdi was 

photographed. From the picture, frozen droplets are 

stacked on each other and may be characterized as rime 

formation. 

4 Conclusion 

This work aimed to perform both literature, modeling, 

and experimental study of artificial snow production in 

marginal geographic conditions. A snow-producing rig 

designed by Nedsnødd AS was used during the 

experimental study. The innovative part of the rig was 

the assembled novel twin-fluid annular sheet nozzle, 

where a thin sheet of water was atomized into droplets 

by high-velocity air.  

As the literature on artificial snow production was 

limited, the water cycle and natural snow formation 

were studied to understand artificial snow production. A 

theoretical model was developed to analyze the 

trajectory and heat and mass balance of a single droplet 

discharged from the nozzle. The snow density goal was 

defined to be 500 kg/m3. A high-speed camera was used 

to record the droplet size and velocity in the spray. The 

experimental measurements were further used to 

improve the droplet model. 

Only one of the experiments performed in Arabygdi 

yielded snow with a density of 490 kg/m3, which 

satisfied the snow density goal of 500 kg/m3. 

The model developed during this work can be used 

for general trends in artificial snow production. The 

model gives reasonable results for single droplets that 

can be further developed into a multi-droplet system. 

Acknowledgments 

The University of South-Eastern Norway acknowledges 

Nedsnødd AS for the support and experimental rig. 

References 

M. Bellis. Who Invented the Snowmaking Machine? 

ThoughtCo, Oct. 29, 2020. 

O.E.H. Berg, Optimal produksjon av snø fra flere 

produksjonsenheter i samme område. Master’s thesis, 

Department of Engineering cybernetics, Norwegian 

University of Science and Technology, Trondheim, 2017. 

T.L. Bergman, A.S. Lavine, F.P. Incropera and D.P. DeWitt. 

Introduction to Heat Transfer, 6th ed. John Wiley & Sons, 

Inc, 2011. 

Y. A. Cengel, M. A. Boles and M. Kanoglu. Thermodynamics: 

An Engineering Approach, 8th ed. New York: McGraw-Hill 

Education, 2015. 

A.R. Dehghani-Sanij, Y.S. Muzychka and G.F Naterer. 

Droplet trajectory and thermal analysis of impinging saline 

spray flow on marine platforms in cold seas and ocean 

regions. Ocean Engineering, 148:538-547, 2018. 

doi:10.1016/j.oceaneng.2017.11.053. 

I. Horjen. Numerical modeling of two-dimensional sea spray 

icing on vessel-mounted cylinders. Cold Regions Science 

and Technology 93:20–35, 2013. 

doi:10.1016/j.coldregions.2013.05.003. 

F. P. Incropera, D. P. Dewitt, T.L. Bergman and A. S. Lavine. 

Incroperas's principles of heat and mass transfer, 1st ed. 

New York: John Wiley & Sons Inc, 2017. 

E.P. Lozowski, K. Szilder and L. Makkonen. Computer 

simulation of marine ice accretion. Philosophical 

Transactions of the Royal Society A, 358:2811–2845, 2000. 

doi:10.1098/rsta.2000.0687. 

J. Lundberg, K. Vaagsaether and O.I. Lindløv. Performance 

of a novel diesel atomization nozzle. Nordic Flame days 

2019, August 28th-29th, Turku, Finland, 2019. 

M. Nordbø. Experimental investigation of artificial snow 

production in marginal geographic conditions, Master’s 

Thesis, Faculty of Technology, Natural sciences and 

Maritime Sciences, University of South-Eastern Norway, 

Norway, 2021. 

M. Olefs, A. Fischer and J.Lang. Boundary Conditions for 

Artificial Snow Production in the Austrian Alps. Journal of 

applied meteorology and climatology, 49( 6):1096-1113, 

2010. doi:10.1175/2010JAMC2251.1. 

Techno Alpin. TT10: Tower power. technoalpin.com 

(accessed online Apr. 21, 2021). 

C.R. Tracy, W.R. Welch and W.P. Porter. Properties of Air, a 

Manual for Use in Biophysical Ecology. Technical report 

No. 1, third ed. University of Wisconsin, 1980. 

J. Xu, Q. Wei, S.Peng and Y. Yu. Error of Saturation Vapor 

Pressure Calculated by Different Formulas and Its Effect on 

Calculation of Reference Evapotranspiration in High 

Latitude Cold Region. Procedia Engineering, 28:43-48, 

2012. doi:10.1016/j.proeng.2012.01.680. 

H. D. Young and R. A. Freedman. Sears and Zemansky’s 

University Physics with Modern Physics, 13th Edition, 

Pearson, 2014. 

SIMS EUROSIM 2021

DOI: 10.3384/ecp2118560 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

66



Electrification of an entrainment calciner in a cement kiln system – 

heat transfer modelling and simulations 

Ron M. Jacob     Lars-Andre Tokheim 

Department of Process, Energy and Environmental Technology, University of South-Eastern Norway,  
{ron.jacob, Lars.A.Tokheim}@ usn.no 

 

 

 

Abstract 
Carbon capture and storage may be applied to reduce the 

CO2 emissions from a cement plant. However, this often 

results in complex CO2 capture solutions. To simplify 

the capturing process, an alternative is to electrify the 

cement calciner. This study covers the feasibility of 

electrifying an existing calciner by inserting electrically 

heated rods in the calciner. An existing entrainment 

calciner in a Norwegian cement plant is used as a case 

study. 

A model is developed to quantify the aspects 

concerning the feasibility of the calciner. The model 

first estimates the possible area of inserted rods in the 

available space. A mass and energy balance is then 

performed to estimate the heat duty of the heating rods. 

Further, a radiation heat transfer model is included to 

identify the feasibility of transferring heat from the rods 

to the raw meal. Finally, the model includes the design 

of the heating rod to estimate the required number of 

heating elements.  

The results indicate that it is technically feasible to 

electrify the calciner. The total heat duty of the calciner 

is 77 MW, with 68 MW for meal preheating and 

calcining, and 9 MW for gas preheating. 2570 heating 

rods are required, operating at 1150 °C in the gas 

preheating zone and 1050 °C in the meal preheating and 

calcining zone. The feasible heat flux is 26-34 kW/m² 

for gas preheating, 35-80 kW/m² for meal preheating 

and 30-50 kW/m² for calcination. However, some 

challenges related to recuperating the heat from the gas 

and maintenance of the system must be studied further. 

 

Keywords: Calcination, Electrification, Heat transfer, 

Resistance heating 

1 Introduction 

The cement industry is responsible for around 7% of the 

global emission of CO2 and around 4% in the EU (IEA, 

2020). The primary sources of these emissions are the 

combustion of fossil fuels and the decomposition of 

limestone (CaCO3 → CaO + CO2). A modern cement 

kiln system couples these two processes, and this 

coupling gives a very efficient, direct-contact heat 

transfer. 

The CO2 emission from the system may be captured 

by using carbon capture and storage technologies. 

However, in this method, the CO2 must be separated 

from other components in the flue gas, making it a 

complex process. A simpler solution may be to electrify 

the calciner. An electrified calciner will have pure CO2 

generated from the decomposition reaction, thus the 

need for separation from flue gas may be avoided. This 

method has the potential to avoid around 72 % of the 

CO2 emission from the cement kiln system (Tokheim et 

al., 2019). However, for this to be an environmentally 

viable solution, the electricity must be produced from 

renewable sources, thereby avoiding indirect CO2 

emissions. 

A suitable calciner design must be selected to 

electrify a calciner. Different designs may be selected, 

such as rotary calciners, drop tube calciners, fluidized 

bed calciners and tunnel calciners. The literature 

available on electrified calciner is sparse, and no studies 

of an electrified entrainment calciner have been found. 

The Leilac project studied a drop tube calciner with 

indirect heating using natural gas (Hills et. al., 2017), 

and this drop tube calciner may be electrified by 

replacing natural gas with an electrical heater (Usterud 

et al., 2021). A fluidized bed calciner concept using 

binary particles has also been studied (Samani et. al., 

2020).  

In this study, electrification of an existing calciner 

operating in the entrainment mode is used in a case 

study. This will provide a reference case to which other 

potential calciner designs may be compared when it 

comes to electrification.  

This work aims to study the possibility of electrifying 

the entrainment calciner by inserting heating rods in it. 

Such a concept may make it easy for the cement industry 

to quickly transition to an electrically heated calciner 

without making significant changes to the existing 

calciner geometry. Such a study has not been published 

before to the best of authors’ knowledge. 

2 System description 

An entrainment calciner operating in a Norwegian 

cement plant, producing 1 Mt of clinker per year, is 

considered for electrification in this study. A 

comparison of the existing calciner and an electrified 

version of this calciner are shown in Figure 1. 
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The existing calciner (cf. the left-hand side of Figure 

1) has five main parts; a downdraft flash calciner with a 

burner, a mixing chamber, a tube calciner, a swirl 

chamber and gas duct connections to cyclone separators 

(Tokheim, 2006). 

The fuel mix (coal, refused derived fuel, solid 

hazardous waste and animal meal) is fed into the 

downdraft burning-chamber where it is mixed with 

tertiary air and preheated meal. The fuel ignites and 

provides energy for calcination of the preheated meal. 

The meal swirls around the burner wall and protects it 

from too high temperature generated by the burning 

fuel. The meal is then transported to the mixing chamber 

where it mixes with high temperature kiln gas. The kiln 

gas provides additional energy needed for meal 

calcination and also enough energy to entrain the meal 

through the tubular calciner (the “Pyroclone”) towards 

the swirl chamber (the “Pyrotop”), which improves the 

burnout of fuel particles. The mixture of gas and meal is 

then transported to cyclone separators, where the 

calcined meal is sent to the rotary kiln for further 

processing, whereas the gas is used for preheating of 

meal in cyclone preheater tower (Tokheim, 2006). The 

dimensions of the reference calciner used for 

calculations are summarized in Table 1. 
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Figure 1: Existing (left) vs electrified entrainment 

calciner (right) 

 

Table 1. Dimensions of the reference calciner geometry 

Dimensions Symbol Value 

Diameter of the tubular 

calciner [m] 
𝐷𝐶 

3.74 

Length of the gas preheater 

section [m] 
𝐿𝐺𝑃 

7 

Length of the calciner section 

after meal feeding [m] 
𝐿𝐶 

50.2 

 

The existing calciner may be converted to an 

electrified calciner by making the following changes 

(Figure 1, right-hand side): 

 

1. Cutting the supply of kiln gas 

2. Cutting the supply of fuel, air and preheated meal 

in the burner  

3. Moving the meal inlets to a position right above the 

mixing chamber 

4. Feeding recycled CO2 (required for particle 

entrainment) at the top of the combustion chamber 

5. Inserting heating rods in the combustion chamber 

and the mixing chamber to provide energy for 

preheating of the recycled gas 

6. Inserting heating rods along the tube calciner 

geometry to provide energy for calcination 

 

The kiln gas and the tertiary air will bypass the 

electrified calciner (Figure 1, left-hand side) and will 

instead be mixed and lead to the preheater tower (not 

shown in the figure) for meal preheating, so that the rest 

of the kiln system is unaffected by the calciner 

modification. 

3 Model development 

The modelling combines a mass and energy balance of 

the calciner with a geometric model for insertion of 

heating rods, a model for heat transfer from the heating 

rods and design of an appropriate heating element. This 

section covers these four aspects of the modelling work. 

3.1 Heating element design 

Resistance heating is a relatively simple technology for 

electricity-based heating. The heat is produced when an 

electric current (𝐼) passes though a resistor (the heating 

element) with a certain resistance (𝑅). The produced 

heating rate (𝑞�̇�) may be quantified as, 

𝑞�̇� = 𝐼2𝑅 = 𝑉𝐼 (1) 

Here, 𝑉 is the voltage drop over the heating element. 

The resistance of the heating element (𝑅) is further 

given by, 

𝑅 = 𝜌𝑒
4𝑙𝑒

𝜋𝑑𝑒
2 (2) 

Here, 𝜌
𝑒
 is the resistivity of the heating element, 𝑙𝑒 is the 

length of the heating element and 𝑑𝑒 is its diameter 

(assuming it is a wire).  

The resistivity of the heating element is dependent on 

the resistor material. A range of materials is available in 

the market. They include metallic alloys such as 
nichrome, Kanthal wires, and non-metallic elements 

such as silicon carbide and molybdenum disilicide. 
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Metallic alloys are generally recommended for 

temperature ranges of 1200-1400 °C, whereas non-

metallic materials are recommended for higher 

temperatures, i.e. the range 1600-1900 °C (Lupi, 2017).  

The calciner will operate between 900 and 1000 °C. 

Hence, metallic alloys are considered in this work. The 

maximum operating temperature of some metal alloys 

are shown in Figure 2, whereas the resistivity as a 

function of temperature is shown in Figure 3. 

 

 

Figure 2: Maximum operating temperatures of some 

metal alloys used for resistance heating 

 

 

Figure 3: Variation of resistivity with temperature for 

some metal alloys 

The heating elements may be mounted into the 

furnace with various support systems. In this study, 

spiral winding of heating elements on a ceramic tube is 

considered, referred to as heating rods in the study. The 

schematic of this system is shown in Figure 4. 

 

Figure 4: Spiral-winding schematic (heating rod) 

The recommended value for the diameter of the 

heating element (𝑑𝑒) is 2.0 – 6 .5 mm and that of the 

ceramic tube diameter (𝐷𝑅) is 𝐷𝑅 = (12 − 14) × 𝑑𝑒 
(Kanthal, 2020). In this study, the diameter of the 

heating element (𝑑𝑒) is assumed to be 4 mm, and the 

ceramic tube diameter (𝐷𝑅) is assumed to be 50 mm. 

3.2 Heating rod insertion model 

A model is developed to predict the area occupied by the 

inserted heating rods (𝐴𝑅). In general, if this area is 

large, the contact between the heating surface and the 

meal will be large, leading to a higher heat transfer rate. 

However, if the area is too large, by inserting too many 

rods, then the space between the rods might be too small, 

which will affect the structural integrity of the calciner. 

A model is developed by assuming a defined heating rod 

arrangement and using the fraction of axial and radial 

length occupied by heating rods (𝑓𝐶) and the diameter of 

the heating rods (𝐷𝑅) as input parameters. The proposed 

heating rod arrangement is shown in Figure 5. 

 

Figure 5: Heating rod design pattern 

The fraction 𝑓𝐶  is directly related to the heating rod 

area. Increasing this fraction will provide more space for 

the placement of heating rods, which in turn will 

increase the total area of the heating rods. 

The total length occupied by the heating rods is given 

by, 

𝑓𝐶𝐿 = 𝐷𝑅𝑁𝑐𝑜𝑙 (3) 

Here, 𝐿 is the length of the section, equal to 𝐿𝐺𝑃 in 

the gas preheating section and equal to 𝐿𝐶 in the meal 

section. 𝑁𝑐𝑜𝑙 is the number of columns in the axial (gas 

flow) direction. Rearranging the equation, 

𝑁𝑐𝑜𝑙 =
𝑓𝐶𝐿

𝐷𝑅

 (4) 

To simplify calculations in the radial direction, one 

rod is assumed to go through the center of the calciner 

(the length of this rod is equal to calciner diameter, 𝐷𝐶), 

whereas the other rods are placed between the center rod 

and the wall in both directions, as shown in Figure 5. To 
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facilitate visualization, only a few rods are shown in the 

figure. 

The number of rods in each radial direction 

(𝑁𝑅,𝑟𝑜𝑤,𝑚) is given by, 

𝑁𝑅,𝑟𝑜𝑤,𝑚 =
𝑓𝐶𝑅𝐶
𝐷𝑅

 (5) 

Here, 𝑅𝐶  is the radius of calciner. The number of 

heating rods per rows is given by, 

𝑁𝑅,𝑟𝑜𝑤 = (2 × 𝑁𝑅,𝑟𝑜𝑤,𝑚) + 1 (6) 

The total number of rods is further be given by, 

𝑁𝑅 = 𝑁𝑅,𝑟𝑜𝑤 × 𝑁𝑐𝑜𝑙 (7) 

If the spacing between the rods in a row (𝑆𝑅,𝑟𝑜𝑤) is 

equal, it can be determined by, 

𝑆𝑅,𝑟𝑜𝑤 =
𝑅𝐶 − (𝑁𝑅,𝑟𝑜𝑤,𝑚 × 𝐷𝑅)

𝑁𝑅,𝑟𝑜𝑤,𝑚 + 1
 (8) 

The length of each rod (𝑙𝑅) in the radial direction is, 

however, different for each rod. This length can be 

derived from Pythagoras’ theorem as shown in Figure 5 

and is given by, 

𝑙𝑅 = 2 × √𝑅𝐶
2 − 𝑆𝑅,𝑟𝑜𝑤,𝑙

2 (9) 

Here 𝑆𝑅,𝑟𝑜𝑤,𝑙 is the actual spacing distance of each 

rod from the central rod (as also shown in Figure 5). 

An effective rod length (𝑙𝑅,𝑒𝑓𝑓) is then calculated by 

taking the average over all possible lengths in the 

calciner. The total area occupied by the inserted rods 

(𝐴𝑅) can thus be given by, 

𝐴𝑅 = 𝑁𝑅 × 𝜋𝐷𝑅𝑙𝑅,𝑒𝑓𝑓 (10) 

3.3 Heat and mass balance 

To simplify the calculations, the modified calciner may 

be divided into three zones. 

1. Gas preheating zone: The gas is preheated to the 

calcination temperature in this zone.  

2. Meal preheating zone: The meal is preheated to 

the calcination temperature in this zone.  

3. Meal calcining zone: The meal gets calcined 

(CaCO3 → CaO + CO2) in this zone. 

The simplified reactor model is shown in Figure 6. 

 

Figure 6: Different zones used in the heat and mass

balance

The entrainment velocity in existing calciners may vary

between 10-20 m/s (Becker et al., 2016), while in 

some calciners, this gas velocity may be as low as 5-7 

m/s. In this study, the entrainment velocity is assumed 

to be 7 m/s. The impact of changing this is 

presented in the results. Other assumptions are 

summarized in Table 2.

The calcination temperature (𝑇𝑐𝑎𝑙𝑐) is relatively high 

(914 °C) compared to regular calciners. This is because 

the gas in the electrified calciner is pure CO2, so a higher 

temperature is required to generate a CO2 equilibrium 

pressure (Stanmore and Gilot, 2005) higher than the 

partial pressure in the calciner (~1 atm). The 

temperature of the recycled gas (𝑇𝑖𝑛,𝑔) is based on a 

previous study on CO2 heat utilization (Jacob, 2019). 

The other values in the table are based on a previous 

calciner electrification study applying the same kiln 

system as a design basis (Tokheim et al., 2019). 

Table 2: Assumptions for heat and mass balance 

Section Parameter Symbol Value 

General 
assumptions 

Entrainment 
velocity 

𝑣𝐶 7 m/s 

Calcination 
temperature 

𝑇𝑐𝑎𝑙𝑐 914oC 

Weight fraction 
of CaCO3 in raw 
meal 

𝑤𝐶𝑎𝐶𝑂3 0.77 

Gas 
preheating 

Inlet 
temperature of 
recycle gas 

𝑇𝑖𝑛,𝑔 470oC 

Outlet 
temperature of 
recycle gas 

𝑇𝑜𝑢𝑡,𝑔 914oC 

Meal 
preheating 

Mass flow rate 
of raw meal 

�̇�𝑃𝐻𝑀 210 ton/hr 

Inlet 
temperature of 
raw meal 

𝑇𝑖𝑛,𝑃𝐻𝑀 658oC 

Meal 
calcination 

Enthalpy of 
calcination 

𝐻𝑐𝑎𝑙𝑐 
-3.6 

MJ/kgCO2 

Enthalpy of 
other reactions 
in the calciner 

𝐻𝑐𝑎𝑙𝑐,𝑜𝑡ℎ𝑒𝑟 
0.3 

MJ/kgCO2 

Calcination 
degree 

𝑓𝑐𝑎𝑙𝑐 0.94 

 

The mass flow rate of CO2 (�̇�𝐶𝑂2,𝐶) inside the calciner 

may be calculated from entrainment velocity by, 

�̇�𝐶𝑂2,𝐶 = 𝜌𝐶𝑂2𝐴𝐶𝑣𝐶 (11) 

Here, 𝜌𝐶𝑂2 is the density of gas calculated from the 

ideal gas law, 𝐴𝐶 is the cross-sectional area of the 

calciner and 𝑣𝐶 is the velocity of gas inside the 

calciner (entrainment velocity). The mass flow of CO2 

(�̇�𝐶𝑂2,𝑐𝑎𝑙𝑐) produced from calcination reaction is 

calculated by, 

�̇�𝐶𝑂2,𝑐𝑎𝑙𝑐 = �̇�𝑃𝐻𝑀𝑤𝐶𝑎𝐶𝑂3

𝑀𝐶𝑂2

𝑀𝐶𝑎𝐶𝑂3

1

𝑓𝑐𝑎𝑙𝑐
 (12) 

Here, 𝑀𝐶𝑂2 is the molecular mass of CO2 and 𝑀𝐶𝑎𝐶𝑂3 

is the molecular mass of CaCO3.  
The mass flow rate of recycling CO2 (�̇�𝐶𝑂2,𝑟𝑒𝑐𝑦𝑐) 

can thus be determined by, 
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�̇�𝐶𝑂2,𝑟𝑒𝑐𝑦𝑐 = �̇�𝐶𝑂2,𝐶 − �̇�𝐶𝑂2,𝑐𝑎𝑙𝑐 (13) 

The heat required to heat the CO2 (𝑞𝐺𝑃) in the gas 

preheater section is given by, 

𝑞𝐺𝑃 = �̇�𝐶𝑂2,𝑟𝑒𝑐𝑦𝑐𝐶𝑝,𝐶𝑂2(𝑇𝑖𝑛,𝑔 − 𝑇𝑜𝑢𝑡,𝑔) (14) 

Here 𝐶𝑝,𝐶𝑂2 is the heat capacity of the gas given by a 

polynomial equation (Green, Perry, 2008), 

𝐶𝑝,𝐶𝑂2 = 𝐶1 + 𝐶2 [
𝐶3 𝑇⁄

𝑠𝑖𝑛ℎ(𝐶3 𝑇⁄ )
]

2

+ 𝐶4 [
𝐶5 𝑇⁄

𝑐𝑜𝑠ℎ(𝐶5 𝑇⁄ )
]

2

×
𝑀𝐶𝑂2

1000
𝐽/𝑘𝑔. 𝐾 

(15) 

Here, C1 = 29370, C2 = 34540, C3 = 1428, C4 = 26400 

and C5 = 588 (units are skipped here for simplicity). 

The heat required in the meal preheating section 

(𝑞𝑀𝑃) is given by, 

𝑞𝑀𝑃 = �̇�𝑃𝐻𝑀𝐶𝑝,𝑃𝐻𝑀(𝑇𝑖𝑛,𝑃𝐻𝑀 − 𝑇𝑐𝑎𝑙𝑐) (16) 

Here 𝐶𝑝,𝑃𝐻𝑀 is the heat capacity of preheated meal 

and is equal to 1260 J/(kg·K) (Samani, 2020).  
The heat required in the meal calcination (𝑞𝑀𝐶) is 

given by, 

𝑞𝑀𝐶 = 𝑞𝑀𝐶,𝑜𝑢𝑡 − 𝑞𝑀𝐶,𝑖𝑛 − 𝑞𝑐𝑎𝑙 − 𝑞𝑐𝑎𝑙,𝑜𝑡ℎ𝑒𝑟 (17) 

Here, 𝑞𝑀𝐶,𝑜𝑢𝑡 is the outlet heat from calcination section, 

which is given by the sum of heat in the calcined meal 

and the outlet gas. 𝑞𝑀𝐶,𝑖𝑛 is the heat in the inlet raw meal 

after meal heating and the heat in the inlet gas. 𝑞𝑐𝑎𝑙 is 

the heat required to calcine the meal and 𝑞𝑐𝑎𝑙,𝑜𝑡ℎ𝑒𝑟 is 

the heat from other meal reactions (Samani, 2020). 

3.4 Heat transfer coefficient 

Convection and radiation are the main heat transfer 

modes in an entrainment calciner. However, at 

temperatures higher than 600 °C, the heat transfer by 

radiation is much more dominant than the heat transfer 

by convection (Lupi, 2017). Since heat transfer from 

radiation is dominant, this study covers radiation only, 

and a network modelling approach is applied. 

A pure CO2 environment is expected inside the 

calciner due to recycled CO2 and CO2 formed in the 

calcination reaction. CO2 emits and absorbs radiation 

over a wide temperature range, as it is a polar gas 

(Incropera et. al., 2017). The radiating property of CO2 

complicates the radiation modelling as it participates in 

radiation heat transfer along with the particles, the 

calciner wall and the heating rods. This is handled by 

using a network modelling approach in this work, as 

described below. 

The total radiation heat transfer (𝑞𝑟𝑎𝑑) from surface 

𝑖 to 𝑁 surfaces (each surface denoted by 𝑗), and 

assuming the surfaces to be grey, is given by 

(Incropera et. al., 2017), 

𝑞𝑟𝑎𝑑 =∑𝑞𝑖𝑗

𝑁

𝑗=1

=
𝐸𝑏,𝑖 − 𝐽𝑖

(1 − 𝜀𝑖) 𝜀𝑖𝐴𝑖⁄

=∑
𝐽𝑖 − 𝐽𝑗

(𝐴𝑖𝐹𝑖𝑗)
−1

𝑁

𝑗=1

 

(18) 

Here, 𝑞𝑖𝑗 is the heat transferred from surface 𝑖 to 

another surface denoted by 𝑗 subscript, 𝐸𝑏,𝑖 is the total 

emissive power for a black surface 𝑖, 𝐽𝑖 is the radiosity 

which accounts for all radiant energy leaving the 

surface 𝑖, 𝜀𝑖 is the emissivity of the surface 𝑖, 𝐴𝑖 is the 

area of surface 𝑖 and 𝐹𝑖𝑗 is the view factor from 

surface 𝑖 to surface 𝑗. The formulated network equation 

is visualized in Figure 7. 

 

Figure 7: Schematic of a network model with total 

radiative heat transfer from surface 𝒊 to other surfaces 

3.4.1 Gas preheating 

In the gas preheating section, the heat is exchanged 

between the gas (subscript 𝑔), the heating rods 

(subscript 𝑅) and the calciner wall (subscript 𝑤). The 

wall is well insulated, so heat loss is neglected. Then the 

wall can be assumed to be a re-radiating surface, i.e., it 

re-radiates all the incident heat. The resulting network 

of this system is shown in Figure 8. Approximate values 

of emissivities and view factors are given in Table 3. 

 

Figure 8: Network model of radiative heat transfer in 

the gas preheating zone 
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Table 3: Assumed parameters in the network model 

for radiation heat transfer in the gas preheating zone 

Parameter Symbol Value 

Emissivity of CO2 𝜀𝑔 0.15 

Emissivity of heating rod 𝜀𝑅 0.7 

View factor from rod to wall 𝐹𝑤,𝑅 0.5 

View factor from rod to gas 𝐹𝑅,𝑔 1 

View factor from wall to gas 𝐹𝑤,𝑔 1 

 

The emissivity of CO2 (𝜀𝑔) is dependent on the partial 

pressure of CO2, the mean beam length and the gas 

temperature (Hottel and Egbert, 1940). An approximate 

emissivity of CO2 is read from Hottel’s chart, which 

correlates these factors to the emissivity of the gas. 

The emissivity of the heating rod (𝜀𝑅) was 

approximated based on literature (Kanthal, 2020). There 

are some uncertainties related to the rod-wall view 

factor between (𝐹𝑅,𝑤). This factor may lie between 0 and 

1. An approximate value of 0.5 is chosen, and a 

sensitivity study on this parameter is presented in the 

results. The rod-gas and wall-gas view factors should be 

1 as the gas is fully visible to these surfaces. 

3.4.2 Meal preheating and calcining 

In the preheating and calcination section, the heat is 

exchanged between the gas (subscript 𝑔), the heating 

rods (subscript 𝑅), the raw meal particles (subscript 𝑝) 

and the calciner wall (subscript 𝑤). The wall can be 

assumed to be re-radiating if no heat loss present. The 

gas is also assumed to be re-radiating as the gas has 

already been heated to the calcination temperature, and 

now, it is just re-radiating all the incident heat directly 

to the raw meal particles, the wall and the heating rods. 

The resulting network is shown in Figure 9. 

 

Figure 9: Network model of radiative heat transfer in 

meal preheating and calcining 

Approximate input values are given in Table 4. There 

are some uncertainties related to the area of the particles 
and the view factors. The higher the area of particles, the 

higher is the heat transfer. To be on a conservative side, 

the smalles probable particle area is estimated

qualitatively, and then a sensitivity study is done using

higher values. Assuming a void fraction (𝜀𝑚) of 0.99,

the bulk density (𝜌𝑏𝑢𝑙𝑘) of the particle inside the calciner

is given by,

𝜌𝑏𝑢𝑙𝑘 = 𝜌𝑃 × (1 − 𝜀𝑚) (19)

Here, 𝜌𝑃 is the particle density and is assumed to be

2700 kg/m3. The calciner is assumed to be a cylinder and

the volume of the calciner is calculated using the

calciner dimensions (Table 1). The mass of particles

inside the calciner is calcuted using bulk density and the

volume of calciner. The specific surface area of

traditional limestone is 1 – 10 m²/g (Stanmore and Gilot,

2005). Using the mass of particles and the specific area

of a traditional limestone, the total particle area (𝐴𝑝) is

higher than 106 m2. This value is taken as a base case,

and a sensitivity study is later performed with a higher

particle area. The rod-particle view factor (𝐹𝑤,𝑝) and the

wall-particle view factor (𝐹𝑤,𝑝) should both be close to

1 as in case of dusty flow inside the calciner, the

particles are fully visible to the rod and the wall. Due to

the presence of this dust, the rod-wall view factor should

be low (close to 0). Based on these arguments,

approximate values are selected, and a sensitivity

analysis is done on the results.

Table 4: Assumed parameters in the network model

for radiation in the preheating and calcining zone

Parameter Symbol Value

Emissivity of CO2 𝜀𝑔 0.15

Emissivity of heating rod 𝜀𝑅 0.7

Emissivity of particles 𝜀𝑝 0.7

Area of particles 𝐴𝑝 106

View factor from rod to wall 𝐹𝑅,𝑤 0.1

View factor from rod to particle 𝐹𝑅,𝑝 0.8

View factor from wall to particle 𝐹𝑤,𝑝 0.8

View factor from particle to gas 𝐹𝑝,𝑔 1

View factor from rod to gas 𝐹𝑅,𝑔 1

View factor from wall to gas 𝐹𝑤,𝑔 1

4 Results and discussions

Simulations are performed with the model described in

Section 3. The results from the heating rod insertion

model are presented in Figure 10. The results show the

boundary limits of the rod area of in the gas preheating

zone (𝐴𝑅,𝐺𝑃), the meal preheating zone (𝐴𝑅,𝑀𝑃) and the

meal calcination zone (𝐴𝑅,𝑀𝐶). The minimum area of

the rod should be at least the area of calciner geometry

(𝐴𝐺𝑃/𝐴𝑀𝑃/𝐴𝑀𝐶). The maximum area is the area at

which the minimum possible spacing between the

heating rod is reached in each zone

(𝐴𝐺𝑃,𝑆𝑚𝑖𝑛/𝐴𝑀𝑃,𝑆𝑚𝑖𝑛/𝐴𝑀𝐶,𝑆𝑚𝑖𝑛). The minimum

spacing between rods is assumed to be 2.5 times the
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rod diameter. This information is used to estimate the 

heat transfer from radiation. 
The heat transfer results from the heat and mass 

balance in each zone are shown in Figure 11. 8.7 MW 

of heat is required to preheat the recycled CO2. This heat 

might be difficult to recuperate and may result in 

significant heat losses from the system (Jacob, 2019). If 

the entrainment velocity is higher than the assumed 

value (7 m/s), the heat loss will be even higher. A 

sensitivity analysis of this heat duty by varying the 

entrainment velocity is shown in Figure 12. The results 

clearly show the importance of minimizing the gas 

recycling. 

 

Figure 10: Result from the heating rod insertion model  

 

 

 

Figure 11: Results from the heat and mass balance

calculations

The heat transfer results for each calciner section are

shown in Figure 13. The results are plotted for three

different heating rod temperatures in each case. The

band represents the sensitivity to the uncertainties

discussed in Section 3.4. Monte-Carlo simulations are

performed on the uncertainties to find the maximum

and minimum values of heat transfer given the

uncertainties. The dotted line in Figure 13 represents

the required heat duty in each section of the calciner
calculated from the heat and mass transfer calculations
(cf. Figure 11).

 

Figure 12: Sensitivity analysis on gas preheating duty

(potential heat loss)

The results in Figure 13 show that it is technically

feasible to transfer heat through the radiation

mechanism. The total number of rods required can be

read by combining Figure 10 and Figure 13. In the gas

preheating section, the temperature of the rod should

be 1150 °C, and the number of required heating rods

required at the feasibility point will be around 450. In

the meal preheating section, the heat may be

transferred at 1050 °C with around 420 rods at the

feasibility point. In the meal calcining section, the heat

can also be transferred at 1050 °C with around 1700

heating rods at the feasibility point. The total number

of required heating rods is around 2570.

 

Figure 13: Heat transfer results from each calciner 

section 
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A range of feasible heat fluxes are obtained by dividing

heat rate with rod area. This result is then utilized to

find a heating element design and estimate the mass of

the heating element required. The mass of heating

elements in the feasible range of heat fluxes in different 

calciner zones is shown in Figure 14. The lowest mass 

required in the feasible range of operating calciner is 

found by using Kanthal APM heating elements.

 

Figure 14: Mass of elements required in the feasible

range of operating calciner

5 Conclusion

Electrification of the existing calciner appears to be

technically feasible. There is sufficient volume available

in the calciner, and there is enough calciner shell surface

area available, to insert the number of heating rods that

are required to provide the heat and calcine the meal,

i.e., about 2570 heating elements operating with surface

temperature of 1150 °C in gas preheating zone and

1050 °C in meal preheating and calcining zone.

The total heat transferred from the electrical heating

elements to the meal is 69 MW and the total heat

transferred is 78 MW. The gas preheating section may

operate feasibly with a heat flux of 26-34 kW/m². The

meal preheating section may operate feasibly with a heat

flux of 35-80 kW/m², and the meal calcining section

should feasibly operate with heat flux of 30-50 kW/m².

At higher heat fluxes, the heat transfer from radiation

will not be enough to transfer the heat to the gas or the

raw meal. At lower heat fluxes, the spacing between the

heating rods will be so small that it will affect the

structural integrity of the calciner. Moreover, a lower
heat flux also means a higher heating element cost as the

mass of the elements will increase. The mass of Kanthal
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elements, which have the highest heat flux, is 

around 5 tons, and the mass of the elements with the 

lowest heat flux is around 15 tons. 

The results, however, also indicate some challenges. 

The gas flow rate required to entrain the raw meal may 

lead to high flow of energy out of the calciner, and it 

may be a challenge to recuperate all the heat from this 

One may think of adding a fan operating at high 

temperature to recycle the gas at 900 °C, thereby 

avoiding the heat exchange. However, additional studies 

must be performed to check the feasibility of this. The 

results also indicate that a large number (at least 2120) 

of rods and a high mass of heating elements (at least 4 

are required. The particles may flow at a high 

velocity in this region which may cause abrasion, 

erosion, and element breakage. So, maintenance may 

become a challenge logistically due to a large number of 

heating rods (finding the damaged heating rod), and 

economically due to the high mass of heating elements 

(erosion of elements). Additional studies on these 

aspects must be performed to find detailed economic 

and logistic challenges. 

Thus, the results indicate that electrification of an 

entrainment calciner is theoretically possible. However, 

there are some challenges to address with this concept. 

One way to address the challenge may be to study other 

calciner systems where it is easier to avoid these 

challenges. 
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Abstract 
The paradigm change of Industry 4.0 brings attention to 

data-driven modeling and the incentive to apply ma-

chine learning methods in the process industry. Further, 

capitalizing on a great deal of data available is an ad-

verse task. For batch processes, the dataset is in a three-

way format (Batch × Sensor × Time). Depending on the 

process and the goal of the analysis, it might be neces-

sary to aggregate batches together. For this reason, a 

campaign unfolding structure is applied. By grouping 

the batches under new labels relevant to the analytical 

goal, campaigns are created. These labels can be created 

from periodical occurrences, such as refurbishing the re-

fractory lining in the case of the case study. In order to 

utilize the three-way batch format, it is necessary to 

align the batches. In order to address this, the feature-

oriented approach Statistical Pattern Analysis (SPA) is 

applied. SPA derives statistics, e.g., mean, skewness and 

kurtosis from the time series, consequently aligning the 

batches. The SPA and the campaign approach create a 

dataset consisting of select statistics instead of an irreg-

ular three-way array. Functional data analysis (FDA) is 

used to smooth and extract first- and second-order de-

rivative information from the sensors in which func-

tional behavior can be observed before creating features. 

Principal Component Analysis (PCA) is used to exam-

ine the final dataset. Further, industrial processes are no-

toriously nonlinear, and even more so batch processes. 

Therefore, kernel-based principal component analysis 

(KPCA) is used to review the final dataset. The KPCA 

can accommodate different underlying characteristics 

by modifying the kernel function used. 

Batch Process Analysis (BDA), Batch Preprocessing, 

Functional Data Analysis (FDA), Statistical Pattern 

Analysis (SPA), Kernel Principal Component Analysis 
(KPCA)  

1 Introduction 

Within the scope of industry 4.0, industries are deter-

mined to incorporate into their analytical framework 

machine learning methods. Despite the vast selection of 

turn-key solutions, the procedure often falls short on the 

neglected part of the analytical procedure: data acquisi-

tion and preprocessing. Legacy process industries suffer 

from the fallback of outdated infrastructure, making 

data-acquisition procedures cumbersome and prepro-

cessing complex due to, e.g., lack of contextual infor-

mation such as accurate timestamps.  

Batch data analytics (BDA) is a field of study that fo-

cuses on analyzing industrial batch processes. A batch 

process produces products in a turn-based manner which 

repeats over the following phases: charging, operating, 

and discharging. Working with batch process datasets 

offers unique challenges. The dataset a batch process 

provides is a three-dimensional matrix (Batch × Sensor 

× Time, see Figure 1), which offers additional chal-

lenges. E.g., each batch is going to be of different 

lengths, leading to an uneven dataset. Also, the time in-

terval between samples may not be uniform. To accom-

modate irregular sampling or uneven batches, batch syn-

chronization or feature extraction can be applied. In this 

work, The Statistical Pattern Analysis (SPA) method is 

used to compile relevant statistics from the sensor data 

and create an aligned three-dimensional array. Further, 

there are many strategies to convert a three-dimensional 

array into a two-dimensional array. This procedure is 

commonly called unfolding. It is necessary to unfold 

batch data to make it suitable for a more comprehensive 

array of models. Also, a campaign structure is applied to 

understand and explain variables after several batches. 

In short, the campaign approach entails concatenating 

the batches into new batches before the feature extrac-

tion procedure. 

Furthermore, industrial batch processes can be ex-

pected to be nonlinear, making them unsuitable for 

many conventional methods. In order to investigate the 

nonlinear phenomenon, the batch structured datasets are 

analyzed using kernel-PCA (KPCA), which can accom-

modate nonlinear behavior due to its variation of kernel 

functions. A more conventional Principal Component 

Analysis (PCA) supplements this analysis to investigate 

the linear behavior as well.  

A common phenomenon in industrial process analy-

sis is noisy data. Also, for some processes, it may be 

beneficial to investigate derivative information. There-

fore, to smooth the sensor data and extract derivative in-

formation, functional data analysis (FDA) is utilized. 

FDA creates a battery of approximation functions that 

describe the underlying processes, allow extraction of 
derivative information, and, consequently, smoothing. 

There are many complex methods available regarding 
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structuring the data, smoothen and extract derivative in-

formation, and select or reduce features. This work com-

bines several methods to see the potential for this blend. 

This work intends to impart a perspective towards con-

solidating complex industrial batch process data with 

machine learning methods.  

The rest of the paper is organized as follows. Section 

2. contains the methodology of the paper, which in turn 

consists of several subsections. Section 2.1 describes the 

process from which the dataset is constructed. Section 

2.2. explains the data acquisition procedure. Section 2.3. 

elaborates on batch data processing and the campaign 

structure. Section 2.4. is on the functional data analysis. 

Section 2.5. on the feature-oriented approach. Section 

2.6 on PCA and KPCA. Section 2.7 describes the ana-

lytical framework. 

2 Methodology 

2.1 Steel Converter Dataset 

The data in this paper is derived from a steel converter. 

The purpose of a steel converter is to enable the use of 

low-grade resources, e.g., scrap-based or low purity, to 

produce high-quality steel. A converter refines steel 

batch-wise and is used as a secondary procedure. The 

raw material is melted and then fed into the converter. 

The converters' refractory lining interacts with the melt 

directly, and when the lining is exhausted, the converter 

is put out of commission and requires relining before it 

can be reinstated. The chemical composition of the melt 

is registered before and after the process. Also, gas inlet 

temperature, flow, and pressure are stored. The number 

of batches produced in the variable of interest is referred 

to as the campaign metric. The methodology aims to ex-

plore the relations between the degradation, the sensor, 

and chemistry. 

2.2 Data Acquisition 

Acquiring data in a legacy process industry is a diverse 

procedure. The accessible data is likely limited to a 

static tabular view. Due to the large size of uncon-

strained sensor data, such tables are usually limited in 

scope, i.e., duration, time-resolution, or amount of sen-

sors. The memory of the computer or server can be a 

limiting factor if analyzing high-resolution data with 

many sensors. By dynamically detecting relevant sen-

sors or duration in time of interest, it is helpful to sys-

tematically collect similar or more data regarding this or 

even connect a model directly to the system. Being able 

to analyze and collect data from the same development 

platform is beneficial. There are several parameters to 

consider when working on data acquisition for process 

data. Extracting the duration of interest may prove diffi-

cult. For each batch, identifying the duration in which 

the process is working with respect towards the batch is 

called local batch time. The accuracy of the local batch 

times' start and stop timestamps should be reviewed for 

 

Figure 1. Aligned batch data 

 

Figure 2. Uneven batch data

accuracy. The stored information about the batch may

not initially be intended to be used for analytics pur-

poses and, therefore, inaccurate. The workstation and

database server has limited memory. Hence when work-

ing with multiple batches over a significant duration, it

is necessary to extract the data in manageable segments.

2.3 Structuring Batch Data

Batch data is designed in a three-way array structure

with I, J, and K corresponds to a number of batches, var-

iables, and time (local batch time) respectively, see Fig-

ure 1. (Nomikos & MacGregor, 1994) This results from

the distinct structure of batch processes and, as a result,

inhibits the utilization of conventional method without

first transforming from three- to two-dimensions array.

In practice, the batch duration deviates between batches,

and batch data from industrial processes have different

durations, hence producing an uneven dataset, as de-

picted in Figure 2. The procedure of aligning batch data

is called batch synchronization or batch alignment.

By employing a campaign structure along with SPA,

the need for time-sensitive alignment is circumvented.

A description of how to combine and restructure the

three-way array with data from upstream and down-

stream processes follows. The batch-wise unfolding ap-

proach transforms the dataset from an uneven three-way

array to an uneven two-way array by concatenating the

sensor trajectories (see Figure 3).

Wu et al. (2018) introduce a campaign-based batch

unfolding structure which is further advanced by Wu et

al. (2019).  In batch processes where the metric or vari-

able of interest varies or resets over several batches, the
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campaign approach coalesces metric-relevant data into 

a new type of batch (see Figure 4).  

2.4 Functional Data Analysis 

Functional data analysis (FDA), it applied in order to 

extract derivative information and to smooth the trajec-

tories. FDA creates a battery of approximation functions 

that represents the underlying characteristic. Observing 

derivative information of physical variables, e.g., tem-

perature and flow, can be beneficial since the derivative 

adds further information to the system. Using FDA, it is 

possible to interpret derivative information from time-

series sensor data that show functional nature. (Ramsay 

& Silvermann, 1998) In Figure 5, the FDA is showcased 

where the original data is overlaid on top of the approx-

imation function in subfigure (a). Further, it shows the 

1st and 2nd derivatives of the approximation in subfigures 

(b) and (c), respectively. 

 

Figure 5. FDA example show smoothing and 1st and 2nd 

order derivative: (a) raw samples (black dots) and 

smoothing (red line), (b) 1st derivative, (c) 2nd derivative   

Functional data representation is used in a multivari-

ate functional kernel principal component analysis in 

(H. Wang & Yao, 2015). The functional local kernel 

principal component analysis is also in (F. He & Zhang, 

2020). For more information about the FDA's funda-

mentals, see Ramsay et al. works on Functional Data 

Analysis (Ramsay & Silvermann, 1998). 

2.5 Statistical Patten Analysis 

The Feature-oriented method used in this approach is 

SPA. SPA was introduced in He and Wang (2011) as a 

fault detection framework and utilizes 1st, 2nd higher-or-

der statistics derived from batch trajectories instead of 

the trajectories themselves to monitor the process. Like 

other feature-oriented methods, SPA alleviates the pre-

processing step batch trajectory alignment by creating 

statistical metrics from the trajectories.  

He and Wang (2011) monitor a semiconductor batch 

process and use the SPA statistics: mean, skewness, kur-

tosis, and covariance. Wang and He (2010) apply SPA 

with continuous processes and uses the following statis-

tics: mean, variance, autocorrelation, cross-correlation, 

skewness, kurtosis. In this work, the mean, kurtosis, and 

skewness are used as statistics for pattern identification. 

Skewness is a measurement of distribution asymmetry. 

Kurtosis is a measurement of the spread of the data. In 

this work, SPA is used to transform a time series of data 

into a set of three statistics; mean, variance, kurtosis, and 

skewness.   

For more information on feature-oriented methods 

for BDA, see Rendall et al. (2017) and Rendall et al. 

(2019). For a perspective on how the SPA framework 

relates to challenges purposed by smart manufacturing 

and other methods, see He et al. (2019) 

Figure 4. Campaign-wise unfolding 

Figure 3. Batch-wise unfolding 
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2.6 PCA and Kernel-PCA 

PCA is a commonly used method in process analytics 

for dimensionality reduction, feature selection, and un-

supervised data exploration. The PCA is limited to in-

vestigating the linear relations in the dataset. Schölkopf 

et al. (1997) introduced KPCA, which provides further 

utility compared to the conventional, linear PCA. The 

KPCA aggregates the dataset, transforming it into a 

high-dimension feature space using a nonlinear map-

ping. Then, performing dimensionality reduction on the 

feature space and if a suitable kernel function and pa-

rameter is designed makes previously nonlinear data lin-

early interpretable. There are several kernel functions. 

The most commonly applied and used in this work are 

polynomial and radial basis functions (RBF). Both ker-

nel functions have parameters that need to be config-

ured. The KPCA can accommodate underlying nonlin-

ear characteristics and show itself to outperform the 

PCA when performing feature extraction and classifica-

tion on datasets with nonlinear behavior. (Lee et al., 

2004) Works on fault detection using KPCA can be fur-

ther viewed in the works by Lee et al. (2004), H. Want 

and Yao (2015), and He and Zhang (2020). For a funda-

mental look into Kernel methods, the reader is referred 

to the work of Schölkopf et al. (1997).  

2.7 Analytical Design 

Each batch has 15 sensors. FDA is applied 10 of these 

sensors, which creates 20 new trajectories per batch, 10 

for both the 1st and 2nd order derivative. In total, this 

makes 35 trajectories per batch. Batches are concate-

nated to relevant campaigns. The chemical composition 

is measured for every batch before and after the process. 

10 and 17 elements are registered before and after, re-

spectively. For every sensor and chemical element, three 

statistical features are derived. Resulting in 186 features 

per campaign.  

In order to investigate the impact of different meth-

ods, the campaign dataset is segmented into several dif-

ferent subsets. Every subset contains 93 campaign sam-

ples. The following list details the name, description, 

and number of features for the eight:  

• Full: All data (186 features) 

• 0th order: Sensor data without derivatives (45 fea-

tures) 

• 1st & 2nd order: Sensor data of both 1st and 2nd deriv-

ative (60 features) 

• 1st order: 1st order derivative sensor data (30 fea-

tures) 

• 2nd order: 2nd order derivative sensor data (30 fea-

tures) 

• Chem: Both prior and post elemental composition 

(81 features) 

• Pre chem: Elemental composition before the pro-

cess (30 features) 

• Post chem: Elemental composition after the process 

(51 features) 

Using PCA, the explained variance for each of these da-

taset will be calculated and compared. The five most sig-

nificant principal components (PC) will be further in-

vestigated, and each PC's five most significant features 

will also be compared. The fit of the significant PC to 

the campaign metric will be reviewed using ordinary 

least squares and the by investigating the coefficient of 

determination.  

The KPCA is modeled for the RBF and polynomial 

kernel. The parameters for these are dynamic and is pre-

sented in results when relevant. 

3 Results & Discussions 

This section will show how the combined influence of 

the campaign structure, the FDA smoothing, the 1st  and 

2nd  derivatives, and the SPA, by using PCA and KPCA 

to identify different phenomenon in the campaign da-

taset with respect to the campaign features. 

The campaign dataset is segmented into eight differ-

ent datasets, and PCA is performed on all constellations 

of the Campaign dataset. In Figure 6, the explained var-

iance per principal component (PC) for 15 first compo-

nents for each dataset is in a scree plot. Beyond 15 com-

ponents, the explained variance approaches zero and is 

not included.  

In Figure 7, the five samples of the largest explained 

variance of Figure 6 are extracted, and for each sample, 

again, the five features with the most significant ex-

plained variance are derived.  There is overlap between 

the selected features, e.g., the features for the 1st PC in 

the Full dataset have similar significant features to the 

1st component in the 1st & 2nd order dataset (see the top 

figure and second figure from the top in Figure 7). 

 

Figure 6. Explained Variance 
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Figure 7. Feature variance of top 5 PCs  

Two patterns are noteworthy when observing the data 

variance in Figure 6 and the variance of the features in 

Figure 7. First, the 1st PC of the Full dataset coincides 

with the 1st PC consisting of features from the 1st and 2nd 

order derivatives and indicates that the sensor deriva-

tives influence the variance of the Full dataset. Further, 

the 1st PC from the dataset, consisting of only 1st order 

derivates, also shares features with both aforementioned 

datasets. The 1st feature seems to be the root of signifi-

cant variance. Regarding the second discernable pattern, 

the 2nd PC of the Full dataset and the 1st component of 

the Chem dataset share three top features. Hence, the 

Full dataset explains the variation of two datasets with 

its 1st and 2nd PC.  

The five PC is used to model the campaign metric. 

The coefficient of determination 𝑅2 is calculated for 

each to determine how well the PCs are able to general-

ize the campaign metric. None show a significant 𝑅2. 

Hence, while these PC describes the major variance in 

the datasets, they cannot be used to generalize the cam-

paign metric. 

The KPCA is used on the constellations of datasets. 

Several different KPCA is constructed using the poly-

nomial and RBF kernels along with their corresponding 

parameters. Systematically investigating the pcs of the 

different KPCA constellations shows a weak linear 

correlation towards the campaign metric. No significant 

𝑅2. By observing the relations between the KPCA PC, 

two interesting patterns are visible.  

 

Figure 8. Clustering of campaign metric over PC from 

KPCA of the 1st order dataset  

The first pattern is seen in Figure 8, where the PC is 

derived from the KPCA with RBF kernel and gamma 

0.01 from the 1st order dataset. The 1st PC plotted over 

the campaign metric shows no significant correlation, 

but two clusters emerge, as illustrated by the shape and 

color difference. The features of the 1st order dataset are 

explored using a kernel density estimation (KDE) plot, 

and two features are distinct, as seen in Figure 9 and 

Figure 10, which, respectively, show the skewness and 

kurtosis of the same sensor. The sensor is the 1st 

derivative of the temperature sampled for a gas inlet. 
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Figure 9. Density plot of skewness for 1st order derivative 

of inlet gas temp 

 

Figure 10. Density plot of kurtosis for 1st order derivative 

of inlet gas temp  

The separation in Figure 9 and Figure 10 shows that the 

left cluster in Figure 8 has lower skewness and greater 

kurtosis than the right cluster. 

The second pattern, seen in Figure 11, shows a clus-

tering when comparing the campaign metric with the 1st 

PC derived from a KPCA with the RBF kernel and 

gamma of 0.001 of the Chem dataset. Figure 12 and Fig-

ure 13 further shows how this clustering transfers to the 

two features of the Chem datasets. Further, both features 

show the kurtosis for the chemical composition, of the 

same element, before and after the process. The cluster-

ing is overlapping since the distribution in Figure 12 for 

the right cluster shows two peaks, of which the line up 

with the other cluster. The right cluster for both figures 

aligns around where kurtosis is zero, which indicates a 

tighter spread. Hence, the left cluster is more random re-

garding the element's content, i.e., it has a more signifi-

cant deviation.  

Considering both the patterns identified via the KPCA 

(Figure 8 and Figure 11). Isolating the clusters and per-

forming additional analysis could provide further infor-

mation. Additional campaign samples would be benefi-

cial as they would provide more data for analyzing data 

subsets. With a total campaign sample size of 93, fur-

ther, partitioning can prove detrimental. 

In general, the approach applied does not explain the 

campaign metric. Several variables may contribute to 

expanding the approach, and the rest of this section will 

reflect on this.  

The PCA and KPCA transform the different datasets, 

and while the PCA is limited to a linear approach, the 

KPCA is not. However, even with several approaches 

by KPCA,  a relevant interpretation concerning the cam-

paign metric is not discovered. This may be because the 

analytical approach relies on a parametric framework 

that assumes the data to conform to underlying statisti-

cal distributions. Therefore it would be suitable to in-

clude non-parametric methods, such as variation of ran-

dom forest, to analyze the relationship between the cam-

paign data and metrics. The SPA is not limited to the 

statistics used in this work, and many other feature-ori-

ented approaches have the potential to derive features 

that can explain other metrics. 

The campaign-based approach unfolds the data 

batch-wise with respect to a campaign metric. Further, 

it is common in BDA to divide the batch into phases if 

the process has different operation modes. Also, it is 

possible that a campaign can have similar phases, e.g., 

the first batches are of specific interest and should be 

separated from the rest. Further, the analysis results of 

the campaign datasets may be understood if the batch 

mix is considered, e.g., the clustering is a result of dif-

ferent products or groups of products with similar pro- 

 

  

Figure 11. Clustering of Campaign metric over PC from 

KPCA of the Chem dataset  
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cess parameters, being overly represented in said cam-

paign. Hence, designing the analysis so that the batch 

and campaign are divided into relevant phases is sug-

gested. On the other hand, some of the datasets used are 

already high-dimensional. Considering batch and cam-

paign phases, and adding additional statistical features, 

would further increase the number of features. 

Therefore, an efficient and sustainable feature selec-

tion method should be applied so that a more complex 

and encompassing dataset can be considered. 

 

Figure 12. Density plot of kurtosis for elemental content 

before the process  

 

 

Figure 13. Density plot of kurtosis for elemental content 

after the process  

4 Conclusion 

This methodology provides a low complexity and a 

practical approach to batch process data preprocessing 

and synthesizes the unaligned three-way array into a 

two-way array. It is challenging to systematically eval-

uate the methodology due to a high number of design 

variables. The approach proves to be poor at generaliz-

ing the campaign metric, e.g., unable to explain the deg-

radation mechanics. Several design improvements are 

discussed to enhance further the potential for the dataset 

to contain relevant information and increase the number 

of features, further aggravating the issues that high-di-

mensional datasets provide. Therefore, it would be val-

uable to implement a feature selection approach suitable 

for the campaign structure. 

The KPCA approach uncovers interesting patterns in 

the data. These patterns manage to isolate different 

modes in the statistical features. The origin of these clus-

ters is not determined, but their existence shows poten-

tial for the campaign structure to provide insights. It 

would be beneficial to increase the number of samples, 

I.e., increase the number of campaigns, to get a more 

accurate view of the underlying distributions by investi-

gating data subsets. The challenge to this is that the rate 

at which data is generated is low. Hence the analytics 

has to rely on available historical data.  

While the feature-oriented approach applied in this 

work is considered low complexity, the combination of 

campaign structure and FDA and KPCA makes it an 

elaborate construct. It shows potential to understand 

campaign-related phenomena, but further research into 

proper analysis methods is required. 
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Abstract 
In countries with cold winters, snowpack will affect 

the hydropower production during the melting 

periods. To optimize the hydropower production, it is 

relevant to consider information from the snowpack 

to estimate the water content when melting. Several 

techniques and devices can be used to measure the 

water content of the snowpack. This paper discusses 

a prototype based on capacitive measurements with a 

small footprint, and the development of data driven 

models to estimate the snow density, snow depth and 

snow water equivalent in a snowpack. The device was 

deployed in a snowy area throughout the winter with 

logging while manual reference measurements were 

made sporadically. Machine learning methods were 

used for developing the models, and several models 

were combined to estimate the water content of the 

snowpack. The developed model estimated the snow 

density, snow depth and snow water equivalent 

during the wintertime with good results. However, 

during the springtime, the capacitive measurements 

have some limitations. 

 

Keywords: snow density, snow water equivalent, 

capacitive sensor, model development, machine 
learning.  

1 Introduction 

1.1 Background 

Measurement of snowpack has been a challenge for a 

long time, one of the first research papers handling 

this challenge was published in the early 80s (Denoth 

et al., 1984). Snowpack is defined as the mass of snow 

on the ground that is compressed and hardened by its 

own weight. 
Weather forecast is considered the most important 

input to the models used for predicting hydropower 

production. However, in areas where snow 

accumulates during winter and melts in the spring, the 

inflow and hence the predictions based on these 

models, will be highly affected. 

Today measurements of snow depth and density 

are often performed manually at the end of the winter 

season with the aim of estimating the melting inflow. 

These measurements must often be taken in remote 

and impassable locations, making it time-consuming 

and expensive. As an alternative way of measuring 

the snow depth and density, an autonomous system 

with a minimal environmental footprint that can be 

deployed remotely and transmit data is proposed.  

In this work a prototype system was developed, 

based on capacitance measurements, and deployed in 

a snowy area in autumn 2020. The prototype was used 

to record measurement values during the winter 

period 2020/2021 and these measurements were used 

as input data for the work of a master thesis at 

University of South-Eastern Norway (USN) spring 

2021. The focus of this master thesis is a modelling 

approach using machine learning methods (Vahl, 

2021). 

The focus in this work is for hydropower systems. 

However, the prototype system is a more general 

system that can also be applied for other purposes 

based on snowpacks like measuring skiing conditions 

and evaluating the risk for avalanches. 

1.2 Previous work 

Since measuring the snowpack has been a challenge for 

decades, several works and projects have been 

performed within this area. 

An overview of instruments for measurement of the 

snowpack is described in (Denoth et al, 1984). The focus 

of these measurements is to estimate the snow water 

equivalent (SWE) in the snowpack where SWE is 

defined as 

𝑆𝑊𝐸 = ℎ𝑠

𝜌

𝜌𝑤
 

 

where hs is the snow depth, ρ is the density of snow 

and ρw is the density of water, measured in g/cm3. 

Measurement of dielectric properties of snow is 

described in (Hallikainen et al. 1982), and an overview 
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of snow dielectric devices and applications is described 

in (Denoth and Wilhelmy, 1989). 

Newer work about liquid water content in snow is 

described in (Niang et al., 2006) and (Techel and 

Pielmeier, 2010).  

Some ongoing projects are “Long-term snow water 

equivalent measurements” at WSL (Wsl, 2021) and 

“Current snow cover” at CCIN (Ccin, 2021). 

The liquid water content in snow is important for 

hydropower systems as the inflow of water at 

springtime will be a combination of water from 

raining and melting of snow. Predicting the amount 

of inflow is done using models based on among others 

weather forecasts. However, these models are 

missing regular inputs from areas where snow 

accumulates during winter and melts in the 

springtime. 

In Norway, the Norwegian Water Resources and 

Energy Directorate (NVE) published a report where 

snow pillows are recommended as automatic snow 

water equivalent sensors (Stranden et al., 2015). 

Snow pillows are sensors having a large 

environmental footprint with a weight and distance 

sensor to measure the weight and height of the 

snowpack. 

A project was started at USN in 2019, in 

cooperation with Skagerak Energy AS, to try to 

develop an autonomous measurement system for 

snow depth, snow density and snow water equivalent 

for remote locations, with a small footprint. The first 

part of the project looked at the system structure of an 

autonomous measurement system and several 

possible measurement principles, and a capacitive 

solution was proposed (Bjerke et al., 2019). A 

prototype measurement system, based only on 

capacitance measurements was developed and used 

for logging (Murillo Abril, 2020), (Murillo Abril et 

al., 2020). The Covid-19 situation in springtime 2020 

with limitation of traveling and the absence of snow 

at the USN campus limits the number of valid 

measurements. A new prototype was developed 

autumn 2020 with five capacitive measurements at 

different heights in addition to measurement of the 

atmospheric pressure and temperature. This prototype 

was deployed in a snowy area, close to Lillehammer 

(in Norway), throughout the winter season in 

2020/2021 with automatic logging of sensor values 

while manual reference measurements were made 

sporadically.   

1.3 Outline of paper 

Section 2 provides a discussion of the system, the 

prototype developed and deployed, the logging of the 

sensor values from the prototype, and any manual 

measurements. Section 3 gives an overview of the 

machine learning methods. Section 4 gives an 

overview of the model fitting and validation. The 

results are discussed in Section 5 and some 

conclusions are drawn in Section 6. 

2 System description 

The prototype housing consists of a two-meter heigh 

grey plastic pipe, with a 90-degree bend on the top. 

The capacitance sensor devices are located at fixed 

heights of the plastic pipe, and the temperature and 

pressure sensor are located at the top of the plastic 

pipe. The hypothesis for the project was that the 

snow depth and the snow density could be estimated 

based on the capacitance measurements at different 

layers in the snowpack. 

A picture of the prototype is shown in Figure 1 

covered by about 70 cm of snow, with the two upper 

capacitance sensors as the black objects pointing to 

the left from the pipe. The three remaining 

capacitance sensors are covered by the snow. 

  

 

Figure 1: The prototype, covered by about 70 cm with 

snow. The two upper capacitance sensors can be seen as 

the two black objects pointing to the left of the pipe. 

The measurement system of the prototype consists of an 

Arduino Nano located at the top of the plastic pipe. The 

Arduino Nano system starts running once a minute, read 

the sensor values, convert the capacitance sensor 

outputs to voltage range [0,5] Volt, the temperature to 

℃  and the pressure to mBar, and transmit the converted 

values over the serial line (USB) on a Modbus based 
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protocol. The capacitive sensor is a “Capacitive Soil 

Moisture Sensor v1.2” device with a 0-5V interface, the 

temperature sensor is a TMP36 silicon device with a 0-

5V interface, and the pressure sensor is a 4Tech absolute 

pressure device with a 4-20 mA interface. The 4-20mA 

interface is converted to a 0-5V interface using a 250 

Ohm resistor. However, the pressure sensor must be 

powered by a separate 12 V DC power supply while the 

other sensor devices are powered by the 5 V DC output 

of the Arduino system. The vertical locations of the 

capacitive sensor devices are 10, 30, 50, 80 and 110 

[cm].  

A use case diagram, made by Unified Modeling 

Language (UML), for the Arduino software is shown in 

Figure 2. As shown in the figure the Arduino software 

will collect the sensor values and transmit the converted 

sensor values on the serial line. A remote logging system 

is needed to record, filter, and store these values.  

 

 

Figure 2: A use case diagram showing the functionality 

of the Arduino software. Every minute, read the sensor 

values, convert to the right unit, and transmit on the 

serial port using a Modbus based protocol. 

 
Machine learning methods were applied, and 

supervised learning was the selected method as 

prediction models for the snow depth, snow density and 

snow water equivalent were needed. Hence 

corresponding values for snow depth and snow density 

should be recorded together with the sensor values.  

A use case diagram, in UML, for the data storage 

software (DSS) is shown in Figure 3.  

The software has four main functionalities; 1) collect, 

low pass filter, store and display the values from the 

measurement system. 2) handle configuration of sensor 

types, size of low pass filter and how often to store the 

measurement values on the Comma Separated Values 

(csv) file. 3) Allow for input of reference values for 

snow depth and snow density that can be used for the 

training the models. These values will be stored on the 

csv file together with the sensor values. 4) Logging of 

the values on the csv file at specific times independent 

of receiving data from the measurement system. The 

default setup was a moving average low pass filter size 

of 8 and storing the values in csv file every 30 minutes. 

The serial port, used for communication between the 

Arduino system and DSS is an USB port, which also 

contains the power (5VDC) for the Arduino system. 

 

Figure 3: A use case diagram showing the functionality 

of the logging software, for logging the values from the 

measurement system. 

 

Figure 4 shows the measuring node to the left, based 

on a vertical plastic tube with the capacitance sensor 

devices at fixed height, seen as the white areas in the 

figure. The lowest capacitance sensor is not visible in 

this figure. The right side shows the connection between 

the Arduino system and the DSS, and the protocol used 

between these systems. 

 

 

Figure 4: The measurement node to the left with the 

capacitance sensors at the white areas, and the 

connection with some examples of the protocol to the 

right. 

 

The DSS will low pass filter and store the sensor 

values on a csv file at fixed time intervals, 

configurable in the DSS. Figure 5 shows a plotting 

option in DSS when testing manual covering 

capacitance sensor #2 and #3 with snow. Sensor #2 at 

13:40 and sensor #3 at 14:50, with sensor values in 

mV. Sensor #1 is the lowest sensor device already 

covered by snow. The change in the voltage is about 

100 mV depending on the water content of the snow. 
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The format of the csv file is one line for each 

measurement containing the time stamp, the values 

from the capacitance sensors (the lowest one first), 

temperature sensor, pressure sensors, and any 

manually measured values for snow depth and snow 

density. The size of csv file was limited by making a 

new file for each month.  

The manual measurements were made by using a 

metal pipe with an inner diameter of 6.6 cm inserted 

into the snowpack, measuring the depth and the 

weight of the sample. The snow density was 

calculated based on the pipe diameter and the weight 

of the snow. All the data needed for the model 

development are stored in the csv files. 

 

3 Model development 

Several tools and frameworks were used for analysis, 

preprocessing and development of the models. The 

reason for using several frameworks was to get some 

experience with the analyzing tools and the process of 

making models for different frameworks. MATLAB 

was used for both analyzing, preprocessing and 

development of the models. ML.NET is a free machine 

learning framework from Microsoft and was used 

together with C# for developing models. Keras and 

TensorFlow was used together with Python to develop 

models, the tools used in Python was scikit learn. Open 

Neural Network Exchange (ONNX), an open standard 

for machine learning models, was evaluated for 

transferring some of the models between these 

frameworks but was not used since separate models 

were developed in each framework. 

Supervised learning is used so only the measurement 

with references can be used for developing the model. 

The periods for measurements with manual references 

are 1) 22 to 27-NOV-20, 2) 28 to 31-DEC-20, 3) 12 to 

13-FEB-21, and 4) 30-MAR to 2-APR-21. These data 

were analyzed and some of the data had to be removed 

because of a power loss error. There is also a challenge 

Figure 5: Plotting of the capacitance sensor values when covered by snow. Cap1 is the lowest capacitance sensor, 

covered by snow. Cap2 is manually covered by snow at 13:40, and Cap3 at 14:50. Cap 4 and Cap 5 is not 

covered by snow. 

Figure 6: All valid samples for the lowest capacitance sensor with relation to pressure, temperature, depth, and 

density. Three sections, first section is for November (samples 0 to 172) (without snow), second section for 

December (samples 172 to 312) and third section for February (samples 313 to 372). 
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with measurements using a sensor device at fixed 

location so all the measurements from the last period 

was removed. This will be discussed as part of the 

discussion section. The total number of samples that can 

be used for training of the models are 372. 

The valid samples for capacitance sensor #1, the 

lowest sensor, is shown in Figure 6. The first section, 

the red section, is the samples for November [1-172], the 

second section is December [173-312], and the last 

section is February [313-372]. In each row is the 

capacitance sensor compared with the pressure, 

temperature, depth, and density. 

  

A Principal Component Analysis (PCA) was 

performed indicating that only four principal 

components are needed to explain 96% of variance in 

the data. The system has seven variables, 5 capacitance 

sensor devices, one temperature sensor device and an 

absolute pressure sensor device. The PCA indicated that 

all sensor devices were important for the needed 

information. 

The sample set was divided into a training set of 216 

samples and a test set of 156 samples. 

4 Results 

The goal of this project is to develop a model to estimate 

the Snow Water Equivalent (SWE) parameter for the 

snowpack, based on the snow depth and snow density. 

SWE is based on the snow depth and snow density so 

two separate models must be developed first, one to 

estimate the snow depth and one model to estimate the 

snow density.  

4.1 Model trained using MATLAB 

The Regression Learner app was used in MATLAB to 

train the models with different algorithms. The best 

model suggested by the Regression Learner app was 

Figure 7: The model for estimating the snow density based on the BR algorithm in MATLAB. 

Figure 8: The model for estimating the snow depth based on the BR algorithm in MATLAB. 
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Gaussian Process Regression (GPP). These models have 

a challenge in estimating the depth and density in 

November with no snow. A new model was developed 

based on neural network with one hidden layer of 50 

neurons, using Bayesian Regularization (BR). Figure 8 

shows the measured depth and the predicted depth based 

on the BR model.  

The model seems to predict the snow depth ok except 

for the period in November with no snow, and better 

than the GPP model. The corresponding model for 

measured density and predicted density is shown in 

Figure 7. 

 

The model seems to predict the snow density ok, even 

the November is ok even if there is no snow. There is 

also a challenge with the density in February, this will 

be part of the discussion section. 

4.2 Model trained using ML.NET 

ML.NET also contains an automatic trainer but only the 

algorithm with the best validation results regarding 

MSE is available at the end of the development process. 

A test application in C# was developed to plot the 

measured and predicted values from the models. None 

of algorithms for the automatic trainer made a model as 

good as the BR model from MATLAB, and the best 

results was from the Fast Forrest algorithm. The snow 

density result is shown in Figure 9 and the snow depth 

result is shown in Figure 10. 

 

Figure 9: The model for estimation of the snow density based on the ML.NET algorithm. 

Figure 10: The model for estimation of the snow depth based on the ML.NET algorithm. 
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Figure 10 shows that the model will not estimate the 

snow depth very good in November when there is no  

snow. Most of the models seems to have a challenge 

with this period. The same challenge with the snow 

density estimation for the model shown in Figure 9.  

The models developed in the MATLAB framework 

in Figure 7 and Figure 8 seem to estimate the snow 

depth and snow density better then the models 

developed in the ML.NET framework.  

4.3 Model trained using Keras 

Keras is a Python based application programming 

interface (API) for TensorFlow. Neural network models 

and the Adam optimizer was used in Keras, with 80% of 

the samples for training and 20% of the samples used for 

validation. The selection of samples for these sets were 

randomized and 1000 epochs was the default for training 

the models. 

 

Figure 11: The snow density prediction and 

measurement based on the Keras framework. 

The snow depth model architecture consists of eight 

hidden layers with between 50 and 200 neurons in each 

hidden layer. The activation functions used in these 

layers are Tanh, Relu and Sigmoid types.  

The measured and estimated snow depth, based on 

the Keras model, is shown in Figure 12. The model 

shows a good prediction also for the November period 

when there was no snow. 

The snow density model architecture consists of six 

hidden layers with between 25 and 150 neurons in 

each hidden layer. The activation functions used in 

these layers are Tanh and Relu types. The architecture 

for the snow depth model is more complex than the 

snow density model. 

The measured and estimated snow density, based 

on the Keras model, is shown in Figure 11. The snow 

density model shows a good prediction of the snow 

denisty although the density at higher levels is not 

following the reference optimally. 
  

 

Figure 12: The snow depth prediction and 

measurement based on the Keras framework. 

 

Since both the snow depth and the snow density 

models based on the Keras framework seems to 

perform best on the limited data set, these models 

were selected as the input for the SWE model.  
The SWE model, shown in Figure 13, showing a 

good prediction of the SWE. Some deviations in the  

upper regions but still a good fit. 

  

Figure 13: The snow water equivalent (SWE) 

prediction and measurement based on the Keras 

framework. 

5 Discussion 

There are several comments that should be given based 

on these measurements and results. Many of the models 

seems to have a challenge predicting the correct snow 

depth and snow density when no snow, so other weather 

or environment parameters should be checked and 

possible added to the system. As always with machine 

learning methods more data is wanted. In this case there 

are too few reference measurements with too large 

jumps in snow depth. This time the reference was based 

on manual intermittent measurements. The depth 

measurements were ok, while the density was more of a 

challenge. First the density was assumed to be almost 

constant during a day, but in a sunny day the density 

could vary a lot. The next step will be to have an 

automatic measurement of the depth and the density as 

well. Some experiments have been done using an 

SIMS EUROSIM 2021

DOI: 10.3384/ecp2118584 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

90



ultrasonic sensor during the winter and if the calculation 

is compensated for the temperature and humidity, an 

ultrasonic sensor will work as depth measurement. A 

weight cell will also be considered to have a reference 

measurement for the weight of the snow, estimate the 

density based on the weight and the depth. 

A big challenge with the capacitance sensor devices 

is that these devices are contact sensors and during the 

springtime when the snow is melting, the snow crystals 

will change the shape and size, and will lose contact 

with fixed objects (Muller, 2020). The capacitance 

sensor will work in wintertime with temperatures below 

0ºC but will lose contact with the snow in springtime 

and temperatures above 0ºC. This is the reason the last 

dataset, the dataset from April was not used in the model 

development process. The current design is not a good 

solution, another solution should be used to measure the 

capacitance in the next version of the prototype. 

The first versions of the models estimate the 

parameters as expected. However, the amount of labeled 

data was too small to get a good and reliable model, and 

the number of capacitive sensors gave a too rough 

estimate of the snow depth.  

The test and validation set are both collected from the 

same original dataset, with small variations, especially 

in the reference. It is therefore likely that the presented 

Keras model with a huge number of hidden neurons are 

partly overfitted. Additional new datasets should 

therefore be tested before the models can be assessed for 

more conditions in a broader range. 

Future work will involve a more robust logging 

system, a non-contact depth sensor like ultra-sonic or 

laser sensor and a weight sensor for better calibration 

data. A new design of the capacitance sensor is needed 

to better measure the capacitance of the snow during the 

springtime. 

The measurement system is measuring the 

capacitance at different layers in the snowpack, and 

estimating the snow depth, the density, and the water 

content. The focus in this project has been on 

measurements for hydro power systems. However, 

properties for other systems like for skiing or avalanches 

should also be possible with this type of measurements. 

Skiing properties like snow depth and surface conditions 

can be estimated based on the measured values from the 

capacitance sensors. Avalanches are beyond the scope 

of this study. However, by measuring the capacitance in 

many layers in the snowpack, with a higher resolution 

of sensor devices, estimating the condition of each layer 

can be used for evaluating the risk of avalanches in that 

area. 

6 Conclusion 

Three different machine learning framework was used, 

MATLAB, ML.NET and Keras. The models developed 

using the Keras framework were the best models, 

especially in the period with no snow. Two different 

models were developed for each framework, for 

prediction of the snow depth and snow density. All 

models performed ok with a limited set of data samples. 

The snow density and snow depth models from the 

Keras framework was used for the SWE model, the goal 

of this work. The model predicting the SWE was 

working ok with some limitation. However, the limited 

set of samples was the largest limitation of making a 

good model. 
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Abstract 
We consider supervised learning problems, for which 

we need not only the accurate model, but also the model, 

that explains the relation between inputs and a target 

variable. There are modeling problems, when 

production experts can measure their confidence in the 

modeling results by modeling metrics, such as accuracy, 

but need an explanation for what was the reason of 

desirable or undesirable situation or system state in the 

past. In this study we utilize a combination of self-

organizing maps and multiple linear modeling to 

increase the interpretability and accuracy. We assume 

that the target variable can be explained differently by 

different patterns that characterizes inputs data. By 

solving clustering problem for subset of inputs, we have 

structured data and can relate each cluster to its 

representative or cluster profile, which explains the 

cluster. Based on that structure we build linear model for 

each cluster dataset, and coefficients of this model 

explain the influence of factors for particular inputs 

characteristics. To cut the number of inputs we use L1-

regularization for linear model. Proposed approach was 

tested on several industry related problems and 

implemented in application. 

Keywords:     explanation, self-organizing map, risk 

estimation, postprocessing 

1 Introduction 

Digital transformation makes it possible for industries to 

find answers on many questions in mathematical 

models. Machine learning algorithms, statistical 

analysis and visualization reveal dependencies between 

production efficiency and processes factors based on 

observed data. Mathematical models and their 

applications become a main part of support decision 

making platforms. Since the models are data-driven, 

production experts need to measure the adequacy of 

models, but there is no general way to provide this 

estimation. Nonlinear models could give a very high 

prediction rate and good generalization, but due to its 

complexity it is difficult, if even possible, to interpret 

the model. On the other hand, simple models can be 

interpretable, but in some cases give lower prediction 

rate, so one cannot be confident in modeling results and 

use the extracted from the model knowledge. In this

study we use a combination of clustering approach, such

as self-organizing map, and simple modeling

approaches proving that these combination makes the

final composite model more flexible but still

interpretable. Simpler model could be not good at

generalizing, because the relation between the inputs

and target variables cannot be identified with those

simple rules. Another reason of bad generalization is

when simple rules meet contradictions in data. But these

contradictions could disappear if these are related to

patterns in data.

We propose an approach that outperforms simple

modeling approaches but keeps its interpretability

benefits. This approach increases our confidence in

data-driven models and clarifies effects between the

target variable and inputs. Applying self-organizing

maps helps one to understand the main patterns in the

data and helps to see which pattern can be explained

with simple models and which cannot and requires

nonlinear models. Proposed approach discovers if the

main influential factors are different for different

patterns in data. This takes place in many cases, for

example: seasonal effects or different input materials

can lead to situations, where one inputs become more

influential on target variable over another. The goal of

this approach is to understand what one can do to

improve the situation and why. In research we apply

linear modeling with and without regularization, and

Kohonen’s self-organizing maps (SOM) (Kohonen,

1995). Linear models allow us to utilize the well-known

statistics, such as p-values and F-score. When we apply

𝑙1 and 𝑙2 regularization (Gareth et al., 2013; Kuhn 

and Johnson, 2016) and cross-validation, we reduce 
the number of variables without loss of generalization 

and prediction rate. Self-organizing maps returns 

clusters, which can be characterized by their profiles. 

Profiles can be determined with reference vectors, 

or average or median values by cluster.

Combination of unsupervised learning and

supervised learning can be met in different studies. In

some cases, this combination improves the prediction

metric. In (Lin et al., 2016) SOM is combined with

support vector machine algorithm to improve the

forecast of reservoir inflow during typhoon periods.
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The proposed approach has been tested on several

production data analysis problems and proved its

reliability in decision making and understanding the

causality between the effects appearing and the system

state or input material characteristics.

SOM provides interpretable visualizations. One can

see clusters and their properties: number of elements,

model prediction rate on train or test data, data pattern

that describes the cluster and the most influential

variables for that cluster.

An application solving the data analysis and

modeling problem with the proposed approach was

implemented in R (R Core Team, 2018) and R Shiny

(Chang et al., 2021) framework. It allows user to 

upload the dataset and set the clustering or learning 

parameters and build clusters and models. As a 

result, user sees statistics by cluster, modeling 

results by clusters and cluster profiles in interactive 

visualization made with “ggiraph” package (Gohel 

and Skintzos, 2020).

2 Modeling by Clusters

There are many modeling problems, when we are

interested not only in the model accuracy, but the in

model that explains what factors cause desirable

situation. At the same time, model needs to be accurate,

otherwise we cannot be confident in explanations that it

brings. Linear model, ridge regression and lasso (Gareth

et al., 2013; Kuhn and Johnson, 2016) regression 

give simple explanation on what factors have 

positive or negative effect on the target variable, but 

these modeling approaches have low accuracy if the 

relation between the inputs and outputs is nonlinear 

(Gareth et al., 2013). Flexible models need specific 

techniques to reveal the relation between inputs and 

output, which gives the relative importance of 

inputs, but leave behind the scenes the detailed 

explanation. Thus, the production expert cannot 

decide what condition leads to desirable or 

undesirable situation.

The main assumption of this study is that there are

contradictions in effects of factors on the target variable,

which make simple models inaccurate, and these

contradictions can be caused by different relation

between inputs and outputs for different patterns. The

proposed approach is illustrated on Figure 1.

We assume that clusters performed only on a subset

of input variable can already give us acceptable result.

For example, we can leave out all the process variables

and use only the characteristics of inputs materials. The

approach consists of three steps, which are given on

Figure 1 from the bottom to the top:

1 – We select variables that we will use in clustering

analysis.

2 – We provide clustering analysis and reveal patterns

in data.

3 – For each dataset related to pattern we solve

modeling problem separately.
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4 – We analyze the relation between the patterns in 

data and modeling results. 

 

Figure 1. From data to clusters and model for each 

cluster. 

As we mentioned above, linear model does not fit if 

the relation is nonlinear, but if nonlinearity caused by 

different patterns in data, we could solve modeling 

problem for each pattern. That is what one can see in 

Figure 1. If we use the whole dataset for training, we 

have a model, which does not give us the satisfactory 

accuracy level and thus, we cannot trust its coefficients 

as influence representation. But once we find clusters in 

the data and solve the modeling problem for each subset 

that is represented by a cluster, system predictability 

increases, and we can be more confident in explanations 

that these models provide. In that case we lessen the 

contradiction between the influence of different factors, 

which happens in different system state, according to the 

patterns found. 

Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑠},  𝑥𝑖 ∈ 𝑅𝑛, 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑠}, 
be the observations and times, respectively, 𝑠 is a dataset 

size. Let 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑠} be the target variable. In 

this paper we consider regression problem and binary 

classification problem. When solving binary 

classification problem, we search for model 

∀𝑖 𝑦𝑖 ∈ {0, 1}, 𝑓𝑐(∙): 𝑅 → {0, 1},   
𝑚(∙): 𝑅𝑛 → 𝑅, 

∑[𝑦𝑖 = 𝑓𝑐(𝑚(𝑥𝑖))]

𝑠

𝑖=1

→ min, 
(1)

where 𝑓𝑐 is a function that maps the linear model 𝑚 

prediction. Without loss of generality, let classification 

function 𝑓𝑐 map model prediction to the 1st class, if the 

prediction value is smaller than 0.5. 

For regression problem we are interested in model 

that predicts the output accurately, 



∀𝑖 𝑦𝑖 ∈ 𝑅,  𝑚(∙): 𝑅𝑛 → 𝑅, 

∑(𝑦𝑖 − 𝑚(𝑥𝑖))
2

𝑠

𝑖=1

→ min. 
(2) 

When solving problems (1) and (2) we are interested in 

model, which can satisfy our expectations in 

interpretability. 

In general, one can solve any other supervised 

learning problem, but in this study, we focus on (1) and 

(2). Nevertheless, the developed analytical application 

allows solving multimodal classification problem. 

2.1 Clustering 

There are cases when the inputs can reflect different 

situations: different material types, different content of 

chemical elements, different shifts, seasons, etc. We 

expect to see that these factors would affect the relation 

between the inputs and outputs of the model. But these 

examples are not the only cases, there could be different 

patterns in the data that we need to reveal. Because of 

that we use clustering algorithms to find all the patterns 

in data.  

In this study we utilize self-organizing maps to find 

the patterns in data. We chose SOM, because it 

preserves the data structure and makes it possible to 

visualize the clustering results on two-dimensional plot. 

Before we train SOM, we center and scale the inputs and 

keep the scaling parameters to preprocess the new 

observations. We train SOM on input data only because 

we need to apply it to new observations and for new 

observations, we do not know the output value yet. 

It is important that clustering problem can be solved 

for a selection of inputs, which make our clusters more 

interpretable and allows using of the production experts 

experience. For example, the input data contain 

temperatures of machine tools and material analysis. 

Expert knows that temperatures is something that we 

cannot control and those change rapidly, but the material 

analysis changes once in two or three months and there 

could be some differences in how the process is going. 

In that part one can test different hypothesis on what 

variables should we select when do clustering. Let us 

denote  

𝐼 = {𝑖1
𝑐,  … ,  𝑖𝑞

𝑐}, (3) 

as the set of indices of variables, we select for the 

clustering of the data and 𝑞 is the number of selected 

variables. 

Once the clustering problem is solved, we have labels 

or clusters number 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑠}, so each 

observation has one and only one label 𝑥𝑖 ↔ 𝑐𝑖. Now we 

can split the dataset by clusters: 

�̃�𝑗 = {𝑥𝑖 ∈ 𝑋,  𝑖 = 1, … , 𝑠 ∶  𝑐𝑖 = 𝑙𝑗}, 

�̃�𝑗 = {𝑡𝑖 ∈ 𝑇,  𝑖 = 1, … , 𝑠 ∶  𝑐𝑖 = 𝑙𝑗}, 

�̃�𝑗 = {𝑦𝑖 ∈ 𝑌,  𝑖 = 1, … , 𝑠 ∶  𝑐𝑖 = 𝑙𝑗}, 

𝑗 = 1, … , 𝑛𝑐 , 

(4) 

where 𝑛𝑐 is number of clusters or patterns and 𝑙𝑗 is label 

of 𝑗-th cluster. 

SOM requires several parameters. We need to set the 

grid dimension or the number of neurons and their 

topology. Let 𝑔𝑣 be the number of neurons vertically 

and 𝑔ℎ be the number of neurons horizontally. The total 

number of neurons is 𝑔𝑣 ∙ 𝑔ℎ. Algorithm has the 

following parameters: number of times the whole 

dataset will be presented to the network and the radius 

of neighborhood. 

There is “kohonen” package in R (Wehrens and 

Kruisselbrink, 2018), which we use in this study, when 

solving the clustering problem. In numerical tests we 

used the default values for parameters and searched for 

the grid that is best for the dataset. In application it is 

possible to set the SOM algorithm parameters. 

2.2 Modeling 

In this part we do linear model for each of the subset of 

the dataset (2). First, we consider regression problem 

and linear models with regularization. To minimize the 

values of coefficients we use 𝑙2-regularization and to 

reduce the number of input variables we use 𝑙1-

regularization 

∑ ((�̃�𝑗)
𝑖

− 𝑚𝑗 ((�̃�𝑗)
𝑖
, 𝜃𝑗))

2
𝑠𝑗

𝑖=1

+ 𝛼𝑃(𝜃𝑗)

= min(𝜃𝑗), 

𝑚𝑗 ((�̃�𝑗)
𝑖
, 𝜃𝑗) =  ∑ 𝜃𝑘

𝑗
∙ ((�̃�𝑗)

𝑖
)

𝑘

𝑛

𝑘=1

+ 𝜃0
𝑗
, 

(5) 

𝑙1: 𝑃(𝜃) = ∑|𝜃𝑖
𝑗|

𝑛

𝑖=0

, 

𝑙2: 𝑃(𝜃) = ∑ 𝜃𝑖
𝑗2

𝑛

𝑖=0

, 

(6) 

 

where 𝑚𝑗 is the j-th linear model for �̃�𝑗 subset that 

corresponds to cluster 𝑙𝑗, (�̃�𝑗)
𝑖

∈ 𝑅𝑛 is the i-th vector of 

observations in j-th subset, and (𝑎0
𝑗
, 𝑎1

𝑗
, … , 𝑎𝑛

𝑗
 ) are the 

coefficients of j-th linear model and 𝛼 is parameter. 

In this study we also consider binary classification 

problem, for which both regularizations are applicable: 

∑ log (�̃� ((�̃�𝑗)
𝑖
, (�̃�𝑗)

𝑖
, 𝜃𝑗))

𝑠𝑗

𝑖=1

+ 𝛼𝑃(𝜃𝑗)

= max(𝜃𝑗), 

(7) 

 

�̃� ((�̃�𝑗)
𝑖
, (�̃�𝑗)

𝑖
, 𝜃𝑗)

= {
𝜎 (𝑚𝑗 ((�̃�𝑗)

𝑖
, 𝜃𝑗)) ,  (�̃�𝑗)

𝑖
= 0,

𝜎 (−𝑚𝑗 ((�̃�𝑗)
𝑖
, 𝜃𝑗)) , (�̃�𝑗)

𝑖
= 1,

 
(8) 

𝜎 (𝑚𝑗((�̃�𝑗)
𝑖
, 𝜃𝑗)) =

1

1 + 𝑒−𝑚𝑗((�̃�𝑗)
𝑖
,𝜃𝑗)

, (9) 
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When we solve the modeling problem, we split each

subset on training, validation, and test sets. Training and

validation subsets are used to determined 𝛼 parameter

via the grid search. We pick a trial 𝛼 value, train the

model on the training subset and then calculate the

criterion on validation subset and after we check all the

trial values, we pick the best 𝛼∗ value in a sense of

validation dataset criterion value. Then we use this 𝛼∗ to

train model on the union of the training and validation

dataset and calculate its accuracy on the testing set.

We use “glmnet” R package (Friedman et al., 
2016), where lasso, ridge and elastic net 

regressions are implemented.

2.3 Visualization

Once we have solved the modeling problem for each

cluster, it is possible to reveal the statistics of it. First,

one can observe the criterion value calculated for the

testing set of that cluster and additionally criterion value

based on training and validation set. If the model is

linear, we can see the p-values and F static. Second, if

we are satisfied with the accuracy of the model, we can

find the most influential variables by the corresponding

coefficients of the linear model and find out which

coefficient cause negative or positive effect on the target

variable. Third, we can observe the cluster description

or cluster profile by its reference vector, vector of

medians or mean values of its observations. This profile

gives us information about what specifies this cluster. It

could be high or low values of the variable.

Visualization of the results includes 3 plots: one with

the SOM clusters 2-d plot, another one with selected

cluster profile and the last one with coefficients of the

linear model built for this cluster.

2.4 Predicting New Observations

When we receive the new observations to make

predictions, we need to recognize to which cluster these

observations belong to and then use the corresponding

model to make a prediction.

Each cluster is represented by its reference vector:

𝑉 = {𝑣1,  … ,  𝑣𝑛𝑐
}, (10)

where 𝑣𝑘 ∈ 𝑅𝑞, since we selected 𝑞 variables for

clustering (3).

Let us denote 𝑥𝑛𝑒𝑤 ∈ 𝑅𝑛 as new observation and its

selected variables (3) for clustering projection is

denoted by 𝑥𝑛𝑒𝑤
𝑐 ∈ 𝑅𝑞. Now we compare this projection 

to the cluster reference vectors and determine which 

cluster is the closest: 

𝑖𝑐 = arg min
𝑖

‖𝑥𝑛𝑒𝑤
𝑐 − 𝑣𝑖‖ (11) 

Once we determine the cluster to which projection 

𝑥𝑛𝑒𝑤
𝑐  belongs, we can make the prediction using the 

model for specific cluster 𝑖𝑐: 

𝑦𝑛𝑒𝑤 = 𝑚𝑖𝑐
(𝑥𝑛𝑒𝑤). (12) 

Criterion (11) is not the only option to determine the 

cluster, but this question is out of scope in this study. 

We can also see if there is no cluster close to the new 

point and realize that this kind of inputs combination is 

new to us. 

3 Experimental Results 

We applied approach to find the most influential factors 

of unwanted effects in a production line. To prevent 

leakage of commercial information, we rename the 

variables, and skip the analytical results that relates to 

the problem domain. 

We have a dataset with 61 input variables and solve 

binary classification problem. Our first class is “good” 

production state, and our second class is “bad” one. 

Previously we cleaned the dataset and since observation 

rate is different for some variables, we modified it to the 

one we need. We made the standard normalization of 

the input data because approaches (5)-(6) and (7)-(9) 

and SOM requires that. When calculating regression or 

logistic regression with 𝑙1 and 𝑙2 regularization we split 

the train dataset on train and validation parts and keep 

20% of data for validation. Then we use uniform grid 

on 𝐺 = 𝐺 = [−5, 10] with 1000 points and try these 

values as exponential degrees for 𝛼 in (5)-(6) and (7)-

(9), in other words ∀𝑝 ∈ 𝐺 ⇒ 𝛼 = 𝑒𝑝. Then we look for 

the best parameter by error on validation dataset and use 

it to train model on all the train data and after that check 

it on test dataset. 

The next step was to determine the factors we use as 

the main ones for clustering. Since in the dataset we 

have sets of variables of different nature, we used one 

of those. Our choice was discussed with production 

experts. It is very important to receive a feedback from 

the production experts or business when selecting the 

inputs for clustering problem. Variables for clustering 

will be the first ones the production analyst or decision 

maker will use, when one needs to make a decision. It 

does not mean that these variables should be available 

in advance, but it should be available soon enough, so 

the decision maker will have explanation in time or not 

too late. 

Once we selected variables (3), we solve the 

clustering problem and group the data according to the 

clustering labels (4). In this study we consider different 

number of clusters. We examined different 

combinations of clusters on horizontal and vertical axis: 

(𝑔𝑣
𝑖 , 𝑔ℎ

𝑖 ), ∀𝑖: 1 ≤ 𝑔𝑣
𝑖 , 𝑔ℎ

𝑖 ≤ 1, 𝑔𝑣
𝑖 ≤ 𝑔ℎ

𝑖  and 𝑔ℎ
𝑖 = 1 ⇔

𝑔𝑣
𝑖 ≠ 1, which means we try the following 

combinations: 1 × 2, 1 × 3, … , 1 × 5, … , 2 × 2, 2 ×
3, … ,5 × 5. For each of these parameters pair we solve 

the clustering problem and for each clustering problem 

solution, we produce the datasets and solve modeling 

problem.  

When we have the combined clustering and models 

statistics, we can compare the clustering parameters by 

the total statistics and choose the best settings for 

considered problem. Let us compare overall train and 
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test ratings for different combinations of clusters on 

horizontal and vertical axis. The summary is given in 

Table 1. In this summary we calculate error rate mean 

value weighted by number of elements per cluster. 

Table 1. Train and Test Error Rate by Number of Clusters 

Model Train Accuracy Test Accuracy 

No clusters 0.7833 0.7864 

1x2 0.8324 0.7517 

1x3 0.8371 0.7695 

1x4 0.8629 0.7511 

1x5 0.8675 0.8041 

2x2 0.8582 0.7586 

2x3 0.8985 0.8060 

2x4 0.9300 0.8387 

2x5 0.9599 0.8793 

3x3 0.9432 0.8267 

3x4 0.9913 0.9116 

3x5 1.0000 0.9205 

4x4 1.0000 0.8988 

4x5 1.0000 0.9178 

5x5 1.0000 0.9030 

 

One can see that there are many combinations that 

outperforms approach without clustering and modeling 

by groups of data. One can also see that there are a few 

combinations which have high prediction rate on test 

data. Let us consider combination 3 × 5 as it has the best 

accuracy rate on test data. It is important to mention that 

3 × 5 combination developed a cluster, which consists 

only of “good” class cases, so that its actual accuracy 

rate is higher. This must be considered when one chose 

the clustering parameters. 

In this study we use the “kohonen” R package 

(Wehrens and Kruisselbrink, 2018) and make 

visualization with help of “ggplot2” R package 

(Wickham, 2016). 

First, we can visualize clusters and color them 

according to the number of “bad” observations. In 

Figure 2 we can see the distribution of “bad” 

observations and their localization in particular clusters. 

One can use this information to reveal the relation 

between the clustering inputs values and pattern these 

values represent to the target variable. The same is 

possible for continuous output, for which we can use 

mean or median value. 

Additionally, we can visualize the characteristics of 

each cluster by its statistics for specific variable or their 

combinations. For example, we can visualize the 

average sum of specific components by clusters, or we 

can see the distribution for a variable among clusters. 

The general profile or characteristics of the cluster will 

be described below. 

 
 

 

Figure 2. Percent of “bad” cases per cluster. 

Second, we can visualize the error on training data for 

each model. In general, this plot can show us if there are 

some patterns for which we cannot apply the model we 

chose, or the data does not allow us to reveal the relation 

between the inputs and outputs. 

Third, we can visualize accuracy on the testing data 

for each model. This plot is given in Figure 3. 

 

  

Figure 3. Accuracy on testing data per cluster. 

Fourth, we can visualize the precision on the testing 

data for each model. This plot is given in Figure 4. 

 

SIMS EUROSIM 2021

DOI: 10.3384/ecp2118592 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

96



 

Figure 4. Precision on testing data per cluster. 

The final two plots reveal what pattern can we be 

confident in, when predict the target variable or make 

any conclusion about relation between inputs and 

outputs. If the model metric on the test data is low, it 

means that we cannot be confident in any explanations 

given by the model that is built on the model of this 

cluster. For example, one can see that cluster 10 has 

lower accuracy and precision, comparing to other 

clusters.  

Generally, we can add different statistical 

characteristics visualizations by clusters. 

Now for each cluster one can see its profile and the 

most influential variables. In application we developed, 

it is possible to interactively choose the cluster of 

interest and observe its profile and linear model 

coefficients with help of R Shiny and “ggiraph” R 

package. Let us pick cluster “1”, which is in left bottom 

corner in Figures 2-5. An example of cluster profile is 

given in Figure 5, and model’s coefficients for that 

cluster is given in Figure 6. 

 

 

Figure 5. Cluster profile: cluster reference vector. 

On profile figure we see the scaled data: 0 means 

average value for each variable and values above 0 

correspond to cases, where these variables were greater 

than their average. If the value is smaller than 0, we 

know that this variable usually takes value that is 

smaller than average. As one can see this cluster can be 

described by 14th variable, because this variable is 

sufficiently smaller the mean value. One can also 

observe that variables 3, 5-7 are also smaller than the 

mean value. Expert can name this cluster according to 

its profile and variables nature. 

Each cluster can be described by its characteristics. 

We can use mean, median values or any other metrics 

that help decision maker understand what each pattern 

represents. In this study we used reference vectors (10), 

since we utilize SOM. Reference vectors show values 

that characterize the cluster in a way, that if there is a 

new observation, we will compare the reference vector 

with that observation to make a decision (11) on what 

cluster does this observation belongs to (12). 

 

Figure 6. Linear model coefficients for selected cluster. 

As one can see, lasso-regression keeps only 3 from 

61 variables. Variables selected in model that 

corresponds to 1st cluster can be interpreted 

straightforward: increase of 𝐱𝟑 or 𝐱𝟐 lead to negative 

consequences and increase of 𝐱𝟏 lead to positive ones. 

Since we applied regularization we cannot calculate the 

𝒑 −value for any of the inputs coefficients the same way 

as one can do it for linear models without regularization. 

Nevertheless, one can apply linear modeling without 

regularization as the step 3, where we solve modeling 

problems for each data in cluster.  

4 Conclusion 

When solving modeling problem for business or 

production we are commonly interested in 

interpretability of the model. Interpretability lets 

decision makers and production experts understand the 

mechanics of the model prediction making. Sometimes 

this is necessary to validate the model, to be confident 

in it or to understand the process better. Data-driven 

modeling provides different view on the interaction 

between the inputs and outputs, which could reveal the 

unknown causality. Better understanding of the process 

is necessary, when one is looking for actions to improve 
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the process performance, to avoid unwanted states, and 

lessen production costs. 

Proposed approach outperformed modeling without 

clustering and revealed the patterns that relates to the 

“bad” cases. We can observe it comparing error rate on 

train and test in Table 1 for model in the first row, which 

is built without clustering and any combined model. We 

can also observe that the model accuracy on train data is 

increasing with increase of clusters number. At the same 

time model accuracy on test data increase to some 

number of clusters. Because of that it is important to 

investigate what is the best combination of cluster 

numbers. 

Powerful computational and visualization libraries in 

R along with R Shiny framework allows implementing 

analytical system, which can solve the combined 

clustering and modeling problem, reveal the 

dependencies and pattern and helps looking for actions 

to improve the process, when new observations appear. 
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Abstract 
This work is a feasibility study of modelling the 

calcination process in a cement precalciner by 

employing machine learning algorithms. Calcination 

plays a significant role in characterising the clinker 

quality, energy demand and CO2 emissions in a cement 

production facility. Due to the complex nature of the 

calcination process, it has always been a challenge to 

reasonably model the precalciner system. This study is 

an attempt of finding a feasible alternative to answering 

this challenge. In this study, six machine learning 

algorithms were tested to analyse three output variables, 

which are, 1). the apparent degree of calcination, 2). 

CO2 molar fraction (dry basis) and 3).water molar 

fraction in the precalciner outlet stream. Fifteen input 

variables were used to train the algorithms, of which the 

values were obtained through a large number of 

simulated datasets by applying mass and energy balance 

to the precalciner system. A number of machine learning 

algorithms showed better predictability and Artificial 

neural network (ANN) showed the best performance for 

all three output variables.  

 

Keywords: precalciner, cement manufacturing process, 

machine learning, degree of calcination 

1 Introduction 

1.1 Cement manufacturing and calcination  

Cement is one of the frequently utilized materials in 

building infrastructure facilities. Cement manufacturing 

is a globally crucial industrial sector that is highly 

energy intensive. It is responsible for a considerable 

share of global CO2 emissions. The dominant uses of 

carbon-intensive fuels, such as coal in clinker making 

and calcination process, are accountable for a large 

amount of CO2 emissions in the cement industry. 

Calcination in the cement manufacturing process is a 

complex industrial phenomenon involving mass 

transfer, heat transfer, and physical and chemical 

reactions. Materials are subjected to high temperatures 

so as to cause a chemical and physical change. Process 

emissions from calcination of limestone are 60%, where 

0.5 tonnes of CO2 is emitted per tonne of clinker 

production (IEA, 2008). The endotherm reaction at 950 

°C in the calciner demands about 1700 MJ/t clinker 

energy, which is around 50% of total energy (WWFI, 

2008).  

Figure 1 shows a schematic diagram of a typical dry-

based cement manufacturing facility. Most of the 

modern cement facilities are equipped with a precalciner 

system located between the preheater and the rotary 

kiln. In the production process, raw materials, typically 

80-90% limestones, are prepared by crushing, grinding 

and adding chemicals. This preprocessed raw material 

(which is referred a ‘raw meal’) is then preheated to 

750°C and sent to the precalciner (also called as 

calciner). Precalciner intiates the chemical 

decomposition of limestone (CaCO3) into lime (CaO) 

and carbon dioxide (CaCO3 ↔ CaO + CO2). About 90% 

of raw meal is calcined at this unit (GmbH, 2016). 

Precalciner system provides direct combustion through 

solid-gas heat exchange, where it disperses and 

suspends cement raw meal powder in an airflow. The 

pre-calcined meal then enters the rotary kiln, where the 

remaining calcination process is completed. Clinker 

formation takes place in the kiln and finally the clinker 

is sent to the clinker cooler.  

Stability and the effectiveness of the calcination 

process directly affects the final clinker quality, smooth 

operation in the subsequent rotary kiln operation and the 

energy requirement of the pyroprocessing unit. The 

exothermic process of fuel combustion and the 

endothermic process of carbonate decomposition in the 

raw meal occurs simultaneously in the precalciner. The 

optimum operation of precalciner conserves energy and 

reduces emissions associated with both precalciner and 

rotary kiln. Calcination degree, which is an indicator of 

the performance of the precalciner, is affected by several 

parameters such as temperature inside the calciner, 

residence time of the raw meal in the system, solid gas 

separation, dust circulation effect and kinetic behavior 

of raw materials (Mikulčić et al., 2012; 

Mohammadhadi, 2018).  

Calcination degree is expressed in two ways; either 

true calcination degree or apparent calcination degree 

(Tokheim, 1999). The apparent degree of calcination 

ηapp is mentioned as ADOC in this paper, which is used 

as an indicator to monitor the calcination process in the 
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cement production line because accurate calcination 

degree cannot be measured easily. However, it is not 

easy to measure the apparent degree of calcination 

online. Instead, samples are extracted from the process 

line and analyzed offline in the laboratory. The 

frequency between two subsequent analyses can be one 

hour or even several hours, depending on the availability 

of laboratory capacity. The precalciner outlet 

temperature is therefore used as the primary controlled 

variable in the precalciner to control the degree of 

calcination. Oxygen and carbon monoxide levels are 

also controlled because they are indicators of the fuel 

combustion and stabilisation of the process, respectively 

(Osmic et al., 2020) 

Figure 2 shows different input and output variables to 

the cement precalciner system. These variables belong 

either to basic input streams (i.e. preheated raw meal, 

fuel and tertiary air) or primary output stream (i.e. 

calcined meal). Description of symbols can be found in 

Table 1. Some of these variables can be measured online 

by appropriate sensors, while others are difficult to 

measure. In such situations, they are computed using 

available measurements. The computation can be 

accomplished on the basis of appropriate assumptions 

 

. 

 

.  

 

Figure 1. Schematic diagram of a typical cement manufacturing facility with details about input/output flow streams for the 

pyroprocessing section  

 

  
Figure 2. Input, performance and intermediate variables 

for a precalciner system  
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1.2 A modelling approach to assessing the 

performance of the precalciner 

Several researchers have attempted to develop 

relationships between variables in precalciner process 

using the soft and hard modelling approach. Coupling, 

time-varying delay, and nonlinearity of precalciner 

system make it hard to establish an exact mathematical 

model to realize performance indicators such as ADOC.  

Mass and energy balance (MEB) provides a 

fundamental approach to derive correlation to determine 

a required process output.  Authors in this study have 

experience in employing MEB to model precalciner. 

When there are input parameters which are unknown or 

cannot be measured directly, an iterative procedure is 

used during the MEB calculation. An example of an 

alternative approach to MEB is machine learning 

methods where this iterative process can be skipped.  

Machine learning (ML) has shown promising results 

in modelling complex and nonlinear manufacturing 

processes that deal with noisy, limited and non-

integrated data. Machine learning algorithms such as 

Support Vector Machine (SVM) and Artificial Neural 

Network (ANN) have proven their capabilities in this 

regard. (Gang and Hui, 2010) developed a model by 

using Least Squares Support Vector Machine (LS-

SVM) with radial basis function (RBF) kernel for 

determining the apparent degree of calcination. The 

furnace temperature and pressure, the outlet temperature 

and pressure of the calciner, the temperature of the 

tertiary air and the lay-off quantity of cement raw were 

used as inputs to the model. (Griparis et al., 2000) 

proposed, adaptive, robust and fuzzy control to achieve 

the desired degree of precalcination of the raw meal, low 

carbon monoxide, while stabilising the precalcination 

process considering the multivariable dependencies in 

the precalciner system. (Yang et al., 2010) developed a 

back-propagation neural network (BPNN) and Radial 

basis function neural network (RBFNN) to assess the 

kiln temperature and oxygen content based on five 

variables which are coal flow to the kiln, coal flow to 

the precalciner, raw meal flow, rotary speed of kiln and 

negative pressure of the preheater exit.  

The performance of the machine learning algorithms 

depends highly on the quality of input data. Therefore, 

collection and preparation of training dataset is an 

important step in the modelling process. Training data 

can be provided in three ways; 1) simulated data 2) 

actual process data and 3) designed experiment data. 

Simulated data is generated by theoretical models such 

as statistical models and computer simulations. Actual 

process data are randomly selected raw process data and 

many manufacturing companies have historical data in 

their database. Designed experimental data can be 

obtained using a Taguchi or Design of Experiment 

(DOE) approach. Among these three approaches, 
training and optimizing a model using a large number of 

less expensive simulation data and testing the model 

with a smaller dataset of process data is a cost-effective 

approach. 

This feasibility study aims to provide an alternative 

approach to conventional mass and energy balance to 

model precalciner in a cement manufacturing process. 

Simulated data from MEB calculations were used to 

train, validate, and test different machine learning 

models to predict apparent calcination degree, molar 

fraction of water and CO2 (dry basis) in precalciner 

output. They were assessed based on known values of 

fifteen input variables.  

2 Materials and methods 

2.1 Input and output data 

The first phase of modelling work in this study was 

selecting input and output variables for models. These 

variables are listed in Table 2, including their maximum, 

minimum, mean and standard deviations. The dataset 

included 20543 samples. The full-factorial design 

approach, a famous experiment design, was used to 

generate the synthetic input data matrix. These data 

were used to obtain the output data matrix by applying 

mass and energy balance to the precalciner.  The system 

boundary of the model is shown in Figure 1.  

2.2 Methodology 

 Table 1. List of regression algorithms used to train 

models 

Regression Model 

category 

Regression model type 

Linear regression 

model  

 

 

1). Classical linear 

2). Interaction linear 

3). Robust linear 

4). Stepwise linear 

 

Regression trees  1). Fine Tree 

2). Medium tree 

3). Coarse Tree 

 

Support vector 

machines (SVM) 

1). Linear SVM 

2). Quadratic SVM 

3). Cubic SVM 

4). Fine Gaussian SVM 

5). Medium Gaussian SVM 

6). Coarse Gaussian SVM 

 

Gaussian Process 

Regression  

1). Rational quadratic 

2). Squared exponential 

3). Matern  

4). Exponential 

 

Ensemble of 

Regression Trees 

1). Boosted tree 

2). Bagged tree 

 

Artificial neural 

netwrok 

1). Levenberg-Marquardt back-

propagation 

 

All data were normalized before feeding to the models. 

Regression Learner App available in Matlab 2019 
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software was used for model development (Mathworks, 

2021).  

 
Figure 3. Model network architecture for ANN; The 

same inputs and outputs were also used for other 

regression models  

 

Table 1 shows the list of algorithms that were used to 

train the dataset. These algorithms fall under six 

regression model categories as linear regression, SVM, 

regression tree, ensemble gaussian process regression 

(GPR) and ANN. There are different algorithm types 

(19 in total) under each of first five categories. The 

dataset was trained for all these algorithms. For ANN, 

the data was trained with Levenberg-Marquardt back-

propagation algorithm with 20 neurons and one hidden 

layer. Selection of number of neurons and hidden layers 

for the ANN model was an arbitrary option. Figure 3 

illustrates the ANN network architecture representing 

inputs and outputs. 

Three statistical indicators were used for evaluation 

of the model performance, which include mean absolute 

error (MAE), root mean squares error (RMSE) and 

coefficient of determination (R2). They were calculated 

as shown in Equation 1 to 3. 

𝑀𝐴𝐸 =∑
(𝑦𝑖 − �̂�𝑖)

𝑚

𝑚

𝑖=1

 

 

(1) 

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑(𝑦𝑖 − �̂�𝑖)

2

𝑚

𝑖=1

 

 

(2) 

𝑅2 = 1 − (
∑ (𝑦𝑖 − �̂�𝑖)

2𝑚
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑚
𝑖=1

) 

 

(3) 

Here �̂�𝑖 is the estimated value by the model, 𝑦𝑖 is the 

actual value of the response process (MEB based 

simulation data), and 𝑚 is the number of samples in the 

dataset. 

 

 

. 

 
Table 2. Description of input and output variables to the precalciner model 
No: Input/output name Symbol Variable 

type 

Unit Minimum Maximum Mean Standard 

deviation 

1 Moisture content of the 

fuel 

 Xcoal, moisture 
Input 

% 
0.87 2.27 1.38 0.61 

2 Volatile content of the fuel  Xcoal, volatile Input % 16.17 31.79 24.47 7.15 

3 Char content of the fuel  Xcoal, char Input % 18.84 47.43 34.52 13.40 

4 *NCV of coal  NCV (DAF ϯ) coal Input J/kg 31.47 34.63 33.27 1.34 

5 The carbon content of coal 

(ϯDAF basis)  

XC, (DAF) 
Input 

% 
86.48 93.47 89.98 3.05 

6 Hydorgen content of coal 

(ϯDAF basis) 

XH, (DAF) 
Input 

% 
3.93 5.19 4.62 0.59 

7 Coal mass flow rate  �̇�𝑖,𝑐𝑜𝑎𝑙  Input kg/s 2.67 3.61 3.07 0.38 

8 Tertiary air temperature Ti,t Input K 742.70 908 821.67 67.32 

9 Pre-heated meal mass flow 

rate 

�̇�𝑖,𝑝𝑚 
Input 

kg/s 
52.37 66 60.14 5.49 

10 Pre-heated meal 

temperature 

Ti,pm 
Input 

K 
950 989 968.92 19.54 

11 Kiln gas temperature Ti,k Input K 1215 1250 1232.10 17.50 

12 Kiln gas O2 molar fraction YO2, k Input - 0.04 0.10 0.07 0.03 

13 Kiln dust % �̇�𝑘𝑑 Input % 4.00 54.00 28.59 15.95 

14 Pre-calcined meal 

temperature 

To,pcm 
Input 

K 
1055 1117 1090.04 30.74 

15 O2 molar fraction of outlet 

of precalciner 

Yo,O2 
Input 

- 
0.03 0.05 0.04 0.01 

1 Apparent degree of 

calcination  

ADOC= 

ηDOC,Apparent 
Output 

% 
19.06 100 73.29 17.47 

2 CO2 molar fraction at 

precalciner outlet 

Yo,CO2 
Output 

- 
0.19 0.32 0.26 0.02 

3 H2O molar fraction at 

precalciner outlet 

Yo,H2O 
Output 

- 
0.05 0.06 0.05 0.003 

 

𝑋𝑐𝑜𝑎𝑙 ,𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒  

𝑋𝑐𝑜𝑎𝑙 ,𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒  

𝑋𝑐𝑜𝑎𝑙 ,𝑐ℎ𝑎𝑟  

𝑁𝐶𝑉(𝐷𝐴𝐹)𝑐𝑜𝑎𝑙  

𝑋𝐶,(𝐷𝐴𝐹) 

𝑋𝐻,(𝐷𝐴𝐹) 

�̇�𝑖 ,𝑐𝑜𝑎𝑙  

𝑇𝑖 ,𝑡  

�̇�𝑖 ,𝑝𝑚  

𝑇𝑖 ,𝑘  

𝑌𝑖 ,𝑂2 ,𝑘  

𝑌𝑜 ,𝑂2  

𝐾𝐷 

𝑇𝑜 ,𝑝𝑐𝑚  

𝜂𝐷𝑂𝐶 ,𝐴𝑝𝑝𝑒𝑟𝑒𝑛𝑡  

𝑌𝑜 ,𝐶𝑂2  

𝑌𝑜 ,𝐻2𝑂  

𝑇𝑖 ,𝑝𝑚  
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3 Results and Discussion 

As mentioned earlier in Table 1, there were 5 regression 

model categories which were trained from the dataset. 

For each category, the model which gave the minimum 

RMSE was selected to predict the three output variables 

of apparent calcination degree, CO2 molar fraction and 

H2O molar fraction. The summary of their statistical 

performance is shown in Table 3. It also shows the ANN 

model results. In addition, it also shows the linear 

regression – classical model result to give an 

understanding how the classical linear regression 

method deviates to other methods. 

For predicting the apparent calcination degree, ANN 

gives the best results while GPR - rational quadratic 

method also shows successful results. Both Ensemble 

Bagged Tree and classical linear regression method 

show poor prediction results. ANN model also showed 

best performance for building relationship with inputs 

and CO2 molar fraction and H2O molar fraction. Linear 

regression – stepwise algorithm was also successful for 

all the three outputs, but it demanded a considerable 

computational time compared to SVM and regression 

trees. SVM-medium gaussian and regression tree – fine, 

gave the third best results for CO2 molar fraction 

prediction and H2O molar fraction prediction 

respectively. Training by Gaussian process regression 

algorithms were stopped due to high computational time 

for the CO2 and H2O models. 

Figures 4 and 5 illustrate the prediction results for 

two different models. Figure 4 shows the performance 

by the ANN model compared to the MEB-based 

simulated data. ANN model predictions show a fit with 

R2=1, and due to the large number of samples tested, 

data scattering along the 1:1 line is not visible. 

Therefore, a small section of the x and y-axis was 

magnified to show the data swarm around the fitting 

curve. Results show that the ANN model can effectively 

formulate the relationship between these 15 parameters 

to the three output properties selected in this study. 

Figure 5 shows the comparison of linear regression- 

classical model compared to its MEB-simulated data. It 

shows the least performance compared to other 

algorithms for this dataset. 

 

 

 

 

Table 3. Statistical details of the model performance 
Parameter Model name RMSE R2 MAE Training time 

(sec) 

Calcination degree Linear regression  – classical  3.224 0.97 2.5753 6 

Linear regression  - stepwise 0.72151 1 0.57324 924 

Tree - Fine 1.9622 0.99 1.6375 8.5 

SVM -  quadratic 0.91321 1 0.76053 15 

Ensemble – Bagged tree 2.4634 0.98 1.9776 36 

GPR – rational quadratic 0.03759 1.00 0.02804 1033 

ANN 0.019552493 1 - - 

CO2 molar fraction 

(dry basis) 

Linear regression  - classical 3.3337 x 10-3 0.98 2.5965 x10-3 7 

Linear regression  - stepwise 0.4666 x 10-3 1 0.3633 x x10-3 1314 

Tree - Fine 1.4738  x 10-3 1 1.201 x10-3 10 

SVM -  medium gaussian 1.101 x 10-3 1 0.898x10-3 16 

Ensemble – Bagged tree 3.12 x 10-3 0.98 2.471x10-3 24 

GPR Model training was stopped due to higher computation time 

 ANN 0.04157 x 10-3 1 -  

H2O molar fraction Linear regression  - classical 3.476 x 10-4 0.98 2.085 x10-4 3 

Linear regression  - stepwise 0.711 x10-4 1 0.5873 x10-4 1218 

Tree - Fine 1.4129 x 10-4 1 1.15x10-4 5 

SVM -  quadratic 1.6035 x 10-4 1 1.378 x10-4 6 

Ensemble – Boosted tree 3.647 x 10-4 0.98 2.8007 x10-4 12 

GPR Model training was stopped due to higher computation time 

ANN 5.97419 x 10-5 0.99975 - - 
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(a1) (a2) 

 
(b1) (b2) 

 
(c1) (c2) 

Figure 4. Performance by ANN model. Figure shows the comparison between the calculated data 

(MEB – based simulataed data) and predicted data (by ANN model); (a1). ADOC; (b1) H2O molar 

fraction; (c1). CO2 molar fraction; a2, b2, and c2 plots are magnified sections from their 

corresponding left sided plots 
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There are both advantages and disadvantages between 

different machine learning algorithms. Their 

performance also heavily depends on the type of data. 

The theory behind these algorithms are not mentioned 

in this paper and can be found in literature such as in 

(Shwartz and David, 2014). In general, it is said that 

SVM and regression trees have fast prediction and 

training speeds, but they are suitable for handling minor 

problems and prone to overfitting (Bonaccorso, 2017). 

Ensemble gives high accuracy and performance for 

small and medium-size datasets, but tuning is required.  

Gaussian process is an effective algorithm for both 

regression and classification. A Gaussian process is a 

probability distribution over possible functions, and can 

deal effectively with data uncertainty (Irwin, 1997). The 

most critical drawback of GP regression is higher 

computation time. In this study, using GPR algorithm 

were terminated for H2O and CO2 molar fraction 

prediction. The advantage of modelling by ANN is that 

the model can be established directly with the input and 

output data of the application when there is less prior 

knowledge of the application. It is suitable for the highly 

nonlinear and uncertain system. ANN model has better 

online correction capability (Abiodun, Jantan et al., 

2018). But it uses a large memory, and training speed 

can be slow. However, the choices of the quantity and 

quality of training data, learning algorithm, and 

topology and type of the network are all critical to the 

performance of a soft sensor model.  

The data used to train the models in this study are 

simulated data. Some data points used in model 

development may not be practical in plant operation. 

The process data generated from real-time plant 

operation is a mixture of noise from raw materials, 

energy inputs, equipment, system running state, and 

time-varying chemical and physical parameters of raw 

materials and products.  Therefore, if the real process 

data can train the models mentioned in this study, it will 

be an excellent opportunity to assess the results of this 

feasibility study. Plant operators can use such models 

tuned for a prolonged period to reduce downtime and 

take decisions before the results of offline lab samples 

arrive.   Since plant    data always include noise and 

undefined variations, the way they fit to the models 

might be  different than reported in this study. Therefore 

it is always recommended to tune the model with a 

number of plant data before the models are used directly

for practical applications.  

4 Conclusion and Recommendation 

This work describes a regression attempt to determine 

the apparent degree of calcination, CO2 molar fraction 

and H2O molar fraction in a cement precalciner system 

by formulating relationships between several input 

variables. Different types of machine learning 

algorithms were tested to test their suitability to build 

relationships with the input data and output data. Since 

(a) 

(b) 

(c) 

 

 

Figure 5.  Performance by classical linear regression 

model. Figure shows the comparison between the 

calculated data (MEB – based simulataed data) and 

predicted data (by classical linear regression model); 

(a). ADOC; (b) H2O molar fraction and (c). CO2 

molar fraction 
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this is a feasibility study, synthetic data were used to 

train the models. These data were obtained from 

applying mass and energy balance. Results show that a 

number of machine learning algorithms show good 

performance with respect to the classical linear 

regression method. Several factors affect the calcination 

process in the precalciner and adding their contribution 

as model inputs to tune the developed models are 

recommended to increase the model robustness. In 

addition, it will also provide clues whether sampling 

frequency should be increased or not for experimentally 

measured parameters used to calculate the precalciner 

performance.  

In particular, training a model using synthetic data 

can be viewed as a learning process. The advantage of 

using synthetic data from such theoretical models is that 

the number of data points can be increased to decrease 

the error inexpensively. The results can be viewed as a 

guide for a proposal distribution generator for 

approximate inference and can be used to draw a formal 

connection between inputs to optimize network 

parameters. As the second step of this study, testing the 

models by selected process data that represent extreme 

and typical plant operation conditions is recommended. 

This will lead to develop more realistic models based on 

the actual plant data. The system boundary used for the 

model was the precalciner system. However, the model 

can be more meaningful if the system boundary can be 

expanded to cover the entire pyroprocessing unit. 
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Abstract 
In this study, we consider fault prediction problem and 

production process risk monitoring based on 

observational data. We consider case, when there are no 

variables, by which one could classify the situation 

preceding to the fault. We propose an approach that is 

based on a specific auxiliary risk variable and 

modifications of the modeling accuracy estimation 

criterion, so the fault detection problem is reduced to 

supervised learning problem. We use deep learning and 

examine different model architectures. Trained model 

produces the risk estimations for new observations, then 

we use postprocessing to interpret the estimations to 

decision-maker. This work confirms that data-driven 

risk estimation can be integrated into digital services to 

successfully manage plant operational changes and 

support plant prescriptive maintenance. This was 

demonstrated with data from a commercial circulating 

fluidized bed firing various biomass and residues but is 

generally applicable to other production plants.  

Keywords:     deep learning, fault detection, risk 

estimation, postprocessing 

1 Introduction 

In this paper we consider a real-world problem 

concentrating on boiler fault prediction in biomass-fired 

circulating fluidized bed (CFB) power plants. These 

plants are extremely important and have not only the 

financial benefits, but also benefits for the environment 

as they can be used to replace fossil-fuel -based power 

generation. Plants of this type can utilize challenging 

fuels such as biomass or waste residues efficiently, but 

the drawback is that these types of fuel may often cause 

different problems such as blockages in the material 

flow. Especially this concerns biomass fractions that 

include large amounts of alkali metals. Although the 

consequences of the blockages are serious, we still 

cannot measure the quality of the fuel accurately and 

need to control the process using the observational data 

coming from different other sensors. At the same time 

rapidly evolving energy market sets challenges to 
traditional combustion-based power plants as it 

demands efficiency and flexibility in terms of fuel and 

load range. For example, the share of biomass as an 

energy source has increased significantly during recent 

years and it is expected to keep on increasing. In this 

study we propose and apply an approach to find patterns 

in a system state that takes place priorly to the fault. 

The fault prediction problem and state monitoring 

problem appear in many different industries. This 

problem is serious because faults bring damage to 

production process and causes loss of profit. Faults can 

cause production blockage or disfunction and 

companies require resources to stabilize the process. In 

(Paltrinieri and Khan, 2016) the importance of risk 

assessment is considered for chemical industries. In 

energy sector faults consequences are serious too: any 

unexpected load limitation or shutdown of a power unit 

can cause considerable economical losses. Usually, the 

cost of undoing the damage is much higher than the cost 

of preventing the fault and that is why it is important to 

monitor and analyze the system state. The production 

system state analysis can predict if the process is in risky 

state and we need to act to lessen the risk.  

Production processes are complex so many of those 

does not have adequate mathematical models based on 

physics or chemistry. But if even we had a mathematical 

model, there is still high level of uncertainty: we cannot 

measure all the inputs and all the system states. Once we 

met uncertainty, we use data to fight it. This leads us to 

hypothesis of using the data and data-driven modeling 

to solve fault prediction problem.  

But how do we know that some of the system states 

causes faults? In general, there are no state variables 

indicating that situation is getting risky. Even process 

experts cannot name the conditions by which we could 

determine the pre-fault state. Anyway, if there are such 

variables, the approach we consider in this study can be 

applied too. Commonly, these conditions could be 

complex, and first we need to recognize those. When we 

can identify the system state with some value 

representing how close it is to pre-fault condition, and 

this is where we use mathematical model. In this case 

mathematical model is a mapping that reflects the 

observations to indicative values that shows if the 

system is risky and earlier it led to one of the fault cases. 

The next step would be transforming the indicative 
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value to decision. This next step is based on another

mathematical model, which we call a post-processing

unit, that helps production expert to categorize the

situation.

To sum up, we propose ap approach that is based on

recognition of patterns in data that led to failure in the

past and help production experts in decision-making by

mapping state evaluation to clear and succinct labels. Of

course, similar patterns can be met also in common

functioning, so it is important part of the approach to

deal with interpretation contradictions. But adjustment

of proposed decision-making support system needs to

involve economical effect calculation. We can make

system more sensitive and increase the number of times,

when the system indicates, that the current situation is

risky, so the production expert needs to act. Or we can

make it less sensitive and focus only on patterns that

proved their statistical relation to fault. System

sensitivity is the question that can be solved with

business only and by measuring the economic effect.

Proposed approach helps analyzing the patterns

leading to the faults and revealing if similar conditions

caused the fault in different cases.

In this study we reduced the fault prediction problem

to regression problem, where we use observational data

to train the model utilizing machine learning techniques.

We adjusted the modeling criterion to fit the problem

and applied a specific mapping to the modeling results

to interpret the model predictions so the model and its

postprocessing unit can work online to solve the risk

monitoring problem.

2 Risk Estimation and Fault

Prediction

Statistical modeling is applicable to solve various

application problems (Kuhn and Johnsson, 2016) and

computational resources today allow solving complex

modeling problems. We can apply deep neural

networks, train them on large datasets and produce a

value for the production. Deep learning algorithms

proved their efficiency in solving complex modeling

problems (Chollet and Allaire, 2018) and (Goodfellow

et al., 2016). Digital transformation or Industry 4.0 has

high demand in statistical models and modeling

methods (Brink et al., 2016) since many of models are

data-driven or learning from the data.

In many different studies machine learning

algorithms were applied to solve the fault prediction

problem, but considered approaches are applicable to

specific domain or when there is known variable, by

which one can measure how safe is the process. For

example, in (Paltrinieri et al., 2019) the machine

learning based approach is considered as a promising

tool of solving risk estimation problems, but in their

study was a variable that represents the risk level. But

the process we study does not have such variables. If we

could label the system states data, we could apply the

approach considered in study (Bondyra et al., 2018). But 

we have thousands of observations and no information 

on how we can estimate the degree of risk for each 

system state. 

Approach based on labeled data is also presented in 

study (Rackshani et al., 2009), where authors consider 

the fault prediction problem for a power plant boiler and 

solved it by means of deep neural network. In their study 

the risk variable was constructed based on the fact of 

immediate faults and 8-hours operating cycle. This 

approach is difficult to be applied if there are only a few 

fault cases in dataset. It also makes it difficult to use this 

model to make just in time decisions, since the model is 

trained on aggregated data. It is also hard to detect if the 

reason for the fault was observed earlier than the 

working cycle interval. Approach without data 

aggregation was considered in the study (Hujanen, 

2019), where the problem was reduced to the 

classification problem with 3 classes and deep neural 

networks were trained.  

In this study we propose an approach that is based on 

recognizing of specific patterns in data, that caused the 

system fault in the past. We construct the auxiliary risk 

variable that indicates how dangerous is the current 

state. We assume that risk starts to grow some time 

before the fault and all the other time it is low. This risk 

interpretation is a simplification of the risk definition 

done by (Kaplan and Garrick, 1981), and we are not 

estimating the consequences and probabilities. 

Having risk variable makes it possible to reduce the 

fault detection problem to supervised learning problem. 

But there is uncertainty of the actual risk value for the 

observations that do not belong to the prior to the fault 

interval. In following paragraphs, we consider the risk 

variable construction, the adjustment of criterion and the 

postprocessing of the modeling results. 

2.1 Problem Reduction 

The considered process state can be characterized by 

different inputs that correspond to the sensor data from 

the different parts of the boiler plant. Each of these 

inputs can be described as time series with fixed step 

size: 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑠}, 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑠}, where 𝑠 is a 

sample size. We also know 𝑚 times at which the fault 

happened: 𝑡𝑖
𝑓

, 𝑖 = 1, 𝑚, so we assume that there had 

been some time before that, at which the risk began to 

grow. 

2.1.1 Risk Variable Construction 

This time before the fault is a parameter ∆ of the 

proposed approach. We put forward a hypothesis, that 

there is no risk in any other timestamp, than timesteps 

before the fault limited by the parameter. We also 

assume that risk increases monotonically starting from 

zero, and it reaches its maximum value of one by the 

fault time, so the risk variable can be evaluated by the 

following function  
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𝑟(𝑡, 𝑡𝑓) = {
𝑡 − 𝑡𝑓

∆
+ 1, 𝑡𝑓 − ∆ ≤ 𝑡 ≤ 𝑡𝑓 ,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 (1) 

where 𝑡𝑓 is the fault time and ∆ is the parameter. Since 

there could be 𝑚 different faults, the risk function for 

whole observation time can be evaluated as a sum of 

single fault functions (1): 

𝑟(𝑡) = ∑ 𝑟(𝑡, 𝑡𝑖
𝑓

).

𝑚

𝑖=1

 (2) 

We assume that there is always a normal system state 

between the different faults, so it is possible to find such 

∆ that ∄𝑖, 𝑗,  𝑡𝑖
𝑓

< 𝑡𝑗
𝑓

: 𝑡𝑗
𝑓

− 𝑡𝑖
𝑓

< ∆, so non-zero 

intervals of the risk functions are not overlapping. 

According to this approach, we need to find a relation 

between the system state variables and the risk feature. 

In this study we assume that the risk is increasing 

identically before any of the faults. 

2.1.2 Criterion Adjustment 

We need to split the data on train and test sets to 

estimate the adequacy of model and its generalization. 

Since we work with time series, which consists of 

several intervals corresponding to several faults, we 

consider two splitting schemes. First option is to leave 

the data for one of the faults for the test and to keep 

other faults data for the train. This would help us to 

understand which faults have similar (or different) 

patterns corresponding to the risk increase. Second 

option is to split the data on two subsets, one before 

some date as train and validation and second after that 

date as test. In that case we can see, how good is 

historical data in predicting the future faults. To provide 

validation we used stratification, so train and validation 

contain observations from a common process and 

observations from the interval before the fault. 

As a modeling criterion we used the root mean 

square error 

𝐼(�̃�) = √∑(𝑟(𝑡𝑖) − �̃�(𝑥𝑖))
2

𝑛

𝑖=1

, (3) 

where n is a test or validation subset size, 𝑟(𝑡𝑖), 𝑖 = 1, 𝑛̅̅ ̅̅̅ 

are risks (2) at 𝑡𝑖 timestamps and �̃�(𝑥𝑖), 𝑖 = 1, 𝑛̅̅ ̅̅̅ are risk 

estimations at the same time points by the model. Since 

we cannot properly estimate the risk for the time, when 

no fault was detected and we cannot estimate the risk 

for time intervals right after the fault, we suggested to 

use specific weights for these errors in the sum (3):  

𝐼𝑤(�̃�) = √∑ 𝑤(𝑡𝑖) ∙ (𝑟(𝑡𝑖) − �̃�(𝑥𝑖))
2

𝑛

𝑖=1

, (4) 

where 𝑤(𝑡) is a weighting function, 

𝑤(𝑡) = {

𝑤𝑎𝑓𝑡𝑒𝑟, 𝑡 ∈ 𝑇𝑎𝑓𝑡𝑒𝑟 ,

𝑤𝑛𝑜𝑟𝑚𝑎𝑙 , 𝑡 ∈ 𝑇𝑛𝑜𝑟𝑚𝑎𝑙 ,
𝑤𝑟𝑖𝑠𝑘 , 𝑡 ∈ 𝑇𝑟𝑖𝑠𝑘 ,

 (5) 

and 𝑇𝑎𝑓𝑡𝑒𝑟 are the time intervals corresponding to states 

after the faults, 𝑇𝑟𝑖𝑠𝑘 are the time intervals before the 

faults and 𝑇𝑛𝑜𝑟𝑚𝑎𝑙 are the other intervals. Here 𝑤𝑎𝑓𝑡𝑒𝑟, 

𝑤𝑛𝑜𝑟𝑚𝑎𝑙 and 𝑤𝑟𝑖𝑠𝑘 are weighing coefficients. These 

coefficients are used for increasing the influence of 

errors caused at the points, when the risk was growing 

and decrease the influence of errors of risk estimation 

for the time intervals for which the risk value is 

uncertain. 

2.1.3 Supervised Learning Problem 

The goal of our risk modelling approach is to estimate 

the risk of the current system state and to observe its 

dynamics for decision making. It means that we need to 

have model with optimal parameters 𝛼∗, which is 

adequate in risk estimation and thus minimizing the 

criterion (4): 

𝑎∗ = argmin
𝛼

𝐼𝑤(�̃�(𝑥|𝛼)), (6) 

where �̃�(𝑥|𝛼) is the model prediction in case of its 

parameters 𝛼, and 

𝑟∗(𝑥) = �̃�(𝑥|𝑎∗), (7) 

is the best model by criterion (5) for the data we have. 

The fault prediction problem is reduced to minimization 

problem (4), where we use specific weight coefficients 

(5). The solution of reduced problem is optimal model 

parameters (6), that we use to estimate a risk by system 

state variables. Now the risk estimation (7) can be used 

for fault prediction and decision making, but in this 

study, we consider interpreting risk estimations for 

decision making in production control. 

2.2 Postprocessing 

As a result of learning process, we have a model (7), 

which takes the system state as an input and returns risk 

prediction as an output. But we cannot use the risk 

prediction value to make decisions, because the single 

number cannot be interpreted. To solve the 

interpretation problem, we need another computational 

module, which takes the risk predictions and classifies 

the current situation. 

Let �̃�𝑡 , �̃�𝑡−1, … , �̃�𝑡−𝑚 be the latest 𝑚 predictions of the 

model (7) and the postprocessing function is  

𝑃(∙): 𝑅𝑚 → 𝑅, 
𝑃(�̃�𝑡, �̃�𝑡−1, … , �̃�𝑡−𝑚) = 𝑙𝑡, 

(8) 

where 𝑙𝑡 is the postprocessed value or label that 

classifies the production process state. 

In this study we used three different classes: “good”, 

“warning” and “dangerous”, so ∀𝑖, 𝑙𝑖 ∈
{good, warning, dangerous}. First label indicates that 

process is running regularly, second label requires 

attention to the production process and the third one 

indicates that the situation can lead to a fault. In general, 

one can use any other classes and labels. 
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We used postprocessing function, which is based on 

filtering the low values and summation of all the risk 

values: 

𝑣𝑡 = {

0 if ∃𝑖 < 𝑚: �̃�𝑡−𝑖 > 𝑏,

∑ �̃�𝑡−𝑖

𝑚

𝑖=0

, otherwise,
 (9) 

where 𝑣𝑡 is an intermediate numeric value and 𝑏 is filter 

parameter. 

Now we use intermediate values (9) to classify the 

process state: 

𝑙𝑡 = {

"good" if 𝑣𝑡 < 𝑞1,
"warning" if 𝑞1 ≤ 𝑣𝑡 < 𝑞2,

"dangerous" if 𝑣𝑡 > 𝑞2,
 (10) 

and 𝑞1 < 𝑞2 are classification parameters. 

2.3 Approach Parameters 

Proposed approach has parameters, which need to be 

tuned. The first group of parameters is related to time 

intervals: ∆ and time after the fault. In general, each 

interval can be characterized by its own parameters, but 

it this study we assume that ∆ and time after the fault are 

similar for all fault cases. Production expert opinion is 

useful in determining time after the fault. 

Weights (5) that we use in criterion have strong 

influence on results. General recommendations are to 

make 𝑤𝑟𝑖𝑠𝑘 > 10 ∙ 𝑤𝑛𝑜𝑟𝑚𝑎𝑙 > 𝑤𝑎𝑓𝑡𝑒𝑟, so recognition of 

risk increase before the fault is more important than 

small risk value in case of regular production process. It 

is also useful to resolve the contradiction if the same 

pattern led to fault in one case and did not in the other. 

Prost-processing parameters are window size 𝑚, 

filter value 𝑏, borders 𝑞1 and 𝑞2. These parameters need 

to be tuned with production and business experts, 

because of their relation to the decision-making process. 

Window size depends on dynamical character of the 

process and rate of observations. Filter value among 

with the labeling borders can be tuned on the basis of 

the training data by adjusting the sensitiveness of the 

postprocessing system. 

3 Data-driven Risk Estimation and 

Monitoring 

The production process we want to estimate risk for has 

many observation variables. Each variable is measured 

every 15 minutes. We explicitly selected the variables 

with help of production experts to avoid overfitting and 

to focus on the factors of the main interest. The dataset 

contains 50879 observations and has a gap in 

observations. In given observation time there were 8 

faults, each could be caused by own reasons and we do 

not know that in advance.  

In this study we manually tried different time delta 

parameters and finally used ∆= 2 hours. For that 

parameter and according to observation step size, we 

have only 192 observations that can be labelled as 

leading to the fault. One can see that the dataset is

unbalanced: 50687 of “good” observations versus 192

of “leading to the fault” observations. For some

production processes, it is typical that the faults occur

uniquely, so there is imbalance between classes.

We also consider modeling when we include lags

from the previous observations. In this paper we check

the last 5 observations, which equals to 1.5-hour

lookback. We will label these modes specifically.

The weighs (5) for criterion (4) are set as following:

𝑤𝑎𝑓𝑡𝑒𝑟 = 𝑤𝑛𝑜𝑟𝑚𝑎𝑙 = 1, 𝑤𝑟𝑖𝑠𝑘 = 10. The weights were

tuned manually and based on the modeling results

feedback from the production experts. Weights (5) are

important when adjusting the balance between fault

sensitivity and the number of fail detections. In general,

these characteristics should be tuned as a part of

decision-making support system. It depends on

resources company loses with any missed fail and

resources company loses when act in case of alarming

signal produced by the fault detection system.

We used the Keras framework (Allaire and Chollet,

2018) for modeling, and the application were

implemented in R (R Core Team, 2018). We made a

web application with R Shiny framework (Chang et 

al., 2021), that can be deployed to the company 

server. Since this application has access to the data 

needed it gives the results in visual form directly to 

the decision maker.

In this study we tried different deep neural network

(DNN) architectures. Previously we tested that the

proposed approach works for failure prediction problem

solving (Ryzhikov et al., 2020) and now test if the

efficiency changes with different DNN models. Each

model layer has a dropout with 0.5 probability. When

train model we use root mean square back propagation

algorithm with a batch size of 5000 and 100 iterations.

For each model given in Table 1, we calculated the

root mean square error (RMSE) on train and test data.

As one can see, in Table 1 there are models, which

include lagged variables. For those models we used lags

for the previous 5 observations to check if including the

historical data will improve the modeling results.

In this study we use specific learning data splitting:

for each fault we produce training dataset, which

contains all observations except ones that belong to an

interval containing the fault, and test dataset, which is

this interval. This splitting helps us to understand if one

fault case can be predicted with model, which was

trained on another fault cases.

When comparing model, we are interested in how

these models predict on train data on intervals before

the fault cases and all other intervals, and the same for

test dataset. Intervals before fault and all other intervals

for train data and for test data are given in Figures 1-4.

Since dropout and initial coefficients are random, we

provide boxplots of the RMSE and run each problem

for 10 times.
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Table 1. DNN architectures. 

DNN Neurons by layer With lag? 

1 64, 64, 64 no 

2 64, 64, 64, 64 no 

3 128, 64, 64 no 

4 256, 64, 64 no 

5 128, 64, 8, 64 no 

6 64, 64, 64 yes 

7 64, 64, 64, 64 yes 

8 128, 64, 64 yes 

9 256, 64, 64 yes 

10 128, 64, 8, 64 yes 

 

 

 

Figure 1. RMSE on train data, fault intervals, by model 

architecture on x axis and problem on y axis. 

 

 

 

 

Figure 2. RMSE on train data, regular process intervals, 

by model architecture on x axis and problem on y axis. 

As one can see, some of architectures outperform 

other architectures on pre-fault intervals risk estimation. 

Based on pre-fault intervals RMSE statistics we could 

assume that some of the models are preferable than 

others. When we look at RMSE statistics on regular 

process intervals, we can see that the variation of 

average results is not as big, as it is for fault intervals. 

Nevertheless, the most important part is prediction for 

data in test dataset.  

 

 

Figure 3. RMSE on test data, fault intervals, by model 

architecture on x axis and problem on y axis. 
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Figure 4. RMSE on test data, regular process intervals, by 

model architecture on x axis and problem on y axis. 

When we compare model performance on test data, 

we can see some surprising results. For example, 

architecture 6, which was worse than 1-5 architectures, 

shows nearly the same or better mean values in 6 

problems. 

We need to have a closer look at model predictions 

on train in test data to understand the reason for that 

effects and why we cannot use RMSE to select the best 

model. First, our modeling approach assumes (1) and 

(2), that risk can be explained by the following function. 

But when we train the model, we are interested in having 

values greater than 0 in pre-fault intervals and values 

close to 0 in all other intervals. And models deliver that, 

but with different magnitude of values. Second, reasons 

for the faults and selected parameter for pre-fault 

interval could be different from one fault to another. 

We demonstrate this effect in Figures 5-8. Figures 5 

and 6 refer to DNN architecture 7, which outperforming 

statistic we observed above. We randomly selected one 

of the models from 10 runs for each architecture. 

The subject of further research is another metric for 

comparing modeling results, that is based on ability to 

predict the fault in advance and  

 

 

Figure 5. Risk estimation for all dataset, DNN 

architecture 7. 

 

Figure 6. Risk estimation for pre-fault intervals only, 

DNN architecture 7. 

According to plots on Figures 5 and 6, we can assume 

that model gives a good prediction on a training data, all 

other observations are near 0 and target interval shows 

some positive estimations of risk value. The maximum 

risk value is near 35. Let us compare these two plots 

with similar ones done for DNN with architecture 2. 
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Figure 7. Risk estimation for all dataset, DNN 

architecture 2. 

 

 

Figure 8. Risk estimation for all dataset, DNN 

architecture 2. 

The prediction on all dataset looks like Figure 5, but 

fuzzier. The prediction of risk before the target fault is 

better, according to values, but all the other fault 

predictions have greater magnitude than ones in Figure 

6. This proves our assumption that we need to design 

and use another criterion co compare different models 

and architectures, so we could produce them 

automatically. 

In this study and solving real-world fault prediction 

and risk monitoring problem, we observed all the 
models manually, running tens and hundreds of model 

trainings to then choose several. Chosen model was 

taken as the basis for risk monitoring system. We used 

model predictions and (8)-(10) postprocessing 

approach. We adjusted the parameters of postprocessing 

manually, so these parameters detect the faults in 

advance. 

Data loading, data preprocessing, modeling and 

postprocessing were implemented in web-application, 

implemented in R and R Shiny framework. In Figures 

9-11 one can see the simulation where model receives 

new data, estimates risk and then postprocessor signals 

to application user interface that process is running fine, 

there is warning, and situation is dangerous. Interface 

shows also preselected number of previous risk 

estimations, so the decision-maker can see the situation 

dynamics. 

 

 

Figure 9. Risk monitoring, postprocessor receiving “Ok” 

state. 

 

 

Figure 10. Risk monitoring, postprocessor receiving 

“Warning” state. 
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Figure 11. Risk monitoring, postprocessor receiving 

“Danger!” state. 

4 Conclusion 

In this study we examined proposed approach of risk 

estimation and fault detection. We applied 

postprocessing scheme that is based on filtering and risk 

summation, which makes possible to interpret the risk 

estimation model outputs and use this interpretation in 

decision-making. 

Risk is constructed as auxiliary variable that 

monotonically increases in time interval prior to the 

fault. This variable makes possible revealing the 

patterns that possibly caused the faults even if these 

patterns were observed in different time before the fault 

and/or during the regular process. Once we apply leave 

one out testing and validation, we can estimate if the 

faults caused by similar system states. It is important to 

mention, that auxiliary risk variable helps us solving the 

fault detection problem, when there are no variables by 

which one could detect that there is something wrong 

with the production process and there is a fault risk. 

Postprocessing of the model estimations makes it 

possible to interpret the results by once adjusting the 

mapping algorithm. As one can see, different models 

give risk estimations that differ in magnitude and 

sensitivity. By adjusting postprocessing we could 

suggest what is indication fits the production experts 

most: is one sensitive enough or accurate enough.  

Further work is related with automatic model 

selection. We need to design criterion and searching 

algorithm that will compare models with different 

magnitudes of risk estimations and deal with uncertainty 

of different risk intervals. 

We implemented the fault detection and risk 
estimation as web application with R, keras and R Shiny 

framework. This application can be deployed to the 

company network and work online, demonstrating the 

decision-maker the current estimation of risk. 
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Abstract 
The applicability of Artificial Neural Networks (ANNs) 

to represent excess properties is discussed. The excess 

molar volume 𝑉𝐸 and excess free energy of activation 

for viscous flow Δ𝐺𝐸∗ were calculated from measured 

density and viscosity at different monoethanol amine 

(MEA) concentrations and temperatures. Different 

ANNs with multiple inputs and a single hidden layer 

were trained, validated and tested to represent 𝑉𝐸 and 

Δ𝐺𝐸∗. Developed ANN models show good accuracies in 

data fitting by giving R2 as 0.99 and 0.98 for 𝑉𝐸 and 

Δ𝐺𝐸∗ respectively for the test data. The calculated 

average absolute relative deviation (AARD) for 𝑉𝐸 and 

Δ𝐺𝐸∗ are 1.5 % and 1.2 % respectively for the test data 

that give better predictions for the density and viscosity 

using a Redlich and Kister polynomial for the 

regression. The density and viscosity models based on 

ANN for 𝑉𝐸 and Δ𝐺𝐸∗ give high accuracies, which is an 

advantage of many aspects in engineering applications.  

 

Keywords: excess properties, ANN, density, viscosity 

1 Introduction 

Physical properties like density and viscosity of aqueous 

amine mixtures are useful in the design and simulation 

of amine-based post-combustion CO2 capture processes. 

Density and viscosity appear in most of the correlations 

proposed to calculate mass transfer coefficients and 

interfacial area between liquid and gas phases. Various 

approaches have been proposed to develop correlations 

to represent measured density and viscosity for solvents 

such as pure, aqueous, and CO2 loaded aqueous amine 

mixtures (Hartono et al. 2014; Weiland et al. 1998). 

The applications of ANN (Artificial Neural Network) 

in post-combustion CO2 capture radiates into various 

aspects of the field. Sipöcz et al. (2011) developed an 

ANN model for a CO2 capture plant to evaluate the 

amount of CO2 captures, specific duty and rich loading 

in the solvent through the inputs of temperature, flue gas 

flow rate, CO2 mass fraction at the inlet flue gas, solvent 

lean loading, solvent circulation rate and removal 

efficiency. The ANN is one hidden-layer feed-forward 

network with a back-propagation learning algorithm. 

The ANN approach has been used to represent the 

physicochemical properties of amine solvents for post-

combustion CO2 capture. Hamzehie et al. (2014) 

discussed the prediction of CO2 solubility in aqueous 

amine mixtures using ANN models with two hidden 

layers. The inputs for the network were established as in 

theoretical and semi-empirical models as temperature, 

CO2 pressure, overall solute’s concentration and type of 

solution (apparent molecular weight). The mass transfer 

coefficient was predicted through an ANN model by 

considering various input parameters gas and liquid 

flow rates, CO2 partial pressure, liquid concentration, 

cyclic capacity and physical properties such as density 

viscosity and diffusion coefficient of CO2 as illustrated 

by Fu et al. (2013). Several approaches were reported in 

literature that describe the implementation of ANN 

methodology to represent physical properties like 

density and viscosity of aqueous amine solvents 

(Pouryousefi et al. 2016; Haratipour et al. 2017; Garg et 

al. 2015). A previous study of Karunarathne et al. 

(2020(a)) examined the applicability of ANNs for the 

predictions of density and viscosity of CO2 loaded 

alkanolamine + H2O mixtures in which mole fractions 

of amines and CO2 in the mixture and temperature were 

inputs for the model while density and viscosity were 

the outputs.  

The excess properties like excess molar volume and 

excess free energy of activation for viscous flow can be 

fitted to empirical correlations to represent density and 

viscosity of liquid mixtures. This work presents ANN-

based correlations for excess properties to represent the 

density and viscosity of aqueous monoethanol amine 

(MEA) mixtures. The accuracy of the ANN-based 

correlations was evaluated by comparing the predictions 

with measured data other empirical correlations.  

2 Material and Method 

2.1 Excess Properties 

The excess properties for molar volume and viscosity 

can be calculated from measured densities and 

viscosities of pure and aqueous amine mixtures as 
shown in (1) and (2). It is possible to fit a Redlich and 

Kister type polynomial (Redlich and Kister 1948) as 
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given in (3) to represent excess molar volume and 

viscosity to develop correlations for the density and 

viscosity of aqueous amine mixtures (Han et al. 2012; 

Hartono et al. 2014; Karunarathne et al. 2020(b)).  

 

𝑉𝐸 = 𝑉 − (∑ 𝑥𝑖𝑉𝑖

𝑖=2

𝑖=1

) (1) 

 

𝜂𝐸 = 𝜂 − (∑ 𝑥𝑖𝜂𝑖

𝑖=2

𝑖=1

) (2) 

 

𝑌𝐸 = 𝑥1𝑥2 (∑ 𝐴𝑖(𝑥1 − 𝑥2)𝑖

𝑖=𝑛

𝑖=0

) (3) 

 

where 𝑥𝑖 is the mole fraction of the components in the 

mixture. 𝑉, 𝑉𝑖, and 𝑉𝐸 are molar volume of the mixture, 

molar volume of the pure components and excess molar 

volume of the mixture respectively. 𝜂, 𝜂𝑖 and 𝜂𝐸 are 

viscosity of the mixture, viscosity of the pure 

components and excess viscosity of the mixture 

respectively. 𝑌𝐸 and 𝐴 are excess property and 

coefficients respectively in the Redlich and Kister 

polynomial.  

The excess molar volume of different aqueous MEA 

mixtures was calculated from measured densities as 

given in (4).  

 

𝑉𝐸 =
𝑥1𝑀1 + 𝑥2𝑀2

𝜌
− ∑

𝑥𝑖𝑀𝑖

𝜌𝑖

𝑖=2

𝑖=1

 (4) 

 

where 𝑥𝑖 𝜌, 𝜌𝑖 and 𝑀𝑖 are mole fraction of the 

components in the mixture, density of the mixture, 

density of the pure components and molecular weights 

of the pure components. Subscript i = 1 for MEA and i 

= 2 for H2O. 

The excess molar volume 𝑉𝐸 arises due to the 

intermolecular interactions between the molecules 

present in the mixture and size and shape of the 

molecules. Positive 𝑉𝐸 reveals the presence of weak 

interactions or dispersion forces and negative 𝑉𝐸 

indicates the strong specific interactions between unlike 

molecules. Further, negative 𝑉𝐸 also suggests that 

molecules are efficiently packed due to the size and 

shape differences among the constituent molecules 

(Mahajan and Mirgane 2013; Qi and Wang 2009; 

Letcher and Baxter 1989).   

Eyring’s viscosity model (5) provides a theoretical 

insight into the viscosity of liquid by describing the arise 

of fluid friction due to the molecular jump over a 

potential energy barrier (Bird et al. 2002; Eyring 1936). 

The free energy of activation for viscous flow Δ𝐺∗ can 

be calculated from measured density and viscosity data. 

Semi-empirical and empirical models can be proposed 

to fit the calculated Δ𝐺∗. For a binary mixture, the 

excess free energy of activation for viscous flow Δ𝐺𝐸∗ 

is described as given in (6). The sign of Δ𝐺𝐸∗ reveals the 

nature of intermolecular interactions among the 

molecules in the mixture. The positive Δ𝐺𝐸∗ indicates 

the presence of strong specific interactions between 

unlike molecules while negative Δ𝐺𝐸∗ signifies weak 

intermolecular interactions like dispersion forces in the 

mixture (Meyer et al. 1971; Kinart et al. 2002; 

Ćwiklińska and Kinart 2011; Aminabhavi et al. 1994).  

Eyring’s viscosity model was adopted to calculate the 

excess free energy of activation for viscous flow as 

shown in (6) from measured dynamic viscosities and 

densities at different MEA mole fractions and 

temperatures. 

 

𝜂 =
ℎ𝑁𝐴

𝑉
𝑒𝑥𝑝 (

Δ𝐺∗

𝑅𝑇
) (5) 

Δ𝐺𝐸∗

𝑅𝑇
= 𝑙𝑛(𝜂𝑉) − ∑ 𝑥𝑖𝑙𝑛(𝜂𝑖𝑉𝑖)

𝑖=2

𝑖=1

 (6) 

 

where Δ𝐺∗, Δ𝐺𝐸∗, ℎ and 𝑁𝐴 are free energy of 

activation for viscous flow, excess free energy of 

activation for viscous flow, Planck’s constant and 

Avogadro’s number respectively.  

 

2.2 Density and Viscosity Measurements 

The density of MEA + H2O mixtures at different MEA 

concentrations (30-100 mass% of MEA) and 

temperatures (293.15 K-363.15 K) was measured using 

a density meter DMA 4500 from Anton Paar (Graz, 

Austria). The viscosity of MEA + H2O mixtures at 

different MEA concentrations (30-100 mass% of MEA) 

and temperatures (293.15 K-363.15 K) was measured 

using a double-gap concentric rheometer Physica MCR 

101 from Anton Paar (pressure cell XL DG35.12/PR; 

measuring cell serial number 8046220) (Graz, Austria). 

The measured data with associated uncertainties for 

both density and viscosity measurements are discussed 

in Karunarathne et al. (2020(b)).  

 

2.3 ANN Network Training and Activation 

Function 

2.3.1 Network Training 

For the ANN models, the mole fraction of the 

components in the mixture and temperature were 

considered as the inputs to the network. All the networks 

are comprised of one hidden layer and multiple neurons.  

A data set with 72 data points were divided into 70%, 

15% and 15% randomly for the training, validation and 

testing. Data sets were then scaled in the range of (-1, 1) 

as shown in (7). The optimum number of neurons for the 
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network was decided by examining the cost function of 

Mean Squared Error (MSE) as given in (8) for the 

learning algorithm of Bayesian Regularization (BR) for 

thirty neurons. The BR training algorithm regularizes 

ANN model parameters to reduce the complexity of the 

model, which helps to avoid overfitting. Figure 1 

illustrates the schematic of the ANN for the excess free 

energy of activation for viscous flow.  

 

 

𝑌 = (𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛) [
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
] + 𝑌𝑚𝑖𝑛 (7) 

 

where 𝑌𝑚𝑎𝑥 and 𝑌𝑚𝑖𝑛 are +1 and -1 respectively. 𝑋 is 

the input or output variable. 𝑋𝑚𝑎𝑥 and 𝑋𝑚𝑖𝑛 are 

maximum and minimum of variable 𝑋. 

 

𝑀𝑆𝐸 =
1

2𝑁
∑ {(𝑌𝑖

𝐸 − 𝑌𝑖
𝐶)

2
+ 𝜆𝑊2}

𝑁

𝑖=1

 (8) 

 

where N, 𝑌𝑖
𝐸, 𝑌𝑖

𝐶, 𝜆 and W refer to the number of data 

points, the measured property, calculated property, 

regularization parameter and weight parameter vector, 

respectively. 

 

 
Figure 1: A schematic of feed forward artificial neural 

network with one hidden layer. 

 

2.3.2 Activation Function 

The input for the activation function is the sum of 

weighted inputs (the input from each independent 

variable multiplied by an adjustable connection weight) 

with added hidden layer bias as described in (9) 

(Rocabruno-Valdés et al. 2015). For the hidden layer, 

the activation function is a hyperbolic tangent (𝜏) as 

given in (10). The output of the ANN is linearly related 
(𝜓) as given in (11) with the weighted output from the 

hidden layer and output layer bias.  

 

𝜃𝑠 = 𝐼𝑊(𝑠,1)𝐼𝑛1 + 𝐼𝑊(𝑠,2)𝐼𝑛2 + ⋯

+ 𝐼𝑊(𝑠,𝑘)𝐼𝑛𝑘 + 𝑏𝑠
(1)

 
(9) 

 

where 𝐼𝑛, 𝜃𝑠, 𝐼𝑊, and 𝑏𝑠
(1)

 are the inputs to the 

network, inputs to the hidden neurons, weight between 

network input and the hidden neurons and bias term to 

hidden neurons, respectively. The subscript 𝑠 and 𝑘 are 

for number of hidden neurons and number of inputs, 

respectively. 

 

𝑓 = 𝜏(𝜃𝑠) =
2

1 + 𝑒𝑥𝑝(−2𝜃𝑠)
− 1 (10) 

 

𝑔 = 𝜓(𝐿𝑊 · 𝑓 + 𝑏(2)) (11) 

 

where 𝐿𝑊 and 𝑏(2) are the input weights and bias in 

the output layer, respectively. 

 

The ANN-based models were evaluated using 

average absolute relative deviation (AARD) as given in 

(12). 

 

𝐴𝐴𝑅𝐷 (%) =
100%

𝑁
∑ |

𝑌𝑖
𝐸 − 𝑌𝑖

𝐶

𝑌𝑖
𝐸 |

𝑁

𝑖=1

 (12) 

 

where N, 𝑌𝑖
𝐸 and 𝑌𝑖

𝐶 refer to the number of data 

points, the measured property and calculated property, 

respectively. 

 

3 Results and Discussion 

This section discusses the performance of ANN in 

excess molar volume 𝑉𝐸 and excess free energy of 

activation for viscous flow Δ𝐺𝐸∗ predictions for the 

considered MEA + H2O mixtures.  

 

3.1 Excess Molar Volume (𝑽𝑬) From ANN 

Based Models 

The calculated 𝑉𝐸 from (4) was used for the train, 

validate and test a feed forward back propagation ANN. 

For the MEA + H2O mixtures, 𝑉𝐸 < 0 for the 

considered MEA concentrations and temperatures 

(Karunarathne et al. 2020(b)). The accuracy of model 

prediction was analyzed through calculated AARD 

between calculated 𝑉𝐸 and ANN is given in Table 1 for 

the training, validation and test data sets. Simulation 

provided a minimum MSE at 25 neurons. The optimum 

number of neurons of the network was chosen as 7 since 

it gives a reasonable low value for the MSE of calculated 

over 30 neurons in the hidden layer. Figures 2 and 3 

illustrate the accuracy of the fit between ANN 

predictions and the calculated 𝑉𝐸. According to Figure 

2, 𝑉𝐸 calculated from measured properties are fitted 

with good accuracy into the ANN. Most of the deviation 

of the ANN predictions for 𝑉𝐸 is within 2% and only 

one data point reported a deviation close to 6% as 
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illustrated in Figure 3. The developed Redlich and 

Kister type polynomial was able to fit data with an 

accuracy of 2.47% AARD and it is higher than 1.5%, 

which is from the ANN model for the test data set as 

given in Table 1. A comparison of AARD from ANN 

models and Redlich and Kister type polynomials for 

excess properties are given in Table 2. This indicates 

that the ANN model has a better fit for 𝑉𝐸 . 

 

3.2 Excess Free Energy of Activation for 

Viscous Flow 𝚫𝑮𝑬∗ From ANN Based 

Models 

For the Δ𝐺𝐸∗, calculated property from (6) was used for 

the train, validate and test a feed forward back 

propagation ANN. The Δ𝐺𝐸∗> 0 for the MEA + H2O 

mixtures at considered MEA concentrations and 

temperatures. The minimum MSE was found with 26

neurons in the hidden layer and the optimum number of

neurons was considered as 7 that gives a reasonable R2

and AARD in the data fit. Equation (12) was

adopted to calculate AARD to analyze accuracy

between calculated Δ𝐺𝐸∗ from (6) and ANN. Table 1

summarized the R2 and AARD for different data sets

reported in Table 1. Figures 4 and 5 show how good the

fitting for Δ𝐺𝐸∗ between predictions from the ANN

model and calculation from measured properties. Figure

5 shows that the majority of the data are within a

deviation of 3% and only three data points are beyond

this limit. The Redlich and Kister type polynomial for

Δ𝐺𝐸∗ was able to fit data with 1.9% AARD, which

indicates that the developed ANN model gives a better

fit for the data.

 

 

Figure 2. Comparison of correlated 𝑉𝐸 with calculated 𝑉𝐸 for MEA + H2O mixtures. ANN: Training data, ‘○’; 

Validation data, ‘●’; Test data, ‘●’. 

 

 

Table 1. Performance of trained ANNs for 𝑉𝐸 and ∆𝐺𝐸∗. 

 

Excess Property 

No. of 

Neurons in the 
Hidden Layer 

Training Data  Validation Data Test Data 

AARD% R2 AARD% R2 AARD% R2 

𝑉𝐸 (m3·mol-1) 7 0.2 0.999 0.4 0.999 1.5 0.999 

𝛥𝐺𝐸∗(J·mol-1) 7 0.5 0.999 0.8 0.999 1.2 0.988 
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Figure 3. Percentage deviation of correlated 𝑉𝐸 from calculated 𝑉𝐸 for MEA + H2O mixtures. ANN: Training data, ‘

○’; Validation data, ‘●’; Test data, ‘●’. 

 

 

 

 

Figure 4. Comparison of correlated ∆𝐺𝐸∗ with calculated ∆𝐺𝐸∗ for MEA + H2O mixtures. ANN: Training data, ‘○’; 

Validation data, ‘●’; Test data, ‘●’. 

 

Table 2. Accuracies of the data fitting for 𝑉𝐸 and ∆𝐺𝐸∗ from ANN models and Redlich and Kister type polynomials. 

 

Excess Property 
AARD% 

ANN Redlich and Kister 

𝑉𝐸 (m3·mol-1) 1.5 2.47 

𝛥𝐺𝐸∗(J·mol-1) 1.2 1.9 
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Figure 5. Percentage deviation of correlated ∆𝐺𝐸∗ from calculated ∆𝐺𝐸∗ for MEA + H2O mixtures. ANN: Training 

data, ‘○’; Validation data, ‘●’; Test data, ‘●’. 

 

 

Literature provides accuracies for the density and 

viscosity correlations based on Redlich and Kister 

polynomial. Han et al. (2012) discussed a density 

correlation based on Redlich and Kister type polynomial 

for MEA + H2O mixtures at different MEA 

concentrations and temperatures. The correlation was 

able to represent measured density with an accuracy of 

AARD 0.042 %. Hartono et al. (2014) used a simplified 

Redlich and Kister type polynomial for both density and 

viscosity of MEA + H2O mixtures at different MEA 

concentrations and temperatures. Hartono’s correlations 

were able to fit measured data with an accuracy of 

AARD 0.036 % and 3.5 % for density and viscosity 

respectively. The developed ANN models in this study 

for 𝑉𝐸 and Δ𝐺𝐸∗were used to calculate density and 

viscosity from (4) and (6). The calculated physical 

properties show a good accuracy compared to the 

measured data with AARD 0.018 % and 0.6 % for 

density and viscosity that is better than the correlations 

reported based on Redlich and Kister type polynomials 

in literature.  

4 Conclusion 

The excess properties of excess molar property and 

excess free energy of activation for viscous flows were 

determined from measured densities and viscosities for 

MEA + H2O mixtures at different MEA concentrations 

and temperatures. ANN models were trained to fit 

calculated excess properties and used to predict density 

and viscosity of the mixtures.  

The proposed ANN model for the excess molar 

volume 𝑉𝐸 was able to fit the data with acceptable 
accuracy. The calculated AARDs for different data sets 

of training, validation and test are 0.2, 0.4 and 1.5 % 

respectively. The ANN model proposed for the excess 

free energy of activation for viscous flow 𝛥𝐺𝐸∗showed 

AARDs for different data sets of training, validation and 

test are 0.5, 0.8 and 1.2 % respectively. 

The models were used to predict density and viscosity 

at different MEA concentrations and temperatures. 

Results showed a good agreement with measured 

densities and viscosities. The accuracy for density 

prediction was 0.018 % AARD and for prediction of 

viscosity 0.06 % AARD that is higher than the 

accuracies based on Redlich and Kister polynomials. 

Accordingly, ANN approach to predict excess 

properties and physical properties could be used to 

enhance the accuracy of data fitting. The developed 

models are useful in the design of process equipment 

and process modelling for the CO2 capture processes. 

Further, this approach can be extended to the mixtures 

with more than two components. 
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Abstract
A dynamic heavy-duty Euro 6 diesel engine model for en-
ergy optimal control is developed. The modeling focus is
on accuracy in the entire engine operating range, with at-
tention to the region of highest efficiency and physically
plausible extrapolation. The effect of the air-to-fuel ratio
on combustion efficiency is studied, and it is demonstrated
how this influences the energy optimal transient control.
A convenient, physics-based, method for pressure sensor
bias estimation is also presented.
Keywords: Diesel engine modeling, Optimal control

1 Introduction
Economy, climate, and diesel engines. Ever since the
breakthrough of Rudolph Diesel’s engine it has been im-
possible to consider the first two without the third, and the
machine is now one of the two prime movers of global-
ization (Smil, 2017). As its position in the global econ-
omy has risen to the predominant one, so has its impact
on the climate. And while it might be possible to imag-
ine a future transportation system without diesel engines,
it is impossible to imagine a transition to that system with-
out large investments, so the continued development of the
diesel engine is perhaps more important than ever. By re-
ducing fuel consumption, improving emissions, enabling
renewable fuels, and increasing reliability, it is possible to
improve, individually and in combination, the economy,
and the climate. This work aims to help in that effort by
developing a diesel engine model for energy optimal con-
trol.

The model’s intended use is to study the effect of the
turbocharger selection on the energy optimal control of
the air- and fuel-path of a heavy-duty Euro 6 diesel engine.
While being the reason why this work is conducted, it is
not the only area of use. Models are only approximations
of reality, and for them to be useful to others it is neces-
sary to show what aspects of reality they reflect, and how
accurately they do it. Here, this is done in two parts. This
first part describes the development of the model, which
include determining the needed properties and settling on
the equations. The second part consists of parametrization
and validation and is found in (Ekberg et al., 2018).

The contributions include the development of a diesel
engine model for studying the turbocharger effect on the

energy optimal control, with a novel inclusion of the air-
to-fuel ratio effect on the engine efficiency, and is avail-
able as open-source (Leek et al.). Another important con-
tribution is a physics-based method for estimating pres-
sure sensor bias in experimental data.

The paper is outlined as follows. Section 2 introduces
the subject of modeling for energy optimal control, Sec-
tion 3 presents the data used for modeling and the method
for estimating pressure sensor bias, Section 4 describes
the model development, Section 5 demonstrates the en-
ergy optimal control of the model, and Section 6 presents
the conclusions.

2 Modeling for Energy Optimal Con-
trol

With the intention of using the model for energy optimal
control, it is necessary to investigate the implications of
this on the modeling work. To do that, a basic discussion
on optimal control problems, and their numerical solution,
is needed.

2.1 Optimal control

An optimal control problem (OCP) can be formulated as:

min
u

E(t f ,x(t f ))+
∫ t f

0
L(t,x,u) dt

s.t. ẋ = f (t,x,u), t ∈ [0, t f ],

x(0) ∈X0,

x(t) ∈X , t ∈ [0, t f ],

u(t) ∈U , t ∈ [0, t f ],

x(t f ) ∈X f

(1)

The problem consists of finding the optimal control, u∗,
and the state trajectory, x∗, that minimize the cost func-
tion and does not violate the constraints. The problem’s
defining characteristic is the differential constraint ẋ =
f (t,x,u). The objective function consists of two parts. An
integral cost

∫
L(t,x,u)dt, and a terminal cost E(t f ,x(t f )).

There are constraints on the initial value, x(0) ∈X0, path
constraints x(t)∈X and u(t)∈U , and constraints on the
final state x(t f ) ∈X f .
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2.2 Numerical solution to optimal control
problems

There exist several approaches for solving optimal con-
trol problems numerically, and an overview can be found
in (Rao, 2009). This work focuses on direct methods.
They are the most popular methods in general (Diehl et al.,
2006), and have proved successful in the optimal con-
trol of diesel engines (Asprion et al., 2014; Sivertsson and
Eriksson, 2014; Mancini, 2014).

Direct methods are characterized by first discretizing
the OCP and turning it into a nonlinear program (NLP),
solving that numerically, and then reconstructing the OCP
solution from the NLP one. The process of casting the
OCP as a NLP is known as transcription. Transcription
methods consider some form of grid on which the solution
is parameterized. A common, and the most basic of which,
is a fixed, equidistant, grid

0 = t0 < t1 < · · ·< tN−1 < tN = t f (2a)
h = tn+1− tn, n = 0,1, . . . ,N−1 (2b)

where h is the fixed step length, and N the number of in-
tervals. The control signal is typically constant over each
segment (Diehl, 2011), and consistent with a zero-order
hold control system implementation. The state trajectory
differs between the individual direct methods, but the two
most popular, direct multiple shooting and direct collo-
cation (Diehl et al., 2006), integrate the dynamics sepa-
rately on each segment, forming a discontinuous trajec-
tory, which is made continuous by introducing defect con-
straints (Betts, 2010). Based on this, the number of NLP
variables resulting from using the direct multiple shoot-
ing method is calculated as Nnu +(N + 1)nx, where nx is
the number of states, and nu the number of control inputs
(Andersson, 2013). The corresponding metric for the di-
rect collocation method is Nnu+(N(ncp+1)+1)nx where
ncp is the number of collocation points. Considering how
the NLP variables scale with the number of states and con-
trols, it is preferable that the number of states and controls
is kept low, otherwise the NLP risks being too difficult or
too expensive to solve, which defeats the purpose.

Literature on optimal control of diesel engines (Asprion
et al., 2014) suggests a large NLP, with potentially tens of
thousands of variables. To solve that efficiently it is desir-
able to use a gradient based solver of Newton-type which
uses first and second derivatives. As nothing is known of
the objective or constraints at the time of modeling, con-
straints must be passed on to the model. The state trajec-
tory is therefore made, at least, two times differentiable.
This has the positive side-effect to aid simulations, as ini-
tial value problem solvers assume a sufficiently smooth
solution (Ascher and Petzold, 1998).

Based on the characteristics of an optimal solution (No-
cedal and Wright, 2006; Asprion et al., 2014), the solution
lies at the border of the allowable set and/or in the un-
constrained optimum. This has two implications on the

modeling work. The first, that the model needs physically
plausible extrapolation properties to capture the full set of
operating conditions. The second, that the model fit needs
to be good in the region of best efficiency, where optimum
is expected to be found.

2.3 Modeling implications
Optimization-oriented models need to be accurate in or-
der to capture a large set of operating conditions, small,
for efficient evaluation, provide plausible extrapolation, to
capture solutions at the border of the feasible set, and be
implementable using only standard mathematical opera-
tions, for algorithmic differentiation applicability. Mod-
els for energy optimal control also need high accuracy in
the region of best efficiency. To successfully meet these
demands, it is necessary to combine an approach based
on first principles and phenomenology. By formulating
the dominating equations from first principles the model
is restricted in size, and extrapolation is physically plau-
sible. The phenomenological part consists of, based on
available data, determining how the equation parameters
change with the operating conditions, and is fundamental
to good accuracy over a large operating range.

With the intended use of studying the turbocharger im-
pact on the energy optimal control, it is important with a
good model of the turbocharger as it gives rise to the dom-
inating dynamics on the air and fuel path, but also with a
good model of its implicit effects on the said path. Larger
turbines produce a lower backpressure, which decreases
pumping work and thereby increases efficiency (Eriksson
et al., 2002). Its larger size also means an increased in-
ertia. This hampers the engine’s transient response, and
therefore the air-to-fuel ratio is lower during transients.
Low air-to-fuel ratio lowers combustion efficiency (Hey-
wood, 1988; Eriksson and Nielsen, 2014), so in order to
study the turbocharger impact on the energy optimal con-
trol it is necessary to include this effect in the model.

3 Data
Five datasets are used to guide the modeling, and a list-
ing is found in Table 1. Dataset A consists of engine dy-
namometer experimental data collected in an engine test
cell. Dataset B is high-fidelity simulation data from a GT-
Power (Gamma Technologies, 2004) model of the engine.
Dataset C is a compressor map formed by running mea-
surements in a turbocharger gas stand. Dataset D is a tur-
bine map, also collected from gas stand measurements.
Dataset E is data on the throttle area as a function in throt-
tle angle.

The datasets fulfill different aspects of the modeling
work. In particular, the high-fidelity simulation data, B,
is used instead of cylinder pressure data, which is not
available. The simulation data contains information on
the torque components, which makes it possible to model
the cylinder in better detail than what is possible if only
dataset A is used. How the different datasets are fused
is found in the validation and parametrization part of this
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Table 1. Datasets used to find model parameters.

Dataset Signals Samples
A. Engine dynamometer 24 235

experimental data.
B. GT Power high-fidelity 22 160

simulation data.
C. Compressor map - 4 73

Gas stand measurements.
D. Turbine map - 4 73

Gas stand measurements.
E. Throttle area - Measurements 1 11

of angle versus area.

work (Ekberg et al., 2018).

3.1 Pressure offset estimation
An important part in modeling is having access to reli-
able data. Unfortunately, measurements contain errors to
some degree. Here, dataset A contains bias in the pres-
sure sensors on the intake side. This is compensated for
by estimating it. The estimation is based on the observa-
tion that flow squared is proportional to the pressure drop
over a restriction. By denoting the upstream pressure and
temperature by pus and Tus respectively, the downstream
pressure by pds, the bias in that sensor by pbias, and the
flow by W , the relation is formulated as

(pus− (pds + pbias))
pus√
Tus

∝ W 2

Rearranging the equation, and introducing the proportion-
ality constant c, the following least squares problem is
solved to estimate the bias:[

pus/
√

Tus, W 2
][pbias

c

]
= (pus− pds)

pus√
Tus

(3)

4 Model
With the model’s intended use in mind, a mean value mod-
eling approach is taken. This considerably reduces the
model size, when compared to a 1D model, while still be-
ing able to capture the relevant quantitative properties of
the air and fuel path.

In this work, a model of the throttle is included. The
purpose of this is to extend the model’s area of use by
making it possible to connect it to an aftertreatment sys-
tem model. As aftertreatment systems are sensitive to tem-
perature, there is a need to control airflow through the
system to avoid unnecessary cooling. This means that
the model has an extra control volume before the throt-
tle, which means one extra pressure state (boost pressure).
Users that do not need this feature can remove it.

4.1 Dynamics
The model is governed by four scalar ODEs: boost pres-
sure dynamics, intake manifold pressure dynamics, ex-
haust manifold pressure dynamics, and the dominating
one, turbocharger rotational dynamics.

The modeling of the control volumes is based on differ-
entiation of the ideal gas law, an isothermal assumption,
which means no temperature change in the system, and
assumption of mass conservation. The modeling follows
(Eriksson and Nielsen, 2014).

Denote the volumes by V , pressures by p, temperatures
by T , and let dot notation be used to denote differentia-
tion with respect to time. Introduce the subscript b (boost)
for the volume before the throttle, im for the intake man-
ifold, and em for the exhaust manifold. Let Ra be the gas
constant of air, and Re the gas constant of exhaust gas.
Introduce the compressor flow as Wc, the throttle flow as
Wthr, the flow into the cylinders as Wcyl, the fuel flow as
Wf, the turbine flow as Wt, and the wastegate flow as Wwg
(see Figure 2 for an overview). The flows are defined later.
The filling and emptying dynamics of the control volumes
is then expressed as

Vb ṗb = Ra Tb(Wc−Wthr) (4a)
Vim ṗim = Ra Tim(Wthr−Wcyl) (4b)
Vem ṗem = Re Tem(Wcyl +Wf−Wt−Wwg) (4c)

The model builds on the isothermal assumption and
should be tested. Figure 1 shows the intake manifold tem-
perature and ambient temperature of dataset A. The data
shows a consistent 2 % temperature increase, relative to
ambient, which is considered small. This motivates two
modeling simplifications, isothermal control volumes, and
ideal charge air cooler. Should it be desirable, the intake
manifold temperature can be set to 2% above ambient.
Furthermore, literature (Wahlström and Eriksson, 2011)
suggest only minor differences in observed behavior when
using an adiabatic model of the control volumes with tem-
perature state, which further motivates the decision to not
include temperature dynamics.

0 50 100 150 200 250

300

305

310

sample

T

Tamb
Tim

Figure 1. Ambient and intake manifold temperature from
dataset A.

Modeling of the turbocharger dynamics follows from
Newton’s second law of motion. To formulate the equa-
tion ω is used to denote angular velocity, J to denote
moment of inertia, and subscript tc is used for the tur-
bocharger. The effects of the turbine and compressor on
the dynamics is expressed in terms of their power. Pt ηm
is used to denote the turbine power and includes mechan-
ical efficiency, and Pc is the compressor power. To obtain
torque, power is divided by angular velocity, which means
that the model is only valid for positive velocities. The
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turbocharger dynamics is formulated as:

Jtcω̇tc =
Pt ηm−Pc

ωtc
(5)

With the dynamics presented, it can be concluded that
the model has four states x:

x = [pb, pim, pem,ωtc]
T (6)

and to control these, there are three control inputs u. The
fuel injection per cycle and cylinder uf, the throttle effec-
tive area uthr, and the wastegate effective area uwg:

u = [uf,uthr,uwg]
T (7)

The engine speed, Nice, is an external input in the model
and a model overview is found in Figure 2.

ωtc
Nice

Mice

pem

pb

pim

Wt

Wwg Wcyl +Wf

Wcyl

Wc

Wthr

uwg

uthr

uf

Figure 2. Model overview. Shown are the four states: boost
pressure pb, intake manifold pressure pim, exhaust manifold
pressure pem, and turbocharger angular velocity ωtc, and the
three control inputs: Fuel injection per cycle and cylinder uf,
throttle effective area uthr, and wastegate effective area uwg. Also
shown are the flows, W , in the model.

4.2 Throttle
Modeling of the throttle follows (Eriksson and Nielsen,
2014), where an isentropic compressible restriction is
used. To describe the model, further notation is needed.
Athr,max is the throttle maximum area, CD,thr the flow co-
efficient, Ψthr flow parameter, and the flow is calculated
as

Wthr =
pb√
Ra Tb

CD,thr Athr,max uthr Ψthr (8)

The effective throttle area Athr,max uthr is linear in the
control input. This is not in accordance with dataset E.
Data suggest a cubic relation, but since the relation is in-
jective, the actual control input can be reconstructed from
the effective area. So, to avoid nonlinearity, effective area
is modeled as linear in the artificial control input uthr.

(Holmbom and Eriksson, 2018) compares different
compact models for the flow parameter Ψthr. Good perfor-
mance is obtained for the model (Shen and Ohata, 2011),
which is based on the conservation of mass, energy, and
momentum. By denoting the ratio of specific heats by γa,

and the pressure ratio by Πthr, the model can be expressed
as:

Ψthr =

√
γa +1

2γa
(1−Πthr)

(
Πthr +

γa−1
γa +1

)
(9a)

Πthr =

{
pim
pb

if pim
pb
≥ 1

γa+1
1

γa+1 otherwise
(9b)

The saturation of flow gives rise to the conditional ex-
pression. It does not have a continuous derivative. To
circumvent that, the logistic function is used to make
the derivative continuous, at the cost of nonlinearity and
parametrization effort:

Πthr =Π
choke + cswitch(Π−Π

choke) (10a)

cswitch =1/
(
1+ e−cΨ(Π−Πchoke)

)
(10b)

Π
choke =1/(γa +1) (10c)

Π =pim/pb (10d)

The model contains one tuning parameter, cΨ, which de-
termines the steepness of the switch.

4.3 Cylinder
The cylinder air mass flow is based on the modeling of the
volumetric efficiency and follows the approach in (Hey-
wood, 1988). By denoting the volumetric efficiency by
ηvol, the engine displacement by VD, and the engine speed
by Nice, the air mass flow is calculated as

Wcyl = ηvol
2VD pim

Ra TimNice
(11)

The question is how to model volumetric efficiency. A
common approach is to base the model on intake manifold
pressure and engine speed (Heywood, 1988). The primary
modeling dataset, A, does not show such a dependence,
see Figure 3, nor does it show a clear correlation with any
other variable in the dataset, why constant volumetric ef-
ficiency is used.

1 1.5
2 2.5
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1,500
2,000
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pim [bar]Nice [RPM]

η
vo

l
[η

m
ax

%
]

Figure 3. Volumetric efficiency, in circles, relative to the max-
imum value. Plotted against engine speed and intake manifold
pressure.

The fuel mass flow is calculated as Wf = ncyl Nice uf /2
and the fuel-to-air equivalence ratio φ is calculated as
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φ = AFs Wf/Wcyl, where AFs is the air-to-fuel stoichio-
metric ratio. The air-to-fuel equivalence ratio λ = 1/φ is
typically used by control engineers instead of φ . However,
in the model it is preferable to use φ as it is not singular
for zero fuel flow.

Cylinder out temperature modeling follows (Sivertsson
and Eriksson, 2014):

Te = ηsc Π
1−1/γa
cyl r1−γa

c

(
qin

cp,a
+Tim rγa−1

c

)
(12a)

qin =
Wf

Wf +Wcyl
qHV, Πcyl =

pem

pim
(12b)

Here ηsc is a model parameter, γa the ratio of specific heats
for air, rc is the compression ratio, and qHV the fuel lower
heating value. The cooling of the gas, before reaching the
exhaust manifold, is modeled from (Eriksson, 2002):

Tem = Tamb +(Te−Tamb)e
−

cem,h
(Wcyl+Wf)cp,e (13)

Model parameter is cem,h, and cp,e is the specific heat of
the exhaust gas at constant pressure.

4.4 Torque
A large part of the modeling effort is devoted to model-
ing of the engine work. The engine torque, Mice, is bro-
ken down into the components gross indicated torque Mig,
pumping torque Mpump, and friction torque Mfric:

Mice = Mig−Mpump−Mfric (14)

As is customary in engine modeling and evaluation, work
is normalized with engine displacement, VD, and ex-
pressed in terms of the mean effective pressure (MEP).
The relation between torque, M, and mean effective
pressure is 4πM = VDMEP. IMEPg is the gross indi-
cated mean effective pressure (gross indicate that pump-
ing losses are not included), PMEP is the pump mean ef-
fective pressure, and FMEP is the friction mean effective
pressure. To be able to separate the different effects, data
set B is used.

Indicated work
IMEPg is modeled as in (Eriksson and Nielsen, 2014)

IMEPg = ηig
qHV uf ncyl

VD
(15)

Achieving a good fit is a matter of modeling ηig.
A modeling objective is to include the effect of the fuel-

to-air ratio on the engine efficiency. The relation between
the fuel-to-air ratio, the ratio of specific heats, and engine
efficiency is described in (Heywood, 1988; Eriksson and
Nielsen, 2014). An important question is how to include
it in the model, and how that is done is an important con-
tribution in this work.

The efficiency modeling is started from the efficiency
of an ideal otto cycle, 1− 1/rγ−1

c , despite being a diesel

engine. The reason for using it, is that it is a single param-
eter model, if the compression ratio rc is considered given.
To find a relation between efficiency and fuel-to-air ratio,
the relation ηig,B−(1−1/rγ−1

c ) = 0, is solved for γ for ev-
ery datapoint in B, where ηig,B is the indicated efficiency
in the dataset. Figure 4 shows the solution, with γ drawn
in circles, and a second order polynomial model of γ in
φ is drawn in solid. The figure shows that the quadratic
model can capture the trend and is like the trends found in
literature. This motivates a model of the in-cylinder ratio
of specific heats γcyl according to

γcyl(φ) = cγ,0 + cγ,1φ + cγ,2φ
2 (16)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.2

1.22
1.24
1.26
1.28

1.3

φ

γ

data
cγ ,0 + cγ ,1φ + cγ ,2φ 2

Figure 4. Drawn using circles is the γ that fulfills the relation
ηig,B−(1−1/rγ−1

c ) = 0 for every datapoint in B. Drawn in solid
is a quadratic model of γ in φ .

The factor ηcal(Nice,uf), is introduced. This gives the
following structure for the indicated efficiency:

ηig(φ ,Nice,uf) =
(

1−1/r
γcyl(φ)−1
c

)
ηcal(Nice,uf) (17)

To model ηcal, the same procedure as for γ is used. The
equation ηig−ηig,B = 0 is solved for ηcal for every data
point in B, ηig,B. Figure 5 shows the data plotted in cir-
cles, with constant coloring for constant engine speed.
The data is plotted against fuel injection and engine speed.
The figure clearly suggests a dependence on both fuel
injection and engine speed. To model that, the model
ηcal = ccal,2(uf− ccal,1)

2 + ccal,0 is fitted separately for the
different engine speeds in the dataset, see solid lines in
Figure 5. Figure 6 shows, drawn in circles, the evolu-
tion of the estimated parameters ccal,0, ccal,1,ccal,2 plotted
against engine speed. In the same figure are different poly-
nomial models of the trends plotted, which are estimated
from the parameters using a least squares fit, and is used
as a basis for modeling how the parameters change with
engine speed.

The data and trends suggest the following modeling of
the load and speed factor ηcal,

ηcal(uf,Nice) = ccal,2(uf− ccal,1)
2 + ccal,0 (18a)

ccal,1 = ccal,10 + ccal,11Nice (18b)

ccal,2 = ccal,20 + ccal,21Nice + ccal,22(Nice)
2 (18c)
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Figure 5. Drawn in circles is the solution to ηig−ηig,B = 0 for
ηig, calculated for every data point in B, ηig,B. Drawn using solid
lines is a least squares estimate of the model ηcal = ccal,2(uf−
ccal,1)

2 + ccal,0 for each speed-line.
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Figure 6. Evolution of ccal,0, ccal,1,ccal,2, plotted against engine
speed. Drawn using solid lines is the evolution modeled as poly-
nomials in engine speed for different polynomial degree.

Pump work

The simplest model for the pump mean effective pressure
is, PMEP = pem− pim. Dataset B gives a bias of 60 kPa
for such a model for a least squares absolute error fit, also
a linear model gives a bias, why an affine model is selected
for the pumping work:

PMEP(pim, pem) = cPMEP,0 + cPMEP,1(pem− pim) (19)

with model parameters cPMEP,0 and cPMEP,1.

Friction work

A frequently used model for friction work is a second or-
der polynomial in engine speed (Heywood, 1988). The
available data in data set B does not show such a relation.
Instead, data suggest the friction mean effective pressure
can be modeled as a plane in engine speed, and fuel in-
jection. A plot is available in Figure 7, in which circles
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Figure 7. Drawn in circles is FMEP in data set B. Surface plot
show the plane, FMEP = cf,0 + cf,1Nice + cf,2uf + cf,3uf, fitted
from data.

show the mean effective pressure plotted against fuel in-
jection and engine speed, and a surface plot shows a mod-
eled plane. The model is formulated as follows

FMEP(uf,Nice) = cf,0 + cf,1Nice + cf,2uf + cf,3ufNice (20)

in which cf,0, cf,1, cf,2, and cf,3 are model parameters.

4.5 Turbine
The turbine power is modeled based on (Eriksson, 2007),
which lumps turbine power and the mechanical efficiency
of the turbo shaft. By further introducing cp,e as the spe-
cific heat of the exhaust gas at constant pressure, and
the subscript ats to indicate the aftertreatment system, the
power is expressed as

Pt ηm =Wt cp,e Tem ηt

(
1−Π

1−1/γe
t

)
(21a)

Πt = pats/pem (21b)

1/ΠtNtc,corr

W
t,c

or
r

Figure 8. Drawn in circles is the corrected flow in the turbine
map, dataset D. The data is plotted against corrected turbo speed
Ntc,corr, and pressure ratio 1/Πt. Drawn in solid lines is the
model Wt,corr = k0(1−Π

k1
t )k2 fitted to the different speed lines.

To obtain good accuracy, the square root turbine flow
model (Eriksson and Nielsen, 2014) is used and ex-
tended with insights from the turbine map, dataset D. Fig-
ure 8 shows, drawn in circles, corrected flow Wt,corr =
Wt
√

Tem/pem, plotted against pressure ratio and corrected
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turbo speed for dataset D, with constant coloring for con-
stant turbocharger speed. For constant speed, the mass-
flow model Wt,corr = k0(1−Π

k1
t )k2 is fitted to the data. To

settle upon flow equations, it is studied how the parame-
ters k0, k1, and k2 varies with turbocharger speed. A plot
is shown in Figure 9, where circles show the value of the
parameters for different speeds, and solid lines show dif-
ferent trend models. As is seen in the figure, k1, and k2,
can be modeled as either linear or quadratic with reason-
able results. The flow model is formulated as

Wt,corr = k0

(
1−Π

k1
t

)k2
(22a)

k0 = c00 + c02 N2
tc,corr (22b)

k1 = c10 + c11 Ntc,corr (22c)

k2 = c20 + c21 Ntc,corr + c22 N2
tc,corr (22d)

Ntc,corr =
ωtc√
Tem

(22e)

were ci, i = {00, 02, 10, 11, 20, 21, 22} are tuning pa-
rameters.
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Figure 9. Circles show the evolution of parameters k0, k1, and
k2 plotted against turbocharger speed. Solid lines show first and
second order polynomial models of the evolution.

The turbine efficiency is modeled based on the blade-
speed-ratio (BSR), as defined in (Watson and Janota,
1982)

BSR =
ωtc Dt/2√

2cp,e Tem
(
1−Π

1− 1
γe

t
) (23)

Figure 10 shows the turbine efficiency of data set D plot-
ted against blade-speed-ratio and corrected turbocharger
speed. The data suggest the following model structure

ηt = ηt,max− kη(BSR−BSRopt)
2 (24)

with parameters ηt,max, kη , and BSRopt speed dependent,
a fit to the different speed lines is shown in the same figure
using solid lines.

BSRNtc,corr

η
t

Figure 10. Circles show the turbine efficiency data from dataset
D, plotted against corrected turbocharger speed, and blade-
speed-ratio. Drawn in solid is a least fit of the model ηt =
ηt,max− kη(BSR−BSRopt)

2 for each speed line.

Figure 11 shows the evolution of ηt,max, kη , and BSRopt
with respect to speed. The data suggest that modeling of
BSRopt could be linear or quadratic in speed. The model
is formulated as

BSRopt = cBSR,0 + cBSR,1 Ntc,corr+ (25a)

cBSR,2 N2
tc,corr,II (25b)

ηt,max = cηt ,0 + cηt ,1 Ntc,corr + cηt ,2 N2
tc,corr (25c)

kη = cmax,0 + cmax,1 Ntc,corr (25d)

where cBSR,0, cBSR,1, cBSR,2, cηt ,0, cηt ,1, cηt ,2, cmax,0, and
cmax,1 are model parameters.
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Figure 11. Circles show the evolution of parameters kη , BSRopt,
and ηt,max plotted against turbocharger speed. Solid lines show
first and second order polynomial models of the evolution.
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4.6 Wastegate
Modeling of the wastegate follows that of the throttle, and
the mass flow is modeled as

Wwg =
pem√
Re Tem

CD,wg Awg,max uwg Ψwg (26)

The flow head parameter Ψwg is modeled in the same way
as the throttle, with the difference that γa is replaced by γe,
and pressure ratio Πthr replace by Πt.

4.7 Compressor
The compressor modeling follows that of (Llamas and
Eriksson, 2017) and uses the accompanied open-source
parametrization tool LiU CPgui (Llamas and Eriksson,
2018). The model is a high-fidelity control-oriented com-
pressor model intended to capture a full set of operating
conditions. Parameterization data is dataset C. The devel-
opment of the model component goes beyond the scope of
this paper, but the compressor model paper describes the
model well, and together with the freely available param-
eters and parametrization tool, the process is well docu-
mented.

5 Energy optimal control
To test the effect of including the air-to-fuel ratio on the
energy optimal control, an OCP is presented and solved
for the two cases when the effect is included and excluded.
The problem is first solved for the presented model, and
then using a fixed γcyl model. γcyl is then set so that the two

solutions have the same average value for 1− 1/r
γcyl−1
c .

The problem consists of using the least amount of energy
to increase engine torque from the initial operating point,
X0, at 200 Nm, to a final operating point X f , at 2400
Nm, and over the duration of the transient output 1 MJ of
work. The engine speed is fixed at 1200 RPM, and the
end time t f is a free parameter. Fuel power is defined as
Pf = qHVWf, and energy consumption is its integral. En-
gine power is defined as Pice = Mice Niceπ/30 and engine
work as Eice =

∫
Pice. The engine model is represented

by the differential equation ẋ = f (x,u), and to avoid soot
formation, the air-to-fuel ratio is restricted: λ ≥ 1.3. The
problem is formulated as:

min
t f ,u

qHV

∫ t f

0
Wf dt

s.t. ẋ = f (x,u),
x(0) = X0, x(t f )≥X f ,

[0,0,0]T ≤ u(t)≤ [280,1,1]T,
λ (t)≥ 1.3,
Mice(t f )≥ 2400 Nm,

Eice(t f )≥ 1 MJ

(27)

As the end time is a free parameter, the first solution (in-
cluding the effect of the air-to-fuel ratio) results in the
end time 6.5 s, and the second in 4.3 s. Longer lines

(blue) thus represent the solution with the original dynam-
ics, and shorter lines (red) the solution with γcyl fixed.
The dashed line shows the smoke limiter value of 1.3.
The solutions are presented in Figure 12. For complete-
ness, the figure shows all states and controls except pc
and uthr as the throttle remains fully open in both cases.
Of particular interest is the engine efficiency, defined as
ηice(t) = Pice(t)/Pf(t), the indicated efficiency ηig, and the
air-to-fuel stoichiometric ratio λ . The fixed γcyl model
pushes against the smoke limiter which makes the tur-
bocharger spin up faster, thus reducing transient time and
increases work output. Notice that this does not impair ef-
ficiency when the effect of the air-to-fuel ratio is excluded
from the indicated efficiency model. Because of the higher
engine efficiency, the fixed γcyl model can complete the
transient faster, using less fuel. The original model on the
other hand is forced to maintain a higher air-to-fuel ratio to
maintain good efficiency. The air-to-fuel ratio is lowered
at the end, which meets the constraint of engine torque,
and at the same time reduces engine efficiency. The re-
sults show that the energy optimal control is significantly
influenced by the air-to-fuel ratio, both quantitatively and
qualitatively, which demonstrate the importance of includ-
ing this effect in the model.

0 2 4 6

1.5

2

p i
m

[b
ar

]

0 2 4 6

1.5

2

p e
m

[b
ar

]

0 2 4 6

50
60
70
80

ω
tc

[k
R

PM
]

0 2 4 6
100
150
200
250

u f
[m

g/
cy

c]

0 2 4 6
0

10

20

u w
g

[%
]

0 2 4 6
1

1.5

2

2.5

λ
[-

]

0 2 4 6

48

50

t [s]

η
ig

[%
]

0 2 4 6
40
42
44
46
48
50

t [s]

η
ic

e
[%

]

Figure 12. Solution to OCP (27). Longer lines (blue) show the
solution to the problem for the presented model. Shorter lines
(red) show the solution for a fixed γcyl model. The dashed line
shows the smoke limiter.

6 Conclusions
A diesel engine model for energy optimal control is devel-
oped and documented, and available as open-source (Leek
et al.). A method for estimating pressure sensor bias in
experimental data is also presented. The model’s intended
use is to investigate the effect of the turbocharger selec-
tion on the energy optimal control. The model has a small
number of states and controls to reduce the size of opti-
mization problems. The dominating equations are based
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on first principles for physically plausible extrapolation.
The turbocharger model is detailed in order to accurately
capture its effect on the air and fuel path dynamics. The
engine efficiency model is dependent on the air-to-fuel ra-
tio in order to include the effect of turbocharger dynamics
on the combustion efficiency.

An optimal control problem is formulated and solved
for the two scenarios of including the fuel-to-air ratio ef-
fect on the engine efficiency, versus excluding it. The re-
sults show that the air-to-fuel ratio has a significant quanti-
tative and qualitative effect on the energy optimal transient
control, and is an important aspect of turbocharger selec-
tion. This indicates that the model is fit for its intended
use, but as the paper shows, the model’s areas of use goes
beyond that and to make it useful to others the develop-
ment of the model is presented in full.

Acknowledgment
The work was financed by the Swedish Agency for Inno-
vation Systems under the program LINK-SIC. The authors
would like to thank Scania, especially Erik Höckerdal,
Henrik Höglund and Björn Johansson for modeling dis-
cussions and data.

References
Joel Andersson. A general-purpose software framework for dy-

namic optimization. PhD thesis, Arenberg Doctoral School,
KU Leuven, 2013.

Uri M Ascher and Linda R Petzold. Computer methods for or-
dinary differential equations and differential-algebraic equa-
tions, volume 61. Siam, 1998.

Jonas Asprion, Oscar Chinellato, and Lino Guzzella. Optimal
control of diesel engines: Numerical methods, applications,
and experimental validation. Mathematical Problems in En-
gineering, 2014.

John T Betts. Practical methods for optimal control and estima-
tion using nonlinear programming. SIAM, 2010.

M. Diehl, H. G. Bock, H. Diedam, and P. B. Wieber. Fast direct
multiple shooting algorithms for optimal robot control. Lec-
ture Notes in Control and Information Sciences, 340:65–93,
2006. ISSN 01708643. doi:10.1007/978-3-540-36119-0_4.

Moritz Diehl. Numerical optimal control. Technical report, KU
Leuven, 2011.

Kristoffer Ekberg, Viktor Leek, and Lars Eriksson. Model-
ing and validation of an open-source mean value heavy-duty
diesel engine model. Simul. Notes Eur., 28(4):197–204, 2018.

Lars Eriksson. Mean value models for exhaust system tempera-
tures. SAE Transactions, pages 753–767, 2002.

Lars Eriksson. Modeling and control of turbocharged SI and DI
engines. Oil & Gas Science and Technology-Revue de l’IFP,
62(4):523–538, 2007.

Lars Eriksson and Lars Nielsen. Modeling and control of en-
gines and drivelines. John Wiley & Sons, 2014.

Lars Eriksson, Simon Frei, Christopher Onder, and Lino
Guzzella. Control and optimization of turbocharged spark
ignited engines. IFAC Proceedings Volumes, 35(1):283–288,
2002.

Gamma Technologies. GT-Power User’s Manual. GT-Suite Ver-
sion 6.1, 2004.

John B Heywood. Internal combustion engine fundamentals.
McGraw-Hill Education, 1988.

Robin Holmbom and Lars Eriksson. Analysis and development
of compact models for mass flows through butterfly throttle
valves. Technical report, SAE Technical Paper, 2018.

Viktor Leek, Kristoffer Ekberg, and Lars Eriksson. LiU
Diesel II - An open-source mean value engine model. Avail-
able at. https://www.vehicular.isy.liu.se/
Software/LiUDiesel2/.

Xavier Llamas and Lars Eriksson. Control-oriented compressor
model with adiabatic efficiency extrapolation. SAE Interna-
tional Journal of Engines, 10(4), 2017.

Xavier Llamas and Lars Eriksson. LiU CPgui: A toolbox
for parameterizing compressor models. Technical report,
Linköping University, SE-581 33, Linköping, Sweden, 2018.

Giorgio Mancini. Automotive diesel engine transient operation:
modeling, optimization and control. PhD thesis, Università di
Bologna, 2014.

Jorge Nocedal and Stephen Wright. Numerical optimization.
Springer Science & Business Media, 2006.

Anil V Rao. A survey of numerical methods for optimal con-
trol. Advances in the Astronautical Sciences, 135(1):497–
528, 2009.

Tielong Shen and Akira Ohata. Modeling and control design
for automotive engines-with matlab engine simulator cd-rom.
ISBN 978e-4-339-04610-6, 2011.

Martin Sivertsson and Lars Eriksson. Modeling for optimal con-
trol: A validated diesel-electric powertrain model. In SIMS
2014-55th Scandinavian Conference on Simulation and Mod-
elling, pages 49–58. Linköping University Electronic Press,
2014.

Vaclav Smil. Diesel engine at 120 [numbers don’t lie]. IEEE
Spectrum, 54(2):24–24, 2017.

Johan Wahlström and Lars Eriksson. Modelling diesel engines
with a variable-geometry turbocharger and exhaust gas recir-
culation by optimization of model parameters for capturing
non-linear system dynamics. Proceedings of the Institution
of Mechanical Engineers, Part D: Journal of Automobile En-
gineering, 225(7):960–986, 2011.

Neil Watson and Marian Janota. Turbocharging the internal
combustion engine. Macmillan International Higher Educa-
tion, 1982.

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185123 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

131

https://doi.org/10.1007/978-3-540-36119-0_4
https://www.vehicular.isy.liu.se/Software/LiUDiesel2/
https://www.vehicular.isy.liu.se/Software/LiUDiesel2/


Intelligent Micro Grid Controller Development for Hardware-in-

the-loop Micro Grid Simulation Subject to Cyber-Attacks

me2     Author Name3

Mike Mekkanen Tero Vartiainen Kimmo Kauhaniemi Duong Dang

School of Technology and Innovation, University of Vaasa, Finland, {mike.mekkanen,tero.vartiainen,
kimmo.kauhaniemi,duong.dang}@uwasa.fi

 

 

 

 

Abstract 
This paper develops Hardware-in-the-loop (HIL) 

simulation against cyber attacks. We design a light-

weight intelligent electronic device (IED) that performs 

Micro Grid Controller (MGC), interfaces are developed 

based on International Electrotechnical Commission 

(IEC) 61850 GOOSE protocol from/to the real-time 

simulation and the MGC. They are executed on two 

equipment stages, Field Programmable Gate Array 

(FPGA) and BeagleBoneBlack. CSIL versus CHIL tests 

are used to evaluate the Micro Grid (MG) behavior 

against different cyber attacks. We also evaluate the 

MGC designed control function in accordance with IEC 

61850 GOOSE protocol. The results show that the light-

weight MGC approach and data modeling of various 

IEC 61850 predefined data objects, data attributes and 

logical nodes (LNs) are correct for the design of the 

power balance control/protection function against cyber 

attacks in various cyber-attack case studies.  

Keywords:     Microgrid controller, co-simulation, 

EC61850, next-generation power system, real time 

simulator, cyber attack, HIL, IED. 

1 Introduction 

Renewable energy is considered as one of the solutions 

to stop global warming, and it has become the fastest-

growing energy source in many countries (Dang and 

Vartiainen 2020; Dang et al., 2021; Eurostats, 2020). 

Due to the extensive integration interconnected of 

renewable plants (e.g., wind and solar) and other 

conventional generators (e.g., coal, oil), intelligent 

MGCs play very important roles in effectively 

controlling resources and loads that connect to MGs. For 

instance, in this study the developed MGC provides the 

power balance management between generation and 

consumption within the MG in a dynamic manner. Also, 

a controller can help to maintain the power balance of a 

medium voltage network within the limit settled by a 

distribution system operator.  

Therefore, there is increasing interest in MGC’s 

topics (Rajesh et al., 2017). For example, literature has 

focused on modelling, developing and implementing  

MG controllers (c.f., Colet-Subirachs et al., 2012; Li et 

al., 2004; Ruiz-Alvarez et al., 2012; Sen and Kumar, 

2018; Ustun et al., 2012; Zia et al., 2018). Also, pilot 

cases for various types of MG are studied by using early-

stage MG controllers with vendor-defined 

characteristics (Liu et al., 2016). However, although 

MG standards have been published, the standardization 

of MG controllers is still under development (Sirviö et 

al., 2020). Based on the state of the art of standards and 

up-to-date products, it is argued that there are many 

issues related to MG controllers’ product standards. For 

example, MG controllers’ issues that are related to the 

interoperability of various systems and functions from 

different vendors (Baillieul et al., 2016; Reilly and Joos, 

2018). Moreover, requirements for the MG controller at 

the point of interconnection (POI) are established by the 

standards (Reilly et al., 2017), in which the balance 

between power generations and loads consumptions 

(e.g., MG management) is one of the most important 

requirement for MG controllers that need to be acquired 

and offered. One possibility can be seen due to the 

requirements (set by the DSO) of power balance at the 

connected/Islanded MG situation under different 

circumstances (e.g., cyber-attack) in (Zhang et al., 

2019).When developing and testing the operation of 

MG and MG controller functions, those issues should be 

taken into account. The test setup in (Zhang et al. 2019), 

is based on the software-in-the-loop (SIL) MGC, 

however, the hardware-in-the-loop (HIL) testing is left 

for the developer.  

Due to these issues, this research aims at developing 

a controller for MG HIL simulation against cyber-

attacks. As a result, we develop MGC from a 

preliminary computing algorithm that needs to be 

implemented at a designed light-weight intelligent 

electronic device (IED).  Interfaces are developed based 

on the IEC 61850 standard GOOSE protocol in the real-

time simulation and test platform. 

The paper is organized as follows. In Section 2 we 

illustrate the network development scenarios of the 25-

kV medium voltage distribution network MG.  Then, 
Section 3 presents the design light-weight IED with the 

preliminary power balance control algorithm, as well as 

IEC 61850 interfaces by libiec61850 library and C 
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Abstract 
This paper develops Hardware-in-the-loop (HIL) 

simulation against cyber attacks. We design a light-

weight intelligent electronic device (IED) that performs 

Micro Grid Controller (MGC), interfaces are developed 

based on International Electrotechnical Commission 

(IEC) 61850 GOOSE protocol from/to the real-time 

simulation and the MGC. They are executed on two 

equipment stages, Field Programmable Gate Array 

(FPGA) and BeagleBoneBlack. CSIL versus CHIL tests 

are used to evaluate the Micro Grid (MG) behavior 

against different cyber attacks. We also evaluate the 

MGC designed control function in accordance with IEC 

61850 GOOSE protocol. The results show that the light-

weight MGC approach and data modeling of various 

IEC 61850 predefined data objects, data attributes and 

logical nodes (LNs) are correct for the design of the 

power balance control/protection function against cyber 

attacks in various cyber-attack case studies.  

Keywords:     Microgrid controller, co-simulation, 

EC61850, next-generation power system, real time 

simulator, cyber attack, HIL, IED. 

1 Introduction 

Renewable energy is considered as one of the solutions 

to stop global warming, and it has become the fastest-

growing energy source in many countries (Dang and 

Vartiainen 2020; Dang et al., 2021; Eurostats, 2020). 

Due to the extensive integration interconnected of 

renewable plants (e.g., wind and solar) and other 

conventional generators (e.g., coal, oil), intelligent 

MGCs play very important roles in effectively 

controlling resources and loads that connect to MGs. For 

instance, in this study the developed MGC provides the 

power balance management between generation and 

consumption within the MG in a dynamic manner. Also, 

a controller can help to maintain the power balance of a 

medium voltage network within the limit settled by a 

distribution system operator.  

Therefore, there is increasing interest in MGC’s 

topics (Rajesh et al., 2017). For example, literature has 

focused on modelling, developing and implementing  

MG controllers (c.f., Colet-Subirachs et al., 2012; Li et 

al., 2004; Ruiz-Alvarez et al., 2012; Sen and Kumar, 

2018; Ustun et al., 2012; Zia et al., 2018). Also, pilot 

cases for various types of MG are studied by using early-

stage MG controllers with vendor-defined 

characteristics (Liu et al., 2016). However, although 

MG standards have been published, the standardization 

of MG controllers is still under development (Sirviö et 

al., 2020). Based on the state of the art of standards and 

up-to-date products, it is argued that there are many 

issues related to MG controllers’ product standards. For 

example, MG controllers’ issues that are related to the 

interoperability of various systems and functions from 

different vendors (Baillieul et al., 2016; Reilly and Joos, 

2018). Moreover, requirements for the MG controller at 

the point of interconnection (POI) are established by the 

standards (Reilly et al., 2017), in which the balance 

between power generations and loads consumptions 

(e.g., MG management) is one of the most important 

requirement for MG controllers that need to be acquired 

and offered. One possibility can be seen due to the 

requirements (set by the DSO) of power balance at the 

connected/Islanded MG situation under different 

circumstances (e.g., cyber-attack) in (Zhang et al., 

2019).When developing and testing the operation of 

MG and MG controller functions, those issues should be 

taken into account. The test setup in (Zhang et al. 2019), 

is based on the software-in-the-loop (SIL) MGC, 

however, the hardware-in-the-loop (HIL) testing is left 

for the developer.  

Due to these issues, this research aims at developing 

a controller for MG HIL simulation against cyber-

attacks. As a result, we develop MGC from a 

preliminary computing algorithm that needs to be 

implemented at a designed light-weight intelligent 

electronic device (IED).  Interfaces are developed based 

on the IEC 61850 standard GOOSE protocol in the real-

time simulation and test platform. 

The paper is organized as follows. In Section 2 we 

illustrate the network development scenarios of the 25-

kV medium voltage distribution network MG.  Then, 
Section 3 presents the design light-weight IED with the 

preliminary power balance control algorithm, as well as 

IEC 61850 interfaces by libiec61850 library and C 



language. Next, Section 4 presents the MGC operation 

within the CHIL simulations in the real-time simulation 

platform. The conclusions and discussions are presented 

in Section 5. 

2 Development of MG and Testing 

Scenarios  

A cutting-edge Real-Time Simulator (RTS) is a digital 

model-based test system that can precisely mimic the 

reaction of an actual physical system in real time. This 

digital replica of the actual physical system (digital 

twin) has been confirmed to be a valuable tool in power 

system research and studies for several decades. For 

example, a digital twin helps reduce test stresses on the 

actual physical system as well as hazardous work. 

Moreover, it enables the simulation model to interact 

with external hardware or control algorithms in such a 

way that external IED does not recognize that the 

received data is coming from a simulation model rather 

than actual physical system. 

This work studies a MG 120kV grid-connected 

distribution feeder that can be islanded by opening the 

point of common coupling (PCC) circuit breaker and 

operating autonomously as developed in (Zhuang, 

2012). The single line diagram of a MG and the cyber-

physical structure are depicted in Figure 1. MG assets 

and their characteristics are depicted in Table 1. 

 
Figure 1: MG single line diagram and the cyber-physical 

structure, blue lines show the communication links that 

every MG node entity (DERs, loads, CB, etc.) send 

measurements, status to the MGC and received 

controlling signal from the MGC based on GOOSE IEC 

61850 standard protocol. 

 

Table 1 MG assets and loads 
Asset Type Ratings Operation 

Modes 

Loads 

Load1 Critical 4MW Always 

connected 

Load2 Critical 4MW Always 

connected 

Load3 Hybrid 4MW Can be 

disconnected 

on second  

priority 

Asset Type Ratings Operation 

Modes 

Load4 Non-

Critical 

3MW To be 

disconnected 

in Islanded 

mode 

Distributed Energy Resources (DERs) 

Combined 

Heat and  

Power 

(CHP) plant 

Gas 

Turbine 

10MW P/Q (Grid-

connected)  

V/f (Grid 

forming) 

2 x PV 

Generation  

System 

With 

Smoothing 

Battery  

Energy 

Storage 

System 

1.5MVA + 

0.5MVA  

(1.2MWh) 

MPPT with 

smoothing 

battery 

3x Battery 

Energy 

Storage  

System 

(BESS) 

Lead Acid 1MW 

(5MWh) 

Power 

smoothing 

 

The MG is a 25-kV medium voltage distribution 

network connected to a 120 kV sub-transmission system 

by means of a 15 MVA delta-wye transformer. The MG 

consists of 6 DERs, including two 1.5 MVA PV 

systems, three energy storage systems (ESS) (two of 

which are 500 kVA ESSs with 1.15 MWh capacity; one 

is a 1 MVA ESS with 5 MWh capacity), and one 10 

MVA CHP unit. The MG also has four aggregated 

loads: the first two are critical loads rated at 4 MW, the 

third is a 4 MW priority load, and the fourth is a 5 MW 

non-critical load. The model does not include relay 

elements, which are beyond the scope of this study, 

there is no underlying protection scheme. Each MG 

asset is linked to a measurement subsystem, which is 

based on voltage and current measurements; a 

subsystem measurement component is programmed to 

produce P, Q, and Vrms measurements. These 

measurements from the measurement subsystems are 

sent to the MGC via IEC 61850. 

We use the developed computing/controlling 

algorithm to extract and process those useful 

measurements from the received GOOSE messages 

within the MGC. The MGC is designed to provide 

power balance (calculates the total power generation 

and the total load consumptions) and manages the 

dispatch of the assets and load shedding of the non-

critical load in the event of islanding. If the difference 

between the total power generation and the total load 

consumption exceeds 3MW for any MG actions or 

attacks, the controlling algorithm output (dispatching 

signal) will be sent back to the model via additional new 

GOOSE messages to shed off the non-critical load. In 

(Zhang et al., 2019) simulates and tests a simple rule-

based MGC on the same model using SIL. In contrast, 

in this paper, we use HIL to test the developed from 
scratch intelligent external MGC, which is left for the 

developer. We develop and run two scenarios to 
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analyze/measure the MG behavior/resiliency of the MG 

cyber-physical simulation against cyber attacks. In 

addition, we gain testing results for our developed MGC 

IED-based design computing algorithm and the MGC 

interfaces data model's compliance with the IEC 61850 

standard.  

 

2.1 Scenario 1: MG Islanding Operation 

Mode Against a delay attack on Load 

Shedding Trip 

In the first scenario, the MG will be islanded in second 

1, in this case the MGC will check the power balance 

and implement the power balance operation emergency 

condition  (the difference not exceeds 3MW). If the 

check emergency condition  becomes true, the MGC 

attempts to immediately disconnect the sheddable Load 

4 to maintain the MG stability. Be that as a delay attack 

is introduced to the GOOSE trip command packets sent 

from the MGC to Load 4, the load shedding function 

may fail to operate in the required timeframe. In this 

case this will cause severe unbalance between 

generation/load relationship and oscillations on MG 

nominal operation parameters such as e.g., frequency, 

voltages etc. It may also result in severe consequences 

like a blackout. Through the C code available delay 

function within the MGC initial code, a one-second 

delay attack is applied to the MGC GOOSE message 

command. Secure Shell (SSH) terminal window is 

opened to control the MGC and monitor, record the MG 

physical system's reaction parameters. Wireshark 

network analyzer/sniffing tool is used for the same 

purpose, because the interfaces in the HIL test need to 

be implemented over a physical communication 

network, such as physical adapters, Ethernet switches, 

cables, etc. 

 

2.2 Scenario 2: MG Steady State Islanded 

Operation Mode Against  Man-in-the-

Middle attack 

MGC based on its normal operation will receive 

measurements that are sent from each MG assists via 

GOOSE. Be that as a Man-in-the-middle attack is 

introduced to the load measurements data. Before the 

load measurements data being received by MGC. The 

data is manipulated in the middle of its way to the MGC. 

In this case, the MGC may take incorrect actions based 

on these received non-critical measurements. According 

to the test scenario 2, the active power measurement 

from Load 2 is duplicated by applying a packet 

manipulation attack to the GOOSE message. In this 

case, the MGC will take the incorrect action (false 

tripping) because it perceives the controlling operation 
emergency condition  is true (total load will be more 

than 3MW greater than the total generation). As a result, 

a trip command is sent to disconnect Load 3. It also 

causes oscillations on MG nominal operation 

parameters such as e.g., frequency, voltages etc. 

Comparison between both achieving testing results, 

SIL and HIL will be made within the rest of this work. 

3 Design the light-weight MGC IED  

The following describes the development process of the 

light-weight MGC that will be implemented as CHIL. 

The development process begins with the creation of an 

IEC 61850 Substation Configuration Description (SCL) 

file and its adaptation to two distinct hardware 

platforms: the BeagleBone Black (BBB) and the Field 

Programmable Gate Array (FPGA). The concept behind 

using these boards is based on their low cost, flexibility, 

support for various interfaces/protocols, I/O pins, and 

ease of configuration. Within the SCL file, we create the 

MGC object-oriented data model, which includes 

selected logical nodes (LN), data objects (DO), and data 

attributes (DA)s that are appropriate for handling and 

processing measurements data from the "field," in our 

case study, data come from the simulation model. In 

addition, we create and configure the GOOSE control 

blocks (GCB)s. To build the GCB, GOOSE datasets 

need to be created. This data set will include all the data 

attributes that need to be associated with the publishing 

of the MGC GOOSE messages. We finalize the GCB 

configuration by configuring the interfaces’ GCB 

parameters such as GOOSE ID, GOOSE configuration 

revision, GOOSE publishing MAC address, GOOSE 

subscribing MAC address etc., as illustrated in Figure 2. 

In particular, the right side of Figure 2 shows the 

hierarchy structure of the developed MGC IED, 

including the communication IED section, list of the 

LNs, list of the GCBs and the list of the data sets. 

Whereas at the left side of Figure 3, it shows the list of 

the data attributes that includes the “OV2PTOV” 

GOOSE data set. These DAs will hold the 

measurements-status published from the DERs, loads 

and CBs, within the MG simulation model. 

 
Figure 2. MGC SCL file 

 

At this point the configured SCL file is used to create 

two files (static_model.c and static_model.h) by 
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generating source codes (libiec61850 n.d.:61850).  The 

file static_model.c contains the definition of the data 

structures that build up the IED data model and also 

contains pre-configured values that are provided by the 

SCL file. The file static_model.h is intended to be 

included by the designed project code and defines 

handles that we can use for efficiently accessing the data 

model.  According to the “model generator” process, 

each type of IED data model can be mapped directly to 

a C data structure, resulting in a hierarchy of C data 

structure. Besides, the generated C files must be 

accompanied by the platform-specific code to ensure 

consistency with IEC 61850. Consequently, MGC 

controlling power balance function in C language was 

developed in a way that complies with software-in-the-

loop (SIL) preliminary algorithms developed by Opal 

HYPERSIM Power Systems (libiec61850). 

The MGC controlling power balance function based 

on its operation, it needs to subscribe to the GOOSE 

messages that have been sent from the model with the 

associated measurements. After a successful 

subscription by the MGC, it needs to extract these 

measurements, and run the control function. At this 

point, the output of the control function based on the 

assigned emergency conditions  that are explained 

earlier, are True or False. If it is True, the MGC needs 

to go to step, which is publishing a new GOOSE 

message that needs to be subscribed by the model. 

According to this GOOSE message an open CB 

command is sent. Then, it will return back to the 

previous step. Whereas, if the output is False, the MGC 

will send a heartbeat GOOSE messages without any 

changes.  The procedure for designing the “lightweight” 

MGC HIL controller with all processing steps is 

presented in Figure 3.    

 
Figure 3: MGC development processing 

The testing results will be presented in the next 

section of this manuscript.   

4 CSIL and CHIL Testing Results  

4.1 CSIL Testing Results  

The workflow of the development of the real-time co-

simulation platform consists of use cases development, 

closed-loop real-time simulations, light-weight MGC 

IED development, IEC61850 communication 

implementation, the CSIL, and the CHIL tests. At the 

beginning and according to the first CSIL scenario test, 

the MG power system is modeled and MGC is 

developed and both are implemented via Opal 

HYPERSIM software as illustrated in Figure 4 and 

Figure 5. Whereas, the IEC 61850 communication 

system is emulated in EXata software from Scalable as 

illustrated in Figure 1. Going into details of the 

HYPERSIM and EXata simulation/emulation models 

blocks/elements is out of the scope of this work. 

 
Figure 4. Opal HYPERSIM power system model 

 

 
Figure 5. Opal HYPERSIM MGC  model as SIL 

 
As the MG goes to islanded mode after one second, 

the MGC sends a shedding command to load 4 via 

GOOSE messages in order to fulfill the emergency 

condition requirements. The results for the first case 

study are shown in Figure 6, MG returns to power 

balance after one second that appears in the upper part 

of Figure 6. Since we did not apply the delay attack yet 

as shown in the lower part of Figure 6, the sending and 
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receiving MGC single to shed load 4 is just an overlap 

which validates the fact that EXata is not adding more 

delay time within the communication system emulation 

and implementation. 

 
Figure 6. LabVIEW GUI in Opal HYPERSIM scenario 1 

normal operation 

 

 Whereas, according to the second case study in the 

first scenario, we implement 1-second delay as a delay 

attack to MGC signal. Figure 7 illustrates the MG 

unbalance situation based on this attack, the MG took 

more time to return back to the balance mode as shown 

in the upper part of the figure. In the lower part of the 

figure, the MGC sends the trip command, however 

based on the attack it will be received by the IED that 

controls the load 4 CB after 1-second in which it affects 

the MG operation parameters such as f, V, power 

Quality, etc.  

 

  
Figure 7. LabVIEW GUI in Opal HYPERSIM scenario 2 

delay attack implemented to MG, lower figure shows the 

(red line) is the original trip signal sent from the MGC to 

shed off load 4 after the grid is islanded in second one, 

which it is in time. Whereas the (blue line) is the delayed 

signal. Trip command sent by the MGC is delayed by one 

second after we apply the cyber delay attack to the 

controller signal. Upper picture shows the MG unbalance 

operation that took a long period (more than 2 seconds). 

    

According to the second scenario, the MG is islanded 

and in normal operation mode as illustrated in Figure 8. 

In the first case study, load 2 and load 3 are operated 

within their nominal operation values that consumes 

power around 4MW.   

 
Figure 8. LabVIEW GUI in Opal HYPERSIM scenario 2 

normal operation 

 

Whereas, after applying the Man-in-the middle attack 

to load 2 measurements in its way before it was received 

by the MGC. Figure 9 illustrates the load 2 

measurements manipulation in which it doubled the load 

2 power consumption (read curve) as shown in the upper 

part of the figure 9.  In the lower part of the figure 9, it 

shows load 3 active power consumption that fluctuate 

between (0 - ≈4MW) based on disconnecting and 

connecting modes, and the unbalance between the total 

power generation and total power consumption 

according to the attack. In addition, this situation also 

affects other MG operation parameters such as f, V, 

power quality, etc. that may lead to severe instrument 

damages or large blackouts. 

 
Figure 9. LabVIEW GUI in Opal HYPERSIM scenario 2 

man-in-the-middle attack implemented to MG. Upper 

figure shows load 2 measurements (red curve) are 

manipulated before they are received by the MGC based 

on executing the man-in-the-middle attack, (blue curve) is 

the normal load 2 measurements before executing the 

attack. Lower figure shows the load 3 active power 

consumption which fluctuates between (0 and 4MW) 

since it is connected and disconnected to the grid based on 

executing the man-in-the-middle attack. 
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4.2 CHIL Testing Results  

For the second part of this work, we show the HIL test 

and the testbed setup that is illustrated in Figure 10.  

 
Figure 10. HIL testbed setup  

 

According to the test setup principals, the light-

weight MGC is developed that compliance with the IEC 

61850 standard, the developed power system model 

within the HYPERSIM is upgraded and configured, in 

which the GOOSE publisher will use the physical 

adapter rather than the virtual adapter to publish the 

GOOSE messages over the designed communication 

network as illustrated in Figure 11. RJ45 cables are used 

to link the test instruments through the Ethernet switch. 

 

  
Figure 11. Opal HYPERSIM I/O configuration  

 

The light-weight MGC SSH terminal is used to 

execute and run the develop MGC project within the 

microcontroller boards based on Linux environment.   

Table 1 in Appendix, shows the MGC that has been 

successfully subscribed to the GOOSE messages 

published from the real-time simulator. In addition, it 

shows the tenth measurements that were extracted from 

the received GOOSE messages. All these extracted 

parameters are printed out to be shown on the output of 

the MGC control terminal. As well as, Wireshark 

sniffing tool is used to capture the GOOSE traffic and 

also analyzes the tenth measurements associated within 

the captured GOOSE messages.    

Different cyber attacks are implemented within the 

CHIL test procedure. The first case study is to measure 

the 1-second delay attack effects on the MG behavior. 

This delay attack is implemented within the MGC C 

code. While the second case study in order to simulate 

the Man-in-the-middle attack, we duplicate load 2 

measurements by multiplying the measurements by two 

before sending it to the MGC. The MGC will extract the 

manipulated value from the attacked GOOSE message, 

and implement the check emergency condition in C 

code. In this case, MGC will send a dispatching 

command to disconnect load three to fulfill the 

emergency condition requirements. More analysis of the 

MGC GOOSE messages received data and discussion 

should be performed. Appendix Table 1 presents 

Scenario 1 CHIL data, which will be published as part 

of the study's continuation. Furthermore, different types 

of attacks, defender risk assessments, etc., will be tested 

in the future.  

5 Conclusions  

The development and performance of an MGC against 

cyber attack control schemes have been implemented in 

this paper. These are done by design and deployed on a 

light-weighted intelligent IED. The MGC control 

solution and its relevant communication system have 

been designed in compliance with the IEC 61850 and 

executed on two equipment stages, FPGA and 

BeagleBoneBlack. CSIL versus CHIL tests are used to 

evaluate/assess the MG behavior against different cyber 

attack scenarios. Moreover, we also evaluated IEC 

61850 GOOSE protocol implementation, processing 

and finally control action performance. The obtained 

results demonstrate that the light-weight MGC approach 

and data modeling of various IEC 61850 predefined data 

object LNs are correct for the design of the power 

balance control/protection function against cyber attack. 

In addition, they demonstrate the successful 

implementations of the designed control/protection 

function and the modeled MGC LNs in various cyber-

attack case studies on reliable detection of the 

emergency condition. Further work on the analysis of 

the data received by MGC, implementation of different 

cyber attacks and power balance detection algorithms is 

needed to validate the feasibility of the developed 

approach.  
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Appendix 

The following Table 1. shows the part from Scenario 1 CHIL test measurements. In this table, columns 2-5 (e.g., Load1 

to Load 4) shows the loads active power consumption, while columns 6-11 (e.g., BESS1, PV2, NESS3, PV1, CHP, 

BESS2) illustrates the DERs active power generation all in Watts. Moreover, columns 12-13 (e.g., PCC, load4) 

presents the status of the PCC and load 4 circuit breakers, while column 14 (e.g., Time s) shows the time stamp in 

second. Here, each data object collects three data attributes for each parameter (Val, q, t) i.e., and they are encapsulated 

in the GOOSE message data set. Row 6 illustrates the first islanding that is implemented in 0.692 s by disconnecting 

the MG by changing PCC status to true (islanded), whereas load 4 CB will be shed in 0.742 s since at this point no 

delay attack is implemented. In a similar vein, row 36 shows the MG that is reconnected to the grid and load 4, it is 

also reconnected and starts consuming active power and column 4 starts showing measurements. 

   
# Load1 Load 2 Load 3 Load 4 BESS1 PV2 BESS3 PV1 CHP BESS2 PCC load4 Time s 

1 3875128 3781908 3848320 4745503 324750 12391 313977 657533 5051008 901410 0 1 0.0 

2 3886356 3801598 3867824 4767855 259598 12483 298115 657889 6063510 918955 0 1 0.042 

3 3895487 3816629 3883259 4787274 274980 12601 377263 658062 7273871 917240 0 1 0.242 

4 3875302 3774808 3840516 4734144 247771 12376 426814 653924 6496688 876106 0 1 0.442 

5 3628191 3564326 3625103 4470147 263691 16993 441651 637882 7891500 838352 0 1 0.592 

6 3765598 3749752 3827546 1686397 248053 23351 461370 631774 10581547 834129 1 1 0.692 

7 3909675 3902159 3986019 620417 245663 12185 469602 632663 10463299 804188 1 0 0.742 

8 3974832 3972181 4058661 83989 277405 13576 477779 640318 10418736 701015 1 0 0.842 

9 3890752 3891604 3976228 11382 255274 13001 300181 639228 10458335 576783 1 0 0.942 

10 3826802 3825120 3908149 1550 251834 12469 322624 638311 10355982 451723 1 0 1.042 

11 3732894 3727222 3808487 33 245095 11622 391792 637551 10235066 213576 1 0 1.242 

12 3690010 3682557 3763187 4 256227 11291 425556 636786 10221290 50770 1 0 1.392 

13 3641555 3632102 3711959 0 246946 11559 459342 636631 10287160 16591354 1 0 1.642 

14 3633773 3623783 3703827 0 264419 11588 468186 636659 10321279 16508713 1 0 1.742 

15 3590677 3583693 3663737 0 257502 11815 297380 636543 10566320 16331793 1 0 1.992 

16 3598518 3590426 3670833 0 269892 11909 320684 637715 10613529 16271080 1 0 2.092 

17 3609756 3600123 3681195 0 262805 12193 376833 639748 10676801 16190208 1 0 2.242 

18 3619217 3608758 3690369 0 255081 12704 416467 640535 10742324 16121152 1 0 2.392 

19 3625488 3614647 3696720 0 262562 12717 435432 640812 10775080 16080759 1 0 2.492 

20 3626222 3615002 3696941 0 246758 12848 449834 641852 10813148 16045081 1 0 2.592 

21 3632638 3621064 3703834 0 268585 13121 469777 643488 10851610 15984287 1 0 2.792 

22 3632638 3621064 3703834 0 268585 13121 469777 643488 10851610 15984287 1 0 2.942 

23 3626697 3614814 3697480 0 269335 13077 487092 643417 10894398 15908551 1 0 3.142 

24 3620534 3608708 3690556 0 253137 12728 492642 642716 10922676 15872675 1 0 3.392 

25 3625170 3613655 3695241 0 262391 12730 495402 642562 10947493 15851677 1 0 3.592 

26 3635648 3624687 3705456 0 246261 12075 497503 641979 11015321 15833760 1 0 3.842 

27 3652699 3642308 3723380 0 261976 11988 498563 641891 11061342 15826077 1 0 3.992 

28 3663804 3653738 3734697 0 262258 12213 499013 643486 11097553 15822607 1 0 4.092 

29 3682987 3676505 3757403 0 261760 11780 340178 660614 11322578 15817035 1 0 4.392 

30 3730492 3723068 3804667 0 246047 12057 416973 676022 11389880 15816532 1 0 4.642 

31 3756276 3748616 3830909 0 247682 12198 450782 678971 11427376 15819407 1 0 4.842 

32 3744688 3740558 3822954 0 261123 12726 295332 681969 11538362 15825974 1 0 5.042 

33 3767777 3761076 3844537 0 270543 12807 383797 687555 11489827 15832647 1 0 5.292 

34 3766261 3758344 3841976 0 247153 13027 430778 691158 11444541 15840773 1 0 5.492 

35 3420712 3026410 3097530 0 254640 12482 431382 574554 13162528 15900753 1 0 5.592 

36 3481128 3080810 3142453 2461343 261153 55416 446532 558530 14976107 15913154 0 1 5.642 

37 3695901 3437038 3499438 4124898 248874 12305 296997 640848 8820065 16028727 0 1 5.742 

38 3284208 2808361 2857941 3503537 233906 6080 305507 676664 18641205 16206118 0 1 5.842 

39 2185473 951665 971935 1210253 170248 16739997 316376 654396 8566525 16347311 0 1 5.992 

40 2524608 1476101 1511032 1878933 194460 37169 287098 656788 9263116 16118254 0 1 6.142 

41 3003512 2307134 2348593 2904624 216277 890 383725 678090 16462531 16358187 0 1 6.392 

42 2183750 947049 966862 1204584 166107 16739091 373027 654642 7105342 16475085 0 1 6.492 

43 3365212 2888729 2940613 3631400 229022 5964 478575 685109 15257266 16526335 0 1 6.842 

44 2679160 1799928 1833785 2272158 219546 56372 453296 670359 16689547 16598107 0 1 6.942 

45 2033099 674768 691849 867267 153846 16725867 422931 645703 4613850 16511752 0 1 7.142 

46 2241362 1029269 1054758 1316209 175922 16732549 446194 651958 4286363726 16350067 0 1 7.442 

47 3490675 3052096 3109465 3840381 245479 4538 527203 687073 792295 16504408 0 1 7.642 

48 3362295 2907956 2960414 3655672 256122 5806 510359 692531 17456987 27897 0 1 7.842 

49 3211773 2675600 2725831 3368524 282416 2211 503972 690994 19365029 16742147 0 1 7.992 

50 3583477 3274431 3333838 4113662 244491 7432 517104 699436 15932444 16606684 0 1 8.092 

51 3605799 3319334 3377019 4166183 244917 9007 508935 700682 15919332 16479252 0 1 8.242 

52 3077862 2492068 2538611 3137973 229706 247 489138 695139 4284319804 16716571 0 1 8.442 

53 3599355 3349466 3410801 4208360 249106 9223 512640 705241 12373359 410397 0 1 8.642 

54 3930460 3927243 3995515 4924185 248776 13423 304915 711150 13442109 718635 0 1 8.842 

55 4636077 4653300 4747321 2098696 268523 23734 275530 717507 15092822 729369 1 0 9.092 

56 5005018 5031641 5136746 104749 267168 17947 257677 719715 14089063 576036 1 0 9.242 

57 4857688 4882122 4983069 2030 277816 16448 255330 713545 13722050 358826 1 0 9.442 

58 4616189 4635409 4730578 83 266288 15154 260752 701329 13175867 157475 1 0 9.642 

59 4251829 4262130 4349867 12 253596 13391 280713 695326 12272546 16681857 1 0 9.942 

60 4134640 4140856 4226667 7 254309 12547 317121 693895 11928201 16611125 1 0 10.042 

61 3930348 3929973 4012176 3 269399 11678 389496 692142 11314555 16488264 1 0 10.242 

62 3787650 3782931 3862756 1 250291 10521 431577 690397 10939397 16386566 1 0 10.442 

63 3703386 3695994 3774444 0 246741 10379 456955 689842 10732796 16302856 1 0 10.642 
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Abstract
In this work, modern machine learning methods are com-
pared against traditional image processing techniques, for
the purpose of estimating the level of coffee beans in a
transparent tank fitted to a coffee machine. Measurements
using both approaches are compared against manual level
measurements. The resulting algorithm are analysed for
repeatability under scene variations, such as orientation of
the tank with respect to the camera and the distribution of
coffee beans. Keywords: Level measurement, computer
vision, image segmentation, ResNet34

1 Introduction

1.1 Background

Level measurements is important for a large number of
applications in both industry, science and the commer-
cial sector (Bentley, 2005). Popular measurement tech-
nologies include guided radar, ultrasonic, capacitance and
flotation based sensors principles (Bentley, 2005). In
many cases, it is desirable to apply a non-intrusive sen-
sor principle. One possible solution which has received
significant scientific interest in recent years is the use
of digital cameras together with advanced, typically ma-
chine learning (ML) based, algorithms (Goodfellow et al.,
2016). This technology has a large range of possible ap-
plications, including the non-intrusive level measurement
of substances in a partially transparent tank.

In this work, the system of interest is a coffee machine
that has been outfitted with an industrial robotic arm. The
goal of the project, originating from Bouvet Consulting in
Porsgrunn, is to create an AI barista. One aspect of this
project is to measure the level of coffee beans remaining
in the tank of the coffee-machine. Since the machine is
a common-of-the-shelf model, there is no level measure-
ment sensor built in. However, as is typically the case
for such devices, there is a transparent inspection window
which allows users to visually estimate the level of cof-
fee beans in the tank. The facility for visual inspection,
together with the obvious need to ensure safe human con-
sumption of the produced coffee, makes the use of vision
based sensor technology particularly interesting.

1.2 Previous work
There have been several published works on using com-
puter vision for level estimation for liquids, which is argu-
ably easaier then the granular coffee beans studied in this
work. Zepel et.al. used open-source libraries (Numpy,
OpenCV, and PySerial) for liquid level monitoring and
control in common continuously stirred tank reactor pro-
cesses. They used Canny Edge detection in order to locate
strong horizontal edges to detect the liquid-air interface,
and perform decisions to control the pump(s) for manipu-
lating the liquid level. They found that the method gives
acceptable results when using computer-vision as part of
an autonomous platform to monitor experimental factors
and make control decisions. (Zepel et al., 2020).

In (Eppel and Kachman, 2014) a general computer vis-
ion method for the recognition of liquid surfaces and li-
quid levels in various transparent containers is presented.
They concluded that making a general recognition method
for liquid systems is possible and that it can be achieved
with good accuracy in various cases. The best indication
of the liquid surface was found to be the relative intensity
change, the edge density change and the gradient direction
relative to the curve normal.

2 Methods
2.1 Machine learning vs traditional computer

vision algorithms
The field of computer vision has experienced a paradigm
shift over the last two decades (Goodfellow et al., 2016).
The application of machine learning (ML), and in partic-
ular multilayer artificial neural networks (ANN), known
as deep learning, has revolutionised what is possible to
achieve with computer vision (Goodfellow et al., 2016),
leading to the use of computer vision in many new applica-
tion. While machine learning certainly has had a profound
effect on the computer vision field, there are still much use
for non-learning algorithms as well. In many applications,
the traditional image processing methods may indeed be
advantageous because they tend to be faster w.r.t. execu-
tion time.

Before presenting the methods of interest in this work
it is instructive to discuss the fundamental difference
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Figure 1. Comparing traditional image processing with machine
learning

between the two approaches to image analysis. Before the
advent of ML, image analysis was conducted by construct-
ing algorithms using various developed standard tech-
niques, such as filtering and gradient computations (Brad-
ski and Kaehler, 2008). Most analysis tools uses a series
of such steps to compute a result. The common denomin-
ator for these techniques is that the algorithms consist of
a set of rules that describe how an image should be pro-
cessed to produce an analysis results or solution (Brad-
ski and Kaehler, 2008). In some applications, engineering
these rules turns out to be very difficult. Consider the text-
book case of distinguishing images of cats and dogs, it is
difficult to imagine manually constructing a set of rules
that can compute the probability of an image containing a
particular animal based solely on the pixel values.

As shown in Fig. 1, machine learning turns the ap-
proach to image analysis, and indeed data analysis in gen-
eral, around. Rather then engineering the rules needed
to produce a solution, relevant input data is coupled by a
desired solution (Goodfellow et al., 2016; Kuhn and John-
son, 2013). Subsequently, algorithms are used to identify
patterns between input data and the desired solution. The
identified patterns can be considered as machine gener-
ated rules which in turn is applied to new images in order
to compute the desired result (Goodfellow et al., 2016;
Kuhn and Johnson, 2013). Naturally, rules generated by
a computer by pattern recognition is not necessarily sim-
ilar in formulation to the rules or instruction steps used
in traditional computer vision algorithms, but their use is
the same; computing a solution or analysis result for new
images of the underlying system of interest.

2.2 Machine learning using fastai
The ML framework of choice in this project is Fastai
which was created by the Fast.ai organization (Howard
and Gugger, 2020). The motivation for developing the
framework is to provide a practical approach to machine
learning, where the idea is to start learning by doing prac-
tical work instead of first requiring a deeper theoretical
knowledge of the intricacies of ML. The fastai framework
is based on PyTorch (Paszke et al., 2019) and gives the
PyTorch library an extra layer of functionality using the
API’s by offering high-level API’s which makes it easier
to get started with machine learning.

ImageSystem AlgorithmCamera

ModelOutput

Prediction

Training

Figure 2. Machine learning and prediction with images

2.2.1 Image classification and segmentation
A fundamental goal of many computer vision analysis al-
gorithms is to label the content of an image (Goodfellow
et al., 2016). Two distinctly different approaches towards
applying labels to various parts of an image are known
as classification and segmentation (Bradski and Kaehler,
2008). Both methods use an algorithm to train a model
from the images. After a model has been trained, new im-
ages is sent to the model and an output is given, as shown
in Fig. 2.

In classification objects in the image are analysed
and labelled as belonging to one of many pre-determined
classes, often together with an estimated probability ac-
curacy of the class label being correct (Bradski and
Kaehler, 2008; Goodfellow et al., 2016). A class can
be, for example, a car, a cat, a house, etc. When train-
ing a classification model, a large number of images are
pre-labelled and sorted according to the class of object
they contain, typically arranged in different folder in the
filesystem. The output of an image classifier is a region,
typically rectangular, in the input image together with a
label that classifies the content of that region.

In contrast, image segmentation does not detect dis-
crete objects, but rather seeks to determine non-uniform
regions in the image which belong to a particular pre-
trained class (Bradski and Kaehler, 2008). As such, seg-
mentation can arguably be considered a type of classific-
ation, but instead of classifying the object in the image,
each single pixel is labelled depending on what class it
most likely belongs to. When training a segmentation
model, each pixel in the training image is labelled by a
class id, typically using different shade of grey in an over-
laying image known as a mask (He et al., 2016; Deng
et al., 2009). By coupling a mask with a training image,
the machine learning algorithm learns the pattern that con-
nects image content with segment class. When the trained
segmentation model is applied to a new image it will as-
sign a class label to every pixel, such that neighbouring
pixels of the same class form an image segment. The seg-
mented image can then be further analysed to locate ob-
jects and boundaries like lines and curves in an image.

2.2.2 Estimating tank level from an image
In this work, image segmentation is used to estimate the
level of coffee beans in a transparent tank. After apply-
ing the segmentation model on a new image, the method
outputs a tensor of same dimensions as the input image,
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where each tensor element constitutes a class label for the
pixel in the corresponding image.

All the training images used in this project are tagged
by manually creating masks with three classes: COFFEE,
EMPTY_TANK and BACKGROUND. When a new im-
age is segmented using the resulting trained model, the
output is a tensor array of the same dimensions as the in-
put image, containing the identified classification of each
pixel.This tensor is used to calculate the level in the coffee
bean container using:

Level [%] =
Ncoffee

Ncoffee +Ntank
(1)

where Ncoffee and Ntank is the number of pixels after im-
age segmentation classified as belonging to the segments
COFFEE and EMPTY_TANK, respectively. The under-
lying assumption of this approach is that the camera is
positioned such that the 2D projection of the coffee tank
onto the image sensor produces an image, where the re-
gion consisting of coffee beans relative to that of the com-
plete tank, e.g., the empty tank plus the coffee beans, is
proportional to the coffee volume of interest. While this
assumption is true for the approximate rectangular tank
used for this work, a more complex geometry may require
a second regression model to be trained in order to estim-
ate the actual volume from the projected 2D regions in an
image (Goodfellow et al., 2016; Kuhn and Johnson, 2013).

2.2.3 Transfer learning

Transfer learning (TL) was first introduced in (Bozinovski
and Fulgosi, 1976) where they describe a mathematical
and geometrical model of TL (Bozinovski, 2020). TL is
a method in machine learning where knowledge gained
in one task is exploited to improve generalization in dif-
ferent but related task (Goodfellow et al., 2016). For ex-
ample, knowledge gained from recognizing a car could be
used when learning to recognize a truck. TL is a popu-
lar approach in computer vision and natural language pro-
cessing tasks because it can train neural networks with
comparatively little data with shorter training time than
when training from scratch. In most real-world prob-
lems it is difficult to obtain a large number of labelled
data points for training of complex models. Hence, a pre-
trained model is beneficial. In Computer vision, it is com-
mon for the neural network to first find edges in the first
layers, general shapes in the middle layers, and finally
task-specific characteristics for the last layers. In TL, the
first and middle layers are transferred to the new model,
while only the last layers must be re-trained. The main ad-
vantages of TL is shorter training time, less training data,
and in most cases better performance (Bozinovski, 2020).

2.2.4 ResNet

The ML model of choice in this work is a Residual Neural
Network (ResNet), which is a continuation of a convolu-
tional neural network (CNN) that has become a popular
model for computer vision in the recent years (He et al.,

2016). To further improve on the CNN method, the Res-
Net adds skip connection or shortcuts to jump over some
layers. ResNet models typically implements double- or
triple- layer skip connections. A weight matrix can be
used to find the skip weights in models known as High-
wayNets. The skip connections help to avoids the trouble-
some vanishing gradient problem, which occurs in CNN
which preventing further training.

The ResNet model used for this project is ResNet-34
which consist of a network with 34 layers (He et al., 2016).
The ResNet-34 model was pre-trained using the ImageNet
dataset which consists of millions of pre-labeled images
(Deng et al., 2009). Larger networks are better at com-
plex problems but are easy to overfit, takes longer to train
and use more memory than smaller networks. Hance,
ResNet-34 was chosen because its performance to ac-
curacy trade-off was satisfactory for the problem. Other
neural networks like AlexNet, GoogLeNet, DenseNet and
SqueezeNet was tested but based on initial experimenta-
tion the ResNet-34 model appears to perform adequately
for the task.

2.2.5 Model training

The ResNet-34 model was repeatedly re-trained with an
increasing number of training images, until a satisfactory
result was reached at only 93 images. The relatively low
number of training images needed to achieve satisfactory
performance shows the strength of using transfer learning
on a pre-trained model.

A common method for increasing the variation in the
training set artificially is to apply randomised transform-
ations to training set. Examples of transformations are:
changing the image size, flipping, rotating, or adding
Gaussian blur. By increasing the variation of images in
the training set the resulting model will be able to handle
a greater variance in images used as inputs when predict-
ing results.

2.3 Traditional approach using OpenCV
The traditional approach to computer vision, i.e., prior to
the advent of ML methods, is to construct the algorithms
using a sequence of processing steps, typically using a se-
lection of standard computations such as computing gradi-
ents, filtering, global or local thresholding, and morpholo-
gical transformations (Bradski and Kaehler, 2008). These
operators are applied to produce new images, typically of
the same dimensions in height and width but not neces-
sary the same bit-depth. Input images are typically RGB
encoded bitmaps of bit-depth 8, but many other formats
exist. Often, building the software for image capture and
conversion into the required format requires considerable
work (Bradski and Kaehler, 2008). A sequence of captur-
ing and processing steps is often denominated as a pipeline
in the computer vision field.

One of the main advantages of traditional computer
vision algorithms is that the image operators , i.e., math-
ematical processing steps, that is used to build up higher
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level algorithms are well known and understood (Brad-
ski and Kaehler, 2008). Hence, there exist highly optim-
ised implementations of these steps. Arguably, the most
popular library of such optimised computation methods
is the Open-Source Computer Vision Library (OpenCV)
(Bradski and Kaehler, 2008). As an open-source library,
the framework consist of contributions from many of the
worlds leading experts in computer vision. Since OpenCV
is widely used, its methods and syntax is commonly un-
derstood and recognised by software engineers in the field,
which helps to speed up the development of new applica-
tions (Bradski and Kaehler, 2008). OpenCV supports the
programming languages C ++, Python, Java and Matlab,
and all major operating systems, e.g., Windows, Linux,
Mac OS, and Android.

In this work, OpenCV is used to analyse the images
of the coffee bean tank and subsequently provide an es-
timate of the level of coffee beans. Two promising meth-
ods of interest towards this goal is the use of segmentation
by binary thresholding or edge detection using the Canny
Edge Detection algorithm. Note that OpenCV also con-
tains several ML based approaches, but in this work it is
the non-learning methods in OpenCV that are of primary
interest.

2.3.1 Binary threshold

OpenCV supports numerous thresholding functions
(Bradski and Kaehler, 2008), including a simple binary
threshold with or without inversion, i.e., pixels above
threshold can be defined as either high (white) or low
(black) in the output image.

The simplest thresholding method compares every
pixel in the frame against the pre-determined threshold
lcoffee. In the output image, each pixel value is set depend-
ing on being above or below the threshold. If the intensity
of the pixel fx,y is greater than that given threshold value
lcoffee, the output image pixel f̃x,y will be set to black, e.g.,
a greyscale value 0 and white or greyscale 255 otherwise,
according to:

f̃x,y =

{
0, fx,y > lcoffee

255, otherwise (2)

The application of a threshold assumes that the region of
interest can be distinguished from the background by the
intensity of the pixel alone. One difficulty with applying
this method is choosing an appropriate threshold value,
since this value is highly dependant on the scene and light-
ing conditions.

While the application of the threshold computation is
straight forward, building an algorithm around threshold-
ing requires the application of several additional image
operators to pre-process the image. In this work, the
image is first converted to greyscale by averaging the
RGB values of each pixel. Next, a Gaussian blur step
is used to smooth the image and reduce the influence of
noise on the thresholded image, before finally applying
the threshold step. Further, as illustrated in Fig. 3, the

Figure 3. Binary threshold post processing steps.

output of the threshold step is post-processed by the mor-
phological transformations erosion and dilation, which to-
gether forms the operation known as opening, to further
reduce image noise. The output of the morphological
transformation is a binary image where, assuming appro-
priate threshold value, the coffee bean area is marked as
white. The last two steps of the algorithm is to find the
contour of the thresholded region and finally fit a rectangle
around it. Since the width of the tank is known apriori,
the coffee bean level can be estimated from the height vs
width ratio of this identified rectangle. A weakens of this
approach is that it neglects the possibility of uneven distri-
bution of coffee beans. However, this shortcoming could
easily be remedied in future work by either fitting a poly-
gon or multiple rectangle slices across the width direction.

2.3.2 Canny edge detection

Canny Edge Detection (CED) is an algorithm that can be
used to detect edges in an image (Bradski and Kaehler,
2008). CED is a multi-step algorithm which consist of the
following steps:

1. Noise reduction with a Gaussian filter
2. Finding the intensity gradient compares a pixel’s

value against its neighbouring pixels and outputs a new
image where the larger difference in intensity equates to a
higher pixel value

3. Non-maximum Suppression is used to thin the
edges

4. Hysteresis thresholding is used to connect neigh-
bouring pixels into a consistent edge

The CED algorithm was tested for the purpose of
identifying the edges of the tank and the edge between the
two mediums: coffee beans and air. However, the binary
threshold algorithm was found to provide more consist-
ent results, hence in the sequel only the binary threshold
method is discussed further .

3 Experimental setup
An experimental rig, consist of a wooden plate where a
Logitech C922 camera and the coffee tank are mounted,
was constructed in order to get repeatability in the pictures
w.r.t. camera angle. The camera angle was chosen such
that the flat top of the coffee container would not disturb
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Figure 4. Experimental setup

Figure 5. Image shows a A4 25x25mm calibration chessrboard.

the measurement, as shown in Fig. 4. This is because of
the method used for measuring level is effectively meas-
uring the area that is in the cameras field of view (FOV).

To get enough variety in the background of the pictures
the rig was positioned with different walls in the back-
ground, and some black paper was used to show that black
does not automatically mean ‘coffee’ for the ML model.
The ideal scenarios are a plain light-coloured background
with little disturbances, even lighting, and little to no re-
flection.

3.1 Perspective distortion
Due to the position of the optical sensor in relation to the
tank, as shown in Fig. 4, the captured images are some-
what affected by perspective distortion, which will influ-
ence the measured area. As shown in Fig. 5 a rectangle
of a given size will occupy a bigger pixel area the fur-
ther down in the image that it is projected. Observe also
that, due to a slight lens distortion effect, the rectangles
are not completely square. Compensating for these factors
would be recommended for future work and is achievable
by standard OpenCV methods.

4 Results and discussion
4.1 Model training
Once the fasai framework is configured and the training
images loaded, the model training process consist of re-
peatedly calling the fit_one_cycle method, which advances
the model training one iteration, or epoch as is the denom-
ination used in the ML literature. The method returns the
loss and accuracy metric in the form of a table for the cur-

Figure 6. Training with increasing number of epochs. Seg-
ments are labeled as coffee (yellow), empty tank (cyan), and
background (purple).

rent training stage. Since segmentation is used to estimate
the coffee level, the loss function compares pixel gradients
in the training pictures and masks, as discussed in Sec.
2.2.2. To determine the ML model’s performance loss, the
predicted output is compared with the target value, and the
deviation between these determines the loss values, where
a large deviation gives a high loss value.

The amount of training needed varies from the com-
plexity of the task. Some examples of different situations
are shown in Fig. 6. In the first row, an ideal scene config-
uration with even lighting, little reflection and no noise
in the background is shown. Here the machine learn-
ing model finds satisfactory results already after just 20
epochs. A more challenging scene is shown on the second
row, where a dark jacket is introduced in the background.
With only 20 epochs of training, the ML model struggles
to differentiate the dark jacket from the container with cof-
fee. At 40 epochs the prediction is much better, and at 100
epochs of training the prediction is close to perfect. This
result shows that more complex scene configurations are
more challenging to segment and therefore require a more
intensively trained ML model. Further, this results shows
that it is important to have a variety of scene configura-
tions in the training data since the ML model can only be
expected to accurately estimate the image segmentation of
images that are similar to the training set used to build the
model.

4.2 Optimal scene conditions
The ideal scene configuration is a plain light-colored back-
ground with little disturbances providing good contrast
with the coffee beans, even lighting, and little or now re-
flection from the transparent tank. In this situation both
OpenCV and fastai detects the area with coffee beans
with acceptable accuracy. The mean error from ten differ-
ent predictions gives fastai an error at 0,7% and OpenCV
3,0% as the results in Fig. 7 and Table 1show. The esti-
mated level accuracy for both methods is considered well
within acceptable range for the purpose of a coffee robot.

Note that both methods failed to estimate the level to
0% if the tank is empty, due to how the level is computed
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Figure 7. Results of applying both methods under optimal con-
ditions (left: raw image, middle: ML result, right: threshold
result).

from the image analysis results.

4.3 Challenging scene conditions
Figure 8 shows some examples of more challenging scen-
arios. In the first row a black sheet of paper was added
to the background to test if the models could differenti-
ate dark background from the coffee beans. The results
show that fastai still segments the coffee accurately, except
for a small strip with a lot of reflection on top of the cof-
fee beans. In contrast, the binary threshold method failed
completely due to the pre-determined threshold value no
longer being suitable for the captured image. The dark
background caused the camera to automatically turn up
the light sensitivity, which made the coffee too light to be
within the threshold. For future work all automatic func-
tions on the camera, like light sensitivity, should be turned
off to secure better control over the images.

The second row shows a near ideal scenario, but with
the coffee slanted. Here, Fastai also obtains an accur-

Table 1. Comparing analysis results under ideal conditions.

Ref [%] ML [%] Err [%] OCV [%] Err [%]
15.2 14.7 0.5 14.6 0.6
25.2 26.4 1.2 26.7 1.5
33.7 34.3 0.6 37.9 4.2
44.3 44.3 0.0 45.8 1.5
54.3 54.0 0.3 59.0 4.7
62.1 62.1 0.0 65.1 3.0
72.0 71.0 1.0 74.3 2.3
79.4 78.8 0.6 82.0 2.6
97.2 96.3 0.9 102.3 5.1

Mean error 0.7 3.0

Figure 8. Results of both methods under challenging conditions
(left: raw image, middle: ML result, right: threshold result).

ate level estimate while the threshold based method sig-
nificantly overestimate the level. Since the ML method
post processing counts all the marked pixels, while the
threshold based method draws a rectangle around the ex-
treme points in the largest contour and find the height from
a width to height ratio, the latter is unable to account for an
uneven coffee distribution and will therefore always over-
estimate the level in such conditions. A solution for future
work would be to draw a polygon around the coffee in-
stead of a rectangle.

The images in the third row of Fig. 8 contains a com-
pletely different container than used in in the training data.
One of the problems with this scene is that the top sur-
face of the coffee is visible, which violates the assump-
tion discussed in Sec. 4. The coffee beans in the picture
are also a much lighter colour which further complicates
the choice of threshold value. The fastai model, despite
the rather large deviation of this particular scene config-
uration compared with the training images, successfully
segmented out the coffee beans. Only some areas around
the lid were misclassified. The estimation error of 15% is
largely caused by the image violating the assumption of
camera angle w.r.t. the coffee surface in the jar being vis-
ible. While the threshold method apparently produced a
prediction error of only 5%, this result is simply random
and must be rejected as false. Since the ratio between the
height and the width of the container is different from the
assumed tank geometry, the post processing of threshold
based method cannot produce reliable results without ad-
apting the assumptions to the new container.

A common challenge encountered in many of the ex-
periments performed in this work is the sensitivity to re-
flection on the container. The reflections affect the results
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on both fastai and the threshold method, resulting in in-
accurate level calculations. In fastai the reflections will
in some cases be interpreted as the container instead of
the coffee beans behind the reflection. In the threshold
method the reflection brightness makes the algorithm neg-
lect part of the coffee area as it is brighter than the coffee
beans not covered by a reflection.

4.3.1 Adapting to changes in the image scene

As discussed in Sec. 4.3, performing level estimation on
an image which deviates from the reference images can
cause the level prediction to fail or miscalculate the level.
These disturbances and deviations are typically changes in
the container geometry, challenging light conditions, col-
our schemes, reflections, shadows, or new structures in the
background.

The fastai model is only capable of accurate segment-
ation on images that are similar to the training images.
However, it can be retrained for new deviations or disturb-
ances, which is done by adding images containing the new
conditions to the training set. Next the model is trained
through several epochs to prodiuce a new model. The ex-
isting training data should be preserved and is used as a
starting point when a model is trained with new condi-
tions. This process of adding new data to the training set
and subsequently re-training the model is arguably similar
to process of creating a new model using transfer learning
on the general ResNet-34 model.

In the threshold based method, the expected scene is
more closely tied to the chosen method parameters, i.e.,
the tank geometry and threshold values, which must be
set for each specific scenario. Since the threshold value is
more highly dependant on light conditions and colour, it
is necessary to manually set new threshold values by trial
and error. An alternative for future work could be to de-
tect the threshold automaticity by further utilising apriori
knowledge of the scene, such as the expected approxim-
ately rectangular shape of the coffee area, or indeed the
expected location of the coffee beans in the projected im-
age.

The difference in manual labour needed when updat-
ing the methods for new conditions or deviations, shows
the versatility and adaptability of the fastai training meth-
ods compared to the more traditional threshold based
method. When compensating for disturbances fastai will
retain all previous scenarios, while the threshold method
is configured for using specific settings for each scenario.

4.4 Repeatability under experimental varia-
tion

To test the repeatability of the computer vision based level
estimation methods, two experiments were preformed.
First, the tank is rotated such that the images are captured
from 10 different angles in the range 0 to 90 deg. Next, the
beans were repeatedly removed and replaced in the tank
to test different distributions of coffee beans. Both exper-

Table 2. Repeatability under altered viewing angle.

OpenCV [%] Fastai [%]
Average 59.6 56.4
Std.dev. 4.59 2.04
Max.dev 12.1 3.01

Table 3. Repeatability under altered coffee distribution.

OpenCV [%] Fastai [%]
Average 59.6 58.03
Std.dev. 3.39 2.39
Max.dev 8.44 5.67

iments used the exact same amount of coffee beans, and
consist of 10 repeated images captured with no more than
one changing experimental variable for each experiment.

4.4.1 Rotating tank - altered viewing angle

The results of the first experiment, shown in Table 2,
shows that the standard deviation of the thresholding
based method is more than twice that of the ML based
method. This can be explained by how the threshold
method post process the binary output image under the
assumption of a known tank geometry height/width ratio.
When viewing the tank at an angle, the assumed tank ge-
ometry differs significantly from the observed image pro-
jections, hence the estimated level is incorrect. In contrast,
the ML method segments the tank directly, thus capturing
the effective projected width of the tank from any angle,
thereby producing accurate estimates level estimates also
under varying viewing angles.

4.4.2 Refilling tank - altering distribution of coffee
beans in tank

The results of the second repeatability experiment, shown
in Table 3, shows that both methods are somewhat robust
against the distribution of coffee in the tank. As in the pre-
vious experiment, the ML method shows lower estimation
errors, but only marginally so for the second experiment.
The error in the threshold method is mostly driven by the
assumption of a rectangular coffee region, i.e., the use of
a fitted rectangle around the detected thresholded region.
If an alternative geometry is fitted, e.g., a polygon, the
threshold method would likely have similar robustness to
coffee distribution as is found for the ML method. Again,
the ML method, by use of image segmentation to obtain a
detailed shape of the coffee in the tank, produces accurate
estimates also under varying distributions of coffee within
the tank.

4.5 Timing
An important consideration in any method that utilities
ML is the computation time needed to obtain a results.
The largest allowable computation time is often denomi-
nated as a hard real-time requirement. In this work, the
real-time requirement is the minimum amount of time it
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Table 4. Comparing computation time of both methods.

OpenCV [s] Fastai [s] Relative [x]
Average 0.019 6.35 337
Fastest 0.013 2.75 208
Slowest 0.030 11.7 388

would take to brew a cup of coffee, since the coffee level
only needs to be calculated when the level changes.

To verify that the proposed solution meets this require-
ment, an experiment was done where 40 level predictions
was executed with both binary threshold in OpenCV and
the re-trained ResNet model in fastai to compare the time
usage for each prediction. The experiment used a col-
lection of randomly selected images and gave the results
shown in in Table 4. As expected, the threshold method in-
cluding pre- and post-processing steps vastly outperforms
the ML method in terms of computation time, being on
average 337 times faster. This can be explained by the
relative simplicity of the computations needed in the bi-
nary threshold method, compared with the mathematical
complexity of evaluating a 34-layer neural net.

However, from manual observation of the AI barista
robot, just the task of moving the coffee cup from the ma-
chine to the customer is found to take around 12 seconds,
hence a maximum computation time of 11.7 seconds for
the ML method is more then sufficient w.r.t. the real-.time
requirement.

5 Conclusions
The goal of this work was to test the feasibility of using
computer vision, both machine learning and more tradi-
tional rule-based computations, for non-intrusive coffee
bean level estimation in a transparent tank. Further, both
approaches was compared on merits of accuracy and com-
putational speed. Both methods are found to be suitable
for the specific application in the AI barista project.

Based on the results and analysis presented in this
work, it can be concluded that computer vision with ma-
chine learning is superior to traditional image processing
in terms of accuracy, robustness against scene config-
uration, and user-friendliness. The traditional methods
still produce good level estimation accuracy, but requires
significantly more assumption w.r.t. the scene config-
uration. However, the traditional approach is computa-
tionally much faster and therefore less resource demand-
ing. If assuming an ideal scene configuration, e.g., good
lighting and without disturbances, the traditional method
may be preferable in applications where the real-time re-
quirements are more challenging than for a coffee ma-
chine. Over all, the level estimation accuracy and repeat-
ability of both methods are found to be acceptable, with
some suggested improvements to improve robustness of
the threshold based approach, for the implementation in a
coffee machine, but in another application, there may be a
higher demand for correcting distortion and the robustness

against stacking errors.
In future work, lens and perspective distortion due

to camera physics and position should be compensated
for. To increase the threshold methods robustness against
slanted coffee distributions, the post processing step of fit-
ting a rectangle to the obtained threshold region should
be modified to instead fit a more flexible geometric shape,
e.g., a polygon or a set of thinner rectangle slices that to-
gether make up the full tank width.
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Abstract
Accurate simulation of the numerical optimal control in
software environments where call to simulation routines
is explicit, for instance Matlab and SciPy. A discussion on
the simulation aspects of numerical optimal control, how it
may fail, and how such erroneous results can be detected
using accurate simulation. The key contribution is how
to accurately include a piecewise constant control input
in the simulations, which is discussed in detail, including
code examples. The technique is demonstrated on an ex-
ample problem which show how simulation can be used
to analyze optimal control problems with uncertainty, but
also demonstrates how erroneous simulation may lead to
erroneous conclusions.
Keywords: Simulation, Optimal control, direct multiple
shooting, direct collocation

1 Introduction
Numerical optimal control (NOC) is the field devoted
to solving optimal control problems (OCPs) numeri-
cally. There exist several approaches that can be divided
into three main categories: State-space methods, indirect
methods, and direct methods. An overview is found in
(Rao, 2009). Here, the focus is on direct methods, which
are characterized by first discretizing the OCP, in a pro-
cess known as transcription, into a parameter optimization
problem, and then solved numerically. Often the param-
eter optimization problem is a nonlinear program (NLP),
but may very well be a quadratic program, or some other
suitable problem class.

Numerical solution to differential equations, the field
underpinning simulation, has been actively researched for
well over a century (Butcher, 1996). Too vast to enumer-
ate all relevant publications, a good introduction to the
subject can be found in the textbook (Ascher and Petzold,
1998).

Simulation enters NOC is many different ways. It is the
key component in the transcription process but can also
be used for other purposes. For instance, as a mean of
providing an initial guess, as a mean to post-analyze the
results, or the results are already from the beginning in-
tended to be used in a simulation, for instance as input to
a more complex representation of the system, or as a feed-
forward/reference signal. It also plays an important role in
fine-tuning the transcription process, as it aids the user in
selecting a suitable integration method that balance accu-

racy and execution time.
Perhaps the most important enabler of modern NOC

was the release of software package Casadi (Andersson,
2013; Andersson et al., 2019). It provides the building
blocks necessary for the user to implement a custom tran-
scription method. The benefit is that the user can formu-
late and solve a large class of relevant OCPs. The draw-
back is that the user needs to implement the method them-
selves from essential building blocks, which is not trivial
and therefore opens up for potential pitfalls.

The most vulnerable part of simulating the numerical
optimal control is inclusion of a piecewise constant con-
trol input. It is well established that discontinuities make
simulation more difficult (Shampine et al., 1976), and var-
ious solutions can be found (Gear and Osterby, 1984; Ma-
jer et al., 1995; Mao and Petzold, 2002). In the field of
NOC, much attention is given to how simulation and nu-
merical integration enters NOC (von Stryk and Bulirsch,
1992; Diehl et al., 2006; Betts, 2010; Biegler, 2010; Rawl-
ings et al., 2017), but little attention is given to how NOC
enters simulation. An important enabler of NOC in simu-
lation is therefore an explicit investigation of how to han-
dle the incurred difficulties, in particular, an explicit de-
scription of handling piecewise constant control inputs,
which is the subject here.

The main contribution is how to structure simulations
that involve NOC results based on a piecewise constant
control input model, and why they should be structured in
that way. Secondary contributions include demonstrating
how integration in NOC can produce erroneous results and
how accurate simulation can help detect that.

The outline is as follows. Section 2 introduces the sub-
ject by an example, Section 3 develops a user’s model of
the transcription process, Section 4 shows how to accu-
rately simulate the optimal control, Section 5 gives an ad-
vanced use case in which Monte-Carlo simulation and op-
timal control is used to test a method for finding robust
optimal trajectories, and the conclusions are presented in
Section 6.

2 An introductory example
To introduce the subject of simulation in NOC, a simple
example has been devised. The purpose is to show the
importance of adequately selecting the integration method
in the OCP transcription, but also the importance of an
accurate simulation of the results.

Begin by denoting the state variable by x, the control
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Figure 1. Numerical solution to (2) using implicit euler to dis-
cretize the continuous time dynamics. Solid lines (blue) show
the numerical solution as obtained from the optimization prob-
lem solver. Dashed lines (red) show a validation of the results
when the system is driven with the optimal control as input. Y-
axis is limited.

input by u, the output by y, and consider the linear system

ẋ =
[

1
5 − 13

50
1 0

]
x+
[

1
0

]
u (1a)

y =
[
0 1

]
x (1b)

Omitting the control input (u = 0), the system is unstable
and has poles 1/10±1/2i.

Assume it is desired to solve the following optimal con-
trol problem, in which the above system dynamics is de-
noted ẋ = f (x,u):

min
u

∫ t f

0
xTQx+uTRu dt

s.t. ẋ = f (x,u),
x(0) = x0,

x(t f ) = x f

(2)

The aim is to drive the state from the initial value x0, to the
final value x f , while minimizing the quadratic criterion
in the objective function, and doing so within the fixed
time horizon t ∈ [0, t f ]. To solve the above problem us-
ing numerical optimal control a transcription method is
needed. Here, the direct collocation method (Hargraves
and Paris, 1987) using implicit Euler for numerical inte-
gration is used.

For the parametrization

Q =

[
0.1 0
0 0.1

]
, R = 1000, t f = 100,

x0 = [1,1]T, x f = [0,0]T

Figure 1 shows, drawn using solid lines (blue), a numeri-
cal solution to the problem.

The results are counter intuitive. The system dynam-
ics are unstable, and yet the control input is close to zero.
To confirm the results, the system is simulated using the
Matlab routine ode45 (default settings), which is an im-
plementation of Dorman-Prince method (Dormand and
Prince, 1980). The results are drawn using dashed lines
(red) in Figure 1. It shows that the system is diverging,
and not at all driven to the origin, as indicated by the nu-
merical solution to the optimal control problem.

2.1 Analysis
The problem in the above example is that the stability
properties of system (1) is not preserved by the implicit
Euler method. To analyze the situation, and better appre-
ciate the importance of simulation in numerical optimal
control, it is demonstrated with which ease the problem
can be constructed.

Consider the system, ẋ = Ax, where A is a diago-
nalizable, constant coefficient, m×m matrix. Take T
as a nonsingular matrix consisting of eigenvectors of A.
A is then diagonalizable as A = T DT−1, where D =
diag(λ1,λ2, . . . ,λm), is a diagonal matrix with diagonal
entries λi, i = 1,2, . . . ,m, being the eigenvalues of A. By
introducing the change of variable z = T−1x, the decou-
pled dynamics is obtained as ż = Dz. Applying implicit
Euler over the fixed grid

0 = t0 < t1 < · · ·< tN−1 < tN = t f (3a)
h = tn+1− tn, n = 0,1, . . . ,N−1 (3b)

for some number of steps N, the discretized dynamics is
obtained as zn+1 = (I−hD)−1zn. Every component z(i) is
of the form

z(i)n+1 =
1

1−hλi
z(i)n , i = 1,2, . . . ,m

For |1− hλi| > 1, i = 1,2, . . . ,m, a converging sequence
|z(i)0 |> |z

(i)
1 |> · · ·> |z

(i)
n | is obtained, regardless of the sta-

bility properties of the underlying ODE. So, by construc-
tion the matrix from the desired eigenvalues and step size,
an unstable ODE, whose stability property is not preserved
by the implicit Euler method, can be constructed.

In the example, the poles are 1/10± 1/2i and the step
length h = 1, which gives |1−hλi|= 1+37/1250 > 1.

These types of traps and pitfalls are to be found in sim-
ulation, especially when working with simple integration
methods, as is typically done in NOC. It shows the impor-
tance of properly understanding the type of problem one
is simulating, but perhaps even more, the importance of
confirming the results by use of simulation.

2.2 Instability
Unstable systems are difficult to simulate, even when con-
trol is applied. To demonstrate that the above problem is
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Figure 2. Numerical solution to (2). Drawn using dashed lines
(blue) is the results from the OCP solver, using a high order
integration method. Drawn in solid lines is the simulation of the
results using a different high order integration method.

simulatable, the OCP (2) is solved using a fifth order Leg-
endre collocation integration method and simulated using
ode45 in Matlab (it can be noted that this is overkill for
a linear system). The results are found in Figure 2. Con-
trary to the first case, the results are consistent with intu-
ition and control is applied forcefully in the beginning to
prevent the system from diverging.

2.3 Erroneous simulation
Simulating the numerical results of an optimal control
problem is not as trivial as it first appears. Consider Figure
3. Drawn in dashed (blue) is the same solution presented
in Figure 2. Drawn in solid (red) is an erroneous simula-
tion of the optimal control. The integration method used
to obtain the simulation results presented in Figure 2 and
Figure 3 is the same, the Matlab command ode45, using
default settings in both cases. One trajectory is diverging,
the other converging. The difference is in how the simula-
tion is structured, and how to do that accurately is shown
in Section 4.

3 Numerical optimal control
In order to structure the simulations correctly, it is nec-
essary to develop a user’s model of the transcription pro-
cess. This section briefly introduces the subject of optimal
control and outlines a sufficiently detailed model of the
transcription process to structure the simulations.

3.1 Optimal control
A solution to an optimal control problem is seeking the
optimal control, u∗, and the optimal state trajectory, x∗,
that minimize the cost function and does not violate the
constraints. The problem’s characteristic feature is the
differential constraint ẋ = f (t,x,u). The objective func-
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Figure 3. Dashed lines show the actual trajectory, obtained us-
ing a correct simulation setup. Solid lines show a faulty con-
firmation, obtained using the same integration method, with the
same default settings as the dashed line, but with a faulty setup.
Notice that the control signals are almost identical. The pertur-
bation is still large enough to put the system on a completely
different trajectory.

tion consists of two parts. An integral cost
∫

L(t,x,u)dt,
and a terminal cost E(t f ,x(t f )). There is an allowable set
for the initial value x(0) ∈X0, path constraints x(t) ∈X
and u(t) ∈ U , and an allowable set for the terminal state
x(t f ) ∈X f . The problem is formulated as

min
u

E(t f ,x(t f ))+
∫ t f

0
L(t,x,u) dt

s.t. ẋ = f (t,x,u), t ∈ [0, t f ],

x(0) ∈X0,

x(t) ∈X , t ∈ [0, t f ],

u(t) ∈U , t ∈ [0, t f ],

x(t f ) ∈X f

3.2 Direct methods for optimal control
Any numerical method for optimal control needs to ad-
dress the fact that the system of interest is represented by
a differential equation. While there are many available
methods, the focus here is on direct methods, which tran-
scribes the OCP into an NLP, and solves that numerically.

To transcribe the continuous time OCP into an NLP,
there are two major considerations to take into account.
How to handle the control input, and how to handle the in-
tegration of the system dynamics. There is also a third one,
the integration of the integral cost I =

∫
L(t,x,u)dt. How-

ever, by introducing the integration state xl , ẋl = L(t,x,u),
the integral can be integrated with the system dynam-
ics and rephrased as an terminal cost I =

∫
L(t,x,u)dt =

xl(t f ), and therefore the two main concerns are the state
and control trajectory.
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Consider again the fixed grid (3). Over it, the control
input is parameterized as a piecewise constant signal, with
a constant input, un, for each step

u(t) = un, t ∈ [tn, tn+1)

While there are several ways of parameterizing the control
input (Andersson, 2013), this is the most popular (Diehl,
2011) and corresponds to a zero-order hold control sys-
tem implementation. It is also more general than it first
appears. Consider the following augmentation. Denote
the augmented system state by x̃ and augmented control
signal by ũ and let them be defined by

x̃ =
[

x
u

]
, ˙̃x =

[
f (t,x,u)

ũ

]
, ũ =

du
dt

Given that ũ is piecewise constant, it then follows that u is
piecewise linear. Since this augmentation can be applied
arbitrarily many times, it shows that u can be of arbitrar-
ily high order, even if the augmented input is piecewise
constant. It should be noted that in a numerical setting,
the obtained degree is also influenced by the order of the
integration method.

The two most popular direct methods (Diehl et al.,
2006), direct collocation (Hargraves and Paris, 1987), and
direct multiple shooting (Bock and Plitt, 1984), integrate
the system dynamics over each segment of the grid sepa-
rately, forming a discontinuous trajectory, consisting of a
sequence of initial value problems

ẋ = f (t,x,un), t ∈ [tn, tn+1), n = 0, · · · ,N−1 (4a)
x(tn) = xn (4b)

which is parameterized by the initial condition xn, and
state at the terminal boundary by x(tN) = xN .

To obtain a continuous trajectory, continuity constraints
are introduced that bind the trajectory together

F(tn,xn,un) = xn+1, n = 0, . . . ,N−1 (5)

Here, F is the numerical integration of the continuous time
dynamics over the segment

F(tn,xn,un)≈
∫ tn+1

tn
f (t,x,un)dt

A sketch of the process is found in Figure 4.
Omitting the path constraints and only considering box

constraints for the initial and terminal constraints, the tran-
scription process results in the NLP

min
x0,...,xN

u0,...,uN−1

E(t f ,xN)+ xl,N

s.t.
[

x0,min
x f ,min

]
≤
[

x0
xN

]
≤
[

x0,max
xN,max

]
, F(t0,x0,u0)− x1

...
F(tN−1,xN−1,uN−1)− xN

= 0

(6)

𝑥, 𝑢

𝑡
𝑢! 𝑢"#$𝑢$ 𝑢% 𝑢%&$

𝑥!

𝑥$ 𝑥%

𝑥%&$

𝑥"#$

𝑥"𝐹 𝑥%, 𝑢%
= 𝑥%&$

……

Figure 4. Sketch of a direct method for optimal control. The
control input u is piecewise constant, and the state trajectory is
discontinuous and parameterized with an initial value for every
segment. The state trajectory is made constant by introducing
the continuity constraint (5).

As a user’s model, the two most important things to note
is that the control input can be expected to be piecewise
constant, and the state trajectory is integrated separately
over the grid segments.

It should also be emphasized that this is an outline of the
transcription process, and not a formal description, which
can be found in (Biegler, 2010; Betts, 2010).

4 Simulation of the optimal control
The main difficulty in simulating a system with the op-
timal control as input is handling the piecewise constant
control input. Consider the following basic IVP where the
intention is to simulate the optimal control. ẋ = h(t,x) is
used to describe the simulated system, which is a combi-
nation of the controlled system and a look-up of the opti-
mal control.

ẋ = h(t,x), t ∈ [0, t f ] (7a)
x(0) = x0 (7b)

The controlled system, ẋ = f (t,x,u), is contained in ẋ =
h(t,x). Since the simulated solution is expressed in the
two variables t and x, then so is the simulated control, us.
By introducing the definition us = g(t,x), the simulated
system can be described by ẋ = h(t,x) = f (t,x,g(t,x)).
The transcription process gives that the optimal control is
parameterized in terms of t, so the simulated control is a
function in the independent variable only, us = g(t). This
means that formulation (7) include a look-up of u∗ based
on the independent variable t. If simulated correctly, us =
u∗, but it is not necessarily so.

The following Matlab code is an example simulation of
IVP (7). It uses interpolation based on the current value
of the independent variable to look-up the control input.
t and x are the variables the hold the simulation results,
h is the function that is called by the integration routine
ode45, [t0, tf] is the problem horizon, x0 is the ini-
tial value, interp1 does piecewise constant interpola-
tion of the optimal control, (t_sol, u_sol), based on
the function parameter t which represent the independent
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variable, f is the function that holds the implementation
of the controlled system f (t,x,u), and der is the return
value that represent ẋ(t).

[t, x] = ode45(@h, [t0, tf], x0);
function der = h(t, x)

u = interp1(...
t_sol, u_sol, t, ’previous’);

der = f(t, x, u);
end

This is an example of a naive implementation, and was
used to derive the erroneous confirmation in Figure 3
(solid lines). Since the control is interpolated based on the
independent variable, the actual control input is dependent
on the step length. Unless steps are taken at the exact grid
points (3), the simulated control us does not equal the op-
timal control u∗. The problem is remedied by using a vari-
able step-length solver and lowering the tolerance, but it
does not solve it. Variable step-length solvers are built on
the assumption of a smooth solution, differentiable up to
the order conditions, which is why discontinuities are han-
dled poorly (Ascher and Petzold, 1998). Also, the control
input is not a dependent variable, so local error control
does not have direct mean of estimating the error in that
signal. A secondary effect of lowering the tolerance is
that the number of function evaluations increases, which
increase computational time, so both accuracy and time is
lost when structuring the simulation according to (7).

From a user’s perspective, an aggravating circumstance
of simulating (7) is that it is easy to miss that the opti-
mal control has not been properly reconstructed, since the
simulated control, us, needs to be reconstructed from the
simulation (it is not a state). One might think of using a
global variable to store the control, but this approach does
not work for variable step-length solvers as not all steps
are accepted.

4.1 Event functions
(Ascher and Petzold, 1998; Gustafsson) suggest the use
of event functions to tell the integration method that a dis-
continuous event has occurred. While being a good advice
in general, caution needs to be taken. For instance, Matlab
(Shampine and Reichelt, 1997) and SciPy (Virtanen et al.,
2020) does not use event functions as a mean to direct step
length. In other environments such as OpenModelica ans
Assimulo (Lundvall et al., 2005; Andersson et al., 2015)
events can be used to inform the solver of discontinuities.

4.2 Handling of the control input
To handle the problem of a discontinuous control input in
the simulation, the simulation is restarted for every change
in the control input, similar to what is done in the tran-
scription process (4)

ẋ = f (t,x,un), t ∈ [tn, tn+1], n = 0, · · · ,N−1 (8a)
x(tn) = xn (8b)

This avoids the problem of having to localize the change
in control input and ensures us = u∗, regardless of solver

tolerance.
The following is an example Matlab simulation of (8).

The code is structured based on the number of segments
to simulate, N. The first loop iterate is peeled off in or-
der to initialize the variables t and x which hold the so-
lution. The local solution on each segment (tt, xx) is
appended to the existing solution, without overlap. No-
tice how the control, u_sol, is fixed over each segment
[t_sol(i), t_sol(i+1)]. The standard Matlab
solver ode45 is used, but it could be any suitable method.

f1 = @(t, x) f(t, x, u_sol(1));
[t, x] = ode45(f1, [t0, tf], x0);
for i=2:N

fi = @(t, x) f(t, x, u_sol(i));
[tt, xx] = ode45(fi, [t_sol(i),...

t_sol(i+1)], x(end,:));
t = [t; tt(2:end)];
x = [x; xx(2:end,:)];

end

This technique is used in obtaining the results presented
in Figure 2 using solid lines (red). The relatively small
difference between the code presented at the beginning of
this section, and the code presented here, makes all the dif-
ference for accurate simulation of optimal control trajec-
tories. The technique is also inline with general methods
for handling discontinuities (Ascher and Petzold, 1998;
Gustafsson).

5 Example application
In order to demonstrate the close connection between sim-
ulation and optimal control, an example application is
demonstrated. The example is a variation on the classical
OCP, Goddard’s Rocket Problem, adapted from (Maurer,
1976; Rutquist and Edvall, 2010). The problem consists of
launching a rocket as high up in the air as possible, given
a finite amount of fuel.

The aim here is not to conduct rocket science so certain
aspects are simplified. Instead, the aim is to demonstrate
a case where simulation and numerical optimal control in-
teract.

5.1 Rocket Model
The model has three states x: height h, speed v, and fuel
mass m f . The control input, u, is the fuel mass flow rate.

x = [h, v, m f ]
T, u =−

dm f

dt

The motion is governed by the ordinary differential equa-
tion

ẋ = f (x,u) =

 v
Fp(u)−FD(v,h)−m(m f )g(h)

m(m f )

−u


where Fp is the propulsion force, FD the drag force, and g
the gravitational acceleration. The rocket mass, m = m f +
m0, consist of the fuel mass m f , and ballast m0 = 68 kg.
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Figure 5. Numerical solution to the nominal formulation of the
Goddard Rocket Problem (9), drawn in solid lines (blue). Fuel
mass m f and control (fuel mass flow) u, are presented in per-
centage of their maximum values. Confirmation by simulation
drawn in dashed lines (red).

Propulsive force Fp is proportional to control effort

Fp = cu

and c = 2069 is the proportionality constant. Drag force
is nonlinear and dependent on both height and speed

FD = D0e−γhv2

where D0 = 1.227 · 10−2 and γ = 1.450 · 10−4 are model
parameters. The gravitational acceleration accounts for
how far above the Earth’s surface the rocket is

g = g0

( r0

r0 +h

)2

and g0 = 9.81 m/s2, and r0 = 6.371 ·106 m is Earth radius.

5.2 Nominal problem formulation
A nominal formulation of the problem is formulated as

max
t f ,u

h(t f )

s.t. ẋ = f (x,u), t f ≥ 0,

x(0) = [0,0,150]T,
h≥ 0, v≥ 0, m f ≥ 0,
0≤ u≤ 9.5

(9)

in which the final time, t f , is a problem parameter. A so-
lution to the formulation is found in Figure 5.

5.3 Problem variation
Assume γ is a parameter that is best described as a random
variable on a launch-to-launch basis, but constant over a
single launch

γ = γnomN (µ,σ2) (10)

with γnom = 1.450 · 10−4. Assume that the same refer-
ence trajectory is going to be used for every launch and
that it therefore is desirable to find a balance between fi-
nal height, h(t f ), and deviation from the nominal trajec-
tory when γ changes. To measure deviation the root mean
square error (RMSE) is used

RMSE =

√
1
t f

∫ t f

0
(h∗−hs)2dt (11)

in which the optimal height trajectory is denoted by h∗ and
the simulated one by hs for which γ changes.

To balance between height and deviation it is studied
how the state trajectory change for a sufficiently small
change, φ , in a parameter, p and is written as

x(t, p+φ) = x(t, p)+φ
dx(t, p)

d p
+O(φ 2)

Introducing the notation P = dx(t;p)
d p , the perturbation ma-

trix function P is governed by the sensitivity equation

Ṗ =
(

∂ f
∂x

)
P+

∂ f
∂ p

(12)

with the initial condition P(0) = 0. See (Ascher and Pet-
zold, 1998) for a derivation. For p = γ a cost for the sen-
sitivity dh/dγ is included in the objective function as a
mean to balance the two objectives:

max
t f ,x,u

h(t f )−β

∫ t f

0

(
W

dh
dγ

)2
dt

β is the trade-off parameter, and W = 10−8 is a normal-
ization factor that is used to avoid unreasonably small val-
ues of β . The formulation penalizes both height and final
time t f . To remedy this, an extra constraint is introduced,
v(t f ) = 0, which ensures the trajectory reaches the apex.

The full formulation of the problem variation is:

max
t f ,x,u

h(t f )−β

∫ t f

0

(
W

dh
dγ

)2
dt

s.t. ẋ = f (x,u), t f ≥ 0,

x(0) = [0,0,150]T,
h≥ 0, v≥ 0, m f ≥ 0,
0≤ u≤ 9.5,
v(t f ) = 0

(13)

Note that f (x,u) is used ambiguously and in this formula-
tion includes the sensitivity equation (12), with p = γ .

For γ = γnom, Figure 6 presents the solution to the prob-
lem for a three different values of β , and Figure 7 shows
the corresponding sensitivity state trajectory dh/dγ .
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Figure 6. Solution to (13) for three different values of β .
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Figure 7. Optimal sensitivity trajectory dh
dγ

for different values
of β .

5.4 Simulation
To quantify the trade-off between the two performance
variables, final height h(t f ) and RMSE, the problem (13)
is solved for sequence of values of β , for K = 12

β1 < β2 < · · ·< βK (14)

For every solution corresponding to βk, the optimal con-
trol, u∗k , is simulated, using simulation setup (8), with the
parameter γ drawn from the distribution (10). 10’000 sim-
ulations are run for every βk. By completing the procedure
for the full sequence of β (14), the results can be plotted,
and a Pareto front is formed, see Figure 8. It clearly shows
the trade-off between the performance variables.

For γ = γnomN (1,0.15) Figure 8 shows the trade-off
drawn in solid lines (blue), and for γ = γnomN (0.85,0.15)
in dashed lines (red). The height is normalized with max-
imum height for nominal parameter values, solution to
problem (9), and deviation is normalized with the maxi-
mum one for the corresponding distribution of β . For the
unbiased distribution it can be seen the final height is max-
imized for the second-most point from the right (β = 1),
although only slightly higher than the nominal trajectory,
but deviation is reduced by about 6 %, a free lunch. For
the biased estimate, it can be seen that β = 2 maximizes
height, but the most interesting point for both cases is per-
haps β = 5 which gives a significant reduction in deviation
while maintaining much of the height. An important as-
pect of the example is the use of simulation as a mean to
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Figure 8. Pareto-optimal solution to (13), for β =
{0, 1, 2, 3, 5, 10, 20, 30, 50, 70, 100, 200}. Values to the
right correspond to lower values of β . Solid line (blue) corre-
spond to the distribution γ = γnomN (1,0.15), dashed lines (red),
to the distribution γ = γnomN (0.85,0.15).
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Figure 9. Erroneous Pareto-optimal solution to (13), for β =
{0, 1, 2, 3, 5, 10, 20, 30, 50, 70, 100, 200}

gain insights into the optimal control, which shows that
simulation too is an integral part of optimal control, not
just optimization.

As the example is primarily devoted to the simulation
aspect, the obtained results are compared to the same anal-
ysis but using the look-up based simulation method (7).
The simulations are otherwise conducted in the same way,
solver and solver settings remains the same. The problem
is only solved for the distribution γ = γnomN (1,0.15) and
Figure 9 shows the results. The results are erroneous, and
any analysis of the results are therefore useless. In this
case, it is obvious that something is wrong, but in a real
case it does not have to be as easy to decide, and for those
cases it is important to have confidence in the method.
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6 Conclusions
It is demonstrated how simulation in NOC can fail and
how it can be detected using accurate simulation. A user’s
model of the transcription process is developed, and based
on it, a technique for structuring accurate simulations. The
technique is based on the fact that the parameterized con-
trol input is discontinuous and to accurately handle that,
the simulation is restarted at the discontinuity. MATLAB
code, which is simple enough to act as pseudo code for
other languages, is provided and is a practical guide for
the user on how to apply the technique.The effectiveness
and the importance of accurate simulation is demonstrated
using an example. It shows how simulation can be used as
a tool for getting the most out of optimal control, but also
how an inappropriate simulation setup can lead to erro-
neous results.
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Abstract 
Future climate is expected to be warmer, more humid, 

and cloudier with more frequent extreme weather 

conditions. Current building design should consider 

these changes as they can significantly influence the 

function of buildings in the future. Here, we study 

common building envelope assembly subjected to 

different climatic scenarios. An experiment was set 

up to validate a numerical model, which is further 

applied to assess hygrothermal performance (heat and 

moisture transfer) of the building envelope subjected 

to different boundary conditions. The assessment is 

provided via Finnish mould growth model that 

identifies risk of biological growth through dynamic 

hygrothermal conditions. Finnish meteorological 

institute provides data that predicts the climate in 

2030, 2050 and 2100. The humidity inside the 

building envelope is assumed to increase slightly in 

time, however, increased temperature in the future 

may cause more favorable conditions for mould 

growth, especially, if mould sensitive building 

materials are used. The hygrothermal assessment of 

building structures with consideration of climate 

change in structural design is a key factor to provide 

sustainable building designs. Numerical model was 

successfully validated with experiments providing 

data within tolerances of measurement equipment.  

Keywords: Numerical simulation, heat and moisture 

transfer, validation, experiment, climate change 

1 Introduction 

Building designs are going through a paradigm 

change in development of new high energy efficient 

structural systems and materials. High thermal 

resistance is usually achieved by applying thick layers 

of insulation, which may cause airtight conditions 

that slow down moisture diffusion and increase risk 

for microbial growth (e.g. Fedorik et al., 2015). 

Hygrothermal performance of building assemblies is 

currently more important than ever; around 45% of 

the Finnish national wealth resides in residential or 

public buildings (ROTI, 2021), which shows the 

importance of preventing future uncertainties with 

different methods (Hagentoft et al., 2020) to provide 

long healthy life cycle and functionality of building 

elements.  

In the future, due to climate change, heating and 

cooling demand of the buildings will be decreased in 

Nordic countries by about 20% by 2061 but the 

moisture problems will be increased by the more 

humid outdoor climate conditions (Nik, 2012). 

Humidity has a significant impact on hygrothermal 

properties of building material, and hence on the 

hygrothermal performance of entire building 

envelope. Higher relative humidity increases thermal 

conductivity, which in turn causes reduction in 

building energy efficiency. Relative humidity above 

80% (≥85% for non-sensitive material) at 

temperatures between 0 and 50℃ may sustain 

microbial growth (Viitanen & Ojanen, 2007). These 

hygrothermal conditions may consequentially cause 

damage and/or deterioration of building material and 

reduce life span of buildings which in fact increases 

environmental impact over lifecycle (Marsh, 2017). 

Therefore, one of the key elements for sustainable 

building design in long-term is to provide suitable 

hygrothermal functionality of building assemblies, 

keeping in mind that today’s buildings must also 

withstand the conditions of tomorrow, and the next 50 

to 100 years, thus the ongoing climate change.  

The climate is expected to be warmer, wetter, and 

cloudier with increasing extreme weather conditions 

(Jylhä et al., 2009). Hence, climate change is 

transforming the future outdoor circumstances 

towards more unfavorable for the hygrothermal 

performance of conventional structures. Prolonged 

and higher relative humidity and temperature 

conditions can significantly affect the mould 

susceptibility of the structures, as these conditions are 

in a longer period at the favorable range for mould 

growth (Fedorik et al., 2017; Fedorik et al., 2018). In 

dry and cold conditions, moulds and other microbes 

do not usually grow. A previous study has shown that 

mould growth is mostly affected by the outdoor and 
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indoor climate conditions than the position of the 

insulation layers (Kang et al., 2016). This means that 

hygrothermal performance of structures is important 

to take into consideration in design of structures to 

manage future climate. 

2 Aims 

The aim of the study is to validate a numerical 

approach with experimental data in a case study of 

common structural wall-element assemblies. 

Experimental data is collected with temperature θ and 

relative humidity φ sensors at two points across 

element cross-section (Figure 1). The structural 

assembly is subjected to constant boundary 

conditions θ=10℃ and φ=90% outdoor and θ=21℃ 

and φ=30% of indoor air, respectively.  

Validated numerical model is then subjected to 

future weather conditions following the work by 

Jokioinen (2004) to assess suitability of a presented 

structure to the current design approach. Predicted 

climate change data for 2030, 2050 and 2100 are 

applied to monitor and study the development of 

hygrothermal conditions inside the building envelope 

assembly at these forecasted future conditions (Vinha 

et al. 2013). 

3 Methods and Materials 

3.1 Structure and Experimental Work 

The structure subjected to the study represents a 

common Finnish timber-frame building envelope 

consisting of gypsum board, wood fiber insulation 

board, vapor barrier, wood fiber insulation and 

windshield board (Figure 1). The experiment was 

performed for period of 18 days from which the 

temperature and relative humidity were measured 

every 10 minutes from within the wall element. 

Conditions were monitored at 2 points in the direction 

of heat and mass transfer: at the interface of 

windshield and thick wool insulation and another at 

interface of air barrier and inner wool insulation 

(Figure 1). The experiment setup built inside 

Memmert climate cabin (CTC256 model) was used to 

develop the outside conditions that were then used to 

validate the simulated one-dimensional heat and 

moisture transfer model. 

 

Figure 1. Illustration of building envelope assembly, 

validation points and laboratory measurement setup. 

 

Figure 2. Different types of data collection sensors. 

Climate cabin’s interior and exterior temperature, 

relative humidity and barometric pressure were 

monitored by using Bosch BME280 sensors (top left, 

Figure 2). This sensor design provides accuracy for 

temperature ± 1.0°C, relative humidity ± 3% and 

pressure ± 1hPa. Commercial cased version of the 

BME280 by Ruuvi Ltd (Figure 2) was used for 

CTC256 interior measurements because the outside 

conditions simulated by the cabin were challenging to 

uncased version. Data collection from the inside of 

the wall structures was carried out by utilizing the 

SHT31-D sensors that monitor temperature and 

relative humidity within tolerances of ± 0.3°C, ± 2%, 

respectively (top right, Figure 2). 

3.2 Future Climate 

Finnish Meteorological Institute’s building physical 

test year by Jokioinen (2004) and the future scenarios 
(for 2030, 2050, 2100) were applied to the structure 

to investigate its hygrothermal performance and 
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possible mould growth at the cross-sectional 

validation points (Figure 1). The future test years are 

based on a rather pessimistic SRES A2 -climate 

change scenario for southern Finland. In this scenario, 

the assumption is that greenhouse gas emissions 

would continue to rise throughout this century.  

3.3 Numerical Approach 

Numerical simulations were performed using Comsol 

Multiphysics simulation software. The model 

represents dynamic one-dimensional simultaneous 

heat and mass transfer that is suitable for analysis in 

hygroscopic range (φ<95%) (Dong et al., 2020). The 

validation of numerical model was performed for a 

period of 18 two with a 10-minute time-steps between 

measurements. Surface convective coefficients were 

considered the same on both sides of the building 

assembly, as the outdoor and indoor conditions 

during the experiment correspond to indoor 

convective conditions. Hence, surface heat transfer 

coefficient was h=1/0.13 [W/(m2·K)] and moisture 

transfer coefficient is βp = 2.45·10-8 [s/m]. The initial 

conditions correspond to the initial conditions of the 

experiment set up.  

Simulations applying the current and three future 

test years were performed for 2-years with 1 hour 

time step. The initial temperature and relative 

humidity were considered 21℃ and 30%, 

respectively. The outdoor and indoor surface heat 

resistances correspond to standard recommendation, 

where exterior thermal resistance is Rse=0.04 

[(m2·K)/W] and indoor Rsi=0.13 [(m2·K)/W]. The 

moisture surface coefficients were set to βi=2.45·10-8 

[s/m] and βe=1.3·10-7 [s/m].  

Indoor boundary conditions were derived 

according to Finnish national guideline (RIL 107-

2012, 2012) that determines indoor moisture excess 

more suitable for Finnish weather conditions than 

ISO 13788:2012 (Vinha et al., 2018). The first-year 

calculation was performed to eliminate the effect of 

initial conditions on results. Therefore, the 

hygrothermal conditions were assessed for the second 

year of the numerical simulation only. 

3.4 Materials Tested 

Each layer of a building envelope assembly plays a 

significant role in the overall hygrothermal 

performance of a building. The material properties 

needed for hygrothermal simulation are thermal 

conductivity λ [W/(m·K)], heat capacity Cp 

[J/(kg·K)], density ρ [kg/m3], moisture isotherm w 

[kg/m3], liquid transport coefficient Dw [m2/s] and 

water vapor resistance factor μ [-]. The individual 

material properties were obtained from 

manufacturers, some measured and remaining were 

taken from literature (Table 1). Density ρ, heat 

capacity Cp and water vapor resistance factor μ are 

considered constant for each material. Thermal 

conductivity, moisture isotherm and liquid transport 

coefficient vary depending on conditions; where 

thermal conductivity λ and liquid transport coefficient 

Dw depend on water content w and moisture isotherm 

is described by water content w in relation to relative 

humidity φ. 

Table 1. Material properties applied in numerical 

hygrothermal simulation. 

 

3.5 Finnish Mould Growth Model 

Finnish Mould Growth Model was applied to assess 

the suitability of building design against biological 

growth (Viitanen & Ojanen, 2007). It represents a 

suitable tool for the assessment of different design 

strategies whether mould growth appears on or inside 

building components based on dynamic hygrothermal 

conditions (Lie et al., 2019; Fedorik et al., 2015). The 

Finnish mould growth model achieves good 

agreement between the predicted and observed mould 

growth (Jensen, 2019) and represents the basis for 

international building standard ASHRAE 160 p 

(ASHRAE, 2016). 

With the Finnish mould growth model, mould 

growth can be predicted on different building 

materials in changing hygrothermal conditions. The 

mould growth risk in the model is presented with a 

mould index M, which varies between 0-6 and 

describes amount of the mould appearance on a 

material surface. Temperature and relative humidity 

both affect the mould growth rate, and value of mould 

index M. The model also considers mould decline 

when hygrothermal conditions are not in favorable 

area for mould growth. Favorable area for mould 

growth is defined at a temperature range between 0-

50 °C and relative humidity over 80% for sensitive 

and very sensitive materials and 85% for medium 

resistant and resistant materials (Ojanen et al., 2010). 
Hence, the Finnish mould growth model classifies 

materials for four sensitivity and four decline groups 

according to their associated factors (surface type, 

Material λ (w) ρ Cp w (φ) Dw (w) μ 

Gypsum 

board  

0.19-

0.6 
820 1100 

0-

23.8 
0-4.85·10-7 10 

Wood 

fiber 

insulation 

board 

0.048

5-0.6 
37 2100 

0-

15.2 
0- 4.85·10-9 1.6 

Vapor 

barrier 
0.33 980 1500 0 0 3500 

Wood 

fiber 

insulation 

0.04 60 2100 
0-

15.2 
0-1.07·10-7 1.5 

Wind-

shield 
0.049 235 1500 

0-

71.3 
0-4.85·10-9 13 
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coating and contact with other materials) (Viitanen & 

Ojanen, 2007; Vinha et al., 2013). 

4 Results 

4.1 Validation of Numerical Simulation 

The experiment provides hygrothermal data to 

validate the numerical model (Figures 3 and 4), which 

can be further applied for future prediction and risk 

management tools. The numerical results agreed well 

with the measurement and the calculated 

hygrothermal conditions are within accuracy (±0.3°C 

for temperature and ±2.0% for relative humidity) of 

the measurement system (Figure 3 and 4). The small-

scale variation occurring in the experimental setup is 

not present in the calculated moisture content or 

temperature.  

 

Figure 3. Experimental (expressed with accuracy 

limits) and simulated temperature and relative humidity 

at structural analysis point 1. 

 

Figure 4. Experimental (expressed with accuracy 

limits) and simulated temperature and relative humidity 

at structural analysis point 2. 

4.2 Hygrothermal Performance Under 

Current Building Design Approach 

In the simulated climate the temperature is the highest 

and relative humidity is the lowest in summer. Vice 

versa in the wintertime temperature has the lowest 

values and relative humidity has the highest values. 

However, despite high relative humidity values in 

wintertime, there was no risk for mould growth 

because temperature was not continuously in 

favorable area (0-50℃) for mould growth (Viitanen 

& Ojanen, 2007). The fluctuation of the temperature 

and relative humidity at point 1 is greater than at point 

2 due to its location closer to the outdoor conditions 

that change in time. The relative humidity in the 

wintertime varies from 80% to 90% (Figure 5) at 

point 1, and is fairly constant at around 40% at the 

point 2 (Figure 6). The temperature and relative 

humidity at the point 2 in summertime vary between 

15℃ and 22℃ and 30% and 45%, respectively, and 

these hygrothermal conditions can be considered 

unsuitable for biological growth (Figure 6). 

 

Figure 5. Temperature θ and relative humidity φ at 

point 1 applying test year data Jokioinen 2004.  

 

Figure 6. Temperature θ and relative humidity φ at 

point 2 applying test year data Jokioinen 2004. 

Only 2004 results are shown because graphs of 

temperature and relative humidity were similar in all 

climate scenarios without any significant differences.  

4.3 Hygrothermal Performance Under 

Different Future Climatic Scenarios 

The progress of temperature and relative humidity 

during one year inside the building envelope (points 

1 and 2) subjected to the future scenarios (Jokioinen 

2030, 2050 and 2100) are very similar to Jokioinen 

2004 test year. The mean annual temperature 

increases by 1.14℃ in 2030, 2.02℃ in 2050 and 

4.85℃ in 2100 in comparison to test year Jokioinen 

2004. The relative humidity assumes slight decrease 

in 2030 by 0.04% but increase in 2050 and in 2100 by 

0.25% and 1.12% respectively (Figure 7). 

Consequently, the annual temperature increases 

between windshield and wool insulation (point 1) by 

1.05℃ in 2030, 1.88℃ in 2050 and 4.54℃ in 2100 

scenarios. However, the impact of increasing 

temperature outdoors in the future is smaller on the 
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interior surface of the water vapour barrier (point 2) 

where the thermal conditions are estimated to be 

increased by 0.27℃ in 2030, 0.49℃ in 2050 and 

1.19℃ in 2100 (Figure 7). 

 

Figure 7. Annual temperature and relative humidity 

increment for future climate in relation to test year 

Jokioinen 2004.  

The temperature at point 1 with Jokioinen 2100 test 

year is slightly higher than 2004 test year in the 

simulated year. The temperature difference between 

2004 and 2100 year is almost 3.4℃ in mid-April and 

4.5℃ in mid-October (Figure 8). Between the years 

in mid-April the temperature increases from 21.9℃ 

to 25.2℃ and relative humidity decreases from 

46.4% to 46.3% (Figure 8) which means that absolute 

humidity increases by 1.86 [g/m3]. Then, dew point 

increases from 9.7℃ to 12.8℃. This reflects the 

assumption that the outdoor climate will be warmer 

and more humid in the future. 

 

Figure 8. Temperature and relative humidity at 

structural analysis point 1 for test year Jokioinen 2004 

and Jokioinen 2100. 

To visually compare all studied (Jokioinen 2004, 

2030, 2050 and 2100) scenarios, moving averages of 

two hundred hours were applied (Figures 9 and 10). 

Progressive increment in temperature is apparent, 

especially at structural analysis point 1 (Figure 9), 

from which the effect of climate change decreases in 

the wall element from outer wall towards indoors 

(Figure 10). Therefore, the impact of different 

climatic scenarios on hygrothermal conditions inside 

building envelope decreases with the depth of the 

structure. 

The differences in humidity at structural analysis 

point 1 and 2 referenced to Jokioinen 2004 test year 

vary between -11% and 2%, with average -0.8% at 

point 1 and -5% and 1% with average -0.9% at point 
2 in 2100, -7% and 1% with average -0.7% at point 1 

and -3% and 1% with average -0.5% at point 2 in 

2050 and -4% and 1% with average -0.5% at point 1 

and -2% and 1% with average -0.3% at point 2 in 

2030 (Figure 9 and 10). However, there were no 

significant differences between relative humidity in 

longer term cycles. 

 

Figure 9. Temperature and relative humidity presented 

as moving average of two hundred hours at the 

structural analysis point 1. 

 

Figure 10. Temperature and relative humidity 

presented as moving average of two hundred hours at 

the structural analysis point 2. 

4.4 Mould Growth Risk 

The temperature and relative humidity data obtained 

on indoor surfaces of windshield (point 1) and water 

vapour barrier (point 2) do not show risk for mould 

growth. At structural analysis point 2, the 

hygrothermal conditions were unfavorable for mould 

growth during the entire analyzed period in all 

climatic scenarios. The reason is relative humidity 

that varies between 30% and 45%, hence does not 

exceed critical value of 80%. Hence, the mold index 

for this area would be 0. 

Favorable hygrothermal conditions were obtained 

only at structural analysis point 1 located between 

windshield and wood fiber insulation. The wood fiber 

is mould sensitive material classified in the Finnish 

mould growth model by class 2. The mould index 

illustrates the highest risk of mould growth initiation 

in the case of Jokioinen 2100 test year where the 
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relative humidity was over 80% for 26.5 weeks 

during a year. The relative humidity exceeding 80% 

was achieved especially in wintertime, in which the 

temperature drops under 0℃, representing 

unfavorable conditions for biological growth.  

 

Figure 11. Temperature and relative humidity 

calculated at each time-step during year using 

Jokioinen 2100 outdoor conditions (red dots indicate 

favorable and blue dots unfavorable conditions for 

mould growth). 

However, in all analyzed cases the maximum 

mould index achieved is below 1 (Table 2) leading to 

an assumption that the studied assembly following 

current manufacturer specified wall structure could 

be considered suitable also for future climate. 

Table 2. Maximum mould index achieved at point 1 in 

different climatic scenarios: Jokioinen 2004, 2030, 

2050 and 2100. 

Simulated year Point 1 

Jokioinen 2004 0.002 

Jokioinen 2030 0.009 

Jokioinen 2050 0.022 

Jokioinen 2100 0.117 

5 Conclusions and Future 

Development 

Numerical hygrothermal simulation agrees with 

measured data in the case of wood fibred insulated 

wall assembly. Calculated temperature and relative 

humidity data at analyzed points were within 

tolerances of measurement equipment.  

There is a significant difference between 

temperatures in 2004 and 2100. Relative humidity is 

at similar level, which means that the absolute 

humidity levels and dew points inside the wall 

structures increase significantly. However, according 

to the Finnish mould growth model, risk for mould 

growth remains very low at analyzed points. 

Validation and future test years models converged 

with good accuracy and without numerical errors 

which supports the accuracy of the results. 

Study shows that the impact of different climatic 

scenarios on hygrothermal conditions inside building 

envelope decrease with depth of the insulated 
structure. Validated numerical model can be applied 

for future performance assessment and risk 

management for healthy long life cycle buildings.  

The future work consists of improving dynamic

experimental validation and building elements

exposed to real conditions.

Acknowledgement

We are grateful for the support of this work through

project from the Academy of Finland (Climate

Change and Health (CLIHE) project 329885).

References

ASHRAE Standard 160-2016. Criteria for Moisture-

Control Design Analysis in Buildings; ASHRAE:

Atlanta, GA, USA, 2016.

Wenqiang Dong, Youming Chen, Yang Bao, and Aimin 

Fang. A validation of dynamic hygrothermal 

model with coupled heat and moisture transfer in 

porous building materials and envelopes, 

Journal of Building Engineering, 32, 2020. https://

doi.org/10.1016/j.jobe.2020.101484.

Filip Fedorik, Mikko Malaska, Raimo Hannila, Antti

Haapala. Improving the thermal performance of

concrete–sandwich envelopes in relation to the moisture

behaviour of building structures in boreal conditions.

Energy and Buildings, 107, 226–233, 2015,

https://doi.org/10.1016/j.enbuild.2015.08.020.

Filip Fedorik and Antti Haapala. Hygro–thermal and

Mould Growth Risk Analysis of Common Foundation

Structures. Energy Procedia 132C, 111–116, 2017,

https://doi.org/10.1016/j.egypro.2017.09.655.

Filip Fedorik and Antti Haapala. Numerical estimation of

mould growth on common single-family house building

envelopes in boreal conditions. European Journal of

Environmental and Civil Engineering, 22(10), 1196–

1211, 2018. doi: 10.1080/19648189.2016.1245632.

Carl-Eric Hagentoft and Pär Johansson. The Future

Climate Moisture Susceptibility of Wall Assemblies:

Analysis Based on Monte Carlo Simulation Using a

Simplified Deterministic Hygrothermal Simulation

Model, Current Topics and Trends on Durability of

Building Materials and Components, Serrat, C., Casas,

J.R. and Gibert, V. (Eds). 2020. doi:

10.23967/dbmc.2020.197.

  Nickolaj F. Jensen, Søren P. Bjarløv, Christopher J.

Johnston, Casper F. H. Pold, Morten H. Hansen, and

Ruut H. Peuhkuri. Hygrothermal Assessment of North-

Facing, Cold Attic Spaces under the Eaves with Varying

Structural Roof Scenarios. Journal of Building Physics,

44, No 1, pp. 3–36, 2020.

https://doi.org/10.1177/1744259119891753.

Kirsti Jylhä, Kimmo Rusoteenoja, Jouni Räisänen, Ari

Venäläinen, Heikki Tuomenvirta, Leena Ruokolainen,

Seppo Saku, and Teija Seitola. Arvioita Suomen

muuttuvasta ilmastosta sopeutumistutkimuksia varten.

ACCLIM-hankkeen raportti 2009. Ilmatieteen laitos.

Raportteja 2009:4. 102 s

Yujin Kang, Seong J. Chang, and Sumin Kim. Analysis of

hygrothermal performance of wood frame walls

according to position of insulation and climate

conditions. Journal of the Korean Wood Science and

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185156 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

161

https://doi.org/10.1080/19648189.2016.1245632
https://yonsei.pure.elsevier.com/en/persons/sumin-kim


   
 

Technology, 44(2), 264-273, 2016.

doi:10.5658/WOOD.2016.44.2.264.

Solrun K. Lie, Thomas K. Thiis, Geir I. Vestøl, Olav

Høibø, and Lone R. Gobakken. Can existing mould

growth models be used to predict mould growth on

wooden claddings exposed to transient wetting?,

Building and Environment, 152, 192-203, 2019.

https://doi.org/10.1016/j.buildenv.2019.01.056.

Rob Marsh. Building lifespan: effect on the environmental

impact of building components in a Danish perspective,

Architectural Engineering and Design Management,

13:2, 80-100, 2017. doi:

10.1080/17452007.2016.1205471, 2017.

Vahid M. Nik. Hygrothermal Simulations of Buildings

Concerning Uncertainties of the Future Climate. PhD

thesis. Chalmers University of Technology, 2012.

Tuomo Ojanen, Hannu A. Viitanen, Ruut H. Peuhkuri,

Kimmo Lähdesmäki, Juha L. Vinha, and Kati Salminen.

Mold growth modeling of building structures using

sensitivity classes of materials. ASHRAE Buildings XI

Conference, 2010 Cleawater Beach, Florida, United

States, pp. 1-10, Dec. 5-9, 2010.

ROTI 2021 Rakennetun omaisuuden tila -raportti 2021, 

https://www.ril.fi/media/2021/vaikuttaminen/roti2

021_low.pdf.

Hannu Viitanen and Tuomo Ojanen, Improved model to

predict mold growth in building materials, 10th Thermal

Performance of the Exterior Envelopes of Whole

Buildings Conference. Clearwater Beach, United States,

Dec. 2-7, 2007.

Juha Vinha, Anssi Laukkarinen, Mikael Mäkitalo, et al.

Ilmastonmuutoksen ja lämmöneristyksen lisäyksen

vaikutukset vaipparakenteiden kosteusteknisessä

toiminnassa ja rakennusten energiankulutuksessa.

Tampere University of Technology. Department of Civil

Engineering. Structural Engineering.

Research Report 159. 2013.

http://urn.fi/URN:ISBN:978-952-15-2949-8.

Juha Vinha, Mikko Salminen, Kati Salminen, Targo

Kalamees, Jarek Kurnitski, and Mihkel Kiviste. 

Internal moisture excess of residential buildings in 

Finland. Journal of Building Physics, 42(3): 239-

258, 2018. https://doi.org/10.1177/1744259117750369.

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185156 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

162

https://cris.vtt.fi/en/persons/tuomo-ojanen
https://cris.vtt.fi/en/publications/improved-model-to-predict-mould-growth-in-building-materials
https://cris.vtt.fi/en/publications/improved-model-to-predict-mould-growth-in-building-materials
https://cris.vtt.fi/en/publications/improved-model-to-predict-mould-growth-in-building-materials
https://journals.sagepub.com/action/doSearch?target=default&ContribAuthorStored=Vinha%2C+Juha
https://journals.sagepub.com/action/doSearch?target=default&ContribAuthorStored=Salminen%2C+Mikko
https://journals.sagepub.com/action/doSearch?target=default&ContribAuthorStored=Salminen%2C+Kati
https://journals.sagepub.com/action/doSearch?target=default&ContribAuthorStored=Kalamees%2C+Targo
https://journals.sagepub.com/action/doSearch?target=default&ContribAuthorStored=Kalamees%2C+Targo
https://journals.sagepub.com/action/doSearch?target=default&ContribAuthorStored=Kurnitski%2C+Jarek
https://journals.sagepub.com/action/doSearch?target=default&ContribAuthorStored=Kiviste%2C+Mihkel
https://doi.org/10.1177/1744259117750369


Advanced model-based control of B36:45 LNG engines

Svein Roar Kvåle1 Roshan Sharma2

1Bergen Engines AS, Norway,
2University of South-Eastern Norway, Porsgrunn, Norway, roshan.sharma@usn.no

Abstract
The framework of model predictive control is used in this
paper to optimally control the operation of an B36:45
LNG engine. The model of the engine is based on real
life data from an installed B36:45 gas engine in a power
plant. Stored data from the plant was used to develop a
state space model of the process consisting of 2 manip-
ulatable variables, 3 measured disturbances and 6 mea-
sured outputs. The goal is to use global ignition timing
and the charge air pressure as control variables to min-
imize the heat rate while considering constraints on the
measured outputs. Heat rate of the engine is directly re-
lated to engine performance efficiency. Results show that
a model based controller has the potential to be used as an
advanced controller for optimal operation of this engine.
Keywords: B36:45 LNG engine, MPC, optimal operation

1 Introduction
Bergen Engines AS is a developer and producer of gas
and diesel engines for the marine and land-based power
marked. The factory is located just north of Bergen on
the west coast of Norway and have been since it moved
from the city centre of Bergen in 1965. Bergen Engines
was part to the Ulstein group from mid-eighties until 1999
from which it has been a part of Rolls-Royce.The latest
LNG (Liquefied Natural Gas) fuel engine type developed
is the B36:45 engine family, and a graphical representation
of the engine is shown in Figure 1.

Figure 1. 20 cylinder B36:45 LNG gas engine with generator.
(Courtesy: Bergen Engine AS)

For an LNG gas engine, the engine efficiency is in gen-
eral as shown in Figure 2 for a given power output. It
should be noted that the efficiency is not very good below
20% power output and rises slowly from approx. 30%
power output to 100% at which the efficiency is close to
50%. The distribution of the efficiency losses can be seen
in Figure 2 where most of the losses are to the exhaust gas.

In the search for increasing the engine efficiency, more

Figure 2. Fuel efficiency for and LNG engine. (Courtesy:
Bergen Engine AS)

Figure 3. Distribution of losses for an LNG gas engine. (Cour-
tesy: Bergen Engine AS)

complex logic, which takes into account more of the in-
formation available, is constantly developed. This has re-
sulted in a large increase in parameters and static maps
that interact with each other, which makes the engine tun-
ing phase a complex and time-consuming job.

It is of great interest to Bergen Engines AS to use ad-
vanced model based controller such as a model predictive
controller (MPC) for generating optimal set points based
on measured states of the engine and known disturbances.
This is set to be the first step towards a more data driven,
self-optimizing algorithms that can use the large amount
of data produced. The ultimate goal here is to use a re-
duced set of parameters which can be used to prioritize
different possibilities such that various requirements are
reached. For instance one of the requirements for a project
can be to reach a given NOx set point and secondary fuel
efficiency, while for another case, it can be the fuel econ-
omy as the most important requirement while keeping the
NOx within given constraints.

The main engine controller currently used is an embed-
ded controller from Woodward Inc. The LECM (Large
Engine Control Module) is a purpose-built controller with
suitable hardware for interfacing large industrial engines.
The software for the controller is developed and built in-
house at Bergen Engines and hence gives a large flexibility
in custom made control algorithms. The control software
used in the LECM is developed in MATLAB Simulink
with a proprietary library for hardware access to the ac-
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tual controller from MotoHawk. The MotoHawk library
is a rapid programming development tool which allows
engineers to quickly develop control software in Simulink
to run on a MotoHawk enabled control module; like the
LECM. Even though MotoHawk as many pre-made al-
gorithms available, it does not have any available MPC
control structures and hence this must be developed us-
ing standard MATLAB and Simulink functions. Thus the
main goal of this project work is to add MPC control struc-
ture to this existing controller for engine fuel optimization.

MPC has been proven in use for instance in steam gen-
erators and servos as illustrated in Richalet (1993). In
Koli (1981) an MPC for a turbocharged gasoline engine
with EGR (Exhaust Gas Recirculation) has been devel-
oped where the dynamics of the model is defined by sim-
ple feedforward neural network. It showed that the simple
black-box model is sufficient for using with MPC. A paper
by Luther (2002) compares neural-net-based modelling to
Adiabatic Mean Value Engine Modelling. Some system
parts were modeled with good accuracy, but others with
large deviations. A neural net based MPC has been used
for the non-linear MIMO system with great performance.
In Lu et al. (2015) support vector machine for non-linear
system identification has been used. The engine model
shows the rotation speed of the engine as a function of
fuel flow, and an MPC is designed in Simulink.

2 Operational Philosophy
The B36:45 engine family is a medium speed lean-burn
single fuel spark ignited internal combustion engine. It
mainly uses LNG as fuel source and a run at 720/750
rpm for 60- and 50 Hz applications respectively. It is
turbocharged and has a 2-stage water cooled charge air
cooler. In most land-based power plants it connected to a
generator which is often connected to either a small local
grid or a large national grid. The engines nominal power
output is 600 kW pr cylinder mechanically and comes in
both in inline and Vee configurations. The smallest is
an inline 6-cylinder engine and the largest is a Vee 20-
cylinder engine.

2.1 Lean burn gas engine - Otto Cycle
A lean-burn gas engine runs with a high air to fuel ratio
compared to the required air for a stochiometric combus-
tion. This lowers the combustion temperature and hence
reduces NOx emissions. The B36:45 engine is a lambda
2 engine, indicating that it runs with twice the required
amount of air for a stochiometric combustion. This lean
mixture is difficult to ignite and hence a pre-combustion
chamber is mounted in the cylinder head. A rich mixture
is here ignited by a spark plug and the resulting flames will
propagate out and into the main chamber where it will ig-
nite the lean mixture. Figure 4 shows an illustration of the
engine process and some control loops. The engine is a
4-stroke (also known as the Otto cycle) which means that
there are 4 distinct phases for the combustion process.

‘

Figure 4. Illustration of the process with some control loops.
(Courtesy: Bergen Engine AS)

2.2 Main control loops
This section shortly describes the most common control
loops for the combustion process which are controlled by
the engine control system today. There some other control
loops as well, but the major once are described here.

2.2.1 Speed Control

It is a PID controller which controls the flow of fuel ad-
mission in order to keep the engine speed at a desired set
point. When connected to a large electricity grid with
fixed frequency, speed control loop is used to control the
engine power output to a given set point. Increasing the set
point for speed will make the speed controller to increase
the fuel admission by increasing the fuel flow which will
result in an increase of engine power output as the grid
frequency cannot change.

2.2.2 Air pressure/AFR control

The AFR, or air pressure control, is a control loop whose
main purpose is to control the charge air pressure in the
air receiver to a given set point. The set point is based
on a map with engine power output and engine speed as
inputs. The set point map is derived based on numerous
of test runs at the test bed by skilled engineers. Since this
is a static map the set point must be biased to a certain
degree based on operational conditions. The air pressure
control is the most active and influents of all control loops.
It dictates most of the engine behaviour as it directly con-
trols the air/fuel ratio under all operational conditions.The
output from the air pressure control is a position control
signal to a waste gate actuator. The waste gate actuator
will control the amount of exhaust by-passing the turbine
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part of the turbocharger(s) and hence the energy used to
increase the air pressure.The feedback to the air pressure
control is the measured air pressure in the air receiver
which then forms a closed loop control system. One of
the goals of this project is to find the optimum charge air
pressure to maximize engine efficiency.

‘

2.2.3 Air temperature control

In order to further control the air/fuel ratio the tempera-
ture of the combustion air should be kept at given values.
The air temperature is often controlled by a low level PID
controller to a given set point based on operational ambi-
ent conditions.The control signal from the PID controller
is used to control a 3-way valve which will direct, or by-
pass, water to a 2-stage charge air cooler. By increasing
the amount of water going through cooler the temperature
can be reduced, and vice-versa. An increase in tempera-
ture will lead to an increase in NOx due to lower air mass
added to the combustion process and due to increase in
temperature. This will also result in the engine operating
closed to the ignition knocking limit.

2.2.4 NOx control

There are dual NOx sensors at the exhaust outlets to mea-
sure NOx [ppm] and Oxygen [%]. A PID controller con-
trol the NOx level to a given setpoint. However, the NOx
controller will bias the air pressure controller’s base set
point between +10% and -5%, so there is direct interac-
tion between these controllers.

‘

2.2.5 Global ignition timing control

The ignition timing is the time in crank angle (CA) de-
grees at which the cylinder individual spark plug is ignited
in the pre-combustion chamber. The base timing setpoints
is created as a map based on various testing on the testbed
by engineers. This base timing is adjusted such that a good
margin to ignition knocking while maintaining high level
of efficiency is achieved. The global timing is adjusted
so that the maximum pressure in the cylinder is occurring
around 13-15 [degCA] after TDC (Top Dead Center). This
will give rise to best performance. The control of the tim-
ing location is complex and difficult to maintain.

In this project, this complexity is reduced by allowing
an advanced model based controller to find the optimum
timing set points given a set of constraints to protect the
engine from running into dangerous operational points.

2.3 Global ignition timing and efficiency
In Figure 5, an indication of the relationship between
global ignition timing and peak pressure and engine effi-
ciency is shown. These curves are based on data from tests
performed on the previous version of the Bergen LNG gas
engine, the B35:40. This engine operates at lower brake
mean effective pressure (BMEP) than the B36:45 engine
and with lower peak pressures. The indicated relationship

Figure 5. Global timing influence on efficiency and cylinder
pressure.

Figure 6. Heat release curve.

however shows similar behaviour also for the B36:45 en-
gine. Earlier ignition timing, i.e. ignition before top dead
centre (BTDC) will increase the peak pressure in the cylin-
der, but it will also increase the efficiency of the engine.
There are however, as indicated, a mechanical limit in the
construction of the engine on how high the peak pressure
can become before there is a risk of mechanical break-
down. The engine control system therefore monitors the
peak pressure for all cylinders and in case of too high pres-
sure the engine will shut down. For the MPC, this pressure
will be used as a constraint to avoid too high pressure.

2.4 Global ignition timing and heat rate
The accumulated heat release average over a number of
combustion cycles are used together with the measured
engine load to calculate the heat rate of the engine. The
smaller the heat rate of the engine, the less is the amount
of fuel used per unit power output. In other words, mini-
mized heat rate will maximize engine efficiency. A typical
heat release curve for different ignition timing (crank an-
gle) is shown in Figure 6. The heat release curve is shown
with the locations for CA10, CA50 and CA90. These are
the locations at which 10%, 50% and 90% of the fuel have
been burned in the combustion chamber.

3 Process modelling and description
Operational data collected from a commercial B36:45 en-
gine operating in a power plant in the city of Tabor in
Czech Republic was used to develop a data-driven model.
The process data is captured at 10 Hz sampling rate by
a local data logger. This logger then pushes the data to
the cloud every 30 minutes. This data is used both for
modelling, fault detection, machine learning and support
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Figure 7. Process functional diagram.

at Bergen Engine AS. A functional diagram of the process
showing the control input signals, output signals and the
input disturbances is shown in Figure 7.

The two control inputs are the charge air pressure and
Global ignition timing. There are six measured outputs
from the system namely heat rate, peak pressure, knock
level, oxygen (O2) percentage, NOx and Exhaust temper-
ature. In addition there are three measured input distur-
bances namely IMEP (Indicated Mean Efficiency Pres-
sure), charge air temperature and suction air temperature.

3.1 Charge air pressure
The charge air pressure is the pressure of the combustion
air entering the combustion chamber from the air receiver.
This pressure is controlled by adjusting the waste gate by-
pass valve such that the pressure is according to set point.
Traditionally these set points are found based on testing
on a real engine where the emissions are measured and
the distance to the knocking limit is observed. In addition,
the pressure is mapped towards the turbocharger to pre-
vent any stalling or crossing the surge limit. The charge
air pressure set point is usually a map where the set point
is based on the engine speed and the power output but bi-
ased from several sources to make it adaptable to ambient
conditions and ageing. This charge air pressure set point
is traditionally highly driven by the engine power output
in an almost linear relation. Nominal charge air pressure
at 100% power output is approximately 4.2 barg.

3.2 Global Ignition timing
The global ignition timing command is used to set the
base ignition timing for the engine. Each individual cylin-
der will adjust this base timing withing a window of ±-3
[degCA] to balance the peak pressure off the cylinders.
The ignition base timing is traditionally found during test-
ing and running the engine close to the knocking limit dur-
ing controlled environments. It is however not given that
the same conditions will be applicable on every project
and hence margin must be added on the set point to take
into account different fuel compositions and ambient con-
ditions. Ageing is also a factor here. To counter act
these changing conditions several set point modifiers are
in place which will bias the set point if a change in igni-
tion knocking is detected or if exhaust temperature is in-
creased. In addition, the location of the centre of combus-

tion is measured based on the heat release curve from the
combustion process. This location is used as a set point
on a second level PID controller which biases the base
set point so that this location is kept on set point as well.
But none of these measures are there to optimize the fuel
consumption over time and to take into account all these
constraints as an MPC controller can do.

3.3 Suction air temperature
This is slow varying input disturbance to the system which
has the least impact. The suction air temperature is the
air temperature measured at the inlet of the compressor
part of the turbocharger. This disturbance will inform the
system about the ambient conditions under which the en-
gine is currently operating. The ambient temperature, and
hence the suction air temperature will wary over a year for
a given installation location. This variation might be small
or large depending on the location. It might therefor have
an impact in some cases and hence it is included here.

3.4 Charge air temperature
The charge air temperature is measured in the air receiver
and is the temperature of the combustion air fed into the
combustion chamber during the opening time of the inlet
valve. This temperature is in some cases actively regu-
lated by a PID controller, while it in some installations are
mechanically adjusted at max power output to give a cer-
tain temperature. Normal operational temperature here is
around 50-55 ◦C. This might however change if the humid
conditions are present such that condensation might occur
at this temperature. The temperature of the charge air in-
fluences the air mass which is available to the combustion
process and hence any change here will impact both NOx
emissions and the resilience towards knocking.

3.5 IMEP
IMEP (Indicated Mean Effective Pressure) is a measure of
produced work of the engine including the friction work,
i.e. the actual work done by the engine independent of
the engine displacement. It is a measure of the average
pressure in the combustion chamber of the engine cycle.
IMEP is measured directly by the cylinder pressure sen-
sors. The highest and lowest values are removed and the
average over the number of cylinders is taken and fed into
a moving average filter over 100 cycles. This final value
indicates the current loading (power output) of the engine.

3.6 Heat rate
This is the variable that is to be minimized. It is indicative
of the relation between the power output and the fuel con-
sumption estimation. The heat rate is given as the relation
between the IMEP and the total heat release. The IMEP is
measured by the cylinder pressure sensors as well as the
total cumulative heat release. The heat release is given
as [kJ/cycle] and is estimated based on the pressure rise
curve measured by the cylinder pressure sensors.
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3.7 Knock level
Knock level is also known as engine detonation and is
when the combustion takes place prematurely in part of
the compressed air fuel mixture in the cylinder. This
knocking can cause severe damage to the engine if not
responded to early because of high frequency pressure
waves causing very high cylinder pressures potentially
above the design limit of the engine. The engines are
constantly pushed towards the knocking limit as this area
produces better fuel efficiency at higher power outputs.
Knocking might occur if the air fuel mixture is not cor-
rect or substances such as oil leaks into the combustion
chamber causing changes to the burn rate of the air/fuel
mixture. Each cylinder is monitored for knock level and
any increase in knocking results in that cylinder ignition
timing being retarded for some time. If several cylinders
experience knocking the global timing point is usually re-
tarded to avoid any further increase into non-operational
areas. The knock value is measured by looking at the rip-
ples on the cylinder pressure curve after the ignition loca-
tion. This value indicates the level of knocking for each
cylinder but is averaged for all cylinders here. This will in
general only pickup up globally severe knocking. Knock-
ing can also be reduced by lowering engine power out-
put or increasing the amount of air in the air/fuel mixture
resulting in a leaner mixture. That will however impact
efficiency.

3.8 Peak pressure
The peak pressures are measured from cycle to cycle and
is the highest measured pressure in the combustion cham-
ber of the combustion cycle. The peak pressure is a value
which must be limited as there are design limitations on
the engine for how high pressures the internal components
can withstand without damage.

3.9 NOx

The NOx emissions are measured in the exhaust outlet af-
ter the turbocharger. The emissions are measured with
sensor from Continental most commonly used on trucks
and cars. This sensor gives the wet NOx values in ppm
directly and is used in a closed loop regulation for con-
trolling the level of NOx to a given set point. The NOx
values are good indications of how rich or lean the fuel
mixture in the combustion is. A high NOx value indicates
a rich mixture and vice versa. The NOx value is very sen-
sitive to these variations and will rapidly increase in case
of the charge air pressure is reduced. It should however be
noted that the NOx values should rarely be seen drifting
high during steady operation. During transients a change
in NOx value is expected as the engine increases the air
pressure during the transient to get better margins to the
knock limit.

3.10 O2

The same sensors that measures the NOx level in exhaust
will also measure the O2 level. In the traditional engine

controller, the O2 percentage is used actively for engine
limitation. That is if the O2 level becomes too low, which
indicates a too rich mixture, the engine will limit the fuel
admittance and hence reduce power output.

3.11 Exhaust temperature
Traditionally the exhaust temperature outlet from each
cylinder has been used to balance the engine power output
from each cylinder. Before the cylinder pressure sensor
era the only possibility to check how much each cylinder
contributed to the power output was by looking at the de-
viation in exhaust temperature between the cylinders. The
exhaust temperature used here is the temperature mea-
sured in the collecting pipe just prior to the turbine part of
the turbocharger. This exhaust will therefore be an indica-
tive of the all cylinders on that pipe collectively. The tem-
perature will increase in case the power output increases
and mixture becomes too rich. It is therefore very depen-
dent on the charge air pressure, but also the ignition tim-
ing. In case the ignition timing is retarded the temperature
will increase and hence this needs to be handled.

3.12 State space model of engine
In order to find the relationship between the control in-
puts, the measured outputs and the measured input dis-
turbances, system identification toolbox in MATLAB was
utilized to obtain a discrete state space model of the form,

xk+1 = Axk +Buk +Bdud,k

yk =Cxk
(1)

Here, x is the state vector, u is the vector of control in-
puts, ud is the vector of measured disturbances and y is
the vector of the measured outputs. The state matrix, in-
put matrix, disturbance matrix and the output matrix are
A ∈ R25×25, B ∈ R25×2, Bd ∈ R25×3 and C ∈ R6×25 re-
spectively. The subscript k denotes the discrete time steps.

4 Optimal control problem formula-
tion

The goal of utilizing an advanced optimal controller is to
maximize the engine efficiency. This is achieved by mini-
mizing the heat rate of the engine. To do so, the controller
will generate optimal values for the charge air pressure
and global ignition timing. From an optimization point
of view, these two are the decision variables. These sig-
nals will not directly control the process values but will act
as optimal set points for the lower level PID controllers
which in turn will adjust accordingly to achieve optimal
operation.

The physical constraints for the charge air pressure will
be imposed as bounds to the optimizer. By a defined upper
limit for what is physical possible and at the same time
set a lower bound close to 0 barg. Since the process will
not be working on 0 barg air pressure, the lower bound
will be set to 0.3 barg and the upper bound to 4.5 barg
to give some regulation margin. The charge air pressure
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cannot instantly change from one pressure to the next and
hence the optimizer is limited based on rate of change of
the control value such that it cannot change instantly. Nor
can the waste gate valve change instantly and hence such
limitations makes sense.

The global base timing will influence the efficiency of
the engine but also has an impact on the peak pressures,
NOx generation, knocking and exhaust temperature. By
advancing the global timing, the peak pressure increases
and this needs to be within the design limit of the engine
to prevent mechanical damage to the it. If the ignition is
retarded the exhaust temperature increases and the NOx
emissions decreases as the combustion air temperature in-
creases due to longer burn duration. By retarding the ig-
nition timing, the heat rate increases to indicate less effi-
ciency. There are some physical known limitations of the
ignition timing that should be obeyed. The global igni-
tion timing is seldom, if at all, below -8.5 [degCA] for a
running power plant connected to the grid and producing
power at nominal speed. It will also not be possible to
advance the timing more than to -20 [degCA]. Nominal
global ignition timing is usually in range of -12 [degCA]
to -16 [degCA].

The knock level here is included as constraint at it is
a limiting factor for advancing the global ignition timing
too much or reducing the charge air pressure too much.
Typically, the engine is shutdown with a value over 30%.

The nominal peak pressures during 100% power out-
put at nominal speed is usually around 175 [bar]. The
control system has alarms and shutdown conditions if sus-
tained operation around 200 bar is experienced and hence
the optimizer should avoid operation above 200 bar, and
preferably limit operation to 180 bar but with some slack.

The NOx value would be used as a constraint during the
optimization phase such that it can stabilize below at least
150 ppm.

The O2 is rather critical and hence strict constraints on
the low level is to be used. During normal operational con-
ditions the O2 percentage is somewhere between 8.5% and
12.5%, with nominal condition a approx. 9.5%. The op-
timization should be rather strict on the lower limit while
the upper limit can be broken during given condition. The
aim should however be to stay within the limits of 8.5%
and 12.5%.

There are limitations from the turbocharger supplier on
the max inlet/suction temperature of turbine and hence
these needs to be obeyed. The constraints can here be set
based on normal operational conditions where the exhaust
temperature before the turbocharger turbine should not ex-
ceed 600 ◦C.

Table 1 shows the constraints on the output signals and
Table 2 lists the constraints on the control inputs and input
disturbances.

In order to minimize the heat rate of the engine while
still satisfying the constraints on both the inputs and the
output signals, a constrained optimal control problem is

Table 1. Constraints on the outputs.

Signal (symbol) lower limit Upper Limit
Peak Pressure (Pp) 0 bar 180 bar
Knock level (Kl) 0% 30%
Heat rate (hr)
Exhaust temperature (Te) 0 ◦C 600 ◦C
NOx (Nox) 0 ppm 150 ppm
O2 (O2) 8.5% 12.5%

Table 2. Constraints on the control inputs and disturbances.

Signal (symbol) lower limit Upper Limit
Charge air Pressure (Pca) 0.3 barg 4.5 barg
Global timing (Gt) -20 degCA -8.5 degCA
Charge air pressure rate (4Pca) -0.2 barg/s 0.2 barg/s
Global timing rate (4Gt) -0.3 degCA/s 0.5 degCA/s

formulated as,

min
Pca,Gt ,s1,s2

1
2

N

∑
k=1

hT
r,kPhr,k +PT

ca,k−1Q1Pca,k−1 +GT
t,k−1R1Gt,k−1

+4PT
ca,k−1Q24Pca,k−1 +4GT

t,k−1R24Gt,k−1

+ sT
1,kM1s1,k + sT

2,kM2s2,k

s.t. xk+1 = Axk +Buk +Bdud,k

yk =Cxk

0≤ Te,k ≤ 600
0≤ Nox,k ≤ 150
8.5≤ O2,k ≤ 12.5+ s1,k

0≤ Kl,k ≤ 30
0≤ Pp,k ≤ 180+ s2,k

0.3≤ Pca,k ≤ 4.5
−20≤ Gt,k ≤−8.5
−0.2≤4Pca,k ≤ 0.5
−0.3≤4Gt,k ≤ 0.5

(2)

For the relaxation of the upper bounds on the output con-
straints O2 and Pp, two slack variables s1 and s2 are used.
The slack variables are then added to the list of decision
variables so that the relaxation of the output constraints
is a gentle as possible. When the output constraints are
within their limits, the variables s1 and s2 take values
as zeros. In equation 2, P,Q1,R1,Q2,R2,M1 and M2 are
the weighting matrices of appropriate sizes. The predic-
tion horizon for the MPC is denoted by N. The terms
4Pca,k = Pca,k−Pca,k−1 and4Gt,k = Gt,k−Gt,k−1 denote
the rate of change of the control inputs.

To solve this constrained optimization problem,
f mincon solver in MATLAB has been used. For the re-
ceeding horizon strategy of MPC, only the first control
move is applied and the optimal control problem given by
equation 2 is re-solved at every sampling time.
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Figure 8. Input disturbances.

Figure 9. Optimal set points for charge air pressure and global
ignition timing under real life disturbances.

5 Results and Discussion
Data from a real power plant operating the B36:45
LNG engine are used for two input disturbances namely
for charge air temperature and suction air temperature.
These two input disturbances together with the third dis-
turbance (IMEP) is shown in Figure 8. These input distur-
bances vary over time and whey they act on the system,
they can cause the operation of the plant to be far from
optimal. In order to compensate for these disturbances,
the optimal controller continuously generates new optimal
values of the control inputs which are then fed as variable
setpoints to the local PID controllers. Figure 9 shows the
optimal values of the control inputs (charge air pressure
and Global ignition timing) as calculated by the advanced
controller.

When these optimal values of the charge air pressure
and global ignition timing is applied to the system, the
efficiency of the engine is maximized. As already stated
above, this can be shown by the minimization of the heat
rate as shown in Figure 10.

During the process of minimizing the heat rate, the op-
timal controller was also able to satisfy the output con-
straints. The output variables Nox,O2 and Te are well
within their limits as shown in Figure 11. In order to fur-
ther test the advanced optimal controller, data from the
real power plant containing large variation in the input dis-

Figure 10. Minimization of the heat rate under real life distur-
bances.

Figure 11. Output variables within their limits under real life
disturbances.

turbances was applied. The real life disturbances are given
in Figure 12 for all three input disturbances. In particu-
lar, the IMEP covers a range of operational windows from
lower values to a peak at full nominal power at 1200-1500
seconds before reducing back down to low level again.

Figure 13 shows the simulated optimal values of the
charge air pressure and global ignition timing as calcu-
lated by the optimal controller (blue line). In addition
it also shows the real values of these two variables from
the current engine controller operating in the field (red
line). Some differences between these two coloured lines,

Figure 12. Input disturbances with real life field data.
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Figure 13. Optimal set points for charge air pressure and global
ignition timing for real life field data containing large input dis-
turbance variation. Red line: Measured real values, Blue line:
Simulated values.

Figure 14. Output variables within their limits for real life field
data containing large input disturbance variation.

in particular related to the engine global timing can be
observed. The optimal controller utilizes the global ig-
nition timing more than the current controller used in the
power plant. This should in principle increase the fuel ef-
ficiency. The charge air pressure is also slightly increased
to compensate for the increase in burn rate due to the
advanced timing generated by the optimal controller. It
should be noted that an unlimited possibility of increasing
the charge air pressure might not be feasible due to capac-
ity of the turbocharger and a variable upper bound in this
value should be established to avoid unrealistic optimal
behavior of the optimizer.

At the same time, the output variables Nox,O2 and Te are
kept within their upper and lower limits in Figure 14 which
implies safe operation of the engine. The heat rate output
is minimized by the optimizer and the simulated result is
shown by blue line in Figure 15. In addition, the mea-
sure heat rate from the real field is shown by red line for
the same real life input disturbances. It can be noted that
values are closely related and share the same form. For
the major part of the simulation, the optimized heat rate is
also lower than the measured value from the installed en-
gine running traditional control. There is a period around
2250 second mark where the estimated optimize is slightly

Figure 15. Heat rate minimization for real life field data con-
taining large input disturbance variation. Red line: Measured
real values, Blue line: Simulated values.

higher than the measured, but for the majority of the time,
the value of the heat rate from the optimal controller is
lower. This indicates that the advanced model based con-
troller performs relatively better.

6 Conclusions
The potential of using a model based advanced controller
for a B36:45 LNG engine is investigated in this paper. The
optimal controller shows promising results in simulations.
Compared to the current traditional controller used in the
field, the advanced optimal controller could improve the
efficiency of the engine. However, the advanced controller
requires a dynamic model of the engine, and development
of such a model using operational data can be difficult and
time consuming. The quality of the results from the opti-
mal controller relies on the quality of the dynamic model.
The model used in this paper can be improved in the fu-
ture and the optimal controller should be tested on a real
engine.
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Abstract
A local regularity signal can be estimated from a vibra-
tion measurement with the help of the continuous wavelet
transform (CWT). The resulting local regularity signal
contains a lot of diagnostic information about different
faults states of a machine. It is also typically a sparse sig-
nal and thus not well suited for frequency analysis using
the discrete Fourier transform (DFT). In this paper, the fre-
quency analysis of the local regularity signal is performed
using the Lomb-Scargle periodogram. Another possibility
is to use the methods of compressed sensing. Vibration
measurements from different fault states from test rigs are
utilized in validating the proposed method and compar-
ing it with other methods. The induced fault conditions
include a bearing inner ring defect and misalignment of
a claw clutch. The results are compared to more tradi-
tional spectra calculated directly from the vibration mea-
surement, such as the spectrum of the squared envelope.
Keywords: Hölder regularity, continuous wavelet trans-
form, sparse signals, Lomb-Scargle periodogram, com-
pressed sensing, envelope analysis

1 Introduction
When the CWT of a signal is calculated using a real-
valued wavelet, its absolute values form continuous ridges
which converge towards the smaller scales. These mod-
ulus maxima ridges of the estimated CWT reveal the lo-
cations of irregularities in the signal and from their rate
of decay, pointwise Hölder exponents of the irregularities
can also be read (Mallat and Hwang, 1992). If we don’t
consider fractal signals, then there are typically only a fi-
nite amount of irregularities in a signal and thus only a
finite amount of modulus maxima ridges in the CWT. The
resulting local regularity signal, i.e. a signal which shows
the estimated Hölder regularities or constants related to
the sizes of the ridges and their locations, is thus a sparse
signal. When these local regularity signals are calculated
from vibration measurements of machines, they may con-
tain useful diagnostic information. They have been shown
to be useful for diagnosing for example gear tooth cracks
and completely lost gear teeth (Loutridis and Trochidis,
2004), local bearing defects (Kotila et al., 2010) and mis-

alignment of a claw clutch and bearing lubrication prob-
lems (Nissilä and Laurila, 2019). In (Miao and Makis,
2007) a feature vector calculated from the wavelet mod-
ulus maxima ridges is fed to a hidden Markov model for
fault classification. Multifractal features extracted from
vibration signals are used in bearing diagnostics in (Du et
al., 2014).

Wavelet-based methods for extracting weak transients
from vibration signals have been successfully applied with
bearing faults (Wang et al., 2015) and gear faults (Fan et
al., 2015). Wavelet transform was also used for detecting
angular misalignment in (Saari et al., 2015). There are
also several studies where some kind of sparse representa-
tions in some basis are sought and these sparse decompo-
sitions also turn out to be useful for gear fault (Zhang et
al., 2021; Li et al., 2018) and bearing fault diagnostics (Li
et al., 2019; Chen et al., 2017; He et al., 2016).

In machine diagnostics of rotating or reciprocating ma-
chines, frequency analysis of measured vibration signals
is typically utilized. Methods based on the DFT are eas-
ily available, since the measurements are typically equi-
spaced in time. When equispaced measurements are not
available, different methods for frequency analysis are
needed. This is often the case in astronomical time se-
ries and for that reason Lomb and Scargle developed a
method that is now called the Lomb-Scargle periodogram
(Lomb, 1976; Scargle, 1982). In this study, we calculate
these spectra from signals generated using local regular-
ity analysis and they are compared to the spectra of the
squared envelope calculated directly from the acceleration
measurements. Envelope analysis is a benchmark method
in machine diagnostics for diagnosing bearing faults and
other faults which cause cyclostationary vibration signa-
tures (Randall et al., 2001).

2 Materials and methods
2.1 Measurements
In this paper, two fault states with six different levels of
severity are used for comparing the proposed signal pro-
cessing methods. The first fault state is a local inner ring
fault in a roller bearing. The test rig manufactured by SPM
Instrument is shown in Figure 1. The three bearings at the

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185171 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

171



Figure 1. The bearing test rig.

Figure 2. The misalignment test rig.

top support the axle that is driven by a chain drive. The
inner ring fault is located in the middle bearing and it is a
simple groove that is cut into the inner race. The middle
bearing housing can be tightened using a screw and this
method gives the six different levels of load. The measure-
ments that we use are recorded using the accelerometer 2
seen in Figure 1 and it is mounted to the bearing housing
using a magnet. Sampling frequency is 25.6 kHz and 10 s
long measurements from each load level are used.

The test rig used for misalignment measurements is
shown in Figure 2. Coupling misalignment in the hori-
zontal direction was induced by moving the motor while
keeping the vertical and angular alignment constant. Hor-
izontal measurements from bearing 1 are utilized in this
study and the accelerometer was screwed directly into the
bearing housing. Sampling frequency is 50 kHz and signal
length is 15 s for each misalignment state. The test rig is
presented in more detail in (Lahdelma and Laurila, 2012;
Lahdelma et al., 2011).

In both measurements, the accelerometer type was
Wilcoxon Research 726 with a linear (±5 %) frequency
range from 2 Hz to 10 kHz.

2.2 Signal processing
The spectrum of the discrete signal xxx = (x0, . . . ,xN−1)

T

of length T = ∆t ·N is defined using the discrete Fourier
transform (DFT)

F{xxx}k = Xk =
1
N

N−1

∑
n=0

xne−i2πkn/N , (1)

and the inverse transform (IDFT) returns the signal at the
sample points (Briggs and Henson, 1995)

F−1{XXX}n = xn =
N−1

∑
k=0

Xkei2πkn/N . (2)

The cyclic convolution of two sampled signals is

(xxx∗ yyy)n =
N−1

∑
l=0

xl yn−l , (3)

and its DFT is (Briggs and Henson, 1995)

F{(xxx∗ yyy)}k = NXkYk. (4)

For a discrete time random signal Xn, we define the
squared envelope (SE) with the expected values E

[
|Xn|2

]
and the squared envelope spectrum (SES) by

SES{Xn}( fc) = lim
M→∞

1
2M+1

M

∑
n=−M

E
[
|Xn|2

]
e−i2π fcn.

(5)
In (Dandawate and Giannakis, 1995) it has been proved
that under some assumptions, a simple DFT of the squared
samples

SES{Xn}
(

k
N

)
≈ 1

N

N−1

∑
n=0

∣∣xn
∣∣2e−i2πkn/N (6)

converges in the mean-square sense to the SES at the
cyclic frequency fc = k/N as N→ ∞.

Let us define informally, that a wavelet is a brief oscil-
lation. We denote the wavelet by ψ and we want to dilate
it by s > 0 but retain its L1 norm

ψs(t) =
1
s

ψ

( t
s

)
. (7)

The continuous wavelet transform (CWT) of a continuous
time signal x is

Wx(s, t) = (x∗ψs)(t)

=
1
s

∫
∞

−∞

x(τ)ψ
(

t− τ

s

)
dτ. (8)

Here t is the point of interest in the signal and s is the
positive scale that tells how much the wavelet is dilated.

The wavelet that we have chosen for this study is the
second derivative of a central B-spline (Unser and Blu,
2000) and its DFT is

Bk =
1.83

N

(
i2πk

N

)2 ∣∣∣∣sin(2πk/N)

2πk/N

∣∣∣∣5 ,
BN/2 =

1.83
N

π
2 cos(π)

∣∣∣∣sin(π)
π

∣∣∣∣5 = 0,

(9)

where −N/2 < k < N/2. The negative frequencies cor-
respond to N/2 < k < N in our definition of the DFT.

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185171 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

172



The constant is chosen so that the wavelet’s l1 norm
‖F−1{BBB}‖1 is roughly equal to 1.

The discrete estimate of the CWT at scale s is de-
noted by Wxxxs,n. To calculate its DFT, we first window the
measured signal xxx with a smooth window function called
the Planck-taper window www (McKechan et al., 2010), i.e.
compute xnwn, calculate its DFT F{xnwn}k and then es-
timate the DFT of the wavelet transform using (4)

F{Wxxxs,n}k = NF{xnwn}kBsk. (10)

Finally, we obtain Wxxxs,n at the desired scales using the
IDFT.

Let µ ≥ 0. A function x is pointwise µ-Hölder contin-
uous at t0 if

|x(t0 +h)−Pm(h)| ≤C|h|µ , (11)

for small values of |h| and Pm is a polynomial of degree
m≤ µ .

When traversing a CWT through the scales, a series
of connected local maxima or minima are often observed
(Mallat, 2009). These are wavelet transform modulus
maxima ridges (WTMM ridges). In (Mallat and Hwang,
1992), it has been proved that if there are no such ridges at
the fine scales on some interval, then x is uniformly Hölder
continuous on that interval. Conversely, they proved un-
der some assumptions that if there exists a constant C and
a scale s0 such that all the modulus maxima of Wx(s, t)
belong to the cone

|t− t0|<Cs, (12)

then x is µ-Hölder at t0 if and only if

|Wx(s, t)| ≤ Asµ , (13)

at each modulus maxima inside the cone (12). This result
means, that if one can recognize the WTMM ridges of
isolated irregularities, then their Hölder exponents can be
estimated using logarithms and a least squares line fit to

log(|Wx(s, t)|)≤ log(A)+µ log(s). (14)

The constant A is related to the height of the ridge, and
will also be useful.

The Lomb-Scargle periodogram estimates the power
spectral density (PSD) at the frequencies f of the signal
xxx which has been nonuniformly sampled at the points tn

PLS{xxx}( f ) =

(
∑n xn cos

(
2π f (tn− τ)

))2

2∑n cos2
(
2π f (tn− τ)

)
+

(
∑n xn sin

(
2π f (tn− τ)

))2

2∑n sin2 (2π f (tn− τ)
) ,

(15)

where the delay τ is chosen for each frequency f by

τ =
1

4π f
tan−1

(
∑n sin(4π f tn)
∑n cos(4π f tn)

)
. (16)

The discrete cosine transform (DCT) according to
(Ahmed et al., 1974) is defined by

DCT{xxx}0 =

√
2

N

N−1

∑
n=0

xn,

DCT{xxx}k =
2
N

N−1

∑
n=0

xn cos
(2n+1)kπ

2N
, k = 1, ...,N−1.

(17)
When searching for a sparse representation of a discrete

signal xxx = (x0, . . . ,xN−1)
T in some basis, the following

minimization problem is addressed

min‖vvv‖0, such that ‖xxx−Θvvv‖2 < ε. (18)

The l0 pseudo-norm is simply the number of nonzero com-
ponents of the vector. Many solution algorithms replace it
with the l1 norm. In this paper, the vector vvv is the sparse
DCT of xxx and the matrix Θ represents the inverse trans-
form and the restriction to using only the sparse signal
measurement points. Only those rows which correspond
to the sparse local regularity signal are nonzero. To make
the problem more tractable, we also limit our attention to
only a small portion of the DCT spectrum, and thus only
columns of Θ up to some desired maximum frequency
are included. The sparse solution in the DCT spectrum
is searched using the orthogonal matching pursuit (OMP)
algorithm (Pati et al., 1993; Mallat, 2009). The DCT is
favored in this sparse approximation problem instead of
the DFT because it only has one coefficient for each fre-
quency, i.e. no negative frequencies.

3 Results and discussion
3.1 Acceleration measurements and their

squared envelope spectra, bearing fault
Calculations were performed with MATLAB R2020b.
Samples from the acceleration measurements of the six
different load levels in the bearing test are shown in Fig-
ure 3. Case 0 is the smallest load level and Case 5 is the
largest. It is important to notice, that the shocks caused
by the fault are lowest in Case 1 and then start to increase
again when the load level is further increased. The rota-
tional frequency of the shaft is roughly 18.6 - 18.2 Hz de-
pending on the load level. As this is also the rotational fre-
quency of the faulty bearing inner race, the shocks caused
by the fault are amplified once per revolution of the axle,
i.e. whenever the fault passes the loading region. When
the fault is passing the loading region, several shocks be-
tween the fault and rollers occur and these become more
visible when the load level increases. The frequency of
these shocks (ballpass frequency, inner ring, or BPFI) is
roughly 140 - 147 Hz depending on the rotational fre-
quency of the shaft.
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Figure 3. Acceleration measurements from the bearing test rig and their squared envelope spectra.
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Figure 4. Acceleration measurements from the misalignment test rig and their squared envelope spectra.
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The SES of these load cases in Figure 3 are calculated
from 10 s long signals and they show us that the strong
amplitude modulation is visible as peaks at the shaft speed
and its multiples in all load cases. From Case 3 onwards,
the BPFI and its sidebands spaced shaft speed apart be-
come clearly visible as a distinct pattern, although faint
signs of this pattern already exist in Cases 0 and 2.

3.2 Acceleration measurements and their
squared envelope spectra, misalignment

Samples from the acceleration measurements of the six
different misalignment states are shown in Figure 4. Case
0 is the no misalignment state and in the following cases
the misalignment increases in 0.1 mm increments. Shaft
speed is roughly 8 Hz and it is clear, that in Case 1
and 2 there are shocks which repeat mainly at this fre-
quency. From Case 3 onwards, the shocks become more
pronounced and they repeat 4 times in every revolution of
the shaft, i.e. at the frequency 32 Hz. In Case 5 it is also
noticeable that the 4 impacts per revolution are unique and
they repeat in a similar fashion. Especially one of them
is much bigger in amplitude than the others. The claw
clutch located between the motor and bearing 1 has a 4-
tooth flexible element which explains these phenomena.

The SES of the different misalignment cases calculated
from 15 s long signals are also shown in Figure 4. Shaft
speed (8 Hz) and its multiples dominate the spectra from
Case 1 onwards. From Case 3 onwards, 32 Hz and its
multiples have the largest amplitudes. In these cases, it
is also possible to interpret the other multiples of 8 Hz
as sidebands of 32 Hz and its multiples. This matches our
observations from the time domain signals, mainly that the
shocks which occur at 1/32 s intervals are also amplitude
modulated by the shaft speed especially in Case 5.

3.3 Local regularity signals and their L-S peri-
odograms and DCT spectra, bearing fault

The CWT of the bearing measurements are estimated at
the scales s = 1.5,1.6, . . . ,5.9,6, their WTMM ridges are
detected and irregularities whose constants A are above 1
are saved. The Hölder exponents and constants A from the
bearing measurements are shown in Figure 5. Also here
we can see that the vibration is smoothest in Case 1. The
Hölder exponents reach quite large negative values. Even
in Cases 0 and 1 there are a couple of irregularities with
exponents that are less than -3. Such large negative values
were also observed in (Nissilä and Laurila, 2019; Kotila et
al., 2010) in cases of dry bearing and local bearing faults.
We also observe that the amount of irregularities increases
with the load level and their constants A get bigger.

For frequency analysis, it was observed that the con-
stants A are more suitable than the Hölder exponents. Fig-
ure 6 shows the L-S periodograms of the constants A from
all of the load cases. In Case 1 the only recognizable fre-
quency is the axle speed. In Case 0 its multiples are visi-
ble and also BPFI with a couple of sidebands spaced axle
speed apart. This structure is more emphasized in Case 2

and from Case 3 onwards the axle speed has the biggest
amplitude followed with the BPFI. There are also numer-
ous sidebands spaced axle speed apart around BPFI and
its multiple. The load level is quite easy to read of from
the increasing amplitudes and when compared to the SE
spectra in Figure 3, the BPFI is more easily recognized in
Cases 0 and 2.

The DCT spectra of constants A in Figure 6 are
searched using sparse solutions with 60, 30, 100, 100, 100
and 100 components for the Cases 0 to 5 and for the fre-
quencies shown. In these spectra, we can also observe the
BPFI in Cases 0 and 2 and it becomes more distinctive in
Cases 3, 4, and 5. The increase in the amplitude of the
BPFI with fault severity is not as big as in the L-S spectra.

3.4 Local regularity signals and their L-S peri-
odograms and DCT spectra, misalignment

The CWT of the misalignment measurements are esti-
mated at the scales s = 1.5,1.6, . . . ,5.9,6, their WTMM
ridges are detected and irregularities whose constants A
are above 0.05 are saved. The Hölder exponents and con-
stants A from the misalignment measurements are shown
in Figure 7. The Hölder exponents are mainly positive and
we see that the number of irregularities and also their con-
stants A increase with the severity of the fault. The ampli-
tudes of the constants A also seem to reflect the periodicity
of the shocks caused by the fault.

Also for this fault state, the constants A were better
suited for sparse frequency analysis than the Hölder ex-
ponents. Figure 8 shows the L-S periodograms of the con-
stants A from all of the fault cases. The amount of irregu-
larities was so small in Case 0, that the estimated spectrum
is almost white noise. In Case 1 there are many multiples
of the shaft speed (8 Hz) and 8 times the shaft speed has
the biggest amplitude. In Case 2 we see that 2 and 11 times
the shaft speed are the largest. From Case 3 onwards, four
times the shaft speed (32 Hz) is the dominant frequency
and it has significant multiples. They also have small side-
bands mainly 8 Hz apart. The frequency contents of these
spectra are very similar to the SE spectra in Figure 4. The
main difference is that the frequency 32 Hz and its multi-
ples are much more prevalent from Case 3 onwards. We
can thus confirm, that the diagnostic capability is roughly
the same compared to the SES, but possibly the specific
nature of the 4-tooth elastic spider element becomes more
pronounced when using the L-S spectra of constants A.

The DCT spectra of constants A in Figure 8 are
searched using 10, 30, 200, 200, 200 and 200-sparse solu-
tions for the Cases 0 to 5 and for the frequencies shown.
It was necessary to decrease the sparsity to obtain spectra
where the fault frequency 32 Hz and its multiples become
most dominant. When compared to the L-S spectra, it is
again observed that the increase in the amplitude of the
fault frequency between the cases is not as big. Fault fre-
quency multiples also tend to increase with the severity
of the fault, but there is some variation. In Case 1, the
frequency 64 Hz has the biggest amplitude.
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Figure 5. Hölder exponents and constants A of the local irregularities from the bearing test rig acceleration measurements.
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Figure 6. Lomb-Scargle periodograms and absolute values of discrete cosine transforms of the constants A from the bearing test
rig acceleration measurements.
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Figure 7. Hölder exponents and constants A of the local irregularities from the misalignment test rig acceleration measurements.
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Figure 8. Lomb-Scargle periodograms and absolute values of discrete cosine transforms of the constants A from the misalignment
test rig acceleration measurements
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4 Conclusions
Local regularity analysis in the context of vibration moni-
toring has been studied for a couple of decades, but mainly
as a tool in time domain analysis. The spectral analysis of
local irregularities is not a simple task because of their
sparse nature. However, the spectra of the constants A of
the local irregularities carries at least as much diagnos-
tic information as the squared envelope spectra calculated
directly from acceleration signals. All of the tested meth-
ods contain different tunable parameters. For SES, these
are mainly the bandpass filter’s lower and upper limits.
For the local regularity analysis, they are the choice of
wavelet, the computed scales and the lower limit on how
small constants A are taken into the analysis. The compu-
tation of the L-S spectrum of constants A is quite straight-
forward, but when its sparse DCT spectrum is estimated
instead, the optimization algorithm and its parameters be-
come tunable parameters as well. Because these param-
eters are so different for these methods, it is not easy to
compare them fairly

For the examples in this paper, 10 and 15 s long signals
were used for the estimation of the SES and only 2 s long
signals were used for the local regularity analysis. Be-
cause of the result (6), it is advantageous to use long sig-
nals to estimate the SES. The calculation of the SES is also
so simple, that the computational cost is still quite low. In
contrast, it is computationally more costly to calculate the
local regularity estimation and its sparse spectral analysis
for long signals. But we have also demonstrated, that even
only 2 s long signals are long enough for good frequency
analysis results for both of the examples in this paper.

It is easy to set the lower limit on the constants A to
such a level, that in the healthy condition the amount of ir-
regularities is negligible and the spectrum is mostly white
noise. This means that changes in the load or health of
the machine become easily distinguishable. Especially the
Lomb-Scargle periodograms of constants A were found to
be very good at detecting and highlighting the fault fre-
quencies.
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Abstract
Resiliency requires manufacturing system adaptability
to internal and external changes, such as quick responses
to customer needs, supply chain disruptions, and
markets changes, while still controlling costs and
quality. Sustainability requires simultaneous
consideration of the economic, environmental, and
social implications associated with the production and
delivery of goods. Due to increasing complexity, the
engineering of a production system is a knowledge-
intensive process. In this paper, a summary of system
adaptation methods are shown, and a holistic
methodology for the assembly equipment and system
modeling and evaluation is explained. The aim here is
to bring resiliency and sustainability considerations into
the early decision-making process. The methodology is
based on estimations on system performance, using
discrete event simulation run results, or other process
modeling methods, and the use of Key Performance
Indicators (KPI), such as Overall Equipment Efficiency
(OEE), connected to cost parameters and environmental
aspects analysis. Overall, it is a tool developed through
multiple projects for design specification reviews and
improvements, trade-off analysis, and investments
justification.
Keywords: resilient assembly systems, sustainability,
modeling and simulation, decision support

1 Introduction
Manufacturing has to cope with a continuously
increasing variety of products, change of volumes,
shortening product life cycles, and various disturbances.
There has been a shift to the product personalization,
customer and market responsive resilient
manufacturing. Advanced manufacturing faces
challenges: digitization, the shift towards more
environmentally sustainable production and transition
from Industry 4.0 towards Industry 5.0, and a
sustainable, human-centric and resilient European
industry (De Nul et al., 2021).

Sustainability is an increasingly important driver.
Sustainable Manufacturing has commonly used the
following definition (US Department of Commerce,
2007): “The creation of manufactured products that use

processes that minimize negative environmental
impacts, conserve energy and natural resources, are
safe for employees, communities, and consumers and
are economically sound”.

Resiliency is usually defined as the ability of a system
to recover from an undesired state and to a desired state.
A list of resiliency attributes and their impacts on
manufacturing is provided in (Kusiak, 2019; 2020). 
They include energy, materials, components, physical 
assets and processes, transport, supply 
chain, communications, logistics, efficiency, 
productivity, capacity, dependability, quality, 
compatibility, sustainability, workforce, and societal 
values. These attributes can be expressed in different 
forms, metrics, and variables, some of which 
are measurable. Identification and definition of 
these variables is important for understanding the 
nature of manufacturing resiliency and sustainability.

Assembly is one of the last processes within a product
realization, a manufacturing operation in which the
components and subassemblies are integrated and
joined together to get the final product. Resiliency
requires system adaptability to internal and external
disruptions and changes, e.g., machine setups and job
rescheduling for quick responses to customer needs or
missing material due to supply chain disturbances.
There is a need for the holistic evaluation and decision
support methodology in the engineering phase of
production and assembly systems.

1.1 Aims
This paper briefly shows how to increase an assembly
system resiliency, adaptability to changes in products,
and production volumes. Solution is an agile,
interoperable, reconfigurable modular system and
processes with smart tools, technologies, digitalization,
and empowered human operators.

This paper describes holistic methodology for
assembly equipment and system evaluation, for design
specification reviews and improvements, trade-off
analysis, and investments justification. The aim is to
bring resiliency and sustainability aspects to the early
decision-making process: identify attributes,
parameters, visualize, model, simulate, and calculate, in
other words use advanced analytics techniques and use
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the created information to improve and make better
decisions - “resilience and sustainability-by-design”.

1.2 Sustainable manufacturing
The World Commission on Environment and
Development (1987) defined “Sustainable development
is development that meets the needs of the present
without compromising the ability of future generations
to meet their own needs.” This elaborated the meaning
of sustainability and presented it in three dimensions,
i.e., Environmental, Social, and Economic
responsibilities, commonly known as the triple bottom
line concept (Figure 1).
 

 
Figure 1.  Triple bottom Line (TBL) and Competitive
Resilient Sustainable Manufacturing.

The general principle of sustainable manufacturing is
to reduce the intensity of materials use, energy
consumption, emissions, and the creation of unwanted
by-products while maintaining, or improving, the value
of products to society and to organizations. Enhancing
sustainability performance of the production process is
an important contribution to developing a stronger and
cleaner economy.

1.3 Resilient and Agile Manufacturing
Resilient Manufacturing is defined as the ability of a
manufacturing system to efficiently mitigate any
external disruptions, either derived from the supply
chain of the company or resulted from the volatility of
the market demand. Further, the response of the system
to these volatile changes must be as rapid as possible in
order for the company to maintain their competitive
advantage in the market landscape (Mourtzis et al., 2021;
Kusiak, 2019).

Resilient manufacturing has similarities to agile and
reconfigurable manufacturing. The goal of agile
manufacturing is to combine the organizations, people
and, technology into an integrated and coordinated
whole (Dove 1992; Kidd 1994; Heilala and Voho, 
2001). Agility is defined as “the capability of 
surviving and prospering in a competitive 
environment of continuous and unpredictable change 
by reacting quickly and effectively to changing 
markets, driven by customer-designed products and 
services”. Agile manufacturing utilizes effective 
interoperable systems, process tools,

modular reconfigurable systems, human resources, and
training to enable manufacturing systems and networks
to respond quickly to customer needs and markets
changes while still controlling costs and quality 
(Dove, 1992).

1.4 Requirements and solutions
Flexibility requirements can be classified to static
flexibility, where reaction time is typically connected to
the planned product life-cycle phases, e.g., production
volume changes, new variants, or products in the same
system. In dynamic flexibility, reaction time is very
short due to customization, lot size one, assembly-to-
order, disturbances, machine breaks, repair work, rush
orders, and demand fluctuations. Solutions can be
physical adaptation on hardware, equipment level or
logical, adaptation with software, change of programs,
re-planning, re-routing etc. as shown in Table 1.

Table 1. Flexibility solutions adapted from (Heilala and
Voho, 2001)

logical “programs”   

s or 

 Control of tasks and 

Use of information 

Change of control 

Human intelligence 

Sorting and routing 

flow 
 
Technical solutions concepts, e.g., re-configurability

at hardware and software defines the capability window
of the system (Table 1). System capacity, production
volume, can be adapted by increasing work time, e.g.,
more shifts, increased level of automation, or by adding
more resources. Flexibility also depends on logistics and
material flow. In a modern supply chain, production
network and adaptation can also be done at different
organizational levels, e.g., re-routing and re-scheduling
can include external suppliers of the network.
Requirements for the factory automation are shown by
Dotoli et al. (2019) and requirements for the smart
factory system by Ambkhot et al. (2018) and Kusiak
(2019). Challenges for the Cyber Physical Production
Systems (CPPS), requirements for manufacturing and
key success factors for next generation manufacturing
are shown by Panetto et al. (2019). Findings are similar
to (Heilala and Voho, 2001) earlier, with a note 
that technology has evolved due to the 
introduction of Industry 4.0, Industrial Internet of 
Things (IIoT).
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Static flexibility,
physical “hardware”

Dynamic flexibility, 
logical “programs”   

 Layout physical 
modifications 

 Level of automation 
 Re-configurability, 

re-utilization 
 Modularity, 

expandability 
 Scalable 
 Exchange of system 

modules or 
submodules 

 Control of tasks and 
resource settings 

 Use of information 
technology 

 Change of control 
programs, routines 

 Robotics, flexible 
automation, 

 Human intelligence 
and skills  

 Sorting and routing 
of material and order 
flow 

 



Drivers for resilient sustainable manufacturing can be
listed as follows:

- Increase operational efficiency by reducing costs
and waste;

- Respond to or reach new customers and increase
competitive advantage;

- Build long-term business viability and success;
- Protect and strengthen brand and reputation and

build public trust;
- Respond to regulatory constraints and

opportunities;
- Provide a healthy workplace and empower the

workforce; and
- Minimal use of natural resources while reducing

environmental impact.

2 Design, modeling and evaluation
Resiliency and agility are about the system and process
adaptation to the planned changes and unplanned
disturbances. The design of an adaptable manufacturing
system involves a number of interrelated subjects, such
as tooling strategy, material-handling methods, system
size, process and material flow configuration, flexibility
needed for future engineering changes, production
methods, capacity adjustment, and production floor
layout strategy. Sustainable manufacturing system
design takes into account the social, economic, and
ecological constraints as well.

For analyzing environmental sustainability earlier in
the product lifecycle, Brundage et al. (2016) suggest use
of the SIMA reference model. SIMA, Systems
Integration of Manufacturing Applications, reference
architecture, developed at NIST (Barkmeyer et al.,
1996), addresses product design engineering,
manufacturing engineering, production systems
engineering, and production activities corresponding to
the four top-level activities: (A1) Design Product, (A2)
Engineer Manufacture of Product, (A3) Engineer
Production System, and (A4) Develop Products (Figure 
2).

 

 
Figure 2. SIMA activities reference model adapted from
(Barkmeyer et al., 1996).

SIMA provides the structure of the product
realization process. This paper is focused on the A3

Engineering of Production System, specifically to sub
phases (A33) Design Production System and (A34)
Model and Evaluate System. Production systems
encompass processes, activities, and includes the
resources and controls for carrying out the processes.
Process design defines what is being performed in the
system. The system design phase emphasis is on details
of how, where, and when the process is performed
(Phase A33 in Figure 2). In this phase, requirements,
needs, strategies, market forecast and product structure,
bill of material, production, and auxiliary process are
known.

Based on requirements and potential solution
designs, life-cycle scenarios are modeled and evaluated
(Phase A34 in Figure 2). This can be an iterative
process, as shown in Figure 3. The aim is justification
of investment into potentially more expensive flexible
equipment having a higher re-use value and longer life-
time, better adaptation to changes, and/or brings other
value, e.g., higher quality rate, and human and
environmental aspects.

 

 
Figure 3. Methodology overview.

2.1 Define requirements and needs
The starting point is strategies, requirements, and

needs, e.g., system lifetime scenarios, current and future
product mix, and volume estimations. Modular structure
of the production system enables use of the unit
manufacturing process (UMP) model, as shown in
Figure 4.

Product and process information, product structure,
bill of material (BOM), production, and auxiliary
processes are parameters to the system design. Each of
the manufacturing process unit has planned input and
output, resources, product and process information,  
see Figure 4.

In the definition phase, the cost parameters related to
inputs are as follows: energy, materials and
consumables, and resources: equipment, tools, fixtures,
and human operators are identified. The amount of
inputs, resource usage, and outputs can be calculated
using static process modeling data or using dynamic
simulation run results, as shown in the following
chapters in this paper.
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Figure 4. At system- and each module-level information
(adapted from ASTM E3012 standard; Mani et al. 2016).

2.2 Solution modeling
There are several methods for manufacturing system
modeling: analytic, symbolic, and models capturing the
dynamics of the systems.

Analytic models, such as mathematical formulas,
queue formulas, and linear programming, can give a
quick answer. Some are able to give an optimum
solution without going through trial and error. Their
disadvantages include simplified assumptions that are
often unable to account for random behaviors and, thus,
a simplified solution to complicated problems.

Symbolic models, such as process flow diagrams,
flowcharting, and Integrated DEFinition (IDEF), are
suitable for communication, easy to understand, and
quick to develop. The focus on the processes in the
system are not aimed to resolve resource issues and
operational problems too early. The disadvantages
include lack of details, little or no quantitative measure
of system elements or description of elements, activities,
and relationships, and failure to capture the system
dynamics. Symbolic models are static models.

Factory simulation measures the effects of process
variability and interdependencies on overall system
performance. A simulation creates an artificial history
of the system. The disadvantages are that models can be
difficult to construct – model building can be time-
consuming and challenging.

In principle, a combination of the above-mentioned
methods should aid engineers in speeding up the design
process and improve decision making (Paju et al., 
2010). Analytic models in spreadsheets are commonly 
used by engineers and can be connected to symbolic, 
static and factory simulation models. Simulation 
models can read and write to external software, e.g., 
spreadsheets.

2.2.1 Manufacturing system modeling
Value Stream Mapping (VSM) is a simple-to-use
symbolic process-modeling tool (see Figure 5). It

specifies the activities, cycle times, down-times, and 
delays, and identifies bottlenecks and non-value-added 
activities in the production or in the logistics. A snapshot 
of the process activities in production may be created 
based on average data. Conventional VSM can be 
created for one product or product family with a pen and 
paper, although there are numerous VSM software tools. 
Combining VSM or similar process modeling to 
spreadsheets, an engineer can make an estimation of 
production mix and volumes.  

VSM and environmental analysis have merged 
together in some applications. The US Environmental 
Protection Agency (EPA) has introduced the Lean and 
Environment toolkit, which offers practical techniques 
and strategies for environmentally protective lean 
decision making (EPA 2007). 

 

Figure 5. Example of VSM model adapted from (Paju et 
al., 2010).

 
Discrete Event Simulation (DES), a factory

simulation, allows the experimentation and validation of
different products, processes, and manufacturing system
configurations (Mourtzis et al., 2018). The 
simulation model is the virtual image of the planned 
real system. Discrete event/material flow/factory 
simulation is used in the design phase to evaluate 
concepts and optimize system solutions before 
investments and strategic decisions are made.

The common aim in simulation studies is to identify
problem areas, and to quantify or optimize production
system performance, such as throughput under average
and peak loads, the utilization of resources, labor and
machinery, staffing requirements, work shifts,
bottlenecks, choke points, queuing at work locations,
queuing caused by material handling devices and
systems, the effectiveness of the scheduling system, the
routing of material, the work in process, and storage
needs.

The modular system structure can be implemented to
layout planning and modeling systems. For example, in
the assembly system layout configuration, model
building, using 3D pre-defined and parametric sub-
module merging, enables fast scenario creation (Heilala
et al., 1998; 2007; 2008a). In some cases, a 
standardized, parametric simulation submodule, 
catalogue equipment item can be shared on the 
internet, e.g., Visual Components public web 
eCatalog (Visual Components
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2021). There are many other factory simulation tools in 
the market, supporting submodule merging.  

 

 
Figure 6. Component-based simulation adapted from
(Heilala et al., 2008a).

Modeling modularity is feasible on workstation and
at sub-module, e.g. material feeding, jigs, fixtures and
tool level as shown in Figure 6. Parametric modeling
enables fast model changes. Environmental aspects can
also be included in the production simulation analysis,
as shown in later in Figure 9 . The environmental aspect
analysis with DES or VSM adds the complexity in the
input data collection since more data is needed. VSM
model parameters and DES simulation run results can
be further analyzed in spreadsheet tools, e.g., excel.

2.3 Evaluation and analytics
Modeling for analytics needs a resource, bill of material
and product route data, process, order, production
schedule, volume, mix, and data for system availability,
set-ups, planned maintenance, reliability, machine
breaks, and estimated production quality rate data, e.g.,
yield, rejects, scrap and rework. Use of the UMP model
(see Figure 4) enables structure for data collection for
each manufacturing unit, and these units can be modeled
with VSM or DES, including connection between those
units.

The output of analytics is equipment operation data
and the percentages of machine statuses (on, off, stand
by, under repair), thus allowing the amount of energy
needed to be calculated. Using capacity data, we are able
to calculate factors such as the piece count and material
used during operations. DES shows the dynamics of the
system. In Value Stream Mapping (VSM) and combined
spreadsheet calculation, production volume data is
deterministic, based on static, average data.

2.3.1 Cost and efficiency aspects analytics
Looking at system, equipment, or service purchase price
is not enough. Life Cycle Cost (LCC) or Total Cost of
Ownership (TCO) is the purchase price of a product or
service plus the costs of operation throughout its life
cycle. Cost of ownership (COO), as defined by SEMI
standards, goes deeper (SEMI E35, SEMI E10, SEMI
E79), looking also on profitability, COO of good units.

COO depends on the production throughput rate,
equipment acquisition cost, equipment reliability,
throughput, yield, and equipment utilization, see 
Figures 7 and 8.

The basic COO is given by the following equation.
COO per good unit equals all costs divided by total
number of good products during the lifetime of the
equipment

 
where
FC = Fixed costs (amortized for the period under

consideration), Acquisition, installation, training, etc.
VC = Operating costs (variable or recurring costs),

factory interface, management, maintenance, control,
materials, energy, labor costs, etc.

YC = Yield loss costs, scrap, rework,
L = Life time of equipment
THP = Throughput rate (nominal)
U = Utilization
Y = Yield
 

 
Figure 7. Life cycle cost (LCC), time-based matrix.  

Yield loss cost is a measure of the value of units lost 
through bad quality (e.g., misprocessing, defects) and is 
broken out separately to demonstrate the importance of 
yield to both the numerator and denominator. The cost 
of lost yield increases, if the component travels forward 
in the processes before detecting the error. Some cost 
factors are more difficult than others to accurately 
determine in the concept phase.  

Figure 8. OEE time classification and six big losses. 
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The number of good products depends on reliability,
availability, and maintainability (RAM) and utilization
of equipment in a manufacturing environment. OEE
(Overall Equipment Efficiency/Effectiveness) is an all-
inclusive metric of equipment productivity, i.e., it is
based on reliability, (Mean Time Between Failures-
MTBF), maintainability (Mean Time To Repair-
MTTR), utilization (availability), throughput, and yield.

All of the above factors are grouped into the
following three sub-metrics of equipment efficiency.

1. Availability
2. Performance efficiency
3. Rate of quality
The three sub-metrics and OEE are mathematically

related as follows: OEE  % = Availability x Performance
Efficiency x Rate of Quality x 100

OEE is a systematic way to evaluate production
losses, normally used as an equipment key performance
indicator (KPI).  It helps to identify the actual time the
system is producing good units, and at the same time it
identifies and evaluates the OEE losses, like
setups/adjustments, breakdowns, idling/minor
stoppages, reduced speed, defects/rework (see Figure
8). In production systems, typically the focus is on the
bottleneck machine. In the case of high mix, low volume
production, the bottleneck location varies depending on
customer orders and workload.

In the case of the DES model, with detailed input
data, including data on MTBF, MTTR, cycle time
variations, and material flow disturbances, it is possible
to define the OEE based on simulation run results. In the
case of using the VSM model and spreadsheet analytics,
engineers can define the estimated OEE values
themselves, by identifying six big losses shown in
Figure 8.

In the design review or system sales negotiation
phases, it is an advantage to identify potential OEE
losses together with the customer, equipment or system
user. Thus, there will be fewer surprises during the
system utilization phase.

2.3.2 Environmental aspects analytics
VSM and DES are commonly used for manufacturing
system analysis and development as shown earlier.
Normally, these methods show selected production
efficiency key performance indicators. At the same
time, both methods create information about the
production parameters needed for the calculation and
analysis of environmental aspects (see Figure 9.).

Both VSM and DES can provide bookkeeping of
production volume, number of products manufactured,
cycle time, utilization, and equipment running time
(Paju et al., 2010).

Adding environmental data to process and equipment
descriptions and planned production rate creates
understanding of energy usage, greenhouse gas (GHG)
emissions, usage of hazardous materials, waste,
emissions, and so on. Usage can be shown per product,

resource or process based on piece count or time period. 
This enables engineers to focus on the most harmful 
processes and optimize them.  
 

 
Figure 9. Environmental data connection to production 
resources, process, and product data.     

An example of the categorization of sustainability 
performance indicators in manufacturing are shown in 
Figure 10. For air emission, e.g., carbon footprint 
analysis, the type and amount of material in kg, or 
energy usage in kWh, is just the starting point. There is 
a need to know the source of the raw material. 
Regarding energy, the CO2 emission using fossil fuels 
is much higher compared to renewal energy sources, 
e.g., water, wind, or solar energy.  

 
Figure 10. Typical manufacturing sustainability
performance indicator adapted from (Beltrami et al.,
2021).

With the BOM, environmental data from cradle to the
factory gate can be taken from the public LCI data sets,
e.g., European Reference Life Cycle Database (ELCD3)
(European Commission LCI 2018), or by using
commercial data bases.

2.4 Improve decision making
Simulation studies, modeling parameters, input data,
and run results, or other modeling methods combined
with other relevant information, do provide data for
analytics. Decision makers, managers, and development
engineers are interested in planned system cost
efficiency, investment and operating costs, productivity,
throughput, utilization, availability, quality rate,
flexibility, and all sustainability performance aspects.

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185180 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

185



Social sustainability is measuring working
conditions, occupational health, and safety.
Environmental sustainability is measuring resource
consumption, emissions, and waste. Beltrami et al.
(2021) show the linkage of industry 4.0 technology and
sustainability performance indicators, see Figure 10.
The global standards for sustainability reporting (GRI
2020) are one source for defining sustainability
indicators.

Environmental aspects are getting more important
due to increasing regulation, and they are useful in
marketing, in creation of brand, and reputation of the
company. Evaluation can be an iterative process,
managers and engineers can edit models, and model
parameters for optimization, as well as for risk
management (Figure 3).

3 Discussion
The presented methodology has evolved during a series
of research projects starting in the mid-1990s. The
human-friendly agile assembly system concept and
modeling methods for modular assembly equipment
started in the late 1990s (Heilala and Montonen, 
1998; Heilala and Voho, 2001). The cost 
aspect with performance analytics were introduced 
in the early 2000s, starting with spreadsheet 
analytics, later some integration to commercial 
simulation software (Heilala et al., 2007; 2008a). 
The development initiated from systems end-user 
flexibility needs as well as on assembly system 
vendor ongoing development efforts. Later, the 
environmental aspects were added, starting with 
energy consumption and the eco-engineering
process during the 2010s (Heilala et al., 2008b; Lind 
et al., 2009; Paju et al., 2010). This also shows 
how industrial needs have change, from cost-
efficiency-dominant decision making to all 
sustainability aspects.

The presented methodology usage is not limited to
assembly system evaluation, as shown in (Heilala et 
al., 2007; 2008a; 2008b); in general, the 
presented principle can be adapted to advanced 
manufacturing systems development and 
investment evaluation. Managers and engineers 
can justify investments to adaptive, human- and 
environmentally friendly technologies, equipment, 
and processes. For example, COO analyzes the cost 
of ergonomics solutions, the physical and cognitive 
level of automation, and with the OEE evaluation of 
impact to productivity, benefits of investments can be 
estimated. It should be noted that in both COO and 
OEE analyses in spreadsheet tools, it could be for 
relative comparison, i.e., before versus after change or 
between competitive solutions. Using these metrics as 
relative measures, the modeler is not required to build 
the perfect model or obtain all possible data. In one 
case, analysis and modeling with normal office tools
and advanced spreadsheet calculation were sufficient,
e.g., the study on Augmented Reality usage in assembly,

shown in (Sääski et al., 2008). In that particular case,
laboratory test set-up provided input data for analysis.

This presented methodology is not yet an integrated
tool package. It is merely a conceptual methodology.
Parts of methodology have been tested in the past in
industrial-driven projects, and the results are published.
The presented COO and OEE are based on SEMI
standards SEMI E35-0305, SEMI E10-0304, and SEMI
E79-0304, and these standards have been updated. The
next steps would be to adapt to evolving
standardization: e.g., ISO - International Organization
for Standardization (https://www.iso.org/home.html),
SEMI - the global trade association of electronics
manufacturing supply chain  (https://www.semi.org/en),
VDMA - Association of mechanical and plan engineers
(https://www.vdma.org/), VDI – The Association of
German Engineers (https://www.vdi.de/en/home),
ASTM International (https://www.astm.org/), see 
also (Mani et al., 2016)  -  just to mention 
some standardization bodies working on 
relevant standardization.

4 Conclusions
A resilient system needs agility, re-configurability at
various levels, resource and process modularity, re-
usability, digitalization, and human and environmental
friendliness. One challenge for the manufacturing
industry is justification for such equipment, system, or
service. The presented methodology is an attempt to
improve the decision-making process with modeling
and simulation. Currently, the presented methodology is
a combination of dynamic analytics, e.g., the use of
Discrete Event Simulation (DES) if feasible, combined
with selected static modeling and calculation methods in
a spreadsheet. Decomposition of aspects under study is
the key in analytics.

All sustainability aspects are covered. Social
sustainability, human safety, well-being, ergonomics
solutions, and related investments, e.g., adjustable
worktables, collaborative automation, both physical and
cognitive technologies for enhancement, and
augmenting human worker performance can be
estimated. Economic sustainability, profitability, and
efficiency connect the cost parameters of technology,
process, or services and evaluate the impact on
productivity. Environmental sustainability is looking at
environmental impacts as well resource efficiency.

From a cost point of view, the purchase cost of
equipment is not enough: evaluate all cost items, fixed
and recurring costs, cost of poor quality, cost related to
potential upgrades during life-cycle scenarios of the
system. The presented cost calculation, Cost of
Ownership (COO), also provides data for commonly
used investment evaluation methods, and discounted
cash flow techniques: Net Present Value (NPV) and
Internal Rate of Return (IRR), see Figure 7.
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From the production performance point of view,
nominal system capacity and throughput are not enough:
evaluate disruptive events, such as machine testing, set-
ups, planned and unplanned maintenance, quality
failures, missing parts, operators, or orders. These
events, six big losses (see Figure 8), could lead to full
or partial loss of production in the system. Therefore,
gaining a fundamental understanding and evaluation of
these events and associated impacts on system
performance in the design phase will have a significant
impact on the economic sustainability.

Environmental aspects can be estimated based on
simulation run results or by using (VSM) methodology
and spreadsheet calculations for equipment operation
hours and the number of products (see Figure 9).
Adding environmental data to process and equipment
descriptions creates understanding of the energy usage
pattern and related CO2 emissions, usage of hazardous
materials, chemicals, estimates of the amounts of waste,
bi-products, etc. The methodology is not a full Life
Cycle Assessment (LCA) but provides data for doing the
LCA.

Manufacturing is moving away from the dominating
economic paradigm of "maximum gain with minimum
capital investment" towards a more sustainable
paradigm of "maximum added value using minimal
resources and carbon neutrality".

The presented methodology is versatile, a solution-
relative comparison without a perfect model, even with
normal office tools. Symbolic models, even just with
pen and paper, improve communications between
stakeholders. Use of dynamic simulation models
increases the accuracy of analytics as well complexity
in model building.

The presented methodology measures selected
resilience and sustainability aspects, to the organization
over the planned life cycle of a piece of production
equipment - not absolute accurate values in the concept
creation phase - but data for comparison. The analytics
is as good as input data is; input of false information
does not produce the right results. The user should make
a risk assessment of results, e.g., use of min, max, and
optimal data values in calculation and simulations. The
challenges are on getting reliable data in the conceptual
phase.
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Abstract 
X-TEAM D2D project is focused on integrating Air 

Traffic Management and Urban Air Mobility into an 

overall multimodal transport network to address the 

potential increase in efficiency of the overall 

transportation system in the future, considering the 

operational domain of the urban and extended urban 

environment up to a regional extent and passenger-

centric perspective. This paper presents the analysis of 

the Door to Airport trajectory of business passengers 

until 2035. The results indicate the system's expected 

performance in 2035 under normal and disrupted 

scenarios providing insight on the expected impact of 

future technologies.  

Keywords:     airport, multimodal transport, passenger 

service, door-to-door 

1 Introduction 

The world population will increase to approximately 10 

billion people in 2050 and approximately 11 billion 

around 2100. By 2050, about 68% of the worldwide 

population will live in urban areas (United Nations, 

2019). This growth will dramatically increase mobility 

and demand for transport, especially air travel demand. 

In future (up to 2050), physical infrastructure, 

transport systems, traffic management, operational 

processes and information systems will be seamlessly 

integrated. Combining emerging information 

technologies and transport modes with a passenger-

centric view will revolutionise future mobility 

(Organisation for Economic Co-operation and 

Development and International Transport Forum, 2020). 

From the aviation perspective, a key enabler for this is 
integrating Air Traffic Management (ATM) and Urban 

Air Mobility (UAM) and related U-Space services into 

overall multimodal transport systems that will provide 

its stakeholders with standard and comprehensive 

information of the door-to-door (D2D) travel flows and 

improve accessibility and passenger service level (Bao 

et al., 2016). To achieve such integration and facilitate 

reaching the goals of Flightpath 2050 (European 

Commission, 2011), it is necessary to explore how 

different existing, emerging, and new transport 

technologies can be integrated and define the related 

integrated service concept as well as the policies that 

could help such systems function most efficiently. 

These tasks comprise the scope of the X-TEAM D2D 

project.  

This paper presents preliminary results of simulation 

experiments for the business traveller's use case 

considering technological changes in the passenger 

journey in 2025 and 2035 and is organised as follows. 

Section 2 introduces project goals. The project 

methodology and the relevant elements are described in 

Section 3. Modelling and simulation approach for 

validation of Concept of Operations (ConOps) is 

presented in Section 4. First simulation experiments 

with the ConOps validation tool are described in Section 

5, and their preliminary results are discussed in Section 

6. Section 7 concludes the paper and discusses future 

work direction. 

2 Project Goals 

The X-TEAM D2D project aims to explore and analyse 

the integration of ATM (and UAM with related U-Space 

services into the overall multimodal transport system, 

considering currently available transportation 

modalities and the emerging mobility forms envisaged 

for the next decades. Moreover, the X-TEAM D2D 

focuses on developing the ConOps for seamless D2D 

mobility in urban and extended urban areas (up to 
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regional). The developed ConOps will be validated and 

evaluated against relevant key performance areas and 

performance indicators, using a simulation-based 

platform that considers the most relevant future 

transport elements. Furthermore, specific use cases of 

the D2D journey under different scenarios will be 

analysed to validate the ConOps and enable decision 

support tools.  

The X-TEAM D2D will bring the following 

improvements in the state-of-the-art research:  

• Enhancing understanding of seamless D2D travel in 

integrated ATM and multimodal transport modes.  

• Integrating modelling D2D travel into ATM and 

multimodal transport. 

3 Methodology  

The X-TEAM D2D research methodology comprises 

the definition and validation of the ConOps, based on 

reference scenarios and application in use cases. The 

ConOps for ATM integration into multimodal transport 

will describe the characteristics of the proposed system 

from the perspective of passengers and transport modes 

through several use cases in 2025, 2035, and 2050. 

Figure 1 shows the project methodology, which includes 

extensive literature research as well as use of public 

transport data from different existing mobility service 

providers. In cases, where are no data available, e.g., for 

future mobility technologies, the project members agree 

on assumption regarding the required operational 

parameters. 

 
Figure 1. X-TEAM D2D methodology flowchart. 

3.1 Reference Scenarios Definition 

To formulate ConOps applicable to three considered 

time horizons, three reference scenarios describing the 

state of the transportation system in these years were 

defined. They assume that energy transition, green 

mobility and transport, and circular economy will occur 

in 2025 and 2035, supported by a significant increase in 

digitalisation and automation in 2050 (Eurocities, 

2021). The defined scenarios are not alternatives but 

subsequent possible future states. The analysis of the 

potential integration of ATM and other modes shows 

that most technologies will be partly achieved by 2035 

(electric vehicles, autonomous/electric bus in 

connection with the airport, transit elevated bus, 

autonomous cars, shared electric micro-mobility) and 

fully deployed by 2050. The defined reference scenarios 

characteristics are as follows: 

In 2025: 

• Intensifying use of New Mobility Services (NMS) 

(Kamargianni et al., 2016), emerging of connected, 

cooperative, automated mobility (CCAM) 

(European Comission, 2018). 

• Further development of Trans-European Transport 

Network (TEN-T) (mainly rail and maritime) 

(European Comission, 2021), shift to rail and 

maritime logistics. 

• Million public recharging stations and 500 

hydrogen refuelling stations (European 

Commission, 2020). 

• Eurovignette (AGES, 2021). 

In 2035: 

• Emerging of UAM, intensifying use of CCAM. 

• The Core TEN-T Network completed, smart 

pricing, shift to lower emission modes. 

• Three million public recharging stations and 1000 

hydrogen refuelling stations. 

• Intensifying multimodality among the soft modes of 

travel, mass transit, NMS, CCAM. 

In 2050: 

• Net-zero emissions in transport. 

• The Comprehensive TEN-T Network completed. 

• Walkable cities, domination of soft modes, mass 

transit, NMS, CCAM, UAM. 

The scenario development adopted and implemented a 

passenger-centred approach, which incorporates 

concepts of inclusive design, transgenerational design, 

and context of use. Inclusive design aims to optimise the 

use of a system or a service for a specific user with 

specific needs. Eventually, inclusive design results in a 

system and/or service accessible to and usable by as 

many people as reasonably possible without the need for 

adaptation or specialised design for specific user 

categories. The inclusive design embeds the concept of 

transgenerational design, aiming to make systems and 
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services compatible with physical and sensory

impairments associated with human ageing (Pirkl,

1994). Thus, the inclusive design considers the full

range of human diversity to cover individual passengers'

permanent or temporary needs (Inclusive Design

Research Centre, 2021). The concept of context of use

represents the combination of goals, characteristics,

tasks, objects and environment describing the situation

in which the users operate a system or service. The

context of use considers the variety of real-world

contexts under different time horizons, concerning

which transport mode is more efficient and responds

better to the needs of travellers.

The passenger-centred approach allows the

identification of the main actions of passengers and their

characteristics during the multimodal D2D journey.

Based on the three scenarios mentioned in Section 3.1, 

a set of most representative use cases was defined. 

These use cases are "ATM-centred", meaning that they 

include the central role of ATM in multimodal 

transport.

3.2 Definition of Use Cases

Definition of the use cases for a given time scenario

consists of the identification of the most representative

passenger profiles, the expected mobility patterns, the

identification of new modes of transport, and the

integration of ATM with multimodal transport modes

through data exchange, with special focus on tools and

solutions that enable efficient travel planning,

management and resilience to various disruptions.

To determine the relevant passengers' needs, the

following key aspects were considered:

• Services and facilities should have affordable

prices, considering the demand market

segmentation.

• The options and solutions provided should be easy

to use and easy to understand.

• Frequent railroad connections to the city centre

should be an asset if an attractive alternative to road-

based transport to/from airports exists.

• Information provided should be exhaustive and of

high quality, particularly in case of disruptions.

• Reliability of services should be guaranteed by

providing alternative solutions, e.g., in case of

unexpected disruptions.

The specifications of the use cases include type,

characteristics, profile and expected behaviour of

different passengers, new modes of transport, the

transport integration and data exchange that cover

planning, management, and resilience to disruptions

during multimodal D2D journey. In total, 18 use cases

were identified. Figure 2 gives an overview of the

defined use cases and the corresponding scenarios.
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Figure 2. Overview of use cases within the time horizons.

The key characteristics of passengers' profiles and their

expected behaviour are based on the distinction between

two types: the business traveller (BT) and visiting

friends and relatives (VFT). These characteristics and

corresponding expected behaviour are then projected in

the future according to three time horizons: 2025, 2035

and 2050. Table 1 gives an example of the BT key

characteristics and corresponding behaviour in 2035.

Table 1. Business traveller profile key points for 2035.

Characteristics Expected behaviour

• Travels alone

(mainly).

• Very high comfort

standard.

• Expect a very short

travel time.

• Few budget limits.

• Travels for a short

stay, small luggage.

• Frequent traveller.

• Adult (18-70 years),

generally in normal

health condition

(minor physical or

sensorial

impairments).

• Relies on dedicated

business services for

travel arrangements

(no reservation or

payment methods

constraints).

• Complete flexibility

for a travel plan

change.

• Spends little time in 

planning the trip; the 

trip is not arranged a 

long time in advance. 

• Personalised/on-

demand travel 

services, even at 

higher costs. 

• Chooses the fastest 

multimodal journey 

combination. 

• Chooses the most 

comfortable, 

effortless travel 

means. 

• Might choose travel 

means to show status, 

according to the 

position in the 

organisation. 

• Might choose travel 

means to reinforce 

sustainability policies 

of his/her company. 

Various assumptions have been made for specifying 

current and future transport modes in determining the 

use cases according to the defined scenarios. For 

example, in scenario 2025, it is assumed that data 

sharing will impact the efficiency of the transport 

system, especially short-range airlines connections. 

There is a good connection between the hub and 

regional airports, and there is a good connection 

between the hub airport and the city by numerous 

transport modes (trains, bus connections, taxis).  



4 Modelling and Validating ConOps  

An essential part of the X-TEAM D2D project is 

developing a simulation framework for evaluating and 

validating the created ConOps. This framework 

represents high-level door-to-door travel where target 

passenger groups use different transport means to reach 

their destination. As X-TEAM D2D is focused on the 

role of ATM and airports in future multimodality, the 

simulation framework is built around two types of 

airports: regional airport and hub airport. 

The framework consists of two parts which represent 

door-to-airport and airport-to-door phases of the 

passenger journey. The schematic representation of 

typical passenger journeys simulated in the framework 

is shown in Figure 3. This paper presents only the first 

half of the door-to-door trip of the simulation 

framework, reflecting the business traveller's door-to-

airport journey in 2025 and 2035. The characteristics of 

the model and simulation experiments set up are 

described in the following sections. 

 

Figure 3. Multimodal passenger trips in 2025 and 2035.  

4.1 Simulation Model Architecture 

The developed simulation framework aims at evaluating 

the impact of future concepts of operations on the 

passenger journey. The simulation framework is based 

on a multiple-layer approach, where first, the existing 

transportation network is created. Then, future transport 

technologies are added on top of that as an additional 

layer considering relevant time horizon assumptions and 

ConOps. Such an approach allows simulating different 

time horizons using the same simulation model, which 

reduces required model building time and allows 

flexible integration of different transport means into an 

overall multimodal network. 

There are three groups of elements implemented in 

the model. The first group, dynamic entities, represents 

passengers and vehicles transporting passengers from 

their origin to the airport. The second group, static 

elements, represent transport stations that the passengers 

can use to embark/disembark on and off transport 

vehicles. These stations serve as the entry, transfer, and 

exit points with a fixed position for the interconnected 

multimodal transport networks and are modelled as 

capacitated servers. The third group is the set of nodes 

and edges connected into a network that vehicles and 

passengers use to move through the space between 

transport stations. Figure 4 shows a part of the 

simulation model representing door-to-airport journey. 

 

Figure 4. X-TEAM D2D simulation model view.

In the model, the arrival of passengers and most

transportation means is generated stochastically based

on the initial assumptions. Some transport means (such

as buses and trains) are generated on a schedule, as

observed in real-life operations. An overview of

modelling assumptions is given in Section 4.2.

The model is implemented in a general-purpose

discrete event simulation software, using the concepts

described above.

4.2 Modelling Assumptions

In the simulation model, the following transport

technologies have been considered:

• Public buses

• Railroad transport (trains)

• Taxi vehicles, running on fossil-based fuel

• Electric scooter or similar form of individual

transport (eScooter)

• Electric taxi vehicles (eTaxi)

• Electric vertical take-off and landing aircraft

(eVTOL)

The following assumptions have been considered in the

model:

• The road infrastructure and its operational

conditions remain unchanged through all time

horizons and correspond to the existing

infrastructure state in 2020.

• Only individual business passengers travelling to

the airport are simulated.
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• Passenger arrival remains stochastic across 

scenarios and follows the same distribution as 

shown in Figure 5. The arrival rate pattern was 

adapted from NV Nederlandse Spoorwegen (2020). 

• All passengers have pre-purchased travel tickets; 

therefore, no purchasing time is considered during 

the journey. 

• Travelling time in the first transport modality also 

includes walking time to the first transport station 

from the passenger's origin location. 

• All transport modes in 2035 are carbon-neutral 

(electric transport). 

• eVTOL operation does not consider possible 

airspace limitations and regulations. 

               
Figure 5. Passengers' arrival rate per hour.

The rest of the assumptions is scenario-specific and

described in Section 5.

5 Simulation Experiments

In the scope of this paper, a journey of BT passengers in

two time horizons, 2025 and 2035, was simulated in

normal and ad-hoc disturbance conditions according to

four scenarios defined in the first phase of the X-TEAM

D2D project. The characteristics of these scenarios can

be found in Table 2 and Table 3. Where it was possible,

the operational characteristics of mobility services were

adapted from the corresponding service operators

(Connexxion, 2021; Electric Scooter Guide, 2021; EV

Database, 2021; NV Nederlandse Spoorwegen, 2021).

It is important to notice that only trains and buses

operated on an on-schedule basis in these scenarios—

the rest of the transport modes operated based on

demand.

The simulated scenarios represent the following

situations:

•  In 2025, BT passengers use public buses to get to

the city train station, from which they take a train to

the airport. The next scenario, 2025d, implies that a

disruption occurs when a passenger arrives at a train

station and the trains no longer operate. To catch the

flight on time, BT passenger has to get a taxi to

reach the airport.

• In 2035, BT passengers use a form of pooled

individual electric transport, such as an electric

scooter (eScooter), to get to the landing site of

eVTOL, from which they can take a direct flight to 

the airport. When a disruption occurs with eVTOLs 

in scenario 2035d, BT passenger has to take an 

electric taxi from the landing site to the airport.  

Table 2. Overview of simulation scenarios for 2025. 

Parameter  2025 2025d 

Use case B025 Bd25 

Operation  Normal Ad-hoc 

disturbance 

Transport used Bus, train Bus, taxi 

Travel distance 1st 

mode, km 

Uniform(0,3) Uniform(0,3) 

Average travel 

speed 1st mode, 

km/h 

18 18 

Transfer time to 

2nd mode, min 

Uniform(1,15) Uniform(1,15) 

Travel distance 

2nd mode, km 

26 22 

Average travel 

speed 2nd mode, 

km/h 

65 60 

Disruption 

location 

- Train station 

Reaction to 

disruption time, 

min 

- Uniform(1,5) 

 

Table 3. Overview of simulation scenarios for 2035. 

Parameter  2035 2035d 

Use case B035 Bd35 

Operation Normal Ad-hoc 

disturbance 

Transport used eScooter, 

eVTOL 

eScooter, 

eTaxi 

Travel distance 1st 

mode, km 

Uniform(0,14) Uniform(0,14) 

Average travel 

speed 1st mode, 

km/h 

27.5 27.5 

Capacity 1st mode, 

passengers 

1 1 

Transfer time to 

2nd mode, min 

Uniform(1,15) Uniform(1,15) 

Travel distance 

2nd mode, km 

13 22 

Average travel 

speed 2nd mode, 

km/h 

200 60 

Capacity 2nd 

mode, passengers 

4 1 

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22

N
u
m

b
e
r 

o
f 
p
a
s
s
e
n
g
e
rs

Time interval

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185189 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

193



Disruption 

location 

- eVTOL 

landing site 

Reaction to 

disruption time, 

min 

- Uniform(1,5) 

 

The total travelled distance and total travel time were

tracked across the simulation experiments to compare

multimodal system performance in the presented

scenarios. Each experiment simulated 25 hours of

passengers travelling from a small European town to an

international airport. The results of these experiments

are discussed in Section 6.

6 Results

Experiments in scenarios 2025 and 2025d reflect the

transportation network performance closest to the

current state of multimodal connectivity. Scenarios

2035 and 2035d reveal some effects of emerging

transport technologies integrated into existing

transportation networks and replacing existing modes of

transport. The results of simulation experiments are

shown in Figure 6 and Figure 7.

Scenario 2025d resulted in a 14% shorter travel

distance than in scenario 2025, as passengers could take

the taxi directly to the airport. This difference, however,

can be strongly dependent on the particular

infrastructure layout. In this study, there is no fast train

connection from the passengers' origin town, which

results in longer travel. In 2035, such layout inefficiency

is considered to be solved by establishing a direct air

connection to the airport. Consequently, as can be seen

in Figure 6, the travel distance was reduced by 26%.

 

               

Figure 6. Travel distance statistics. 

When comparing the distance travelled by business 

passengers in all four scenarios, it can be noticed from 

Figure 6 that the shortest distance corresponds to 2035. 

This result matches a scenario where eVTOL 

technology replaces road and railroad transport and 

provides the most direct connection to the airport. 

However, if eVTOL operations are disrupted and 

business passengers only learn about such disruption 

when they arrive at the landing site (scenario 2035d), 

relying on road transport for a quick solution to reach 

the airport creates a significant increase in travel 

distance – by 50% on average. 

A similar effect can be observed in travel times. As 

shown in Figure 7, using a taxi in scenario 2025d allows 

reducing travel times by 5% on average. However, in 

2035d, using an electric taxi in case of disruptions 

increases travel time by 40%, which means 8% longer 

travel than in scenario 2025d. 

               

Figure 7. Travel time statistics. 

To summarise, business travellers are expected to win 

significantly in travel time and distance if new 

technologies like electric scooters and eVTOL are 

introduced into transportation networks. Nevertheless, if 

the existing road infrastructure and its speed limitations 

remain unchanged up to 2035, the improvement of 

travel times will be lost for business passengers who 

encounter disruptions on their way to the airport. The 

latter means that not only technological and IT 

advancements are required for the improvement of 

passenger travel, but a system-wide redesign of the 

transportation network and consideration of potential 

inefficiencies in the concepts of future transport 

operations are needed. 

7 Conclusions and Further Work 

For seamless integration of existing and future transport 

technologies into an overall multimodal network with a 

high level of passenger service, the Concept of 

Operations (ConOps) have to be developed and 

validated. These concepts will ensure the inclusiveness 

and resilience of the future transportation network for all 

types of passengers. To define and validate such 

operational concepts, project X-TEAM D2D performed 

an extensive technological review for 2025, 2035, and 

2050 and developed a simulation platform to assess the 

system performance.  

In this paper, the authors used the framework to 

obtain preliminary results of the door-to-airport trip of 

business passengers. According to these initial results, 

emerging technologies such as individual electric 

transport and electric vertical take-off and landing 

aircraft can improve business passengers travel times in 
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2035 by 26%. However, considering the assumptions 

taken, if these passengers rely on on-demand road 

transport in case of disruptions, the resulting journey 

duration will be almost as long as in 2025.  

In the simulated scenarios, it was assumed that the 

passengers noticed the disruption only when they 

arrived at the eVTOL port, which might not be the case 

if relevant journey planning systems are integrated 

sufficiently in 2035. As future work, the simulation 

framework will be expanded to reflect the state of the 

transportation networks in 2050. The developed 

ConOps will be integrated into the framework to 

perform their validation and evaluation. Furthermore, 

more performance indicators, visiting friends and 

families and other passenger profiles will be added to 

the framework to reflect better passenger-specific needs 

and goals of the multimodal systems in 2025, 2035 and 

2050. 

Acknowledgements 

Project X-TEAM D2D has received funding from the 

SESAR Joint Undertaking with GA No 891061 under 

European Union's Horizon 2020 research and 

innovation program. The authors would like to express 

their gratitude to the Dutch Benelux Simulation Society 

(www.dutchBSS.org) and EUROSIM for disseminating 

the results of this work. 

References 

AGES. Eurovignette. The easy way to pay, 2021. URL 
https://www.ages.de/en/eurovignette.htm

l. 

Connexxion. Up-to-date travel information, 2021. URL 
https://www.connexxion.nl/en/travel-

information/up-to-date-travel-

information. 

Electric Scooter Guide. Best electric scooters of 2021: 

according to science and exclusive data, 2021. URL 
https://electric-scooter.guide/best-

rated/best-electric-scooters/. 

Eurocities. Stories, 2021. URL 
https://eurocities.eu/stories/. 

European Commission. Trans-European Transport Network 

(TEN-T), 2021. URL 
https://ec.europa.eu/transport/themes/i

nfrastructure/ten-t_en. 

European Commission. Cooperative, connected and 

automated mobility (CCAM), 2018. URL 
https://ec.europa.eu/info/law/better-

regulation/have-your-

say/initiatives/1957-Cooperative-

connected-and-automated-mobility-CCAM-

_en. 

European Commission. A European green deal, 2020. URL 
https://ec.europa.eu/info/strategy/prio

rities-2019-2024/european-green-deal_en. 

European Commission. Flightpath 2050. Europe’s vision for 

aviation, 2011. doi: 10.2777/50266 

EV Database. Top speed of full electric vehicles cheatsheet, 

2021. URL https://ev-

database.org/cheatsheet/top-speed-

electric-car. 

Inclusive Design Research Centre. What is Inclusive Design, 

2021. URL 
https://legacy.idrc.ocadu.ca/about-the-

idrc/49-resources/online-

resources/articles-and-papers/443-

whatisinclusivedesign. 

Maria Kamargianni, Weibo Li, Melinda Matyas, and Andreas 

Schäfer. A Critical review of New Mobility Services for 

urban Transport. In Transportation Research Procedia, 

pages 3294–3303, 2016.  doi: 10.1016/j.trpro.2016.05.277. 

NV Nederlandse Spoorwegen. Travel information, 2021. 

URL https://www.ns.nl/en/travel-

information. 

NV Nederlandse Spoorwegen. Traveller behaviour, 2020. 

URL 
https://dashboards.nsjaarverslag.nl/rei

zigersgedrag/schiphol-airport. 

Organisation for Economic Co-operation and Development, 

International Transport Forum. Leveraging digital 

technology and data for human-centric Smart Cities. The 

case of Smart Mobility, 2020. 

James J. Pirkl. Transgenerational design: products for an 

aging population. Van Nostrand Reinhold. 1994.  

United Nations, Department of Economic and Social Affairs, 

Population Division. World Population Prospects 2019: 

Highlights, 2019. 

 

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185189 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

195



Formulation of Stochastic MPC to Balance Intermittent Solar
Power with Hydro Power in Microgrid

Madhusudhan Pandey, Dietmar Winkler, Roshan Sharma, Bernt Lie*

TMCC, University of South-Eastern Norway, Bernt.Lie@usn.no

Abstract
In a microgrid with both intermittent and dispatchable
generation, the intermittency caused by sources such as
solar power and wind power can be balanced using dis-
patchable sources like hydro power. Both generation and
consumption are stochastic in nature and require future
prediction. The stochasticity of both generation and con-
sumption will drift the grid frequency. Improved perfor-
mance of the grid can be achieved if the operation of the
microgrid is optimized over some horizon, for instance
formulating Model Predictive Control (MPC), with the
added problem that intermittent sources vary randomly
into the future. In this paper, first, we have formulated a
deterministic MPC and compared it with a PI controller.
Second, a stochastic MPC (SMPC) based on a multi-
objective optimization (MOO) scheme is presented. Re-
sults from deterministic MPC show that the overall perfor-
mance of MPC is better than the PI controller for dispatch-
ing the required amount of hydro power into the grid and
simultaneously constraining the grid frequency. Results
from SMPC indicate that there exists a trade-off between
the amount of water flow through the turbine and the rate
of change of the turbine’s valve while constraining the grid
frequency.
Keywords: microgrid, load and generation balance, in-
termittent injection, dispatchable hydro power, frequency
stability, stochastic MPC

1 Introduction
1.1 Background
The demand for electricity generation from renewable en-
ergy is increasing because of oil insecurity, climatic con-
cern, and the nuclear power debate. Renewable energy
consists of intermittent and dispatchable energy sources.
Intermittent generation from sources such as solar power,
wind power, and tidal power exhibit fluctuating power pro-
duction and creates an imbalance between generation and
load. However, renewable dispatchable sources such as
hydro power plants play a significant role in balancing out
the variability caused by intermittent sources.

For instance, in a microgrid supplying electrical power
to a common consumer load with generation from inter-
mittent solar power and a dispatchable hydro power plant,
injection of intermittent solar power into the grid creates
a fluctuation in grid frequency. Assuming that he grid fre-

quency must be maintained at the range of (50±5%) Hz,
it is of interest to dispatch the required amount of hydro
power into the grid for balancing out the load and the gen-
eration while maintaining the grid frequency in that range.

However, the required amount of hydro power produc-
tion can not be dispatched instantaneously. In reality,
changes in hydro power production are constrained by in-
ertia in water and rotating mass, and the need to avoid
wear and tear in actuators and other equipment. Further-
more, both solar power and consumer load are not known
perfectly. The solar power and consumer load intermit-
tency cause power imbalance into the grid and drifting in
grid frequency. Improved performance can be achieved
if the operation of the microgrid is optimized over some
horizon with the added problem that intermittent power
varies randomly into the future. Optimal management of
dynamic systems over a future horizon with disturbances
is often posed as an MPC problem.

1.2 Previous Work
An MPC approach had been applied for controlling water
flow into the turbine in (Zhou, 2017). The use of MPC
with consideration of dynamical model of hydro power
systems is presented in (Munoz-Hernandez et al., 2012).
Simulation results with different operating conditions and
disturbances from previous work emphasize the use of
an MPC-based approach over the optimal PI controllers
(Avramiotis-Falireas et al., 2013; Bhagdev et al., 2019;
Reigstad and Uhlen, 2020). In a recent study of (Pandey
et al., 2021) stochastic analysis of deterministic MPC for
a dynamical model of microgrid was performed. It is of
interest to further extend the work of (Pandey et al., 2021)
with SMPC with the addition of comparison between a PI
controller and deterministic MPC.

1.3 Outline of the Paper
Section 2 provides a system description. The mathemat-
ical model of the microgrid is detailed in Section 3. The
implementation of a deterministic MPC and a stochastic
MPC is given in Section 4 and Section 5, respectively.
Section 6 provides results and discussions. Conclusions
and future work are outlined in Section 7.

2 System Description
Consider a microgrid as in Figure 1 a) operated at con-
sumer load P̀ and supplied with intermittent solar power
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Figure 1. System description.

Ps. The difference between the intermittent generation and
load is balanced with dispatchable hydro power Ph. Figure
1 b) shows the hydro power plant with reservoir, intake,
surge tank, penstock, and turbine connected to the micro-
grid with an electrical generator. Figure 1 c) shows the Ns
future scenarios generated in SMPC from the past data of
Ps and P̀ . SMPC, as shown in the figure, keeps track of
the constraint violation in grid frequency f for 50±5%Hz
and generates the turbine valve signal uv and hydro power
Ph dispatched into the grid based on the stochastic input
from solar and consumer load.

3 Mathematical Model
3.1 Hydro Power Plant
The mathematical model for a hydro power plant shown in
Figure 1 b) is taken from (Pandey et al., 2021) and given
as

dh
dt

=
V̇s

As
(1)

dV̇s

dt
=

As

ρh
(pn− pa)−

πDsV̇s | V̇s |
8A2

s
fD,s−gAs (2)

dV̇p

dt
=

Ap

ρLp
(pn− pt)−

πDpV̇p | V̇p |
8A2

p
fD,p +gAp

Hp

Lp
, (3)

with algebriac equations given by

pt = pa

(
1+
(

V̇p

Cvuv

)2
)

(4)

dV̇i

dt
=

Ai

ρLi
(pa +ρgHr− pn)−

πDiV̇i | V̇i |
8A2

i
fD,i +gAi

Hi

Li

(5)

V̇i = V̇s +V̇p (6)

Ph = ηh (pt− pa)V̇p, (7)

where the intake, the surge tank, and the penstock are sub-
scripted with i, s and p, respectively. h is is the water level
and V̇ is the volumetric flow rate. Readers are requested
to follow (Pandey et al., 2021) for notation.

3.2 Solar Power and Consumer Load
Solar power is calculated based on the solar irradiance kI
and given by

Ps = ηsAkI (8)

where ηs is the efficiency of a solar panel and A is the
effective area of panels in the solar farm.

In contrast, the consumer load P̀ is modeled with the
measurement data.

3.3 Grid
The grid is modeled with the swing equation given as

d f
dt

=
Pm−Pe

4π2 f J
(9)

where Pm is the mechanical power input into the microgrid
with

Pm = Ph +Ps (10)

and Pe is the electrical power load from the grid. The total
inertia of the grid is represented by J.

3.4 Canonical Representation of the Model
The differential algebraic equations (DAEs) can be written
in a canonical form of

dx
dt

= f (x,z,u,w;θ)

0 = h(x,z,u,w;θ)

y = g(x,z,u,w,v;θ) ,

where x, z, u, and θ represents system states, algebraic
variables, inputs, and parameters respectively. w is the
process disturbances and v is the measurement noise. For
the microgrid shown in Figure 1 a) represented by mathe-
matical equations from Eqs. (1) to (10), we have

x =
(
h,V̇s,V̇p, f

)
z =

(
pt, pn,V̇i,Ph,Pm

)
u = uv

w = Ps

θ = (H j,L j,D j,A j,Hr,ηh,Cv) ,∀ j = {i,s,p} (11)
y = Pe,

where the intermittent solar power Ps is considered as pro-
cess disturbance and all states are assumed to be mea-
sured.

3.5 Case Study
It is of interest to see how a 5 MW hydro power plant
can be used for balancing a 4 MW rated consumer load
supplied with solar power. Table 1 lists specifications for
power plants containing rated information, geometrical di-
mensions and efficiencies.
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Table 1. Specifications of the power plants.

Parameters Symbols Values
Hydro power plant:
Rated power Pr

h 5 MW
Nominal head, discharge, valve signal Hn,V̇ n,un

v 120m,4m3/s,0.95120 m, 44 m3/s,0.95
Height difference of reservoir, intake, surge
tank and penstock

Hr,Hi,Hs,Hp 20m,20m,50m,70m

Length of intake, surge tank and penstock Li,Ls,Lp 1000m,50m,80m
Diameter of intake, surge tank and penstock Di,Ds,Dp 3m,2m,2m
Hydraulic efficiency of hydro turbine ηh 0.96
Inertia of turbine-rotor Jh 1 ·103 kgm2

Solar power plant:
Rated power and irradiance Pr

s ,k
r
I 2.5MW,600W/m2

Effective area of total panels A 25000m2

Solar panel efficiency ηs 0.14

4 Deterministic MPC
A deterministic MPC can be formulated assuming known
inputs from solar power Ps and consumer load P̀ . We want
to formulate a setpoint tracking problem for P̀ .

4.1 Cost Function
The chosen cost function for formulating optimal control
problem (OCP) for the deterministic MPC is taken from
(Pandey et al., 2021) given as

min
uk

Jd =
Np

∑
k=1

(yk− rk)
2 + p ·∆u2

k−1 (12)

s.t.
xk+1 = f (xk,zk,uk,wk;θ)

0 = h(xk,zk,uk,wk;θ)

yk = g(xk,zk,uk,wk,vk;θ)

x` ≤ xk ≤ xh

u` ≤ uk ≤ uh

∆u` ≤ ∆uk ≤ ∆uh,

where ` and h represents low and high bounds for states,
inputs, and rate of change of inputs. Np is the number
of future samples in the prediction horizon where OCP is
formulated. p is scalar weight for tuning the controller. r
is the reference taken for consumer load power P̀ .

4.2 OCP Formulated in JuMP.jl
The internal structure of OCP is formulated in the Ju-
lia language1 using JuMP.jl (Dunning et al., 2017), a Ju-
lia package for modeling mathematical optimization prob-
lems. JuMP provides an easy way of describing optimiza-
tion problems containing linear and nonlinear constraints.
JuMP also supports automatic differentiation (AD) using
the package ForwardDiff.jl (Revels et al., 2016) which is

1https://julialang.org/

Figure 2. OCP formulated for deterministic MPC in JuMP.jl.

a most useful property rarely supported by other mod-
eling languages. Several open-source solvers are avail-
able for solving models described in JuMP. Our choice
of JuMP solver is Ipopt2. We have represented the plant
by a Modelica model, and the controller model is imple-
mented in Julia. These interact via OMJulia3. OMJulia
is an OpenModelica-Julia interface providing application
programming interfaces (APIs) for advanced model anal-
ysis in Julia.

Figure 2 shows the internal structure of OCP formu-
lated in JuMP.jl for deterministic MPC. In the figure,(

x∗(1),u∗(1),y∗(1)
)

represents first optimal values of states,
control inputs and control outputs from OCP. We have as-
sumed that all the states are known. These optimal con-
trol inputs are then applied to the emulated real plant de-
veloped in OpenModelica4. Similarly, both the optimal
states and the control inputs are applied to the mathemat-
ical model. The states, inputs, and outputs are accessed
through OMJulia APIs for further iteration.

2https://github.com/jump-dev/Ipopt.jl
3https://github.com/OpenModelica/OMJulia.jl
4https://www.openmodelica.org/
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5 Stochastic MPC
Several stochastic MPC algorithms can be used for han-
dling uncertainty in the system (Camacho and Bordons,
2016). A comparative study on stochastic MPC is given
in (González et al., 2020). Comparison of the different
stochastic MPC algorithms are out of the scope of this pa-
per. In this paper, more focus is on the implementation
of the dynamic formulation of the microgrid with stochas-
tic solar power and load power. We have chosen multi-
objective optimization (MOO) based stochastic MPC with
similar formulation from the previous work our institution
(Menchacatorre et al., 2020) as it is easier to formulate and
have a quick analysis. In MOO-based stochastic MPC, we
create scenarios of random disturbances; and in our case
the random disturbances are Ps and P̀ . Each scenario is
then assigned with an objective function or a constraint.
When each of the objective functions is summed together
by assigning weights to each of the objectives, a single ob-
jective function is created which is called a weighted-sum
MOO.

5.1 Cost Function
The MOO based cost function for Ns number of stochastic
scenarios for Ps and P̀ is given as

min
uk

Js =
Ns

∑
s=1

(
Np

∑
k=1

(ys
k− rs

k)
2 + p ·∆u2

k−1

)
(13)

s.t.
xs

k+1 = f (xs
k,z

s
k,uk,ws

k;θ)

0 = h(xs
k,z

s
k,uk,ws

k;θ)

yk = g(xs
k,z

s
k,uk,ws

k,v
s
k;θ)

x` ≤ xs
k ≤ xh

u` ≤ uk ≤ uh

∆u` ≤ ∆uk ≤ ∆uh,

where we have considered each of the scenarios to be
equally important; thus the total objective is formulated
summing objective function of each of the scenarios. This
cost function is used for formulating OCP for stochastic
MPC. A stochastic MPC is formulated by solving OCP for
each iteration considering Np number of future samples in
the prediction horizon.

5.2 Stochastic Scenarios for Ps and P̀
Real measurement for solar irradiance is taken for Kjølnes
Ring 56, Campus Porsgrunn, University of South-Eastern
Norway, 9.6714 longitudes and 59.13814 latitudes from
www.solcast.com. The measurement data is updated at
every 5min throughout the day. The real measurement
for consumer load is taken for monthly hourly averaged
load for Norway from ENTOS-E5. The magnitude of mea-
surement data for electrical demand is modified as per our
case study with a microgrid with a power capacity of 5

5https://www.entsoe.eu/data/power-stats/

Figure 3. Scenarios generation based on the past measurement.

Figure 4. Scenarios generation for P̀ .

MW keeping the load dynamics preserved in hourly data.
Furthermore, the hourly sampled data is interpolated for
creating consumer load with a sampling of 5min.

Between each of the measurements, scenarios are gen-
erated using a stochastic evolution equation considering
a Brownian motion6. The stochastic evolution equation
based on the Brownian motion is used as a generatrix and
a straight line between the two measurements is used as a
directrix.

Figure 3 shows the method for generating future scenar-
ios based on the past and current measurements sampled

6https://en.wikipedia.org/wiki/Brownian_motion
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at 5min. In the figure, the future measurement F is pre-
dicted from past measurement P and current measurement
C. Assuming measurement P,C and F are co-linear we
have

F−C
(m+2)− (m+1)

=
C−P

(m+1)−m
,

which gives
F = 2C−P.

The stochastic scenarios are then creating using Brownian
motion between current measurement C and future predic-
tion F .

Figure 4 a) shows consumer load on a typical day with
measurement data taken at 5min. Figure 4 b) shows rate
of change of consumer load for ∆t→ 5min where the data
points within a day consist of 288 data points and repre-
sented as P̀ = {P̀ [m] ∀m ∈ 1 : 288}. The figure shows
that the bound for ∆P̀

∆t=5min lies in [−0.002,0.009]. The
standard deviation for Brownian motion for creating sce-
narios is then set to > 0.011. Figure 4 c) shows the fu-
ture predicted P̀ from the past measurement P and cur-
rent measurement C considering co-linear existence be-
tween P,C and F as shown in Figure 3. For P̀ in Figure
4 b) we have assumed that P = P̀ [99], C = P̀ [100] and
F = P̀ [101]. Figure 4 c) shows 20 scenarios generated us-
ing Brownian motion. The same procedure is applied for

Figure 5. Scenarios generation for Ps.

predicting Ps as shown in Figure 5 where the standard de-
viation for Brownian motion is set to > 0.3 which is com-
paratively larger than in case of consumer load scenarios
generation. The standard deviation in scenarios is much
higher in case of prediction of Ps because of the clouds.
A more rigorous algorithm for predicting scenarios of Ps
depends on the information of clouds injected into the pre-
diction algorithms. Since we have only focused on formu-
lation of stochastic MPC, we neglected the part of con-
sidering cloud information while generating scenarios for
Ps.

5.3 Stochastic OCP
We have considered the prediction horizon of Np = 10.
The discretization time of the controller for SMPC is cho-
sen to be ∆t = 5s based on our previous work for a micro-
grid with around 5MW (Pandey et al., 2021). For moving
along the stochastic prediction horizon of Ps and P̀ , the
states and the outputs are updated taking the mean of the
first value of each of the scenarios of states and outputs
from the stochastic OCP.

6 Results and Discussions
6.1 Deterministic MPC
Figure 6 shows setpoint tracking formulation of consumer
load P̀ using both deterministic MPC and a PI controller.
The MPC is characterized by tuning parameter p = 0.1,
Np = 5 and ∆t = 1s. Similarly, the PI controller is charac-
terized with Kp = 0.05 and Ti = 3s. The initial tuning of
the PI controller is based on the SIMC method (Skoges-
tad, 2001) and the final tuning was performed manually.
The setpoint tracking of P̀ using the PI controller is per-
formed using OpenHPL in OpenModelica while the MPC
is formulated as in Figure 2 in conjunction with real plant
considering from OpenHPL and the control model is for-
mulated in Julia. The control model is discretized using
Euler discretization.

Figure 6 a) shows the setpoint tracking using both MPC
and PI controller. A step change in P̀ is performed
at time =25s while a step change in Ps is performed at
time =50s. Figure 6 b) shows the hydro power dispatched
into the grid from both the MPC and the PI controller. The
control input, turbine valve signal uv, for controlling the
flow rate through the penstock for balancing the load and
the generation is shown in Figure 6 c). Similarly, Figure 6
d) shows the grid frequency f of the microgrid. In Figure 6
c) we see that uv in case of the MPC is smoother and less
fluctuating than uv in case of the PI controller. Further-
more, since an MPC works based on the future horizon, in
Figure 6 c) the turbine valve signal uv in case of the MPC
is increased from 0.4 to 0.6 at time≈23s keeping the con-
straint in grid frequency for f ≈ 50Hz (small deviation not
shown in the figure). Contrary to the performance of the
MPC, from the figure the turbine valve signal is increased
exactly at time =25s while the grid frequency f fluctuates
from 50Hz to 47.5Hz. The PI controller is able to regain
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Figure 6. Setpoint tracking using deterministic MPC and PI
controller.

the grid frequency around 50Hz after ≈ 5s. Similar, re-
sults can be seen in the case of hydro power Ph dispatched
into the grid and the electrical power Pe. The similar dy-
namics of P̀ and Pe with uv in case of both the MPC and
the PI controller can be related from Equations (4), (7),
and (9). Overall, the performance of the MPC is better

than that of the PI controller.

6.2 Stochastic MPC
Figure 7 shows the tracking of the future predicted con-
sumer load P̀ based on the future prediction of solar
power Ps into the grid where both future predicted P̀ and
Ps are taken from Section 5.2. The MOO based stochas-
tic MPC is characterized by Np = 10, Ns = 20, p = 0.1
and ∆t = 5s. The next scenarios for P̀ and Ps are updated
every 5min = 300s using the current measurement C and
the past measurement P as shown in Figure 3.

Figure 7 a) shows the turbine valve signal uv generated
for each of the scenarios considering a deterministic MPC.
The results for uv from the deterministic MPC for each of
the scenarios are considered as an ensemble of trajecto-
ries for uv. In the figure, uv (MOO) is the results from the
stochastic MPC based on MOO in tandem with the ensem-
ble of results from deterministic MPC for each of the sce-
narios. The fluctuation in the grid frequency is negligible
as in the range of 1 ·10−4 rad/s for both the deterministic
and stochastic case as shown in Figure 7 f). Figure 7 b), c),
d) and e) show the results from both the deterministic and
stochastic case for hydro dispatched Ph, electrical power
into the grid Pe, flowrate into the penstock V̇p, and the wa-
ter mass oscillation inside the surge tank h, respectively.

7 Conclusions and Future Work
In this paper formulation of a deterministic and a stochas-
tic MPC is performed for a microgrid supplied with in-
termittent solar power and dispatchable hydro power for
constraining the grid frequency at f = 50Hz. A determin-
istic MPC is compared with a PI controller. Furthermore,
for the stochastic MPC, the scenarios for solar power and
the consumer load are predicted using Brownian motion
using past and current measurement data. A MOO-based
stochastic MPC is implemented.

Results indicate that the deterministic MPC performs
better for constraining the grid frequency of the micro-
grid at f = 50Hz than to the PI controller. The stochastic
MPC based on MOO shows better result than determinis-
tic MPC while constraining the grid frequency.

Future work includes the implementation of stochastic
MPC with scenario generation for solar power with the
inclusion of cloud factors.
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Droop Control of Hydro Power System in OpenHPL
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Abstract
OpenHPL is an open-source hydro power library for mod-
eling, design, and analysis. Currently, OpenHPL consists
of mechanistic models for waterways from a reservoir to
tailrace, Francis and Pelton turbine models, a simple gen-
erator model, hydro power speed governor model, etc.
However, the library lacks a controller for the parallel op-
eration of hydro powers. This paper mainly focuses on
extending OpenHPL with power-frequency droop control
for a multi-generator system. Two simulation case studies
are carried out for the parallel operation of hydro power
units.
Keywords: Parallel operation of hydro powers, multi-
generator system, Droop control, OpenHPL

1 Introduction
1.1 Background
Electricity generation from renewable sources is increas-
ing because of oil insecurity, climatic concern, and the nu-
clear power debate. Renewable energy is a combination
of intermittent and dispatchable energy sources. Intermit-
tent sources like solar, wind, and tidal power plants ex-
hibit fluctuating power production that creates an imbal-
ance between generation and load. In this regard, renew-
able dispatchable sources like hydro power plants play a
significant role in balancing out the variability caused by
intermittent sources. Current hydro power modeling, de-
sign, and analysis tools are free or available commercially.
Freely available tools include CASiMiR-Hydropower1,
LVTrans2, and OpenHPL3, while commercial tools in-
clude Alab4 and Modelon Hydro Power Library (HPL)5.
This drives a motivation for an open-source hydro power
library development for modeling, design, and analysis.

A mechanistic model of hydropower systems had been
developed in (Splavska et al., 2017) using mass and mo-
mentum balances which leads to a Modelica6 based open-
source hydropower library OpenHPL, and was initiated in
a PhD study (Vytvytskyi, 2019). OpenHPL is under devel-
opment at the University of South-Eastern Norway. Cur-
rently, OpenHPL has units for the flow of water in filled

1http://www.casimir-software.de/save_download.php?language=2
2http://svingentech.no/about%20lvtrans.html
3https://github.com/simulatino/OpenHPL
4http://www.alab.no/Alab-Hydropower-Software/Functionality-

Alab-Hydropower-Software/Operation-simulation-with-waterway
5https://www.modelon.com/library/hydro-power-library/
6https://www.modelica.org/

pipes (inelastic and elastic walls, incompressible and com-
pressible water) (Vytvytsky and Lie, 2017), a mechanis-
tic model of a Francis turbine (including design of tur-
bine parameters) (Vytvytskyi and Lie, 2018), etc. The li-
brary is further extended with mechanistic models of dif-
ferent kinds of surge tanks and draft tubes (Pandey and
Lie, 2020, Submitted). In addition, some accompany-
ing work on analysis tools has been developed in script-
ing languages (Python, Julia) related to state estimation,
structural analysis, etc (Vytvytskyi and Lie, 2019). The
library has been tested on real power plant data (Pandey
and Lie, 2020). The library can be interfaced with other
Modelica libraries, for example, OpenIPSL7 for genera-
tor and grid, PhotoVoltaics8 for solar power plants, and
WindPowerPlants9 for wind power plants as in (Pandey
et al., 2021; Pandey and Lie, 2020). However, the library
lacks hydro power controllers for parallel operation of hy-
dro power and load frequency control in an interconnected
power system network.

In this regard, it is of interest to extend OpenHPL with
hydro power controller models. This paper mainly fo-
cuses on developing a droop control mechanism applied
for the parallel operation of hydro turbine generating units
in OpenHPL.

1.2 Outline of the Paper
Section 2 presents a speed governing mechanism in a hy-
dro power plant. Section 3 provides the concept of droop
control in the parallel operation of hydro power plants.
The implementation of droop control is tested via case-
studies in Section 4. Finally, conclusions and future work
are presented in Section 5.

2 Speed Governor for Single Hydro
Power Plant

2.1 Governing mechanism
Figure 1 a) shows the speed governing mechanism in a
hydro power plant. In the figure, T is the turbine, G is the
generator and Pg is the generated power from the T-G ag-
gregate which is supplied to cover the consumer load P̀ .
When there is a difference in power generation and con-
sumer load, the volumetric discharge V̇ through the tur-
bine is controlled which in turn controls the generation

7https://github.com/OpenIPSL/OpenIPSL
8https://github.com/christiankral/PhotoVoltaics
9https://github.com/christiankral/WindPowerPlants
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Figure 1. Speed governing in a hydro power system.

from the generator. To achieve this generation control, the
shaft speed ω = 2π f of the T-G aggregate system is com-
pared with the reference speed ω ref = 2π f ref by the speed
governing system to generate a valve signal uv for control-
ling the flow valve FV. It is of interest to design a speed
governing system using a PI-controller in OpenHPL using
a case study of a real hydro power plant.

2.2 Trollheim Hydro Power Plant
Figure 1 b) shows the layout of Trollheim hydro power
plant (HPP) in Norway, with nominal power output
130MW, nominal discharge rate 40m/s2, and nominal
rated speed 380rpm. The diameter of the intake tunnel
is 7m, and the diameter of both the surge tank and the
penstock is 4m. Figure 1 c) shows the model of Troll-
heim HPP created in OpenHPL. Models in OpenHPL are
created simply by “dragging and dropping” hydro power
units, and then connecting them together from the outlet
of one unit to the inlet of another unit as in the case of the
surge tank and the penstock shown in the figure. In Fig-
ure 1 c) a controller is used to maintain the frequency of
T-G aggregate to f ref = 50Hz while controlling the flow
through the turbine to balance the generation and the load.
The controller is a PI controller taken from the built-in
Modelica Standard Libraryand is characterized by a pro-
portionality gain Kp and an integral time constant Ti.

2.3 Tuning of PI Controller
The PI controller is tuned based on the SMIC-PI tuning
rule (Skogestad, 2001). In the SMIC-PI tuning method,
a process is considered as a first-order system plus delay
with a generalized transfer function as

G(s) =
k

τs+1
e−θs. (1)

Controller parameters Kp and Ti are selected as

Kp =
1
k

(
τ

τc +θ

)
(2)

Ti = min(τ,4(τc +θ)) (3)

where τc is considered as the tuning parameter and acts as
a trade-off between (i) a fast controller response, and (ii)
stability, robustness, and small input usage. For a reason-
able response with good robustness we set τc = θ . In ad-
dition, the controller response becomes faster as the value
of τc is decreased, and slower/smoother as the value of τc
is increased.

2.4 Step Change in Load Power P̀
Figure 2 shows the step responses from the PI controller
for Trollheim HPP. The PI controller is specified by Kp =
0.2 and Ti = 5. Figure 2 shows the respective generated
power Pg from the hydro power plant to balance the con-
sumer load P̀ . Figure 2 also shows the turbine valve sig-
nal for controlling the water flow through the turbine to
balance the load and the generation while maintaining the
system frequency at 50Hz.

3 Control of Multiple Hydro Power
Plants

3.1 Problem Description
Next, consider operation of multiple hydro power plants
connected to the same grid as shown in Figure 3 a), with
generator i supplying power Pg,i to a common consumer
load P̀ . For each of the T-G aggregates, what happens if
we use the same speed governing mechanism as in Fig-
ure 1 a)? The grid frequency is determined by the “swing
equation”, essentially

Jeq
dω

dt
=

1
ω

(
∑

i
Pg,i − P̀

)
(4)

where ω is the common electric grid angular velocity re-
lated to frequency f by ω = 2π f , and Jeq is the equiv-
alent moment of inertia of all generators, referred to the
electric grid frequency. If we use PI controllers as in Sec-
tion 2, we essentially try to specify a single variable ( f
or ω) by changing many guide vane openings, one for
each generator. This implies that we have many more un-
knowns (guide vane openings) than equations (specifying
f or ω),and there is no unique solution. In practice, using
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Figure 2. Step response from the PI controller for Trollheim
HPP. a) Step change in load power P̀ from 50% loading to 80%
loading and the corresponding generation Pg from the hydro tur-
bine, b) turbine valve signal uv, and c) frequency f of the plant.

one PI controller per generator will lead to wildly oscillat-
ing control outputs, and the system will break down

(Schavemaker and Van der Sluis, 2017). In summary,
we can only use one PI controller when controlling a sin-
gle variable (the grid frequency). Thus a different strategy
is needed for multiple generators.

In practice, the Transmission System Operator (TSO)
makes a prediction of the next-day power consumption,
Pref
` . In a competitive power market, power producers

make a bidding on amount of power produced at a sug-
gested price, and the TSO allots a share Pref

`,i of the pre-
dicted power load to generator i (alternatively: to a power
area i) such that Pref

` = ∑i Pref
`,i .

The real next-day power load P̀ will differ from the
predicted/reference power load Pref

` leading to a frequency
f which differs from the reference frequency f ref (typi-
cally 50Hz or 60Hz), and a mechanism is needed to dis-
tribute the difference P̀ −Pref

` among all the generators in
a way which takes into account their capacity and drives f
towards f ref. This distribution of the difference is com-
monly done using a droop control mechanism as illus-
trated in Figure 3 a). The droop control mechanism can be

Figure 3. Concept of droop control for parallel operation of
hydro power plants.

applied in diverse filed of engineering. Typical examples
include the use of droop control in microgrid (Pota, 2013),
inverters (Zhong and Zeng, 2016), oil and gas (Sharma
et al., 2011), etc. The load power P̀ and the grid fre-
quency f are compared with the reference load power Pref

`

and the reference frequency f ref . The droop controller
makes a one-to-one power-frequency relation as in Figure
3 b) and distributes the proportioned signal to each of the
generators’ controller to restore the grid frequency. The
droop controller operates based on the droop characteris-
tics of each of the generators.

3.2 Concept of Droop Control
Figure 3b) shows the concept of the droop power-
frequency control in a hydro power system. A droop is
a slope of two independent variables in a dynamical sys-
tem. For instance, the slope between the consumer P̀ and
the frequency of the system f in a hydro turbine-generator
power system can be represented by a power-frequency
droop. When there is a sudden change of a consumer load
there is a change in the system frequency. When the con-
sumer load is greater than the generation, the system fre-
quency decreases, and vice-versa. The droop D in case
of power-frequency relation is expressed, thus, with the
negative slope and defined as,

D =−∆ f/ f ref

∆P/Pr (5)

where f ref and Pr are the reference frequency (normally
taken as 50Hz or 60Hz depending on the power system
network) and the rated power for the hydro power system,
respectively. ∆ f is the change in frequency for the change
in generation and load represented by ∆P. The values of
the droop for a typical hydro power system are set in the
range of (2%−6%).
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Figure 4. a) Internal structure of a droop controller b) Error from droop controller for the plant with PI-controller.

Figure 3b) shows the power-frequency characteristics
or the droop characteristics for the operation of a multi-
generator systems. The operation of the plant with droop
characteristics D1 at position ”1” is shifted to position ”2”
when the consumer load changes suddenly by ∆P1 with
a drop in frequency ∆ f1; and so on for the other systems
with droop characteristics D2,D3, ....Dn. The relationship
between droop characteristics of each of the parallelly ran
multi-generator systems is transferred into one-to-one P−
f relation. In the figure, ∆P is the overall difference in
the generation and the load which is distributed to each of
the generators for restoring f from the droop controller.
The generation to be increased by the ith generator to cope
with the total variation ∆P in the multi-generator system,
is given as,

∆Pi =−Pr
i

Di

(
f − f ref

f ref

)
. (6)

3.3 Internal Structure of Droop Controller

Figure 4 a) shows the internal structure of a droop con-
troller. The grid frequency f is calculated based on the
measurement available for the generation Pg,i and the load
P̀ using the swing equation. For each of the generators,
based on the droop Di, power rating Pr

i and the grid fre-
quency f , an error signal ∆Pi is generated for the PI con-
troller of the generator which is used to change the guide
vane opening of the hydro turbine as shown in Figure 4 b)
which drives the grid frequency f towards f ref.

Table 1. Parallel operation of two turbines for Trollheim HPP.

Units Pr D Kp Ti
Unit-1 65MW 4% 0.03 3
Unit-2 65MW 5% 0.03 3

4 Case Studies

4.1 Case Study-1

We now consider Trollheim HPP with two hydro turbine
units operating in parallel for supplying to a common con-
sumer load P̀ . The droop, rated power, and values of Kp
and Ti are given in Table 1.

Figure 5 a) shows the total load and the generation from
the hydro power units. In the figure, at time = 30s load is
increased from 65MW to 90MW. To compensate the in-
crease in 25MW load, according to Eq. (6), Unit-1 should
produce D2

D1+D2
∆P = 5

4+5 ·25 ≈ 14MW and Unit-2 should
then produce ≈ 11MW as shown in the figure. As the
generating Unit-1 has a lower droop than Unit-2, Unit-1
will add more power into the grid according to Eq. (6).
Figure 5 b) shows the turbine valve signal for both the hy-
dro power units. Figure 5c) shows the grid frequency and
frequencies of both synchronous generating units. As the
consumer load increases, the grid frequency of the system
decreases and to compensate for the increased power both
flow in the turbine units should be increased which will
accelerate the generators of Unit-1 and Unit-2. The fre-
quency of generators and the grid will be the same after
the steady-state condition is reached.
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Figure 5. Droop control for parallel operation of two hydro units
for Trollheim HPP.

4.2 Case Study-2
We now consider models of five hydro power plants op-
erating in parallel to supply a common consumer load as
shown in Figure 6 b). Figure 6 a) shows the initializa-
tion and droop controller parameter GUI in OpenHPL.
For the icon shown in the top-right of the figure, the input
to the controller is the grid frequency f and output from
the controller is the turbine valve signal uv. To initialize
the droop control for n number of synchronous generators,
rated power Pr, droop D, Kp and Ti values for PI-controller
for each of the turbine-generator plant should be given as
in Figure 6 a). For the purpose of the case study, Pr, D,
and Kp and Ti values for the PI-controller for five hydro
power plants are given in Table 2.

Figure 7 a) shows the generation and load in the case
of five hydro power plants operating in parallel. Figure 7
b) shows the respective generation from each of the hydro
power units supplying to balance the difference in the load
and the generation. The generation from each of the hydro
power units are distributed based on their power rating and

Figure 6. Droop control in OpenHPL.

droop characteristics. In the figure, Unit-1 has the least
contribution and Unit-4 has the highest contribution to bal-
ance the generation and the load. Figure 7 c) shows the
turbine valve signals for controlling flow through each of
the turbine units. From the figure we can see that to cope
with the load and the generation variation flow through
Unit-3 is the highest and flow through Unit-1 is the least.
The flow uv,i depends on Di, Kp,i and Ti,i. Similarly, 7 d)
shows the grid frequency and frequencies of each of the
generator units supplying to a common consumer load.

From Figure 4 b) we see that if T = ∑
5
i=1 Ti,i is the

equivalent integral time constant at which the grid fre-
quency of the system is restored then the valve signal for
the units are given as

uv,i = Kp,i∆Pi +
Kp,i

Ti,i

∫ T

0
∆Pidt (7)

where

∆Pi =−Pr
i

Di

(
∆ f
f ref

)
. (8)
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Figure 7. Droop control for five generators operating in parallel
index by numbers from 1 to 5.

Table 2. Specifications of power plants.

Pr D Kp Ti
50MW 4% 0.03 3
100MW 3% 0.01 2
150MW 2% 0.02 5
200MW 5% 0.04 6
250MW 6% 0.02 4

Table 3. Valve signal and power shared after the steady state is
reached at sudden increment in the load power.

uv,i ∆uv,i ∆Pi
0.23 0.03 2MW
0.3 0.04 5MW
0.6 0.13 16MW
0.55 0.12 27MW
0.4 0.03 25MW

∑∆Pi = 75MW

Putting Equation (8) into (9) we get

uv,i = Kp,i

(
1+

1
Ti,i
T

)
∆Pi

which can be further expressed as

uv,i =−Kp,i

(
1+

1
Ti,i
T

)(
Pr

i
Di

∆ f
f ref

)
(9)

where Ti,i
T is the integral time constant for the valve signal

uv,i and depends on total integral time constant given by
T = ∑

5
i=1 Ti,i. This adheres that as the number of hydro

turbine increases the plant with a lower value of Ti will
have a smooth control over uv as shown in Figure 7 c).

From Figure 7 d) f is the grid frequency. Figure 7 a)
shows that at t = 30s the load power P̀ increases from
225MW to 300MW with an increment of 75MW. This
addition of the load will be sensed by the decrement in
the grid frequency as shown in Figure 7 d) where f is the
grid frequency. From Figure 7 d) we see that in response
to the addition of the load into the grid there is a change
in the grid frequency given as ∆ f ≈ 0.037Hz. With T =
∑

5
i=1 Ti,i = 20s and the values taken from Table 2 for all

the generators, the required valve signal for each of the
hydro turbines can be calculated from Equation (9). The
steady state values of the valve signal uv,i after the grid
frequency is restored is given in Table 3. Similarly, the
power shared among the generators shown in Figure 7 b)
is also given in Table 3.

5 Conclusions and Future Work
This paper presents the droop control mechanism applied
for the parallel operation of hydro power plants for an
open-source hydro power library OpenHPL. The droop
controller is a feature extension for OpenHPL. The dif-
ference in total generation and load is shared among all
the generators operated in parallel to cope with the dif-
ference. This is achieved by controlling the flow through
the turbines. For an ith generator operating in parallel in
a multi-generator system, the turbine valve control signal
depends particularly on Kp and Ti of the PI-controller for
that unit, power rating Pr, the droop D and the total inte-
gral time constant T = ∑i Ti,i.
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Future work includes an extension of OpenHPL with
automatic generation control (AGC) or load frequency
control (LFC) in the case of the interconnected power sys-
tem network.
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Abstract
Global electric mobility is rapidly expanding. Hence, the
demand for lithium-ion batteries is also increasing fast.
Therefore, understanding energy minimization options in
this rapidly growing industry is crucial for reducing the
environmental impact as well as developing low-cost and
sustainable batteries. The biggest contribution to green-
house gas emissions is the cell manufacturing process.
The most energy-intensive steps of cell manufacturing are
electrode drying and dry room conditioning. Therefore,
we developed process models for these two systems that
can be used for evaluating various energy optimization
techniques, such as heat pumps and heat exchanger net-
works. Further, various process options can be tested and
benchmarked in terms of their overall energy consump-
tion using these models. The results show that the power
requirement may be reduced through all the options as-
sessed, and available energy efficiency measures may sub-
stantially lower the energy footprint of cell production
with strong relevance for subsequent greenhouse gas foot-
prints.
Keywords: lithium-ion battery, energy optimization, elec-
tric vehicle, electrode drying, dry room, sustainable en-
ergy, pinch analysis, heat pump

1 Introduction
Today’s transport sector is shifting from fossil-fueled ve-
hicles to electric vehicles. Although this is currently a
slow transition, the global market for electric vehicles is
expected to grow rapidly in the future. The demand for
lithium-ion batteries (LIB) for these vehicles is also ex-
pected to increase simultaneously. Having a low carbon
footprint is a requirement for ensuring climate change mit-
igation with this growth. Life cycle assessment studies
on battery electric vehicles have shown that the carbon
footprint of LIB production may contribute to significant
greenhouse gas emissions (Kurland, 2020; Ellingsen et al.,
2016). One of the main drivers for these emissions is
identified as the energy usage of the cell manufacturing
process (Kurland, 2020). Although emissions vary over
different regions, energy saving is always important.

Therefore, today’s LIB research is advancing towards
energy-efficient, low-cost, and sustainable cell manufac-
turing techniques. Adaption of less energy-intensive tech-
nologies such as advanced drying technologies (Brynte-
sen et al., 2021) or semisolid-state and solid-state battery
manufacturing technologies is becoming popular in this
regard. Identifying various energy minimization options
for the conventional cell manufacturing process is equally
crucial for today’s battery industry.

The most energy-intensive steps of conventional cell
manufacturing are electrode drying and dry room condi-
tioning (Dai et al., 2019; Yuan et al., 2017; Jinasena et al.,
2021). Energy for a convective cathode drying and a sol-
vent recovery system is modeled by Ahmed et al. (2016b),
while different dry room air conditioning systems using
solid desiccant wheels are modeled by Vogt et al. (2021)
and Ahmed et al. (2016a). Although these processes have
been studied individually, and their energy impacts were
analyzed in detail, there are no studies that explore the en-
ergy minimization options of the combined process. There
are possibilities of applying a heat pump to facilitate ex-
changes between the electrode drying process and the dry
room air conditioning system. In addition, the general use
of heat exchanger networks to exchange various heating
and cooling loads is also of interest.

Therefore, this study’s main objective is to explore
these two possibilities to minimize the total energy re-
quirement of the energy-intensive process steps of LIB
cell manufacturing. For this, we have developed process
models for electrode drying and dry room air conditioning
such that various process options can be tested and bench-
marked in terms of their overall energy consumption.

2 System Description
A LiNi1/3Mn1/3Co1/3O2 (NMC111) cell production factory
of 530 MWh annual capacity is selected for the study. Out
of the cell production process, only the electrode drying
process, solvent recovery system and the dry room air de-
humidification system were considered for the study due
to their high energy intensity. Different options of energy
recovery is explored between these systems. The model-
ing approaches for each system is described in this section.
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2.1 Electrode Drying
Conventionally, the drying is performed using convective
heat transfer and high temperature air circulating over the
electrode films. Alternatively, this can also be performed
using radiation drying. Drying rate and drying time dif-
fer depending on solvent used and the temperature inside
the chamber. To reduce the amount of energy consumed
during drying, a multistage drying process can potentially
be utilized. This alternative drying process can consist of
splitting the drying chamber into multiple sections with
different temperatures, ranging from low to high temper-
ature drying. Alternatively, the temperature can be con-
trolled in intervals when utilizing a batch dryer. This will
reduce the overall heating load in comparison to a single-
stage heating process, as it will reduce the amount of air
that needs to be heated.

The electrode drying process is modeled using a
reduced-order model for two different technologies, con-
vection drying (CD) using hot air and infra-red radia-
tion drying (RD) using radiation heaters (Oppegård et al.,
2020). For more details on the model see Oppegård et al.
(2020).

2.2 Solvent Recovery System
Water soluble N-Methyl-2-pyrrolidone (NMP) can be
used as a solvent for the mixing of cathode material pow-
ders during LIB manufacturing. The need for recovering
and recycling this solvent is prominent due to its pollut-
ing and hazardous nature. For this, an intricate filtration
process is applied. A typical NMP recovery system is
shown in Figure 1. Condensation is used in order to extract
the NMP from the air exiting the drying stage. However,
the complete solvent recovery system is not modeled in
the study, where the solvent removal columns are omitted.
The heat and mass transfer of the thermal units are mod-
eled using Aspen Plus. Based on Ahmed et al. (2016b),
the air needs to be cooled to approximately 6◦C. The re-
quired cooling energy is assumed to be equal to that of the
heating when considering conservation of energy.

Furthermore, this is mainly applicable to the cathode,
as most of the anode material mixing are usually water-
based. Due to the use of water as solvent, the anode is
assumed to not require a solvent recovery process.

Figure 1. The NMP recovery system.

2.3 Dry Room Air Dehumidification System
A dry room is an enclosure with low humidity and a cer-
tain level of cleanness. It is an essential part for processes
that require a dry and clean environment, such as the cell
assembly stages in a battery manufacturing process. Liq-
uid electrolyte filling is highly sensitive to water vapor.
The dry air supply for the dry room can be obtained by an
air dehumidification system. Common air dehumidifiers
are mostly operated by either a solid desiccant wheel or a
liquid desiccant system.

The liquid desiccant system is a mechanism that re-
moves humidity and sensible heat from the air through the
use of a liquid desiccant material and thermal energy. Cal-
cium chloride (CaCl2) is a commonly used desiccant for
this purpose. Figure 2 depicts a basic configuration.

Here, the absorber and regenerator columns are con-
nected through a piping system. The water in the humid
air entering the absorber column is bound to the liquid des-
iccant, and the dried air then exit at the top of the same
column. A heater increases the temperature of the water-
filled desiccant to 100◦C upon entry of the regenerative
column. The water is then evaporated, while the residual
desiccant is pumped into the absorber column while sub-
sequently being cooled to 25◦C, closing the loop. The heat
and mass transfer of the complete system with an addi-
tional heater for dry air heating is modeled in Aspen Plus.

Figure 2. The liquid desiccant system.

2.4 Heat Pump
A heat pump is a system that transfers energy between two
thermal reservoirs of different temperatures. The system
is based on the vapor compression refrigeration cycle. A
common configuration of a heat pump is shown in Fig-
ure 3 which consists of an evaporator, compressor, con-
denser and expansion valve. At the inlet of the evaporator
(low temperature), the circulating fluid of the cycle is a
vapor-liquid mixture. When passing through the evapora-
tor, the liquid evaporates using the energy transferred from
the cold reservoir. The fluid then enters the compressor,
which increases the pressure of the fluid to become satu-
rated vapor. The high temperature vapor then enters the
condenser which absorbs energy by converting the fluid
from vapor to saturated liquid. In this process, the energy
is released in the form of heat, which is then transported
into the hot reservoir. The fluid is then expanded adiabat-
ically through an expansion valve which returns it to the
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Figure 3. A typical heat pump configuration.

same state as the evaporator inlet, closing the loop (Moran
et al., 2018).

The heat pump is modeled in Aspen and various refrig-
erants were used as the working fluid of the heat pump
based on the availability and thermodynamic characteris-
tics. The refrigerants are R-22 (chlorodifluoromethane),
R-134a (tetrafluoroethane) and R-600a (isobutane). Dif-
ferent condensation and evaporation temperature and pres-
sure characteristics were also tested to find out the opti-
mum operational conditions.

2.5 Heat Exchanger Networks
A Maximum Energy Recovery (MER) network is a system
that is based on pinch analysis and consists of a network
of heat exchangers optimally placed for maximum energy
recovery within the system. A further option investigated
utilizing different MER-network designs within the entire
systems heat exchangers. These networks are designed
using the heat exchanger details resulted from the mod-
els and the corresponding pinch analyses were performed.
How the streams of the network are connected in the net-
work configurations is depicted in Figure 4. This was
the basis for simulation. The streams shown in the figure
are categorized as hot and cold. The cold streams are in
need of heating, while hot streams are in need of cooling.
The figure also shows all the material streams involved in
the production process. These streams consisted of three
groups. The first of these being the anode streams, with
both inlet and outlet from the drying process. Secondly,
the cathode streams were connected between the drying
process and the NMP recycling unit. Finally, the dry room
streams consisted of the two streams within the desiccant
system, between the absorber and regenerator column, as
well as the airflow into the dry room. The streams pre-
sented here essentially represent the total system before
any connections were made.

The minimum temperature difference was set to 10◦C.
Aspen Energy Analyser was used to design the MER-
network, based on the input streams listed in Table 1. The
number of stream splits allowed was set to zero, in order

Figure 4. Streams evaluated using pinch approach.

to simplify the design. The design yielded the energy re-
quirements and heat exchanger sizes required for the de-
sign. A series of designs were produced connecting dif-
ferent heat exchangers based on the pinch approach. The
simplicity of the connections and the total costs were con-
sidered during the design.

Table 1. The input values for the pinch analysis in Aspen Energy
Analyser.

Stream
Temperature
range [◦C]

Mass flow
rate [kg/h]

Heat cap.
[kJ/kgK]

Desiccant hot 78–25 2 000 3.71
Desiccant cold 6–100 2 000 3.71
Air dry room 5–23 32 000 1.00
Cathode hot 140–6 34 200 1.00
Cathode cold 6–140 34 200 1.00
Anode hot 140–8 34 200 1.00
Anode cold 8–140 34 200 1.00

3 Results and Discussion
3.1 Effect of Parameters on the Evaporation

Energy of Drying
For the drying process, the evaporation energy and drying
time are heavily impacted by the parameters of the air en-
tering the convective dryer, with temperature, velocity and
humidity being the prominent factors.

Figure 5 shows the effect of these parameters on the
power requirement for the evaporation of solvent and Fig-
ure 6 shows the effect on the evaporation energy for one
batch of NMC111 cathode production. Parameters were
changed one at a time and all the parameters were normal-
ized for illustration. The process parameters have a sig-
nificant effect on the evaporation energy in both CD and
RD. However, in comparison to the other energy values in
the cell production process, the evaporation energy is in-
significant (less than 0.2 Wh/Wh) which makes the varia-
tions of process parameters less significant for evaporation
energy consumption. It is important to note that although
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faster drying rates can be achieved with high temperatures,
drying rate is controlled to prevent binder migration and
cracking of electrodes (Jaiser et al., 2016; Rollag et al.,
2019; Westphal et al., 2015). Therefore, multi-stage dry-
ing is preferred (Oppegård et al., 2020).

The initial conditions are selected according to the bat-
tery chemistry specifics and the heat source temperature
is taken as 140◦C. For an NMC111 cathode, the CD time
and evaporation power is 19.2 minutes and 28.7 kW, re-
spectively. For a graphite anode, the CD time is 13.7 min-
utes and the power needed for evaporation becomes 41.9
kW. Thus, the load needed for evaporation using CD is
collectively 70.6 kW for a NMC111-based cell.

Similarly, the power and energy requirements are cal-
culated for RD, resulting in 40.9 kW (0.089 Wh/Wh) for
cathode and 58.2 kW (0.086 Wh/Wh) for anode, respec-
tively (see Figure 7). For both anode and cathode drying,
RD is faster than CD due to faster drying rates towards
the end of the drying process. The drying time has a sig-
nificant effect on the power requirement as the power is
higher for RD than CD. However, the total energy require-
ment can be considered similar between CD and RD as the
change in values is comparatively low (0.003 Wh/Wh).

3.2 Effect of Drying Temperature and Regen-
erator Size on the Energy of Solvent Re-
covery System

The solvent recovery system was tested for different dry-
ing temperatures of 80◦C and 140◦C (for CD), as well as
for various heat exchanger sizes. Table 2 shows the heat-
ing and cooling loads for the cathode drying system when
operating at these temperatures. The total load is for the
heating of the anode, and the heating and cooling of the
cathode. The regenerator is an additional heat exchanger
to the system shown in Figure 1 to be used in the heat
pump and for further energy recovery. Regenerator load
zero represents the original solvent recovery system with-
out additional energy recovery.

Through the implementation of a regenerative unit, the
decrease in required power is shown to be linear for the
heating and cooling loads. When the regenerator size is
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Figure 6. Effect of initial and operating conditions on the evap-
oration energy by convection and radiation.
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Figure 7. Power and energy requirements for evaporation of
anode and cathode solvents by convection and radiation.

Table 2. The heat exchanger loads with various regenerator sizes
for a 80◦C and 140◦C CD process.

Temperature
(◦C)

Regenerator
[kW]

Heating
[kW]

Cooling
[kW]

Total
[kW]

80

0 663 663 1989
100 563 563 1689
250 412 412 1236
500 163 163 489

140

0 1208 1208 3624
100 1108 1108 3324
250 958 958 2874
500 707 707 2121

bigger with higher load, the total heat exchanger load is
lower than the original system, which shows that more en-
ergy can be recovered by the regenerator. Lowering the
dryer air temperature also show a significant impact on the
power requirement. However, as discussed in Section 3.1,
the decrease in temperature results in a increase in drying
time, which would affect the production capacity and the
energy consumption per cell.

For anode drying, it is assumed that the anode utilizes
water as solvent instead of NMP, and does not require a
solvent recovery process. This removes the need for cool-
ing. However, a regenerative unit can still be implemented
for the anode air stream. The anode heating load would be
equal to the cathode heating load of 1208 kW and 707
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kW for 140◦C, without and with a 500 kW regenerator,
respectively.

For both cathode and anode drying the total load
amounts to 3624 kW for the original system at 140◦C and
2121 kW with two 500 kW regenerators (one for each dry-
ing process). Similarly, for RD, the heating load for cath-
ode drying is taken as 742 kW, where the required heating
and cooling loads without regeneration amounts to a total
of 2226 kW.

3.3 Energy Consumption with Heat Pump
The heat pump that is applied between the drying system
and the dehumidification system is shown in Figure 8. The
different regenerator sizes tested in Section 3.2 are used
here. The selected refrigerants were also tested, which
yielded different pressure ranges for the condenser and
evaporator of the heat pump. Further, the required com-
pressor energy was found for the desired operating condi-
tions of the heat pump. It is observed that the lower pres-
sure ranges have a higher required compressor power for
the heat pump to be able to operate under ideal conditions.

The heat pump design is highly based on the charac-
teristics of the attached systems. For example, for a dry
room heater load of 132.1 kW, the heat pump requires a
regenerator duty of 1090 kW or alternatively an additional
heat exchanger connected to the desiccant system to assist
in cooling the stream.

Therefore, using a heat pump requires a large sized re-
generator, since the heating load for the desiccant system
is selected as 150 kW. This would require a regenerator
duty of 940 kW. The resulting temperature ranges of the
streams connected to the heat pump would be 20–6◦C for
the electrode drying stream and 8–23◦C for the dry room
air flow. The temperature difference is too small to use a
regular heat exchanger and using a heat pump is therefore
viable.

Table 3 displays the compressor power, pressure ranges
and coefficient of performance of the compressor based on
tested refrigerants. R–600a is selected as the refrigerant
for the study due to the lower pressure range. The heat

Figure 8. Applied heat pump configuration.

Table 3. The pressure ranges and compressor power require-
ment for different refrigerants in the heat pump. COP: coeffi-
cient of performance

Refrigerant
Pressure

(bar)
Compressor
power (kW)

COP
factor

R–22 4.37–12.67 9.3 14.10
R–134a 2.53–8.25 16.2 8.17
R–600a 1.37–4.33 20.1 6.58

pump in this proposed design covers the entire heating
load for air entering the dry room as well as contributing
to cooling the air stream for NMP extraction. The poten-
tial power savings are considered as 247.9 kW, although,
this is highly dependent on the refrigerant used.

3.4 Energy Consumption with MER-Network
The composite curve and the grand composite curve for
the system is shown in Figure 9. The composite curve
is parallel showing a high possibility of energy recovery.
A clear pinch point is also seen at 10◦C. According to
the grand composite curve there is an energy pocket up
to 150 kW, which indicates excess energy that cannot be
used for a heat exchanger due to the available low tem-
perature range. However, theoretically, this allows a heat
pump to be operated based on the temperature ranges that
were analyzed for the operation of heat pump in section
3.3. Therefore, implementing a heat pump in combination
with a MER-network has the potential to theoretically save
around 300 kW, including both heating and cooling.

Three MER networks (named MER-1, MER-2 and
MER-3) were designed and one of the designed MER-
networks (MER-1) are shown in Figure 10. The blue
horizontal lines of the network represent the cold streams
and the orange horizontal lines represent the hot streams
in the total system. The heat exchanger connections are
indicated by the vertical connection lines between the
streams, where blue dots indicate the coolers connected
to the cold utility stream (refrigerant/cooling water), or-
ange dots indicate the heaters connected to the hot utility
stream (steam/hot water), while the gray dots indicate the
regenerators interconnected to process streams. The mini-
mum temperature difference for the pinch analysis is taken
as 10◦C for all the designs.

For MER-1 and 2, the utility streams were chosen arbi-

Figure 9. The composite and grand composite curves.
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Figure 10. MER-network design one (MER-1).

trarily since it does not impact the energy demand. How-
ever, this impacts the required area of the heat exchang-
ers representing cooling and heating units, which directly
affects the capital cost which is not considered in the
study. MER-1 network consists of twelve heat exchang-
ers, where four of them are heaters and two are coolers.
The total heating and cooling requirements for this design
are 814.7 kW and 588.7 kW, respectively, and 1403.4 kW
in total. The largest regenerator in this design needs a heat
exchanger area of 775 m2 and the total area for heat ex-
changers is 2058 m2.

Similarly, for MER-2, thirteen heat exchangers are used
including four heaters and two coolers. The power re-
quirement for this design is 864.7 kW for heating and
638.6 kW for cooling which gives a total power of 1503.3
kW. This is a slightly higher power requirement than the
first design. The largest heat exchanger in this design is of
an area of 900 m2 and the total area for heat exchangers is
1825 m2.

The third design, MER-3 was done using four heaters,
three coolers and five regenerators. The power require-
ment for this design is similar to MER-1 with a total of
1471.2 kW, where 848.7 kW for heating and 622.5 kW
for cooling, respectively. In MER-3, the largest heat ex-
changer is 697 m2 with a total heat exchanger area of 1928
m2.

All the network designs have two remaining low tem-
perature coolers at the top right and a low temperature
heating load to the bottom left in the respective designs.
There is a potential for connecting a heat exchanger be-
tween these two heating and cooling loads which can fur-
ther reduce the total power requirement of all three de-
signs.

3.5 Comparison of the Used Energy Optimiza-
tion Methods

Total power requirement from all the assessed methods are
compared together as shown in Figure 11. The total sys-
tem without any energy recovery is used as the maximum
power requirement for the system either with a convective
(4090 kW or 51.7 Wh/Wh) or radiation (2720 kW or 34.3
Wh/Wh) drying process. The system with RD is lower
in energy, about 17.3 Wh/Wh (1370 kW) compared to the
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Figure 11. A comparison of power requirements with different
energy reduction methods including a heat pump and MER heat
exchanger network designs.
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Figure 12. The energy consumption for different energy opti-
mization methods.

CD system. The energy recovery methods are applied only
to the system with CD.

The addition of a regenerator in the solvent recovery
system, and the heat pump between the regenerator and
desiccant system heater, has decreased the power require-
ments by 1503 kW (19 Wh/Wh). The MER-network de-
signs have reduced the power requirements further down
by 2620 kW (33.1 Wh/Wh), 2520 kW (31.8 Wh/Wh) and
2552 kW (32.2 Wh/Wh) for MER-1, MER-2 and MER-
3, respectively. The difference of each network is by ap-
proximately 100 kW between each other. By implement-
ing a heat pump together with the MER-1 design, the total
power is further decreased by 300 kW (3.8 Wh/Wh). A
theoretical minimum power requirement (581 kW) for the
MER-networks is also included as a comparison followed
by the power requirement for the dry room dehumidifica-
tion system which can be compared with production pro-
cesses without drying, such as semi-solid-state batteries.

The energy requirements for the same optimization
methods are calculated with respect to the produced cell
capacity for NMC111 cell production. The total energy
consumption values are shown in Figure 12 for the se-
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lected energy saving options. A similar reduction of en-
ergy trend can be seen from the figure.

The results suggest that the energy requirement can be
reduced through all the options assessed. In total, the
results indicate a potential for substantial improvements
in overall energy intensity for the production of differ-
ent battery chemistries (energy usage in Wh per Wh of
produced battery) when heat exchanger networks are used
for heat recovery. This can be further enhanced by com-
bining the heat exchanger networks with the heat pumps.
In summary, this work suggests that available energy effi-
ciency measures may substantially lower the energy foot-
print of LIB production with strong relevance for subse-
quent greenhouse gas footprints.

3.6 Comparison with Literature Values
The energy values for the range of various energy opti-
mization methods are compared together with the energy
values reported in literature. The MWh to GWh scale
plant data reported by Yuan et al. (2017), Pettinger and
Dong (2017), Schünemann (2015), Dai et al. (2019), and
Sun et al. (2020) are considered here. Further, the models
developed by Ahmed et al. (2016a,b) and Jinasena et al.
(2021) are also included in the comparison. The compared
values for dry room and drying energy consumption are
shown in Figure 13.

The values are not comparable with their variation due
to the different plant capacities. However, the values for
dry room and drying with MER-networks are well compa-
rable with similar capacity values of a 0.7 GWh plant data
by Schünemann (2015, cited in Thomitzek et al., 2019).
The values of this study are slightly higher than the values
from Schünemann (2015, cited in Thomitzek et al., 2019),
which could be due to the slightly lower plant capacity of
this study.

Ahmed et al. (2016b) investigated the energy for cath-
ode drying and solvent recovery process for an annual
plant capacity of 1 GWh. For their base case of a CD pro-
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Figure 13. The comparison of energy consumption values for
drying and dry room with reported literature values. The average
total energy and the annual capacity of each production facility
are also stated.

cess of 37 m3/s air flow, the power for the electrode dryer
is 130 kW, where in our study the maximum power (out of
various initial drying conditions) is 26 kW for a flow of 7.5
m3/s cathode dryer air flow. The total power for their pro-
cess is given as 5851 kW (42.1 Wh/Wh pack) where 1470
kW of electrical power and 4381 kW of thermal power.
This amount (42.1 Wh/Wh) is the second highest energy
requirement out of the reported values, where the highest
is 51.2 Wh/Wh for a 18.2 MWh plant reported by (Yuan
et al., 2017). Further, this value is only for the cathode
drying which suggest the energy values will be higher for
both cathode and anode drying. The plant consists of a
fuel fired air heater of 3752 kW, a chiller of 1169 kW
(electricity), and a condenser of 3508 kW which is con-
nected to an air-to-air heat exchanger for energy recovery
(2700 kW). The total electric power for air blowers is 301
kW. Additionally, there is a 236 kW re-heater for the re-
generation air of the desiccant wheel, and a 394 kW heater
for the distillation column where the recovered NMP is
further purified for reuse. The total power requirement in
their study for various process parameters is in the range
of 3346–7304 kW (24.1–52.6 Wh/Wh). In our study we
haven’t included the blowers or the NMP purification col-
umn which gives a slightly underestimated value for the
energy requirement.

Similarly, Ahmed et al. (2016a) modeled a 16 000 m3

dry room for a dry air flow of 20 m3/s. The system uses
a zeolite wheel for moisture removal, and consists of a
cooler (426 kW), pre-cooler (57 kW), heater (63 kW), re-
generator (30 kW) and blowers (167 kW). For a base case
of operating conditions the total power was determined
as 398 kW. Assuming that they produced 10 kWh bat-
tery packs (similar to Ahmed et al. (2016b)) this value is
around 2.9 Wh/Wh which is comparatively low.

Further, Thomitzek et al. (2019) reported a 133.6
Wh/Wh for drying and 448.7 Wh/Wh for dry room for
a 48 kWh annual capacity pilot plant. For this plant, Vogt
et al. (2021) report a total power of 271.8 kW for a dry
room which supplies 2.74 m3/s dry air flow. This includes
two pre-coolers of 54.8 kW and 43.8 kW, a process fan of
15 kW, a re-heater of 33.2 kW, and a regeneration heater
of 125 kW with a 15 kW heat recovery.

These results show that comparing the values of differ-
ent scales is difficult because of the high variance of the
reported values. Therefore, the models need to be scaled
up or redesigned for giga factory scale for a proper com-
parison. Vogt et al. (2021) have reported scaling-up of
their pilot scale energy data. They report a reduction of
energy consumption of the dry room from 20.98 kWh per
cell (Wessel et al., 2021) to 1.45 kWh per cell. How-
ever, this is equivalent to approximately 47 Wh/Wh and
is still higher than the other reported values. Therefore,
scaling-up of smaller scale plant data and models, and de-
velopment of giga scale plant models need to be further
explored for accurate energy consumption estimations for
battery industry.
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4 Conclusions
Process models were developed for a dry room air con-
ditioning system and electrode drying processes of a
lithium-ion battery production process, for analyzing dif-
ferent energy optimization options. For the drying pro-
cess, different drying techniques were explored, namely
convection air drying and infra-red radiation drying. The
energy consumption for radiation drying is lower than for
convection drying without any energy recovery in the con-
vection process. Application of a heat pump and use of
maximum energy recovery heat exchanger network de-
sign based on pinch analysis are explored as energy opti-
mization techniques. For the system with convection dry-
ing, a heat pump reduced the energy usage considerably.
Application of heat exchanger networks reduced the en-
ergy usage more than the heat pump. The combination of
both these techniques resulted in the most energy reduc-
tion for the total process system from 51.7 Wh/Wh to 14.9
Wh/Wh.
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Abstract 
The paper develops a cyber physical system (CPS) 

security platform for supporting security 

countermeasures for digital energy systems based on 

real-time simulators. The CPS platform provides 

functions that trainers or trainees can be able to operate 

and test their scenarios with a state-of-the-art integrated 

solution running at a real-time simulator. Those 

integrated solutions include energy systems simulation 

software and communication systems 

simulation/emulation software. The platform provides 

practical “hand-on-experiences” for participants and 

they are able to test, monitor and predict behaviors of 

both systems at the same time. The platform also helps 

achieve training’s objectives that meet skilled 

requirements for the future generation in both smart 

energy systems evaluation and cyber physical security 

fields. In particular, we present the CPS platform’s 

architecture and its functionalities. The developed CPS 

platform has also been validated and tested within 

different simulated threat cases and systems. 

 

Keywords:     cyber physical system laboratory, critical 

infrastructures, attack vectors, real time simulator, 

operational technology, information technology 

1 Introduction 

Numerous energy firms are undergoing digital 

transformations (Dang and Vartiainen 2019; Dang et al., 

2021; Mekkanen et al., 2021; Mekkanen and 

Kauhaniemi 2018) and digital transformation has 

significant impact to the energy sector (Dang and 

Vartiainen, 2020; Mekkanen, 2021). It also brings 

threats to the sector as the information and 

communications technology (ICT) is embedded in 

energy systems. For example, cyber-attacks are one of 

the most common threats in the energy sector that causes 

severe consequences to organizations and even national 

security.  To prevent cyber-attacks, several solutions are 

proposed, such as legislations, standards (Pearson, 

2011), or testbeds (Sun et al., 2018). In particular, 

testbeds often use a Real-Time Simulator as a tool to test 

different scenarios that cannot test in a real physical 

system or it is very challenging if we put the real 

physical system in hazard mode as it may cause damage 

to the real-world systems. As a result, Real-Time 

Simulators thus have been widely used in the energy 

sector (Vellaithurai et al., 2017). In addition, one of the 

conventional solutions to prevent cyber attack is training 

persons-in-charges to acquire practical skills through a 

real time simulator.  

However, engineering training faces several 

difficulties. First, the difficulties of setting up and 

executing scenarios in a diverse environment that allow 

learners to conduct and evaluate cases that align 

between labs’ environments (e.g., equipment, software, 

threads, and technologies)  and real-world environments 

(e.g., digital twins). Second, the difficulties in the 

multidisciplinary nature of energy systems that also 

integrate ICT and its threat  to the systems. For example, 

smart grid systems increase cybersecurity threats. In that 

sense, if an attack happens in the energy systems, the 

damage is likely costly and it could potentially impact 

national security as in the case of cyber-attacks 

physically destroying Iran's nuclear centrifuges 

(Pearson, 2011). 

This paper aims to tackle this issue by developing a 

cyber physical system  (CPS) for an education 

environment. We use a state-of-the-art integrated 

solution running at real-time simulator. Those integrated 

solutions are the energy systems simulation software 

and the communication systems simulation/emulation 

software. We propose a CPS platform that provides 

abilities for trainers to train or coach trainees (e.g., 

students/security experts) for conducting tasks with a 

real simulator via online power system modeling, 

communication system emulation and cyber-attack 

emulation integrating and running in real-time in one 

target. Here a CPS is understood as a co-simulation 

platform, which links software that simulates the 

modern digital energy system (energy system unites, 

ICT and threats) aspects, and captures the complex 

interactions between them which meet the requirements 
of  physical processes (Ison et al., 2020; de Reuver et 

al., 2018). The co-simulation allows more adaptable 

setup, scalable, simpler cyber-attacks testing/mitigation, 
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achieve training’s objectives that meet skilled 

requirements for the future generation in both smart 

energy systems evaluation and cyber physical security 

fields. In particular, we present the CPS platform’s 

architecture and its functionalities. The developed CPS 

platform has also been validated and tested within 

different simulated threat cases and systems. 

Keywords:     cyber physical system laboratory, critical 

infrastructures, attack vectors, real time simulator, 

operational technology, information technology 

1 Introduction 

Numerous energy firms are undergoing digital 

transformations (Dang and Vartiainen 2019; Dang et al., 

2021; Mekkanen et al., 2021; Mekkanen and 

Kauhaniemi 2018) and digital transformation has 

significant impact to the energy sector (Dang and 

Vartiainen, 2020; Mekkanen, 2021). It also brings 

threats to the sector as the information and 

communications technology (ICT) is embedded in 

energy systems. For example, cyber-attacks are one of 

the most common threats in the energy sector that causes 

severe consequences to organizations and even national 

security.  To prevent cyber-attacks, several solutions are 

proposed, such as legislations, standards (Pearson, 

2011), or testbeds (Sun et al., 2018). In particular, 

testbeds often use a Real-Time Simulator as a tool to test 

different scenarios that cannot test in a real physical 

system or it is very challenging if we put the real 

physical system in hazard mode as it may cause damage 

to the real-world systems. As a result, Real-Time 

Simulators thus have been widely used in the energy 

sector (Vellaithurai et al., 2017). In addition, one of the 

conventional solutions to prevent cyber attack is training 

persons-in-charges to acquire practical skills through a 

real time simulator.  

However, engineering training faces several 

difficulties. First, the difficulties of setting up and 

executing scenarios in a diverse environment that allow 

learners to conduct and evaluate cases that align 

between labs’ environments (e.g., equipment, software, 

threads, and technologies)  and real-world environments 

(e.g., digital twins). Second, the difficulties in the 

multidisciplinary nature of energy systems that also 

integrate ICT and its threat  to the systems. For example, 

smart grid systems increase cybersecurity threats. In that 

sense, if an attack happens in the energy systems, the 

damage is likely costly and it could potentially impact 

national security as in the case of cyber-attacks 

physically destroying Iran's nuclear centrifuges 

(Pearson, 2011). 

This paper aims to tackle this issue by developing a 

cyber physical system  (CPS) for an education 

environment. We use a state-of-the-art integrated 

solution running at real-time simulator. Those integrated 

solutions are the energy systems simulation software 

and the communication systems simulation/emulation 

software. We propose a CPS platform that provides 

abilities for trainers to train or coach trainees (e.g., 

students/security experts) for conducting tasks with a 

real simulator via online power system modeling, 

communication system emulation and cyber-attack 

emulation integrating and running in real-time in one 

target. Here a CPS is understood as a co-simulation 

platform, which links software that simulates the 

modern digital energy system (energy system unites, 

ICT and threats) aspects, and captures the complex 

interactions between them which meet the requirements 
of  physical processes (Ison et al., 2020; de Reuver et 

al., 2018). The co-simulation allows more adaptable 

setup, scalable, simpler cyber-attacks testing/mitigation, 



and comprehensive instrumentation via software probes 

to discover exactly what happened at every component 

of the CPS.  

Our proposed platform has an ability to mimic the 

operation of the real instruments subject to cyber-attack 

at the lab’s environment. Through the platform, trainees 

can perform their tasks in a state-of-the-art integrated 

solution real-time simulator via online physical/virtual 

devices, such as personal computers (PCs), servers, 

routers, firewalls, intrusion detection system (IDS), 

protocols, defender, intelligent agent, simulate attack 

and other information technology/operational 

technology (IT/OT) CPS system management 

solutions/tools that connected via different 

existing/designed communication protocols/medium to 

the real-time simulator, such as hardware-in-the-loop 

(HIL), software-in-the-loop (SIL), and processor-in-the-

Loop (PIL). By doing so, it is expected that learners can 

learn practical “hand-on-experiences” and they become 

physical security experts in the future.  

The remainder of this study is structured as follows. 

First, the background section is presented. Second, we 

describe the development of the CPS platform. Third, 

the CPS platform scenarios are presented. Finally, we 

present the conclusions.  

2 Background 

2.1 A brief history of simulation 

development 

A simulation has been widely employed in electrical 

system planning and design for decades. There are a 

wide range of energy sector applications that have 

successfully developed simulation for their 

experiments. The rapid evolution of computing 

technologies has helped the improvements of simulation 

tools during the past decades. Figure 1 shows the 

timeline of the evolution of real-time simulators from 

physical/analog to fully digitalization. 

 

Figure 1. Real-time simulator evolution 

Moreover, the emergence of low-cost multi-core 

processors has also paved the way for the development 

of simulators as it considerably helps more affordable 

and scalable real-time simulators. The ability of a real-

time simulator to distribute work across different 

dedicated cores within a multi-core processor 

dramatically reduces processing time and allows the 

integration of different tools, as well as the capacity to 

interact with other software, applications, and devices, 

resulting in a co-simulation-approach. Co-simulations 

are a complex combination of different sorts of 

simulations that are run or solved in separate runtime 

environments. Real time co-simulations merge multiple 

types of simulations to create a hybrid simulation model 

(power system, ICT, cyber-security etc. ), where various 

representations must be synchronized in order to run in 

universal time. 

2.2 Real-time simulation 

A simulation is “a representation of the operation or 

features of a system through the use or operation of 

another” (Sun et al., 2018). In this paper, we use a 

discrete-time simulation or fixed time-step simulation 

for the platform development as it is suitable for the real-

time simulation. Each system state or variable will be 

solved mathematically based on a selected solver at a 

given time-step. We obtain the results via off-line and in 

real-time simulations, however offline is faster than 

online. A given discrete time-step simulation might be 

differ (e.g., shorter or longer) in comparison to the actual 

required time to compute equations and functions that 

represent a system model. Figure 2. represents these two 

possibilities: (a) computing time is shorter than a fixed 

time-step, (b) computing time is longer than a fixed 

time-step. Whereas in (c) both times are synchronized. 

It also shows all operations including driving inputs and 

outputs (I/O) to and from externally connected devices. 

In addition, it is noted that the solving system speed 

relies upon the accessible calculation power and the 

system numerical model complexity.  

     

Figure 2. Real-time simulator computation 

 
Computation accuracy is determined  by two factors: 

the precise dynamic representation of the system and the 

time required for producing results. The accuracy and 
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validity of a real-time simulation is determined by 

performing all internal computations and performing 

results outputs that are compared to actual devices.  

2.3 Model for designing and testing a real-

time simulation 

We apply the Mode-based Design (MBD) method. 

MBD is a mathematical and graphical methodology for 

expressing the system under test, and it adheres to the 

“V” diagram workflow as shown in Figure 3. 

 

Figure 3. Model-based Design Workflow 

This model provides a comprehensive view of the 

system under development with diverse domain 

knowledge. It also provides  abilities for engineers who 

are involved in designing, modeling, testing, and 

utilizing models in an efficient and organized manner. 

For example, it allows automated testing with different 

parameters under different circumstances. It is reusable 

and the designed environment can remain homogeneous 

through different design tools via import/export model 

tool’s features. The majority of those tools provide an 

automatic code generator for the designed models. As a 

result, the import/export features in those tools are easy 

to use. Even if they are developed using different design 

tools, the predesigned/old model will be imported and 

included as a block in the new design model. Thus, the 

use of an automatic code generator adds value to real-

time simulation in MBD.  

Combining an automatic code generator and a real-

time simulator make a rapid control prototyping (RCP) 

implementation from the testing model point view with 

minimal effort. The prototype can then be used to speed 

up integration and verification testing, something that 

offline simulation cannot do. The same concept is valid 

also for the HIL testing. By using an HIL test, hardware 

testing can be performed earlier in the process, 

sometimes before an actual plant is available. For 

example, electrical system automotive controller testing 

functionality can be performed early even before a 

physical plant is completed. As a result, designed issues 

can be identified earlier in the process, allowing 

required tradeoffs to be determined and applied, 

lowering development cycle/costs. 
 

2.4 Cyber physical security platform  

As discussed in the aforementioned section, the energy 

system is a multidisciplinary study due to the 

involvement of various fields, ranging from electric 

power, ICT systems, cyber security to computing 

science. As a result, universities have recently updated 

their engineering programs curriculum, such as adding 

new courses or updating materials for existing courses 

(Langner, 2011; de Reuver et al., 2018). Those courses 

are often designed with lab practices, this leads to a high 

demand for labs that allow learners to be able to practice 

and learn hands-on-skills. The dilemma is that an energy 

system contains several devices (e.g., generators, 

transmission line transformer) while establishing a lab 

and managing those devices are challenging in terms of 

technical difficulties, costs, and human resources. 

A real-time CPS platform includes a simulator that 

combines energy system simulation software and 

emulation (e.g., communication system and cyber 

physical security), software/tools (e.g., co-simulation). 

The platform provides a holistic experience to both 

trainers and trainees. Also, it enables the trainer to 

visualize their specific energy system and/or 

communication network environments in a manageable 

laboratory setting (digital twins; replica of real physical 

system).  Moreover, CPS platform provides functions to 

analyze a variety of "what if" scenarios in order to assess 

impacts of different circumstances.  

CPS platform supports researchers who are working 

to find solutions beyond the state-of-the-art. This is 

because of its designed and development capabilities, 

such as energy system components, communication 

system interfaces/protocols and cyber security entities.   

 

3 Development of CPS Platform  

A digital energy system has a cross-disciplinary nature 

that has different domain competencies. This cross-

disciplinary is amplified by combining required CPS 

competence with others (e.g., power system simulation 

model, communication simulation/emulation model) 

competencies. To this end, educators are subject to a 

variety of tools and concepts that are associated with 

various domains. Subsequently, new instructive 

teaching/training methods/techniques should be 

developed along with tools. This enables relevant 

parties in dealing with various domains and combining 

their knowledge into a single solution. This solution 

enables educators to comprehend coupling and 

interaction among entities that comprise the integrated 

developed solution. As a result, it is natural that the CPS 

platform be developed in such a way that educators can 

learn by bridging the gap between theory and real-world 

application.  

To achieve this goal, we design a CPS platform with 

a real-time simulator as the mean core of the lab, along 
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with other different development boards and Field-

programmable gate arrays (FPGAs). The simulator is 

from Opal RT (e.g., OP5700 Real-Time Simulator) with 

HYPERSIM modeling software which simulates the 

power system. Our platform’s emulator is Scalable 

EXata communication simulation/emulation software, 

which simulates/emulates the communication network 

with cyber-attack modules. This HYPERSIM-

software’s simulator  has the capability to accurately 

mimic the response of an actual physical system in real-

time. Also, it has multiple interface modules, including 

analog and digital channels, as well as, a variety of 

communication protocols including IEC 61850 Generic 

Object-Oriented Substation Event (GOOSE) and SV, 

IEEE C37.118, DNP3, Modbus.  

In the context of CPS, using an RTS allows a 

simulation to interface with a cyber system in real-time 

and achieve a more complete and realistic testing 

environment. Here, SCALABLE has developed a 

highly-specialized kernel to exploit contemporary 

multi-core architectures for real-time execution of large-

scale, high-fidelity network and cyber models. It uses a 

network digital twin to represent entire CPS 

communication networks, various protocol layers, 

application layers, physical layers, and devices. It 

includes a low-skew synchronization kernel to connect 

with live applications and equipment, which 

communicates throughout the digital twin just as it 

would run on physical networks. A suite of simulated 

cyberspace attacks and defenses interact with every 

layer of the emulated network.  These include network 

security protocols, firewall models, port and network 

scanning, DoS, stimulation of intrusion detection 

systems, vulnerability exploitation, packet modification, 

virus and worm propagation and defense, backdoors, 

rootkits, botnets, and others. The system can also 

integrate real exploitation tools into a safe lab 

environment. Running real data feeds e.g., GOOSE, 

though the system can subject these feeds to delay, 

degradation or even substitution. The system enables 

actual cyber defense technologies to be deployed and 

integrated with the emulated network, the cyberspace 

attacks, and the virtual representations of systems to 

assess the effectiveness of tools, techniques and 

architectures to ensure system-of-systems availability. 

These two software are tightly linked together via a 

developed functionality to automate virtual link 

creation. Using the virtual links ensures mapping 

between HYPERSIM and EXata dedicated sender and 

receiver, that a packet being sent at one interface of the 

link will be only received at the other interface as 

illustrated in Figure 4. 

 
Figure 4. CPS platform setup 

 

The closed-loop testing environment offered by CPS 

platform will allow the unit under test to interact with 

the CPS platform in a real-time manner. Using this 

closed-loop testing specifically for cyber security 

research is more beneficial, because in this situation, 

based on cyber incidents cascaded events in the energy 

system that will generate large-scale disruption. 

Studying such events by performing after-fault analysis, 

developing prediction strategies, and testing mitigation 

solutions can be easily implemented by using the 

automatic statistical reports generation for each entity 

with the test.   

In addition, the CPS platform has great benefits that 

has a graphical user interface on the Host PC to facilitate 

scenario creation and real-time visualization of the 

power system and the communication system 

parameters. In addition, it can be used at runtime to 

launch cyber-attacks, or alternatively, the attacks can be 

predefined in the scenario while it’s running which 

accelerates the workflow and eliminates human errors in 

configuration. Given the benefits of using a real-time 

simulator, particularly with this new integrated solution, 

there's several challenges to consider. 

4 CR-DES CPS Platform scenarios 

 

The provided SIL “Cyber-Physical Simulation of a 

Microgrid Subject to Cyber-Attacks” example 

developed by Opal RT and Scalable EXata forms the 

basis for the development of HIL use-cases. These 

examples are used to validate and test the CPS 

platform's operation and results validation. The first SIL 

is an example of a cyber-physical simulation involving 

a cyber-attacked microgrid. An OPAL-RT Real-Time 

Simulator co-simulates a microgrid system, including its 

distributed energy resources (DERs), power converters, 

and loads modeled in HYPERSIM, as well as the 

underlying communication network in EXata CPS as 

illustrated in Figure 5. Technical descriptions of 

microgrid units and testing results discussions are 

beyond the scope of this paper and will be published in 

other works as part of the CR-DES project 

dissemination plan. 
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Figure 5. SIL microgrid subject to cyber attack, blue 

lines show the communication links that every MG node 

entity (DERs, loads, CB, etc.) send measurements, 

status to the MGC and received controlling signal from 

the MGC based on GOOSE IEC 61850 standard 

protocol 

Each microgrid asset has a subsystem measurement 

that generates P, Q, and Vrms measurements based on 

voltage and current measurements. Internal microgrid 

controller MGC (Node 1) is a simulated MGC that has 

been implemented on the same model (SIL). The 

primary role of the MGC is to receive measurements 

from measurement subsystems and use these 

measurements to send reference set points to some of the 

DERs. As well as to keep the balance between the 

generated and consumed power by the DERs and loads 

respectively. Two scenarios had been designed and 

tested as follows. 

1.1 Scenario 1 

The first scenario the grid will be islanded in second 1, 

and in this islanded mode in order to insure the power 

balance between DERs power generation and load 

power consumption. The MGC is designed in a way that 

needs to send a dispatching signal to shed loads 4 (noun 

critical load), if there is a difference between DERs 

power generation and load power consumption as fast as 

possible. This power difference should be more than 

3MW. The MGC is using the IEC 61850 GOOSE 

protocol for sending and receiving via EXata 

communication emulation features. In addition, MGC 

attempts to enable voltage support and keep the 

microgrid physical parameters measurement values 

such as (frequency, grid RMS voltages etc.,) close to the 

nominal operation values. 

Next step within scenario one, a delay cyber-attack 

module will be introduced (1 second delay) via EXat 

emulation software. According to this delay attack the 

trip command within the GOOSE messages that send 

from MGC to open CB Load4 (disconnect Load 4) will 

be delayed by 1 second. This delay attack will initiate 

large disturbance that might lead to blackout e.g., Large 

frequency deviation, before being regulated back to its 

nominal value, hard and longer voltage dip down under 

its nominal value, with increased voltage oscillations as 

illustrated in Figure 6. 

Figure 6. Microgrid subject to delay attack scenario 1. In the bottom right of the figure, the red 

line is the original trip signal sent from the controller to shed load 4 after the grid is islanded in the 

second one, which it is in time. Whereas the blue line is the delayed signal. Trip command sent by 

the MGC is delayed by one second after we apply the cyber delay attack to the controller signal. 

The bottom left figure shows a hard and longer voltage dip down to 23 kV, with increased voltage 

oscillations happening along with execution of the delay attack. Also, on the up left figure shows 

large frequency deviation, before being regulated back to its nominal value after second two. In 

the right up of the figure it shows the power unbalance and the mismatching between power supply 

(red curve) and demand (blue curve) before second two (based on the delay attack). However, the 

grid attempts to tackle the problem and return back to normal operation after the second and keep 

the balance between the generated and consumed powers. 
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1.2 Scenario 2 

Microgrid is landed in steady state operation mode 

subject to man-in-the-middle cyber-attack. According to 

this scenario manipulation to Load 2 power 

consumption metermen’s is duplicated within the EXata 

software (cyber-attack modules) on its way before it is 

received by the MGC. In this case MGCC will 

periodically trips and reconnects load 3 since MGCC is 

programmed to shed the priority load 3 if the mismatch 

between generation and load exceeds 3 MW. In 

addition, the microgrid under test also suffers from 

declining power quality, including high frequency and 

voltage oscillations as illustrated in Figure 7.  

Consequently, various types of cyber-attacks, such as 

denial of service (DoS), buffer issues, virus sniffing, 

etc., can be carried out. Different monitoring and 

defensive network techniques, such as firewalls, 

intrusion detection ID, intelligent agents, defenders, 

etc., can also be designed and implemented for effective 

operational testing and assessing the resilience of energy 

system communication networks to cyber threats.    

 
 

 

5 Conclusions  

 

The CPS security platform is proposed in this paper and 

we show the requirements for testing of complex design 

systems in a variety of situations (e.g., steady state, 

transition, and attack) during both the development 

phase and prior to final system commissioning. As well 

as we present the feasibility of the developed CPS 

security platform to accomplish these tasks. 

Furthermore, we demonstrate one case study (SIL) in 

which real-time traffic based on the IEC 61850 GOOSE 

protocol has been exchanged between the smart grid 

nodes and controller. This real-time traffic is subject to 

cyber attack. We also present the architecture of 

cybersecurity and resilience of digital energy systems as 

well as its basic functionalities. 
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Figure 7. Microgrid subject to man-in-the-middle attack scenario 2. In the top right picture load 2 

measurements, red curve is manipulated before they are received by the MGC based on executing the 

man-in-the-middle attack, blue curve is the normal load 2 measurements before executing the attack. 

The bottom right shows the load 3 active power consumption which is fluctuated between (0 and 

4MW) since it is connected and disconnected to the grid based on the executing the man-in-the-middle 

attack that duplicate load 2 consuming power and the MGCC is programmed to shed the priority load 

3 if the mismatch between generation and load exceeds 3 MW. Smart grid also suffers from declining 

power quality voltage oscillations as shown in the bottom left of the figure and also high frequency 

oscillations as shown in the up left of the figure. 
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Abstract
The operational conditions at the Dalsfoss power station
are complicated due to many requirements such as envi-
ronmental regulations and safety constraints. Model pre-
dictive control (MPC) has been in use at this power station
to control the floodgates at the Dalsfoss dam. However,
the current formulation of MPC at the power plant does
not have routines to explicitly handle output constraints.
In this paper, a new improved optimal control problem
(OCP) is formulated for the operation of the flood gates
at the Dalsfoss power station. This new OCP formulation
is thought to be relatively easier for the operators to under-
stand and it is more flexible to the violation of constraints.
The aim of this paper is to extend the current MPC used at
the power plant so that the output constraints are system-
atically included in the new improved MPC formulation.
Two alternatives are presented and their robustness to an
uncertain disturbance is analyzed through robustness anal-
ysis.

Keywords: Model predictive control, optimal control
problem, flood management, uncertainty, robustness anal-
ysis

1 Introduction
Kragerø watercourse is one of many watercourse systems
that Skagerak Kraft operates. The watercourse contains
one dam and five hydropower stations which are located
between lake Toke and the sea sequentially along the wa-
tercourse as shown in Figure 1. Its catchment area is over
1200 square kilometres and lies mainly in Telemark, Nor-
way. The uppermost power plant is the Dalsfoss power
plant which is located next to the dam (SkagerakKraft,
2021b). The system has intakes to three turbines and two
flood gates (SkagerakKraft, 2021a).

Skagerak Kraft is fully responsible for the safety of the
operations at the Dalsfoss power station. Therefore, re-
quirements by the Norwegian Water Resource and Energy
Administration (NVE) must be complied with to ensure
safe and environmental-friendly operation. Some of these
requirements are environmental-related and are imposed
to prevent damages to the inhabitants and the ecosystem

Figure 1. Overview of the Kragerø watercourse (SkagerakKraft,
2021b).

around the water system. One of the most important con-
straints is to maintain the level of water at Merkebekk
within a specific range. The range is not constant and
changes over the months within a year (NVE, 2021). It
is not easy to satisfy the requirement all the time during
the operation due to two uncertainties in the system. One
is the power production plan to meet the energy demand.
The other is the water inflow to the lake/dam. Skagerak
Kraft creates the power production plan and uses it to op-
erate the plant. Water inflow to the lake is predicted by
using a complex hydrological model and weather forecast
information. As the result, the predicted water inflow is
given as 50 possible future scenarios for the next 13 days.

MPC is known as an attractive multivariable con-
strained control approach with its ability to effectively
deal with the complex dynamics of systems with multiple
inputs and outputs and constraints. (Morari and H. Lee,
1999; Mayne, 2014). Therefore, a reference region track-
ing MPC based on a mathematical model of the system
was suggested for the operation of the Dalsfoss power sta-
tion (Lie, 2014). More research has been conducted since
the first MPC was suggested in 2014. A better parameter
fitting on the model was suggested due to a poor descrip-
tion of the model during a severe flood in September 2015
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(Kvam et al., 2017). To obtain optimal operation under the
uncertainty of water inflow, the use of multi-objective op-
timization (MOO) MPC was investigated with the OCP
used in the reference region tracking MPC (Menchaca-
torre et al., 2019).

However, in the works of Lie (2014) and Menchaca-
torre et al. (2019) the water level at the dam (which is an
output of the system under consideration) has not been ex-
plicitly handled as an output constraint, but is rather dealt
indirectly using a complex cost/objective function during
the formulation of the control problem. In this paper, two
alternatives have been proposed to handle the concession
requirements of the level at the dam by explicitly consid-
ering them as output constraint. Pros and cons of these
two alternatives are discussed thoroughly in Section 3.

2 System Description
2.1 System model

Figure 2. Schematic of lake Toke (Lie, 2014)

Figure 2 depicts a simplified layout of the lake Toke.
The layout is divided into two parts. The left side of the
layout represents the upper stream of lake Toke, Merke-
bekk. The right side describes the lower stream of lake
Toke, near the Dalsfoss dam.

h1 and h2 are the height of water level above the min-
imal low regulated level value, xmin

LRV, at Merkebekk and
Dalsfoss respectively. The water levels are states of the
system. V̇i is the time-varying volumetric flow into Lake
Toke from its catchment. V̇i is split to both Merkebekk
and Dalsfoss as shown in Figure 2. Skagerak Kraft has a
hydrological model to calculate V̇i with the weather fore-
cast information they subscribe to. It is an input distur-
bance to the system. The other disturbance is the power
demand denoted as We. It is scheduled by specialists in
Skagerak Kraft. We is used to calculate the turbine flow,
V̇t, which means the required water flow rate to generate
electrical power. V̇t is limited as operational condition by
36m3/s. V̇g is the flow rate through floodgates. Water
that flows through flood gates does not produce any elec-
trical power since they are not sent through turbines but
simply discarded from the dam. Ideally, the flood gates

should be kept closed as much as possible to conserve wa-
ter in the dam for energy production and they should be
activated only in a flood situation to satisfy concession re-
quirements. Figure 3 shows the simplified schematic of
the floodgate at the Dalsfoss dam. The gate opening height
denoted hg is the control input for the system.

Figure 3. Structure of floodgate (Lie, 2014)

The model of lake Toke was developed and its update
has been suggested (Lie, 2014; Kvam et al., 2017). A sum-
mary of the model follows:

The heights of water level relative to sea level at Merke-
bekk and Dalsfoss, denoted xM and xD, are given by:

xM = h1 + xmin
LRV (1)

xD = h2 + xmin
LRV (2)

The area of the surface curve at lake Toke is calculated as:

A(h) = max(28×106 ·1.1 ·h
1
10 ,103) (3)

Inter compartment flow V̇12 is expressed as:

V̇12 = K12 · (h1−h2)
√
|h1−h2| (4)

where K12 is Inter compartment flow coefficient.
The equation to calculate V̇t from the electrical power de-
mand We is:

V̇t = a
Ẇe

xD− xq
+b (5)

where a and b are coefficients from data fitting. xq means
downstream level after the turbine which can be obtained
by solving the following cubic equation:

0 = c1x3
q +(c2− c1xD)x2

q

+(c3− c2xD + c4V̇g)xq

+Ẇe− c3xD− c4V̇gxD− c5

(6)

where c1, c2, c3, c4, and c5 are coefficient obtained from
polynomial model fitting.
At Dalsfoss power plant there are two flood gates. The
model for flow rate through floodgate j, V̇g, j, is:

V̇g, j =Cdw j ·min(hg,h2)
√

2g ·max(h2,0) (7)
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where Cd is discharge coefficient and g is acceleration of
gravity.
The total water outflow from the Dalsfoss power station,
V̇o, is calculated as:

V̇o = V̇t +
j

∑V̇g, j (8)

The dynamic model of states, h1 and h2, are expressed as:

dh1

dt
=

1
(1−α)A(h1)

((1−β )V̇i−V̇12) (9)

dh2

dt
=

1
αA(h1)

(βV̇i +V̇12−V̇t−V̇g) (10)

Parameters for the model are given in Table 1.

2.2 Operational constraints
Operational constraints on lake Toke are specified by
NVE. They are designed to achieve (i) operational safety,
(ii) securing ecological diversity, and (iii) avoiding prop-
erty damage, e.g., by maintaining certain minimum and
maximum levels at Merkebekk. The key constraints for a
flood situation are:

1. The total water outflow from the Dalsfoss power sta-
tion, Vo, should remain as steady as possible. This
requirement is to keep people and animals safe from
the sudden change of the water outflow and level at
the downstream.

2. The minimum flow rate of the total water outflow
should be bigger than 4m3/s. This restriction is not
to disturb the ecosystem in the downstream, e.g to
allow fishes to move freely, etc.

3. The water level at Merkebekk, xM, must stay within
a range:

xM ∈ [xLRV,xHRV]

where xLRV and xHRV denote the low regulated value
and the high regulated value for the water level re-
spectively. The seasonal change on level constraints
throughout a year is briefly shown in Figure 4. This
level constraint exists for not disturbing fauna along
the shoreline, but also to prevent damages or in-
convenience such as flooding properties or putting
boats on dry land, etc. This constraint can be vio-
lated to satisfy the second constraint by going lower
than xLRV . However, the level of water at Merke-
bekk should never exceed the maximal high regu-
lated value denoted as xmax

HRV.

4. When severe flooding occurs xM can exceed xHRV.
However, after the culmination of flooding ends, xM
must reach xHRV as soon as possible.

5. When the winter operation is terminated, the wa-
ter level in the reservoir must reach xsummer

LRV quickly.
However, the flow rate at the downstream, Vo, is lim-
ited to 20m3/s until the water level is at the target
level.

6. Although there is the minimum required flow rate
at the downstream, Vo ≥ 4m3/s, it is more benefi-
cial economically to have the flow rate larger than
10m3/s, which enables the operation of the four
sequentially located power plants along the water-
course.

The fourth and fifth constraints mentioned above re-
quires the judgement of the professional on sites such as
when flooding begins and when the winter operation is
completed. Therefore, in this paper, the two constraints
are not considered.

Figure 4. Water level constraint changes throughout year

3 Optimal Control Formulation
In this section, two alternative OCP formulations to im-
prove the the current MPC used at Dalsfoss hydropower
plant are presented. These two alternative MPC formula-
tions can be regarded as extensions of the current MPC.

3.1 Reference region tracking OCP with out-
put constraints

In the reference region tracking MPC currently being used
at Dalsfoss, the water level at the dam is controlled to lie
between the upper and the lower limits (see Figure 4) by
formulating a complex objective function containing a ref-
erence region as,

min
N

∑
i=1

ωRR2(xt+i)+ω∆u∆u2
c,t+i−1 +ωuu2

c,t+i−1 (11)

Here ω is a weight matrix and N is length of the predic-
tion horizon. u is control input and it has operational con-
straint such as uc,i ∈ [0,hg,max]. hg,max means the maximal
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Table 1. Parameters for Lake Toke model

Parameter Value Unit Comment
α 0.05 - Fraction of surface area in compartment 2
β 0.02 - Fraction of inflow to compartment 2

K12 800 m
3
2 /s Inter compartment flow coefficient

Cd 0.7 - Discharge coefficient, Dalsfoss gate
w1 11.6 m Width of Dalsfoss gate 1
w2 11.0 m Width of Dalsfoss gate 2

xmin
LRV 55.75 m Minimal low regulated level value

xmax
HRV 60.35 m Maximal high regulated level value
g 9.81 m/s2 Acceleration of gravity

allowed opening height of the floodgate. ∆u denotes the
gate opening changes which is:

∆uc,t = uc,t −uc,t−1 (12)

The level reference term in Equation 11, R2(xt+i), is
expressed as:

R(xt+1) = min(xM,t+1− γ
l
t+i,0)+max(xM,t+1− γ

u
t+i,0)

(13)
where γ l

t+i and γu
t+i work as lower and upper boundaries of

the reference region. They are calculated by:

γ
l
i = (1−XR)xLRV,i +XRxHRV,i (14)

γ
u
i = f (xHRV)−δHRV (15)

where XR and δHRV are the variable inputs that engineers
can put their insight into. A typical value for XR is 0.75.
The purpose of δHRV is to have a slight margin wrt. the
maximal allowed level for xM. f (xHRV) is decided based
on whether excessive flooding occurs or not as follow:

f (xHRV) =

{
xmax

HRV, for excessive flooding
xHRV otherwise

The reference level term in Equation 11 becomes zero
when the water level at Merkebekk stays in the reference
range defined by Equations 14 and 15. The reference term
is only activated when the water level is outside of the ref-
erence range. Therefore, the weight on the use of flood-
gates (i.e. control inputs) and the rate of change of con-
trol inputs are more emphasized when the water level re-
mains in the specified reference range. In this formula-
tion, the only constraints are the input constraints, and the
constraints on the water level are really only handled as a
complex cost function. It is a well-known fact that only
using a cost function does not guarantee constraint satis-
faction. In this paper, the addition of output constraints on
the water level at Merkebekk is suggested as,

xLRV ≤ xM ≤ f (xHRV)

3.2 New OCP with constraint relaxation
When handling the flood gates, care should be taken that
the water from the dam is not let out through flood gates
unnecessarily. This would result in loss of water which
otherwise could be used to produce electricity. In this
sense, saving as much water as possible (i.e. having as
high water level as possible) in the dam while still satisfy-
ing the concession requirements also becomes necessary.
In this newly formulated OCP, the objective function is
designed to maximize the water level at Merkebekk and
is simpler compared to the objective function in the refer-
ence region tracking OCP, Equation 11 as:

min
N

∑
i=1

ωRR2
new(xt+i)+ω∆u∆u2

c,t+i−1 +ωuu2
c,t+i−1 + p2

ωp

(16)
The new reference term in Equation 16 is expressed as:

Rnew(xt+1) = xM,t+1− f (xHRV)v (17)

Equation 17 is simpler than Equation 13. It is not only
more effective to preserve the water as much as possible
in the reservoir, but also easier for operators and engineers
to understand.

The last term, p2ωp which is the penalty for violation
of level constraints, is newly added. The variable p is the
slack variable which is used to modify the level constraints
as:

xLRV + p≤ xM ≤ f (xHRV)

The value of the slack variable is automatically decided
by the optimizer since it is added to the list of the deci-
sion variable (Sharma, 2020). This term can offer more
flexibility on optimization when the constraints are vio-
lated, for example when xM goes lower than xLRV to sat-
isfy the minimum flow rate requirement on the total out-
flow, Vo = 4m3/s, the optimization would not fail (due to
infeasibility) and cause the malfunction of the controllers
in the system.
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4 Simulation of Nominal MPC

This section presents the simulation results of nominal
MPC using the two alternative OCP formulations as de-
scribed in Section 3. For the simulation, the two distur-
bances, the power production plan and the water inflow to
the lake Toke must be described.

For the simplicity of the simulation, the power produc-
tion plan is assumed to generate maximum power. This
can be achieved by setting a fixed value on Vt as 36m3/s.
This is the maximum flow rate that can pass through the
turbine at Dalsfoss hydropower station.

The actual data of water inflow prediction stored by
Skagerak Kraft is applied for the simulation. The water
inflow prediction is given each day as 50 possible future
scenarios for the next 13 days. An example of the water
inflow prediction is shown in Figure 5. It is the historical
inflow prediction data recorded on 15th April 2020. The
deviation of the inflow prediction tends to be bigger as
time marches further into the future. The prediction data
can be expressed in matrix form as Equation 18.

Figure 5. 50 ensembles of the water inflow prediction to lake
Toke on April 15 2020

V̇i,t =


V̇ (1)

i,t V̇ (2)
i,t · · · V̇ (50)

i,t

V̇ (1)
i,t+1 V̇ (2)

i,t+1 · · · V̇ (50)
i,t+1

...
...

. . .
...

V̇ (1)
i,t+12 V̇ (2)

i,t+12 · · · V̇ (50)
i,t+12

 (18)

The rows in Equation 18 shows the time evolution of
the water inflow prediction and the column represents the
different 50 possible scenarios of water inflows. The pre-
diction of the inflow to the lake is updated every 24 hours.
For simulation of nominal MPC, the average value of the
water inflow prediction is used. It is calculated as:

Table 2. Parameters for the simulations

Parameter Value Unit
XR 0.75 -

δHRV 0.05 m
ωR 10 -
ω∆u 1 -
ωu 1 -
ωp 100 -

hg,max 5.6 m

V̇avg,t =


Mean(V̇ (1)

i,t V̇ (2)
i,t · · · V̇ (50)

i,t )

Mean(V̇ (1)
i,t+1 V̇ (2)

i,t+1 · · · V̇ (50)
i,t+1)

...
...

. . .
...

Mean(V̇ (1)
i,t+12 V̇ (2)

i,t+12 · · · V̇ (50)
i,t+12)

 (19)

The average is calculated on each time step with a new set
of the water inflow prediction. The water inflow predic-
tion based on the historical data is multiplied by a flood
coefficient to simulate the flooding situations. The flood
coefficient is set as 3 for the nominal MPC.

The period of simulation is set from April 15 to May
15 and includes a drastic change of the level constraints
at Merkebekk. The simulation is performed with two dif-
ferent initial points for the water level to demonstrate two
different situations. One initial point for the water level
is located lower than the reference region and the other
initial point is located in the reference region. Parame-
ters for the OCPs are presented in Table 2. For the opti-
mization, IPOPT in CasADi is used in Python (Andersson
et al., 2019).

4.1 Simulation result: Initial water level below
the reference region

Figure 6 shows the result of the simulation of nominal
MPC at Dalsfoss power station using the reference region
tracking MPC with output constraints when the initial wa-
ter level at Merkebekk is below the reference region. The
upper figure shows the level control and the lower fig-
ure shows the control actions during the simulation. The
floodgate is supposed to remain closed to make the wa-
ter level reach the reference region. However, floodgates
are drastically opened several times and remain opened.
It causes the water level to drop since the water is being
thrown out from the reservoir. This abnormal action is due
to the optimization problem becoming infeasible and the
time-varying level constraints not being satisfied at such
low water level. The optimizer then fails to find an opti-
mal solution and produces incorrect and abnormal results.

Figure 7 shows the result of the simulation of nominal
MPC using the newly formulated OCP with constraint re-
laxation as described in Section 3.2. The upper plot in Fig-
ure 7 represents the level changes and the lower plot shows
the floodgate openings during the simulation. Thanks to
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Figure 6. Simulation result of MPC at Dalsfoss station using
the reference region tracking OCP with output constraints for
initial water level lower than reference region. (upper plot - level
control, lower plot - floodgate opening)

the penalty term, p2ωp, in Equation 16, in the newly for-
mulated OCP, output constraint (water level) relaxation is
possible due to the use of slack variables. This does not
cause any failures of optimization problem during the sim-
ulation. Therefore, as it is supposed to be, the floodgate
stays closed. Despite the violation of the level constraint
at around 380 hours, the water level is maximized and the
level constraints are satisfied later at around 400 hours.
The reason that the level constraint (lower constraint) is
not fulfilled at ca. 380 hours is due to the control signals
being saturated. The flood gates are completely closed and
the inflow to the lake is not sufficiently large. Under this
circumstance, this is the best the new OCP can perform
without failing due to constraint relaxation.

Figure 7. Simulation result of MPC at Dalsfoss station using the
new OCP with constraint relaxation for initial water level lower
than reference region. (upper plot - level control, lower plot -
floodgate opening)

4.2 Simulation result: Initial water level in the
reference region

Figure 8 shows the simulation result of nominal MPC us-
ing the reference region tracking MPC with output con-
straints. The initial point for the water level at Merkebekk
is located inside of the reference region. The upper plot in
Figure 8 shows the level change and the lower plot shows
the gate openings during the simulation. The water level
remains nearly constant but the water level is not maxi-
mized. The gate stays constantly opened and thus results
in unnecessary loss of water through the flood gates.

Figure 8. Simulation result of MPC at Dalsfoss station using the
reference region tracking MPC with output constraints for initial
water level in reference region. (upper plot - level control, lower
plot - floodgate opening)

The simulation result of nominal MPC using the new
OCP with constraint relaxation with an initial water level
lying inside of the reference region is displayed in Fig-
ure 9. The upper plot shows the level change and the
lower plot shows the gate openings during the simulation.
The water level is maximized as intended to save as much
useful water as possible in the dam. Achieving a higher
level at the dam while still satisfying the concession re-
quirement means more water is preserved in the reservoir,
and this extra water can then be sent through the turbine
later on to produce useful electric power (increased profit).
This shows that the new OCP with constraint relaxation
results in an improved operation of the hydropower plant.

5 Robustness Analysis
The realization of all possible water inflow, which means
the first data of water inflow prediction on every update of
the prediction every day, is presented in Figure 10.

With robustness analysis, the goal is to use the nominal
MPC to all the individual 50 ensembles of the water inflow
predictions. In order words, robustness analysis enables
us to study the effect of applying a nominal/deterministic
MPC to an uncertain system. Here uncertainty lies in the
fact that any one of the 50 possible inflow forecasts can
occur in the future in the real plant. The robustness analy-
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Figure 9. Simulation result of MPC at Dalsfoss station using the
new OCP with constraint relaxation for initial water level in ref-
erence region. (upper plot - level control, lower plot - floodgate
opening)

Figure 10. Plot of water inflow prediction

sis shows the possibility of constraint violation due to the
influence of uncertainty. Since there are significant devi-
ations in the realization of water inflow in each scenario,
this section presents the result of the robustness analysis
of nominal MPC using both OCPs as described in Section
3 at the Dalsfoss power station.

For robustness analysis, the nominal scenario must be
chosen to get a sequence of the applied control input
throughout the simulation time. Then, the sequence of the
applied control input is used to evolve the states with dif-
ferent inflow forecast scenarios of the uncertainty by the
system model as shown in Figure 11. The first scenario of
water inflow prediction, (V̇ (1)

i,t , · · · ,V̇ (1)
i,t+12) in Equation 18,

is chosen as the nominal prediction set and the other sce-
narios are considered as the possible future occurrences.

The flooding coefficient is set as 3 for the analysis. The
initial water levels are located inside of the reference re-
gion so that the OCP for the reference region tracking
MPC with output constraints does not fail to converge due
to the violation of the time-varying level constraints (i.e.,
due to infeasibility).

Figure 11. Scheme of robustness analysis

Figure 12 displays the result of the robustness analy-
sis of nominal MPC with the reference region tracking
OCP with output constraints. The violation of the level
constraint does not occur. However, the water level is re-
mained in the reference region instead of achieving the
optimal states, i.e., maximizing the water level.

Figure 12. Robustness analysis on level control at Dalsfoss
power station using the reference region tracking MPC with out-
put constraints

The robustness analysis result with the new OCP with
constraint relaxation is shown in Figure 13. The areas
marked by blue and green colours in Figure 13 are dis-
played in Figure 14 and Figure 15 respectively. The po-
tential violation of the level constraint is detected by 1384
times throughout the simulation period. when the nominal
MPC with new OCP is applied to the uncertain system, the
level constraints are not always satisfied for all the possi-
ble water inflows to the lake that can happen in the future.
Some realizations can result in the violation of constraints.
This reflects reality since in the real plant, water inflow to
the lake can be dictated by one (or some other) of the pos-
sible forecast realizations.

6 Conclusion
The new OCP with constraint relaxation shows some im-
provements over the OCP for the reference region tracking
MPC with output constraints. As presented in Section 4,
it not only saves more water in the reservoir compared to
the reference region tracking with output constraints but
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Figure 13. Robustness analysis on level control at Dalsfoss
power station using the new OCP with constraint relaxation

Figure 14. Enlarged robustness analysis on level control at Dals-
foss power station using the new OCP with constraint relaxation
: time = [170,370]

Figure 15. Enlarged robustness analysis on level control at Dals-
foss power station using the new OCP with constraint relaxation
: time = [370,720]

also, did not cause any failure on optimization due to in-
feasibilities. Also, since the new OCP with constraint re-
laxation is simpler, it should be easier for the operators and
engineers on the site to understand. More study should be
performed with the new OCP with constraint relaxation

by using more realistic operational scenarios including the
use of power production plan in the future.

In robustness analysis, a flood situation is assumed by
setting the flood coefficient as 3. The new OCP with con-
straint relaxation shows the vulnerability compared to the
reference region tracking MPC in terms of the robustness
of MPC. While the reference region tracking MPC has no
potential violations on the level constraint, the MPC with
new OCP displays 1384 times of the potential violation.
However, this kind of possible constraint violation can be
mitigated by employing a stochastic MPC or putting the
safety margin. For the use of the stochastic MPC, the new
OCP with constraint relaxation in this paper may be more
beneficial to use due to its flexibility on output constrained
optimization and its behaviour to save more water at the
dam.
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Abstract
Electricity grid flexibility is vital for renewable energy to
be used effectively. Power-to-gas technologies are inves-
tigated to connect electricity grid to gas grid and to tackle
capacity challenges. Grid management expenses consist
of redispatch and feed-in management. These manage-
ment procedures, next to being costly, cause a significant
energy loss. Proton-exchange membrane electrolyzer in-
stallations were studied to reduce these expenses and re-
cover energy. The change in the levelized cost of hydrogen
production with varying electrolyzer capacities was pre-
sented. The sensitivity of the levelized cost and net present
value with respect to installation costs, maintenance costs,
and electricity prices were investigated. While the elec-
tricity prices have the most significant effect on the lev-
elized cost of hydrogen production, the net present value
was affected considerably by the hydrogen selling price.
Possible energy savings were calculated between 2 – 23
GWh for 2, 5, 10, 20 MW installations. The annual grid
management expense savings were in the range of 0.2
– 2.3 million Euros, increasing with the increasing elec-
trolyzer capacity.
Keywords: electrolysis, power-to-gas, renewable energy

1 Introduction
The share of intermittent renewable sources (wind and so-
lar) reached a significant level that causes various issues
in the grid. One of these challenges is the uncontrollable
amount and geographical distribution of power genera-
tion. As the storage capacity of the grid is limited, the
electricity prices can be negative, or generators have to
shut down to ensure grid stability. When the transmission
operator changes the active generators holding the same
energy production to avoid congestion, it is called redis-
patch. It might cause shutting off renewable power plants
due to their location and maybe use fossil alternatives in-
stead. It is called feed-in management when certain gen-
erators are shut down because the production exceeds the
grid transmission capacity. In 2015, it was reported that
the transmission system operators in Germany paid 412
million Euros for redispatch and 478 million Euros for
feed-in management (Bundesnetzagentur, 2016). Accord-
ing to this report, Schleswig - Holstein is the most affected

state from these measures. As a matter of fact, 65.5% of
the feed-in management expenses are affiliated with this
state. Its low population density (Hinz et al., 2018), high
wind power (Maruf and Islam, 2021) and weakly con-
nected grid to the demand owner states (Bencs et al., 2020)
contribute significantly to the situation. Water electroly-
sis can utilize the redundant energy and produce hydrogen
that can be sold to process industries or stored to be con-
verted back to electricity when needed. Expenses of grid
management are not the only point to consider; Schleswig
- Holstein has lost over 1000 GWh of energy due to an
inflexible grid in 2014 (Schermeyer et al., 2017).

Hydrogen is widely used in process industries, espe-
cially for ammonia and methanol production (Nicita et al.,
2020). When it is produced from renewable resources,
it has a lower carbon footprint than its fossil production
route. A gray hydrogen production route, steam-methane
reforming, has a global warming potential of approxi-
mately 12000 g CO2eq/kg H2, and this value is 970 g
CO2eq/kg H2 for electrolysis by wind energy and 2412 g
CO2eq/kg H2 for electrolysis by solar energy (Cetinkaya
et al., 2012). Currently, most of the industrial hydrogen
is produced via steam-methane reforming (Carapellucci
and Giordano, 2020). In the last decades, hydrogen gains
importance as an environmentally friendly energy carrier
and as a product of power-to-gas research. It is a good
candidate for decarbonizing the systems where high en-
ergy density is required. Hydrogen use in aviation (Bauen
et al., 2020) and steel industry (Gielen et al., 2020) can un-
doubtedly contribute to achieve the lower greenhouse gas
emission aims.

A variety of electrolysis methods are available for dif-
ferent scales with different current densities and operat-
ing conditions. Alkaline electrolysis is a mature tech-
nology. Norsk Hydro operated this type of electrolyz-
ers for over 50 years in Norway (Posdziech et al., 2019).
Although they are mature, they have low current densi-
ties and lower efficiency than the other options (Grigoriev
et al., 2020). Solid-oxide electrolysis operates at a high
temperature (Lei et al., 2019), and it is a very efficient
system. However, the high temperature condition makes
it harder to integrate into intermittent systems. The start-
up time is longer to reach the 800 – 1300 K temperatures.
Proton-exchange membrane (PEM) electrolysis operates
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at a lower temperature (350 K), and has a higher current
density and efficiency than the alkaline method (Lümmen
et al., 2019).

There are studies in the literature, discussing electroly-
sis installations for Italy (Minutillo et al., 2021), Norway
(Ulleberg and Hancke, 2020) and Korea (Lee et al., 2020).
These studies show the location dependency of the costs,
prices, and energy availability. In this work, the German
state of Schleswig - Holstein is selected as the location of a
PEM type electrolyzer to reduce the penalty costs and lost
energy. The levelized cost of hydrogen production and the
net present value of electrolyzer installation are calculated
for different capacities. The sensitivities of the levelized
cost and the net present value are estimated based on the
expenses. The savings are calculated in terms of energy
and grid management cost reduction. Finally, the inter-
nal rate of return is presented with a discussion on the
feasibility of this application. New stations are planned
to increase the state’s existing hydrogen filling capacity;
therefore, the produced hydrogen can be sold locally (Pos-
dziech, 2019).

The next section presents the equations and parameters
used to evaluate electrolyzers from an economic perspec-
tive. Additionally, case scenarios are created with varying
costs and product prices, operating hours, and electricity
prices to analyze the commercial possibilities. The results
are presented based on these scenarios and discussed in
the section that follows. Finally, in the last section, the
outcomes of this work are summarized next to possible
points for future investigations.

2 Methods
To assess the economic conditions of hydrogen production
via electrolysis, the levelized cost of hydrogen production
(LCOH) is used. LCOH is calculated by Equation 1. As
can be seen in the equation, this value shows the cost per
kg of hydrogen production.

LCOH =
∑

N
y=1

CapExy+Ey
(1+d)y

∑
N
y=1

mh,y
(1+d)y

(1)

The net present value of the installations are calculated
by Equation 2.

NPV =
N

∑
y=0

Cashin −Cashout

(1+d)y (2)

The internal rate of return (IRR) is also calculated to
show the expected return generated by the investment.
IRR is the discount rate that results in a zero NPV, which
is given in Equation 3.

N

∑
y=0

Cashin −Cashout

(1+ IRR)y = 0 (3)

The variables used for these equations are given in Ta-
ble 1. The value of time is taken into consideration by the

discount factor in all the economic assessment methods
used.

Table 1. Variables used for levelized cost, net present value, and
internal rate of return calculations.

Variable Description (Unit)

LCOH Levelized Cost (EUR/kg Hydrogen)
y Year index
N Electrolyzer lifetime (year)
CapExy Capital expenses in year y (EUR)
OpExy Operational expenses in year y (EUR)
Ey Electricity cost in year y (EUR/kWh)
mh,y Produced hydrogen in year y (kg/year)
d Discount factor (%)
NPV Net present value (EUR)
Cashin Cash inflow (EUR)
Cashout Cash outflow (EUR)
IRR Internal rate of return (%)

Capital expenses (CapEx) and maintenance expenses
are calculated by using factors changing according to the
capacity of the electrolyzer. These factors are given in Ta-
ble 2 for PEM electrolysis.

Table 2. Variables used for levelized cost and net present value
calculations.

Capacity CapEx1 Maintenance2

(MW) (EUR/kW) (EUR/kW)

2 1400 500
5 1300 455
10 1250 445
20 1200 420

The electrodes have a shorter lifetime than the sys-
tem. Therefore, maintenance is considered for electrode
change every five years. The electricity cost is the only
operational expense that is included in this study. In-
stead of using a factor, this expense is calculated by using
6 gEUR/kWh electricity price, the capacity of the elec-
trolyzer, and the running hours of the system. This value
is the lower limit of industrial electricity price in Germany
(Schmitz et al., 2020). For the base scenario, 6 EUR/kg
hydrogen selling price is used. A 6000-hour operation per
year is assumed for the electrolyzers considering that the
high electricity prices would cause infeasible operation.

Scenarios
• Base Scenario: LCOH, NPV and IRR are calculated

for capacities of 2, 5, 10, and 20 MW, and elec-
trolyzer lifetime of 10, 15, and 20 years.

• Dependency on costs and product price variation:

1(Saba et al., 2018)
2(Lee et al., 2020)
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Each expense parameter (CapEx, OpEx, and mainte-
nance) is reduced by 10%, and the change in LCOH
is presented. In addition to the expense reduction
scenarios, the change in NPV with respect to a 10%
hydrogen selling price increase is calculated.

• Runtime: Operating hours per year is varied be-
tween 3000 – 8000 with 1000 h/y increments, and
the LCOH changing trend is studied.

• Electricity price: A high electricity price is consid-
ered to observe the change in LCOH. Negative prices
are discussed and an electricity price limit is sug-
gested to run the systems.

• Savings: The annual energy savings of each elec-
trolyzer is calculated based on the curtailment hours
of the state. The payback period, when NPV reaches
zero, is calculated.

The next section follows the order of these scenarios,
reporting the values and discussing them against each
other.

3 Results and Discussions
Base scenarios
Levelized cost, net present value and internal rate of return
calculations are performed for 2, 5, 10, and 20 MW capac-
ity, and the results are given in Figure 1, 2 and 3 for 10, 15
and 20 years lifetime. LCOH decreases with a longer life-
time of the installation, but this decrease is not linear. The
installation of 2 MW has an LCOH of below 5.5 EUR/kg,
which is below the selling price of hydrogen even with the
shortest lifetime.

Figure 1. Levelized cost of the electrolyzers with respect to
capacity and lifetime.

NPV increases with the electrolyzer lifetime, and simi-
lar to the LCOH decrease, this increasing trend is not lin-
ear.

IRR and NPV show the same trend as expected. The
increasing capacity lowers the effect of a longer lifetime

Figure 2. Net present value of the electrolyzers with respect to
capacity and lifetime.

on the generated value. These values of LCOH, NPV,
and IRR, calculated for 6000 h/y operating period and 6
gEUR/kWh electricity price, are taken as the base cases,
and all the percentage calculations use these values.

Additionally, these results show the low effect of the
capacity on LCOH and IRR. The electrolyzer stacks can
be installed as needed, as a bigger capacity brings only a
slight LCOH improvement.

Figure 3. Internal rate of return of the electrolyzers with respect
to capacity and lifetime.

The effect of expenses and product price on
LCOH and NPV
PEM electrolysis is a hot research topic, and the ongo-
ing scientific work increases the expectations of cost re-
duction. The sensitivity of LCOH is investigated based
on expected technological improvements to decrease the
CapEx, OpEx, maintenance cost, and electricity price.
The decrease in the LCOH with a 10% decrease in each
of these expenses is given in Figure 4 for all evaluated
electrolyzer capacities. Electricity price change has the
most significant effect on LCOH, followed by CapEx and
maintenance, respectively. Therefore, it can be said that
it is more critical to reach cheaper electricity compared to
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technological advances. The sensitivity of LCOH with re-
spect to CapEx and maintenance slightly decreases with
the increasing capacity. However, since the electricity
consumption increases with the increased capacity, the
higher capacity electrolyzer has a more sensitive LCOH
to the electricity price.

Figure 4. Decrease in LCOH with respect to 10% decrease in
each expense type.

The sensitivity of NPV is also investigated concerning
the same expenses. Additionally, NPV depends on the hy-
drogen selling price. Therefore, the effect of a 10% in-
crease in the hydrogen selling price is also investigated.
The results are given in Figure 5. For the 2 MW capacity,
almost 65% increase is observed with a 10% increase in
the hydrogen selling price. As all the expenses are lower
for the small scale, the product creates more value. NPV
becomes less sensitive to the product price with the in-
creasing capacity, although this value is still the most im-
portant parameter. The expenses affect the NPV in the
same order as they affect LCOH. However, the sensitiv-
ity decreases with the increasing capacity. Both LCOH
and NPV used for the sensitivity analysis are for 20 years
electrolyzer lifetime. Of course, a 10-year lifetime causes
a higher dependency on the expenses.

Figure 5. Increase in NPV with respect to 10% increase in hy-
drogen selling price and 10% decrease in each expense type.

The effect of runtime on LCOH
If the 2 MW electrolyzer runs less than 5000 hours a year,
the production costs exceed the selling price of 6 EUR/kg,
and the net present value after 20 years becomes nega-
tive. Of course, a higher-capacity electrolyzer can tolerate
more extended downtime due to higher production. The
change in the LCOH with respect to the runtime of the
electrolyzer is given in Figure 6 for different capacities for
10, 15, and 20 years lifetime. The LCOH values are quite
high for the low operating hours. However, in an average
node in Schleswig - Holstein, 1443 hours of curtailment
occurred in 2015 (Schermeyer et al., 2017). Considering
that the electricity price will be zero (or lower) for these
hours, LCOH will be affected by the annual curtailment
events significantly.

Electricity price
The electricity price and lifetime – runtime analyses show
the importance of when to run the electrolyzer decision.
The electricity price has the highest effect on LCOH. Ger-
many has relatively higher prices for small-scale industrial
electricity; the highest value for the large-scale industry is
around 14 gEUR/kWh (Schmitz et al., 2020). If the high-
est electricity price is considered, LCOH increases signif-
icantly. The LCOH values for the expensive electricity
scenario are given next to the percent increase compared
to the base case scenario in Table 3.

Table 3. LCOH for the high electricity price and percent in-
crease from the base scenario.

10 years LCOH (EUR/kg) % increase

2 MW 9.8 82.28
5 MW 9.7 84.05

10 MW 9.6 84.97
20 MW 9.6 85.91

15 years LCOH (EUR/kg) % increase

2 MW 9.5 86.37
5 MW 9.5 87.82

10 MW 9.4 88.56
20 MW 9.4 89.32

20 years LCOH (EUR/kg) % increase

2 MW 9.4 88.5
5 MW 9.3 89.77

10 MW 9.3 90.41
20 MW 9.3 91.07

On the other hand, average electricity prices can be mis-
leading. In 2020, electricity price was below zero for 298
hours, and from February to May, the price range was gen-
erally 0 – 3 gEUR/kWh (Kern, 2021). If the selling price is
kept constant, up to 8 gEUR/kWh, a feasible operation is
possible. As the selected PEM electrolyzer has a fast start-
up, 15-minute prices of the power market can be used for
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Figure 6. Change of LCOH for changing running hours of electrolyzers.

this decision, rather than a fixed average price.

Savings
If the electrolyzer of 2 MW capacity ran on the curtail-
ment hours (1443 h/y), 2.31 GWh energy would have been
saved if the conversion efficiency is 80 %. For the 5, 10,
and 20 MW electrolyzers, energy savings would be 5.77,
11.5, and 23.1 GWh, respectively. Additionally, the trans-
mission system operators could reduce the feed-in man-
agement costs by a rate of 101 EUR/MWh (Bundesnet-
zagentur, 2016). The cost reduction for each electrolyzer
capacity is given in Table 4.

Table 4. Feed-in management cost reduction by the electrolyzer
capacity.

Capacity (MW) 2 5 10 20

Cost reduction (Mio. EUR) 0.23 0.58 1.16 2.34
% of CapEx 8.21 8.92 9.28 9.75

Thanks to the German Renewable Energy Sources Act
(EEG), many renewable energy producers have a guaran-
teed selling price (BGBI. I S. 1066, 2014). It should be
noted that part of the grid management savings might be
shifted to the EEG surcharge (EEG-Umlage) due to the
difference between the guaranteed price and the market
price. This difference might be high, considered that the
curtailment events mainly occur when there is a high re-
newable share in the grid.

For this study, an average value of 6 EUR/kg is taken
as the selling price of hydrogen. There are studies taking
higher and lower values (Song and Ozkan, 2010; Dufo-
López et al., 2009). The price range of gray hydro-
gen is much lower, around 1.8 EUR/kg (Salkuyeh et al.,
2018). An effort from governments to use a mixed hy-

drogen stream can make the high price range justifiable.
Thanks to a similar effort, market diesel is a mix of petro-
diesel and bio-diesel in Germany as in many other coun-
tries (BGBI. I S. 590, 1318, 2016). The investment might
be feasible when the savings’ rate to CapEx and feed-in
management costs, given in Table 4, are also considered.
These values show the economic potential of the elec-
trolyzer from different perspectives. If the transmission
system operators can cut grid management costs, the busi-
ness case will be less dependent on the hydrogen selling
price.

Water electrolysis produces high purity oxygen gas next
to hydrogen. As it is not relevant to the energy calcula-
tions, the monetary value of this side product is not con-
sidered for this work. However, selling high purity oxygen
can bring additional value.

4 Conclusions
The state of Schleswig – Holstein has high grid manage-
ment expenses due to the high share of wind power gen-
eration. Four different capacities for PEM electrolysis are
investigated for this state to save energy and cut expenses.
LCOH and NPV are calculated for economic assessment,
and how these values change according to CapEx, main-
tenance, and electricity expenses are shown. Their trend
shows the importance of cheap electricity. CapEx and
maintenance costs affect the LCOH much less than the
electricity price. The feasibility is found highly dependent
also on the hydrogen selling price. However, the possi-
ble grid management cost reduction of up to 9% of the
CapEx can lower its effect. Internal rate of return values
are found satisfactory, ranging between 14 - 17 % for the
20-year lifetime electrolyzers. With its possible product
utilization alternatives of electricity generation, heat gen-
eration, and chemical feedstock, electrolysis is a substan-

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185234 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

238



tial investment candidate to gain grid flexibility. Future
work can focus on the comparison of different alternatives
to cut grid management costs of this state. Additionally,
instead of selling the produced hydrogen to process indus-
tries, different scenarios for converting it back to electric-
ity can be considered.
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Abstract
This paper describes mathematical modeling, optimiza-
tion, and analysis of a gas lift oil field with five wells.
A global sensitivity analysis using the variance-based
method is performed to classify the parameters, which
are highly sensitive and uncertain simultaneously. An im-
proved model is further used to design a model-based pre-
dictive controller to optimally distribute a limited supply
of lift gas among the oil wells. Several simulation cases
showed an increase in the total oil production, and all
the constraints were fully satisfied when the determinis-
tic NMPC was applied to the nominal model. The effect
of parametric uncertainty is studied by applying the deter-
ministic NMPC to the plant model containing the uncer-
tain parameters. It has been shown that under the presence
of uncertainty, robust constraint satisfaction is not guaran-
teed with some constraints not being satisfied, leading to
unachievable and unrealistic lift gas distribution.
Keywords: Gas Lifted Oil Wells, Model Predictive Con-
trol, Global Sensitivity Analysis, Dynamic Modeling and
Simulation, Parametric Uncertainty

1 Introduction
It is always of interest to manage and plan resources effi-
ciently to obtain profit as much as possible from a given
resource. In this sense, the oil and gas industry is not an
exception. Hence, the optimal distribution of available gas
is crucial to maximizing total oil production in a gas-lifted
oil field where the multiple oil wells share the lift gas sup-
plied by a common source.
In a gas lifted oil field, an artificial external mechanism is
exploited to bring the dead wells back to life or increase
the production rates from the naturally flowing wells. A
continuous flow gas lifted oil field normally consists of
multiple gas lift oil wells sharing lift gas from a common
supply pipeline. A single gas lifted oil well is shown in
Figure 1.In this system which is mostly used to extract the
lighter crude oils, the high-pressurized natural gas is con-
tinuously injected into the annulus of the well through the
gas lift choke valve. The injected gas finds its way into
tubing at some points located at proper depths and mixes
with the multiphase fluid from the reservoir. As a result
of this mixing, the density of the fluid in the tubing will
be reduced, which means that the flowing pressure losses

in the tubing reduce. Consequently, the reservoir pressure
will be able to overcome the flowing resistance in the well
and push the reservoir fluid to the surface.
Each well has its own inflow characteristics. For exam-
ple, two oil wells in the same field may produce differ-
ent amount of oil even when the same amount of lift gas
is injected into them. In other words, there is no rule of
thumb on how to distribute the available lift gas among the
oil wells to obtain the maximum possible oil production
from the field. For optimal distribution of lift gas among
the wells, model based real-time optimizer (RTO) can be
used. For this an accurate mechanistic model of the pro-
cess, which should be simultaneously simple enough to
be used for real-time optimization and control purposes
should be used.
Modeling and control of gas lifted oil field has been stud-
ied before in (Sharma et al., 2011), where some simpli-
fying assumptions were made that may not reflect real-
ity. For example, the fluid that comes out of the reservoir
was assumed to be pure oil (without gas coming from the
reservoir) and all the well parameters were assumed to be
deterministic. This model had been used further in op-
timization of lift gas allocation as nonlinear optimization
in (Sharma et al., 2012). This model has been improved
in (Krishnamoorthy et al., 2016) by considering the gas
to oil ratio. The long term production optimization un-
der uncertainty has been studied in (Capolei et al., 2015;
Hanssen et al., 2017) using economic MPC. But when it
comes to the short-term optimization, most of the works
either consider a deterministic model, which means they
simply disregard uncertainty, or they limit the research
scope to steady-state optimization using a very simplified
linear model (Hanssen and Foss, 2015). Recently, a few
papers have been published on real-time process optimiza-
tion under the presence of uncertainty (Krishnamoorthy
et al., 2019) to address the challenges in this area.
The first purpose of this paper is to improve the existing
mathematical model of gas lifted oil fields with more re-
alistic assumptions. To achieve this goal, the fluid that
comes out of the reservoir is considered to be a mixture
of oil, water, and gas. Furthermore, parametric uncertain-
ties are considered for some parameters such as gas to oil
ratio and productivity index. The second aim of the pa-
per is to classify parameters that are both highly sensitive
and uncertain simultaneously. Therefore, a global sensi-
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tivity analysis is performed to study how the uncertainty
in output (total oil production from the field) can be ap-
portioned to different sources of uncertainty in the model
parameters. The first order and total-effect sensitivity in-
dices are calculated using the variance-based method due
to its valuable features, such as the inclusion of interac-
tion effects among input factors (Saltelli et al., 2008). The
third goal is to study the effect of parametric uncertainty
on lift gas distribution optimization problem. Considering
the operational constraints of the process and the inher-
ent robustness (to a certain extent) of the receding hori-
zon strategy, a deterministic nonlinear model based pre-
dictive controller is designed based on the nominal plant
model to optimally distribute a limited supply of lift gas
being shared to several oil wells in the field. Several sim-
ulation cases are performed to study the performance of
the optimal controller under varying operational scenar-
ios. Simulation results show that the total oil production
will be increased and all the constraints will be satisfied
when the deterministic NMPC is applied to the nominal
model. The effect of parametric uncertainty is shown by
applying the deterministic NMPC to the plant model con-
taining uncertain parameters and it has been shown that
some constraints will be violated which suggests that the
uncertainties should be considered explicitly in the opti-
mal control problem.
The rest of the paper is organized as follows. Section 2
describes mathematical modeling of the gas lifted oil field
system, openloop simulation results and the sensitivity
analysis. Standard nonlinear model predictive control de-
sign, simulation results and stochastic analysis are pre-
sented in Section 3 before concluding in Section 4.

From Compressor
Multiphase

Meter

Gathering
Manifold

Production
Choke Valve

Reservoir

To Separator

From Other Wells

Gas Lift
Choke Valve

To Other Wells

Tubing

Annulus

Figure 1. Schematic diagram of a single gas lift oil well

2 Modeling and Sensitivity Analysis
The considered gas lifted oil field of this paper consists
of five oil wells that share a common gas distribution

pipeline and common gathering manifold. A compressor
discharges highly pressurized lift gas into the common gas
distribution pipeline where it should be distributed among
the oil wells. Considering a single oil well, the lift gas
mass flow rate from the common distribution manifold
into the well’s annulus is denoted by wi

ga where the super-
script i refers to the ith oil well. Then, the high pressure lift
gas is injected from annulus into tubing (wi

ginj) at a proper
depth through the gas injection valve which is always open
and only passes the flow in one direction. The injected
gas mixes with the multiphase fluid (mixture of oil, wa-
ter, and the gas from the reservoir) and reduces its density.
This causes the hydrostatic pressure of the fluid column
in tubing above the injection point and consequently the
bottom hole pressure to drop. As a result, the differential
pressure between the reservoir and the bottom hole pres-
sure will increase and pushes the liquid column to flows
upward to the surface. The produced mixture flows out
through all the production choke valves (wi

glp) is collected
in the common gathering manifold and finally transported
to the separator where they are separated into their corre-
sponding compartments. The gas is then sent back to the
compressor system and recycled to be used for lifting pur-
poses.
Friction losses in the pipelines have not been taken into ac-
count since it might not be important for the sole purpose
of control. All phases of the multiphase fluid are assumed
to be evenly distributed with no slugging. The tempera-
ture of lift gas and the multiphase fluid is assumed to be
constant at 280 K at all sections of the pipelines and the
reservoir pressure is assumed to be constant at 150 bar.
All the assumption are based on expert knowledge from
Equinor ASA.

2.1 Model Description
The model is developed considering all the components of
a typical gas lifted oil well as shown in Figure 1. The dif-
ferential equations in model are obtained from the mass
balances of each compartment. The algebraic equations
are mostly density models, pressure models, flow models,
and so on, which are obtained from equations of states,
valve equations, and first principal modeling techniques.
Considering the mass of lift gas in annulus mi

ga, mass of
the gas in the tubing above the injection point mi

gt, and
mass of the liquid (mixture of oil and water) in the tubing
above the injection point mi

lt as three states and applying
the mass balance, three corresponding differential equa-
tions are given by:

ṁi
ga = wi

ga −wi
ginj (1)

ṁi
gt = wi

ginj +wi
g −wi

gp (2)

ṁi
lt = wi

l −wi
lp (3)

wi
ga is the mass flow rate of the injected lift gas into each

well from the gas lift choke valve (system input), wi
ginj

is the mass flow rate of the gas injection from the annu-
lus into the tubing, wi

gp and wi
lp are the produced gas and
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liquid phase mass flow rates from the production choke
valve, respectively, and wi

g and wi
l are the gas and liquid

mass flow rates from the reservoir into the well. wi
glp is

the total mass flow rate of all phases from the production
choke valve and wi

op is the oil compartment of the wi
lp. All

the flow equations are given by:

wi
ginj = KiY i

2

√
ρ i

ga max(Pi
ainj −Pi

tinj,0) (4)

wi
gp =

mi
gt

mi
gt +mi

lt
wi

glp (5)

wi
lp =

mi
lt

mi
gt +mi

lt
wi

glp (6)

wi
l = PIi max(Pr −Pi

wf) (7)

wi
g = GORiwi

l (8)

wi
glp =Cv(ui

2)Y
i
3

√
ρ i

m max(Pi
wh −Ps,0) (9)

wi
op =

ρo

ρw
(1−WCi)wi

lp (10)

Pi
a is the pressure of lift gas in annulus downstream the gas

lift choke valve, Pi
ainj is the pressure upstream the gas in-

jection valve in the annulus and Pi
tinj is the pressure down-

stream the gas injection valve in the tubing, and Pi
wh and

Pi
wf are the well head and bottom hole pressure respec-

tively. All the pressures are given by:

Pi
a =

zmi
gaRT i

a

MAi
aLi

a_tl
(11)

Pi
ainj = Pi

a +
mi

ga

Ai
aLi

a_tl
gLi

a_vl (12)

Pi
tinj =

zmi
gtRT i

t

MV i
G

+
ρ i

mgLi
t_vl

2
(13)

Pi
wh =

zmi
gtRT i

t

MV i
G

−
ρ i

mgLi
t_vl

2
(14)

Pi
wf = Pi

tinj +ρ
i
l gLi

r_vl (15)

ρ i
ga is the average density of gas in the annulus. ρ i

gl is the
density of liquid phase (oil and water mixture), ρ i

m is the
average density of multiphase mixture in tubing above the
injection point. Y i

2 and Y i
3 are the gas expandability fac-

tor for the gas that passes through gas injection valve and
production choke valve, respectively. V i

G is the volume of
gas present in the tubing above the gas injection point, and
Cv(ui

2) is the production choke valve characteristics as its
opening. All the densities and other variables are given

by:

ρ
i
ga =

M(Pi
a +Pi

ainj)

2zRT i
a

(16)

ρ
i
l = ρwWCi +ρo(1−WCi) (17)

ρ
i
m =

mi
gt +mi

lt

Ai
tL

i
t_tl

(18)

Y i
2 = 1−αY

Pi
ainj −Pi

tinj

max(Pi
ainj,P

min
ainj )

(19)

Y i
3 = 1−αY

Pi
wh −Ps

max(Pi
wh,P

min
wh )

(20)

V i
G = Ai

tL
i
t_tl −

mi
lt

ρ i
l

(21)

Cv(ui
2) =


0 if ui

2 < 5
30.303ui

2 −151.788 if 5 < ui
2 < 50

136.5ui
2 −5460 if 50 < ui

2
(22)

Note that the dynamic model 1 to 22 could be written as
an explicit ODE (ordinary differential equations) by sim-
ply eliminating the algebraic variables. So the model in
compact form is given by:

ẋ = f (x,u) (23)
y1 = h1(x,u) (24)
y2 = h2(x,u) (25)

where x and u are the states and system inputs, and y1 and
y2 are two desired outputs

x =
[
m1

ga . . . m5
ga m1

gt . . . m5
gt m1

lt . . . m5
lt
]T

(26)

u =
[
w1

ga w2
ga w3

ga w4
ga w5

ga
]T (27)

y1 =
5

∑
i=1

wi
op (28)

y2 =
5

∑
i=1

wi
glp (29)

2.2 Uncertainties
In this work, the productivity index PI which is a mathe-
matical means of expressing the reservoir’s ability to de-
liver fluids to the wellbore, gas to oil ratio GOR which
is defined as the mass ratio of produced gas to produced
liquid (oil and water), and water cut WC which is defined
as the volumetric flow rate of water to the total produced
liquid, are considered to be constant but unknown param-
eters. Considering the five oil wells, there exist fifteen
uncertain parameters in the system that makes it visually
impossible to show the uncertainty region. Nevertheless,
the uncertainty region of one well is shown in Figure 2 as
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an example. All the uncertain parameters of all the five
wells in this paper are assumed to have the same ±20%
deviation from their nominal values and uniform distribu-
tion. The reason of choosing uniform distribution is to
challenge the controller.

Figure 2. Unceratainty region with ±20% deviation.

2.3 Open Loop Simulation

The system is simulated in open loop using the nominal
values of parameters provided in Table 1 and Pr and Ps are
assumed to be 150 and 30 bar, respectively. The presented
results in Figure 3 show that a decrease in the injected lift
gas flow rates causes an increase in bottom hole pressures,
and consequently, the oil production flows decrease. This
means that the model is capable of showing all the neces-
sary dynamics of gas lifted oil field and will be used fur-
ther to perform sensitivity analysis and to design nonlinear
model predictive control.

Figure 3. Open loop simulations of the nominal model

2.4 Global Sensitivity Analysis
It is useful to figure out which parameters have a
strong/weak influence on the model output, especially un-
der the presence of uncertainties, because the model based
control design will be more problematic and needs more
care if the uncertain parameters are sensitive as well. Vari-
ance based global sensitivity analysis method is selected
due to its valuable features such as model independence,
capacity to capture the influence of the full range of vari-
ation of each input factor, and appreciation of interaction
effects among input factors.
The first order and total sensitivity indices are calculated
using the variance based method introduced in (Saltelli
et al., 2008) which is an improved extension of the origi-
nal approach provided by (Sobol, 1993) and (Homma and
Saltelli, 1996). Here only the results are presented and the
readers are referred to the main reference for more infor-
mation about the method due to the word limitation.
A number of 136000 Monte Carlo simulations have been
done to calculate the sensitivity indices. Both sensitiv-
ity indices presented in Figure 4 show that for the consid-
ered uncertainty region introduced in Figure 2, gas to oil
ratio is the most sensitive/influential parameter and pro-
ductivity index and water cut are at the second and third
place, respectively. In other words, the standard controller
based on the nominal model will be more robust to devi-
ation in water cut. On the other hand, a slight deviation
in the gas to oil ratio leads to a severe mismatch between
the nominal and uncertain model, therefore, poor perfor-
mance is expected. These interpretations will be verified
by stochastic analysis results in the following section.

Figure 4. Sensitivity indices

3 Standard NMPC and Stochastic
Analysis

3.1 Design of deterministic standard NMPC
The primary control objective is to maximize the total oil
production of the field (output y1) by manipulating the in-
jected lift gas (u). Additionally, u and ∆u are introduced
to penalize excessive lift-gas utilization and large fluctua-
tions in the control signals. Apart from the model equa-
tions, which obviously should be satisfied, the process is
subjected to operational constraints. For example, the to-
tal injected lift gas should be equal to or less than the to-
tal available lift gas (W max

gc ) and the total produced fluid
should not exceed the maximum capacity of the separator
(W max

s ). There are also upper and lower bounds on control
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Table 1. Nominal values of well parameters used for simulation.

Parameter Well1 Well2 Well3 Well4 Well5 Unit

K 68.43 67.82 67.82 69.26 66.22 [

√
kgm3

bar
hr ]

PI(1.0e+4) 2.51 1.63 1.62 4.75 0.232 kg/hr
bar

GOR 0.05 0.07 0.03 0.04 0.06 [kg/kg]
WC 0.20 0.10 0.25 0.15 0.05 [m3/m3]
La_tl/Lt_tl 2758 2559 2677 2382 2454 [m]
La_vl/Lt_vl 2271 2344 1863 1793 1789 [m]
Aa 0.0174 0.0174 0.0174 0.0174 0.0174 [m2]
At 0.0194 0.0194 0.0194 0.0194 0.0194 [m2]
Lr_vl 114 67 61 97 146 [m]

inputs and change of control due to the physical limitation
of the actuators (valves). Therefore, the optimal control
problem formulation is given by:

min
x,u

N−1

∑
k=0

(
−Q(y1,k)

2 +R
5

∑
i=1

ui2
k +S

5

∑
i=1

∆ui2
k

)
(30)

s.t. xk+1 = f (xk,uk,θk) (31)
5

∑
i=1

ui
k ≤W max

gc,k (32)

y2,k ≤W max
s (33)

uLB ≤ ui
k ≤ uUB (34)

∆uLB ≤ ∆ui
k ≤ ∆uUB (35)

where Q, R, and S are tuning weights and are chosen to
be 1, 0.5, and 50, respectively. The total available lift gas
W max

gc = 9.22[kg/s] and the maximum capacity of the sep-
arator W max

s = 520[kg/s]. The lower and upper bounds
on the control signal are 0.323 and 11.66[kg/s]. Change
of control also is limited between ±0.15[kg/s]. A sam-
pling time of 10 seconds and a prediction horizon of 25
timesteps ( 4.1 min) is used. These values are maintained
constant throughout this paper.

3.2 Stochastic analysis of parametric uncer-
tainty

In the first scenario, the deterministic NMPC was applied
to the nominal model. As shown in Figure 5, open loop
simulation started within the feasible region and the con-
troller activated after 1 hour. The simulation results show
a 12% increased in the total oil production from the field
while all the constraints on the total available lift gas, ca-
pacity of separator and actuator limitations are fully satis-
fied.
In the other scenarios, the same controller is applied to the
models containing uncertainties to see whether the con-
troller can cope with the uncertainties in the model. For
the extreme cases where the uncertain parameters take
their maximums and minimums in the uncertainty region,
severe oscillations were observed that led to instability.

Figure 6 shows the result of applying the nominal con-
troller to the plant that only has -10% deviations in water
cut, while the gas to oil ratio and productivity index are
equal to their nominal values. It can be seen that the total
oil production has been increased while the constraint on
the maximum capacity of separator is violated. Although
this case is not practically implementable, it worth to be
noted that the same, or even smaller deviation (about 4%)
in gas to oil ratio and productivity index leads to instabil-
ity. This observation is consistent with the outcome from
the sensitivity analysis that says the model is less sensitive
to water cut rather than either gas to oil ratio or productiv-
ity index.
Figure 7 is the last scenario with -5, 8, and -2 percent devi-
ations in productivity index, water cut, and gas to oil ratio,
respectively, from their nominal values. The mismatch be-
tween the nominal and uncertain models can be observed
from the total fluid production graph. In essence, it can be
concluded that the deterministic NMPC is not sufficient
for the gas lifted oil field model with uncertain parame-
ters.

Figure 5. Performance of standard NMPC when it is applied to
the nominal model.
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Figure 6. Performance of standard NMPC when it is applied to
the uncertain model.

Figure 7. Performance of standard NMPC when it is applied to
the uncertain model.

4 Conclusion
This paper presented a modeling framework for the gas
lifted well system and total oil production maximization
as a dynamic optimization control problem. The simula-
tion results showed that the deterministic NMPC based on
nominal model is capable of maximizing the total oil pro-
duction of the nominal model while fulfills all the opera-
tional constraints subjected to the process; however, when
the deterministic NMPC is applied to the model contains
uncertainties, simulation results showed some constraints
violations. This means that a deterministic NMPC is not
sufficient to handle parametric uncertainties for this prob-
lem. Feasibility issues showed that the uncertainties need

to be considered explicitly inside the optimization prob-
lem using robust or stochastic model predictive control.
The future work includes using such advanced control
methods to maximize total oil production while ensuring
robust constraint satisfaction for all possible values of the
uncertainties.
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Abstract 

Improving the efficiency and optimization of oil 

recovery with a special focus on digitalization is on the 

spotlight. Achieving an optimized and successful 

automatic production highly depends on the ability to 

monitor and control the well performances. This 

requires a suitable dynamic model of the oil field and 

production equipment over the production lifetime. One 

of the main barriers to developing such dynamic models 

is that generally, it is very difficult to observe and 

understand the dynamic of fluid in a porous medium, 

describe the physical processes, and measure all the 

parameters that influence the multiphase flow behavior 

inside a reservoir. Consequently, predicting the 

reservoir production over time and respond to different 

drive and displacement mechanisms has a large degree 

of uncertainty attached. To develop long-term oil 

production models under uncertainty, it is crucial to 

have a clear understanding of the sensitivity of such 

models to the input parameters. This helps to identify 

the most impactful parameters on the accuracy of the 

models and allows to limit the time of focusing on less 

important data. The main goal of this paper is to do 

sensitivity analysis for investigation of the effect of 

uncertainty in each reservoir parameter on the outputs of 

oil production models. Two simulation models for oil 

production have been developed by using the OLGA-

ROCX simulator. By perturbation of reservoir 

parameters, the sensitivity of these model outputs has 

been measured and analyzed. According to the 

simulation results after 200 days, it can be argued that 

the most affecting parameter for accumulated oil 

production was the oil density with sensitivity 

coefficients of -1.667 and 1.610 and relative 

permeability (-0.844 and 0.969).  Therefore, decreasing 

the degree of uncertainty in those input parameters can 

highly increase the accuracy of the outputs of oil 

production models. 

Keywords: sensitivity analysis, OLGA, ROCX, Norne 

field, oil production 

1 Introduction 

Oil is a crucial element of our modern society and plays 

an important role in improving the welfare of human 

beings. There is no immediate alternative for oil and as 

a result, oil production cannot be stopped over a night. 

In order to achieve maximized oil recovery with 

minimized carbon footprint, accurate and efficient 

modelling and simulation of oil production are of key 

importance. The performance of oil simulation models 

for the evaluation and prediction of oil production 

highly depends on the reservoir parameters. Uncertainty 

in any of these parameters can considerably impact the 

accuracy of such models. Therefore, it is very important 

to identify which reservoir parameters are the most 

impactful parameters on the accuracy of the models. The 

sensitivity analysis assesses the contribution of the 

uncertainty of each model input to the uncertainty of the 

model outcomes and identifies the most important 

parameters of the system. This allows to limit the time 

for focusing on less important data and improve the 

accuracy and efficiency of the models. 

Oil reservoirs have different properties, and each 

reservoir performs differently during various methods 

of oil recovery. This paper provides insight into the most 

important reservoir rock and fluid properties needed for 

accurate modeling of horizontal wells with Inflow 

Control Device (ICD) completion during primary oil 

recovery. This is achieved by doing sensitivity analysis 

for two near-well simulation models for two reservoirs 

with different properties. One of these models is based 

on the realistic characteristics of the Norne field located 

in the Norwegian Sea and the other one is developed for 

a synthetic reservoir. Moreover, the OLGA simulator 

which is a dynamic multiphase-flow simulator in 

combination with the ROCX module which is a near-

wellbore reservoir simulator is used in this study. 

2 Sensitivity Analysis 

It has been in the trend since old days that before putting 

some engineering equipment to work, it must be 

designed and tested first. Several methods and 

approaches can be used to achieve that. One of the 

methods is to develop a model using several logical 

steps to determine the parameters which influence the 

results the most. This method is known as ‘Sensitivity 

Analysis’ and it is not only important for validation of a 

model but also guides to future research (Hamby, 1994). 

Depending upon the complexity of the model and the 

type of parameters being used there are many sensitivity 

analysis methods. The different methods are differential 

analysis, one-at-a-time sensitivity measures, factorial 

design, sensitivity index, importance factors, subjective 
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sensitive analysis. All the methods are unique and can 

be used for the models that are suitable according to the 

type of results needed. In this paper, differential analysis 

method is applied which is the simplest and the 

generalized method of the analysis. Because of its 

simplicity and generalization, this method is also 

considered as the backbone of all other analysis 

techniques (Hamby, 1994). 

Differential analysis also known as the direct method, 

is a technique structured based on the model with a set 

of specific input parameter values. Assuming this case 

as a base case scenario, where all other input parameters 

are held constant, they are set to their mean value. A 

sensitivity coefficient (ϕ𝑖) is termed to the value that 

describes the change of the output parameter. Basically, 

sensitivity coefficient is the ratio of change in output to 

change in input by keeping all other parameters 

constant(Hamby, 1994). 

ϕ𝑖 =
%Δ𝑌

%Δ𝑋𝑖
    (1) 

where 
%Δ𝑌

%Δ𝑋𝑖
 is the partial derivative of Y  with respect to 

Xi  and ϕ𝑖 is a dimensionless quantity. 

3 Characteristics of the Reservoir for 

the Simulation Models 

The simulations that increase the knowledge about 

sensitivity analysis of various reservoir parameters 

requires a model. This model could be either realistic or 

synthetic. Evaluating the sensitivity analysis in only one 

model could be specific to that case only which may or 

may not be the generalized case for all the models. 

Therefore, two models, one from the Norne field and 

one synthetic case are simulated and evaluated.  Hence, 

the characteristics of each of these models need to be 

studied.  

3.1 The Norne Model 

Since Norne had potential for yielding high amount of 

oil and gas, there were several wells developed for 

maximum and optimized extraction of oil. Well 

6608/10-D-2H is one of the wells, and the data needed 

as input for OLGA/ROCX were taken and calculation of 

the well was performed. 

The well test data gave the temperature values for the 

reservoir near Well 6608/10-D-2H which is 115℃ (388 

K). Based on pressure formation data, the pressure was 

approximated to be 277 bar. 

The OLGA/ROCX requires the value of viscosity in 

the form of dynamic viscosity but the values from 

Equinor’s crude summary report provided the values in 

the form of kinematic viscosity at different temperatures 

(Equinor, 2021). MATLAB was used to extrapolate the 

value of the viscosity from the available data. Equation 

2 is the empirical equation and by using the linear 

regression technique the value of viscosity was 

extrapolated for the given temperature and pressure 

value. 

μ = 𝐴𝑒𝐵/𝑇   (2) 

where 𝜇 is viscosity [cP], T is temperature[K] and A and 

B are unknown constant parameters which should be 

defined empirically. To calculate the value of viscosity 

at reservoir condition (388K) curve fitting is used. The 

values obtained from linear regression and the 

MATLAB code is then used to extrapolate the value as 

shown in Figure 1. At temperature 388K the oil viscosity 

was found to be 0.471cP. 

 

Figure 1. Extrapolated value of viscosity at reservoir 

conditions by curve-fitting 

Permeability anisotropy (a) is the ratio of vertical 

permeability (kv) to horizontal permeability (kH). Well 

6608/10-D-2H of the Norne field is divided into several 

layers and each layer or formations have different values 

for net pay thicknesses , effective porosity (𝜙𝑒) and 

shale volume (Vsh). These layers are called zones and 

the values for each zone are shown in Table 1. 

Table 1. Zone thickness and the values of the rock 

parameters 

Zones Net Pay 

Thickness 

Effective 

porosity 

(𝝓𝒆) 

Shale volume 

(Vsh) 

Zone 1 35 m 0.2 0.31 
Zone 2 46 m 0.24 0.15 
Zone 3 55 m 0.27 0.14 

Based on the analysis of well logs from NPD 

factpage, the value of average effective porosity (𝜙𝑒) for 

well 6608/10-D-2H is 0.23 and the median permeability 

(k) near this well is 0.3D.  

By using the given data in Table 1, and Equations 3, 

4 and 5 which are empirical correlations for the 

sandstone reservoir, the anisotropy permeability,              

a = kv / kH, near Well 6608/10-D-2H can be calculated    

(Igbokoyi et al., 2012). 

kH = √𝑘𝑥𝑘𝑦        (3) 

𝑘 = √𝑘𝑥𝑘𝑦𝑘𝑧
3    (4) 

    𝑘𝑣 = 𝑘𝑧 = 0.0718 × √[
𝑘𝐻(1−𝑉𝑠ℎ)

𝜙𝑒
]

2.0901

    (5) 

The results obtained from Table 1 and Equations 3, 4 

and 5 for permeability anisotropy is shown in Table 2. 
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Table 2. Permeability anisotropy near Well 6608/10-D-

2H 

Parameters kx ky kz a 

Values 0.469D 0.469D 0.121D 0.257 

The value of rock compressibility usually ranges 

from 1.5 × 10-6 to 20 × 10-6 1/psi and the value used in 

OLGA/ROCX was 0.0001 1/bar that is approximately 

1.4 × 10-5 1/psi (Satter et al., 2016). 

The data for relative permeability and capillary 

pressure for different saturations is not available in the 

NPD fact page so, the relative permeability and capillary 

pressure data are obtained from the OPM database 

(Open datasets, OPM, 2021). The calculated relative 

permeability curves for water and oil shown in Figure 2 

can be used for the Norne field. 

 

Figure 2. Relative permeability curve for Norne field 

The values for oil density and  Gas Oil Ratio (GOR) 

were 860 kg/m3 and 82 Sm3/ Sm3, respectively 

(Norwegian Petroleum Dirctorate, 2021). 

3.2  Synthetic Model 

In the synthetic model, reasonable values for all the 

parameters required in OLGA/ROCX were concidered 

based experience and the ranges of values used in 

literature. Table 3 shows the values chosen for the 

synthetic model. 

Table 3. Reservoir fluid and rock properties of synthetic 

model 

Parameters Values 

Oil density 880 kg/m3 

Porosity 0.27 

Viscosity 5 cP 

Gas Oil Ratio (GOR) 40 Sm3/ Sm3 

Rock Compressibility 0.0001 1/bar 

Permeability anisotropy 0.3 

Reservoir temperature 80 ℃ 

Reservoir pressure 200 bar 

4 Development of the OLGA/ROCX 

Model 

In this section, a simulation model was developed using 

OLGA/ROCX. The methodology adopted to build the 

dynamic reservoir wellbore model is described along 

with the selection of different input parameters for the 

model. 

4.1 Development of the Reservoir Model for 

the Norne Model in ROCX 

Based on data from various sources for Well 6608/10-

D-2H at the Norne field, a model was developed in 

ROCX. Developing the model includes many step-by-

step processes which is explained in detail. 

4.1.1 Determining the Dimensions of the Reservoir 

Drainage Area and the Grid Setting 

To prepare a reservoir model, drainage area of the near-

well reservoir must be made. In actual practice the area 

of the drainage is ellipsoidal. However, when modelling 

in ROCX, it is not possible to feed the data for an 

ellipsoidal area, and therefore a rectangular reservoir is 

used. 

The dimensions of the rectangular well need to be 

defined for the Well 6608/10-D-2H. For the calculation 

of the horizontal length of well, Total Vertical Depth 

(TVD) and Measured Depth (MD) of the well is needed 

which are 2647m and 4174m respectively (Norwegian 

Petroleum Directorate, 2021). Kickoff point is the point 

from which the deviation starts for drilling the hole in 

horizontal direction, and the length (Lkick-off) is also 

needed to determine the measured depth: 

LMD = LTVD + Lhorizontal + Lkickoff  (6) 

Based on the types of horizontal well, it is assumed 

that Well 6608/10-D-2H is a long horizontal well so the 

value for Rkickoff is 457.2 m and from all these values the 

length of the horizontal section of the well is calculated 

to be 945m. When dividing the wellbore in zones, 

approximating the length of the well as 992 m was easier 

for modelling and did not affect the output of the well.  

The thickness of net pay reservoir near Well 6608/10-

D-2H can be calculated from Table 1 which is 136m 

(35+46+55=136m). The width, however, was 

determined by simulation of test model for oil 

production of five test cases done in OLGA. This is done 

by keeping the height and length of the drainage area 

constant and varying the width between 230m and 

310m. The result is shown in Figure 3 where it is clearly 

seen that changing the width of the drainage area seems 

to have very less effect on the output of oil production. 

The drainage width was assumed to be approximately 

270m (twice the thickness) but the results from the five 

simulations indicates that considering the width to be 

230m seems to have almost same results as with width 

270m.  
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Figure 3. Different widths simulation for 500 days 

Now based on the dimensions approximated for Well 

6608/10-2H, the geometry of the drainage area and the 

position of the well are schematically shown in Figure 

4. In the figure, the position of well is kept near the 

surface away from the aquifer to prevent early water 

breakthrough.  

 

Figure 4. Geometry of the drainage area and position of 

well  

The computational simulation should be accurate and 

time efficient. Finer grids and small-time steps give 

more accurate results but require a significant amount of 

time as well as computational resources. Finer mesh 

towards the well in y-direction was chosen with 19 cells  

in the Y direction and 24 cells in the Z-direction.  The 

simulation was done using 8 equivalent ICDs, hence the 

length of the well was divided into 8 zones of equal size. 

The developed grid dimensions are shown in Figure 5. 

Finer mesh size in the places with high variation of fluid 

properties and coarser mesh size in the other places were 

adopted for the reservoir. This is done in order to 

maintain the accuracy of the results. 

 

           

Figure 5. Grid setting for model base case of Norne well 

4.1.2 Fluid Properties 

It is essential to know the Pressure Volume Temperature 

(PVT) relation of the fluids that is used in simulations. 

The crude oils have a wide range of physical and 

chemical properties. One of the models used to estimate 

the PVT relations is the black oil fluid model. The black 

oil fluid model is a model that assumes that the oil 

components will always be in the liquid phase and does 

not evaporate at any conditions. So, the black oil model 

was selected over the PVT table model in ROCX. The 

basic properties of light oil used in the simulations are 

presented in Table 4. 

Table 4. Oil properties used for ROCX 

Parameters Values 

Oil Viscosity(cP) 0.471 

Oil specific gravity 0.86 

Gas specific gravity 0.64 

GOR (Sm3/ Sm3) 82 

The values of these parameters were considered at 

measured reservoir temperature of 115℃ and pressure 

of 277 bar. 

4.1.3 Reservoir Properties 

In the reservoir properties, the rock properties of the 

Norne oil field are specified. There are some 

assumptions made while feeding the inputs to the 

parameters where porosity of the Norne oil field is 

constant everywhere and the rock thermal properties has 

no effect on the production. The permeabilities in x, y 

and z directions are included for a rectangular drainage 

area. Table 5 represents the values that are used in 

ROCX for reservoir properties of Well 6608/10-D-2H. 

Table 5. Reservoir properties for the Norne field 

Parameters Values 

Porosity 0.23 

Rock compressibility 0.0001 1/bar 

Permeability(x-direction) 469 mD 

Permeability(y-direction) 469 mD 

Permeability(z-direction) 121 mD 

4.1.4 Initial Condition 

The initial values of temperature and pressure (115℃ 

and 277 bar) are the same as provided in the fluid 

property setting. The values of saturations of water (sw), 

oil (so) and gas (sg), are 0.3, 0.7 and 0 respectively.  

4.2 Development of the Reservoir Model for 

the Synthetic Model in ROCX 

The ROCX model for the synthetic case are based on the 

same procedures as for Well 6608/10-D-2H, with some 

changes in the drainage area of the reservoir. The values 

of the rock and fluid parameters of the well were also 

changed. 
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4.2.1  Dimensions of the Reservoir Drainage Area 

and the Grid Setting 

The dimensions of drainage area for the synthetic model 

are shown in Table 6. The length of the reservoir is 

divided in 8 zones of equal length with one ICD in each 

zone. Just as for the Norne well, ICDs were installed 

along the length of the well. 

Table 6. Dimension of reservoir of synthetic model 

Parameters Span (m) 

Length 2000 

Width 70 

Thickness 30 

The location of the horizontal well is in X-direction 

and the well location in the drainage area is show in 

Figure 6. 

 

Figure 6. Location of well in drainage area of reservoir 

After the location was defined for the synthetic case, 

the drainage area was needed to be discretized. Figure 7 

shows the discretization of grid in Y-Z plane where the 

value of number of grids in Y and Z directions are 13 

and 8 respectively. The length of the well along x axis 

is divided into 8 zones of 250 m each. 

         
Figure 7. Grid setting for base case of synthetic well 

The fluid properties for the synthetic model is 

presented in Table 7. The PVT selection is the same as 

for the Norne field. The reservoir properties needed for 

ROCX are shown in Table 8. The assumptions made for 

the Norne field for porosity and the rock thermal 

properties are also used in the synthetic model. The 

initial conditions for reservoir temperature and pressure 

were 80℃ and 200 bar respectively. The saturation 

values of fluids of water, oil and gas are sw = 0.15, so = 

0.85 and sg = 0 respectively. 

Table 7. Fluid property setting for synthetic model 

Parameters Values 

Oil Viscosity(cP) 5 

Oil specific gravity 0.88 

Gas specific gravity 0.65 

GOR (Sm3/ Sm3) 40 

Table 8. Reservoir properties of synthetic model 

Parameters Values 

Porosity 0.27 

Rock compressibility 0.0001 1/bar 

Permeability(x-direction) 2000 mD 

Permeability(y-direction) 2000 mD 

Permeability(z-direction) 600 mD 

4.3 Development of the Well Model for the 

Norne Model in OLGA 

There are two pipes, one for wellbore (annulus) where 

various flow components are installed, and the other is 

the production tubing. The information about each of 

these pipelines is required in OLGA model. The 

diameter of production tubing is 0.1397 m (5.5 inches), 

and the length is 992 m long. The diameter of the 

wellbore is 0.2286 m (9 inches) and has same length as 

the production pipe. The value of surface roughness (𝜀) 

is 0.00015 m. Each zone is further divided in two 

hypothetical sections and the details of these zones are 

presented in Figure 8. 

 

Figure 8. Simplified representation of a single production 

zone (Moradi et al, 2020). 

Each of the zones contains two sections in the 

wellbore and has four components. The first component 

is a packer, which is used to separate zones by 

preventing the fluid to flow from one zone to another. 

The near-well source in first section of each zone is 

connected with ROCX and presents the fluid flow from 

the reservoir to the annulus. The ICD valves are installed 

on the wall of the pipeline, and the flow through the 

ICD, enters the pipeline from the annulus. The leak 

gives the connection from the ICD to the production 

pipeline. The coefficient of discharge (CD) for each 

valve is different as required in the wellbore. Production 

occures from all zones in the well, and the fluid moves 

towards the heel.  

Considering the frictional pressure drop in the well 

and pressure difference across the ICDs, the pressure 

drawdown for this well is assumed to be 12 bar. 

Moreover, the hole diameter of the equivalent valve is 
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calculated as d = 0.09m. The simulation of this model is 

run for 200 days and the cumulative oil production and 

volumetric flow rate of oil and water are recorded. 

4.4 Development of the Well Model for the 

Synthetic Model in OLGA 

Similarly for the model development of the synthetic 

case in OLGA, few changes were made in the value of 

some parameters and apart from that, the flow 

component setup was exactly same as shown in Figure 

8.  

The length of the wellbore and production tubing 

were 2000m and were divided into 8 equal zones (250m 

each). The diameter of production tubing is 0.2159m 

and that of wellbore is 0.1397m. The material of pipe 

used is same in both cases so, the surface roughness is 

0.000015m for both pipes. The pressure drawdown in 

the synthetic case is 10 bar and the orifice diameter is 

0.015m. The simulations were run for 200 days. 

4.5 Simulated Cases 

Once all the parameters were set and the model was 

completed in OLGA/ROCX, a base case model was 

developed and a sensitivity analysis was performed for 

different rock and fluid properties of Well 6608/10-D-

2H and for the synthetic model. 

For the Norne oil field, the sensitivity analysis was 

done by increasing and decreasing the value of 

parameters by 20% from their mean value given in 

Table 10. 

Table 10. Simulated cases of Norne field 

Parameters Base case 

 

Case 1 

(20% 

increase) 

Case 2 

(20% 

decrease) 

Viscosity 0.471cP 0.565 0.376 

Porosity 0.23 0.276 0.184 

GOR 82 Sm3/ 

Sm3 

98.4 65.6 

Initial water 

saturation 

0.3 0.36 0.24 

Oil density1 860 kg/m3 951.5 778.5 

Absolute 

Permeability 

0.3 D 0.36 0.24 

Permeability 

anisotropy 

0.257 0.309 0.206 

Rock 

compressibility 

0.0001 

1/bar 

0.00012 0.00009 

The relative permeability curves and capillary 

pressure table in ROCX were also changed from their 

mean values and simulated in OLGA. 

 
1 Oil density was changed by ± 10% only because 

increasing by 20% gave a value greater than 1000 which is 

practically not possible. 

The simulated cases for the synthetic model are 

presented in Table 11. In these cases, the values of the 

parameters were increased and decreased by 10% from 

their mean values. 

Table 11. Simulated cases of synthetic case 

Parameters Base 

Value 

Case 1 

(10% 

increase) 

Case 2 

(10% 

decrease) 

Viscosity 5 cP 5.5 4.5 

Porosity 0.27 0.297 0.243 

GOR 40 Sm3/ 

Sm3 

44 36 

Initial water 

saturation 

0.15 0.165 0.135 

Oil density 880 kg/m3 968 792 

Absolute 

Permeability 

1.3 D 1.43 1.17 

Permeability 

anisotropy 

0.3 0.33 0.27 

Rock 

compressibility 

0.0001 

1/bar 

0.00012 0.00009 

5 Results and Discussion 

In this section, the base case model of Well 6608/10-D-

2H of Norne field and of synthetic well are graphically 

explained. The method used for the simulations is 

described. A sensitivity analysis for oil and water 

production  is carried out for Norne and the synthetic 

well. 

5.1 Cumulative Oil and Water Production 

For the sensitivity analysis of the two reservoirs, a 

model for a base case is developed. The graphs obtained 

from these cases are for accumulated volume of oil and 

water for the Norne well and for the synthetic case. 

These graphs give the idea of the quantity of oil and 

water in the reservoir after a certain period. The water 

breakthrough time can be determined based on these 

graphs. From Figure 9, the oil production at the end of 

200 days for Norne is approximately 140000 m3 and that 

for synthetic case is around 220000 m3. Similarly, the 

water production for the Norne case and the synthetic 

case are somewhere near 11000 m3 and 35000 m3. 

5.2 Oil and Water Flow Rate 

The volumetric flow rate is another important factor 

which must be taken into consideration for the 

sensitivity analysis. The peak value of flow rate of oil 

for Norne in Figure 10 is around 1100 m3/d. This value 

is very close to the original value which is 1250 m3/d 

which indicates that the model is accurate. Also, the 
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ratio of the peak values of water flow rate to oil flow rate 

from Figure 10 is around 0.2 (200/1100). Comparing 

this value with the relative permeability curve for Norne 

in Figure 2 by dividing the rises of water and oil 

saturations of relative permeability, the values are 

approximately the same(0.2/0.68 ≈ 0.3). This is another 

verification of accuracy of the model.  

 

 

 

Figure 9. Accumulated oil and water production from 

Norne well and synthetic well 

 

 
Figure 10. Volumetric flow rates of oil and water for 

Norne well and synthetic well 

5.3 Sensitivity Coefficient for Oil Production 

The parameters in the base case that are analyzed are 

changed in OLGA/ROCX by keeping all other 

parameters constant. In case of the Norne oil field, the 

parameter values have been changed by ± 20% and for 

the synthetic case, the parameter values were changed 

by ± 10%. 

The model with the new parameter values was 

simulated for 200 days and the accumulated oil and 

water volume flows were registered.  Based on the 

production data from the new case and the base case, the 

sensitivity coefficients for the different parameters were 

calculated.  Figure 11 shows the comparison of the most 

affecting and the least affecting parameters for Norne 

and for the synthetic reservoir.  

For the Norne oil field, the most affecting parameter 

is oil density with sensitivity coefficients -1.667 and 

1.610. Oil density is then followed by initial water 

saturation, relative permeability, oil viscosity, and 

absolute permeability. The least affecting parameter is 

the porosity. 

For the synthetic case, the most affecting parameter 

is the relative permeability with sensitivity coefficients 

of -0.844 and 0.969 for increase and decrease of the 

parameter values, respectively. Relative permeability is 

followed by porosity, oil density, initial water saturation 

down to capillary pressure which is the least affected 

parameter. 

 

 

Figure 11. Sensitivity analysis of oil production of rock 

and fluid parameters of two cases 

5.4 Sensitivity Coefficient for Water 

Production 

The results presented in Figure 12 are obtained from the 

sensitivity analysis in OLGA/ROCX regarding water 

production.  

The most affecting parameter in case of sensitivity 

analysis of water production for the Norne field is the 

initial water saturation with sensitivity coefficients of 

4.516 and -3.592 for increase and decrease in the 
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parameter values, respectively. The initial water 

saturation is followed by relative permeability, oil 

viscosity, oil density and absolute permeability. For the 

synthetic case, the most affecting parameter is relative 

permeability with sensitivity coefficients of -0.467 and 

0.323 for increase and decrease of the parameter values, 

respectively. 

 

 

 

Figure 12. Sensitivity analysis of water production of 

rock and fluid parameters of two cases 

6 Conclusion 

The results obtained from the sensitivity analysis of rock 

and fluid parameters based on 200 days of production 

simulated in OLGA/ROCX shows the following key 

points. In the case of the Norne oil field, the most 

affecting parameter for accumulated oil volume was oil 

density with sensitivity coefficients -1.667 and 1.610 for 

increase and decrease of values respectively, followed 

by initial water saturation, relative permeability, oil 

viscosity, and absolute permeability. The least affecting 

parameter was porosity. The change in rock 

compressibility seemed to have no effect on the 

production output. 

For the water production at Norne, the most affecting 

parameter was the initial water saturation with 

sensitivity coefficients of 4.516 and -3.592 for increase 

and decrease in the parameter values. The initial water 

saturation is followed by relative permeability, oil 

viscosity, oil density and absolute permeability. 

In the synthetic case, the most impactful parameter 

for accumulated oil production was found to be the 

relative permeability (-0.844 and 0.969) followed by 

porosity, oil density, and initial water saturation. 

For the accumulated water production, the most 

impactful parameter was relative permeability (-0.467 

and 0.323) followed by porosity, permeability 

anisotropy and initial water saturation. In the synthetic 

case, the rock compressibility and capillary pressure 

seemed to have no effect on the production output. 

Therefore, it can be concluded that the most affecting 

parameters in oil field varies based on the type of oil 

fields. Two different reservoirs have different 

parameters for the most and least affecting properties. 
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Abstract
In this paper, a simplified 2D control relevant model for a
slightly slanting wedge-shaped black oil reservoir is made
more realistic by incorporating model uncertainty. The
uncertainty in the model is computed via Monte Carlo
simulation. Furthermore, based on this model with uncer-
tainty, a Proportional + Integral (PI) controller is imple-
mented to increase oil production while minimizing water
production. A PI controller is used to control the valve
opening of the Inlet Control Valves (ICVs) in the produc-
tion well. Implementation of a PI controller enhanced the
oil recovery in 1000days by 1.79%, while the total water
production is reduced by 2.59%.
Keywords: uncertainty analysis, Monte Carlo simulation,
oil reservoir model, production control

1 Introduction

1.1 Background

Norway is one of the leading suppliers of oil and gas to
the global market. Revenues from sales of oil and gas
have played a vital role in creating modern Norwegian
society. Oil and gas are trapped in the subsurface for-
mation of relatively thin slabs of porous rock. Oil wells
are drilled into the subsurface with an oil rig to extract
the oil and gas from the reservoir. The production of
oil can be increased by predicting and managing the fu-
ture performance of the oil reservoir. However, because
of the subsurface complexity and limited data, numerous
uncertainties are present in oil reservoir characterization.
These uncertainties should be considered for better fu-
ture prediction of oil reservoir performance. In project
no. 308817, “DigiWell”, of the Research Council of Nor-
way, it is of interest to combine reservoir models and well
transport models under uncertainty; these models operate
under very different time scales, which poses a numeric
problem. It is of interest to formulate simplified models
for conceptual studies. A potential reservoir model in such
a conceptual study could be a 2D, wedge-shaped black-oil
model.

1.2 Previous Work

A number of simulation tools exist for prediction of oil
reservoir performance, e.g., ECLIPSE, MRST, INTER-

SECT, MEERA, OLGA ROCKX1. Most of these tools
are commercial; a few of them support simulation under
model uncertainty. In project “DigiWell”, tool MRST will
be a working tool.

Zolotukhin and Ursin (2000) give an introduction to
petroleum production, how to find experimental data/-
model parameters from laboratory analysis, and indicate
basic model formulation. Chen et al. (2006a) focus more
on general model formulation. Lie (2019) presents the
modeling framework used in simulation tool MRST.

Zhang (2013) developed a simplified 2D, control rele-
vant model of a slightly slanting, 2D wedge-shaped black
oil reservoir. The model was implemented in MATLAB,
using fixed step-length Explicit Euler discretization. A PI
controller was used to control the valve opening of the
inflow control valves (ICVs) in the production well. Min-
imum water saturation Sw over the reservoir was taken as
a set-point for the PI controller. Because this minimum
saturation is not available from measurements, a different
approach is needed for a realistic solution.

1.3 Structure of Paper
Bhattarai (2021) re-formulated the model from
(Zhang, 2013) and implemented the model in computer
language Julia, using the DifferentialEquations.jl package
with variable step-length solver Tsit5(). Different
saturation vs. relative permeability correlations were
used, and simple parameter uncertainty was introduced,
allowing for Monte Carlos simulations posed as
EnsembleProblem in Julia. A more realistic PI
controller that reduces the water cut (WC) was
implemented. This work is presented here. In Section 2,
the simulation model is developed. Section 3 presents
model uncertainty and the PI controller. Section 4
provides simulation results. Finally, some conclusions
are drawn in Section 5.

2 Model Overview
2.1 Two-phase Flow in a Porous Media
A black oil reservoir model has a water component, as
well as hydrocarbon components divided into a gas com-
ponent and an oil component with no mass transfer be-
tween the water phase and the other two phases (oil and
gas) (Chen et al., 2006a,b). We further simplify the black

1https://en.wikipedia.org/wiki/Reservoir_simulation
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Figure 1. (a) Schematic view of the reservoir and (b) geometri-
cal characteristics of the reservoir (Zhang, 2013).

oil model by considering a relatively new heavy oil reser-
voir without gas.

2.2 Reservoir Overview
The model in this work is developed for a slightly slanting
wedge-shaped horizontal black oil reservoir with homoge-
neous dispersion of water and homogeneous in its geolog-
ical features permeabilities, porosities, etc., Figure 1.

A natural aquifer with constant pressure Pa and con-
stant relative permeability kwa is located at the bottom of
the reservoir, while a horizontal well is located at the top
of the wedge-shaped reservoir. We use coordinates length
`∈ [0,L] along the well, and radius r ∈ [0,R] from the well
towards the aquifer. The boundary conditions are zero flux
at (`= 0,r), (`= L,r), and at (`,r) for the slanting angles
θ = α± β

2 . A water flux exists at (`,r = R) and a flux of
oil and water mixture at (`,r = 0) into the well. The total
production rate of the mixture of oil and water from the
reservoir qmix,tot is specified to be constant. The spatial-
temporal variables are represented by (r, `), and t, respec-
tively.

The wedge-shaped reservoir model is combined with
the well model. From the combined reservoir and well
model, we are interested in finding how the water satu-
ration Sw, reservoir pressure P, water and oil volumetric
production rates (qw,s, and qo,s, respectively), well pres-
sure Prw, well bottom hole pressure Pbh, etc., vary with
time.

2.3 Reservoir Model
With bulk volume Vb and pore volume Vp of the reservoir,
porosity is given as φ , ∂Vp/∂Vb. Fluid saturation Sη for
fluid η ∈ {o,w} (oil, water) is defined as Sη , ∂Vη/∂Vp
where Vη is the volume taken up by fluid η . It follows that

∑η Sη = 1. For two-phase flow (Zhang, 2013)

∂ (ρη ·φ ·Sη)

∂ t
=

1
r
·

∂ (ρη ·uη ,rr)
∂ r

+
∂
(
ρη ·uη ,`

)
∂`

−qη ,s.

(1)
The velocity terms in Equation 1 are given by Darcy’s

law:

uη =−λη (∇Pη −ρη ·g ·∇z) , (2)

where, λη =
krel,η
µη

K, K is the absolute permeability, krel,η

is a relative permeability for phase η , µη is the viscosity of
phase η , Pη is the fluid pressure, and g is the acceleration
of gravity.

The z-term has to be projected to the r-coordinate ac-
cording to Figure 1 (b).

z = r sin
(

α +
β

2

)
. (3)

Here, angle α is the slope of the wedge, while angle β is
the angular width of the wedge, Figure 1.

2.4 Well Model
According to Chen and Zhang, the pressure close to the
well declines much faster than near the aquifer. Therefore,
a small step size ∆r near the well is required for accurate
pressure calculation in the reservoir cell at the neighbor-
hood of the well. This can be handled by using local grids
refinement in the neighborhood of the well. However, this
can lead to restrictions on time steps in the numerical sim-
ulation (Chen et al., 2006a). The alternative solution is
to derive an analytical solution for the steady-state flow
model that yields the Peaceman equation (Peaceman,
1993). As-suming only radial flow in grids near the well,

qη ,s,r,`=−

 2π∆`

ln
(

rwell
re

) ·λη ,r (Prw,η −Pre,η −hη (rwell− re))


r,`

.

(4)
Total specified flow rate qη ,s,tot is the sum of the flow

rates from all perforated zones

qη ,s,tot =−
Nv

∑
n=1

2π∆`

ln
(

rwell
re

) ·λη ,r (Prw,η −Pre,η −hη (rwell− re)) ,

(5)
where, Nv is the total number of perforated zones of the

well, and (r, `) ∈ [0,∆r]× [0,Lwell].
Specified total oil and water mixture production rate

qmix,tot can be written as

qmix,tot = qw,s,tot +qo,s,tot, (6)

where, qw,s,tot and qo,s,tot are the total production rate of
water, and oil, respectively.
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L

0

R

well

Constant pressure aquifer

Figure 2. The block-centered grid system and a five-point sten-
cil scheme (Zhang, 2013).

Total oil, and water mixture production rate for each
cell near the well qmix,r,` can be written as

qmix,r,` = qw,s,r,`+qo,s,r,`. (7)

2.5 Simplifying Assumptions
To simplify the implementation of the model, it is conve-
nient to number the grids by ir and i`, where we number
the grid for (ir, i`) ∈ {1, . . . ,nr}×{1, . . . ,n`} as shown in
Figure 2.

The following simplifying assumptions are made:

1. Both rock and fluid are incompressible, leading to
constant density and formation volume factor.

2. Immiscible two-phase flow.

3. Capillary pressure is assumed to be equal to zero, i.e.,
Pcow = Po−Pw = 0. Here, Po and Pw are pressure
exerted by oil and water, respectively.

4. Effect of temperature is neglected.

5. Uniform rock porosity, i.e., φir,i` = φ .

6. Isotropic medium Kr = K`

With these assumptions, and introducing the definition

∆z∆ir,i` , zir+ 1
2 ,i`
− zir− 1

2 ,i`

∆zir,∆i` , zir,i`+
1
2
− zir,i`− 1

2
, (8)

Equation 1 can be simplified to

φ

(
dSη

dt

)
ir,i`

=
∆

(
λη

(
∂P
∂ r −hη

)
r
)

∆ir,i`
rir,i` ·∆r

+
∆

(
λη

(
∂P
∂`

))
ir,∆i`

∆`

−
qη ,sir ,i`

β rr,`∆r∆`
. (9)

The well model is,

qη ,sir ,i`
=−

 2π∆`

ln
(

rwell
re

) ·λη (Prw−Pre−hη (rwell− re))


ir,i`

.

(10)

2.6 Valve and Pipe
The valves are represented by a homogeneous flow model
of sub-critical flow through a pipe containing restriction
as

∆Pvalve = 2Cu
ρmix

2C2
vA2

valve
q2

mix, (11)

where

ρmix ,
qw,sρw +qs,oρo

qmix
, (12)

and

∆Pvalve = Prw−Pbh, (13)

here, Cu is a unit conversion constant, Cv is a dimension-
less flow coefficient of the valve, Avalve is the constriction
effective area, ρmix is the density of the fluid mixture, qmix
is the volumetric flow rate of the mixture, Prw is the well
pressure, and Pbh is the bottom hole pressure.

The pipes are modeled as a hydraulic network using the
following equation:

∆Ppipe = f ρmix
8∆Lpipe

π2
(
2rp
)5 qmix, (14)

with (
∆Ppipe

)
ir,i`

= Pbh,ir,i` −Pbh,ir,i`−1, (15)

where (ir, i`)∈ nr×{1, . . . ,nwell}, f is the fanning friction
factor, ∆Lpipe is the pipe step length which assumed to be
equal to well step length ∆`well and reservoir step length
∆`, rp is the radius of a production pipe.

2.7 Water Saturation Versus Relative Perme-
ability

The data for water saturation Sw and corresponding rela-
tive permeabilities are typical values provided by the in-
dustry. This is achieved through least-square fit using a
standard package in Julia called LsqFit2. Comparison of
water saturation and permeability relation for actual data
and least-square function is shown in Figure 3

2.8 Mobility Determination
Most of the works in the literature use an upstream scheme
to evaluate the mobilities (Cordazzo et al.).The mobility λ

at the integration point is evaluated upstream of the flow.

2https://julianlsolvers.github.io/LsqFit.jl/latest/tutorial/
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Figure 3. Relation between water saturation Sw and relative per-
meabilities.

2.9 Numerical Solution
In the numerical simulation, the finite difference method
uses finite differences to approximate derivatives of or-
dinary differential equations. The forward difference
method is used in this work.

φ

(
dSη

dt

)
ir,i`

= aη ,1,ir,i`Pir+1,i` +aη ,2,ir,i`Pir,i`−1

+aη ,3,ir,i`Pir,i` +aη ,4,ir,i`Pir,i`+1

+aη ,5,ir,i`Pir−1,i` −aη ,6,ir,i`, (16)

where,

aη ,1,ir,i` =
(λη r)ir+ 1

2 ,i`

rir,i` ·∆r2

aη ,2,ir,i` =
λ

η ,ir,i`− 1
2

∆`2

aη ,3,ir,i` =−
(λη r)ir− 1

2 ,i`

rir,i` ·∆r2 −
(λη r)ir+ 1

2 ,i`

rir,i` ·∆r2 −
λ

η ,ir,i`− 1
2

∆`2

−
λ

η ,ir,i`+
1
2

∆`2

aη ,4,ir,i` =
λ

η ,ir,i`+
1
2

∆`2

aη ,5,ir,i` =
(λη r)ir− 1

2 ,i`

rir,i` ·∆r2

aη ,6,ir,i` =

(
(λη r)ir− 1

2 ,i`

rir,i` ·∆r
−

(λη r)ir+ 1
2 ,i`

rir,i` ·∆r

)
hη

+
qη ,s,ir,i`

β rr,`∆r∆`
(17)

2.10 Pressure Equation
To derive the pressure equation, we sum Equation 16 for
the oil and water phases, and using the fact that Sw +So =

1, we deduce

φ

 dSw

dt
+

dSo

dt︸ ︷︷ ︸
= d

dt (Sw+So)=0


ir,i`

= (aw,1 +ao,1)ir,i`
Pir+1,i`

+(aw,2 +ao,2)ir,i`
Pir,i`−1

+(aw,3 +ao,3)ir,i`
Pir,i`

+(aw,4 +ao,4)ir,i`
Pir,i`+1

+(aw,5 +ao,5)ir,i`
Pir−1,i`

− (aw,6 +ao,6)ir,i`
(18)

where we set

aw,1 +ao,1 = a1

aw,2 +ao,2 = a2

aw,3 +ao,3 = a3

aw,4 +ao,4 = a4 (19)
aw,5 +ao,5 = a5

aw,6 +ao,6 = a6.

This leads to

a6,ir,i` = a1,ir,i`Pir+1,i` +a2,ir,i`Pir,i`−1 +a3,ir,i`Pir,i`

+a4,ir,i`Pir,i`+1 +a5,ir,i`Pir−1,i` (20)

The pressure Equation 20 can be written in matrix form

AP = B, (21)

where A is a five-diagonal sparse matrix, and P is a vector
of unknown pressures,

A =



× × ×
× × × ×
× × × ×

· ×
× · ×
× ·
× × × ×
× × × ×
× × ×



P =



P1,1
P1,2

...
P1,n`
P2,1

...
Pir,i`

...
Pnr,n`


, B =



B1,1
B1,2

...
B1,n`
B2,1

...
Bir,i`

...
Bnr,n`


The pressure is solved from this implicit, linear equa-

tion.
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Table 1. Monte Carlo simulation setup.

Symbol Range Value Unit

φ
Lower limit 0.27×80% -Upper limit 0.27×120%

Sw0
Lower limit 0.15×80% -Upper limit 0.15×120%

K Lower limit 1500×80% mDUpper limit 1500×120%
nsim - 100 -

3 Model Uncertainty and PI Con-
troller

3.1 Uncertainty Analysis

Some of the methods developed for uncertainty in the
field of the petroleum industry are experimental design, re-
sponse surface, multiple realization tree, and Monte Carlo
simulations. In this work, we use the Monte Carlo method,
which implies simulating an ensemble of cases where un-
certain parameters are drawn from some statistical distri-
bution (Zhang, 2003). Uncertain reservoir parameters in-
clude porosity, saturation, and permeability.

We assume uniform distributions for porosity, perme-
ability, and initial water saturation where these parameters
are varied by ±20%, Table 1.

Monte Carlo simulation is performed using Ensem-
bleProblem in Julia which interfaces well with the stan-
dard differential equation solving package DifferentialE-
quations.jl.

3.2 PI Controller

There are a number of inflow control devices (ICD; pas-
sive) with the flow that is contained in an inner pocket in
the production pipe. Inflow control valves (ICV; active)
give a controlled flow out of this inner pocket and into the
production pipe. It is assumed that the ICVs are installed
at every 60m length along the oil production pipe, i.e.,
at each segment of the pipe length. The group of ICVs
receives the same control signals. In other words, there
are 20 ICVs installed at the production pipe in which the
group of valves at nwell = {1, . . . ,5}, nwell = {6, . . . ,10},
nwell = {11, . . . ,15}, and nwell = {16, . . . ,20} receive the
same control signals, respectively.

The standard methods for SISO PID controller tun-
ing are Skogestad’s method, Ziegler-Nichols method, the
Good Gain method, etc. Because the reservoir system is
a MIMO system with strong interactions, these standard
methods fail, and we instead tune the PI controller man-
ually through trial and error. The values of Kp and Ti are
taken as 7.506 ·10−6, and 2.9376 ·109, respectively, for all
loops.

Figure 4. Pressure profile for model with PI controller.

4 Simulation Results
The value of parameters used in the simulation of the
model is shown in Table 2.

Figure 4 shows 3D water saturation profiles after 50,
100, 300, 500, 800, and 1000days of production, respec-
tively. Water from the aquifer slowly advances towards the
production well. When the water flooding front reaches
the wellbore at r = 0, water breakthrough occurs. In Fig-
ure 5, it can be observed that the water saturation slowly
starts to increase along the reservoir radius with increase
in production time. In these water saturation profiles, the
water coning effect is not visible because the volumetric
flow rate of fluids in the well is assumed to be evenly dis-
tributed.

In the water saturation profile after 300days of produc-
tion, the water saturation at grids nr = 10 to nr = 20 are
the same as the initial water saturation of the reservoir i.e.,
0.15. However, after 500days of production, we can ob-
serve that the water saturation at grids nr = 20 is higher
than 0.15. This is because the water breakthrough already
occurred after 390days of production. After 1000days of
water production, the average water saturation at nr = 20
is observed to be 0.249.

Figures 6 and 7 demonstrate the effect of PI controller
in total production of oil and water in 1000days,
respectively. In these figures, we can see that the total
oil production, after implementing the PI controller, is
increased by 1.79% while the total water production is
decreased by 2.59%.

Figure 8 demonstrates the total volumetric flow rate of
oil and water after implementing the PI controller. The
average oil volumetric flow rate per day is increased by
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Table 2. Description of parameters used in oil reservoir model.

Symbol Description Value Unit
φ Porosity 0.27 -
R Reservoir radius 200 m
L Reservoir length 1200 m
K Absolute permeability of a reservoir 1500 mD
kwa Relative permeability of an aquifer 1 -
λwa Mobility of aquifer water kwa

µw
K m3s/kg

ρw Water density 1050 kg/m3

ρo Oil density 950 kg/m3

µo Oil viscosity 100 ·10−3 Pa.s
µw Water viscosity 10−3 Pa.s
α Inclination angle of a reservoir 20 degree
β Arch angle of a wedge shaped reservoir 25 degree
rwell Well radius 0.124 m
ho Oil pressure head ρo ·g · sin

(
α + β

2

)
kg/m2/s2

hw Water pressure head ρw ·g · sin
(

α + β

2

)
kg/m2/s2

re Equivalent radius 0.5 ·∆r m
dvalve Maximum orifice diameter of a valve 3.217 ·10−3 m
Lwell Horizontal well length 1200 m
nr Number of grids along reservoir radius 20 -
n` Number of grids along reservoir length 20 -
nwell Number of grids along well length 20 -
∆r Step length along reservoir radius L

nr
m

∆` Step length along reservoir length L
n`

m
∆`well Step length along well length Lwell

nwell
m

Figure 5. Saturation profile for model with PI controller.

Figure 6. Comparison of total production of oil in 1000days
with and without PI controller.
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Figure 7. Comparison of total production of water in 1000days
with and without PI controller.

Figure 8. Comparison of total volumetric flow rates of oil and
water with and without PI controller.

1.738%, while the average water volumetric flow rate per
day is decreased by 2.7715%. Similarly, Figure 9 shows
the effect of PI controller on water cut at ` = 0.5L or
n` = 10. The average water cut is decreased by 2.755%
after implementing the PI controller. Finally, in Figure 10,
we can observe that the bottom hole pressure tends to de-
crease after the use of the PI controller.

The PI controller is implemented in a model with un-
certainties. The comparison for the total oil and water pro-
duction volume after implementing PI controller is shown
in Figures 11 and 12, respectively. In Figure 11, the
solid lines with maroon color represent uncertainties in
total oil production volume without PI controller, while
the green dot lines represent uncertainties in total oil
production with PI controller. In this figure, we can
observe that the minimum total oil production volume
in 1000days after implementing the PI controller is
359.0391 · 103 m3which is higher than that of the model
without PI controller i.e., 326.4863 · 103 m3. However,
the maximum total oil production volume in 1000days
after implementing the PI controller is 614.6868 ·103 m3

which is lower than that of the model with PI controller
i.e., 657.2351 ·103 m3.

Similarly, In Figure 12, blue solid lines represent uncer-
tainties in total water production volume without PI con-

Figure 9. Comparison of water cut at the well at ` = 0.5L with
and without PI controller.

Figure 10. Comparison of bottom hole pressure at the well heel
with and without PI controller.

Figure 11. Comparison of Monte Carlo simulation for produc-
tion of oil in 1000days with PI controller (green dot lines) and
without PI controller (maroon solid lines).
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Figure 12. Comparison of Monte Carlo simulation for produc-
tion of water in 1000dayswith PI controller (red dot lines) and
without PI controller (blue solid lines).

troller, while the red dot lines represent uncertainties in
total water production with PI controller. In this figure,
the maximum total water production volume in 1000days
after implementing the PI controller is 440.9470 · 103 m3

which is lower than that of the model without PI controller
i.e., 473.5101 ·103 m3. However, the minimum total water
production volume in 1000days after implementing the PI
controller is 185.3096 ·103 m3which is higher than that of
the model without PI controller i.e., 142.7613 ·103 m3.

5 Conclusions
An overview of an oil well holding black oil, with a reser-
voir, and pipes is given. A simplified 2D control-relevant
model is developed and implemented in Julia program-
ming language, and solved using an efficient, variable time
step method.

Results such as total production volume of oil and wa-
ter, water cut, volumetric flow rates of oil and water, bot-
tom hole pressure etc., are compared to those in Zhang
(2013). Even when the :parameter values used in this
work differ from those in (Zhang, 2013), the results
are qualitatively similar to those of (Zhang, 2013).
Further-more, uncertainties in the model are discussed
and studied by Monte Carlo simulation. Finally, a PI
controller is im-plemented in the model based on
uncertainties to enhance the oil production, while
minimizing the water production. The PI controller helps
to increase the oil production by manipulating the ICVs
at the production well. Implemen-tation of PI controller
improved the total oil production in 1000days by 1.79%.
However, the effect is not very sig-nificant due to the
limited capability of a PI controller. In this case, a more
effective controller is required, such as MPC.
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Abstract 
The application of long horizontal wells, especially in 

heavy oil reservoirs with a water drive, is associated 

with some challenges including the early breakthrough 

of water into the well. To solve this challenge, smart 

horizontal wells completed with downhole flow control 

devices (FCDs) and zonal isolation are widely used 

today. Therefore, evaluating the functionality of 

different types of FCDs in reducing water cut is 

necessary to achieve a successful design of smart wells 

for heavy oil production. In this paper, heavy oil 

production from smart wells completed with the main 

types of FCDs is modeled and simulated through a case 

study. According to the obtained results, compared to 

conventional wells,  by using smart wells more oil and 

at the same time, less water can be produced from heavy 

oil reservoirs. Besides, in comparison with ICDs, 

AICDs and AICVs have better functionality in 

improving oil recovery and reducing water cut. It can 

also be concluded that among the main types of FCDs, 

AICVs have the best performance in achieving cost-

effective heavy oil production. 

Keywords: smart wells, ICD, AICD, AICV, heavy oil 

1 Introduction 

Despite the rapid growth of renewable energies, the 

world is still dependent on oil in years to come. 

Therefore, the focus must be on improving oil recovery 

with less carbon footprint to meet future energy 

demands. One of the main principles to achieve this 

purpose is maximizing the well-reservoir contact by 

using long horizontal wells. One of the main challenges 

of using such wells, especially in heavy oil reservoirs, is 

early water breakthrough. This problem happens due to 

the heel-toe effect and heterogeneity along the 

horizontal wells. To tackle this problem, smart wells are 

widely applied today. Smart (advanced or intelligent) 

wells are horizontal wells equipped with downhole Flow 

Control Devices (DFCs), zonal isolation as well as 

monitoring and control systems, etc. DFCs are the key 

elements of smart wells. The main types of such devices 

are passive Inflow Control Devices (ICDs), 

Autonomous Inflow Control Devices (AICDs), and 

Autonomous Inflow Control Valves (AICVs). In order 

to achieve a successful design of smart wells, a suitable 
type of these devices must be chosen for completion of 

the well based on the characteristics of the reservoir. So 

far, few studies have been performed for investigating 

the performance of FCDs in reducing water cut in heavy 

oil reservoirs with a large water aquifer. This paper aims 

to provide more insight into the functionality of the main 

types of FCDs in heavy oil reservoirs needed for the 

suitable design of smart wells. The study is performed 

through near-well simulation of heavy oil production 

from a smart horizontal well with zonal isolation and 

FCD completion in a synthetic heavy oil reservoir with 

a strong water drive. The OLGA® simulator coupled 

with the ROCX® simulator is used for developing the 

simulation models.  

2 Inflow control technologies 

2.1 Passive inflow control devices 

ICDs have been developed since the 1990s for 

mitigating the risk of early water and/or gas 

breakthrough in horizontal wells. ICDs are mounted on 

the production tubing as a passive flow restrictor device 

with no moving part. ICDs are used for counteracting 

the non-uniform inflow throughout the length of the 

horizontal by adding extra pressure drop.  Figure 1 

shows the functionality of such devices to delay the 

early water breakthrough by balancing the inflow along 

the well (Aakre, 2017). 

 

Figure 1. Application of ICDs in mitigation of the early 

water breakthrough (Chammout et al., 2017). 

One of the main disadvantages of ICDs is not having the 

capability for choking unwanted fluids (water or gas) 

back after the breakthrough. As a result, the well must 

be shut in to avoid producing unwanted fluids more than 

the capacity of the separation facilities (Aakre, 2017).  

     One of the common types of ICDs is the orifice ICD 

and the mathematical equation governing the behavior 

of this type of ICDs is: 

 4

1 2

1
D

P
Q C A

 


 


 (1) 

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185263 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

263

mailto:%7Bali.moradi@usn.no


where Q  is the volume flow rate of the fluid passing 

through the ICD, P is the pressure drop over the ICD 

and ρ is the fluid density. In this equation, 
DC  is called 

discharge coefficient and it can be calculated as 

/D vcC A A  in which  A is the cross-sectional area of 

the orifice hole and
vcA is the minimum jet area just 

downstream of the orifice. Moreover, /d D  in 

which d and D are the diameters of the orifice and 

production tubing respectively (The Engineering 

ToolBox, 2004).  

2.2 Autonomous inflow control devices 

Since passive ICDs can not choke the unwanted fluids 

back after breakthrough, AICDs have been developed as 

a robust alternative in recent years. Owing to the special 

design of AICDs, they can be partially closed for low-

viscosity fluids compared to oil like water and gas. 

Consequently, in addition to delaying the water or gas 

breakthrough, AICDs are able to reduce the production 

of unwanted fluids after breakthrough autonomously 

and thereby increase oil production (Aakre, 2017).  

     Rate-Controlled Production valves (RCPs) that are 

also known as the Equinor AICD is one of the most 

widely used types of AICDs today. Figure 2 shows the 

schematic of an RCP valve that is consists of a body, 

nozzle, and a moving plate. These types of valves are 

designed based on the fluid properties in such a way that 

the moving plate rests at the sit and consequently the 

valve is fully open when oil passes through the valve. 

However, when low-viscosity fluids compared to oil 

enter the valve, according to Bernoulli's equation, the 

pressure at the inlet becomes lower. Therefore, the total 

force acting on the moving plate pulls it towards the inlet 

and the valve gets partially closed. Owing to this 

mechanism, these types of valves can reduce the flow 

rate of unwanted fluids like water or gas autonomously 

(Mathiesen et al., 2011; Askvik and Sørheim, 2017).  

 

Figure 2. Schematic sketch of RCP-type AICDs 

(Mathiesen et al., 2011). 

The empirical function describing the behavior of the 

RCP valves developed and validated by Equinor is 

represented by Equations 2 and 3 as: 
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where Q  is the volumetric flow rate of fluid passing 

through the RCP, and P is the pressure drop over the 

RCP. In this equation 
AICDa , x and y are user-input 

parameters that depend upon the RCP design and fluid 

properties.  f(ρ,µ) is an analytical function of fluid 

density and viscosity in which 
cal  and 

cal  are 

specified as calibration density and viscosity 

respectively. Moreover, 
mix and 

mix  are the density 

and viscosity of the mixture of fluids passing through 

the RCP valve and are calculated by Equation 4 as: 

 
mix oil oil water water gas gas

mix oil oil water water gas gas

      

      

  

  
 (4) 

where 
oil , 

water and gas are the volume fraction of oil, 

water, and gas in the mixture respectively (Halvorsen et 

al., 2016). 

2.3 Autonomous inflow control valves 

AICVs are the newest generation of inflow control 

devices developed by InflowControl AS. Unlike the 

AICDs that are capable to be partially closed against 

unwanted fluids, AICVs can be almost completely 

closed when low viscous fluids like water or gas pass 

through them. AICVs are self-regulating and reversible 

and are able to reopen when oil is the surrounding fluid. 

AICVs act rests on the difference in pressure drop in 

laminar and turbulent flow restrictors. The pressure drop 

across a laminar and turbulent flow restrictor is 

expressed by Equation 5 and 6 respectively  as: 

 2

32 vL
P

D


   (5) 

 21

2
P k v   (6) 

Figure 3 shows the principle of AICV technology which 

is based on a combination of laminar and turbulent flow 

restrictors in series. According to Equations 5, the 

pressure drop across a laminar flow restrictor depends 

on density and viscosity. Therefore, when a viscose 

fluid like oil passes through a laminar flow restrictor, it 

experiences a higher pressure drop compared to low-

viscosity fluids like water and gas. Because of less 

pressure drop after the laminar flow restrictor, low-

viscosity fluids have higher pressure in the chamber 

between the laminar and turbulent flow restrictors. 

Therefore, low-viscosity fluids move with higher 

velocity before passing through the turbulent flow 

restrictor. Based on Equation 6, the pressure drop across 

a turbulent flow restrictor is proportional to density and 

velocity squared. As a result, low-viscosity fluids 

experience higher pressure drop across the turbulent 

flow restrictor compared to oil. Based on these 

principles AICVs are designed to remain open for oil 

and get almost completely closed for unwanted fluids 
(Mathiesen et al., 2014).  
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Figure 3. Combination of laminar and turbulent flow 

restrictor in series (Mathiesen et al., 2014). 

2.4 Characteristics of the synthetic 

reservoir  

For simulation of heavy oil production from smart wells, 

a synthetic (with hypothetical properties) reservoir is 

considered for developing the simulation models. 

However, to achieve realistic results, the rock and fluid 

properties of the synthetic reservoir are specified to be 

similar to those of a real reservoir. The characteristics of 

the synthetic reservoir are given in Table 1. 

Table 1. Characteristics of the reservoir used for 

developing the simulation models. 

Parameter Value 

Oil Density 950 kg/m3 

Oil Viscosity 10 cP 

Water Density 1050 kg/m3 

Water Viscosity 0.45 cP 

Gas-Oil Ratio (GOR) 50 Sm3/Sm3 

Absolute Permeability 
Kx=Ky=2000, Kz=600 

mD 

Porocity 0.25 

Capilary Pressure 
3 bar @ Sw=0.12,            

0 bar @ Sw=1 

Initial Water saturation 0.12 

Reservoir Temperature 80 ˚C 

Reservoir Pressure 200 bar 

It is assumed that the reservoir has a mixed-wet 

wettability state. The Corey model is used for 

determining the oil and water relative permeability 

curves.  Figure 4 shows the relative permeability curves 

for oil and water obtained based on the recommended 

Corey model parameters for a  mixed-wet reservoir.  

 

Figure 4. Relative permeability curves used for developing 

the simulation models. 

3 Development of the OLGA/ROCX 

model 

OLGA is a dynamic multiphase flow simulator and 

ROCX is a near-wellbore reservoir simulator that can be 

coupled to the OLGA simulator. The OLGA-ROCX 

coupling is commonly used for dynamic modeling and 

simulation of multiphase flow behavior from the 

reservoir pore to the production pipe and process 

facilities. When the OLGA simulator is combined with 

the ROCX simulator, an implicit scheme couples the 

OLGA and ROCX simulators based on the same PVT 

file. The OLGA simulator calculates the wellbore 

pressure and sends the information to the ROCX 

simulator. Then the ROCX simulator calculates the flow 

rate for each phase of the reservoir fluids and sends the 

information back to the OLGA simulator for calculating 

the new wellbore pressure. Likewise, the simulation is 

moved forward and completed (Schlumberger, 2020). 

3.1 Development of the near-well reservoir 

model in the ROCX module 

One of the main steps in developing a near-wellbore 

reservoir model in the ROCX simulator is determining 

the geometry and dimensions of the drainage area near 

the well. In reality, the drainage area of a horizontal well 

has an ellipsoidal shape. However, due to the ROCX 

limitations, a rectangular drainage area as it is illustrated 

in Figure 5 is considered for developing the near-

wellbore reservoir model. In this study, the length of the 

reservoir is assumed to be the same as that of the 

horizontal well and equal to 992 m. The thickness and 

width of the reservoir are considered to be 30 m and 70 

m respectively. It is also assumed that the well is located 

5.5 m below the top of the drainage area.  
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Figure 5. Schematic geometry of the reservoir near the 

well (Moradi and Moldestad, 2020). 

The cross-section of the reservoir is located in the Y-Z 

plane and the well is in the X-direction. Therefore, the 

fluid pressure experiences higher variations in the Y and 

Z directions compared to the X direction. To achieve a 

suitable grid setup, in the Y and Z directions finer 

meshes have been used near the wellbore and uniform 

meshes are considered in the X-direction (Moradi, 

2020).  In order to develop the near-well reservoir 

model, for simplifying the model it is assumed that the 

horizontal well has 8 equivalent joints, each 124 m long. 

As a result, 8 uniform cells are considered for the 

reservoir in the X direction. The grid resolution in Y and 

Z directions is illustrated in Figure 6. 

 

Figure 6. Grid resolution in the Y-Z plane. 

3.2 Development of the well model in the 

OLGA simulator 

For developing the well model in the OLGA simulator, 

one pipe with a length of 992 m, a diameter of 5.5 inch, 

and roughness of 15 µm is considered for representing 

the production tubing. Another pipe with the same 

length but a diameter of 8.5 inch is considered for 

representing the wellbore. It is assumed that the well 

consists of 8 equivalent joints with only one equivalent 

inflow control device for each joint. Besides, for each 

joint, the wellbore is isolated by two packers to stop 

flowing the reservoir fluids between different zones in 

the annulus. As a result, oil is produced from 8 separated 

zones. The simplified model for oil production from 

each zone in the OLGA simulator is illustrated in Figure 

7. As can be seen in the figure,  each production zone is 

divided into two sections. The wellbore in section one is 

connected to the ROCX simulator via the near-well 

source. The reservoir fluids enter the second section of 

the wellbore after passing FCDs. Then the reservoir 

fluids enter the production tubing through a leak 

connected to the second section of the production tubing 

and in this way oil is produced from each zone. This 

setup has been proposed and used in (Aakre, 2017). 

 

Figure 7. Simplified model of a single production zone in 

the OLGA simulator (Moradi and Moldestad, 2021).   

The pressure drawdown used for developing the 

simulation models is considered to be 10 bar. For 

modeling ICDs in the OLGA simulator, a simple orifice 

valve with a diameter of 0.01 m is used. In order to 

model AICDs and AICVs, a controller is added to the 

ICD model for choking the orifice valve based on the 

characteristics of AICDs and AICVs. Moreover, to add 

a regulating flow valve to the model for keeping the total 

liquid production rate under a specific value, a valve 

with a PID controller is used. 

4 Results and discussion 

In this chapter, the obtained simulation results from the 

OLGA-ROCX model are presented and discussed. The 

functionality of ICDs, AICDs and AICVs in reducing 

water cut and improving heavy oil recovery is evaluated 

and compared with an open-hole well. The simulations 

have been conducted under two production strategies. In 

Case a, it is assumed that oil is produced from the smart 

wells by a constant pressure drawdown of 10 bar 

without any limitations for total liquid production. In 

Case b, the production strategy is the same as Case a, 

but it is assumed that oil production is constrained by 

the maximum liquid production of 800 m3/day. Case a 

is a hypothetical case assuming no limit for the 

transportation and separation of the total liquid 

produced from the well. Case a has been chosen to 

investigate the unrestricted functionality of different 

FCDs where there are no limitations for fluid production 

from the well. However, since in reality there is a 

limitation in the transportation system and the 

separation unit, Case b has been chosen to evaluate the 

performance of different FCDs in a realistic case.   

4.1 Cumulative oil and water production 

To investigate the functionality of the different types of 

inflow valves, accumulated oil and water are the two 
most important parameters that must be taken into 

account. Figure 8 illustrates the accumulated oil and 
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water produced by the smart well compared to the open-

hole well in Case a. In Case a, there is no restriction for 

the total liquid production rate. So, as can be seen in the 

figure, both the total oil production and the total water 

production from an open-hole well in Case a is more 

than those of smart wells. However, the increase in 

water production from the open-hole well is 

significantly higher than the increase in oil production 

from the open-hole well compared to smart wells. 

Therefore, although in this case more oil can be 

produced, much more water is also produced. Besides, 

in Case a, the smart well with AICDs and AICVs has 

produced relatively less oil but considerably less water 

compared to the smart well with ICDs.  

 

Figure 8. Cumulative oil and water production in Case a.   

The cumulative oil and water production from the smart 

well compared to the open-hole well in Case b are 

shown in Figure 9. In Case b, there is a flow regulating 

valve for limiting the total liquid produced from the 

well. Therefore, in Case b, the smart well can produce 

more oil with less water compared to the open-hole well. 

Moreover, according to the figure, a relatively higher 

amount of oil with considerably less amount of water 

can be produced by using AICDs and AICVs compared 

to ICDs. The smart well completed with AICVs 

produces the lowest amount of water and has the best 

performance in reducing water cut compared to ICDs 

and AICDs. 

 

Figure 9. Cumulative oil and water production in Case b.   

The values of cumulative oil and water production for 

the smart well with ICD, AICD, and AICV completions 

compared to the open-hole well after 1500 days of 

production are presented in Table 2. According to the 

obtained results, in Case a, the total oil production from 

the smart well completed with ICDs, AICDs, and 

AICVs compared to the open-hole well is decreased by  

17.1%, 23.8%, 26.9% respectively. In the same way, the 

total water production is reduced by 63.3%, 79.9%, 

85.5%.  

     According to Table 2, unlike Case a, the total oil 
produced from the smart well with ICD, AICD and 

AICV completions in Case b is increased by 22.7%, 
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29.4%, 24.1% respectively compared to the open-hole 

well. At the same time, the total water production is 

decreased respectively by 2.4%, 17.9%, 40.7%. for ICD, 

AICD and AICV completions in Case b. 

Table 2. The values of cumulative oil and water production 

in Case a and b after 1500 days.  

Parameter 

[m3] 

Open- 

Hole 
ICD AICD AICV 

Cum. Oil 

(Case a) 
174143 144423 132706 127262 

Cum. Water 

(Case b) 
3475290 1277150 699178 505078 

Cum. Oil 

(Case a) 
102530 125841 132695 127251 

Cum. Water 

(Case b) 
851399 830752 699178 505078 

4.2 Oil and water flow rate 

Figure 10 illustrates the volumetric flow rate of oil and 

water in Case a during 1500 days.  

 

Figure 10. Volumetric oil and water flow rate in Case a.  

As can be seen in Figure 10, in Case a, the rate of oil 

production for the open-hole well and the smart well 

with ICD completion is slightly higher than the smart 

well with AICD and AICV completions. This is due to 

the fact that for the open hole-well and the ICD 

completion (after the water breakthrough), the cross-

sectional area for entering reservoir fluid to the well is 

bigger compared to AICD and AICV completions. 

However,  unlike the open hole well and the smart well 

with ICD completion, after a while, the rate of water 

production from the smart wells completed with AICDs 

and AICVs experience a decreasing trend. This is based 

on the autonomous behavior of AICDs and AICVs for 

choking the unwanted fluids after the breakthrough. 

     The volumetric flow rate of oil and water in Case b 

are shown in Figure 11. In Case b, there is a regulating 

flow valve to limit the rate of total fluid production by 

using a valve with a PID controller. As a result, the 

diagrams of oil and water flow rate for the open-hole 

well and the smart well with ICD are noisy. 

 

 

Figure 11. Volumetric oil and water flow rate in Case b. 
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As can be seen in Figure 11, due to the existence of a 

regulating flow valve, the flow rate of water for the 

open-hole well and the well with ICD completion 

remains below 800 m3/day during the whole period of 

production. However, owing to the capability of AICDs 

for getting partially closed against water, the flow rate 

of produced water is autonomously decreased after 

almost 500 days for the smart well with AICD 

completion. AICVs are able to be close almost 

completely when water passing through them. 

Consequently, as can be seen in the figure, after almost 

300 days the rate of water production is reduced for the 

smart well with AICV completion. 

     The values of volumetric oil and water flow rate in 

Case a and b after 1500 days have been given in Table 

3. According to the given data in this table, the flow rate 

of oil after 1500 days in Case a is respectively decreased 

by 28.6%, 43.3%, 46.9% for ICD, AICD and AICV 

completions compared to the open-hole well. In the 

same way, comparing the open-hole well, the flow rate 

of water is reduced by 69.7%, 87.0%, 91.3% with ICD, 

AICD, and AICV completions sequentially.  

     In Case b, the flow rate of oil after 1500 days is 

increased by 77.7%, 165.7%, 150.3%, and the flow rate 

of water is decreased by 5.0%, 37.7%, 58.5% for the 

smart well with ICD, AICD and AICV completions 

compared to the open-hole well respectively. 

Table 3. The values of oil and water production rate for 

Case a and b after 1500 days. 

Parameter 

[m3/day] 

Open- 

Hole 
ICD AICD AICV 

Oil Rate 

(Case a) 
24.5 17.5 13.9 13 

Water Rate 

(Case b) 
3464.3 1049.9 451.8 300.9 

Oil Rate 

(Case a) 
5.2 9.2 13.8 13.0 

Water Rate 

(Case b) 
725.6 689.3 451.8 300.9 

4.3 Water cut 

Since extracting, transporting, and then separating the 

produced water from an oil well is costly, reducing 

water cut is of key importance to achieve cost-effective 

oil production. Figure 12 shows the diagram of outlet 

water cut for the smart well completed with ICD, AICD, 

and AICV compared to the open-hole well in Case a 

(up), and Case b (down). As can be seen in the figure for 

both cases, oil is produced with considerably lower 

water cut buy using AICDs and AICVs compared to the 

open-hole well and the smart well with ICD completion. 

Besides, according to the obtained results, AICVs have 

better functionality in reducing the water cut compared 

to AICDs. This is due to the fact that AICVs have more 

capability for choking water back after breakthrough 

compared to AICDs.   

 

 

 

Figure 12. Outlet water cut in Case a (up), and Case b 

(down). 

The values of outlet water cut in Case a and b after 1500 

days of production are presented in Table 4. According 

to the given values, comparing the open-hole well, the 

water cut is decreased by 6.0%, 12.3%, 20.3% by 

completing the smart well with ICDs, AICDs, and 

AICVs sequentially compared to the open-hole well. 

Also, with a negligible difference with Case a, in Case 

b the water cut can be decreased by 6.5%, 11.4%, 19.5% 

when ICDs, AICDs, and AICVs are used for completing 

the smart well respectively. 

Table 4. The values of outlet water cut for Case a and b 

after 1500 days. 

Parameter 

[%] 

Open-

Hole 
ICD AICD AICV 

Water cut 

(Case a) 
99.3 93.3 87.1 79.1 

Water cut 

(Case b) 
98.2 91.8 87.1 79.1 
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5 Conclusion 

According to the presented simulation results, the 

breakthrough of water from the aquifer into the 

horizontal wells leads to a significant drop in oil 

production from heavy oil reservoirs. Considering the 

realistic case (Case b) it can be concluded that by using 

smart wells more oil and at the same time, less water can 

be produced from heavy oil reservoirs compared to 

using open-hole horizontal wells. The obtained results 

show that compared to the open-hole well, smart wells 

with ICD, AICD, and AICV, are able to increase heavy 

oil production by 22.7%, 29.4%, 24.1% respectively. At 

the same time, the amount of water produced from the 

smart wells using ICD, AICD, and AICV completions is 

reduced by 2.4%, 17.9%, 40.7% sequentially, compared 

to the open-hole well. Also, the outlet water cut after 

1500 days of production is decreased by 6.5%, 11.4%, 

19.5% when ICDs, AICDs, and AICVs are used for 

completing the smart well respectively, compared to 

using the open-hole well. Therefore, applying smart 

wells can noticeably improve the heavy oil recovery by 

reducing the water cut. Moreover, based on the 

simulation results, it can be said that autonomous inflow 

control devices (AICDs and AICVs) have better 

functionality for increasing oil production and reducing 

water production in comparison with passive inflow 

control devices (ICDs). Besides, it can be argued that 

among the main types of inflow control devices, AICVs 

have the best performance in reducing water cut during 

heavy oil production. As a result, more cost-effective oil 

production can be achieved from heavy oil reservoirs by 

using AICV completion for smart wells compared to 

AICD and ICD completions.  
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Abstract 

Rate controlled production (RCP) model is used to 

simulate and investigate the performance of the oil wells 

which are completed by autonomous inflow control 

devices. In order to quantify the performance of the RCP 

model, a dimensionless version of the model is 

considered, and its parameters are estimated. We 

demonstrate how the model and the measurement 

uncertainties can be quantified within the Bayesian 

statistical inference framework. In this relation, 

Hamilton Monte Carlo (HMC) is used to draw samples 

from the joint posterior probability distribution. We 

demonstrate that at the calibration step the modified 

model is able to capture the variations in the 

measurements. However, the cross- validation with the 

new data has revealed that the modified model tends to 

overpredict the pressure drop. This inadequacy cannot 

be explained by the measurement noise or the 

uncertainty in the estimated parameters. These results 

also imply that the original RCP model needs revision. 

Keywords: AICV performance, RCP model, Bayesian 
inference, parameter estimation, MCMC, Stan 

1 Introduction 

Increase in oil production and recovery have been 

always the main objective of the oil industry. Hence, 

different methods and technologies have been 

developed to achieve this goal. One of the proven 

methods is to drill long horizontal wells, which 

increases the reservoir contact and consequently makes 

the oil production feasible and more economical.                                

 However, long horizontal wells are likely to 

experience more pressure differences between the heel 

and toe section. This leads to non-uniform flow and 

consequently breakthrough of unwanted fluids in the 

heel section of the well, as shown in Figure 1.This 

phenomenon is known as heel to toe effect (Mathiesen, 

et al., 2014).  

Autonomous Inflow Control Valve (AICV) together 

with Autonomous Inflow Control Devices (AICD’s) 
like RCP valves are among the newest technologies that 

have been developed for Increased Oil Recovery (IOR). 

By balancing reservoir drawdown, these valves delay 

the onset of water and/or gas breakthrough and in case 

of breakthrough, it will restrict the production of these 

unwanted fluids significantly.  

 

 
Figure 1.Uneven flow along the wellbore resulting in      

water and gas breakthrough. 

A mathematical model describing the performance of 

the RCP valve was originally developed by Mathiesen 

et. al. in 2011 (Mathiesen, et al., 2011).This model is 

later being used to describe the AICV performance too. 

In recent years, both lab and production data from 

various oil wells have been used to check the validity of 

the model (Mohd Ismail, et al., 2018; Langaas, et al., 

2020). This model has been implemented in reservoir 

simulators such as NETool and Eclipse in order to 

simulate the performance of the valve under static and 

dynamic conditions. 

In order to be able to employ the model, one needs to 

estimate the model parameters prior to its deployment. 

It appears that one of the methods used by many 

practitioners for parameter estimation prior to utilization 

of the model in NETool is the trial-and-error method 

(Aakre, et al., 2018; Halvorsen, et al., 2016). 

Nevertheless, if one assumes that the model is correct, 

in most practical cases, the classical least square or 

similar methods are sufficient to produce good estimates 

for the model parameters (Moradi, et al., 2021). 

However, there are some evidences that the model does 

not explain all the variations in the data (Langaas, et al., 

2020). There has also been attempts to modify the model 

(Voll, et al., 2014). 

In order to be able to verify model inadequacy, two 

pre-conditions are needed to be satisfied. The first one 
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is accurate and precis measurements of the valve 

behaviour and the second one is the quantification of the 

different sources of the uncertainty. In this short paper, 

we will demonstrate how results from accurate 

measurements can be used within the Bayesian 

statistical inference framework to quantify and model 

the sources of the uncertainty and check how good the 

model explains the variations in the measurements. 

2 AICV Principle  

AICV utilizes viscosity and density differences between 

the reservoir fluids in such a way that it will keep the 

valve open for oil and closed for unwanted fluids like 

gas and water. Figure 2 illustrates AICV in open and 

closed position, respectively. 

 

 

 
Figure 2. AICV is open for oil, illustrated by the black 

region (top) and closed for gas, illustrated by the green 

region (bottom). 

This is achieved by taking advantage of the pressure 

differences in the Laminar Flow Element (LFE) and 

Turbulent Flow Element (TFE). These two flow 

restrictors are connected in series, which is illustrated in 

Figure 3 . AICV consists of two flow paths: the main 

flow path and the pilot flow path. Pilot flow path 

consists of two flow restrictors of LFE and TFE. When 

reservoir fluid enters the main path, a small portion of 

the flow is guided through the pilot flow, which is 

located near the main path. If a fluid with high viscosity 

enters the AICV, its flow through LFE will lead to a 

higher pressure drop over LFE. This phenomenon can 

be explained by Darcy-Weisbachs equation: 

𝛥𝑃 = 𝑓 ×
𝐿𝜌𝑣2

2𝐷
=

64

𝑅𝑒
×

𝐿𝜌𝑣2

2𝐷
=

32𝜇𝑣𝐿

𝐷2
(1) 

where 

ΔP is the pressure drop. 

𝑓 is the friction factor (64/Re) 

Re is Reynolds number. 

𝜌 is the fluid density. 

µ is the fluid viscosity. 

𝑣 is the fluid velocity. 

𝐿 and 𝐷 are the length and diameter of the LFE 

respectively.  

After passing through the LFE, which is a pipe 

segment, fluid enters a chamber. The second flow 

restrictor TFE, which is a nozzle, is placed in this 

chamber. The pressure drop across the TFE as described 

by Bernoulli, is calculated using the equation: 

 

𝛥𝑃 =
𝐶

2
𝜌𝑣2, (2) 

in which, 𝐶 is a geometrical constant. Combination of 

these two flow restrictors results in a pressure drop, 

which determines how the AICV functions. As it is 

shown in Figure 3, high P2 will move the piston 

upwards closing the AICV for unwanted fluids while 

low P2 will keep the piston at its neutral position that 

maintains the oil production. 

The concept and principle of AICV is described in 

detail in earlier SPE papers (Taghavi, et al., 2019; 

Aakre, et al., 2014). 

 

 

Figure 3. Combination of the laminar and turbulent flow 

restrictors in series in the AICV pilot flow. 

3 RCP Model 

The RCP model for the valve can be described as: 
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∆𝑃𝑇𝑜𝑡 = (
𝜌𝑚𝑖𝑥

2

𝜌𝑐𝑎𝑙
) ∙ (

𝜇𝑐𝑎𝑙

𝜇𝑚𝑖𝑥
)

𝑦

∙ 𝑎𝐴𝐼𝐶𝐷 ∙ 𝑄𝑥 (3) 

 

where ∆𝑃𝑇𝑜𝑡 is the differential pressure across the AICV 

𝜌𝑐𝑎𝑙 and µ𝑐𝑎𝑙 are the calibration fluid density and 

viscosity, and 𝜌𝑚𝑖𝑥 and µ𝑚𝑖𝑥 are the mixture fluid 

density and viscosity. The parameter 𝑎𝐴𝐼𝐶𝐷 is a valve 

characteristic given by the ICD strength, 𝑄 is the 

volumetric mixture flow rate, and 𝑥 and 𝑦 are constants 

(Mathiesen, et al., 2011). 

In order to reduce the complexity in this short article, 

we will concentrate our efforts on a single-phase oil 

flow. In addition, the model will be evaluated for three 

types of oil with different densities and viscosities. 

The model described by Eq. (3), is dimensionally 

inconsistent. In order to avoid handling this 

inconsistency and its consequences, we study the flow 

rate vs. pressure drop with respect to a reference fluid at 

the same temperature. Therefore, we have chosen water 

at 20 degrees and a flow rate around 120 l/h. The 

measured pressure drop for water under these conditions 

is around 10 bar. Consequently, since 𝑎𝐴𝐼𝐶𝐷 is a 

geometric parameter and hence independent of the fluid 

type, it will not play a role in the analysis. Then from 

Eq. (3) follows that the relative pressure drop with 

respect to water is 

 

∆𝑃𝑜𝑖𝑙

∆𝑝𝑤𝑎𝑡𝑒𝑟
= (

𝜌𝑜𝑖𝑙

𝜌𝑤𝑎𝑡𝑒𝑟
)

2

(
𝜇𝑤𝑎𝑡𝑒𝑟

𝜇𝑜𝑖𝑙
)

𝑦

(
𝑄𝑜𝑖𝑙

𝑄𝑤𝑎𝑡𝑒𝑟
)

𝑥

(4) 

 

As it was mentioned earlier, there are some 

indications that the RCP model does not explain all the 

variations in the data. For this reason, we propose to use 

a multiplicative noise term in order to quantify possible 

model discrepancies. The modified dimensionless RCP 

model is  

 

∆𝑃𝑜𝑖𝑙

∆𝑝𝑤𝑎𝑡𝑒𝑟
= 𝛼 (

𝜌𝑜𝑖𝑙

𝜌𝑤𝑎𝑡𝑒𝑟
)

2

(
𝜇𝑤𝑎𝑡𝑒𝑟

𝜇𝑜𝑖𝑙
)

𝑦

(
𝑄𝑜𝑖𝑙

𝑄𝑤𝑎𝑡𝑒𝑟
)

𝑥

(5) 

 

where 𝛼 denotes the multiplicative noise term. Since the 

relative pressure drop is positive, we assume that a priori 

𝛼 is distributed according to Gamma distribution, with 

its mode at one. An 𝛼-value very close to one is an 

indication that the model can adequately describe the 

variations in the data. The statistical inference will 

reveal the probable values of 𝛼. In the following, Eq. 
(5) along with the experimental data are used to 

estimate the parameters 𝛼, 𝑥 and 𝑦. These estimates are 

used to evaluate the performance of the modified RCP 

model. 

4 Experimental Setup  

The experiments were performed on the AICV 

prototype test rig at InflowControl’s multiphase test 

facility located in Porsgrunn, Norway. A simplified 

schematic of the test rig showing the key elements of 

equipment and key measurement locations is shown in 

Figure 4. The tests can be carried out with water, 

pressurized air, and silicone oil as test fluid. The test 

facility is designed for single- and multiphase oil, water, 

and gas. A multistage centrifugal pump increases the 

water/oil pressure from the water/oil supply. 

Compressed air at room temperature can be regulated to 

the desired pressure for each case, up to maximum 200 

bar. Flow rates, density and temperature are measured 

close to the inlet of the test vessel by a Coriolis 

flowmeter. A pressure transmitter measures the inlet 

pressure, whereas a differential pressure transmitter 

measures the differential pressure over the test vessel. 

Multiphase flow tests can be performed by injecting the 

desired oil flow rate to the test vessel, which is already 

filled with gas. The desired oil flow rate is injected from 

a separate test rig, which is connected to the single-

phase test rig. The green dashed line in Figure 4 show 

the multiphase test flow path. 

 

 

Figure 4. AICV prototype test rig setup. 

4.1 Test Conditions and Data 

Single-phase flow tests were performed with silicone 

oil as test fluid. The system conditions such as 

temperature and pressure, flow rates, pressure drops 

over the AICV and fluid properties, such as viscosity 

and density are controlled and measured in each test. 

The data obtained during the tests are listed in Table 1 

in the Appendix. Temperature, density, and mass flow 

rate were measured using a Coriolis flow meter and the 

differential pressure across the AICV were measured by 

using a high precision pressure transmitter. Viscosity 

was measured and calculated manually using an 

Ubbelohde type viscometer. Viscosity measurements 

were performed several times under stable conditions in 

order to minimize the uncertainties. The accuracy of the 

different measuring tools employed in the tests are 

listed in Table 2 in the Appendix. 

5 Bayesian Inference 

The calculus of Bayesian inference is based on the 

application of two rules, the product, and the sum rules 

of the probability theory. One of the useful forms of the 
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product rule is the Bayes theorem. In the present 

context, we have noisy measurements, 𝐷 and a model, 

𝑀 with unknown parameters represented by 𝜃. We are 

seeking to estimate 𝜃. Then by the Bayes theorem we 

have 

 

𝑃(𝜃|𝐷, 𝑀, 𝐼) = 𝑃(𝐷|𝜃, 𝑀, 𝐼) ×
𝑃(𝜃|𝑀, 𝐼)

𝑃(𝐷|𝐼)
(6) 

𝑃(𝜃|𝐷, 𝑀, 𝐼) is the posterior distribution over the 

possible values of 𝜃 consistent with the measurements, 

the model and any other available and relevant 

background information denoted by 𝐼; like any 

information about the valve construction. On the right-

hand side of the above equation, 𝑃(𝐷|𝜃, 𝑀, 𝐼) is the 

likelihood, which is a statement about how likely it is to 

measure D given the model and specific values for 𝜃. 

The term 𝑃(𝜃|𝑀, 𝐼) is known as the prior distribution. 

In the present context, it models the expert opinion about 

the possible values of the 𝜃. The last term 𝑃(𝐷|𝐼) 

functions as the normalization constant and is 

independent of 𝜃 and hence not relevant in the present 

context. We remind the reader that the letters in the 

parentheses stand for logical propositions and “,” 

denotes the logical “AND” operation. However, in 

calculations we work with algebraic expressions. The 

context will determine the use. 

Often, as in the present case, the inference on 𝜃 also 

depends on some other parameters, for which neither 

their true values are known nor are they of primary 

interests. Nevertheless, due to dependency of inference 

on them, they must be part of the estimation process. 

These parameters are known as the nuisance 
parameters. Here the sum rule of the probability theory 

can be useful. Let 𝜔 denote the vector of the nuisance 

parameters, then by the sum rule we have 

 

𝑃(𝜃|𝐷, 𝑀, 𝐼) = ∫ 𝑃(𝜃, 𝜔|𝐷, 𝑀, 𝐼)𝑑𝜔
Ω

(7) 

 

The above operation is called marginalization. 

Basically, calculating the above integral is the same as 

averaging the integrant over all possible values of 𝜔. 

Marginalization is a very powerful concept and will be 

used in the next section. The reader is referred to 

(Kruschke, 2015) for further reading on Bayesian 

inference. 

6  Statement of the Inference 

In the following, let the model parameters, the nuisance 

parameters, data, and the model be denoted by 𝜃, 𝜔, 𝐷 

and 𝑀, respectively. That is,  

 
𝜃 = (𝛼, 𝑥, 𝑦)  
𝜔 = (∆𝑝𝑤 , 𝑄𝑤 , 𝜎𝜇 , 𝑄𝑜, 𝜇𝑜)  

𝐷 = (∆𝑝𝑜𝑑 , 𝑄𝑜𝑑 , 𝜇𝑜𝑑 , 𝜌𝑜, 𝜌𝑤, 𝜇𝑤 , 𝜎𝑝 , 𝜎𝑞)   

𝑀 = 𝑀(𝜃, 𝜔) = ∆𝑝𝑜(𝜃, 𝜔)  

The description of each symbol is listed in Table 3 in the 

Appendix. The main reason for the choice of the 

nuisance parameter vector 𝜔, is that we are uncertain 

about the true values of these parameters. For example, 

even though we have taken great care in measuring the 

viscosity, there is no guaranty that the conditions under 

which the oil flows through the valve are exactly the 

same as the viscometer. Therefore, we have chosen to 

include 𝜎𝜇 as one of the nuisance parameters. Similar 

reasons are behind the choice of other components of 𝜔. 

We emphasise that this is an important component in 

quantification of the sources of the uncertainty. The lack 

of knowledge about the true values of the parameters 

under different test conditions, which are not possible to 

be controlled during the experiments, constitute an 

important source of the uncertainty. 

By the Bayes theorem, the joint posterior distribution 

is 

 

𝑝(𝜃, 𝜔|𝐷, 𝑀, 𝐼) ∝ 𝑝(𝐷|𝜃, 𝜔, 𝑀, 𝐼) × 𝑝(𝜃, 𝜔|𝑀, 𝐼). (8) 

 

The choice of the likelihood is determined by the 

measurements noise, while the choice of the prior 

distribution is based on the uncertainty in the expert 

knowledge about the true values of the parameters, 

before considering the measurements. For example, as 

was mentioned previously, 𝛼 represents the 

multiplicative noise. It is positive and we expect its 

value to be one. However, there are reasons to believe 

that the model tends to overestimate the pressure drop 

over the valve. Therefore, we suspect that there is a good 

chance that 𝛼 can attain values below one. For these 

reasons, we choose 𝛾(2,2), the gamma distribution with 

the parameters (2,2), to represent our prior knowledge 

about 𝛼. The expected value of this distribution is one 

and its mode is at one-half. However, after seeing the 

data, the posterior distribution of 𝛼 might be different, 

which as we shall see, is indeed the case. Note that 

𝛾(2,2) has non-zero mass for all 𝛼 > 0. That is, the 

prior distribution does not exclude any positive values 

of 𝛼. It only makes some values less probable. The 

marginal posterior distribution of 𝛼 will allow the data 

to modify the belief represented by the prior. In a similar 

manner, the expert knowledge on the other parameters 

can be incorporated in the inference process through 

appropriate choice of the prior distributions for each 

parameter. We have summarized the choices of the 

priors and the likelihoods for each parameter in Figure 

5. 
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Figure 5.The choice of prior distribution (in red/whole) 

and the likelihood (in blue/dashed). 

Due to logical independence between the parameters, 

the joint posterior distribution in Eq. (8) is the product 

of all the distributions listed in Figure 5. All the 

parameters are positive and in case of 𝑥, it is larger than 

2. This means that all the normal distributions are 

truncated at zero. In the case of 𝑥, we have a truncated 

gamma distribution with lower limit being 2. The 

marginal posterior distribution is found by integrating 

over the domain of 𝜔. 

7 Markov Chain Monte Carlo 

Simulation 

It is difficult to find an analytical expression for the 

joint- and the marginal posterior distributions of the 

parameters. This is generally a challenging task in 

Bayesian statistics. A common approach is to 

approximate the joint posterior distribution by large 

number of samples. The generation of samples are often 

conducted by a class of dependent sampling methods 

known as Markov Chain Monte Carlo (MCMC). 

Roughly explained, the method works by sampling the 

distribution relative to the height of the distribution 

function on its domain. The frequency distribution of 

these samples will on the long run converge to the true 

distribution. Computationally, one starts with a random 

sample and generates a chain of samples following 

certain sets of rules, which will guaranty that the chain 

will eventually visit all the regions relative to their 

probability mass. Since in practice one can only 

generate finite number of samples, it is important to 

check if the chain has found the regions of highest 

probability mass. There is a so-called burn-in period, 

below which all the samples are discarded. The reason 

for this is to make sure that in a set containing a finite 

number of samples, the samples from regions with low 

probability mass are not over-represented. 

For the purpose of this study, we run a MCMC 

method known as Hamiltonian Monte Carlo (HMC), 

using the statistical software known as Stan, which 

comes also as a R package known as RStan (Stan 

development team, 2019). We have run four chains, 
each with different starting points. Figure 6 shows the 

output of the chains for each of the model parameters. 

As it can be seen, regardless of the initial starting point 

of the chain, after a burn-in period of roughly 10K, all 

the chains are stabilized and converged. For more 

details, we refer the reader to (Kruschke, 2015). 

 

 

Figure 6.The trace plot of the MCMC chains for model 

parameters. 

After ignoring the burn-in samples, the pairs plot can 

be used to represent the marginal posterior distributions 

of the model parameters. The plot consists of both single 

and pairwise marginal posterior distributions of the 

model parameters. It is basically 1D and 2D histogram 

of the samples of the model parameters (see Figure 7).  

 

Figure 7. Pairs plot of the model parameters. 

The histogram density of the parameter 𝛼 reveals that 

the model is hugely over predicting the relative pressure 

drop over the valve. More specifically, the pressure 

drops over the valve have to be scaled down to 2.2%-

3.2% of their predicted values by the model in order to 

be consistent with the measurements. 

7.1 Calibration and Validation 

The dataset D used in the MCMC simulation is 

generated by running experiments on two different oil 

types with viscosities 6.6 cP and 36.4 cP (see Table 4 in 

the Appendix). The measurements and the posterior 

samples from the MCMC with 99% credible intervals 

are plotted in Figure 8. Except for two points, for the 
case of 36.4 cP oil, all the pressure drops predicted by 

the model are within the 99% credible interval. That is, 
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at the calibration step, the model can describe most of 

the variations in the measurements. At this stage, 

without further measurements, it is difficult to explain 

the reason(s) for the two borderline outliers observed in 

the dataset for 36.4 cP oil. 

The validation is conducted on a new dataset, which 

was not used in the estimation of the model parameters. 

This second dataset is generated by running the 

experiment on an oil with viscosity 12.6 cP. For this, we 

need to find the posterior predictive distribution.  

Indeed, let 𝐷𝑁 = (∆𝑝𝑜𝑁, 𝑄𝑜𝑁) denote the unobserved 

new data.  Then the posterior predictive distribution is 

defined as 𝑝(𝐷𝑁 |𝐷, 𝑀, 𝐼). In order to be able to use the 

model M, one needs to know the model parameters. 

 

Figure 8. Calibration (top row) and validation (bottom 

row). The dashed lines are drawn for visualization purpose. 

By application of the marginalization, we get 

𝑝(𝐷𝑁 |𝐷, 𝑀, 𝐼) = ∫ 𝑝(𝐷𝑁 , θ, ω|𝐷, 𝑀, 𝐼)𝑑𝜃𝑑𝜔
Λ

(9) 

 
Note that by the product rule, the integrant can be 

expressed as 
𝑝(𝐷𝑁 , θ, ω|𝐷, 𝑀, 𝐼)

= 𝑝(𝐷𝑁 |θ, ω, 𝐷, 𝑀, 𝐼) × 𝑝(θ, ω|𝐷, 𝑀, 𝐼) (10) 
 

 

The observant reader recognizes that the second term on 

the right-hand side is the joint posterior distribution 

defined by Eq. (8). The first term on the right-hand side 

is called the sampling distribution and its functional 

form is same as the likelihood. The difference is that 

unlike likelihood, which is a function of the model 

parameters, the sampling distribution is a function of 𝐷𝑁 

and is normalized to unity over the domain of 𝐷𝑁. By 

applying the following algorithm, one can generate 

samples from the posterior predictive distribution, 
 

1. Generate (θi, ωi) from 𝑝(θ, ω|𝐷, 𝑀, 𝐼) 

2. Generate 𝐷𝑁𝑖 from 𝑝(𝐷𝑁 |θ𝑖 , ω𝑖 , 𝐷, 𝑀, 𝐼) 

3. 𝑖 = 𝑖 + 1, go to step 1.  

The above algorithm is iterated a given number of times. 

The histogram of the generated samples 𝐷𝑁𝑖 can then be 

considered as an estimate for the posterior predictive 

distribution defined by Eq. (9). Note that we are already 

in disposition of the samples (θi, ωi). They are the 

samples generated from the joint posterior distribution 

during the calibration step. Thus, we only need to 

conduct the step 2 in the above algorithm. From the 

product rule, and the nature of measurements noise, 

follows that the sampling distribution can be expressed 

as product of two normal distributions 

𝑝(𝐷𝑁 |θ, ω, 𝐷, 𝑀, 𝐼) 
= 𝑝(∆𝑝𝑜𝑁 |M(θ, ω), 𝑄𝑜𝑁, 𝐷, 𝐼) ×

𝑝(𝑄𝑜𝑁 |𝑞𝑜𝑁, 𝜎𝑞 , 𝐼) (11)
 

in which 
𝑝(∆𝑝𝑜𝑁 |M(θ, ω), 𝑄𝑜𝑁, 𝐷, 𝐼) =

𝒩(∆𝑝𝑜𝑁|M(θ, ω), 𝑄𝑜𝑁, 𝐷) (12)
 

and 

𝑝(𝑄𝑜𝑁 |𝑞𝑜𝑁, 𝜎𝑞 , 𝐼) = 𝒩(𝑄𝑜𝑁|𝑞𝑜𝑁, 𝜎𝑞). (13) 

 

In the above expressions 𝑞𝑜𝑁 is the given flow rate 

for which one seeks to calculate the corresponding 

pressure drop. The algorithm for generating samples 

from the sampling distribution can be formulated as 

follows 

 

2.1. Generate 𝑄𝑜𝑁𝑖 from 𝒩(𝑞𝑜𝑁, 𝜎𝑞) 

2.2. Generate ∆𝑝𝑜𝑁𝑖 from 𝒩(∆𝑝𝑜𝑁|M(θ, ω), 𝑄𝑜𝑁𝑖, 𝐷) 

The result of the cross-validation with 99% credible 

error-bars is given in Figure 8. For low flow rates or 

equivalently low-pressure drops, the model prediction is 

within the 99% credible interval of the measurements. 

However, it appears that for high flow rates, the model 

has some tendency to over-predict the differential 

pressure over the valve. 

8 Conclusions 

In this paper, we demonstrated how the model and the 

measurement uncertainties can be quantified within the 

framework of the Bayesian statistics. In order to avoid 

complications due to dimensional inconsistency of the 

original model, we proposed a dimensionless version of 

the model. The result of our analysis revealed 

discrepancies, which could not be explained by the 

measurement noise or the uncertainty in the estimated 

parameters. The model inadequacy can be divided into 

global and local categories. The most serious problem 

observed was at the global level. Indeed, the predictions 

of the dimensionless model given by Eq. (5)  had to be 

scaled down to 2.2%-3.2% of their values in order to be 

at the same level as the measurements. This has not been 

observed before or reported in literature. We believe that 
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the main reason for this is that this type of scaling would

in general be absorbed into the 𝑎𝐴𝐼𝐶𝐷 factor and hence

would slip away unnoticed. Further studies are needed

to determine the source(s) of this inconsistency. If one

accepts the correction factor 𝛼 and hence the modified

dimensionless model given by Eq. (5), the deviation at

the local level is less significant. The model validation

has revealed that there is a tendency for the modified

model to over-predict the pressure drop. A closer study

of the results has revealed that a slight increase in oil

viscosity during its passage through the valve can

explain most of the overestimated pressure drop

tendencies by the model. Further studies under more

stringent conditions will be conducted in order to

uncover the causes of these observations.
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Appendix 

Table 1. Experimental results with model oil of different 

viscosities. 

Table 2. Accuracy of the test devices 

 

 

 

 

 

 

 

 

 

 

Table 3. Data and parameters description. 

Table 4. Calibration data set. 
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Test#1; Oil 6.6 cP 

19.44 929.65 922.53 19.59 1.01 

15.58 824.79 921.59 19.50 0.89 

9.93 710.16 920.60 19.18 0.77 

7.12 642.89 920.01 18.94 0.70 

5.23 587.78 919.54 18.85 0.64 

3.42 514.06 919.13 19.62 0.56 

1.17 353.74 918.34 18.06 0.39 

Test#2; Oil 12.6 cP 

19.73 1109.32 937.98 20.02 1.18 

15.49 1021.85 937.51 19.34 1.09 

10.12 882.52 936.54 19.25 0.94 

6.82 774.99 935.77 18.93 0.83 

5.36 712.71 935.48 19.11 0.76 

3.02 575.30 934.97 18.61 0.62 

0.92 388.95 934.03 19.57 0.42 

Test#3; Oil 36.4 cP 

19.97 1460.89 953.18 21.95 1.53 

15.13 1305.44 952.57 20.46 1.37 

10.05 1126.45 951.34 20.31 1.18 

7.08 966.33 951.62 20.28 1.02 

4.99 868.67 952.29 20.54 0.91 

2.96 760.25 953.07 20.88 0.80 

0.93 503.04 950.56 20.05 0.53 

Device Measured 

Property (ies) 

Accuracy 

Coriolis Mass flow, 

Temperature, 

Density 

0.1 % 

Pressure 

transmitter 

Differential 

pressure 

0.04 % 

Viscometer Viscosity 0.2 % 

Name Description 

𝑥, 𝑦, 𝛼  Model parameters 

∆𝑝𝑤  True differential pressure of water 

𝑄𝑤  True volume flow rate of water 

𝜎𝜇  Standard deviation of oil viscosity 

𝑄𝑜  True oil flow rate 

𝜇𝑜  True oil viscosity 

∆𝑝𝑜𝑑  Measured differential pressure of oil 

𝑄𝑜𝑑  Measured volume flow rate of oil 

𝜇𝑜𝑑  Measured oil viscosity 

𝜌𝑜, 𝜌𝑤  Oil and water density 

𝜇𝑤  Water viscosity = 1 

𝜎𝑝  Standard deviations of the ∆p 

measurements 

𝜎𝑞  Standard deviations of the flow 

measurements 

∆𝒑𝒐  True differential pressure of oil 
𝜌
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𝜇
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920 19.44 0.47 1007.72 1006.41 4.69 6.6 6.4 

920 15.58 0.21 894.97 894.73 4.07 6.6 6.4 

920 9.93 0.13 771.40 771.83 1.53 6.6 6.4 

920 7.12 0.50 698.79 697.72 2.32 6.6 6.4 

920 5.23 0.50 639.21 636.61 5.09 6.6 6.4 

920 3.42 0.35 559.29 558.47 5.46 6.6 6.4 

920 1.17 0.11 385.19 385.44 2.78 6.6 6.4 

950 19.97 0.10 1532.66 1530.58 2.81 36.4 36.2 

950 15.13 0.08 1370.44 1370.49 1.28 36.4 36.2 

950 10.05 0.08 1184.07 1183.58 0.93 36.4 36.2 

950 7.08 0.04 1015.46 1015.78 1.09 36.4 36.2 

950 4.99 0.05 912.19 912.41 1.38 36.4 36.2 

950 2.96 0.03 797.69 799.07 2.22 36.4 36.2 

950 0.93 0.05 529.20 529.44 6.00 36.4 36.2 
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Abstract 

About 65 % of the carbon dioxide emissions from a 

modern cement kiln system are generated through 

calcination (decarbonation). The calcium carbonate in 

the limestone is the primary source of CO₂, and the rest 

comes from fuel combustion. This gives a calciner exit 

gas consisting of N2, O2, CO₂, and H₂O, the CO₂ 

constituting up to 30 % of the mixture. In the future, 

electric power will have to come from renewable 

energy. Electrification of the calciner, i.e., replacing fuel 

combustion with electrically generated heat, will 

eliminate the fuel combustion exhaust gases. The 

calciner exit gas will then be pure CO₂ and removes the 

need for a separate CO₂ capture plant. Such a process 

may require a new type of calcination reactor, different 

from the currently used reactors in most cement kiln 

systems. In the current work, an electrically heated drop-

tube reactor (DTR) is used to calcine the meal. The DTR 

may replace the traditional entrainment calciner. 

Essential characteristics in developing a DTR include 

the particle size distribution (PSD), particle settling 

velocity, operational temperature of the tube wall, and 

velocity of the product gas. A PSD ranging from 0.2 to 

180 µm, where most particles have a diameter < 30 µm, 

was investigated. Also, to assess the effect of clustering, 

an effective particle diameter of 500 µm was evaluated. 

Two different DTR designs were compared, 1) co-

current flow of gas and particles, 2) counter-current flow 

of gas and particles. The dimensions of a calcination 

reactor were calculated using simulations in Python 3.8. 

The tube diameter was selected as the key parameter to 

see how the overall design of the reactor was influenced.  

Keywords:     Drop tube reactor, electrification, CO2 
capture, calcination, Python 3.8 

1 Introduction 

Concrete is one of the most used construction materials 

in the world. The key additive in concrete is cement, and 

about 4.1 billion tonnes of cement are produced globally 

every year, resulting in a global anthropogenic CO₂ 

emission of up to 8 % (Andrew, 2018). Hence, strategies 

such as improving the energy efficiency of existing 

cement plants and using lower carbon fuels and green 

electricity to decarbonize the raw meal should be 
implemented (Norcem, 2021). 

Producing cement clinkers has two significant 

sources of CO₂ emission: calcination of the raw 

materials and fuel combustion. Calcination is a 

thermally driven chemical reaction where the calcium 

carbonate (CaCO₃) in the limestone will decompose and 

form lime (CaO) and CO₂: 𝐶𝑎𝐶𝑂3 + ℎ𝑒𝑎𝑡 → 𝐶𝑎𝑂 +
𝐶𝑂₂. The decarbonation of raw meal accounts for about 

65 % of the CO₂ emissions in a modern cement kiln 

system, while fuel combustion accounts for about 35 % 

(Tokheim et al., 2019).  

Modern calciners are based on raw meal particles 

being entrained by hot combustion gases, which at the 

same time provide the required heat transfer to the 

particles. However, expecting a greener future, the 

cement clinker production process will have to be 

powered by electricity generated by renewable energy 

sources. Implementing green electricity to power the 

calciner instead of fossil fuels can prove to be an 

efficient way to reduce CO₂ emissions: The CO₂ 

produced from the standard fuel combustion is 

eliminated, and the CO₂ produced from the calcination 

process is pure, which removes the need for a separate 

CO₂ capture facility.  

Different reactors may be applied in a process where 

the heat is transferred indirectly to the meal, for example 

rotary calciners (Tokheim et al., 2019), fluidized bed 

calciners (Samani et al., 2020), or drop tube calciners. 

Calcination by indirect heat transfer in drop tube 

calciners has been tested in the Leilac project (Leilac, 

2021), but in that project, fuel combustion is the source 

of energy used for calcination (Hills et al., 2017; 

Hodgson et al., 2018). 

In this work, we study indirect heat transfer in an 

electrified drop tube reactor and address the following 

key questions: 

• What is the settling velocity of the particles? 

• How will the CO₂ from the calcination reaction 

impact the particle flow in the reactor? 

• What factors are decisive for the tube diameter 

and length? 

The purpose of this study is to investigate, through 

modeling and simulation, how variable design 

parameters and operational settings will impact the 

industrial calcination in an electrified DTR. Two 

different designs are considered; co-flow and counter-

flow of meal and gas.  
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2 Method 

To design an electrically heated DTR in order to calcine 

the raw meal, the particle settling process and the heat 

transfer from the heated tube wall to the particles in the 

reactor are modelled. A modified shrinking core model 

(SCM) is used to study the kinetics of the calcination 

reaction. The reaction rate coefficient of the reaction, 

which is dependent on the equilibrium pressure and the 

partial pressure of CO₂, is modelled. The models are 

implemented in Python 3.8 for simulation purposes to 

investigate how different particle sizes, wall 

temperatures, and fluid velocities will impact the system 

design.  

3 Process description 

The upper part of Figure 1 shows a typical modern 

cement kiln system. The raw meal is preheated in two 

preheaters before being calcined in the calciner. The 

precalcined meal is then sent to a rotary kiln, where the 

meal is fully calcined and cement clinker is produced. 

Finally, the clinker is cooled in a clinker cooler.  

 

 

Figure 1. A regular cement kiln system with two 

preheater strings (top) and a system equipped with an 

electrified calciner (bottom) (Tokheim et al., 2019). 

The lower part of Figure 1 shows a system where the 

fuel-fired calciner has been replaced by an electrified 
calciner. The fuel in the calciner fuel has now been 

replaced by heat provided from electrical energy. The 

combustion air is no longer required, so this air stream 

and the hot rotary kiln exit gas are both routed to the 

preheater, where the sensible heat can be utilized. 

Hence, the only gas component in the exit gas stream 

from the calciner is CO2 coming from the 

decarbonation. The red-colored process units in 

Figure 1 are considered in the present study. 

Figure 2 shows a process flow diagram of a DTR (i.e., 

the electrically heated calciner) and adjacent units such 

as a de-dusting cyclone, a heat exchanger, and a fan. 

The preheated raw meal enters the top of the reactor 

at a temperature of about 650 °C. As the particles 

continuously fall through the reactor, the heat generated 

from electricity will heat the particles to a calcination 

temperature of about 900 °C. During the calcination of 

the particles, CO₂ is produced. A fan is implemented to 

force the normally buoyant gas down through the 

bottom of the DTR, as shown in Figure 2. A de-dusting 

cyclone is implemented to separate the particles and exit 

gas. Heat exchangers cool down the pure CO₂ gas before 

it is sent to storage or further processing. The calcined 

meal is sent to the rotary kiln. In this study, two different 

DTR designs are compared; co-current flow of gas and 

particles (shown in Figure 2), and counter-current flow 

of gas and particles. In the latter concept, the CO2 will 

exit at the top of the DTR instead of at the bottom, but 

otherwise the flow diagram will be the same.  

 

Figure 2. Process flow diagram of DTR and adjacent 

units. 

Implementing the DTR in an existing cement kiln 

system is expected to have a relatively small 

constructional impact: 1) Replacement of the existing 

entrainment calciner with the DTR, 2) Installation of de-

dusting cyclone(s), 3) installation of heat exchanger(s) 

for utilization of sensible heat in the hot CO2 and 4) 

installation of a fan to pull the CO2 out of the calciner 

and send it to a CO2 processing unit (required for storage 

and transport). 

The DTR itself will have to be implemented in the 

form of a number of parallel tubes, each processing a 

fraction of the preheated meal. 
Figure 3 shows the cumulative particle size 

distribution of a typical raw meal, collected from 
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Norcem AS Brevik. The diameter ranges from 0.2 to 

180 µm. 

 

Figure 3. Cumulative frequency of particles with a size 

range of 0.2-180µm in diameter. 

Table 1. Design basis values. 

Parameter Unit Value 

Feed rate of raw meal t/h 207 

Fraction of calcium 
carbonate in raw meal 

kg/kg 0.776 

Calcination degree % 94 

Reference temperature K 298 

The temperature of the 
preheated meal 

K 931 

Calcination temperature K 1173 

Wall temperature K 1323 

Overall heat transfer 
coefficient 

W/(m²K) 250 

Enthalpy of calcination MJ/kgCO2 -3.6 

Enthalpy of other meal-
related reactions 

MJ/kgCO2 0.3 

Electricity-to-heat efficiency % 98 

Emissivity  - 0.9 

Gravitational acceleration m/s2 9.807 

Particle diameter µm 0.2-180, 
500 

Dynamic viscosity CO₂ Pa s 4.65·10-5 

Density CaCO₃ kg/m³ 2711 

Density CaO kg/m³ 1520 

Gas velocity m/s 0.1-2.0, 
0.5 

Partial pressure of CO₂ atm 1 

Specific heat capacity CaCO₃ 
at 931 K, constant pressure 

J/mol K 134 

Specific heat capacity CaCO₃ 
at 1173 K, constant pressure 

J/mol K 140 

 

Table 1 is a list of design basis values used in the

simulations. The input values are the same as used in a

previous study, in which a rotary calciner was used in an

electrified calcination process (Tokheim et al., 2019).

4 Modelling 

The DTR must be dimensioned in such a way that 

efficient calcination of the raw meal occurs. Thus, the 

settling velocity of particles, reaction kinetics, mass and 

energy balances, heat transfer, and design dimensions 

have been modelled. 

4.1 Particle settling velocity 

The settling velocity of the particles inside the DTR is 

modelled as a function of particle diameter. The 

following simplifications have been made: 

• Initial particle acceleration period neglected 

• No impact from particle-wall interactions 

• Direct transition from laminar to turbulent flow 

regime (neglecting the transition region) 

• No interaction between particles 

For small particles, the settling is laminar, and the 

settling velocity can then be calculated using 

Equation 1, where 𝑔 [m/s²] is the gravitational constant, 

𝐷𝑝 [m] is the particle diameter, 𝜇 [Pa·s] is the dynamic 

viscosity and 𝜌𝑝 and 𝜌𝑔𝑎𝑠 are the densities [kg/m³] of 

the particle and the gas, respectively (Zevenhoven and 

Kilpinen, 2001): 

𝑣𝑡 =
𝑔 ∙ 𝐷𝑝

2 ∙ (𝜌𝑝 − 𝜌𝑔𝑎𝑠)

18 ∙ 𝜇
 (1) 

Equation 2 is used to confirm that the Reynolds 

number, 𝑅𝑒𝐷, indicates laminar settling. If 𝑅𝑒𝐷 < ~1, 

the flow is in the Stokes regime and regarded as laminar. 

𝑅𝑒𝐷 =
𝜌𝑔𝑎𝑠 · 𝑣𝑡 · 𝐷𝑝

µ
 (2) 

However, if the Reynolds number from Equation 2 is 

found to be larger than ~1, this indicates that the settling 

is turbulent. Then the Archimedes number is calculated 

according to Equation 3, whereas an empirical Reynolds 

number is calculated from Equation 4, and, finally, 

Equation 5 is utilized to determine the settling velocity 

in the turbulent flow regime:  

𝐴𝑟 =
𝜌𝑔𝑎𝑠 ∙ (𝜌𝑝 − 𝜌𝑔𝑎𝑠) ∙ 𝑔 ∙ 𝐷𝑝

3

𝜇2
 (3) 

𝑅𝑒 = 0.1334 ∙ 𝐴𝑟0.7016 (4) 

𝑣𝑡,𝑡𝑢𝑟𝑏 =
𝑅𝑒 ∙ 𝜇

𝜌𝑔𝑎𝑠 ∙ 𝐷𝑝

 (5) 

As the calcination reaction occurs within the DTR, 

the particles are gradually decarbonated, a process that 

changes the density of the particles. Thus, to compensate 

for the velocity of the calcined (𝑣94%,𝑐𝑎𝑙𝑐𝑖𝑛𝑒𝑑) and 

uncalcined (𝑣𝑢𝑛𝑐𝑎𝑙𝑐𝑖𝑛𝑒𝑑) particles, Equation 6 is used as 

a representative average value.  

𝑣𝑚𝑖𝑑 =
𝑣𝑢𝑛𝑐𝑎𝑙𝑐𝑖𝑛𝑒𝑑 + 𝑣94%,𝑐𝑎𝑙𝑐𝑖𝑛𝑒𝑑

2
 (6) 

The effective settling velocity for both designs is 

calculated by Equation 7 (co-current) and Equation 8 

(counter-current). 

𝑣𝑒𝑓𝑓,𝑡,𝑐𝑜 = 𝑣𝑚𝑖𝑑 + 𝑢𝑚 (7) 
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𝑣𝑒𝑓𝑓,𝑡,𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑣𝑚𝑖𝑑 − 𝑢𝑚 (8) 

 

Figure 4 shows the calculated effective settling 

velocity of the particles. The green and the yellow 

curves represent the counter-current design, whereas the 

blue and red lines give the effective settling velocity for 

the co-current design. These calculations are done with 

a constant gas velocity of 0.5 m/s (cf. Table 1), and for 

the counter-current case, the effective velocity is 

negative for particles smaller than 226 µm.  

 

Figure 4. Settling velocity for the counter-current and co-

current flow designs as a function of particle diameter. 

Including laminar and turbulent flow regimes. 

In the calculations shown above, it was assumed that the 

particles do not interact with each other. However, due 

to the high solids loading in the system, it is likely that 

the particles will interact with each other and form 

clusters that effectively behave as bigger particles. This 

means that the actual settling velocity may be 

significantly higher than the values calculated above. 

Hence, in the simulations in Section 5, a larger effective 

particle diameter was used.  

4.2 Reaction kinetics 

The shrinking core model (SCM) describes the changes 

in a particle when a chemical reaction occurs, assuming 

that the particle size remains unchanged whereas the 

reaction front will gradually move towards the center of 

the particle, so that the unreacted core gradually shrinks, 

from a diameter equal to the particle diameter, to zero. 

To calculate the conversion factor of the particles, the 

correlations and results from (Milne et al., 1990) have 

been used. The calcination conversion factor is 

calculated by Equation 9, where 𝑘𝑟 [m0.6/s] is the 

reaction rate coefficient, 𝑑0 [m0.6] is the initial diameter 

of the particle and 𝑡𝑐𝑎𝑙 [s] is the calcination time. 

𝑋 = 1 − (1 −
𝑘𝑟

𝑑0
0.6 · 𝑡𝑐𝑎𝑙)

3

 (9) 

The reaction rate coefficient is determined by 

implementing the equilibrium pressure, 𝑃∗ [atm], and 

partial pressure of CO₂ inside the reactor, 𝑃𝐶𝑂2 [atm]. 

These are given by Equations 10 and Equation 11, 

respectively (Stanmore and Gilot, 2005). 

𝑘𝑟 = 𝐴 · exp (
−𝐸

𝑅 · 𝑇
) · (𝑃∗ − 𝑃𝐶𝑂2) (10) 

𝑃∗ = 4.192 · 109 · exp (
−20474

𝑇
) (11) 

In this study, where CO2 is the only gas in contact 

with the meal, and the system is operating at ambient 

pressure, the partial pressure of CO₂ is assumed to be 

equal to 1 atm. 𝑇 [K] is the calcination temperature, 

which is set to 1173 K in this study. In Equation 10, the 

pre-exponential factor 𝐴 is 0.012 mol/(m²·s·kPa), and 

the activation energy 𝐸 is 33.47 kJ/mol. 

4.3 Mass and energy balance 

A mass and energy balance for the DTR at steady-state 

conditions was conducted, assuming no heat loss to the 

surroundings.  

The mass balance was used to determine the mass 

flow rate of produced CO₂ from calcination, given by 

Equation 12, where �̇�𝑝ℎ𝑚,𝑖𝑛 [t/h] is the inlet feed rate of 

preheated meal (cf. Table 1), �̇�𝐶𝑂2,𝑝𝑟𝑜𝑑 [t/h] is the mass 

flow rate of produced CO₂, and �̇�𝑚𝑒𝑎𝑙,𝑐𝑎𝑙 [t/h] is the 

mass flow rate of calcined meal. 

�̇�𝑝ℎ𝑚,𝑖𝑛 = �̇�𝐶𝑂2,𝑝𝑟𝑜𝑑 + �̇�𝑚𝑒𝑎𝑙,𝑐𝑎𝑙  (12) 

Equation 13 is used to calculate the amount of 

produced CO₂ assuming 100 % conversion from CaCO₃ 

to CaO and CO₂, where 𝑤𝐶𝑂2,𝑝ℎ𝑚 is the weight fraction 

of CO₂ in the CaCO₃. To find the mass flow rate of 

produced CO₂ at 94 % calcination degree (𝑋), Equation 

14 is used (cf. Table 1). 

�̇�𝐶𝑂2,𝑝ℎ𝑚,100% = 𝑤𝐶𝑂2,𝑝ℎ𝑚�̇�𝑝ℎ𝑚,𝑖𝑛 (13) 

�̇�𝐶𝑂2,𝑝𝑟𝑜𝑑 =  �̇�𝐶𝑂2,𝑝ℎ𝑚,100% 𝑋 (14) 

By dividing the DTR into two section – one 

preheating and one calcination section – the amount of 

heat required to process the meal was determined. 

Equation 15 is the energy balance for the preheating 

section, where 𝐸𝑒𝑙,𝑝ℎ [MW] is the energy supplied into 

the system to preheat the raw meal to calcination 

temperature. 𝐶𝑝,𝑝ℎ𝑚 [J/mol K] is the specific heat 

capacity of the preheated meal (cf. Table 1). 

𝐸𝑒𝑙,𝑝ℎ = �̇�𝑝ℎ𝑚 · 𝐶𝑝,𝑝ℎ𝑚 · (𝑇𝑐𝑎𝑙 − 𝑇𝑝ℎ𝑚) (15) 

Equation 16 is the energy balance for the calcination 

section based on how much energy must be supplied to 

the reactor for the reactions to occur. The mass flow rate 

of CO₂ is calculated based on the mass balance (cf. 

Equation 13 and 14), and 𝐻𝑐𝑎𝑙 and  𝐻𝑜𝑡ℎ𝑒𝑟 are the 

enthalpies of reaction for calcination and other meal 

related reactions, respectively (cf. Table 1).  
𝐸𝑒𝑙,𝑐𝑎𝑙 = �̇�𝐶𝑂2,𝑝𝑟𝑜𝑑 · (𝐻𝑐𝑎𝑙 + 𝐻𝑜𝑡ℎ𝑒𝑟) (16) 

4.4 Radiation heat transfer 

The particles are heated by conduction, convection, and 

radiation heat transfer. However, at the high temperature 

prevailing in the calciner, radiation heat transfer is much 

more significant than the two other mechanisms. Thus, 
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radiation is here assumed to be the only acting heat 

transfer mechanism. 

CO₂ is a polyatomic gas and will absorb some of the 

radiation, contributing to a reduced effect of the 

radiation heat flux. The effect of the absorption was 

investigated and found not to significantly affect the 

radiation heat flux. Hence, the main effect is the direct 

radiation from the hot wall to the particles, and this is 

the mechanism used in the model. 

For radiation heat transfer from the hot wall at 

temperature 𝑇𝑤𝑎𝑙𝑙 [K] to the particles at temperature 𝑇 

[K], Equation 17 can be applied to estimate the radiation 

heat flux, where 𝜀 is the wall emissivity and 𝜎 is the 

Stefan-Boltzmann constant (5.67·10-8 
𝑊

𝑚2𝐾4) (Incropera 

et al., 2017). 

𝑞𝑟𝑎𝑑
′′ = 𝜀 · 𝜎 · (𝑇𝑤𝑎𝑙𝑙

4 − 𝑇4) (17) 

4.5 DTR design 

To effectively process the raw meal to the desired 

calcination degree, the diameter and heat of the reactor 

tube have been determined. The diameter of a 

cylindrical tube is found by Equation 18. 

𝐷 = √
4 · 𝐴𝑐𝑟𝑜𝑠𝑠

𝜋
 (18) 

Here, the cross-sectional area, 𝐴𝑐𝑟𝑜𝑠𝑠 [m²], is given 

by Equation 19, where �̇� [m³/s] is the volumetric flow 

rate of fluid, and 𝑢𝑚 [m/s] is the fluid velocity chosen 

based on the settling velocity of the particles. 

𝐴𝑐𝑟𝑜𝑠𝑠 =
�̇�

𝑢𝑚

 (19) 

The necessary heat transfer area of the reactor tube 

can be determined based on the energy balance and the 

radiation heat flux calculations, given by Equation 20. 

𝐴ℎ𝑒𝑎𝑡,𝑝𝑟𝑒ℎ𝑒𝑎𝑡 =
𝑄𝑝𝑟𝑒ℎ𝑒𝑎𝑡

𝑞𝑝𝑟𝑒ℎ𝑒𝑎𝑡
′′  

𝐴ℎ𝑒𝑎𝑡,𝑐𝑎𝑙𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =
𝑄𝑐𝑎𝑙𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛

𝑞𝑐𝑎𝑙𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛
′′  

(20) 

Based on the energy required for heating the raw meal 

to the calcination temperature, the height of the section 

can be determined with Equation 21. 

ℎ𝑡,𝑝𝑟𝑒ℎ𝑒𝑎𝑡𝑖𝑛𝑔 =
𝐴ℎ𝑒𝑎𝑡,𝑝𝑟𝑒ℎ𝑒𝑎𝑡𝑖𝑛𝑔

𝜋 · 𝐷
 (21) 

The necessary height of the calcination section is 

found by Equation 22, based on the required residence 

time of the particles (cf. Figure 5), and the effective 

particle settling velocity (cf. Figure 4).  

ℎ𝑡,𝑐𝑎𝑙𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 𝑡𝑟𝑒𝑠 · 𝑣𝑒𝑓𝑓.𝑡  (22) 

Further, the total height can be found by Equation 23 

by adding the preheating section height (ℎ𝑡,𝑝𝑟𝑒ℎ𝑒𝑎𝑡𝑖𝑛𝑔) 

and the calcination section height (ℎ𝑡,𝑐𝑎𝑙𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛). 

ℎ𝑡 = ℎ𝑡,𝑝𝑟𝑒ℎ𝑒𝑎𝑡𝑖𝑛𝑔 + ℎ𝑡,𝑐𝑎𝑙𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (23) 

4.6 Simulations 

The models described above were implemented in 

Python 3.8. Both system designs – co-current and 

counter-current – are highly dependent on the tube 

diameter. Thus, the diameter was selected as a key 

parameter to vary in the determination of the DTR 

design.  

By having a counter-current flow of gas and particles, 

the buoyant CO₂ gas may be problematic regarding 

smaller particles. The particles processed in the co-

current flow of gas and particles will have an increased 

effective settling velocity. Thus, the height of the DTR 

is expected to increase accordingly. However, this 

design is not impaired by the CO₂ gas, which is forced 

to flow downwards with the particles. 

5 Results and discussion 

Figure 5 shows the calcination degree as a function of 

time and effective particle size. The smaller particles in 

the PSD have a short calcination time, meaning that 

complete conversion from CaCO₃ to CaO will happen 

rapidly. Given a calcination time, some of the larger 

particles may, however, not achieve the desired 

calcination degree. 

  

Figure 5. Calcination degree (conversion) as a function of 

time particle size. The calcination temperature is 1173 K. 

Each curve represents a given calcination time. 

 

Figure 6 shows the gas velocity and the required number 

of tubes as a function of the tube diameter. The gas 

velocity should be low in order to reduce the number of 

particles being forced out of the reactor by friction 

(relevant for the counter-current concept). 

For the co-current flow of gas and particles, the 

effective settling velocity increases with increased fluid 

velocity. Thus, to reduce the height of the tube, the gas 

velocity should be minimized. 
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Figure 6. Gas velocity and number of tubes as a function 

of tube diameter (counter-current flow). 

 

Figure 7 illustrates the reaction process and shows the 

heat necessary to preheat the raw meal to the calcination 

temperature, and the calcination reaction assuming 94 % 

conversion to CaO from CaCO₃ in the DTR. A feed rate 

of 207 t/h generates about 66 t/h CO₂ from the reaction, 

and about 141 t/h of calcined meal is produced. 

 

Figure 7. Shows the results from the mass and energy

balances listed in Section 4.3.

 

Figure 8 shows the heat flux with varying temperature. 

The temperature is varied in the range 1200 – 1500 K, 

and the green cross marks the flux when operating at 

1323 K, which results in a flux of 60 kW/m2. Increasing 

the temperature will decrease the required height as then 

the heat flux increases. However, it may be difficult to 

find materials that can operate at very high temperatures 

for a long period of time. A wall temperature of 1323 K 

(1050 °C) may be a suitable trade-off between heat 

transfer efficiency and material availability. 

 

Figure 8. Radiation heat flux as a function of wall 

temperature.  

 

The upper part of Figure 9 shows the required number 

of tubes as a function of the diameter. The calculations 

are based on a constant feed rate of 207 t/h, a residence 

time of 20 s, a constant gas velocity of 0.5 m/s, effective 

particle diameter of 500 µm, and wall temperature of 

1323 K (cf. Table 1.).  

The lower part of the figure shows the tube height (cf. 

Equation 23), where the slight increase in height comes 

from the preheating part of the tube, which increases 

because of fewer processing tubes.  

Based on Figure 9, several combinations of diameter, 

height and number of tubes can be used, depending on 

the requirements and specifications on the system where 

it should be installed. However, a relatively small 

diameter is necessary to ensure efficient heat transfer. 

A viable option may be to use 15 processing tubes 

with a diameter of 2.6 m and a height of 37.6 m, each 

processing a feed of 13.8 t/h. However, it could be that 

the heat transfer will be impaired with such a big 

diameter, and another option could be 40 tubes with a 

diameter of 1.6 m and a height of 37.5 m, each tube 

processing 5.3 t/h. If fewer operating DTRs were to be 

used, the diameter would greatly increase. The 

efficiency of heat transfer would decrease since the heat 

may not reach the particles furthest away from the tube 

wall (the heat source). 

   
Figure 9. Number of tubes and height necessary to 

process the raw meal (co-current) as a function of the 

tube diameter.  

 

Figure 10 shows the number of tubes and the tube height 

as a function of the tube diameter (counter-current 

design) for the same conditions as in Figure 9. The most 

significant difference between Figure 9 and Figure 10 is 

the tube height due to the effective particle settling 

velocity (cf. Equations 7 and 8).  
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Figure 10. Number of tubes and height necessary to 

process the raw meal (counter-current) as a function of 

the tube diameter.   

 

As mentioned before, the difference between the co-

current and counter-current design is the impact of the 

gas velocity on the particles settling velocity. One major 

consideration when choosing the preferred design is the 

available area for the installation of the system. If height 

is a limiting factor at the site where the DTR is to be 

installed, the counter-current design should be 

considered.  

6 Conclusion 

Two concepts were investigated for calcination of raw 

meal in a drop tube reactor, 1) co-current flow of 

particles and gas, 2) counter-current flow of particles 

and gas.  

The settling velocity is dependent on the particle size. 

Small raw meal particles with a low settling velocity 

will be affected by the buoyant CO₂ gas for the counter-

current design if the fluid velocity is 0.5 m/s. This is not 

the case for the co-current design. However, the required 

height of the tube increases as a result of the increased 

settling velocity of the particles.  

Due to the high loading of solids in the system, it is 

likely that the particles will interact with each other and 

form clusters that effectively behave as bigger particles. 

The settling velocity is a function of the particle size, 

and about 1.2 m/s is achieved for particles with an 

effective size of 500 µm. Using a gas velocity of 0.5 m/s, 

the effective settling velocity of the particles was 

accordingly found to be 1.7 m/s and 0.7 m/s for the co-

current and counter-current designs, respectively.  

Simulations show that operating with a high fluid 

velocity decreases the diameter of the reactor tube. 

Larger tube diameters will likely impair the heat 

transfer. 

Both designs are influenced by decreasing the tube 

diameter. The particles in the co-current design will 

achieve a higher effective settling velocity, increasing 

the height of each reactor tube. The particles in the 

counter-current design will achieve a reduced effective 

settling velocity, increasing the residence time of the 

particles and reducing the necessary tube height. 

However, small particles (with a settling velocity less 

than the fluid velocity) may be entrained by the buoyant 

CO₂ gas and exit at the top of the reactor. 

Mass and energy balances were used to determine 

how much heat is required to preheat and calcine the 

meal, and how much CO₂ is produced during calcination 

of CaCO₃. About 80 MW in total is required for both 

processes when calcining a feed rate of 207 t/h. The 

process results in about 66 t/h produced CO₂ and 141 t/h 

calcined meal. 

Increasing the number of processing tubes and 

dividing the total feed rate of raw meal between the 

tubes decreases the diameter while ensuring the correct 

fluid velocity of the gas.  

The decisive factor for the tube diameter is the fluid 

velocity. To achieve an acceptable gas velocity and 

maintain a high heat transfer coefficient, a relatively 

high number of processing tubes is required.  

Which design (co- or counter-current) and what 

configuration of the system with regards to diameter, 

height and number of operating tubes are heavily 

dependent on the system where the DTR is to be 

installed. However, if the PSD consist of small particles 

and the buoyant CO₂ is a problem, then the co-current 

design should be used. The proposed dimensions by 

calculations and simulations to ensure efficient heat 

transfer can be 40 DTRs, each with a diameter of 1.6 m 

and a height of 37.5 m. 

The counter-current flow of gas and particles is 

impaired if clustering of particles does not occur. For a 

case with no interaction between the particles, a 

minimum effective diameter of 226 µm is required to 

avoid particles rising with the buoyant CO₂ gas when 

operating with a gas velocity of 0.5 m/s in a counter-

current design. If the installation of the DTR system is 

heavily dependent on minimizing the height of tubes 

because of height limitations, the counter-current design 

should be used. Considering the same number of 

operating DTRs and the same diameter as for the co-

current design, the height may then be reduced to 17.5 

meters. 

In order to numerically verify the results, future work 

could include CFD simulations of the flow process.  
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Abstract  

Captured carbon dioxide (CO2) must be dehydrated 

prior to transport or storage because of possibilities for 

corrosion and hydrate formation. CO2 dehydration can 

be performed by absorption, typically into triethylene 

glycol (TEG) followed by desorption or by adsorption 

on a solid (typically a molecular sieve) followed by 

desorption. In this work, the process simulation program 

Aspen HYSYS is used to calculate material and heat 

balances for a TEG based absorption process and a 

molecular sieve adsorption process to achieve less than 

30 ppm water in the dehydrated gas.  The absorption and 

stripping columns were modelled using a specified 

Murphree stage efficiency on each absorption and 

stripping stage.  In the base case, the absorption and 

adsorption pressure was 40 bar and the inlet temperature 

was 30 °C.  An additional stripping column was added 

below the desorption column to obtain a low water 

content.  In the molecular sieve based process, all the 

process units except the adsorption/stripping units were 

simulated in Aspen HYSYS.  It is simulated reasonable 

process alternatives for CO2 dehydration down to water 

levels of 30 and 5 ppm.  The simulations combined with 

cost estimation indicate that a TEG based process is the 

most economic process both for dehydration down to 30 

ppm and to 5 ppm water in dehydrated gas. 

   

Keywords: Dehydration, Carbon capture, Adsorption, 

Absorption, Aspen HYSYS  

 

1 Introduction  
 

CO2 dehydration is the process of reducing the water 

content of captured CO2 down to an acceptable value 

prior to transport or storage.  The reasons are to avoid 

problems like corrosion and hydrate formation.  

Possible specifications are discussed in the references 

(Cole et al., 2011; Uilhorn, 2013; Buit, 2011).  Water 

specifications are normally in the range between 5 and 

500 ppm (parts per million by volume).   

The most mentioned processes for dehydration are 

based on absorption and adsorption. The most 

traditional method for large scale dehydration is by 

absorption into triethylene glycol (TEG).  For very low 

water levels, adsorption processes (typically using 

molecular sieves) are claimed to be necessary (Kohl and 

Nielsen, 1997; Kemper et al., 2014).  Processes for 

glycol dehydration of CO2 down to water levels below 

5 ppm (Øi and Fazlagic, 2014) using stripping gas and 

an extra stripping column have been simulated.  Øi and 

Rai (2018) simulated the alternative including an extra 

stripping column and a Drizo process achieving a water 

level down to 1 ppm.  Glycol based processes are 

evaluated and compared by Kinigoma and Ani (2016), 

Kong et al. (2019) and Affandy et al. (2020).     

Most commercially planned processes for CO2 

dehydration are based on molecular sieve technologies, 

eg. the operating facility at Melkøya (Equinor, 2016), in 

Brevik (Norcem, 2019) and Fortum Oslo Varme (2020). 

However, CO2 dehydration has also been performed 

large scale using glycol processes, eg. at the Quest 

project in Canada (Dharwadkar, 2011).  

The main purpose of this paper is to perform 

simulation, dimension and cost estimation of a glycol 

based and molecular sieve dehydration process for a 

traditional specification of 30 ppm to compare the two 

alternatives.  To our knowledge, such comparisons have 

not been documented in open literature before. 

2 Process description   

2.1 Process description of traditional process  

A traditional process for CO2 dehydration using TEG is 

shown in Figure 1.  The inlet gas flows upwards in the 

contactor/absorber while lean glycol (glycol with little 

water) flows downwards.  The rich glycol (with water) 

flows to a heat exchanger and a regenerator where the 

water is evaporated.  The regenerated glycol is cooled in 

the heat exchanger and flows back to the contactor. 

 

 

Figure 1. Process flow diagram of a standard TEG 

dehydration process (Øi and Rai, 2018)  
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A traditional adsorption based dehydration process has 

at least two columns filled with an adsorbent like 

molecular sieves.  While one of the columns is in 

adsorption mode, the other is in desorption mode.  After 

a scheduled time, the operation mode is switched 

between the columns by opening and closing control 

valves.   

2.2 Process description of simulated 

processes 

 

Figures 2 and 3 were used as a basis for process 

simulation.    Figure 2 is based on information from Øi 

and Fazlagic (2014) and Øi and Rai (2018).  Compared 

to Figure 1, the process in Figure 2 takes stripping gas 

from the flash gas which is contacted countercurrently 

with regenerated glycol in an extra stripping column. 

The advantage with using stripping gas and an extra 

stripping column is that the water content in regenerated 

glycol can be reduced considerably.  This makes it 

possible to obtain considerably less water in dehydrated 

gas out from the absorber.    

 
Figure 2 Flowsheet of TEG dehydration unit with extra 

stripping column and flash gas as stripping gas (Nitsche, 

2020). 

 

Figure 3 is a simplified version of the process 

information from Fortum (2020).  The feed (wet CO2) is 

first brought to an inlet separator to remove any free 

water.  The CO2 then flows into the column in 

adsorption mode where the water is adsorbed on 

molecular sieves.  The dry CO2 exits at the bottom.  A 

portion of the dry CO2 is heated and goes through the 

column operating in regenerating mode.  The water is 

released from the molecular sieves and exits with the 

regeneration gas.  This gas is now cooled, and the water 

is separated out.  A compressor is used to recycle the gas 

back to mix it with the inlet gas.        

 

Figure 3. Process flow diagram of the molecular sieve 

based process (Nitsche, 2020).  

3 Simulations  

3.1 Specifications and simulation of TEG 

process and molecular sieve process 

 

The simulation is performed using the glycol package in 

Aspen HYSYS based on the vapour/liquid equilibrium 

model Twu et al. (2005).  The simulation is similar to 

the simulations in Øi and Fazlagic (2014) and in Øi and 

Rai (2018).  In these simulations, the Peng-Robinson 

(PR) model and the Twu-Sim-Tassone (TST) model  

have been used. The specifications are given in Table 1.  

An Aspen HYSYS flow diagram is shown in Figure 4.  

The desorption column and the extra stripping column 

were simulated as one column in Aspen HYSYS with 

heating at an intermediate stage. 

 

Table 1. Aspen model parameters and specifications for 

the TEG simulation  

Parameter Value 

Feed flowrate [kg/h] 55000 

CO2 content in Feed [mol%] 0.9960 

Water content in Feed [mol%] 0.40 

Absorber column temperature [°C] 30 

Absorber column pressure [kPa] 4000 

Lean TEG temperature [°C] 35 

Lean TEG pressure [kPa] 4000 

Lean TEG circulation rate [kg/h] 1337 

Number of stages in absorber column 8 

Murphree efficiency in absorber column 0.5 

Flash drum pressure [kPa] 110 

Lean-Rich TEG heat exchanger ΔTmin [°C] 10 

Number of stages in desorber column 7 

Murphree efficiency in desorber column 1.0 

Reboiler temperature [°C] 200 

Desorber column pressure [kPa] 101.3 

Reflux ratio in desorber column 0.5 
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Figure 4. Aspen HYSYS flow diagram of the TEG dehydration process (Nitsche, 2020)  

 

 

Table 2. Aspen model parameters and specifications for 

the mol sieve simulation  

Parameter Value 

Feed flowrate [kg/h] 55000 

CO2 content in Feed [mol%] 99.6 

Water content in Feed [mol%] 0.4 

Regeneration gas flow rate [kmole/h] 125.3 

CO2 content in Regeneration gas (same as in  
Wet CO2) [mol%] 

99.79 

Water content in Regeneration gas (same as 
Wet CO2) [mol%] 

0.21 

Adsorber inlet and outlet temperature [°C] 30 

Adsorber / regeneration inlet pressure [kPa] 4000 

Pressure drop in regenerator [kPa] 5 

Adsorber column outlet and inlet [kmole/h]  1373 

Regeneration column inlet temperature  [°C] 278 

 

A simulation of the molecular sieve based process 

was performed based on the specifications in Table 2.  

The two adsorption/regeneration columns were not 

simulated in Aspen HYSYS, so the calculation was 

divided in three. An Aspen HYSYS flow diagram is 

shown in Figure 5.  The first part starts with the feed and 

the regeneration gas and ends before the column in 

adsorption mode.  The second and middle part starts 

after the column in adsorption mode and ends before the 

column in regeneration mode.  The third starts after the 

column in regeneration mode and ends with the 

regeneration gas.  The resulting flow in the regeneration 

gas in the third part equals the flow to the first part. The 

Aspen HYSYS flow diagram is shown in Figure 5.  

 

 

 

 
 

 

Figure 5. Aspen HYSYS flow diagram of the molecular sieve based process (Nitsche, 2020)  
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4 Dimensioning and cost estimation 

4.1 Dimensioning specifications 

The basis for the dimensioning is the material and heat 

balance from the Aspen HYSYS simulations. 

For the TEG dehydration process, gas velocity was 

specified to 0.32 m/s to calculate the cross section and 

diameter.  The estimated gas velocity through the 

structured packing is calculated from a traditional value 

of 2 m/s at atmospheric conditions divided by the square 

root of the pressure ratio (40).  The packing height of the 

absorption and desorption column is 1 meter per stage 

with a specified stage efficiency.  The total height of the 

absorption column, desorption column and extra 

stripping column were specified to be 17 m, 8 m and 7 

m, respectively.  The extra height is due to distributors, 

demister, gas inlet, outlet and sump.  The heat transfer 

numbers (U-values in W/(m2K)) were estimated to 300 

for the lean rich heat exchanger, 900 for the reboiler, 500 

for the condenser and 300 for the cooler. 

The adsorption and stripping columns were 

dimensioned by assuming gas velocities (0.12 m/s) 

based on an Ergun equation from GPSA, relative water 

capacity (0.13 kg water/kg for 1/8”) of the molecular 

sieves, retention time and operation time between 

switching between adsorption and stripping modes (12 

hours). The adsorber height was calculated by finding 

the height of the saturation zone and the mass transfer 

zone. The total height and diameter for the two 

adsorbers were then specified to 6.1 m and 1.4 m, 

respectively. 

The separator tanks were dimensioned by a 

traditional Souders Brown factor of 0.07 using data for 

physical properties from the Aspen HYSYS simulation.  

For the tanks, traditional design pressure based on 

operating pressure was assumed.  Standard corrosion 

allowance was also assumed.  The adiabatic efficiency 

for the compressor was specified to 0.75. 

 

4.2 Cost estimation specifications 

The Enhanced Detailed Factor (EDF) method from Ali 

et al. (2019) was used in the cost estimation.  For each 

equipment unit, the Aspen In-plant version 10.0 was 

used to estimate the procured cost.  Stainless steel was 

specified for all process units.  Then an installation cost 

was calculated based on a detailed factor table (Ali et 

al., 2019).  Then the unit cost was corrected for currency 

and year index.     

Table 3. Assumptions made for CAPEX calculation 

Parameter Value 
Currency exchange rate (20.11.18) 9.7135 NOK/EU 

Currency exchange rate (20.11.20) 10.6613 NOK/EU 

Cost index (Nov.2018) 109.8 

Cost index (Nov.2020) 112.4 

 

Table 4. Assumptions for OPEX calculations 

Maintenance cost 4 % of CAPEX 

Electricity price 0.50 NOK/kWh 

Steam price 0.13 NOK/kWh 

Operational time 8000 hours/yr 

 

4.3 Scope of dimensioning and cost 

estimation  

The cost analysis is limited to the equipment listed in the 

flowsheets in Figure 4 and 5.  No pre-treatment like inlet 

gas purification is considered, and no treatment after 

processing like purification, compression, transport or 

storage is considered.  The cost estimate is limited to 

installed cost of listed equipment. It does not include eg. 

land procurement, preparation, service buildings or 

owners cost.  

 

5 Results and Discussion 

 

5.1 CAPEX results 

 

Based on the cost estimation described in section 4, the 

capital cost was calculated for the process based on 

glycol dehydration (the TEG unit) and the process based 

on molecular sieve adsorption.  The results are presented 

in Figure 6. 

  

 

 

Figure 6.  Comparison of CAPEX between the TEG and 

molecular sieve unit [kEUR] (Nitsche, 2020)  
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The comparison of the CAPEX shows that the 

capital cost is considerably higher for the molecular 

sieve based unit.  There are two main reasons.  The 

recirculation compressor unit is expensive, and the 

molecular sieve columns are large due to a lower gas 

velocity through the molecular sieve compared to the 

gas velocity in the absorption column. 

The processes are compared for the base case 

conditions and selected specifications.  The inlet and 

operating pressure of 30 bar is based on optimum 

absorption conditions between 30 and 50 bar from 

literature (Øi and Fazlagic, 2014).  Other specifications 

as pressure drop and regeneration flow rate for the mol-

sieve process are also recommended values from 

industry (GPSA, 1987).  Other choices of the 

specifications are not expected to change  much on the 

differences between the compared processes. 
 

5.2 Opex results 

 

The yearly operating cost was calculated for both 

dehydration processes. The dominant operation cost is 

energy which is due to heating, compression and 

pumping.  Maintenance cost estimated as 4 % of 

CAPEX is also included.  The results are presented in 

Figure 7. 

 

 

 

Figure 7.  Comparison of yearly OPEX between the TEG 

and molecular sieve unit [kEUR] (Nitsche, 2020)  

 

The comparison of OPEX also shows considerably 

higher operating cost for the molecular sieve based 

process.  The two main reasons are that the heat demand 
is higher for the adsorption case because of more 

indirect heating, and that the compressor has a high 

energy demand.  It is assumed that electricity is 

necessary to heat the regeneration gas.  For the glycol 

unit, it is possible to use cheaper heat as steam. 

If the same heat source (like steam or electricity) was 

used for both processes, the operating cost difference 

would be less.  But because the heat demand is higher 

for the molecular sieve based process, the operating cost 

for the molecular sieve alternative would still be higher.     

    

5.3 Results for 5 ppm water specification 

 

Some references (Kohl and Nielsen1997; Kemper et al., 

2014) claim that a molecular sieve based process is 

necessary to obtain low water levels.  A glycol based 

process which achieved less than 5 ppm was simulated 

with a higher absorption column than in the standard 

case.  This is compared with the molecular sieve process 

in Figure 8.  The capital cost for the molecular sieve unit 

is assumed to be only slightly increased to obtain 5 ppm 

water in dehydrated gas. 

 

 

 

Figure 8.  Comparison of CAPEX between the TEG and 

molecular sieve unit [kEUR] for dehydration down to 5 

ppm (Nitsche, 2020)  

 
The results show that the CAPEX is still 

considerably higher for the molecular sieve based 

process for obtaining less than 5 ppm in dehydrated gas. 

There might be other criterias than cost when 

comparing a glycol based and molecular sieve based 

dehydration process like stability, robustness and risk.  

These factors are however assumed to be comparable for 
the two dehydration processes.  There is no reason to 

claim that it is not possible to achieve 5 ppm water with 

both a glycol based and a molecular sieve based process. 
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6 Conclusion  

 

In this work, the process simulation program Aspen 

HYSYS is used to calculate material and heat balances 

for a TEG based absorption process and a molecular 

sieve adsorption process to achieve less than 30 ppm 

water in the dehydrated gas.  The absorption and 

stripping columns were modelled using a specified 

Murphree stage efficiency on each absorption and 

stripping stage.  In the base case, the absorption and 

adsorption pressure were 40 bar, the inlet temperature 

was 30 °C, and the processes achieved less than 30 ppm 

water in the dehydrated gas.  An additional stripping 

column was added below the desorption column. Both 

processes were cost estimated using the Aspen In-Plant 

cost estimation tool for the equipment cost, using a 

detailed factor method to estimate the capital cost and 

typical utility cost data for heat and electricity.   

For the base case (with less than 30 ppm water in the 

dehydrated gas), the capital cost was calculated to 2.4 

mill. EURO for the TEG unit and 4.7 mill. EURO for 

the molecular sieve process.  The yearly operating cost 

was calculated to 0.1 mill. EURO for the TEG process 

and 0.23 mill. EURO for the molecular sieve process.   

The process was also calculated for dehydration down 

to 5 ppm.  To achieve that in the TEG process, a higher 

absorption column is necessary.  The cost of the TEG 

based process did not increase considerably, so the TEG 

absorption process was also most economical for those 

conditions.    

It is simulated reasonable process alternatives for 

CO2 dehydration down to water levels of 30 and 5 ppm.  

The simulations combined with cost estimation indicate 

that a TEG based process is the most economic process 

both for dehydration down to 30 ppm and to 5 ppm 

water in dehydrated gas.  
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Abstract  

CO2 can be captured by absorption into monoethanol 

amine (MEA) followed by desorption. In this work, 

three configurations; standard, vapour recompression 

and a simple split-stream (rich split) have been 

simulated with an equilibrium-based model in Aspen 

HYSYSTM V10.0 using flue gas data from a natural gas 

based power plant.  Adjust and recycle blocks available 

in Aspen HYSYS are used to automate the energy and 

material balance for a specified configuration. 

Optimization can be performed by minimizing the total 

cost calculated in an Aspen HYSYS spreadsheet.  The 

equipment cost was obtained from Aspen In-plant Cost 

EstimatorTM V10.0, and an enhanced detailed factor 

(EDF) method was used to estimate the total investment 

cost. Parametric studies of absorber packing height, 

minimum approach temperature in the main heat 

exchanger, flash pressure and split ratio were performed 

at 85 % capture efficiency for the three configurations.  

The calculated cost optimum process parameters for the 

standard process were 15 m packing height and 13 °C 

minimum approach temperature. For the vapor 

recompression case, a flash pressure of 150 kPa 

provided the lowest total cost.  The calculated optimum 

rich split ratio was 12 %.  Automated calculations are 

dependent on stable convergence of the simulations. A 

specific challenge is the adjustment of the amine 

recirculation to obtain a specified total capture rate.   

 

Keywords: Carbon capture, Aspen HYSYS, simulation, 
cost estimation, optimization 

 

1 Introduction 

1.1 Aim 
 

The aim of this work has been to calculate cost optimum 

process parameters for a standard CO2 capture process 

based on amines, with emphasis on the possibility to 

automate the calculations. Optimization of different 

configurations, especially vapour recompression and a 

split stream (rich split) are also evaluated.  Such 

optimizations have been only scarcely documented in 

literature, and especially a cost optimization of the split-

stream ratio has not been found in earlier work.   

 

1.2 Literature 
 

This work is a continuation of previous work at the 

Telemark University College and the University of 

South-Eastern Norway (USN).  Some references are 

(Kallevik, 2010; Øi, 2012; Park and Øi, 2017; Aromada 

and Øi, 2017; Øi et al., 2020).  This work is based on the 

Master thesis work of Haukås (2020). 

Several of these projects have involved process 

simulation, dimensioning and cost estimation of CO2 

capture using the process simulation tool Aspen 

HYSYS.  Capture rate, energy demand and capture cost 

per ton CO2 have been calculated.  

By changing process parameters, such as the 

minimum temperature difference in the main heat 

exchanger, an optimum solution can be found.  To keep 

the specified conditions stable under optimization, 

different strategies to adjust the process have been used.  

A traditional challenge is to make sure that the 

recirculation stream to the amine absorber is the same as 

in previous iterations.  A recycle block available in the 

simulation program is traditionally used to obtain this.  

The next challenge is to keep the capture rate constant 

during iterations.  This can be done by adjusting the 

amine circulation flow to achieve the desired capture 

rate, either manually or with an adjust block.   

 

1.3 Simulation of process configurations 
 

There have been suggested a number of process 

improvements of the standard CO2 capture process 

(Cousins, 2011a; Moullec et al., 2011; Dubois and 

Thomas, 2017).  Vapour recompression is an alternative 

where the regenerated amine is pressure reduced, and 

then the flashed gas is recompressed in a compressor 

and used as stripping steam in the reboiler.  Cost 

optimization of vapour recompression has been 

performed by Fernandez et al (2012), Øi et al. (2014), 

Aromada and Øi (2017) and Øi et al. (2017). 

  Optimum conditions for a rich split have been 

evaluated earlier by Cousins et al. (2011b) and Karimi 

et al. (2011).  These publications have emphasis on 

comparison of energy consumption between different 

configurations, and on energy optimization by adjusting 

different parameters for a given configuration.   
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1.4 Process description  

Figure 1 shows a standard process for CO2 absorption 

followed by desorption.  The equipment units in the 

flowsheet are an absorption column, a stripping column 

including a reboiler and condenser, circulating pumps 

and heat exchangers.  The process is described in more 

detail in Øi (2012), and in Haukås (2020). 

 

 

 

Figure 1. Process flow diagram of a standard amine-

based CO2 capture process (Aromada et al., 2020) 

2 Specifications and simulations  

2.1 Specifications and simulation of standard 

CO2 capture process 

The specifications for the base case in Table 1 

correspond to 85 % CO2 removal efficiency and a 

minimum approach temperature of 10 °C in the lean/rich 

heat exchanger.  The process simulation tool Aspen 

HYSYS version 10 was used with the amine package 

(which has now been replaced as the recommended 

equilibrium model by Aspen HYSYS).  

The calculation sequence is similar to earlier works 

(Aromada and Øi, 2015; Øi et al., 2020).  The 

calculation strategy is based on a sequential modular 

approach (Kisala et al., 1987; Ishii and Otto, 2008). 

Prior to the CO2 capture process, the flue gas is 

cooled in a direct contact cooler (DCC) with circulating 

water. Then the absorption column is calculated from 

the inlet gas and the lean amine (which is specified in 

the first iteration).  The amine with absorbed CO2 from 

the bottom of the absorption column is pumped through 

the rich/lean heat exchanger with the temperature after 

the heat exchanger specified.  The hot amine solution is 

entering the desorption column which separates the feed 

into the CO2 product at the top and hot regenerated 

amine at the bottom. The regenerated amine is pumped 

to a higher pressure in a pump, then passes through the 

lean/rich heat exchanger and is further cooled in the lean 

cooler. After the lean amine cooler, the amine solution 

is checked in a recycle block whether the flow and 

composition is sufficiently close to the amine stream 

from the last iteration.  

There are two adjust operations in the flowsheet to 

get an automated simulation model. One is adjusting the 

minimum approach temperature in the lean/rich heat 

exchanger by varying the temperature on the hot side 

after the exchanger.  The other is adjusting the removal 

efficiency by varying the lean amine mass flow. The 

Aspen HYSYS process flowsheet is shown in Figure 2. 

   The traditional process converged after some trial 

and error.  Due to a small water loss (and in some case 

water build-up) in the process, water must be added to 

the process. The make-up water was in some 

simulations adjusted manually and in some calculations 

the make-up water  was calculated by a material balance.   

 

Table 1. Aspen HYSYS model parameters and 

specifications for the base case alternative 

Parameter  

Inlet flue gas temperature [oC] 40.0 

Inlet flue gas pressure [kPa] 101/121 

Inlet flue gas flow rate [kmol/h] 85540 

CO2 content in inlet gas [mole %] 3.73 

Water content in inlet gas [mole %] 6.71 

Lean amine temperature [oC] 40.0 

Lean amine pressure [kPa] 101.0 

Lean amine rate [kg/h] 1.103·106 

MEA content in lean amine [mass %] 29.0 

CO2 content in lean amine [mass %] 5.4 

Number of stages in absorber [-] 15 

Murphree efficiency in absorber [m-1] 0.15 

Rich amine pump pressure [kPa] 500.0 

Rich amine temp. out of HEX [oC] 103.6 

Number of stages in desorber [-] 12 

Murphree efficiency in desorber [m-1] 0.5 

Reflux ratio in stripper [-] 0.4 

Reboiler temperature [oC] 120.0 

Lean amine pump pressure [kPa] 500.0 

 

 

 

2.2 Specification of vapour recompression 

and split stream processes 
 

The Aspen HYSYS flowsheet for the vapour 

recompression process is presented in Figure 3.  After 

the desorber, the bottom stream is depressurized through 

a valve to a flash tank.  The gas after the flash tank with 

a specified flash pressure is compressed and sent back 

to the desorber.  The advantage with the vapour 

recompression configuration is that the CO2 content in 

regenerated amine can be reduced.  The drawback is 

capital and operating cost due to the compressor.  Extra 

specifications are given in Table 2. 
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Table 2. Aspen HYSYS model parameters and 

specifications for the vapour recompression case 

Parameter  

Flash pressure [bar] 1.0 

Compressor outlet pressure[bar] 2.0 

Lean pump, delta P [bar] 6.0 

Lean MEA flow rate [kmol/h] 92885 

CO2 content in lean amine [mass %] 5.04 

Water content in lean amine [mass %] 68.85 

MEA content in lean amine [mass %] 29.11 

 

The Aspen HYSYS flowsheet for the split-stream (rich 

split) alternative is shown in Figure 4.  After the 

absorption column and the rich MEA pump, the rich 

amine is split into two streams.  One is sent to the top of 

the desorber while the other stream goes through the 

main heat exchanger before entering the desorber at a 

lower feed point.  The advantage is that the energy 

consumption is reduced (Cousins, 2011b).  The 

disadvantage is increased complexity.    

   

2.3 Parameter variations  

10 stages, 85 % removal efficiency and 10 °C as 

minimum approach temperature were specified in the 

base case simulation.  For all the configurations, the 

packing height and minimum approach temperature      

were varied.  For the vapour recompression case, the 

flash pressure was varied.  For the split-stream case, the 

split ratio was varied.  In the parameter variation 

simulations, all other specified parameters were kept 

constant. 

When a parameter is varied, the traditional way in a 

process simulation program like Aspen HYSYS, is to 

change the parameter to a new value and perform the 

simulation once more.  In many cases it is necessary to 

perform some adjustments in the flow-sheet to obtain a 

converged solution.  Another possibility is to make use 

of the Case study function in Aspen HYSYS.  In that 

case a series of calculations can be performed 

automatically.  When using the Case study function, it 

is not possible to perform other adjustments for each 

new parameter value. 

 

 

2.4 Process convergence  
 

The calculation strategy in this work is sequential, even 

though the Aspen HYSYS simulation tool is in principle 

equation based.  Recycle blocks are used to solve the 

flowsheet in Aspen HYSYS. Recycle blocks compare 

the in-stream to the block with the stream from the 

previous iteration.  Adjust functions are used to vary a 
parameter to obtain a specified result elsewhere in the 

simulated process.  Different tolerances were used in the 

recycle blocks and adjust functions to obtain stable and 

fast convergence. In the columns, the Modified Hysim 

Inside-Out algorithm with adaptive damping was used 

according to a recommendation by Øi (2012). 

Flow-sheet convergence was discussed by Kisala et 

al. (1987), Ishii and Otto (2008), Holoboff (2019) and 

Øi et al. (2020). 

As indicated in the subsection about parameter 

variation, the need for stable convergence is especially 

important when running a Case study in Aspen HYSYS.   

 

2.5 Simulation and cost estimation procedure 

The following procedure was implemented for the cost 

estimation, similar to the procedure in Øi et al. (2020): 

1. Simulation of the CO2 capture process in Aspen 

HYSYS with specifications in Table 1 and 2  

2. Dimensioning of the equipment   

3. Calculation of equipment cost for each unit 

using Aspen In-Plant cost estimator  

4. Calculation of installation cost based on a 

detailed factor table (Ali, 2019)   

5. Correction for currency and index 

6. Estimation of annual operational costs based on 

energy requirement from simulations  

7. Calculation of net present value based on a 

given discount rate and project lifetime 

 

2.6 Dimensioning and cost estimation   

To determine the packing height, a constant stage 

(Murphree) efficiency corresponding to 1 meter of 

packing was assumed. Murphree efficiencies of 0.15 

and 0.5 were specified for the absorber and the desorber 

(in Table 1). For the absorber and desorber internals, a 

structured packing was selected. 

The absorption column diameter was calculated 

based on a gas velocity of 2.5 m/s and the desorption 

column is based on a gas velocity of 1 m/s as in Park and 

Øi (2017) and Øi et al. (2020).  The total height of the 

absorption column and desorption column is specified 

to be 40 m and 16 m respectively. The extra height is 

due to distributors, water wash packing, demister, gas 

inlet, outlet and sump. 

 Centrifugal pumps with 75 % adiabatic efficiency 

were used in the process simulations. 
The direct contact cooler and the flash tank were 

dimensioned using a Souders Brown equation with k-

parameter 0.15 and 0.075 respectively (Souders and 

Brown, 1934; GPSA, 1987). Overall heat transfer 

coefficient values have been specified for the lean/rich 

heat exchanger 550 W/(m2K), lean amine cooler 800 

W/(m2K), reboiler 1200 W/(m2K) and condenser 1000 

W/(m2K).  These values are the same as in Øi (2012) 

and Park and Øi (2017) and less than the numbers in Øi 

et al. (2020) which are regarded as optimistic.
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Figure 2. Aspen HYSYS flow-sheet of the base case simulation  

 

 

Figure 3. Aspen HYSYS flow-sheet of the vapour recompression case simulation 

 

 

Figure 4. Aspen HYSYS flow-sheet of the split stream simulation 
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2.7 Capital cost estimation methods 

 

The equipment costs were calculated in Aspen In-plant 

Cost Estimator (v.10), which gives the cost in Euro (€) 

for Year 2016 (1st Quarter). A generic location (e.g. 

Rotterdam) was assumed. Stainless steel (SS316) with a 

material factor of 1.75 was assumed for all equipment 

units.  For pumps, fan and compressor, a material factor 

of 1.3 was used as in Øi et al. (2020).   

In the detailed factor method, each equipment cost (in 

carbon steel) was multiplied with its individual 

installation factor to get equipment installed cost, as in 

Øi et al. (2020). The detailed installation factor is a 

function of the site, equipment type, materials, size of 

equipment and includes direct costs for erection, 

instruments, civil, piping, electrical, insulation, steel and 

concrete, engineering cost, administration cost, 

commissioning and contingency. The updated 

installation factors for 2016 (Eldrup, 2016) were used.  

More details can be found in Haukås (2020) and Øi et 

al. (2020). 

  

Table 3. Cost calculation specifications  

Parameter  Value 

Plant lifetime 20 years 

Discount rate  7.5 % 

Maintenance cost 4 % of installed cost 

Electricity price 0.5 NOK/kWh 

Steam price 0.13 NOK/kWh 

Annual operational time 8000 hours 

Location Rotterdam 

Currency exchange rate 2016 9.21  

Cost index 2016 103.6  

Cost index September 2020  111.3  

 

 

2.8 Operating cost calculation 

This project includes OPEX estimations for the use of 

electricity and steam. Electricity cost was specified to be 

0.5 NOK/kWh (approximately 0.05 Euro/kWh). The 

steam cost was specified to be 25 % of the electricity 

cost, 0.13 NOK/kWh. 

  

2.9 Aspen HYSYS optimization 

The spreadsheet unit in Aspen HYSYS was used to 

calculate the detailed cost estimation of CAPEX, OPEX 

and NPV (net present value).  

For the case of optimizing the temperature difference 

in the main heat exchanger, the calculation could be 

performed effectively by using the Case Study option in 

Aspen HYSYS.  

For the case of optimizing the number of absorber 

stages, each calculation was performed independently 

by specifying the number of stages in each calculation.  

The flash pressure was optimized by running a series of 

calculations with different pressures. This was 

performed both as an Aspen HYSYS Case study and by 

independent calculations. The split-stream process was 

also optimized both by a Case study in Aspen HYSYS 

and with a series of individual calculations. 

 

3 Results and Discussion 

3.1 Base case cost results 

 

In Table 4, the results for the capital cost estimation of 

the base case is given for all the equipment units.  The 

cost is given partly in Euro and partly in NOK, because 

the Aspen In-plant gives the results in Euro, while the 

detailed factor method is based on NOK.   In the figures 

5 to 12 a conversion rate of 10.0 was used to obtain 

approximate numbers in Euro.  At the end of 2020, the 

conversion rate was exceeding 10.0 (10.2).  For the base 

case, the CAPEX was estimated to 1.3 billion NOK or 

130 million Euro.  

 
Table 4. Base case cost results. 
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Flue gas fan 5951 55291 3.59 0.29 3.98 236234 - 236234 

DCC tower 1985 18443 3.59 0.29 4.56 90299 - 90299 

DCC packing* 867 8058 - - 2.00 17314 - 17314 

DCC circ. 

pump 475 4417 4.93 0.48 5.37 25497 - 25497 

DCC circ. 

cooler 125 1158 6.10 0.65 7.34 9126 6 54754 

Absorber shell 2432 22596 3.59 0.29 4.56 110633 - 110633 

Absorber 

packing* 9980 92724 - - 2.00 199232 - 199232 

Water wash* 3327 30911 - - 2.00 66417 - 66417 

Rich pump 174 1612 6.10 0.65 6.60 11417 - 11417 

Lean/rich HEX 133 1233 6.10 0.65 7.34 9732 28 272499 

Desorber, shell 508 4716 4.44 0.41 5.50 27855 - 27855 

Desorber, 

packing* 1318 12243 - - 2.00 26307 - 26307 

Condenser 56 520 7.20 0.83 8.57 4778 1 4778 

Reboiler 128 1188 6.10 0.65 7.34 9416 17 160073 

Lean pump 181 1679 6.10 0.65 6.60 11890 - 11890 

Lean cooler 100 929 7.20 0.83 8.57 8539 2 17077 

Total installed 

cost   1332277 

*Cost estimated in SS 316 in Aspen In-Plant Cost Estimator 

 

3.2 Optimization of column height 

 

The result from the base case is given in Figure 5.  It 

shows an optimum (lowest NPV) for 15 stages 

equivalent to 15 meter packing height.  This is similar to 

results in earlier work (Kallevik, 2010; Øi et al., 2014; 

Aromada and Øi, 2017). 
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Optimum height is also shown for the vapour 

recompression configuration and the split-stream 

configuration.  Because the change in number of stages 

has to be performed manually, all the points on the 

curves in Figures 5, 6 and 7 are performed individually. 

 

 
Figure 5. Optimization of number of stages for the 

standard case. 

   

 
Figure 6. Optimization of number of stages for the Vapour 

Recompression case 

 

An optimum column height for the vapour 

recompression case close to the standard process was 

also found in Øi et al. (2014) and in Aromada and Øi 

(2017).   

 

 
Figure 7. Optimization of number of stages for the Split-

Stream configuration 

 

 

3.3 Optimization of flash pressure 

 
The flash pressure is optimized by a series of 

calculations.  The lowest NPV is at 150 kPa in Figure 8.  

In this optimization, the column height was 15 meter, 

and the minimum temperature approach was 10 K.  A 

possible optimum might be found between 150 and 200 

kPa, but in that case the extra compressor is not 

reasonable.  The standard process will then be regarded 

as optimum. 

The optimum is sensitive to the cost of the 

compressor.  An optimization was performed with a 

lower-cost compressor.  Then, the cost optimum flash 

pressure was calculated to 120 kPa.  This is closer to 

other optimization calculations (Øi et al., 2014). 

The energy optimum has been calculated to a lower 

value than the cost optimum by Karimi et al. (2011), 

Fernandez et al. (2012) and Øi et al. (2014). 

 

  
Figure 8. Optimization of flash pressure 

 

3.4 Optimization of split ratio 

 

The optimization in Figure 9 was performed by a Case 

study in Aspen HYSYS.  It shows that the curve is very 

smooth, and this makes the optimization efficient.  The 

calculated optimum is shown to be 12 %.    

 

 
Figure 9. Optimization of the split ratio in a split-stream 

configuration based on a Case study. 
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The curve in Figure 9 is very smooth.  When the same 

optimization was performed by manual variation and 

adjustment of the simulations, the curve was less 

smooth. 

The optimum split ratio was calculated for different 

specifications.  In the optimization in Figure 9, the 

column height was 15 meter, and the minimum 

temperature approach was 10 K and optimum lean 

amine pressure was 500 kPa.  The optimum split ratio 

was calculated to values between 10 and 16 % when 

these parameters were varied.  The optimum capture 

cost was approximately 40 Euro per ton CO2 captured in 

these optimizations.    The lowest calculated cost of 39 

Euro per ton CO2 captured was obtained when the 

pressure increase in the rich amine pump was reduced to 

79 kPa.       

 

3.5 Optimum minimum T approach 

 

Minimum temperature approach optimization for the 

standard, vapour recompression and split-stream 

configurations are shown in Figure 10, 11 and 12, 

respectively.  The absorber packing height was 15 m in 

these optimizations.  The optimum value can be found 

as the one with minimum (negative) NPV.  The resulting 

optimums are 13, 12 and 9 K for three cases.  Also, Øi 

et al. (2014) and Aromada and Øi (2017) get about the 

same optimum for the different configurations.  The 

optimum minimum temperature approach differs in 

literature between 10 and 15 K.  This is due to different 

ratios between cost of heat exchangers and cost of heat.  

All the curves in these three figures are performed by 

Case studies in Aspen HYSYS. This means that the 

convergence is rather stable. 

Another possibility to optimize is to add a minimization 

procedure in a spreadsheet connected to the process 

simulation program.  The Aspen HYSYS spreadsheet do 

not have this as a function.  But one possibility is to link 

the Aspen HYSYS simulation to another tool like an 

Excel spreadsheet.  This is discussed by Sharma and 

Rangaiah (2016).     

 

 

Figure 10. Optimization of minimum approach 

temperature for the base case 

 
Figure 11. Optimization of minimum approach 

temperature for the vapour recompression case.  

 

 
 

Figure 12. Optimization of minimum approach 

temperature for the split-stream case. 

 
The optimum capture cost was calculated to 

approximately 40 Euro per ton CO2 captured in these 

optimizations.  This is in order of magnitude the last 

year’s quota price for CO2.  When cost of transport and 

storage is added, the cost of capture, transport and 

storage is still higher than the quota price.         

 

4 Conclusion  

In this work, three configurations; standard, vapour 

recompression and a simple split-stream (rich split) have 

been simulated with an equilibrium-based model in 

Aspen HYSYSTM using flue gas data from a natural gas 

based power plant.  Adjust and recycle blocks available 

in Aspen HYSYS are used to automate the energy and 

material balance for a specified configuration. 

Optimization can be performed by minimizing the total 

cost calculated in an Aspen HYSYS spreadsheet.  The 

equipment cost was obtained from Aspen In-plant Cost 

EstimatorTM V10.0, and an enhanced detailed factor 

(EDF) method was used to estimate the total investment 

cost. Parametric studies of varying absorber packing 

height, minimum approach temperature, flash pressure 
and split ratio were performed at 85 % capture 

efficiency for the three configurations.  The calculated 
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cost optimum process parameters for the standard 

process were 15 m packing height and 13 °C minimum 

approach temperature. For the vapour recompression 

case, a flash pressure of 150 kPa provided the lowest 

total cost. The calculated optimum for the rich split 

configuration was 10-16 % split ratio.  The minimum 

capture cost was calculated to 39-40 Euro per ton CO2 

in these optimizations.  Automated calculations are 

dependent on stable convergence of the simulations. A 

specific challenge is the adjustment of the amine 

recirculation to obtain a specified total capture rate.  
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Abstract 

A simple, fast, and accurate process simulation based 

cost estimation and optimization scheme was 

developed in Aspen HYSYS based on a detailed 

factorial methodology for solvent-based CO2 

absorption and desorption processes. This was 

implemented with the aid of the spreadsheet function 

in the software. The aim is to drastically reduce the 

time to obtain cost estimates in subsequent iterations 

of simulation due to parametric changes, studying new 

solvents/blends and process modifications. All 

equipment costs in a reference case are obtained from 

Aspen In-Plant Cost Estimator V12. The equipment 

cost for subsequent iterations are evaluated based on 

cost exponents. Equipment that are not affected by any 

change in the process are assigned a cost exponent of 

1.0 and the others 0.65, except the absorber packing 

height which is 1.1. The capital cost obtained for new 

calculations with the Iterative Detailed Factor (IDF) 

model are in good agreement with all the reference 

cases. The IDF tool was able to accurately estimate the 

cost optimum minimum approach temperature based 

on CO2 capture cost, with an error of less than 0.2%. 

 

Keywords: Carbon capture, Aspen HYSYS, simulation, 

cost estimation, techno-economic analysis 

1 Introduction 

 

Amine based post-combustion carbon capture

technology is generally recognized as the most mature

and promising technology that can be deployed

industrially to reduce CO2 emissions, which has

become necessary for climate change mitigation

(Karimi et al., 2011). The current challenge remains

the economic implications of the huge energy

consumption and the large capital investment

requirements (Aromada and Øi, 2017).

This has led to several techno-economic studies.

The focus of some of the research is on evaluating the

representative costs for carbon capture and storage

(CCS) (Stone et al., 2009). The objective of some other

studies is on cost reduction and optimization

(Fernandez et al., 2012).

Costs are projected to be reduced as research

continues and as the first set of industrial CO2 capture

plants start operations (Sprenger, 2019; Aromada et

al., 2021). The resulting new concepts and innovations

will always be subjected to techno-economic

evaluation and optimization or sensitivity analysis.

The common procedure for conducting carbon

capture cost estimation and cost optimization studies

is to import mass and energy balance data from a

simulation software to Microsoft Excel or other

applications for analysis each time a simulation is

performed (Schach et al., 2010; Lassagne et al., 2013;

Aromada and Øi, 2017).

Parametric variation or sensitivity analyses of costs

that involve running the entire process simulation

several times, and performing new equipment

dimensioning, obtaining new costs for all the

equipment, and recalculating the capital and operating

costs can be very time consuming.

Applying a detailed factorial scheme for chemical

plant’s initial cost estimation has great advantages of

accuracy and capabilities for different types of

projects: new plant construction, retrofit or

modification projects, small and large plant

construction cost estimation (Gerrard, 2020; Ali et al.,

2019; Aromada et al., 2021). However, it comes with

much more work, and thus much more time to

implement compared to methodologies that are

founded on a uniform or single overall plant

installation factor on all equipment irrespective of cost.

Therefore, there is a need to develop a cost

estimation and optimization tool that will drastically

reduce the overall economic analysis and optimization

calculation time yet giving accurate cost estimates.

2 Model description

The iterative detailed factor (IDF) model is developed

based on the Enhanced Detailed Factorial (EDF)

method (Ali et al., 2019; Aromada et al., 2021). At

Telemark University College and University of South-
Eastern Norway (USN) there has been much focus on
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calculation of cost optimum parameters in CO2

absorption-desorption processes. This involves

varying different process parameters and different

configurations (flowsheet modifications). The

procedure commences from process development and

simulation of the system’s process flow diagram

(PFD) to equipment dimensioning and cost estimation.

Each time any parameter is varied, this process is

repeated. Consequently, in previous works (Kallevik,

2010; Aromada and Øi, 2017), there is a change in 

the cost of the equipment, when one of its 

parameters is being varied, but the costs of all other 

equipment are kept constant. Similarly, energy 

consumption by other equipment is also kept 

constant, while that of the equipment with 

parameters being optimized can vary. This procedure 

does not capture the effect of every change in the 

process caused by varying a specific parameter in 

the evaluation for optimum cost.

In addition, it is an aim to enable subsequent

calculations of all the processes from simulations to

cost estimation and optimization in not more than a

minute.

The Enhanced Detailed Factorial (EDF) method

used at USN has several advantages such as capability

for new and modification projects (Aromada et al.,

2021). Each equipment unit’s installation factor is a

function of its cost. This ensures that a very expensive

equipment is not over-estimated, and a relatively

cheaper equipment are not underestimated. This also

comes with a challenge of relatively more work due to

the details. Thus, it takes much more time to

implement.

Therefore, the Iterative Detailed Factor (IDF)

scheme was developed to consider all the effects

caused by any parametric variation on the entire

process, and to drastically reduce the time to

implement cost estimation and other economic

analyses of subsequent simulation iterations. The

flowchart in Figure 1 explains how the scheme is

developed and works. The arrows show how the

process flows as well as where inputs come from and

where they are used. The steps (and the directions of

the arrows) are explained below: 

1. Start: The PFD is developed and simulated in 

Aspen HYSYS.  

2. Equipment dimensioning calculations based on 

mass and energy balances from the simulation are 

done in a separate Aspen HYSYS Spreadsheet as 

shown in Figure 2. 

3. In the first simulation/cost estimation (base case), 

all equipment costs are obtained directly from a 

reliable (reference) source based on the calculated 

dimensions. In this work, equipment cost data were 

obtained from Aspen In-Plant Cost Estimator 

Version 12.  

4. In subsequent iterations, when parameters are 

varied, a change to another solvent/blend is 

implemented, change in technical and/or economic 

underlying assumptions are made, or when the 

process configuration is modified, equipment cost 

is obtained by cost adjustment, utilizing cost 

exponents, capturing all the changes caused by the 

change of a process parameter or system as shown 

in equation (1): 

 

𝐸𝐶𝑛𝑒𝑤 = 𝐸𝐶𝐵𝑎𝑠𝑒 𝑐𝑎𝑠𝑒 (
𝑆𝑖𝑧𝑒𝑛𝑒𝑤

𝑆𝑖𝑧𝑒𝐵𝑎𝑠𝑒 𝑐𝑎𝑠𝑒
)

𝑛
             (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 1. Flow chart describing the iterative detailed 

factor carbon capture cost optimization model 
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where 𝐸𝐶𝐵𝑎𝑠𝑒 𝑐𝑎𝑠𝑒  and 𝑆𝑖𝑧𝑒𝐵𝑎𝑠𝑒 𝑐𝑎𝑠𝑒  are
equipment cost and size in the Base case

obtained directly from the Aspen In-Plant Cost

Estimator. 𝐸𝐶𝑛𝑒𝑤  and 𝑆𝑖𝑧𝑒𝑛𝑒𝑤  are the new
equipment cost and size for the new simulation

evaluated using equation (1). And n is the cost

exponent. All equipment costs in a reference case

are obtained from a reliable source. The equipment

cost for subsequent iterations are evaluated based

on cost exponents (Power Law). Equipment that

are not affected by any change in the process are

assigned a cost exponent of 1 and the others 0.65,

except for the absorber packing height (see Section

3.3).

5. All other costs and cost indices already

programmed during the first iteration are

automatically available after a minor check of the

detailed installation factors. Further improvements

can be achieved by avoiding manual adjustments of

the installation factors between each iteration.

6. The cost optimum parameter is identified when the

new cost estimated is less than the costs obtained

in previous iterations, and in some cases, also less

than cost obtained from subsequent simulations.

7. The capital cost, operating costs and other

economic analysis are all done in separate Aspen

HYSYS Spreadsheets as can be seen at the bottom

of Figure 2.

 
2.1 Process simulation

The simulation sequence is the same as in (Aromada

and Øi, 2015; Aromada et al., 2020a). The base 

case simulation was performed using the 

process specifications in Table 1. They are from a 

400 MW natural gas combined cycle (NGCC) power 

plant. It is a 90% amine based CO2 absorption and 

desorption in Aspen HYSYS Version 12.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Specifications for simulation  

Specifications 

Flue gas  

Temperature [℃] 80 

Pressure [kPa] 121 

CO2 mole-fraction 0.0375 

H2O mole-fraction 0.0671 

N2 mole-fraction 0.8954 

O2 mole-fraction 0 

Molar flow rate [kmol/h] 85000 

Flue gas from from DCC to absorber 

Temperature [℃] 40 

Pressure [kPa] 121 

Lean MEA 

Temperature  40 

Pressure [kPa] 121 

Molar flow rate [kmol/h] 101595 

Mass fraction of MEA [%] 29 

Mass fraction of CO2 [%] 5.30 

Absorber  
No. of absorber stages 15 

Absorber Murphree efficiency [%]    11- 21 

∆𝑇𝑚𝑖𝑛 , lean/rich heat exchanger [℃] 10 

Desorber 

Number of stages 10 

Desorber Murphree efficiency [%] 50 

Pressure [kPa] 200 

Reboiler temperature [℃] 120 

Reflux ratio in the desorber 0.3 

Temperature into desorber [℃] 104.6 

 

 
The Aspen HYSYS process flow diagram (PFD) is 

shown in Figure 2. The absorption and desorption 

columns were simulated as equilibrium stages with 11 

– 21% Murphree efficiencies (changing linearly from 

bottom to top) and 50% constant Murphree efficiency 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2. Aspen HYSYS process flow diagram (PFD) of the standard CO2 capture process 
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2.2 Equipment dimensioning 

Mass and energy balances from the simulations were 

used to size the equipment in Figure 2.  

 

Table 2. Equipment dimensioning factors and 

assumptions 

Equipment Sizing factors Basis/Assumptions 

DCC Unit 

Tangent-to-

tangent height 

(TT), iterations: 

mass (kg); 

Packing height, 

internal and 

external 

diameters (all in 

[m]), iterations: 

volume (m3); 

Velocity using 

Souders-Brown 

equation with a k-

factor of 0.15 m/s. TT 

=15 m, 1 m (structured) 

packing height/stage (4 

stages) 

Absorber 

Superficial velocity of 

2.5 m/s, TT=40 m, 1 m 

packing (structured) 

height/stage (15 stages) 

Desorber 

Superficial velocity of 

1 m/s, TT=22 m, 1 m 

packing (structured) 

height/stage (10 stages) 

Separator 

Vertical vessel, 

Velocity using 

Souders-Brown 

Lean/rich 

heat 

exchanger 

Heat transfer 

area, A [m2] 

Duty, Q [kW], U = 0.73 

kW/m2.K (Nwaoha et 

al., 2019). FTS-STHX 

Reboiler 

Duty, Q [kW], U = 0.8 

kW/m2.K, U-tube 

Kettle type 

Condenser 
Duty, Q [kW], U = 1.0 

kW/m2.K, UT-STHX 

 Coolers 
Duty, Q [kW], U = 0.8 

kW/m2.K, UT-STHX 

Pumps 

Flow rate [l/s] 

and duty [kW], 

iterations: duty 

[kW] 

Centrifugal. 

Efficiency = 0.75 

Fans 

Flow rate [m3/h] 

and duty [kW], 

iterations: duty 

[kW]. 

Centrifugal. 

Efficiency = 0.75 

 

The sizing factors, basis and assumptions for 

equipment dimensioning are summarized in Table 2. 

They are the same as in previous works (Aromada et 

al., 2020a) but on a different system. FTS-STHX refers 

to fixed tube-sheets Shell and tube heat exchanger, and 

the U-tube type is UT-STHX. More details on the 

equipment dimensioning can also be found in 

(Aromada et al., 2020; Aromada et al., 2021). 

 

2.3 Capital Cost Assumptions  

The capital cost in this work is the sum of each 

equipment installed cost. The IDF scheme is based on 

the EDF method (Ali et al., 2019; Aromada et al., 

2021). All equipment is assumed to be manufactured 

from stainless steel (SS) with exception of the fan 

which is constructed from carbon steel (CS). 

Equipment costs in SS are converted to their 

corresponding costs in CS. Each equipment installed 

cost is obtained as a product of the equipment cost in 

CS and its individual detailed installation factor. 

The cost year is 2020 and the cost currency is Euro 

(€). Therefore, the 2020 updated detailed installation 

list was used (Eldrup, 2020). The factors are derived 

based on the site, equipment type, materials, size of 

equipment and includes direct costs for erection, 

instruments, civil, piping, electrical, insulation, steel 

and concrete, engineering cost, administration cost, 

commissioning and contingency.  

 

2.4 Operating costs scope and assumptions 

Operating costs in this work include cost for 

electricity, steam, cooling water, solvent, maintenance 

and salaries. The economic assumptions are tabulated 

in Table 3.  

Table 3. Economic assumption for operating cost  

  Unit Value/unit 

Operational hours Hours/year 8 000 

Steam €/kWh 0.026 

Electricity €/kWh 0.059 

Cooling water €/m3 0.075 

Process water €/m3 6.77 

MEA €/m3 1514 

Maintenance € 4% of TPC 

Supervisor (1) € 156 650 

Operators (6) € 80 000 

 

 

 

3 Results and Discussion 

3.1 Process Simulation Results 

The specific reboiler heat obtained in the base case is 

4.10 GJ/t CO2, and the rich loading is 0.46. The rich 

loading is the mole ratio of CO2 to the MEA in the rich 

stream exiting the absorber. The results have good 

agreement with literature. Sipöcz and Tobiesen (2012) 

calculated a reboiler heat of 3.97 GJ/t CO2 and 0.47 

rich-loading. In addition, Sipöcz et al. (2011) for an 

NGCC’s exhaust gas also obtained 3.93 GJ/t CO2 and 

0.47 rich loading.  

For a case with a minimum approach temperature 

of 5℃ in the main heat exchanger, a reboiler heat of 

3.78 GJ/t CO2 and 0.47 rich loading were calculated. 

This is also close to the results obtained by Dutta et al. 

(2017), which are 3.70 GJ/t CO2 reboiler heat and 0.47 

rich loading. 
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3.2 Base Case Capital and Operating Costs

The capital cost estimated in the base case is €135

million. The capital cost in this work is limited to the

total plant cost (TPC). It also does not include CO2

compression or other flue gas pre-treatment sections

other than the direct contact cooling loop. This is

sufficient as all the sensitivity analysis conducted in

this work are merely within the main CO2 capture

process between the absorber and the desorber. Nth-

of-a-kind (NOAK) was also assumed. It is important

to state that a first-of-a-kind (FOAK) plant would cost

115 – 155% of a NOAK plant (Boldon and 

Sabharwall, 2014; Aromada et al., 2020b). In a 

similar work (NOAK) that included the 

compression section, the TPC was estimated to €189 

million (Aromada et al., 2021).

 

 
 

Figure 3. Capital cost distribution 

 

The capital cost distribution is shown in Figure 3.

It can be observed that the absorber and the lean/rich

heat exchanger are the main cost contributors to the

capital costs. Their contributions are 40% and 24%

respectively. Therefore, the absorber and the main heat

exchanger are the most important equipment for cost

optimization in this capture process. Consequently, the

IDF tool for process cost optimization based on

process parameter variation was tested on the two

equipment units for validation.

The cost of the lean/rich heat exchanger in initial

cost estimation is a function of the required heat

transfer area (m2).  The area varies much with the

temperature difference (∆𝑇𝑚𝑖𝑛). The required area is

doubled if the ∆𝑇𝑚𝑖𝑛 is 5℃ instead of 10℃ (Karimi et

al., 2011). Therefore, ∆𝑇𝑚𝑖𝑛  has often been a very

important process parameter to optimize in different

solvent-based carbon capture processes (Aromada et

al., 2020b; Aromada and Øi; 2017; Øi, 2012; Karimi 

et al., 2011).

In previous works, the absorption column,

especially the packing height has been given attention

for optimization, to reduce the entire cost of the

process (Øi et al., 2020; Aromada and Øi, 

2017; Kallevik, 2010).

 

3.3 Validation of the IDF Scheme: Capital 

Cost 

To validate the accuracy of the scheme, it is important 

to perform cost estimation of the same process, with 

equipment cost data obtained from a reliable or 

reference source, and equipment costs estimated using 

the IDF scheme on the same process.  

To evaluate the performance of the IDF scheme, 

equipment costs were first obtained from Aspen In-

Plant Cost Estimator for each simulation iteration. 

These costs were used to estimate capital cost for each 

iteration, capturing the effect of the variation of a 

specific process parameter on all equipment in the 

process. These reference costs are referred to as the 

“original cost” since the equipment costs are directly 

obtained from a reliable cost database. This process is 

time consuming.  

The IDF scheme is then applied for estimating the 

capital cost, operating cost, and CO2 capture cost in 

each parameter variation simulation iteration. The IDF 

tool equipment costs were estimated from the base 

case equipment purchase cost based the Power law as 

described in Section 2.  

The equipment costs in the IDF Scheme were 

calculated with a cost exponent of 0.65 for all the 

equipment that changes in size when a specific process 

parameter is varied, except for the absorber packing 

height. The larger the packing volume, the more the 

column and packing supports and auxiliaries are 

needed. Thus, costing the entire column may not 

necessarily follow economy of scale principle by using 

a cost exponent of 0.65. A range of cost exponents 

where then tested: 0.65, 0.85, 0.9, 1.0 and 1.1. To 

differentiate the results of each cost exponent, each 

cost exponent was designated PH-cost exponent. PH 

signifies packing height, which is being varied, while 

the number refers to the cost exponent used for 

estimating the new costs of the new packing size 

(volume). For example, in the case of PH-0.65 results, 

it means that as the packing height (PH) of the 

absorption column was varied between 12 m and 25 m, 

the costs of the new packing heights (12 m, 18 m, 20 

m, 22 m, and 25 m) were estimated using a cost 

exponent of 0.65. New packing costs were also 

similarly estimated using cost exponents of 0.85 (PH-

0.85), 0.90 (PH-0.90), 1.0 (PH-1.00), and 1.10 (PH-

1.10). The results are plotted together and are 

compared with the original cost, that is the cost 

obtained directly from Aspen In-Plant Cost Estimator 
version 12. 
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Figure 4. Impact of varying absorber packing height on 

the plant’s capital cost with different cost exponents 

 

 

 

 
 

Figure 5. Comparison of IDF Scheme capital costs with 

reference capital cost when the temperature difference in 

the lean/rich exchanger is varied 

 

Figure 4 shows that the cost exponent of 1.1 has the 

best agreement with the original cost for new sizes 

higher than the base case, and 0.85 for the size (12 m 

packing height) less than the base case (15 m packing 

height). However, cost exponent 1.00 also has a good 

agreement. Therefore, a cost exponent of 1.10 was 

used in the IDF scheme to estimate the cost of the 

absorber packing volume from the Base case (original 

cost) for higher volumes and 0.85 for volume less than 

in the base case where the absorber packing height is 

12. The results suggest that due to the peculiarity of the 

cost of the packings/auxiliaries/supports/installations, 

not necessarily following economy of scale when the 

size of the column increases, new cost due to size 

adjustment using Power Law would require a cost 

exponent of 1.1 to minimize the estimation error or 

deviation from the original (reference) cost. 

The ∆𝑇𝑚𝑖𝑛 of the main heat exchanger was varied 

from 5℃ to 30℃ in steps of 5℃. The IDF Scheme 

capital costs in each iteration were similarly estimated 

but with a cost exponent of 0.65 for all equipment apart 

from the columns and their packings, which were 

estimated with a cost exponent of 1 as they were kept 

constant. Varying ∆𝑇𝑚𝑖𝑛 will not have any effect on 

the absorber. Figure 5 presents the comparison of 

capital cost estimates from the IDF tool with the 

original capital costs. Original or reference costs are 

the cost obtained directly from Aspen In-Plant Cost 

Estimator. The agreement is quite good. The trend of 

the estimates is also similar to results in (Aromada et 

al., 2020b). 

 

3.4 CO2 Capture Cost 

Trade-off analyses of the resulting capital and 

operating costs due to varying of the two process 

parameters were conducted, using the economic cost 

metric of CO2 capture cost. This was estimated as 

follows:  

 

𝐶𝑂2 𝑐𝑎𝑝𝑡𝑢𝑟𝑒 𝑐𝑜𝑠𝑡 (
€

𝑡𝐶𝑂2
) =

𝑇𝑜𝑡𝑎𝑙 𝑎𝑛𝑛𝑢𝑎𝑙 𝑐𝑜𝑠𝑡(€)

𝑀𝑎𝑠𝑠 𝑜𝑓 𝐶𝑂2 𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑 (𝑡𝐶𝑂2)
 

 

                   (2) 

 

 

where, the total annual cost is the sum of the annual 

capital cost and yearly operating expenses as done in 

(Aromada et al., 2020a). The results are presented in 

Figure 6 and Figure 7. The agreement with the original 

cost is very good. In Figure 6, IDF estimates used 0.85 

as cost exponent for absorber packing height of 12 m 

and 1.1 for packing heights above that of the Base case 

(15 m) as explained in the previous section. However, 

capture cost was also estimated using 1.1 for 12 m, 

which is represented by a “red circle”. The agreement 

is also good but using 0.85 is more accurate. This 

implies that the IDF scheme will still give good 

estimates if 1.1 is used as the cost exponent for all 

packing height iterations. 

Figure 7 is specifically a cost optimization result. 

The cost optimum ∆𝑇𝑚𝑖𝑛 is 15℃ which is the same 

cost optimum temperature difference calculated in 

(Aromada et al., 2020b) even though both process 

specifications, CO2 concentrations and capture rates 

are different. Aromada et al. (2021) also calculated the 

cost optimum ∆𝑇𝑚𝑖𝑛 to be 15℃ for a similar process 

but including CO2 compression process. Kallevik 

(2010) estimated the minimum cost at 90 % CO2 

capture as in this study to be 15℃. The results obtained 

show that apart from drastically reducing the work and 

time required for cost estimation and cost optimization 

calculations in subsequent process simulation 

iterations, the IDF tool can give accurate or acceptable 

capital cost and operating cost. 

The specific reboiler heat plot in Figure 7 indicates 
that the capital cost dominates at 5℃. The capital cost 

influence declines till the cost optimum, after which 

the energy cost (operating cost) begins to dominate. 
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Figure 6. Impact of varying absorber packing height on 

CO2 capture cost 

 

 

 

 
Figure 7. Impact of varying the minimum approach 

temperature in the lean/rich exchanger on CO2 capture 

cost 

 

 

 

3.5 Accuracy 

We conducted an error analysis of the IDF tool using 

a simple percentage of differences between the IDF 

Scheme results and the original costs. This was 

performed as follows: 

 

𝐸𝑟𝑟𝑜𝑟 (%) =
(𝐼𝐷𝐹 𝑟𝑒𝑠𝑢𝑙𝑡−𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑐𝑜𝑠𝑡)

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑐𝑜𝑠𝑡
× 100             (3) 

 

A negative value indicates that the IDF Scheme

estimate is less than the original or reference cost and

vice versa. The IDF Scheme’s errors in both the capital

cost and CO2 capture cost estimates for absorber

packing height and lean/rich heat exchanger’s
temperature difference iterations are presented in

Figures 8 and 9, respectively.

 

 
Figure 8. Error analysis of resulting capital costs by 

varying the absorber packing height 

 

 
Figure 9. Error analysis of resulting capital costs by 

varying the minimum approach temperature in the 

lean/rich exchanger  

 

In the case of varying the absorber packing height, 

the error in the capital cost estimates of the scheme is 

between 0.01 to 0.39%, while it is 0 to 0.12% for CO2 

capture cost (Figure 8). If 1.1 is used as cost exponent 

for 12 m which is less than the Base case size (15 m), 

the errors at that point increase to approximately 1% 

and 0.3% for the capital cost and CO2 capture cost 

respectively, as can be observed in Figure 8. That is 

why 0.85 cost exponent is adopted for packing height 

less than the Base case in the IDF Scheme. This is 

because of the peculiarity of the absorption column 

and packings in respect of economy scale principle as 

explained earlier. 

In the case of the lean/rich heat exchanger 

temperature difference iterations, the IDF tool errors 

for the capital cost and CO2 capture cost estimates are 

between -0.66 to 0.18% and -0.30 to 0.16%. 

These are very small errors and are acceptable. 

They do not have any effect on cost optimization 

calculations or sensitivity analysis results when 

process parameters are varied several times. 

Therefore, the IDF tool is suitable for quick and 

accurate cost estimation and other economic analysis 

of solvent-based CO2 capture processes involving 

several iterations of the entire process from simulation 

to cost estimation. 
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4 Conclusion 

A simple scheme was developed in Aspen HYSYS for 

quick and accurate iterative process simulations, 

equipment dimensioning and cost estimation of a CO2 

capture process. We refer to it as the Iterative Detailed 

Factor (IDF) Scheme. It is implemented by the aid of 

the Aspen HYSYS spreadsheet’s function. It was 

validated in this work. The average error in all the 

iterations is 0.2% of the reference cases. The cost 

optimum temperature difference in the lean/rich heat 

exchanger estimated using the IDF tool with fixed 

tubesheets shell and tube heat exchangers (FTS-

STHX) is 15℃. This agrees with recent literature. 

Application of detailed factorial methodology in 

cost estimation is time-consuming. However, the IDF 

tool reduces the time required for economic analysis of 

CO2 capture processes for subsequent iterations to less 

than a minute after simulation.  

Therefore, with the IDF Scheme, accurate cost 

optimization of CO2 capture processes, sensitivity 

analysis of process parameters and economic 

assumptions as well as market conditions, solvent and 

blends cost analysis and other iterative cost studies of 

CO2 capture processes can be conducted using detailed 

factorial method in relatively short time (minutes 

instead of hours or days). 

 

References  

H. Ali, N. H. Eldrup, F. Normann, R. Skagestad, and L. E. 

Øi. Cost Estimation of CO2 Absorption Plants for CO2 

Mitigation–Method and Assumptions. International 

Journal of Greenhouse Gas Control, 88, 10-23, 2019. 

S. A. Aromada and L. E. Øi. Simulation of Improved 

Absorption Configurations for CO2 Capture. In 

Proceedings of the 56th Conference on Simulation and 

Modelling (SIMS 56), October, 7-9, 2015, Linköping 

University, Sweden. Linköping Electronic Conference 

Proceedings, 21-29, 2015. 

doi:http://dx.doi.org/10.3384/ecp1511921 

S. A. Aromoda and L. E. Øi. Energy and Economic Analysis 

of Improved Absorption Configurations for CO2 

Capture. Energy Procedia, 114, 1342-1351, 2017. 

S. A. Aromada, N. H. Eldrup, F. Normann,  and L. E. Øi. 

Techno-Economic Assessment of Different Heat 

Exchangers for CO2 Capture. Energies, 13(23), 6315, 

2020a. 

S. A. Aromada, N. H. Eldrup, F. Normann and L. E. Øi. 

Simulation and Cost Optimization of different Heat 

Exchangers for CO2 Capture. In Proceedings of the 61st 

International Conference of Scandinavian Simulation, 

SIMS 2020, September 22-24, Virtual Conference, 

Oulu, Finland. Linköping Electronic Conference 

Proceedings, 22-24, 2020b. 

S. A. Aromada, N. H. Eldrup, and L. E. Øi. Capital cost 

estimation of CO2 capture plant using Enhanced 

Detailed Factor (EDF) method: Installation factors and 

plant construction characteristic factors. International 

Journal of Greenhouse Gas Control, 110, 103394, 2021. 

L. M. Boldon and P. Sabharwall. Small modular reactor: 

First-of-a-Kind (FOAK) and Nth-of-a-Kind (NOAK) 

Economic Analysis (No. INL/EXT-14-32616). Idaho 

National Lab. (INL), Idaho Falls, ID (United States), 

2014. doi: 10.2172/1167545 
R. Dutta, L.O. Nord and O. Bolland. Selection and design of 

post-combustion CO2 capture process for 600 MW natural 

gas fueled thermal power plant based on operability. 

Energy, 121, 643-656, 2017.  

N. H. Eldrup. Installation factor sheet - Project 

Management and Cost Engineering. Master's Course.  

University College of Southeast Norway, Porsgrunn, 

2020. 
E. S. Fernandez, E. J. Bergsma, F. de Miguel Mercader, E. L. 

Goetheer, T. J. Vlugt. Optimisation of lean vapour 

compression (LVC) as an option for post-combustion CO2 

capture: Net present value maximisation. International 

Journal of Greenhouse Gas Control, 11, 114–121, 2012. 

O. B. Kallevik. Cost estimation of CO2 removal in HYSYS. 

Master’s Thesis, Telemark University College, 

Porsgrunn, 2010. 
N. Sipöcz, A. Tobiesen, and M. Assadi. Integrated modelling 

and simulation of a 400 MW NGCC power plant with CO2 

capture. Energy Procedia, 4, 1941-1948, 2011. 

N. Sipöcz and F.A. Tobiesen. Natural gas combined cycle 

power plants with CO2 capture–Opportunities to reduce 

cost. International Journal of Greenhouse Gas Control, 7, 

98-106, 2012. 

M. Sprenger. Carbon capture is cheaper than ever. Norwegian 

SciTech News, Research News from NTNU and SINTEF, 

Norway. April 10, 2019. Accessed on 10.01.2021. 

Available:   

https://norwegianscitechnews.com/2019/04/carbon-

capture-is-cheaper-than-ever 

E. J.Stone, J. A. Lowe, and K. P. Shine. The impact of carbon 

capture and storage on climate. Energy & Environmental 

Science, 2(1), 81-91, 2009. 

L. E. Øi. Aspen HYSYS simulation of CO2 removal by 

amine absorption in a gas based power plant. In 

Proceedings The 48th Scandinavian Conference on 

Simulation and Modelling (SIMS 2007), Göteborg, 

Sweden. Linköping Electronic Conference Proceedings 

27(8), 73-81, 2007. 

L. E. Øi. Removal of CO2 from exhaust gas. PhD Thesis, 

Telemark University College, Porsgrunn.   TUC 3: 2012. 

 

 

 

  

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185301 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

308

https://norwegianscitechnews.com/2019/04/carbon-capture-is-cheaper-than-ever
https://norwegianscitechnews.com/2019/04/carbon-capture-is-cheaper-than-ever


Simulation and Impact of different Optimization Parameters 

on CO2 Capture Cost 
 

Solomon Aforkoghene Aromada1, Sumudu Karunarathne1, Nils Eldrup1,2, Sina Orangi1, Farzan Farsi 

Madan1, Katarzyna Grazyna Fajferek1, Njål Torgeir Sæter1, Syaiful Bahri1, Lars Erik Øi1 

1Department of Process, Energy and Environmental Technology, University of South-Eastern Norway 
2SINTEF Tel-Tek, SINTEF Industri, Forskningsparken, Hydrovegen 67, 3936 Porsgrunn 

solomon.a.aromada@usn.no, saromada@gmail.com

Abstract  

The influence of different process parameters/factors 

on CO2 capture cost, in a standard amine based CO2 

capture process was studied through process 

simulation and cost estimation. The most influential 

factor was found to be the CO2 capture efficiency. 

This led to investigation of routes for capturing more 

than 85 % of CO2. The routes are by merely 

increasing the solvent flow or by increasing the 

absorber packing height. The cost-efficient route was 

found to be by increasing the packing height of the 

absorber. This resulted in 20 % less cost compared 

to capturing 90 % CO2 by increasing only the solvent 

flow. The cost optimum absorber packing height was 

12 m (12 stages). The cost optimum temperature 

difference in the lean/rich heat exchanger was 5℃. 

A case with a combination of the two cost optimum 

parameters achieved a 4 % decrease in capture cost 

compared to the base case. The results highlight the 

significance of performing cost optimization of CO2 

capture processes. 

Key words: simulation, CO2, optimization, techno-

economic analysis, Aspen HYSYS. 

1 Introduction 

An economic optimization of a standard CO2 

absorption and desorption process can be conducted 

by the aid of process simulation and parametric 

variation (sensitivity analysis). There are different 

studies on different process parameters optimization 

(Schach et al., 2010; Øi, 2012; Li et al., 2016). In this 

work, we emphasise how the influence of different 

parameters on the capture cost compare. Such 

comparison is important to understand the most 

influential parameter or factors on the cost of the 

capture process. Then, the process engineer can pay 

more attention to it. 

Important parameters frequently cost optimized 

in a standard solvent based CO2 absorption and 

desorption are the absorber packing height (Øi et al., 

2020; Aromada & Øi, 2017; Kallevik, 2010), and the 

minimum temperature difference in the main heat 

exchanger (∆𝑇𝑚𝑖𝑛) (Schach, 2010; Karimi et al., 

2011; Øi et al., 2014; Li et al., 2016; Aromada et al., 

2020a). The CO2 capture efficiency in literature is 

typically within 85 – 90 % (IEAGHG, 2008; 

IEAGHG, 2013). Several of such studies have been 

conducted (Aromada & Øi, 2017; Øi et al., 2020), 

but none of those studies has shown or compared the 

effect of these parameters on the capture cost, to 

understand which parameter has the greatest 

influence on the capture cost.  

The first CO2 capture plant to capture CO2 from 

a cement plant’s flue gas is being constructed at 

Brevik in Norway (Thorsen, 2020). The plant is 

designed to capture only 50 % of the CO2 from the 

cement plant. Soon, it might be necessary to increase 

this capture rate due to climate change mitigation 

demands. There are generally two ways to achieve 

higher CO2 capture: (1) to retain the current packing 

height and increase the solvent circulation rate, or (2) 

to increase the packing height. 

The question is, what is the most cost efficient 

route between (1) and (2) above, to capture 

additional CO2, more than 85%? To increase the 

absorption column packing height will lead to 

increase in capital cost. The operating cost will 

increase when the solvent circulation rate increases. 

It is important to perform a trade-off analysis to show 

the most cost efficient route to increase the CO2 

removal rate. 

This work presents extended results from a group 

project at the University of South-Eastern Norway 

(Orangi et al., 2020). The aim is to investigate for the 

most influential process parameter or factor on CO2 

capture cost, and to show the most economic way to 

increase CO2 capture efficiency. 

 

2. Methods 

2.1 Scope of Analysis 

The focus of this work is on investigating the 

influence of certain process parameters or factors on 

carbon capture cost. It is sufficient to limit the 

analysis to only the main CO2 capture process 

described in Figure 1. The scope does not cover CO2 
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compression, transport and storage, costs, insurance, 

taxes, first fill cost, and administrative costs are not 

included in the operating cost. Therefore, the 

compression section is not necessary. The important 

equipment in the main capture process includes the 

absorber, desorber, lean/rich heat exchanger, lean 

amine cooler, reboiler, condenser, and the rich and 

lean pumps. The flue gas cooling process before the 

CO2 absorption is also included in this study. The 

flue gas is from a 400 MWe natural gas combined 

cycle (NGCC) power plant. 

 

 
Figure 1. Flowsheet of the standard process (Aromada 

et al., 2020a) 

 

2.2 Process Specifications and Simulation 

The process specifications used for the base case 

simulation are presented in Table 1. The process 

simulation in this work applies the same strategy 

used in (Øi, 2007; Aromada et al., 2015). The 

simulations were conducted using the equilibrium 

based Aspen HYSYS Version 10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Specifications for process simulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Parameter Value Unit 

Inlet flue gas temperature 40 ℃ 

Inlet flue gas pressure 101.0 𝑘𝑃𝑎 

Inlet flue gas flow rate 1.091 × 105 𝑘𝑔𝑚𝑜𝑙/ℎ 

CO2 content in inlet gas 3.30 𝑚𝑜𝑙 % 

Water content in inlet gas 6.90 𝑚𝑜𝑙 % 

Lean amine temperature 

before and after pump 
120 ℃ 

Lean amine pressure 

before pump 
200 𝑘𝑃𝑎 

Lean amine pressure 

after pump 
300 𝑘𝑃𝑎 

Lean amine pressure to 

absorber 
110 𝑘𝑃𝑎 

Lean amine rate to 

absorber 
1.175 × 105 𝑘𝑔𝑚𝑜𝑙/ℎ 

CO2 content in lean 

amine 
2.98 𝑚𝑜𝑙𝑒 % 

Number of stages in 

absorber 
10 - 

Rich amine pressure 

before pump 
110 𝑘𝑃𝑎 

Rich amine pressure after 

pump 
200 𝑘𝑃𝑎 

Number of stages of 

stripper 

6 + Reboiler 

+ Condenser 
- 

Reboiler temperature 120 ℃ 

. 

Figure 2. Simulation PFD in Aspen HYSYS  
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The base case was simulated to capture 85 % CO2 

from exhaust gas from a natural gas combined cycle 

(NGCC) power plant (Øi, 2007). The process 

consists of an absorber with 10 packing stages (10 

m), a desorber with 6 packing stages (6 m), and 10 

℃ temperature difference in the main heat 

exchanger.  

The parametric optimization were performed by 

varying the absorber packing height between 8 and 

14 stages in step of 2 stages. The temperature 

difference in the main heat exchanger was varied 

between 5 ℃ and 15 ℃ in step of 2.5 ℃. Simulations 

were also performed for 87.5 % and 90 % CO2 

capture efficiencies with constant (10 m) and 

changing absorber packing heights. The flue gas fan 

and the pumps were simulated with specified 

adiabatic efficiency of 75 %. 

The Aspen HYSYS simulation process flow 

diagram showing all the equipment included in the 

scope of the study is shown in Figure 2.  

 

 

2.3 Equipment Sizing 

The absorber and desorber were dimensioned based 

on a superficial gas velocity of 2.5 m/s and 1.0 m/s 

respectively. Their packing heights in the base case 

are 10 m and 6 m respectively where each stage was 

assumed to be 1 m. Murphree efficiencies of 0.25 and 

1.0 were also specified for the absorber and stripper 

respectively. Structured packing with a normal area 

of 250 m2/m3 was also assumed for both columns’ 

packing. This is because of low pressure drop, high 

efficiency and high capacity (Øi, 2012; Brickett, 

2015). It is most likely close to the economical 

optimum (Øi, 2012). 

All the heat exchange equipment were sized 

based on the effective heat transfer area calculated 

from their respective heat duties. These are directly 

obtained from Aspen HYSYS. Overall heat transfer 

coefficients of 500 W/m2K, 800 W/m2K, 1000 W/m2K 

and 800 W/m2K were specified for the lean/rich heat 

exchanger, reboiler, condenser and the coolers 

respectively (Aromada et al., 2020b; Ali et al., 2019). 

The fan and pumps were dimensioned based on 

volumetric flows and duties. 

All equipment unit except the flue gas fan is 

assumed to be constructed from stainless steel (SS) 

for corrosion resistance purpose. The flue gas fan is 

manufactured from carbon steel (CS). The details of 

material conversion from other materials to CS have 

been provided for different capital cost estimation 

methods in (Aromada et al., 2021). 

 

 

2.4 Capital Cost Estimation  

All the cost estimation was performed using the 

Enhanced Detailed Factor (EDF) method (Ali et al., 

2019; Aromada et al., 2021). The capital cost is the 

sum of the installed costs of all the equipment within 

the scope of analysis.  

The costs of equipment were obtained from 

Aspen In-plant Cost Estimator Version 10. The cost 

year is 2016. The costs were then escalated to 2019 

using the chemical engineering plant cost index 

(CEPCI). The assumed default location is Rotterdam 

in Netherlands. It has a location factor of 1. 
Some equipment not included in the simulation 

which may affect the overall cost are accounted for 

in the capital cost. These are all the equipment units 

in the water-wash section of the absorption column, 

tanks, and mixers. They are categorized as “unlisted 

equipment” in this project and are assumed to be 

20% of the total plant cost. 

The EDF method is prepared for equipment cost 

in CS. Thus, material factors of 1.75 and 1.30 were 

used to convert equipment cost in SS to their 

corresponding costs in CS for welded and machined 

equipment respectively. 

This is an Nth-of-a-kind project (Aromada et al., 

2020b). A project life of 20 years with two years of 

plant construction and discount rate of 7.5 % were 

assumed.  

 

2.5 Operating Cost Estimation  

The scope of the operating cost in this study is 

limited to maintenance cost which is 4 % of the 

capital cost, steam cost (€0.03/kWh), electricity cost 

(€0.13/kWh), solvent cost (€2035.90/m3), and 

cooling water cost (€0.22/m3).  These are seen to be 

the most important and they vary when a process 

parameter is changed. Other operating costs such as 

wages and salaries are usually fixed, so, parametric 

change which is the objective of this work does not 

affect them. 

2.6 Annual Cost and Capture Cost  

Different cost metrics are used in carbon capture 

studies. While the most important metric in climate 

change perspective may be CO2 avoidance cost, for 

mere economic consideration, CO2 capture cost is 

sufficient. So, in this project, which is focused on 

economic optimization, CO2 capture cost is used: 

CO2 capture cost =
Total annual cost

Mass of CO2 Captured
         (1) 
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The annual capital cost is obtained as follows: 

Annual capital cost =
capital cost

Annualized factor
          (2) 

The annualised factor is calculated as follows: 

Annualised factor =  ∑ [
1

(1+r)n]n
i=1                (3) 

where n is the years of operation and r is the interest 

rate. 

 

 

 

3 Results and Discussion 

3.1 Simulation Results 

Table 2 presents the process simulation results for 

the base case and parametric optimization. The 

reboiler specific heat consumption in this work is 

3.77 GJ/tCO2. This is close to the 3.65 GJ/tCO2 and 

3.71 GJ/tCO2 calculated by (Øi, 2007) and (Aromada 

et al., 2021) respectively for a similar process with 

85 % CO2 capture. 

 

Table 2. Main simulation results 

  Reboiler heat Optimum  
[GJ/tCO2 ] parameter 

Base case 3.77 - 

Energy optimum  

packing height 

3.50 14 stages 

Energy optimum 

temperature difference 

3.41 5℃ 

90% capture, N=10m 5.24  - 

92% capture, N=15m 3.55  - 

 

 

 

The absorber packing height (N) was reduced to 

8 m and also increased to 12 m and 14 m. The energy 

optimum was 14 m, which shows that the desorption 

heat requirement decreases with increase in the 

absorption column packing height. 

The lowest specific heat consumption was 

achieved by the case with a temperature difference 

of 5℃ in the lean/rich heat exchanger.  

Another important observation is that there is a 

drastic increase of 39 % in the heat requirement for 

desorption when the base case capture rate was 

increased from 85% to 90%. However, when the 

packing height was increased by 50%, that is to 15 

m, the steam demand by the stripper was reduced by 
6% to 3.55 GJ/tCO2 for 92% CO2 capture rate. 

 

3.2 Sensitivity Analysis of different 

Process Parameters/Factors on Energy 

Consumption  

The complete results of the influence of the different 

process parameters/factors on specific reboiler heat 

consumption are presented in Figure 3. When the 

absorber packing height (1 m/packing height) was 

increased from 8 m to 10 m, the specific reboiler heat 

consumption decreased from 4.20 GJ/tCO2 to 3.77 

GJ/tCO2. That is 10 % reduction in steam 

consumption. Increasing the absorption column 

packing height further to 12 m yielded a 6 % 

reduction of steam consumption (3.53 GJ/tCO2) 

compared to 10 m packing height. However, a 

further increase from 12 m to 14 m resulted in less 

than 1 % reduction in reboiler energy demand (3.50 

GJ/tCO2). 

While increase in the absorption packing height 

caused decrease in the reboiler steam demand, 

increasing the minimum approach temperature 

(∆𝑇𝑚𝑖𝑛) in the lean/rich heat exchanger result in 

increase in the decrease in the steam consumption in 

the reboiler. This is because as the ∆𝑇𝑚𝑖𝑛 increases, 

the amount of heat recovered in the lean/rich heat 

exchanger by the rich amine stream reduces. The 

specific reboiler heat consumption with 5 ℃, 5 ℃, 5 

℃ and 5 ℃ are 3.41 GJ/tCO2, 3.58 GJ/tCO2, 3.77 

GJ/tCO2, 3.82 GJ/tCO2 and 3.92 GJ/tCO2 

respectively. The specific reboiler heat consumption 

for the standard amine based CO2 capture process 

reported in literature with different parameters and 

capture rate are in the range of 3.5 – 5.2 GJ/tCO2 

(Nwaoha et al., 2018; Hu et al., 2018). The values 

obtained in this work are within this range. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 3. Impacts of different process parameters or 

factors on specific reboiler heat consumption 
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Sensitivity of the CO2 capture rate was also 

conducted by increasing it to 87.5 % and 90 %. The 

steam requirement increased by 6 % when the 

capture efficiency was increased from 85 % to 87.5 

%. Increasing the CO2 capture rate from 87.5 % to 

90 % caused a very high increase (31 %) in the 

reboiler heat consumption. It is important to state 

that the capture efficiency increase was only 

achieved by mere increase in the solvent circulation 

rate of the base case. 

 

3.3 Sensitivity Analysis of different 

Process Parameters/Factors on CO2 

capture Cost 

The results of economic optimization of different 

process parameters are summarized in Figure 4. The 

cost optimum absorber packing height is 12 m, even 

though the energy optimum is 14 m. The CO2 capture 

cost is €63.9/tCO2. This indicates that the capital cost 

dominates at 14 m. Therefore, the trade-off favours 

12 m absorber packing height. This implies that it is 

important to conduct capital and operating costs 

trade-off analysis before making an economic 

conclusion on any energy optimum process, which 

could have been achieved due to higher process 

complexity. For example, by adding other equipment 

or increasing the size of one or more equipment units 

as done in this study. 

Varying the temperature difference in the main 

heat exchanger shows the cost optimum to be 5 ℃ 

with a capture cost of €63.8/tCO2. This agrees with 

the work of Li et al. (2016) which suggested that the 

optimum is within the 5 – 10 ℃. Schach et al. (2010) 

calculated the cost optimum to be a logarithmic 

mean temperature difference of 7.5 ℃ which is close 

to this work. However, it is different from what is 

obtained in the work of Karimi et al. (2011) which 

calculated the cost at 10 ℃ to be less than the capture 

cost at 5 ℃. The reason is because the equipment 

purchase cost for the heat exchanger employed as 

lean/rich heat exchanger in this work is lower than 

some other studies (Karimi et al., 2011; Kallevik, 

2010; Aromada & Øi, 2017; Aromada et al. 2020a; 

Aromada et al., 2021). This indicates that the energy 

(steam) cost dominated in this work. Aromada et al. 

(2020a) and Aromada et al. (2021) estimated the cost 

optimum ∆𝑇𝑚𝑖𝑛 with shell and tube heat exchangers 

to be 15℃. However, in Aromada et al. (2020a), a 

cost optimum ∆𝑇𝑚𝑖𝑛 of 5℃ was estimated when the 

type of heat exchanger was changed to plate heat 

exchanger. This revealed that the cost optimum 

∆𝑇𝑚𝑖𝑛 depends on the process and the economic 

assumptions, especially the cost of the heat 

exchanger and the cost of steam. 

Changing the capture rate to 87.5 % and 90 % 

increased the CO2 capture cost from €65/tCO2 to 

€70/tCO2 and €85/tCO2 respectively. And by this, 

increasing the capture rate by increasing solvent 

circulation rate has the highest impact on the CO2 

capture (Figure 3). Therefore, it is worth to look at 

finding a more economical way to capture more CO2, 

that is more than 85 % at a lower cost. This is done 

in the subsequent section. 

 

 

 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
Figure 3. Impacts of different process parameters or 

factors on CO2 capture cost. 

 

 

Figure 4. Impacts of different process parameters or 

factors on CO2 capture cost 

 

3.4 Different Routes of Capturing More 

CO2 

The results of the second objective of this work are 

presented in Figure 5. That is to find out a more 

economical way to capture more than 85 % of CO2 

from industry’s flue gas. The two routes for 

increasing the capture efficiency from 85 % to 90 % 

and above are by increasing the solvent flow rate and 

by increasing the absorber packing height. 

When the CO2 capture rate was increase to 87.5 

% and 90 %, the new route (route 2) compared to 

Figure 3, resulted in reduction of €5/tCO2 and 

€17/tCO2 respectively in CO2 capture cost. These are 

7 % and 20 % reduction respectively. They are 

significant numbers. According to this work, the cost 

efficient route to capture more CO2 is not by merely 

increasing the solvent flow, but by increasing the 

absorber packing height. When solvent flow is 

increased, more CO2 is captured but at a high steam 

cost. High steam need requires larger effective heat 

exchange area in the reboiler (more units). The 

capital cost of the heat exchanger network to meet 
the heat exchange area requirement also increases 

when the solvent flow increases.  
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Figure 5. Economic implications of two different 

routes to increase the CO2 capture rate above 85%  

 
For route (2), increasing the absorber packing 

height effectively led to both less solvent flow due to 

increase in retention (CO2 and solvent contact) time, 

relatively smaller heat exchange area, and 

significantly less desorption steam requirement. In 

route (2), the minimum CO2 capture cost (in €/tCO2) 

is not 85% as in route (1) but 87.5%.  

There is no literature to compare the results with, 

however, further studies will find the results very 

useful, especially in reducing the cost of capturing 

when 90 % and more CO2 capture is needed. 

3.5 Estimated Capital and Operating Costs  

The capital and operating costs that are used for all 

the trade-off analyses to obtain the cost optimum 

parameters as well as for capturing 90 % of CO2 and 

above are shown in Figure 6 and Figure 7 

respectively. The treated exhaust gas is from 400 

MWe NGCC power plant, and the compression 

section was not included. The capital cost here is 

only the total plant cost (TPC). 

A look at Figures 6 and Figure 7 shows that the 

case of 90 % route (1), which is through increase of 

solvent flow has the highest capital cost and the 

highest operating cost. The high capital cost is 

mainly due to the increase in the reboiler heat 

transfer area to meet the substantial (39 %) increase 

in the steam needed for desorption. 

The cost implication of increasing the heat 

transfer area of the lean/rich exchanger using shell 

and tube heat exchangers is also usually relatively 

large (Karimi et al., 2011; Aromada et al., 2020a). 

The lowest capital cost was obtained by the case of 

the cost optimum packing height and the minimum 

annual operating cost was obtained by the case of the 

cost optimum temperature difference. The 92 % 

route (2) has a reduced operating cost compared to 

90 % route (1) due to the decrease in the steam 

requirement. The high capital cost in the 92 % route 

(2) case is a result of increase in the absorber packing 

height from 10 m to 15 m. 

 

 

 

Figure 6. Capital cost estimates of the different cases 

 

 

Figure 7. Capital cost estimates of the different cases 

 

The combined effects of the two cost optimum 

parameters for the 85 % CO2 capture process on the 

capital and operating cost were also evaluated and 

are shown in Figure 6 and Figure 7. The capital cost 

of the combined optimum parameters’ case is higher 

than that of the base case and the two individual cost 

optimum parameters cases. However, it achieved the 

lowest annual operating cost.   
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Table 3. Summary of results 

 

 

 

 

 

 

 

 

 

 

3.6 Summary of Analyses  

The results of the simulations and economic 

analyses of all the important cases are summarized 

in Table 3. The percentage of annual cost savings 

and the savings in desorption steam requirements are 

also shown. Negative percentage values indicate 

savings compared to the base case, while positive 

percentage values signify more expensive cases. 

 

4 Conclusion 

A study of the impact of different process 

optimization parameters or factors in a standard 

amine based CO2 Capture process on the capture cost 

was conducted through process simulation and cost 

estimation. The study was carried out to reveal the 

most important influential factor on CO2 capture 

cost, which led to investigating two routes of 

capturing more than 85% of CO2 from an industry 

flue gas. 

The most influential factor was found to be the 

CO2 capture efficiency. To increase CO2 removal 

rate above 85% without increasing the absorber 

packing height will result in drastic increase in the 

amount of steam needed for desorption, and a 

significant increase in the cost of the main heat 

exchanger if the shell and tube heat exchangers are 

used. These will in turn result in a drastic increase in 

capture cost. The cost efficient route to capture more 

than 85% of CO2 is by increasing the packing height 

of the absorber to increase the contact time between 

CO2 and the solvent.  

The cost optimum number of stages of absorber 

packing height when the CO2 removal efficiency and 

temperature difference in the main heat exchanger  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

were kept constant at 85% and 10℃ respectively is 

12 m (12 stages). The cost optimum temperature in 

the lean/rich heat exchanger when other base case’s 

parameters were kept constant is 5℃. 

An 85% CO2 capture case with combination of 

the cost optimum parameters achieved a 12% 

reduction in the amount of steam needed for 

desorption. That resulted in a 4% decrease in the 

base case CO2 capture cost. These emphasizes the 

importance of performing cost optimization of CO2 

capture process. 
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Abstract 
The energy requirement of the amine based CO2 capture 
process is the main drawback of the technology. Studies 
on energy demand reduction are therefore important. 
This work presents energy optimization and economic 
analysis of an 85% CO2 capture process using pure 
monoethanolamine (MEA), and processes with blends 
of methyl diethanolamine (MDEA) and piperazine 
(PZ). The process with 30 wt% MEA was the base 
(reference) case in this study. The regeneration energy 
requirement for the base case was 3.77 𝐺𝐽 𝑡𝑜𝑛	𝐶𝑂!⁄ . 
The blends of (30 wt% MEA+5 wt% PZ) and (30 wt% 
MEA+15 wt% MDEA) were calculated to achieve 4.9% 
and 7.5% reduction in regeneration energy respectively. 
The economic analysis also indicated that 4.1% and 
4.3% total annual cost savings can be achieved by the 
MEA+PZ and MEA+MDEA blends processes 
respectively. The work further shows that the cyclic 
capacity is enhanced by using these blends instead of 
pure MEA.  
Keywords: CO2 capture, simulation, energy-optimal, 
cost estimation, solvent, blend, regeneration energy, 
economy. 

1 Introduction 
Our planet has been faced with rising atmospheric 
concentration of greenhouse gases like carbon dioxide, 
methane, nitrous oxide and chlorofluorocarbons 
especially in recent decades. According to the 
Intergovernmental Panel on Climate Changes (IPCC), 
more than 50% of this increase results from CO2 
emissions (Abu-Zahra et al., 2007). Although the post 
combustion amine-based process requires huge amount 
of energy especially for regenerating amine, the 
mentioned process is the most mature method to highly 
cut down CO2 emissions from flue gas exiting from 
plants or industries (Zang et al., 2017), mainly from 
combustion of fossil fuels such as coal, oil and gas in 
power plants.  
      Applying 30 wt% monoethanolamine (MEA) is 
regarded as the reference solvent for CO2 capture at 
atmospheric pressure (Øi, 2010; Rochelle et al., 2011). 
A sketch of this process is presented in Figure 1. The 

whole or a part of the flue gas is conveyed to the bottom 
of an absorption column where amine solvent comes 
into the absorber from the top. The two inlet streams 
flow counter-currently in the absorption column. As 
they come in contact, a chemical reaction is initiated 
where the CO2 in the flue gas is absorbed by the amine 
solvent. This solution leaves the absorber, and it is 
pumped to the stripper where the CO2-rich amine 
solution is regenerated by heat supply from steam 
(endothermic reaction). The regenerated amine is 
pumped back into the absorption column for subsequent 
cycle of CO2 absorption-desorption. Other main plant 
items such as heat exchangers, pumps in different parts 
of process are used to form the whole cycle. 
 

 
Figure 1. Standard or conventional CO2 capture process 
(Hosseini-Ardali et al., 2020)  
      

MEA is classified among the primary solvent group 
which has high reactivity with CO2, but this amine 
requires a high heat of regeneration. This problem is the 
most outstanding one for MEA solvent. (Lee et al., 
2013) claimed that using MEA as solvent could lead to 
up to a 30% reduction in the overall efficiency of the 
power plant and a corresponding 80% increase to the 
cost of electricity. Various experiments and simulations 
have been conducted to reduce the energy requirement 
(Abu-Zahra et al., 2007; Hosseini-Ardali et al., 2020; Le 
et al., 2013; Nwaoha et al., 2017). Such reduction in the 
needed regeneration heat could be achieved through 
three general approaches, which include (Dubois & 
Thomas, 2018): 
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• Improved absorption configurations, that is 
flowsheet modifications, for example, lean vapour 
recompression configuration (Aromada & Øi, 2015; 
Cousins et al., 2011), 

• Optimization of operational conditions e.g., pressure 
and temperature of absorber and stripper columns 
(Abu-Zahra et al., 2007), 

• Switching from the reference monoethanolamine 
(MEA) to other solvents e.g., methyl diethanolamine 
(MDEA), piperazine (PZ) or their blends. 

This work focuses on the third strategy. MDEA, a 
tertiary solvent, was favored in recent years due to 
advantages like low corrosion, high loading capacity, 
resistance to thermal and oxidative degradation and 
lower heat of regeneration than MEA and some other 
solvents (Mudhasakul et al., 2013). Nevertheless, there 
a major disadvantage of low reaction rate with CO2. 
Piperazine (PZ) is known as a cyclic secondary amine, 
having a rapid reaction rate with CO2. PZ is highly 
resistant to oxidative and thermal degradation (up to 
150℃). This amine is used as additive to other amines 
(Borhani & Wang, 2019). A complete study of 
advantages and disadvantages of the different amines is 
found in (Borhani & Wang, 2019). The main concept of 
blending different amines is to combine the favorable 
characteristics of different solvents to overcome their 
various shortcomings. A careful selection of amine 
concentrations in a blend requires considering various 
parameters because each solvent has a distinctive 
chemical structure with different properties from other 
ones. This is why finding an optimal concentration of 
blends to bring more benefits to the removal process is 
important but demanding. This matter is an interest of 
various studies.    
      In this work, firstly, a standard base case where 30 
wt% MEA is selected as solvent will be introduced. This 
case is specified as the reference case for comparison 
with other simulated cases where other solvents or 
blends are used. Those ranges of MDEA and PZ which 
can be added to the base case (30% MEA) to present 
MEA+PZ and MEA+MDEA blends with lower 
regeneration energy have been assessed. Moreover, an 
optimization in suggested ranges which results in lowest 
regeneration energy compared to base case is presented. 
The work proceeded with a cost estimation of the CO2 
capture plant for simulated cases in order to investigate 
the cost savings’ potential due to switching from MEA 
to the mentioned solvents or blends. 
      Since implementing other solvents/blends directly 
affects the lean, rich and cyclic loading parameters in 
the process, they will be investigated in this work.  
     Various studies have been performed to study 
various concentrations of solvents and/or their blends in 
CO2 capture processes. Some other works have 
attempted to study the economic implication of selecting 
different solvent blends. Finding a work where energy-

optimal concentrations of solvents/blends with the 
economic analysis of the total plant is a rarity. In this 
work, besides finding energy-optimal concentrations of 
amine-blends, the cost estimation for each solvent or 
blend is performed to investigate the economy of plant. 
This is because an energy-optimal amine solvent or 
blend may not necessarily give economically optimal 
process. The economic analysis of this work covers the 
whole lifetime of the plant.        

2 Process simulation program and 
specifications 

2.1 Process simulation program 
All simulations in this work have been conducted with 
Aspen HYSYS version 10, which is a commercial 
process simulation program from AspenTech. The 
program has several property packages so that each one 
implies a specific equilibrium model. Acid gas chemical 
solvents is used in this work because this package 
supports a wide range of solvents and their blends. 
      Absorption and desorption columns in the standard 
process are the key items. These columns can be 
simulated with equilibrium stages including a stage 
efficiency (Øi et al., 2017). In this work, the efficiency 
of stages for CO2 is assumed to be 0.25 in the absorption 
column. This parameter in the desorption column is 
presumed to be 1.0.  

2.2 Specifications to conventional CO2 
capture process 

The depicted process in Figure 1 is known as standard 
or conventional CO2 absorption and desorption process. 
The process specifications in this work are given in 
Table 1, which are similar to ones in (Øi et al., 2017). 

Table 1. Specifications for the conventional CO2 capture 
process for 85% removal efficiency using 30 wt% MEA  

Parameter Value (Unit) 
Inlet flue gas temperature to 

process 40 (℃) 

Inlet flue gas pressure to 
process 101 (𝑘𝑃𝑎) 

Inlet flue gas flow rate 1.091e5 (𝑘𝑔𝑚𝑜𝑙/ℎ) 
CO2 content in inlet gas 3.30 (𝑚𝑜𝑙%) 

Water content in inlet gas 6.90 (𝑚𝑜𝑙%) 
Nitrogen in inlet gas 89.8 (𝑚𝑜𝑙%) 

Lean amine temperature 
before and after pump 120 (℃) 

Amine pressure before rich 
pump 200 (𝑘𝑃𝑎) 

Amine pressure after rich 
pump 300 (𝑘𝑃𝑎) 

Lean amine pressure to 
absorber 101 (𝑘𝑃𝑎) 

Lean amine rate to absorber 1.175e5 (𝑘𝑔𝑚𝑜𝑙/ℎ) 
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Parameter Value (Unit) 
Inlet flue gas temperature to 

process 40 (℃) 

Inlet flue gas pressure to 
process 101 (𝑘𝑃𝑎) 

Inlet flue gas flow rate 1.091e5 (𝑘𝑔𝑚𝑜𝑙/ℎ) 
CO2 content in inlet gas 3.30 (𝑚𝑜𝑙%) 

Water content in inlet gas 6.90 (𝑚𝑜𝑙%) 
Nitrogen in inlet gas 89.8 (𝑚𝑜𝑙%) 

Lean amine temperature 
before and after pump 120 (℃) 

Amine pressure before rich 
pump 200 (𝑘𝑃𝑎) 

Amine pressure after rich 
pump 300 (𝑘𝑃𝑎) 

Lean amine pressure to 
absorber 101 (𝑘𝑃𝑎) 

Lean amine rate to absorber 1.175e5 (𝑘𝑔𝑚𝑜𝑙/ℎ) 



CO2 content in lean amine 2.98 (𝑚𝑜𝑙𝑒%) 
Number of stages in absorber 10 (-) 
Rich amine pressure before 

pump 110 (𝑘𝑃𝑎) 

Rich amine pressure after 
pump 200 (𝑘𝑃𝑎) 

Number of stages of stripper 6 (-) 
Reboiler temperature 120 (℃) 
Efficiency of stages in 

absorber 0.25 (-) 

Efficiency of stages in 
stripper 1.0 (-) 

 
      Minimum approach temperature in the lean rich heat 
exchanger is kept 10℃. Figure 2 represents a simulated 
standard process in Aspen HYSYS. 
 

 

2.3 Simulations with blends 
As mentioned earlier, other solvents or their blends can 
be used in CO2 capture process instead of MEA. In this 
work, both blends of MEA+MDEA and MEA+PZ are 
used as solvent. Various simulations with different 
concentrations of mentioned blends have been tested to 
investigate their effects on the process. Simulations with 
the blends have the same specifications of the standard 
base case listed in Table 1. Thus, there is no difference 
in the configuration of process with the standard base 
case in Figure 2. The results from simulations will be 
presented in the following sections. 

3 Dimensioning and cost estimation   
The main objective of dimensioning is to specify proper 
equipment to the capture plant. These items should be 
proper in different parameters especially size and 

material to satisfy the requirements of each item. In 
addition, dimensioning shapes initial data for cost 
estimation.  
      Equipment cost could be obtained by different 
methods. The most reliable source is to obtain them 
from manufacturers. Though, in many cases, it is 
difficult to have access to such data (Ali et al., 2019). 
The use of commercial databases like Aspen In-Plant 
Cost Estimator is practical. The equipment cost data in 
this work were obtained from Aspen In-Plant Cost 
Estimator version 10, where the cost year is 2016. Other 
costs including direct costs, engineering costs and 
administration costs are added to form total installed 
costs for equipment (Aromada et al., 2021).  
 
 
 

 
 

The total capital expenditure (CAPEX) for the CO2 
capture plant is the sum of all the equipment installed 
cost. In addition to CAPEX, operating expenditures 
(OPEX) were also estimated. In this work, OPEX 
comprises only the cost of electricity, cooling water, 
steam, solvents and maintenance. Other items for OPEX 
calculation like labour and supervision costs, insurance 
and direct overheads are not included in this work. 
Because the main objective of current work is to study 
possible cost saving of other solvents or their mixtures 
relative to pure MEA process.     

3.1 Assumptions for dimensioning  
Dimensioning was implemented for each piece of 
equipment used in the carbon dioxide removal plant. 
Calculation of the diameter for the absorption column is 
done by assumption of gas velocity to be 2.5 𝑚 𝑠⁄ . Gas 
velocity for the desorption column is assumed to be 1.0 

Figure 2. Aspen HYSYS flow-sheet of conventional process 
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𝑚 𝑠⁄  (Øi et al., 2017). The tangent-to-tangent height of 
the columns are calculated based on the required space 
for the structured packings and washing sections. 
Flooding phenomenon must be included in 
dimensioning for both columns. In this work, 22 meters 
and 10 meters are assumed as the tangent-to-tangent 
heights of the absorber and the stripper respectively.  
      Heat exchangers are sized based on the required heat 
transfer area. The Logarithmic Mean Temperature 
Difference (LMTD) and duties for each heat exchanger 
are extracted from the simulation results. In this work, 
the overall heat transfer coefficients are assumed to be 
500 𝑊 (𝑚!𝐾)⁄  for the lean rich heat exchanger, 800 
𝑊 (𝑚!𝐾)⁄  for the reboiler and the lean amine cooler, 
and 1000 𝑊 (𝑚!𝐾)⁄  for the condenser (Ali et al., 2019; 
Aromada et al., 2020). All the heat exchangers in this 
work are assumed to be shell and tube type. More 
possibilities for other types of heat exchangers can be 
found in (Aromada et al., 2020). 
    In the plant, pumps are responsible for conveying the 
rich and lean amine flows. Volumetric flow rates of the 
lean and rich streams determine the required power for 
pumps. In this work, centrifugal pumps with adiabatic 
efficiency of 75% are assumed (Øi et al., 2017; 
Aromada et al., 2020). The fan is assumed to be a sort 
of centrifugal one with adiabatic efficiency of 75% 
(Aromada et al., 2020).  
      Stainless steel (SS316) is selected for almost all 
items except for the fan, which is assumed to be carbon 
steel (CS). The main reason for selecting SS316 material 
is resistance to corrosion (Ali et al., 2019). 
      Using other solvents, especially piperazine might 
bring some benefits to the capturing process in terms of 
material selection instead of pure MEA. For instance, 
(Rochelle et al., 2019) indicated that if PZ solvent 
selected for a CO2 absorption plant, there is a possibility 
for specifying cheaper carbon steel for the stripper. 
Moreover, (Rochelle et al., 2011) evaluated positive 
effects of piperazine solvent like more resistant to 
degradation and volatility compared to pure MEA.  

3.2 Assumptions for cost estimation  
Although there are various works in which cost 
estimations for carbon dioxide removal plants have been 
estimated, considerable differences can be found in 
literature which results from applying different 
methods, assumptions and scope of study. 
      In this work, adjusting equipment costs in CAPEX 
calculation to total installed costs was conducted with 
the Enhanced Detailed Factor (EDF) method (Ali et al., 
2019; Aromada et al., 2020; Aromada et al., 2021).                      
This method is briefly explained in the following 
section.   
      Equipment cost data were obtained directly from 
Aspen In-Plant Cost Estimator version 10 with cost year 
of 2016, while current work is in 2021. This adjustment 

was implemented using the Chemical Engineering Plant 
Cost Index (CEPCI) where: 
 

𝐶𝑜𝑠𝑡	!"!# = 𝐶𝑜𝑠𝑡!"#$ ×
𝐶𝐸𝑃𝐶𝐼!"!#
𝐶𝐸𝑃𝐶𝐼!"#$

 (1) 
 

 
The cost indices for 2016 and 2021 are 542 and 655 
respectively (Chemical Engineering Essentials for the 
CPi Professional. 2021).            
      The total lifetime for the plant is assumed to be 20 
years. Since the value of money during this time is not 
constant, interest rate is implemented into the CAPEX 
calculation to update the value of money for each time 
slot. Time slot in this work is assumed to be one year 
with the interest rate of 7.5% (Aromada et al., 2020). 
Total annual hours of operation for the plant in this work 
is presumed to be 8000 ℎ𝑜𝑢𝑟𝑠 𝑦𝑒𝑎𝑟⁄  (Øi et al., 2017; 
Ali et al., 2019; Aromada et al., 2020). Maintenance 
costs of this work is 4% of total CAPEX.  
      Other important item in the plant is the cost of 
solvents.  Table 2 below provides the prices for the 
selected solvents in current study. While the unit prices 
of the utilities in the plant are provided in Table 3.  

Table 2. Prices for applied amines in this work (Gomes et 
al., 2015)  

Amine Value (€/𝒍𝒊𝒕𝒓𝒆) 
MEA 30.50  

PZ 68.70  
MDEA 51.60  

 

Table 3. Prices for applied utilities in the plant 
(Aromada et al., 2020)  

Utility Value (𝒖𝒏𝒊𝒕) 
Electricity 0.132 [€/𝑘𝑊ℎ] 

Steam 0.032 [€/𝑘𝑊ℎ] 
Cooling water 0.022 [€/𝑚%] 

 

3.3 Cost estimation method 
In the EDF method, each piece of equipment has its 
distinct installation factor based on its costs. These 
installation factors are prepared in for equipment in 
carbon steel. Therefore, since almost all the equipment 
in the plant is constructed from SS316. To use the EDF 
installation factor list (Aromada et al, 2021), the cost of 
equipment in SS has to be converted to their 
corresponding cost in CS using the EDF material factors 
provided in Table 4 as follows:  
 
𝐹&'&(),++ = 𝐹&'&(),,+

+ ([𝑓-(& − 1]. Q𝑓./012-.3&
+ 𝑓212134R) 

 

(2) 
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where, 𝐹&'&(),++ is the total cost factor of stainless steel.
𝐹&'&(),,+ is the total installation factor of the equipment
in carbon steel, 𝑓-56 is the material factor, 𝑓./012-.3&
and 𝑓212134 refer to the equipment and piping
installation factors respectively.

      The CAPEX is the sum of total installed cost for 
each piece of equipment in the plant. To estimate the 
total annual cost, the CAPEX was annualized and the 
first year OPEX was estimated. The annualized factor 
and annualized CAPEX are estimated using equation (3) 
and (4) respectively.  

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑	𝑓𝑎𝑐𝑡𝑜𝑟 = 	X
1

(1 + 𝑖)3

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑	𝐶𝐴𝑃𝐸𝑋 =	
𝐶𝐴𝑃𝐸𝑋

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑	𝑓𝑎𝑐𝑡𝑜𝑟 (4) 

4 Results and discussion 
4.1 Results for energy consumptions 
According to analysis of the simulated standard base 
case, this process requires 3.77 𝐺𝐽 𝑡𝑜𝑛	𝐶𝑂!⁄ . (Nwaoha 
et al., 2017) investigated various literature where they 
applied 30 wt% MEA solvent. The required 
regeneration energy is 3.3 to 4.4 𝐺𝐽 𝑡𝑜𝑛	𝐶𝑂!⁄  which 
validates the result of this work. Regeneration energy 
has been assessed for other simulations with 30 wt% 
MEA and blending with different amounts of 
piperazine, ranging from 5 wt% to 15 wt% as presented 
in Figure 3. From the results obtained in this work, 5 – 
10 wt% PZ as additive to 30 wt% MEA reduces required 
regeneration energy in the CO2 capture process. The 
solvent blend of 30 wt% MEA+5 wt% PZ gave the 
energy optimum specific reboiler heat consumption of 
3.59 𝐺𝐽 𝑡𝑜𝑛	𝐶𝑂!⁄ . This is a 4.9% reduction compared to 
the standard base case. Different concentrations of PZ in 
MEA are presented in Figure 3.  

 
Figure 3. Assessment of adding different concentrations of 
piperazine to MEA in term of regeneration energy 

      Similar work has been performed for blends of 
MEA+MDEA. Among the results of the simulations 
performed with the blends of 30 wt% MEA and different 
concentrations of MDEA as additive, a range of 5 to 25 
wt% MDEA presents lower regeneration energy than 
the reference pure MEA process as can be seen in Figure 
4. The energy optimum blend of MEA+MDEA was 
found to be a blend of 30 wt% MEA+15 wt% MDEA. 
This optimum value is 3.49 𝐺𝐽 𝑡𝑜𝑛	𝐶𝑂!⁄ , which is 7.5% 
saving in regeneration energy compared to the standard 
base case.  
 

 
Figure 4. Assessment of adding different concentrations of 
MDEA to MEA in term of regeneration energy 
 
Thus, both blends of (30 wt% MEA+5 wt% PZ) and (30 
wt% MEA+15 wt% MDEA) have potential for lower 
regeneration energy based on the simulations results. 
     (Mudhasakul et al., 2013) simulated the effect of 
adding different concentrations of piperazine through a 
physical property package of acid gas removal unit into 
Aspen Plus. Their work clearly shows that 4 wt% to 5 
wt% piperazine as additive has the best trade-off 
between CO2 recovery and energy consumption. In 
addition, (Abd & Naji,, 2020) with a steady state 
simulation in the Aspen HYSYS program has 
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Table 4. EDF method material factors  

Sort of material Material 
factor 

Stainless steel (SS316) welded 1.75 
Stainless steel (SS316) machined 1.30 

Glass-reinforced plastic 1.00 
Exotic materials  

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑	𝑓𝑎𝑐𝑡𝑜𝑟 = 	X
1

(1 + 𝑖)3

3

#

 (3) 

 
where, 𝑖 is the interest rate and 𝑛 is plant lifetime.  
 

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑	𝐶𝐴𝑃𝐸𝑋 =	
𝐶𝐴𝑃𝐸𝑋

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑	𝑓𝑎𝑐𝑡𝑜𝑟 (4) 

 



determined that the effects of adding various 
concentrations of piperazine up to 10 wt% with 
maintaining the constancy of the entire amine strength 
of 45 wt%. Their results indicate that 5 wt% piperazine 
provides the best consequence in terms of energy.     
      (Idem et al., 2006) experimented 4:1 molar ratio of 
MEA+MDEA blend in a pilot plant and their results 
emphasized a huge heat-duty reduction relative to the 
pure MEA process. (Li & Wang., 2013) also 
experimented different concentrations of MEA+MDEA 
blend in an amine scrubber. Their work showed a 2:1 
weight portion of MEA+MDEA can reduce the 
regeneration energy by 22%.       

4.2 Results for cost estimations 
Cost estimation of the standard base case has been 
performed based on the EDF method. Cost estimation 
for suggested blends has also been performed to 
investigate whether they can bring cost saving to the 
plant. 
      The CAPEX for the standard base case process is 
122.3 million euros for a lifetime based on calculations 
for the year 2016. Adjusting this value to year 2021 
results in 147.9 million euros. The annualized CAPEX 
for this case is calculated to 14.5 million euros per year. 
The distribution of CAPEX for the standard base case is 
presented in Figure 5. The annual OPEX distribution is 
given in Figure 6. 
 
 

 
Figure 5. Distribution of the CAPEX for the standard base 
case plant. (Value in [] indicates the number of that 
particular item applied in the process) 

 

      

 
Figure 6. Distribution of governing parameters in total 
economy of plant for the standard base case 
       

Total annual cost for the standard base case is 
calculated to be 78.6 million euros. From Figure 6, it is 
obvious that steam has the highest share of the annual 
costs of the capture process. This is more than 55% of 
the total cost per year. Amine-based solvent capture 
processes are regarded as energy-intensive and any 
reduction in regeneration energy might bring cost 
savings.  
      Although MEA is the least expensive solvent 
compared to MDEA and piperazine, the economic 
analysis of the capture processes with the two suggested 
blends in Section 4.1 resulted in saving in annual costs. 
The blend of (30 wt% MEA+5 wt% PZ) yields a 4.1% 
cost saving per year. A 4.3 % cost savings per year for 
the blend of (30 wt% MEA+15 wt% MDEA) was 
estimated. The economic analysis of the carbon capture 
process for the two blends is presented in Figure 7 as 
well as for the standard base case. 
  

 

Figure 7. Economy analysis of CO2 removal process for 
three different solvents/blends 
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4.3 Results for lean, rich and cyclic loadings  
The lean and rich loading are defined as, 

𝛼 =
𝑛,7!
𝑛(-13.

 (5) 

where, lean and rich amines have been shown in Figure 
2. The difference between the lean and rich loadings is 
referred to as the cyclic loading,  

𝛼898)18 = 𝛼:18; − 𝛼).(3 (6) 

Achieving higher amount of cyclic capacity is highly 
desirable thanks to its improvements in the regeneration 
energy. (Nwaoha et al., 2017) asserts that an ideal 
solvent or blend requires to have a higher cyclic loading. 
The cyclic capacities of the different concentrations of 
MEA+MDEA and MEA+PZ blends have been 
evaluated and compared with the same concentration if 
only pure MEA solvent is used. The results are shown 
in Figure 8 and Figure 9 respectively. 

Figure 8 indicates that adding MDEA to MEA 
enhances cyclic loading compared to the pure MEA 
process. It is obvious that the blend of 30 wt% MEA+ 
15 wt% MDEA achieved the highest cyclic loading 
compared to other concentrations.  
 

 

Figure 8. Assessment of cyclic loading for different 
concentrations of the blend of MEA+MDEA compared to 
the identical weight fraction of pure MEA 
 

  

Figure 9. Assessment of cyclic loading for different 
concentrations of the blend of MEA+PZ compared to the 
identical weight fraction of pure MEA 

Similar analysis was performed for the blend of 
MEA+PZ, resulting in Figure 9. According to the Figure 

9, all concentrations of MEA+PZ blend present a larger 
cyclic loading than the same concentration of pure 
MEA, which means PZ can enhance cyclic loading in 
this blend.   
      Benefits for switching from individual MEA to other 
solvents or blends are not only limited to regeneration 
energy, but also economy of the plant and cyclic 
loading. Other important factors like degradation, 
foaming and precipitation have potential for future 
study. In addition, it will be reasonable to proceed the 
work in the future with experimental data in order to 
validate the results.    

4.4 Uncertainties 
Regarding the uncertainties in this work, Murphree 
efficiency could be mentioned. This factor in all 
simulated processes has been assumed to be equal, while 
each blend requires to have a specific one. This work is 
an option for future work. Secondly, this work has been 
based on vapor-liquid equilibrium model. Other models 
could be investigated and compared with current results.  

5 Conclusion 
In this work performed in Aspen HYSYS version 10, a 
standard CO2 removal process has been simulated with 
various concentrations of individual and mixtures of 
MEA, MDEA and PZ solvents. It was concluded that 
the blend of MEA+PZ and MEA+MDEA have potential 
to improve the process especially in term of regeneration 
energy. Based on the performed simulations, two blends 
of (30 wt% MEA+5 wt% PZ) and (30 wt% MEA+15 
wt% MDEA) present energy-optimal processes 
compared with other concentrations.  
      In addition, the cost analysis based on the EDF 
method for the simulated plants has been performed to 
investigate the effect of implementing other solvents 
than MEA on the economy of plant. The results 
indicated that both suggested blends have potential to 
bring considerable cost savings to the CO2 removal 
process.   

Acknowledgements 
This work is part of a continuous development at the 
University of South-Eastern Norway to assess CO2 
capture processes from different views.  Thank you for 
contributions from staff and students to this project.  

References 
A. A. Abd, S. Z. Naji. Comparison study of activators 

performance for MDEA solution of acid gases 
capturing from natural gas: Simulation-based on a real 
plant. Environmental Technology & Innovation, 17, 
100562, 2020. 

M. R. Abu-Zahra, L. H. Schneiders, LJ. P. Niederer, P. H. 
Feron, G. F. Versteeg. CO2 capture from power plants: 
Part I. A parametric study of the technical performance 

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185317 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

323

𝛼898)18 = 𝛼:18; − 𝛼).(3 (6) 

𝛼 =
𝑛,7!
𝑛(-13.

 (5) 



based on monoethanolamine. International Journal of 
Greenhouse gas control, 1(1), 37-46, 2007. 

H. Ali, N. H. Eldrup, F. Normann, R. Skagestad, R., L. E. 
Øi. Cost Estimation of CO2 Absorption Plants for CO2 
Mitigation–Method and Assumptions. International 
Journal of Greenhouse Gas Control, 88, 10-23, 2019. 

S. A. Aromada, N. H. Eldrup, F. Normann, L. E. Øi. 
Techno-Economic Assessment of Different Heat 
Exchangers for CO2 Capture. Energies, 13(23), 6315, 
2020. 

S. A. Aromada, N. H. Eldrup, L. E. Øi. Capital cost 
estimation of CO2 capture plant using Enhanced 
Detailed Factor (EDF) method: Installation factors and 
plant construction characteristic factors. International 
Journal of Greenhouse Gas Control, 110, 103394, 
2021. 

S. A. Aromada, L. E. Øi. Simulation of improved 
absorption configurations for CO2 capture. In 
Proceedings of the 56th Conference on Simulation and 
Modelling (SIMS 56), October, 7-9, 2015, Linköping 
University, Sweden. Linköping University Electronic 
Press, 119, 21-29, 2015, November. Doi: 
10.3384/ecp1511921. 

T. N. Borhani, M. Wang. Role of solvents in CO2 capture 
processes: The review of selection and design methods. 
Renewable and Sustainable Energy Reviews, 114, 
109299, 2019. 

Chemical Enginnering Essentials for the CPi Professional . 
2021. Available online: 
https://www.chemengonline.com/pci-home. Accessed: 
08.02.2021. 

A. Cousins, L. T. Wardhaugh, P. H. M. Feron. A survey of 
process flow sheet modifications for energy efficient 
CO2 capture from flue gases using chemical absorption. 
International Journal of Greenhouse Gas Control, 5(4), 
605-619, 2011. doi: 
http://dx.doi.org/10.1016/j.ijggc.2011.01.002 

L. Dubois, D. Thomas. Comparison of various 
configurations of the absorption-regeneration process 
using different solvents for the post-combustion CO2 
capture applied to cement plant flue gases. International 
Journal of Greenhouse Gas Control, 69, 20-35, 2018. 

J. Gomes, S. Santos, J. Bordado. Choosing amine-based 
absorbents for CO2 capture. Environmental technology, 
36(1), 19-25, 2015. 

S. M. Hosseini-Ardali, M. Hazrati-Kalbibaki, M. Fattahi, 
F. Lezsovits. Multi-objective optimization of post 
combustion CO2 capture using methyldiethanolamine 
(MDEA) and piperazine (PZ) bi-solvent. Energy, 211, 
119035, 2020. 

R. M. Idem, M. Wilson, P. Tontiwachwuthikul, A. 
Chakma, A Veawab, A. Aroonwilas, D. Gelowitz, D. 
Pilot plant studies of the CO2 capture performance of 
aqueous MEA and mixed MEA/MDEA solvents at the 
University of Regina CO2 capture technology 
development plant and the boundary dam CO2 capture 
demonstration plant. Industrial & engineering 
chemistry research, 45(8), 2414-2420, 2006. 

B. A. Khan, A. Ullah, M. W. Saleem, A. N. Khan, M. Faiq, 
M. Haris. Energy Minimization in Piperazine Promoted 

MDEA-Based CO2 Capture Process. Sustainability,
12(20), 8524, 2020.

A. S. Lee, J. C. Eslick, D. C. Miller, J. R. Kitchin.
Comparisons of amine solvents for post-combustion
CO2 capture: A multi-objective analysis approach.
International Journal of Greenhouse Gas Control, 18,
68-74, 2013.

X. Li, S. Wang, C. Chen. Experimental study of energy
requirement of CO2 desorption from rich solvent.
Energy Procedia, 37, 1836-1843, 2013.

S. Mudhasakul, H. M. Ku, P. L. Douglas. A simulation
model of a CO2 absorption process with
methyldiethanolamine solvent and piperazine as an
activator. International Journal of Greenhouse Gas
Control, 15, 134-141, 2013.

C. Nwaoha, T. Supap, R. Idem, C. Saiwan, P.
Tontiwachwuthikul, M. J. AL-Marri, A. Benamor.
Advancement and new perspectives of using
formulated reactive amine blends for post-combustion
carbon dioxide (CO2) capture technologies. Petroleum,
3(1), 10-36, 2017.

G. T. Rochelle, Y. Wu, E Chen, K. Akinpelumi, K. B.
Fischer, T. Gao, T, C. T. Liu, J. L. Selinger, J. L. Pilot
plant demonstration of piperazine with the advanced
flash stripper. International Journal of Greenhouse
Gas Control, 84, 72-81, 2019.

G. Rochelle, E. Chen, S. Freeman, D. Van Wagener, Q Xu,
A. Voice. Aqueous piperazine as the new standard for
CO2 capture technology. Chemical engineering
journal, 171(3), 725-733, 2011.

R. Zhang, X. Zhang, Q. Yang, H. Yu, Z. Liang, X. Luo.
Analysis of the reduction of energy cost by using MEA-
MDEA-PZ solvent for post-combustion carbon dioxide
capture (PCC). Applied Energy, 205, 1002-1011, 2017.

L. E. Øi. CO2 removal by absorption: challenges in
modelling. Mathematical and Computer Modelling of
Dynamical Systems, 16(6), 511-533, 2010.

L. E. Øi, E. Sundbø, H. Ali. Simulation and economic
optimization of vapour recompression configuration
for partial CO2 capture. Linköping Electronic
Conference Proceedings, 298-303, 2017.
Doi:10.3384/ecp171382982017.

 

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185317 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

324



Studying the effect of pyrolysis gas composition on the gasification 

syngas composition using CPFD simulation 

Ahmad T. Dawod     Britt M. E Moldestad     Hildegunn H. Haugen     Janitha C. Bandara 

Department of Process, Energy and Environmental Technology, University of South-Eastern Norway, Norway, 
ahmad.dawod93@hotmail.com {britt.moldestad, hildegunn.h.haugen, 

janitha.bandara}@usn.no 

 

 

Abstract 
A CPFD model for biomass gasification in a bubbling 

fluidized bed was developed using the Barracuda 

Virtual Reactor 17.4.1 commercial CFD code. Three 

simulation cases were performed at varying the reactor 

temperature and pyrolysis gas compositions. The effect 

of the pyrolysis step was found to be significant, 

especially on the production of CO, H2, and CH4. This 

is mainly because that the pyrolysis step converts 85% 

of the biomass weight into volatiles.  

     Comparing the simulation results with the 

experimental data showed a good agreement on 

predicting CH4 and H2, whereas CO2 was overestimated, 

and CO was underestimated. This might be due to 

inaccuracies in the pyrolysis gas composition or high 

rates in the water-gas-shift reaction used in the 

simulation. 

     The effects of temperature on the synthesis gas 

composition were further investigated. Increasing the 

temperature from 800°C to 900°C, increased the 

concentration of CO and H2 by 2.4% and 1.6% 

respectively, while decreased the concentration of CO2 

and CH4 by 1.3% and 0.5%, respectively. The trends of 

gas compositions showed a good agreement with other 

literature data, except the trend of CH4. This might be 

due to the neglect of tar composition in the volatiles. 

Keywords:     Pyrolysis, Biomass gasification, CPFD.  

1 Introduction 

Waste generation has increased greatly in the ongoing 

many years, and there are no signs of decline. 2.01 

billion tons of municipal solid waste (MSW) is 

generated globally every year (Kaza et al., 2018). 

According to the World Bank estimation, the overall 

waste generation will increase by around 70% to 3.4 

billion tons by 2050. This is due to various components, 

such as population growth, urbanization, economic 

development, and customer shopping habits (Ellis, 

2018). At least 33% of the generated waste worldwide 

is not managed in an environmentally safe way and 

instead dumped or openly burned (Kaza et al., 2018).  

     Biomass resources, also known as bio-renewable 

resources, refer to all types of organic non-fossil 
materials, such as plant, animal, and waste materials 

(Luo & Zhou, 2012) (Alternativ Energy Tutorials, 

2015). Biomass fuels are classified as environmentally 

friendly, and the use of biomass for energy production 

is on the rise. As a result, all available biomass resources 

are becoming increasingly important (Rosendahl, 2013). 

1.1 Pyrolysis and gasification of biomass 

Pyrolysis of biomass is one of the thermal treatment 

technologies that breaks biomass into bio-oil, solid 

biochar, and gases. Pyrolysis is defined as the breaking 

down of any solid (or liquid) hydrocarbon by heating to 

high temperatures in the absence of oxygen (Basu, 

2013). Bio-oil from the pyrolysis is an increasing 

interest due to its economical storage and transportation 

compared to solid biomass, which can be alternative 

combustion fuel for power generation and transportation 

(Luo et al., 2012). Biochar has different industrial 

applications such as solid fuel in boilers and the 

production of activated carbon. Finally, the gas fraction 

can be used as a fuel for industrial combustion or in 

supplying the energy required for the pyrolysis process 

itself (Goyal et al., 2008).  

     Biomass gasification process, in contrast to 

pyrolysis, tends to maximize the gas fraction by 

rearranging the biomass molecular structure in the 

presence of a gasifying agent such as air, oxygen or 

steam (Rosendahl, 2013) (Basu, 2013). Biomass 

particles undergo a chain of conversion processes, 

which include drying, pyrolysis, combustion, and char 

gasification (Sun, 2014; Basu, 2013). The product gas 

mixture is called synthesis gas or syngas, which consists 

of CO2, CO, CH4, H2, H2O, and small amounts of 

heavier hydrocarbons (Monilo et al., 2016).  

     There are three types of reactors (gasifiers) used for 

biomass gasification: fixed or moving bed, fluidized 

bed, and entrained flow gasifiers. They differ mainly in 

their flow conditions, gas-solid contact mode, and 

residence time of biomass inside the reactors (Monilo et 

al., 2016; Badeau et al., 2009). Fluidized bed 

gasification reactors are characterized by effective 

temperature distribution and high mass and heat transfer 

rates compared to other reactor types (Rosendahl, 2013). 

The bed material (e.g., sand) inside the reactor act as a 

heat carrier and a mixing enhancer (Basu, 2013). The 

fluidized bed gasification reactors are classified into two 
types: bubbling fluidized beds and circulating fluidized 
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beds. They differ mainly in fluidized gas velocity and 

gas path (Gomez-Barea & Leckner, 2010). 

1.2 CPFD simulations 

The multiphase particle in cell (MP PIC) method is used 

in the Barracuda VR, which has found to be an efficient 

tool for the simulation of fluidized bed reactors and 

other gas particle processes. Barracuda VR is 

specialized CFD software that is commonly used for 

simulation and analysis of fluidized bed reactors and 

other gas-solid processes (CPFD, 2019). The software is 

competent in optimizing operational conditions, 

geometry, inlets and outlets, flow rates, and particle 

properties, where some of them is difficult to achieve 

with experiments (CPFD Software, 2021). This 

numerical approach solves the fluid phase with the 

Eulerian computational grid and models the solid phase 

with Lagrangian computational particles (Perera, 2013). 

A given number of particles having the same properties 

are expressed by parcels to minimize the computational 

costs (CPFD Software, 2021). The present work uses the 

Barracuda VR software for the simulation of the 

biomass gasification process.  

1.3 Objectives 

The overall aim was to simulate a fluidized bed 

gasification reactor using a computational particle fluid 

dynamic (CPFD) and using actual experimental data 

from pyrolysis as an input. 

     Another aim is to study the composition of the 

synthesis gas obtained from gasification of wood pellets 

and compare them with the experimental results 

performed at USN and conducted by Bandara (Bandara, 

2021). Further, the aim is to study the effect of pyrolysis 

gas composition and reactor temperature on the 

synthesis gas composition.  

2 Material and methods 

The experimental works of a previous study was used 

for the comparison with the simulation results. The 

experimental method is discussed briefly, and further 

details were presented in previous publications 

(Bandara, 2021). 

2.1 Experimental methods 

The gasification experimental rig is a bubbling fluidized 

bed reactor with a fuel capacity of 20kW and is installed 

at the University of South-Eastern Norway. Figure 1 

show a schematic diagram of the biomass gasification 

rig. The reactor has a diameter of 100mm and a height 

of 1000mm. Three electrical heaters are installed on the 

reactor wall which heats up the reactor during operation. 

The gasifying air is heated by an air heater before it 

flows into the reactor. 

 

Figure 1. Schematic diagram of the biomass gasifier. 

Temperature and pressure sensors are placed in different 

locations along the reactor height to measure the 

variation in pressure and temperature during the 

operation. The fuel is stored in a silo and supplied to the 

reactor using two screw conveyers. The bed material 

(sand) is supplied to the reactor from the funnel type 

opening placed at the reactor wall. A constant nitrogen 

flow of 0.5 L/min is maintained across the silo to avoid 

any gas leakages from the reactor to the silo. A sampling 

line is attached at the reactor outlet. A gas 

chromatograph (GC) SRI 8610C using helium as a 

carrier gas, is used to determine the gas composition 

fraction (O2, N2, CH4, CO2, and CO). 

     The experiments were carried out using wood pellets 

of 6 mm in diameter and 5-30 mm in length. The 

experiments were performed at USN and conducted by 

Bandara (Bandara, 2021).  

2.2 CPFD methods 

Computational particle fluid dynamic (CPFD) software 

was used to simulate the biomass gasification reactor. 

The Barracuda Virtual reactor (VR) version 17.4.1 

software simulates multiphase hydrodynamics, heat 

balance, and chemical reactions of fluid-particle 

systems in three dimensions. The Lagrange approach is 

used for the particle phase, and the Eulerian approach is 

used for the gas phase. Pyrolysis data obtained from 

different studies were used as an input for the 

simulation. 

     It should be noted that the simulation was done using 

a square-sectioned geometry to avoid small and missing 

grid sections that can arise in a cylindrical-shaped 

geometry. According to the study done by (Bandara, 

2021), at least one biomass particle should be able to fit 

within the cell to avoid computational errors. However, 

the geometry has the same cross-section area as the 

cylindrical geometry used in experiments.  
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This section discusses the simulation setup and 

procedure used in Barracuda software to establish the 

simulation model.  

2.2.1 Mesh and geometry 

For the simulation of biomass gasification in bubbling 

fluidized bed, a geometry with 8.83 cm square cross-

section and 100 cm height was created using the 

SolidWorks software. Figure 2 shows the meshed 

geometry (Grid), initial bed material, dimension of the 

geometry, and the locations of transient data points. 

 

 

Figure 2. Simulation set-up: (a) Meshed geometry (b) 

Initial bed material and geometry dimensions (c) 

Transient data points. 

As illustrated in Figure 2a, the simulated grid was 

generated with 6000 cells in total. Sand (SiO2) particles 

with a mean diameter of 300µm and density of 2650 

kg/m3 were used as the bed material. The transient data 

points (sensors), as depicted in Figure 2c located along 

the center line of the reactor are used to measure the 

temperature and the pressure at different locations of the 

reactor, whereas datapoint located at the top surface 

measures the gas composition.  

2.2.2 Initial and boundary conditions  

The boundary conditions used in the geometry were 

specified as shown in Figure 3. Air was used as the 

gasification agent, which was implemented as a flow 

boundary. The syngas exit at the reactor top was a 

pressure boundary. The biomass inlet flow boundary 

was at 0.254m above the reactor bottom. Figure 3b 

shows the thermal boundary condition used to specify 

the constant temperature reactor wall, which was 

maintained by electrical heating elements during the 

experiments. 

 

Figure 3. Boundary conditions: (a) Flow boundaries (b) 

Thermal boundary.  

The reactor was initially filled with pure nitrogen at 1 

atm and the temperature was varied according to the 

simulated case. The bed material is initially 100% sand 

(SiO2) with a particle volume fraction of 0.6. The bed 

material was initially at 0.266 m height as illustrated in 

Figure 2b. depicted with blue color. The starting 

temperature was specified to be similar to the target 

operational temperature for all simulated cases. 

2.2.3 Input data 

Wen-Yu/Ergun drag model was adopted for the 

simulation as it was proven to give better predictions 

(Jaiswal, 2018). Table 1 shows the specified biomass 

properties, inlet flows, and simulation parameters used 

in the simulation. 
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Table 1. Biomass particle properties, inlet flows, and 

simulation parameters used in the simulation. 

Biomass properties 

Type Wood pellets (spherical 

shaped) 

Size 2 mm 

Inlet temperature 27°C (300K) 

Density 1000 kg/m3 

Char density (after 

pyrolysis) 

300 kg/m3 

Inlet flows 

Air 3 kg/h 

Biomass 2.4 kg/h 

Biomass carrier gas (N2) 0.5 L/min 

Air-Fuel ratio 1.25 

Simulation parameters 

Close-pack volume 

fraction 

0.6 

Maximum momentum 

redirection from 

collision 

40% 

Normal-to-wall 

momentum retention 

coefficient 

0.85 

Tangent-to-wall 

momentum retention 

coefficient 

0.85 

Diffuse bounce 3 

Drag model Wen-Yu/Ergun 

To define the wood pellets in the simulation software, 

the fraction of the volatiles and solid must be clarified. 

From the proximate analysis, wood pellets are broken 

into 83.9 wt.% volatiles, 15.55 wt.% fixed carbon, 0.55 

wt.% ash, and 7.9 wt.% moisture in the pyrolysis stage. 

The amount of ash is very small; thus, the ash content 

was neglected. The moisture content was included in the 

volatile phase. Biomass char is considered to consist of 

pure carbon. 

     Hundreds of chemical reactions might occur in a 

gasification reactor. However, only the major reactions 

were considered, and the chemical kinetics are presented 

in Table 2. 

 

 

 

 

Table 2. Chemical reactions and Kinetics for air 

gasification 

Chemical reactions Kinetics 

Water gas shift reaction  
 (Ismail et al., 2019) 
R1: CO + H2O ↔ CO2 +
H2 
 

r = 6.4 × 109𝑇 

exp (
−39,260

𝑇
) 

CO combustion 
(Gomez et al., 2010) 
R2: CO + 1/2O2 → CO2 
 

𝑟 = 4.78 × 108 

exp (
−6.69 × 104

𝑅𝑇
) 

[CO][𝑂2]0.3[H2O]0.5 
 

H2 combusion 
(Desroches et al., 1998) 
R3: H2 + 1/2O2 ↔ H2O 

r = 2.2 × 109 

exp (
−1.09 × 105

𝑅𝑇
) 

[H2][02] 
Methane reforming 
(Kumar et al., 2019) 
R4: CH4 + H2O ↔ CO +
3H2 

r = 3.015 × 108 

exp (
−1.2552 ×  105

𝑅𝑇
) 

[CH4][𝐻20] 
Char oxidation 
(Kumar et al., 2019) 
R5: 2C + O2 ↔ 2CO 

𝑟 = 1.47 × 105 

exp (
−1.13 × 108

𝑅𝑇
) 

[02] 
Steam gasification 
(Kumar et al., 2019) 
R6: C + H2O ↔ CO + H2 

𝑟 = 8.28 

exp (
−1.882 × 108

𝑅𝑇
) 

[𝐻2O] 
Boudouard reaction 
(Radmanesh et al., 2006) 
R7: CO2 + C ↔ 2CO 

𝑟 = 3.42 𝑇 

exp (
−15600

𝑇
) [C02] 

2.2.4 Simulation procedure 

Three simulation cases were established by changing the 

reactor and pyrolysis temperatures. and fitting the 

pyrolysis gas compositions according to data from the 

literature. The specific data of pyrolysis gas 

composition for each case are tabulated in Table 3.  

Table 3. Input data for the simulation cases (Santamaria, 

et al., 2021). 

Case 

number 

Gas composition (wt.%) 

H2O H2 CH4 CO2 CO Tar 

(benzene) 

Case-A 9 2 12 36 41  

Case-B 9 1 11 24 37 18 

Case-C 9 2 12 36 41  

For Case-A, the reactor temperature was set to 800°C 

and the pyrolysis gas composition for 800°C was fitted. 

Case-B was modified by setting the reactor temperature 

to 800°C and fitting the pyrolysis gas composition for 

700°C. It was assumed that if the mixing is not efficient 
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at the feeding point, the temperature can drop down to 

700°C. In this case, the composition of tar (benzene) 

was included because pyrolysis yields more liquid at 

lower temperatures. Case-C is modified by increasing 

the reactor temperature up to 900°C and use the 

pyrolysis gas compositions for 800°C. The special aim 

of these cases was to study the effect of temperature and 

pyrolysis gas composition on biomass gasification. And 

thereby, compare the results with the experimental 

results from other studies performed at the USN 

gasification rig.  

     The total simulation time for each case was set to 200 

seconds with a time step of 0.001 seconds. The gas 

compositions measured by the transient data points were 

averaged for the last simulated 100 seconds.  

3 Results and discussion 

This section discusses the simulation data for each case. 

The data were further compared against experiments. 

3.1 Case-A 

Case-A was modified by setting the reactor temperature 

to 800°C using the pyrolysis gas composition for 800°C. 

Figure 4 shows the mass fraction of product species at 

the reactor outlet plotted after 100s of simulated time. 

The average mass fraction of CO was 10.4%, CO2 was 

39.4%, CH4 was 4.2% and H2 was 1.1%.  

 

Figure 4. Case-A: Outlet mass fraction variation with 

time. 

Figure 5 shows an outline of the (a) fluid temperature 

(b) particle temperature and (c) particle volume fraction 

across the bed at 200s. The fluid and particle 

temperatures are above 800°C (1073K), which is the 

desired temperature. This indicates that the gasification 

reactions are continuously maintained. From Figure 5c, 

the particles seem to be well mixed, which is good in 

terms of temperature distribution. The air flow might be 

a little bit high, but as long the particles remain within 

the bed it is accepted. However, limited air flows can 

reduce the generation of combustible gases such as CO, 

H2, and CH4. 

 

Figure 5. Reactor conditions (a) Fluid temperature [K] 

(b) Particle temperature (c) Particle’s volume fraction. 

3.2 Case-B 

In Case-B, the reactor temperature was kept at 800°C 

and the pyrolysis gas composition for 700°C was fitted. 

Figure 6 shows the mass fraction of product species at 

the reactor outlet plotted after 100s of simulated time. 

The average mass fraction of CO was 13.2%, CO2 was 

32.4%, CH4 was 4.1% and H2 was 0.9%. As the 

pyrolysis gas composition for 700°C was fitted in this 

case, the tar content is significant. Thereby, the tar 

composition was modified within the volatiles and the 

tar reactions were included in the simulation. The tar 

was assumed by a single component, that is benzene 

C6H6. 

 

Figure 6. Case-B: Outlet mass fraction variation with 

time. 

3.3 Case-C 

Finally, Case-C was modified by setting the reactor 

temperature to 900°C and fitting the pyrolysis gas 

composition for 800°C. Figure 7 shows the mass 

fraction of product species at the reactor outlet plotted 

after 100s of simulated time. The average mass fraction 

of CO was 13.1%, CO2 was 37.9%, CH4 was 3.9% and 

H2 was 1.2%. 
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Figure 7. Case-C: Outlet mass fraction variation with 

time. 

From Figure 4, Figure 6, and Figure 7, the calculated 

product mass fractions are showing a noisy and unsteady 

behavior where, the steady-state is never reached. This 

is due to the unsteady characteristics of the fluidized 

bed, where different chemical and physical 

transformations are taking place. However, it was 

noticed from the plots that the average mass fractions 

were stable over time. 

3.4 Comparison of the cases 

The molar compositions of the syngas from simulations 

and experiments at 800°C is given in Figure 8 and Table 

4. In all cases, N2 contributed to the highest molar 

concentration and ranged between 41.5% and 43.5% of 

the total. This is reasonable, as nitrogen is an inert gas 

and does not involve in the reactions. The molar 

concentrations of O2 were monitored to be very close to 

zero. This is mainly due to the occurrence of oxidation 

reactions. The H2O molar concentrations were measured 

to be 2.5%, 1.6%, and 1.2% for Case-A, B, and C, 

respectively. The lower percentage of H2O produced in 

Case-C is mainly due to the increase of temperature to 

900°C. Higher temperatures enhance the steam 

gasification reaction (R6) to proceed forward, which in 

turn produces more H2. In all cases, the molar 

concentration of CO2 was highest followed by H2 and 

CO, respectively. The lowest produced gas component 

was CH4. 

 

 

Figure 8. Molar compositions of the gas species monitored 

at the reactor outlet for (a) Case-A (b) Case-B (c) Case-C. 

Case-A and Case-B were simulated using the same 

reactor temperature but different pyrolysis gas 

compositions. Therefore, the results from the two cases 

are compared to study the effect of the pyrolysis step. 

Figure 9 and Figure 10 show the input pyrolysis gas 

compositions for Case-A and B respectively, compared 

to the synthesis gas compositions.  

     The molar concentration of CO2 increased slightly by 

3% and 2.6% in the synthesis gas for Case-A and B, 

respectively. In the contrast, the CO concentration 

decreased significantly by 27% and 29.9% in the 

synthesis gas for Case-A and B, respectively. The 

concentration of CH4 decreased by 6.9% and 7.1% in the 

synthesis gas for Case-A and B, respectively. The 

concentration of H2 decreased by 8.2% and 4.7% in the 

synthesis gas for Case-A and B, respectively. 

The increase of CO2 is mainly due to the oxidation of 

char and CO in the gasifier. Oxidation and water gas 

shift reaction (R1) are the main drives for the reduction 

of CO. Consumption of methane is mainly due to steam 

methane reforming reaction (R4), which is in turn 

produces more CO.  

     It was observed that higher concentrations of the 

combustible gases including CH4, CO, and H2 released 

in the pyrolysis stage contributed to higher 

concentrations of these gases in the synthesis gas. 

Therefore, pyrolysis stage is critical in deciding how 

much CH4, CO, and H2 will be in the synthesis gas. This 

is mainly because that the pyrolysis step converts 85% 

of the biomass weight into volatiles.  

 

Figure 9. Case-A: Input pyrolysis gas composition 

compared to synthesis gas composition. 

 

Figure 10. Case-B: Input pyrolysis gas composition 

compared to synthesis gas composition. 

Figure 11 shows the average gas compositions from the 

simulation of Case-A and B compared with the 
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experimental results. It should be noted that only Case-

A and B are comparable with the experimental results, 

as they have the same reactor temperature. Both cases 

show a good agreement with the experimental results for 

CH4 and H2. Case-B gave a closer prediction on CO2 and 

CO, which is not as expected because Case-B uses the 

pyrolysis gas composition for 700°C. This might be due 

to the tar that was defined in Case-B. However, in both 

cases, the concentration of CO2 was overestimated, CO 

was underestimated while CH4 was slightly 

overestimated.  

     The overestimation of CO2 and underestimation of 

CO might be due to some inaccuracies in the pyrolysis 

gas composition or high rates in the water-gas-shift 

reaction (R1) where CO is consumed, and more CO2 is 

produced. Moreover, there can also be some 

experimental uncertainties in measuring the gas 

composition, especially related to the GC measurements 

and the gas sampling. During the experiment, biomass 

feeding was not continuous in contrast to the simulation. 

As the pyrolysis gas composition highly affects the final 

syngas composition, discontinuous feeding might cause 

deviations in the actual measured value. In the 

simulation, it is possible to take a wide range of 

measurements, which is difficult during the 

experiments. 

     However, the deviation between experiment and 

simulation cannot be avoided. This is mainly because 

the reaction network is decreased, devolatilization is 

simplified and the tar generation is minimized or 

ignored. 

Table 4. Average gas composition (mole basis) from the 

simulated cases and experiment. 

 

 

Figure 11. Average product gas composition from the 

three cases compared to the experimental results. 

Case-A and C are compared with each other to study the 

effect of temperature on the synthesis gas composition. 

Two cases are defined with the same pyrolysis gas 

composition but with different temperatures. Figure 12 

shows the product gas composition from Case-A and 

Case-B with varying reactor temperature. Increasing the 

temperature from 800°C to 900°C, the CO molar 

concentration increased from 10% to 12.4%, CO2 

decreased from 24.1% to 22.8%, CH4 decreased slightly 

from 7% to 6.5% and H2 increased from 14.8% to 

16.4%. This is mainly due to the reactions that are 

enhanced with increasing temperature including, char 

partial oxidation reaction (R5), water gas shift reaction 

(R1), and the Boudouard reaction (R7). Further, the 

reactor temperature has a significant effect on the syngas 

product yields. Therefore, increasing the reactor 

temperature contributes to higher gas composition and 

lower tar yields. However, the trends show a good 

agreement with literature and other experiments except 

for the trend of CH4. This might be due to the neglect of 

the tar composition in the volatiles.  

 

Figure 12. Product gas molar fraction for Case-A and 

Case-C at different temperatures. 

4 Conclusion 

Computational particle fluid dynamic (CPFD) 

simulations were carried out to study the composition of 

the synthesis gas obtained from the air gasification of 

wood pellets. Three simulation cases were created by 

varying the temperature and the pyrolysis gas 

compositions. 

     In all the cases, production of CO2 was highest, and 

then come H2, CO, and CH4, respectively. The effect of 

the pyrolysis step on synthesis gas composition was 

found to be significant, especially on the production of 

CO, H2, and CH4. This is mainly due to the 85% by 

weight of the synthesis gas was produced during the 

pyrolysis of biomass.  

     Comparing Case-A and B with experimental data 

showed a good agreement on predicting CH4 and H2 

while overestimation of CO2 and underestimation of 

CO. The deviation of CO2 and CO might be due to 

uncertainty in the pyrolysis gas composition or high 

kinetic rates of water-gas shift reaction used in the 

simulation. Including the decomposition of tar in the 

simulation seems to give better prediction performance, 

especially for CO2 and CO. 

 
Case-A Case-B Case-C Experiment 

CO2 24.1 20.6 22.82 14 

CH4 7 7.1 6.5 4 

CO 10 13.1 12.4 19 

H2 14.8 12.3 16.4 17 
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The effect of temperature was established by comparing

Case-A and C, where the temperature was varied from

800°C up to 900°C. Increasing the temperature

increased the concentration of CO and H2 by 2.4% and

1.6% respectively and decreased the concentration of

CO2 and CH4 by 1.3% and 0.5%. The trends showed a

good agreement with other experiments from the

literature, except the trend of CH4. This might be due to

the neglect of the tar compositions in the volatiles.
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Abstract 
The calciner has a significant role in the production of 

cement. It is the most energy-intensive process unit in 

the production process. Most modern calciners are 

entrainment-based, i.e., a hot gas pneumatically conveys 

the particles through the calciner. A fluidized bed is an 

alternative to the entrainment calciner, which may be of 

special interest if the calcination process is to be 

electrified, so that the raw meal is mainly calcined by 

heat transfer from a hot surface and not by direct contact 

with hot combustion gases. The fine particle size of the 

raw meal, however, makes it a challenge to fluidize. 

This study looks into an alternative solution in which the 

cement raw meal is mixed with coarse sand particles to 

enhance the fluidization behavior. 

Experiments are first conducted to fluidize pure 

cement raw meal (fine particles) and sand (coarse 

particles) separately. Then they are mixed at fine/coarse 

mass ratios of 25%/75% and 50%/50%.  

Simulations are then performed, using a commercial 

CPFD software (Barracuda ®, version 20.0.0), to 

replicate the results from the experiments. 

The experimental results indicate that it is technically 

feasible to fluidize cement raw meal by mixing it with 

coarse inert particles at the mentioned fine/coarse mass 

ratios. Stable fluidization was observed at a superficial 

gas velocity of 0.3 m/s. The pressure drop results from 

simulations and experiments matched quite well at both 

mixing ratios. Hence, the CPFD simulations may be 

used as an aid in the design of a potential full-scale 

calciner applying this concept.  

Keywords: Fluidization, Cement, Binary particles, 

Calcination, Electrification 

1 Introduction 

Around 7% of the global CO2 emissions are from the 

cement industry (IEA, 2020). In modern cement plants, 

the CO2 comes from the decarbonation of the calcium 

carbonate in the raw meal (about 70 %) and from the 

fuel combustion (about 30 %). Reducing the CO2 

emissions from such plants can be done by post-

combustion capture of the CO2 in the exhaust gas from 

the plant. However, calcination by electrification of the 

calciner will generate a pure gas CO2, which makes it 

possible to significantly reduce the CO2 emissions 

without building a separate capture plant, provided the 

electricity is produced from a renewable energy source. 

This method can reduce around 70 % of the CO2 

emissions from a modern cement plant (Tokheim et al., 
2019). 

Most modern calciners operate in the entrainment 

mode where the raw meal is entrained by the 

combustion flue gases while providing heat for 

calcination reaction (Becker et al., 2016). It may be 

possible to electrify the entrainment calciner by 

inserting heating rods. However, the main challenge 

with this concept is the potential heat loss from a large 

amount of recycling gas required for raw meal 

entrainment (Jacob and Tokheim, 2021).  

An alternative solution to this concept is a fluidized 

bed calciner, which will operate at a lower velocity and 

will require much less recycle gas. Moreover, a high 

heat transfer coefficient and a uniform temperature 

distribution due to good mixing in the system are 

additional advantages (Kunii and Levenspiel, 1991). 

However, due to the small particle size in a traditional 

cement raw meal, it may not be feasible to fluidize the 

particles properly (Samani, 2020).  

A raw meal typically has a particle size distribution 

in the range 0.5 – 250 µm, where 70-80% of the particles 

fall in the range of the Geldart C particle size class. 

Geldart C particles are difficult to fluidize due to their 

cohesive nature (Geldart, 1973). A previous 

investigation demonstrated this challenge as rat hole 

formation in the bed was observed (Samani et al., 2020). 

Mixing the cement raw meal with coarse particles 

could be an alternative way of fluidizing these particles 

(Samani et al., 2020). This concept of mixing cement 

raw meal with coarse inert particles is called “Powder-

Particle Fluidized Bed (PPFB)” (Kato et al., 1991). The 

PPFB concept was demonstrated experimentally at a 

limestone feeding rate of 15 g/hr and a superficial gas 

velocity of 0.45 m/s. The static bed height of coarse 

particles was varied in the range 0.1 – 0.2 m. The 

experiment was done in a column with a diameter of 

0.03 m and a height of 0.65 m (Tashimo et al., 1999). 

This study aims to investigate the feasibility of 

fluidizing a binary mixture by mixing fine cement raw 

meal and coarse sand particles at a mass ratio that may 

be appropriate for a full-scale process. The feasibility is 

tested experimentally with a cold-flow lab-scale 
fluidized bed at different mass ratios. Computational 

particle and fluid dynamics (CPFD) simulations are 
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further performed with the commercial software 

Barracuda ®, version 20.0.0, to check if the results from 

the experiments can be replicated through computer 

simulations. The intention is to use the results from this 

study to design a full-scale calciner.  

2 Experimental Method 

The experimental setup, the particle characteristics, and 

the experimental procedure are described below. 

2.1 Experimental setup 

The experiments were conducted in a lab-scale fluidized 

bed. The lab-scale fluidized bed is a cylindrical tube 

made of Lexan plastic. The internal diameter and the 

height of the tube are 0.085 and 1.4 m, respectively. The 

tube has nine pressure transmitters placed along its axial 

direction, and a LabVIEW® programme records the 

pressure readings. The experimental setup is shown in 

Figure 1. 

 

Figure 1: Experimental setup 

The distance between PT1 and PT2 is 7 cm, and the 

other transmitters have an equal spacing of 10 cm, as 

shown in Figure 1. The particles are fluidized with air at 

ambient conditions. The mass flow rate of the air is 

controlled with a flowmeter. 

The air distributor, made of a highly porous sintered 

stainless steel (Siperm R20®, Tridelta Siperm GmbH), 

is placed between the fluidizing air and particles. The 

porosity of the distributor is 37-42 %.  

The pressure drop from the air distributor (∆𝑃𝑑) was 

measured at different gas velocities by passing air 

through the distributor without any presence of 

particles. The pressure drop versus air velocity was then 

fitted to a non-linear equation. The experimental result 

of pressure drop and the prediction from the non-linear 

equation are shown in Figure 2. 

 

Figure 2: Fitting pressure drop across the distributor to 

second order velocity function. 

2.2 Particle characteristics 

A regular cement raw meal from a local Norwegian 

cement plant was used as fines in the experiment. The 

fine particles had a size distribution between 0.5 and 250 

µm, and almost 80 % of the particles were below 30 µm. 

Sand with a particle size between 100 and 600 µm was 

used as the coarse particles in the experiment. 

Four different mass fractions of fines were used in the 

experiments; 0, 25, 50 and 100 %. The total mass of fine 

and coarse particles was 900 g in all experimental cases. 

An overview of the experimental cases and the particle 

properties is shown in Table 1. 

Table 1: Experimental cases and particle properties 

Parameters 
100% 
fines 

50% 
fines 

25% 
fines 

0% 
fines 

Mass of raw meal [kg] 0.9 0.45 0.225 0 

Mass of sand [kg] 0 0.45 0.675 0.9 

Average particle 
density [kg/m³] 

2897 2774 2712 2650 

Bed Height [cm] 15.2 11.7 10.4 10.2 

Bulk density [kg/m³] 1053 1368 1540 1570 

Void fraction [-] 0.64 0.51 0.43 0.41 

 

Laser diffraction with a HELOS (RODOS dry 

dispersion) particle size analyzer was used to measure 

the particle size distribution (PSD) for each case. The 

resulting distribution is shown in Figure 3. 
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Figure 3: Cumulative particle size distribution (PSD) 

plot for the experimental cases 

2.3 Experimental procedure 

The particles were carefully weighed and poured into 

the column. The bed height in each case was noted down 

(cf. Table 1).  

The air velocity was then increased in steps to 

different levels. By experience it was found that the 

system reached a pseudo-steady state within 160 

seconds at a certain level. Hence, for each step, the 

velocity was held constant for 200 seconds. The 

pressure measurements between 160 and 200 s were 

used to determine the mean pressure and pressure 

fluctuations at the pseudo-steady state conditions. A 

high standard deviation in these fluctuations may 

indicate a bubbling behavior in the bed (Jaiswal et al., 

2018). 

3 Modelling methods 

Monte-Carlo simulations were used to numerically 

determine the PSD of the mixtures. Computational 

particle and fluid dynamics (CPFD) modelling was used 

to simulate the particle behaviour in the bed, applying a 

suitable drag model. These models, as well as the 

simulation setup, are described below.  

3.1 Monte-Carlo simulations to analyze PSD 

A Monte-Carlo simulation may be used to analyze the 

particle size distribution (PSD). According to the law of 

large numbers, as the sample size increases, the 

distribution of the sampled particles tends to have its 

original distribution. Samples may be generated from 

the distribution using various algorithms. In this study, 

a modified version of the inverse sampling algorithm is 

used: 

1. Generate a random number between 0 and 1 from a 

uniform distribution. This number represents the 

cumulative probability (y-axis) in Figure 3. 

2. At the randomly generated cumulative probability, 

read the value of diameter (𝑑𝑝) by linear 

interpolation. This value of 𝑑𝑝 is the generated 

sample. 

3. Repeat step 1 and step 2 to get the required number 

of samples (10,000 in our case). 

The histogram of the generated sample may, however, 

not be smooth enough to make inferences. Kernel 

density estimation (KDE) is a non-parametric method 

to estimate the probability density from random 

variates. It is used for data smoothening where 

inferences about the data must be made. The KDE 

algorithm implemented in the Seaborn package of 

Python 3.8 was used to smoothen the distribution. This 

method is useful for predicting the probability density 

of the mixture if the probability density of pure 

components is known. The prediction test is also 

simulated in this study. 

3.2 CPFD method 

Computational particle and fluid dynamics (CPFD) is a 

method to simulate gas-solids multiphase flow. This 

method is based on Eulerian-Lagrangian coupling, and 

it uses a unique concept called the multiphase-particle-

in-cell (MP-PIC) method (Andrews and O’Rourke, 

1996). The MP-PIC method solves the gas phase 

equation by the Eulerian approach and the solid phase 

equations by the Lagrangian approach. This approach 

makes it quite similar to the traditional discrete element 

method (DEM). However, some differences, such as the 

particle-to-particle force calculations and the 

assumption of numerical particles, make the CPFD 

method much more computationally efficient than the 

traditional DEM method for an industrial system 

(Snider, 2007). 

The simulations were performed at the experimental 

conditions to study the physics of particles in each case. 

The volume-averaged continuity and momentum 

equation for a two-phase incompressible flow is (Snider 

2007), 

𝛿𝜃𝑓

𝛿𝑡
+ ∇ ∙ (𝜃𝑓𝑢𝑓) = 0 (1) 

𝛿(𝜃𝑓𝑢𝑓)

𝛿𝑡
+ ∇ ∙ (𝜃𝑓𝑢𝑓𝑢𝑓) = 

−1

𝜌𝑓
∇𝑝 −

1

𝜌𝑓
𝐹 + 𝜃𝑓𝑔 +

1

𝜌𝑓
∇ ∙ τ 

(2) 

Here, 𝜃𝑓 is the fluid volume fraction, 𝑢𝑓 is the fluid 

velocity, 𝜌𝑓 is the fluid density, 𝑝 is the fluid pressure, 

τ is the fluid stress tensor, 𝑔 is the gravitational constant, 

and 𝐹 is the momentum exchange rate per volume 

between fluid and the particles. 

The acceleration in the particles can be further 

modelled by (Snider, 2007), 
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𝛿𝑢𝑝

𝛿𝑡
= 𝐷(𝑢𝑓 − 𝑢𝑝) −

1

𝜌𝑝
∇𝑝 + 𝑔 −

1

𝜃𝑝𝜌𝑝
∇𝜏𝑝

+ 𝐹𝑆 
(3) 

Here, 𝑢𝑝 is the particle velocity, 𝜌𝑝 is particle density, 

𝐷 is the interphase drag function, 𝜃𝑝 is the particle void 

fraction, 𝜏𝑝 is the particle normal stress and 𝐹𝑆 is the 

particle friction. 

The particle-to-particle forces are modelled with the 

normal stress of particle (𝜏𝑝), and this is given by 

(Snider 2001), 

𝜏𝑝 =
𝑃𝑠𝜃𝑝

𝛽

𝑚𝑎𝑥[𝜃𝑐𝑝 − 𝜃𝑝, 𝜀(1 − 𝜃𝑝)]
 (4) 

Here the constant 𝑃𝑠 has a unit of pressure, 𝜃𝑐𝑝 is 

particle void fraction at close packing, 𝛽 is a constant 

with a recommended value between 2 and 5, 𝜀 is a very 

small number activated when particle void fraction 

comes very close to its close pack limit. 

The blended acceleration model (BAM) is an extra 

option implemented in Barracuda to account for the 

fluidization behavior of particles of different size. The 

particles with different size have a lower relative motion 

due to sustained particle contacts. BAM is used to 

simulate this phenomenon, and without BAM, the 

segregation of particles in simulations may be higher 

than in reality. 

Particle to wall interaction modelling in Barracuda is 

controlled mainly by three variables; normal-to-wall 

momentum retention (𝑟𝑁), tangent-to-wall momentum 

retention (𝑟𝑇) and diffuse bounce index (𝑑𝑏𝑖).  
A schematic of a particle colliding with a wall with 

initial velocity (𝑢𝑛) and attaining a final velocity (𝑢𝑛+1) 

is shown in Figure 4. 

 

Figure 4: Schematic of particle collision with the wall 

The diffuse bounce index (𝑑𝑏𝑖) defines the degree of 

scattering of particles after the collision (cf. Figure 4). 

This parameter applies to a rough wall, which is usually 

present in an industrial system. The normal-to-wall 

momentum retention (𝑟𝑁) is the fraction of the normal 

component of particle momentum retained after a 

collision with wall. The tangent-to-wall momentum 

retention (𝑟𝑇) is the fraction of tangential component of 
particle momentum retained after a collision with wall.  

The choice of values for the parameters discussed in 

this section varies in the literature. The values used in 

this study are shown in Table 2. 

Table 2: Particle interaction parameters used in this 

study 

Particle-to-particle 

interaction 

Particle-to-wall 

interaction 

Parameter Value Parameter Value 

𝑷𝒔 1 𝑟𝑁 0.4 

𝜷 3 𝑟𝑇 0.95 

𝜺 10-8 𝑑𝑏𝑖 2 

3.3 Drag modelling 

The interphase drag function (𝐷) is used to model 

particle acceleration. There are many models available 

for drag modelling.  

The Ergun drag model defines this function as 

(Beetstra et al., 2007), 

𝐷 = 0.5 (
𝑐1𝜃𝑝

𝜃𝑓𝑅𝑒
+ 𝑐𝑜)

𝜌𝑓(𝑢𝑓 − 𝑢𝑝)

𝑟𝑝𝜌𝑝
 (5) 

Here, 𝑐𝑜 and 𝑐1 are model coefficients and 

recommended value for 𝑐𝑜 is 2 and for 𝑐1 is 180 

(Beetstra et al., 2007). This model was developed using 

data for a dense bed. 

The Wen-Yu drag model was developed based on 

fluid void fraction and single-particle drag (Wen and 

Yu, 1966). The drag coefficient is defined as, 

𝐶𝑑 =

{
 
 

 
 

24

𝑅𝑒
𝜃𝑓
𝑛𝑜            𝑅𝑒 < 0.5

24

𝑅𝑒
𝜃𝑓
𝑛𝑜(𝑐𝑜 + 𝑐1𝑅𝑒

𝑛1) 0.5 ≤ 𝑅𝑒 ≤ 1000

𝑐2𝜃𝑓
𝑛𝑜                   𝑅𝑒 > 1000

 (6) 

Here, the drag coefficient (𝐶𝑑) is related to the 

interphase drag function by, 

𝐷 =
3

8
𝐶𝑑
𝜌𝑓(𝑢𝑓 − 𝑢𝑝)

𝑟𝑝𝜌𝑝
 (7) 

The Wen-Yu drag model is more appropriate for dilute 

flows, while the Ergun drag model is more appropriate 

for dense flows. Using a blend may capture the best of 

both drag models. The blended model is given by, 

𝐷 =

{
 
 

 
 

𝐷1           𝜃𝑝 < 0.75𝜃𝐶𝑃
(𝐷2 − 𝐷1)(𝜃𝑝 − 0.75 𝜃𝑐𝑝)

0.85𝜃𝑐𝑝 − 0.75𝜃𝑐𝑝
+ 𝐷1  0.75𝜃𝑐𝑝 ≤ 𝜃𝑝 ≤ 0.85𝜃𝑐𝑝

𝐷2  𝜃𝑝 > 0.85𝜃𝐶𝑃

 (8) 

Here, 𝐷1 is the drag function from the Wen-Yu equation 

and 𝐷2 is the drag function from the Ergun equation.  

In this study, the blended model was used for the 

coarse particles and the mixture cases, whereas the 

Wen-Yu model was used for the fine cement raw meal.  

3.4 Simulation setup 

The simulations were set up to match the experimental 

conditions. A three-dimensional geometry of the tube 
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was developed with an internal diameter of 0.085 and a 

height of 1.4 m. A uniform grid with a total of 17600 

(10×10×176) cells in the tube was created. The pressure 

sensors were placed at the height of 4.2 cm and 14.2 

from the bottom to replicate the PT2 and PT3 sensors. 

The resulting mesh and the pressure monitoring points 

are shown in Figure 5. 

 

Figure 5: Mesh used in the simulations and pressure 

probe to monitor results 

The simulation results are presented after simulating 

for 30 seconds in each case as it was found that a 

pseudo-steady state was reached after 30 seconds of 

simulations. 

4 Results and Discussions 

4.1 Monte-Carlo simulation results 

The PSDs from the Monte-Carlo simulations are given 

in Figure 6. Results from mixing pure particles are given 

in Figure 7. The results indicate that Monte-Carlo 

sampling is an efficient algorithm to estimate the 

particle size distribution of mixed powders. 

 

Figure 6: Probability distribution of the particles 

 

Figure 7: Sampling from measured PSD vs estimated 

PSD by sampling from pure powders 

4.2 Pure particle results 

A corrected pressure drop between PT1 and PT2 (cf. 

Figure 1) was calculated by subtracting the pressure 

drop over the distributor from the measured pressure 

drop between point 1 and 2 (cf. Figure 2). The corrected 

bed pressure drop between PT1 and PT2 (excluding 

distributor pressure drop), ∆𝑃12, is shown in Figure 8. 

The standard deviation of the pressure drop (𝜎𝑃) is 

plotted as a band and also as a separate dotted line. 

 

Figure 8: Pressure drop profile for pure particle 

fluidization 

The minimum fluidization velocity (𝑈𝑚𝑓) for the 

pure coarse particles is at a superficial gas velocity of 

0.06 m/s. The minimum fluidizing velocity (𝑈𝑚𝑓) of the 

fine particles could not be measured accurately as the 

disturbances in the bed started at the lowest superficial 

gas velocity of 0.01 m/s. Both coarse and fine particles 

had similar pressure drop readings at the fluidizing 
conditions because the weight of both particles is the 

same. The pressure drop fluctuations for coarse particles 

are high when the velocity is high. In contrast, for the 
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fine cement raw meal, the fluctuations were low. These 

results indicate an excellent fluidization behavior of the 

sand particles and poor fluidization behavior of the fine 

cement raw meal. This inference is also consistent with 

visual observation of the bed. 

The corrected bed pressure drop between PT1 and 

PT2 (excluding distributor pressure drop), ∆𝑃12, is not 

directly comparable to the simulation results as pressure 

point 1 in the experiment is not present in the simulation 

model. So, the experimental pressure drop between 

sensor PT2 and PT3 (∆𝑃23) is compared against the 

simulation results for pure particles in Figure 9. 

  

Figure 9: Pressure drop profile comparison of 

experiments and simulations for pure particles 

The results for the coarse particles show that the 

measured and simulated pressure drop match quite well. 

In the experiments, a pressure drop peak corresponding 

to the minimum fluidization velocity is observed. In the 

simulation, however, the peak is predicted at a lower 

velocity. This peak may not be the minimum 

fluidization velocity as the pressure drop keeps 

increasing almost at the same gradient after the peak. 

The simulated pressure drop curve starts to flatten out at 

a velocity higher than the minimum fluidization velocity 

predicted from experiment. Thus, the minimum 

fluidization velocity value predicted from the simulation 

is higher than the experimental value. The coarse 

particles have a wide size distribution (cf. Figure 3), 

which means an interaction between particles of 

different sizes is expected. Some of the interaction 

effects are neglected in the CPFD model and could be a 

reason for the deviation. This effect may be modelled 

with the BAM feature (cf. Section 3.2). However, for 

this work, the current results are considered good 

enough for further analysis.  

The results for the fine particles show that the 

pressure drop is under-predicted in all the cases. In a real 

system, the particles tend to agglomerate, and this 

increases the pressure drop in the system. This 

agglomeration effect may be the reason for the deviation 

as it is not modelled in this study. Still, the results are

considered good enough for further study.

4.3 Experimental results of binary particle

The pressure drop (∆𝑃12) results from fluidizing binary

particles were estimated in the same way as in Section

4.2. The results are shown in Figure 10.

 

 

Figure 10: Pressure drop profile for mixed particles 

The minimum fluidizing velocity (𝑈𝑚𝑓) could not be 

accurately determined as the disturbances started at the 

lowest velocity (0.01 m/s) in both cases of binary 

particle fluidization. A low minimum fluidizing velocity 

for a binary mixture may be expected for a large particle 

size ratio (Rao and Curtis, 2011). A large particle size 

ratio is present in this study, as the Sauter mean diameter 

of the fine cement raw meal is 5µm and that for the 

coarse sand is 226 µm. Sharp peaks in the pressure drop 

are observed when the binary particles are fluidized. 

One explanation for the sharp peaks is the phenomenon 

of entrapment. According to this phenomenon, if some 

of the fine particles in the top layer are entrapped by the 

coarse particles, at a sufficiently high gas velocity, the 

fines may gain enough momentum to break through the 

bed, causing pressure drop peaks (Rao and Curtis, 

2011). 

The primary outcome of this study is the fluidization 

conditions of the binary particles. The pressure drop 

fluctuations had a relatively high standard deviation in 

both cases of binary mixing. This observation may 

indicate good bubbling behavior. However, the visual 

observation showed a better bubbling behavior for the 

case with a 25%/75% fine/coarse mass ratio. This 

mixing ratio may be good for operating the fluidized bed 

calciner. However, additional studies on the segregation 

pattern should be done to determine if the fine cement 

raw meal particles may be removed easily from the 

binary mixture. 
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4.4 Simulation of binary particles 

A comparison of pressure drop readings in experiments 

and simulations is shown in Figure 11.  

  

Figure 11: Pressure drop profile comparison of 

experiment and simulations for mixed particles 

The deviations in the pressure drop profile may be 

due to the deviations in the pure component (discussed 

in Section 4.2). Additional deviations may be due to 

segregation effects in the mixed state. However, the 

pressure drop results are in the same range. Thus, the 

results may be useful for additional simulations of a full-

scale calciner. 

Simulation results are shown in Figure 12 and Figure 

13. The results are displayed at different superficial gas 

velocities (𝑈𝑜) after 30 seconds of simulation (system 

reached a pseudo-steady state). The fine particles are 

displayed in green color and coarse particles are 

displayed in red color. 

 

 

Figure 12: Simulation results from 25% fines at 

different superficial gas velocities (𝑼𝒐) (Green = Fines, 

Red = Coarse) 

 

Figure 13: Simulation results from 50% fines at 

different superficial gas velocities (𝑼𝒐) (Green = Fines, 

Red = Coarse) 

The snapshots of simulation results shows that the 

fine particle rises in the column as the superficial gas 

velocity is increased. At superficial gas velocity of 

around 0.25 m/s, the fine particles are entrained up to 

the total column length. The fine particles are further 

entrained outside the column at this gas velocity. These 

results may be useful while designing a full-scale 

calciner. 

5 Conclusion 

Fluidizing fine cement raw meal (fines) by mixing with 

sand (coarse) particles appears to be technically 

feasible. The standard deviation of the pressure 

fluctuation is a good measure to determine the 

fluidization conditions. The pure coarse particles had 

the best fluidizing quality, as expected, while the pure 

fine particles did not fluidize. For the binary mixtures,  

stable fluidization was observed with a superficial gas 

velocity higher than 0.25 m/s at fine/coarse mass ratios 

of 25%/75% and 50%/50%. 

Visually, the fluidization quality was better with a 

fine/coarse mass ratio of 25%/75%. This condition may 

be used to operate a fluidized bed calciner by mixing 

cement raw meal and inert coarse particles. 

Simulations were performed to replicate the results 

from the experiments. The results showed some 

deviations in pressure drop predictions. However, 

results were not too far off, so simulations may be 

applied to a scaled-up version of the calciner.  

In practice, some other factors such as segregation, 

separation efficiency, effect on capacity and energy with 

25 % fines, should be addressed in further studies. 

Considering these effects, an appropriate height should 

be selected to remove the fines from the top of the bed. 

Alternatively, a classifier (Jayarathna et. al., 2019) may 

be placed downstream to separate the fines and the 

coarse particles. These factors may be included in later 

studies of a scaled-up version of the calciner. 
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Abstract 

Early CPFD simulation studies on designing a fluidized 

bed reactor for alumina chlorination showed that the 

model suffers from high particle outflow and dense 

phase bed channeling. The present study is aimed to 

optimize the previous alumina chlorination fluidized 

bed reactor model through modified geometry, 

parameter modifications, and improved meshing. To 

optimize the performance of the reactor, complex 

geometry with an extended top section was combined 

with a regular cylindrical reactor. Besides, the gas inlet 

pattern was changed from an ideal uniform distribution 

to a non-uniform one. Besides, the reactor’s inlet 

diameter is reduced, and the value for the particle 

sphericity and voidage has been updated based on 

experimental observations.  The results show that the 

new reactor with an extended cross-sectional area on top 

has a significantly lower particle outflow even with the 

higher inlet superficial gas velocity. The paper discusses 

the optimization steps and relevant changes in reactor 

performances in detail.  

Keywords: Optimization, fluidized bed reactor (FBR), 

alumina chlorination, Barracuda, CPFD simulation 

1 Introduction 

Aluminum is now the world's second most used metal 

(Donaldson & Raahauge, 2013). Since aluminum has a 

unique combination of appealing properties and 

functionalities, it allows significant energy savings in 

many applications, such as vehicles and buildings. 

Although this energy-saving leads to lower CO2 

emissions, the production process of aluminum still 

dramatically impacts the environment. 

In 1889, the melted cryolite-alumina electrolysis 

process known as Hall-Héroult (H-H) was started, and 

the commercial production of metallic aluminum 

started, and this process has been used almost 

exclusively in the aluminum production industry 

(Prasad, 2000). This process has been independently 

developed and patented, after two young men, oceans 

apart, around 140 years ago in the United States and 

France. This discovery in 1886 by C. Hall and P. Héroult 

has provided the world with the gleaming light metal at 

reasonable prices. In this method, solid alumina (Al2O3) 

is dissolved in an electrolyte predominantly composed 

of liquid cryolite (Na3AlFe6). The electrolyte is altered 

with calcium fluoride, aluminum fluoride, and other 

additives (Peterson & Miller, 2007). 

In a typical alumina reduction cell, multiple prebaked 

carbon anodes are immersed in the electrolyte, and as an 

intermediate product, oxide ions from alumina 

dissolution are discharged electrolytically onto the 

anodes. On the other hand, the oxide intermediate reacts 

further with the carbon anodes, eventually consuming 

them by producing gaseous carbon dioxide (CO2). 

Inside the electrolyte is a molten aluminum reservoir 

enclosed in a preformed composite lining and thermally 

sealed by refractory and insulation components inside a 

steel shield (Thonstad, 2001). Hence, aluminum is 

molded by reducing aluminum-containing anions at the 

electrolyte-metal interface. Although the term cathode 

is often used to refer to the whole tank of liquid metal 

and electrolyte, the actual acting cathode is the metal 

pad or aluminum pool's top surface. The following 

reaction is the overall reaction of dissolved alumina with 

carbon to form the products (Barahmand, Jayarathna, et 

al., 2021d).  

 

½ 𝐴𝑙2𝑂3 (𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑)  +  ¾ 𝐶 (𝑠)  
→  𝐴𝑙 (𝑙)  +  ¾ 𝐶𝑂2 (𝑔) 

(1) 

This process's total energy conversion is approximately 

0.16–0.2 MJ/ton (Barahmand, 2021a). Using titanium 

diboride cathodes will also substantially reduce energy 

consumption (up to 20%). The manufacturing of a 

permanent anode is a more challenging task, and while 

large-scale experiments are in progress in Japan, 

Europe, and the United States, no success has been 

reported. More immediately, sophisticated controls can 

increase H-H cell efficiency by up to 5%. To anticipate 

anode effects and optimize its positioning, the pattern of 

individual cell voltage variations can be monitored and 

analyzed. Higher energy costs also induce cells to run at 

lower current densities, resulting in higher efficiency 

(Survey of Potential Processes for the Manufacture of 

Aluminum, 1979). 

The search for feasible alternative processes for 

aluminum production has been accelerated by rising 

prices and a lack of large blocks of electrical energy. For 

instance, the electrolysis of aluminum chloride, sulfide, 
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nitride; carbothermic reduction of ore or alumina; and 

the disproportioning reactions of aluminum sulfide or 

the mono-chloride route can be considered possible 

alternatives (Barahmand, 2021a). The aluminum 

industry is undergoing significant changes. It can no 

longer be selective when it comes to developing sites 

based on the cost of electricity. Due to the limited 

electricity available for expansion, the next generation 

of aluminum smelters must optimize their energy 

efficiency. This shift has also impacted the importance 

given to alternative process technology (Grjotheim & 

Welch, 2016). All of the non-electrolysis processes 

necessitate extremely high temperatures that can only be 

reached in an electric furnace. In each case, electrical 

energy consumption (17.6-22 kWh/kg) is estimated to 

be higher than that of a Hall-Héroult cell (13.2-17.6 

kWh/kg) (Survey of Potential Processes for the 

Manufacture of Aluminium, 1979).  

Except for the Alcoa chlorination process, there is no 

technology for producing aluminum metal that can 

compete with the Hall-Héroult process in electrical 

energy consumption. There are some other significant 

advantages, although, that make the chlorination 

process attractive. This process does not necessitate the 

use of pure aluminum oxide as a raw material 

exclusively. Consequently, the Bayer process could be 

skipped, eliminating the issue of disposing of vast 

amounts of red sludge (Barahmand, Jayarathna, et al., 

2021a). Carbochlorination can result in relatively high 

CO2 concentrations in the process gas, making CO2 

capture and storage easier to implement (Barahmand, 

2021a). Carbon's mechanical properties, which are 

merely a chemical reactant in the chlorination of 

aluminum chloride, are not required. Consequently, 

biocarbon may be used instead of coke from petroleum 

refineries, which the Hall-Héroult process requires, 

necessitating high mechanical strength and density 

anodes (Øye, 2019). 

The industry has turned its attention to the two-step 

process of converting alumina to aluminum chloride and 

then further reducing the aluminum chloride to 

aluminum metal after failing to find a cost-effective 

procedure for direct carbothermic reduction of alumina. 

In the patent literature (Rao & Soleiman, 1986), two 

chlorination processes are mentioned. The first is a 

fluidized bed that converts aluminum to aluminum 

chloride (AlCl3) at a temperature of 590°C. Hydrogen 

chloride, aluminum hydroxy chloride, aluminum 

oxychloride, and sodium chloride are also delivered 

significantly. The sodium comes from the alumina, 

which contains sodium as an impurity from the Bayer 

process (Barahmand, 2021a). The stoichiometry of 

chlorination of gaseous reactants is as follows, 

𝐴𝑙2𝑂3 (𝑠)  +  3𝐶𝑙2  +  3𝐶𝑂 
→  2𝐴𝑙𝐶𝑙3  +  3𝐶𝑂2 

(2) 

In continuation of the studies on a New Sustainable 

Aluminum Production (NSAP) process (Barahmand, 

Aghaabbasi, et al., 2021; Barahmand, Jayarathna, et al., 

2021d, 2021a, 2021c, 2021b), this optimization study 

aims to design an industrial alumina chlorination 

fluidized bed reactor (isothermally) to achieve the 

minimum particle outflow and to improve the 

hydrodynamics inside the reactor by minimizing the 

channeling effect in the dense phase bed. 

2 Overall Design Criteria 

The present study aims to design an industrial fluidized 

bed reactor for pure γ-alumina chlorination in the 

presence of equimolar carbon monoxide and chlorine 

gas mixture under the isothermal condition at 700℃. 

The reactor should be designed for handling 0.6 kg/s of 

alumina feed. There are no specified limitations for the 

reactor dimensions or the geometry. However, it is 

recommended to minimize internals (specifically for 

cooling and solid circulation). Moreover, because of 

some technical considerations, such as the possibility of 

having a considerable percentage of α-alumina in the 

feed, at the first step, the rector has been designed with 

no circulation. In the following sections, the main 

design factors and considerations are discussed. 

Circulation System:  An early study (Barahmand, 

Aghaabbasi, et al., 2021) ended up having a turbulent 

regime using an internal circulation system, but the 

reactor will be designed for a bubbling regime with 

better hydrodynamics. On the other hand, considering 

the highly corrosive environment inside the reactor and 

the existence of α-alumina impurity in the system, which 

is not favorable, it avoids circulation internally or 

externally.  

Gas-Solid Separator: The project's primary goal is to 

minimize the solid escape from the system. Therefore, 

an external high-efficiency cyclone with an efficiency 

of 99% will be designed to handle maximum solid 

carryover. The cyclone is designed for half of the inlet 

solid flow rate to the reactor (0.01-0.3 kg/s). The other 

design parameters, such as pressure, fluid properties, 

and average particle size, will be calculated from 

simulations.  

Regime and Bed Type: As mentioned earlier, the 

reactor should be designed for the bubbling regime. A 

free bubbling bed with no internal baffles is 

recommended to use. To have a smaller bubble size and 

lower rise velocity, the superficial velocity is chosen in 

a range close to the minimum bubbling velocity.  

Bed Aspect Ratio (H/D): The bed height (H) to the 

bed diameter (D) ratio is known as the bed aspect ratio 

(H/D), which is one of the most crucial factors for 

reactor design calculations (Shaul et al., 2012). The 

superficial gas velocity by matching the required 

fluidization regime is used to determine the bed 

diameter. The bed is generally called tall or deep if the 

aspect ratio is more significant than unity. On the other 

side, a shallow bed has an aspect ratio of one or less than 

one. The precise aspect ratio that marks the transition 
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between a deep and shallow fluidized bed has yet to be 

determined (Sathiyamoorthy & Horio, 2003). To have 

better hydrodynamics in the bed, it has been avoided 

using a shallow bed. The minimum aspect ratio has been 

about unity as a safe value (Kunii & Levenspiel, 1991). 

The given bed aspect ratio selected by the authors in an 

early study (Barahmand, Jayarathna, et al., 2021a) has 

been used in the current study. 

Reactor Diameter: Based on the carbon monoxide 

and chlorine mixture's stoichiometry and physical 

properties, the needed volumetric flow rate of the fluid 

at the inlet to handle 0.6 kg/s of solid can be calculated 

easily. On the other hand, the fluid’s superficial velocity 

range is chosen before being very close to minimum 

bubbling velocity (Regime and Bed Type), which can be 

calculated too (Barahmand, Aghaabbasi, et al., 2021).  

Reactor height: The height of a fluidized bed reactor 

can be divided into dense and lean phases. Solids lose 

density as they rise in height. The lean process's height 

(or freeboard) can be separated into two zones, with the 

lower section known as the Transport Disengaging 

Height (TDH). If there is no secondary reaction in the 

freeboard region, the reactor outlet can be located on top 

of TDH or above. Otherwise, it can reduce the freeboard 

and add a more efficient cyclone to the system. Both 

dense-phase and TDH can be calculated for a bubbling 

regime (Kunii & Levenspiel, 1991).  

Operating Pressure: These parameters highly affect 

hydrodynamics by influencing fluid’s physical 

properties (Barahmand, Aghaabbasi, et al., 2021). There 

is no specific pressure in the system because the 

pressure at the bottom and top of the reactor is not 

identical, and there is a pressure drop to overcome the 

bed height of the reactor. The upstream pressure is the 

bottleneck to define a pressure for the system. It is 

enough to calculate the needed pressure at the reactor's 

bottom by choosing a pressure for the fluidized bed 

outlet. Depending on how the flow boundary at the inlet 

is defined, this pressure can be calculated automatically 

by the simulation software (Barracuda®) or defined 

manually.  

Gas Distributor: The distribution mechanism in the 

gas inlet of the fluidized bed reactor significantly affects 

hydrodynamics. For example, it can contribute to 

channeling in the bed or change the bubble size or 

regime in the bed (Kunii & Levenspiel, 1991). At the 

first step, a uniform and flat distribution throughout the 

whole inlet area will be used. In the next step, a grid 

plate or sparger should be considered a uniform 

distributing system to be more realistic. Figure 1 shows 

different types of sparger arrangements in a fluidized 

bed.  

 

Figure 1. (a) Sieve plate sparger, (b) multiple ring sparger, 

(c) spider, and (d) pipe sparger (Kulkarni et al., 2009). 

Alumina: Many types of alumina have different 

properties (Barahmand, Jayarathna, et al., 2021d). In the 

present study, pure γ-alumina has been taken into 

account, and the effect of impurities is neglected. Each 

solid particle has many characteristic properties which 

affect the fluidized bed system. Parameters properties 

such as particle size distribution, sphericity, voidage, 

and density should be defined as accurately as possible 

(Barahmand, Jayarathna, et al., 2021b).  

Reactor Geometry: A simple cylindrical reactor with 

a uniform circular cross-section has been used in early 

studies (Barahmand, Aghaabbasi, et al., 2021; 

Barahmand, Jayarathna, et al., 2021a). The reactor's 

optimum dimensions should be chosen by changing the 

bed aspect ratio, superficial velocity, and reactor height. 

An exit geometry should be selected between smooth 

and abrupt (Harris et al., 2003; Mabrouk et al., 2008). 

Any change in the reactor geometry can be applied to 

achieve lower particle escape and desirable 

hydrodynamics. For example, cylindrical FB reactors 

inherited several weak points. Yang et al. have 

investigated the effect of the expanded cross-section at 

the top of the reactor and related hydrodynamics.  

Reaction kinetics: The present study simulates the 

single overall reaction (2) in Barracuda®. The reaction 

kinetics are based on (Barahmand, Jayarathna, et al., 

2021d). Although the alumina chlorination at 700℃ is 

very fast and the reactor height can be reduced, the 

hydrodynamics inside the reactor plays a crucial role. 

The H/D highly affects the overall reactor height, and 

the reported value is minimum equal to unity (Kunii & 

Levenspiel, 1991) for Geldart A particles. On the other 

hand, reaction kinetics is highly correlated with 

temperature, particle size distribution, and porosity 

(Barahmand et al., 2021d).  
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Heat Transfer: Although the primary goal of the 

present study is to touch the project objectives under 

isothermal conditions at 700℃, the thermal study of the 

chlorination process is one of the most critical design 

considerations (Barahmand et al., 2021c). The literature 

confirms that the best and optimum temperature for the 

alumina chlorination process is 700℃, but taking the 

industrial design limitations into account, 600℃ will be 

the optimum temperature (Gokcen, 1983).  

Solid Feeder: The current fluidized bed is a 

continuous reactor that alumina is fed to the reactor with 

a feeding rate of 0.6 kg/s. In general, the powder can be 

transported mechanically or pneumatically (or air-

assisted). The screw feeder, as an example of a 

mechanical conveyor or pneumatic conveying system, 

can be used in the design. In this project, it is considered 

that the powder is injected pneumatically using CO2. 

Another critical point is the location and direction of the 

injection. In some cases, particles' downward movement 

positively affects the reaction (For example, alumina 

chlorination in fluidized bed (Gokcen, 1983)). However, 

taking the other considerations, such as possible particle 

outflow, into account, placing the particle injection at 

the reactor's bottom side-wall is beneficial.  

Construction Material: Although the current study 

does not directly deal with the materials, reactor design 

is affected by general considerations. The typical 

fluidized bed uses a carbon steel shell lined with a 

particular alumina refractory (Barahmand, Aghaabbasi, 

et al., 2021).  

Erosion: There are three primary sources for erosion 

in a fluidized bed, temperature, chemicals, and solid 

particles (Barahmand, 2021b). All the internal surfaces 

that contact a corrosive or very high-temperature fluid 

are in danger of erosion. On the other hand, in higher 

velocities, solid particles can cause erosion, and usually, 

it is associated with transitional and directional changes 

in the system.  For example, most erosive wear may 

occur in the internal cyclone wall or near the elbow of 

bent pipes. In the present study, a particular alumina 

refractory is considered a reactor lining to protect 

against very high temperatures and chemical corrosion. 

Although alumina particles are highly abrasive 

(Haugland et al., 2019), this effect may be minimal 

because of the low superficial velocity in the system. 

The erosion has not been considered in this study.  

Drag Model: The force acting on a particle by the 

fluid flow around it is determined by the particle's drag 

model. The Barracuda® provides a range of predefined 

drag models that the WenYu-Ergun blended drag model 

could be more suitable for the current study. Since the 

Wen and Yu correlation is appropriate for more dilute 

systems and the Ergun relationship is appropriate at 

higher packing fractions, proposed a drag function 

                                                 
1 The close pack volume fraction specifies the maximum 

volume fraction of particles when they are packed randomly. 

blending both the Wen-Yu and Ergun functions as the 

following (Gidaspow, 2012). 

For 𝜃𝑝 < 0.75𝜃𝑐𝑝, the drag model can be calculated 

by the Wen-Yu model (𝐷1). 

 

𝐷1 =

{
 
 

 
 

24

𝑅𝑒
𝜃𝑓
−2.65                             𝑅𝑒 < 0.5

24

𝑅𝑒
𝜃𝑓
−2.65(1 + 0.15𝑅𝑒0.687)  0.5 ≤ 𝑅𝑒 ≤ 1000

0.44𝜃𝑓
−2.65                              𝑅𝑒 > 1000

 

 

(3) 

For 𝜃𝑝 > 0.85𝜃𝑐𝑝, the drag model can be calculated by 

the Ergun drag function (𝐷2) as below. 

 

𝐷2 = 0.5(
180𝜃𝑝
𝜃𝑓𝑅𝑒

+ 2)
𝜌𝑓|𝑢𝑓 − 𝑢𝑝|

𝑟𝑝𝜌𝑝
 (4) 

For 0.75𝜃𝑐𝑝 ≤ 𝜃𝑝 ≤ 0.85𝜃𝑐, the following equation can 

derive the drag model: 

 

𝐷 = (𝐷2 − 𝐷1) (
𝜃𝑝 − 0.75𝜃𝑐𝑝

0.85𝜃𝑐𝑝 − 0.75𝜃𝑐𝑝
) (5) 

Where 𝜃𝑝 and 𝜃𝑓 are the particle and fluid volume 

fraction respectively, 𝜃𝑐𝑝 is the particle volume fraction 

at the close pack1, Re is the Reynolds number, 𝑢𝑓 and 

𝑢𝑝 are fluid and particle velocity, 𝜌𝑝 is particle density 

and 𝑟𝑝 is the average particle radius.  

3 3D Multiphase Particle-in-Cell 

Approach 

Barracuda®'s technology is based on 3D Multiphase 

Particle-in-Cell (3D-MP-PIC), a patented 

computational technique for CFD simulation of gas-

particle flows that includes close fluid-particle coupling 

as well as careful consideration of thermal physics and 

reaction chemistry (Ahmadpour Samani et al., 2020). 

For dense particle flows, a three-dimensional, 

multiphase particle-in-cell approach is presented. The 

computational technique uses a continuum model to 

solve the governing equations of the fluid phase and a 

Lagrangian model to solve the governing equations of 

the particle phase (Snider, 2001). Through mapping 

particle properties to an Eulerian grid and then mapping 

back-calculated stress tensors to particle positions, the 

difficulties associated with estimating inter-particle 

interactions with dense particle flows with volume 

fractions above 5% have been removed. A robust sub-

grid particle normal stress model for isolated particles 

that eliminates the need for an implicit measurement of 

normal particle stress on the grid has been presented. 

The properties of interpolation operators that provide 

compact support, conservatism, and a quick solution for 
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a broad particle population are defined. The solution 

scheme allows for particle forms, sizes, and mass 

distributions with no numerical diffusion from the 

Lagrangian particle equations. The fluid momentum and 

pressure equations are indirectly solved, resulting in a 

stable solution. 

There are two approaches to this, the Continuum and 

the Particulate Phase. The continuity equation for a fluid 

with no interphase mass transfer is (Verma & Padding, 

2020). 

𝜕𝜃𝑓
𝜕𝑡

+ ∇. (𝜃𝑓𝑢𝑓) = 0 
(6) 

The momentum equation for the fluid will be as (7). 

𝜕(𝜃𝑓𝑢𝑓)

𝜕𝑡
+ ∇. (𝜃𝑓𝑢𝑓𝑢𝑓)

= −
1

𝜌𝑓
∇𝑃 −

1

𝜌𝑓
F + g𝜃𝑓 

(7) 

where, g is the acceleration gravity,  F is “the rate of 

momentum exchange per volume between the fluid and 

particle phases,” 𝑃 is fluid pressure, and 𝜌𝑓 is the fluid 

density. In the Particulate Phase, the particle probability 

distribution function ∅ (𝑋, 𝑢𝑝, 𝜌𝑝, 𝛺𝑝, 𝑡) is used to 

define the dynamics of the particle process, where X is 

the particle position, 𝑢𝑝 is the particle velocity, 𝜌𝑝 is the 

particle density, and 𝛺𝑝 is the particle volume (Snider, 

2001). For the time being, it is thought that each 

particle's mass remains stable over time (i.e., no mass 

transfer between particles or to the fluid), although 

particles may vary in size and density. The time 

evolution is obtained by solving a Liouville equation 

(Williams, 1985) for the particle distribution function. 

𝜕∅ 

𝜕𝑡
+ ∇. (∅ 𝑢𝑝) + ∇𝑢𝑝 . (∅𝐴) = 0 

(8) 

 

where ∇𝑢 is the divergence operator concerning 

velocity. Using the definition from (Andrews & 

O’Rourke, 1996), the discrete particle acceleration, A, 

can be defined as, 

𝐴 = 𝐷𝑝(𝑢𝑓 − 𝑢𝑝) − (
1

𝜌𝑝
∇𝑃 +

1

𝜃𝑝𝜌𝑝
τ) + g 

(9) 

where, the terms describe acceleration due to 

aerodynamic drag, pressure gradient, interparticle stress 

gradient, and gravity, respectively, the Gidaspow drag 

model (Gidaspow, 2012), which is a combination of the 

Wen and Yu (Wen & Yu, 1966) and the Ergun (Ergun, 

1952) drag models (3-5), can be used in (9). The present 

study optimizes the alumina chlorination in a fluidized 

bed reaction having a bubbling regime. The superficial 

velocity of the fluid is close to the minimum bubbling 

velocity.  

4 CPFD Simulations 

The standard range for the bed aspect ratio (H/D) is not 

thoroughly investigated and discussed in the literature. 

The best aspect ratio used in the present study is based 

on the authors' previous work (Barahmand et al., 2021a), 

equal to 2.  The reaction kinetics and alumina properties 

are explained elsewhere (Barahmand et al., 2021d). The 

base model was developed with simple cylindrical 

geometry and a smooth exit in the first step. The smooth 

exit does not affect the hydrodynamics of the reactor top 

(Mabrouk et al., 2008). 

4.1 Base Model 

The chlorine concentration (as a factor of conversion 

rate) and particle distribution (as a factor of reactor 

hydrodynamics) have been studied in the model. In the 

first step, the gas reactants are distributed 

homogeneously from the bottom of the reactor (ideal 

distribution). Figure 3 illustrates the particle mass flux 

in different heights in the reactor. As seen in the figure, 

the red ring emphasizes particle escape through the 

reactor wall.  

Studying the particle outflow shows that for uniform 

inflow, the average particle outflow at the pseudo-

steady-state is about 0.38 kg/s, almost 63% of the 

particle inflow (Figure 2). On the other hand, the particle 

escape through the wall harms reaction conversion. 'Due 

to high resistance within the particle bed, the fluid temps 

to escape close to the reactor wall, increasing fluid 

velocity in the near-wall region. As a result, the 

reactants have less time to react.  

 

 

Figure 2. Particle outflow (kg/s) with uniform distribution 

A non-uniform distribution pattern (Figure 4) with 

higher velocity in the middle and gradually decreasing 

toward the inner walls (Figure 5) has been applied to the 

system to solve this problem. The results have shown a 

significant change in the reactor hydrodynamics and 

particle escape.  
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Figure 3. The particle mass flux (kg/sm2) in different 

heights with a uniform distribution. c) Particle mass flux at 

the specific time, and d) Average particle mass flux in the 

last 300 seconds. 

 

 

Figure 4. Defined non-uniform ring distribution in 

Barracuda® 

Changing the fluid distribution pattern shows a 

considerable change in the bed’s hydrodynamics. As 

seen in Figure 6, the ring area is turned to a crescent 

shape. Compared with uniform distribution, the particle 

outflow is 0.59 kg/s which is two times more and almost 

identical to the particle feed rate.  

 

Figure 5. Inlet gas (CO+Cl2) mass flow rate of each cell- 
color scale refers to Figure 4. 

 

 

Figure 6. The particle mass flux (kg/s.m2) in different 

heights with the non-uniform distribution. a) Particle mass 

flux at the specific time, and b) Average particle mass flux 

in the last 300 seconds. 

Although the hydrodynamics has experienced a 

considerable change, the chlorine concentration through 

the reactor is almost constant due to the very high 

reaction rate. Table 1 gives the chlorine concentration 

through the reactor from bottom to top in the specified 

heights in Figure 3 and Figure 6. Although the results 

confirm that the conversion rate becomes complete at 

the bottom of the reactor, reducing the reactor height is 
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not suggested to keep the best hydrodynamics 

(Barahmand, 2021a).   

Table 1. Average Cl2 concentration (mg/l) in different 

heights of the reactor. 

 
Level Uniform Non-Uniform 

0 289.27 65.23 

1 0.35 0.59 

2 0.05 0.04 

3 0.03 0.02 

4 0.02 0.02 

5 0.02 0.04 

6 0.03 0.03 

7 0.02 0.03 

 

In these simulations, the particle escape from the top of 

the reactor is the biggest challenge. 

 

4.2 Optimized model

 As discussed in Section 2, Yang et al. have used 

an expanded section to reduce the slugging and to solve 

this problem effectively. Therefore, it may positively 

affect reducing particle outflow (Yang & Keairns, 

1980). Figure 7 illustrates a schematic view of 

the new geometry with the expanded cross-sectional 

at the top. In the current simulation, a total number of 

65000 cells have been used.

 

Figure 7. The meshed geometry with the expanded cross-

sectional area on top 

Similarly, for uniform and non-uniform distributions, 

the bed hydrodynamics, particle outflow, and Cl2 

concentration have been studied. As expected, the 

geometry shows no effect on the reaction and chlorine 

consumption.   

 

 

Figure 8. Particle distribution through the reactor with the 

non-uniform flow. 

As seen in Figure 8, the expanded bed is located in the 

bottom cylindrical section of the reactor. As a result, a 

negligible effect on particle escape through the reactor 

wall has been expected. In comparison with cylindrical 

models, Figure 9 and Figure 10 confirm this 

phenomenon.  

 

Figure 9. The particle mass flux (kg/s.m2) in different 

heights with a uniform distribution. a) Particle mass flux at 

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185341 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

347



the specific time, and b) Average particle mass flux in the 

last 300 seconds. 

Nevertheless, in both cases, particle outflow has been 

dropped significantly. Table 2 gives comparative data 

for all cases. 

Table 2. Particle outflow (kg/s) in different cases 

 Uniform gas 
Distribution 

Non-Uniform 
gas Distribution 

Cylindrical 0.38 0.59 
New Design 0.15 0.0004 

 

Although the optimized geometry has shown a 

remarkable performance in reducing the particle escape 

from the top of the reactor, this design may suffer from 

the possibility of particle deposition and caking 

phenomenon in the conical top sections. Applying a 

non-uniform inlet flow pattern has reduced the 

channeling effect, and has resulted less scape through 

the sidewall has been observed. Figure 11 shows a 

channel created inside the bed. 

 

 

Figure 10. The particle mass flux (kg/s.m2) in different 

heights with the non-uniform distribution. a) Particle mass 

flux at the specific time, and b) Average particle mass flux 

in the last 300 seconds. 

5 Conclusion 

The modified geometry leads to minimizing the particle 

outflow significantly and helps the reactor’s 

hydrodynamics. On the other hand, in contrast with 

simple cylindrical geometry, non-uniform gas 

distribution contributes to reducing high gas escape 

close to the wall, enhancing the reaction. Combining 

geometrical modification and change in gas injection, 

the reactor has now shown quite promising 

performances. It is crucial to validate the CFD 

simulation data with a lab-scale experimental unit as 

future work. Moreover, even though current simulations 

are done based on mess specifications from CPFD 

software (Barracuda®), the mesh convergence can be 

helpful to find the right mesh size and further 

improvement of the model. 

 

 

Figure 11. Channeling effect in a cylindrical reactor with 

uniform distribution.  

References 

N. Ahmadpour Samani, C. Jayarathna, and L. A. Tokheim. 

CPFD simulation of enhanced cement raw meal fluidization 

through mixing with coarse, inert particles. In proceedings - 

61st SIMS Conference on Simulation and Modelling SIMS 

2020, Finland, 2020.   doi:10.3384/ecp20176399 

M. J. Andrews and P. J. O’Rourke. The multiphase particle-

in-cell (MP-PIC) method for dense particulate flows. 

International Journal of Multiphase Flow, 22(2), 379–402. 

1996. doi:10.1016/0301-9322(95)00072-0 

Z. Barahmand. Design of an Industrial Chlorination Reactor 

using CPFD Simulations, Master’s Thesis. University of 

South-Eastern Norway, 2021a. 

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185341 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

348



Z. Barahmand, O. Aghaabbasi, E. K. L. Rustad, J. L. Salcido, 

C. Jayarathna, and C.  Ratnayake. Designing of a medium-

scale circulating fluidized bed reactor for chlorination of 

processed aluminum oxide. In proceedings - 1st SIMS 

EUROSIM Conference on Modelling and Simulation, 

Finland, 2021. 

Z. Barahmand, C. Jayarathna, and C. Ratnayake. CPFD 

modeling of the hydrodynamics and reaction kinetics of 

alumina chlorination in an industrial fluidized bed reactor. 

In proceedings - 1st SIMS EUROSIM Conference on 

Modelling and Simulation, Finland, 2021a. 

Z. Barahmand, C. Jayarathna, and C. Ratnayake. Sensitivity 

and uncertainty analysis in a fluidized bed reactor modeling. 

In proceedings - 1st SIMS EUROSIM Conference on 

Modelling and Simulation, Finland, 2021b. 

Z. Barahmand, C. Jayarathna, and C. Ratnayake. Study of the 

thermal performance of an industrial alumina chlorination 

reactor using CPFD simulation. In proceedings - 1st SIMS 

EUROSIM Conference on Modelling and Simulation, 

Finland, 2021c. 

Z. Barahmand, C. Jayarathna, and C. Ratnayake. The effect of 

alumina impurities on chlorination in a fluidized bed 

reactor: A CPFD study. In proceedings - 1st SIMS 

EUROSIM Conference on Modelling and Simulation, 

Finland, 2021d. 

D. Donaldson and B.  Raahauge. Essential Readings in Light 

Metals, Alumina and Bauxite. John Wiley & Sons, 2013. 

S. Ergun. Fluid flow through packed columns. Fluid Flow 

Through Packed Columns, 48, 89–94. Scopus, 1952. 

D. Gidaspow. Multiphase Flow and Fluidization: Continuum 

and Kinetic Theory Descriptions, 2012. 

N. A. Gokcen. Rates of chlorination of aluminous resource, 

pages 28, U.S. Department of the Interior, Bureau of Mines, 

1983. 

K. Grjotheim and B. Welch. Impact of Alternative Processes 

for Aluminium Production on Energy Requirements. In G. 

Bearne, M. Dupuis, & G. Tarcy (Eds.), Essential Readings 

in Light Metals: Volume 2 Aluminum Reduction 

Technology, pages 1049–1055. Springer International 

Publishing, 2016. doi:10.1007/978-3-319-48156-2_154 

A. T. Harris, J. F. Davidson, and R. B. Thorpe. Influence of 

exit geometry in circulating fluidized-bed risers. AIChE 

Journal, 49(1), 52–64, 2003. doi:10.1002/aic.690490107 

I. B. Haugland, O. Kjos, A. Røyset, P. E. Vullum, T. A. 

Aarhaug, and M. Halstensen. Alumina Scale Composition 

and Growth Rate in Distribution Pipes. In C. Chesonis (Ed.), 

Light Metals 2019 (pp. 697–706). Springer International 

Publishing, 2019. doi:10.1007/978-3-030-05864-7_86 

A. V. Kulkarni, S. V. Badgandi, and J. B. Joshi. Design of ring 

and spider type spargers for bubble column reactor: 

Experimental measurements and CFD simulation of flow 

and weeping. Chemical Engineering Research and Design, 

87(12), 1612–1630, 2009. doi:10.1016/j.cherd.2009.06.003 

D. Kunii and O. Levenspiel. Fluidization Engineering. 

Butterworth-Heinemann, 1991. 

R. Mabrouk, J. Chaouki, and C. Guy. Exit effect on the 

hydrodynamics of the internal circulating fluidized bed 

riser. Powder Technology - POWDER TECHNOL, 182, 

406–414, 2008. doi:10.1016/j.powtec.2007.07.008 

B. Øye. Could the chloride process replace the Hall-Héroult 

process in aluminum production?. 2019, March 28.  

W. S. Peterson and R. E. Miller. Hall-Héroult Centennial: 

First Century of Aluminum Process Technology, 2007. 

S. Prasad. Studies on the Hall-Héroult aluminum electro 

winning process. Journal of the Brazilian Chemical Society, 

11, 245–251, 2000. doi:10.1590/S0103-

50532000000300008 

Y. K. Rao and M. K. Soleiman. Alumina chlorination. United 

States Patent No. US4565674A, 1986. 

https://patents.google.com/patent/US4565674A/en 

D. Sathiyamoorthy and M. Horio. On the influence of aspect 

ratio and distributor in gas fluidized beds. Chemical 

Engineering Journal, 93(2), 151–161, 2003. 

doi:10.1016/S1385-8947(02)00257-7 

S. Shaul, E. Rabinovich, and H. Kalman. Generalized flow 

regime diagram of fluidized beds based on the height to bed 

diameter ratio. Powder Technology, 228, 264–271, 2012. 

doi:10.1016/j.powtec.2012.05.029 

D. M. Snider. An Incompressible Three-Dimensional 

Multiphase Particle-in-Cell Model for Dense Particle Flows. 

Journal of Computational Physics, 170(2), 523–549, 2001. 

doi:10.1006/jcph.2001.6747 

Survey of potential processes for the manufacture of 

aluminium (ANL/OEPM-79-4). Little (Arthur D.), Inc., 

Cambridge, MA (USA), 1979. doi:10.2172/5669730 

J. Thonstad, J. Aluminium electrolysis: Fundamentals of the 

Hall-Héroult process, 2001.  

V. Verma and J. T. Padding. A novel approach to MP-PIC: 

Continuum particle model for dense particle flows in 

fluidized beds. Chemical Engineering Science: X, 6, 

100053, 2020. doi:10.1016/j.cesx.2019.100053 

C. Wen and Y. Yu. Mechanics of fluidization. The Chemical 

Engineering Progress Symposium Series, 62, 100–111, 

1966. 

F. A. William. Combustion Theory. The Benjamin/Cummings 

Publishing Company, Inc, 1985. 

W. Yang and D. Keairns. The effect of an expanded section on 

slugging, 1980. doi:10.1002/AIC.690260124 

 

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185341 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

349



Sensitivity and Uncertainty Analysis in a Circulating Fluidized Bed 

Reactor Modeling 

Zahir Barahmand1     Chameera Jayarathna2     Chandana Ratnayake1,2 
1 Department of Process, Energy and Environmental Technology, University of South-Eastern Norway 

zbarahmand@gmail.com 
2 SINTEF Tel-Tek, SINTEF Industry, Porsgrunn, Norway 

 

 

 

 

Abstract 

As in many real applications, in the world of fine 

powders and small particles, depending on the accuracy 

of the relevant method, there are uncertainties and 

vagueness in the parameters such as particle size, 

sphericity, initial solid void fraction, envelope density, 

etc. In some cases, there are different methods to 

measure a parameter, such as a particle size that depends 

on the method (based on length, weight, and volume); 

the measured values may be significantly different from 

each other. Therefore, there is no crisp or exactly known 

parameter in many cases because of the fine powders' 

inherent uncertain nature. On the other hand, being 

characteristic of the dynamic systems, physical 

parameters such as temperature and pressure fluctuate 

but can be kept in an acceptable range, affecting the 

main design parameters such as fluid density and 

dynamic viscosity.  

The most traditional tools and methods for simulating, 

modeling, and reasoning are crisp, deterministic, and 

precise, but these values are estimated or changing 

(randomly or stochastically). Several approaches can 

describe this phenomenon. Moreover, when it comes to 

uncertainties, mathematical tools are probably the best 

solutions.  With the fuzzy set theory method, linguistic 

variables or ranges can be converted to mathematical 

expressions, and consequently, instead of crisp values, 

these can be applied to the equations. The uncertainty 

analysis can be more important when the model is 

susceptible to one parameter. A preliminary sensitivity 

analysis on a fluidized bed application has shown that 

the solid void fraction has the highest, and the fluid 

density has the lowest sensitivity to its operation. The 

performed uncertain theoretical approach has been 

validated by CPFD simulation using Barracuda v20.1.0.  

Keywords: Fuzzy set theory, Sensitivity analysis, 

uncertainty analysis, circulating fluidized bed reactor, 

CPFD simulation 

1 Introduction 

In general, a solid particle in a fluid behaves in a state of 

uncertainty. This fact motivates to study the behavior of 

uncertain phenomena. Most traditional formal 

modeling, reasoning, and computing tools are crisp, 

deterministic, and precise. In order to model 

uncertainty, it is essential to know the uncertainty causes 

in nature and how it is possible to deal with it. In real-

life applications, the system complexity inevitably 

results in weak models with a high degree of parametric 

or functional uncertainty. If the controlled system has a 

multi-valued function or exhibits several modes of 

behavior during the operation, the problem gets much 

more complex (Herzallah, 2005). 

Generally, gas-solid systems perform pretty in 

different ways under minor changes of process 

conditions. For example, changing the velocity from 

below the minimum fluidization velocity up to a very 

high velocity, the system experiences many regimes 

such as the fixed bed, minimum fluidization, smooth, 

bubbling, slugging, turbulent fluidization, and finally 

lean phase fluidization with pneumatic transport (Kunii 

& Levenspiel, 1991). For instance, the hydrodynamics 

in the fluidized bed is heavily influenced by solid 

particle properties such as size distribution, sphericity, 

and voidage. The measurement error, for instance, 

maybe the most crucial factor for the uncertainty of the 

particle size distribution (Tinke, 2020). 

There are different approaches to categorizing 

uncertainties in a system. These can be classified into 

two categories. The first is the uncertainty in a 

mathematical sense due to the difference between 

measured, estimated, and actual values, including errors 

in observations or calculations (Zhu, 2015). The second 

is the sources of uncertainty, including uncertainty in the 

particle and fluid physical properties, reaction kinetics 

(Valkó & Turányi, 2020), reactor temperature, etc.  

Traditional and deterministic approaches to a complex 

system study (such as powder and particulate systems) 

would not deal with the above uncertainties. Therefore, 

as seen in Figure 1, the most used uncertainty modeling 

techniques include probabilistic, possibilistic, and 

hybrid possibilistic–probabilistic methods, information 

Gap decision theory (IGDT), and robust optimization 

(Aien et al., 2016). 

These approaches are primarily used to assess the 

effect of uncertain input parameters on system output 

parameters. The critical distinction between these 
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methods is that they use different ways to describe the 

ambiguity of input parameters. The following is a short 

overview of how the above approaches can be used to 

model uncertainty: 

• Probabilistic approach: it is assumed that the 

probability distribution functions of input variables are 

known. One of the earliest works in stochastic 

programming was done by (Dantzig, 1955). 

• Possibilistic approach: a membership function is 

assigned to model input parameters in this approach 

(Zadeh, 1999). 

•  Hybrid possibilistic–probabilistic approaches: in this 

approach, both random and possibilistic parameters are 

used to handle the uncertain input parameters (Aien et 

al., 2014; Soroudi & Ehsan, 2011).  

• Information Gap Decision Theory (IGDT): contrary to 

probabilistic and possibilistic decision theory, this does 

not use probability distribution or membership function. 

Instead, it measures the deviation of differences between 

parameters and their estimates, but not the probability of 

outcomes (Ben-Haim, 2001). 

• Robust optimization: For describing the uncertainty of 

input parameters, uncertainty sets are used. Obtained 

decisions are optimal for the worst-case realization of 

the uncertain parameter within a given set by using this 

technique (Soyster, 1973). 

• Interval analysis: The unknown parameters are 

assumed to take their values from a known interval. It 

resembles probabilistic simulation with a uniform 

probability distribution function in several ways (Moore 

et al., 2009). 

Between these causes, the lack of information and 

measurement errors found in the system can be modeled 

with the fuzzy set theory, which was first introduced in 

1965 (Zadeh, 1965). Reducing the weaknesses of the 

probability theory, Zadeh introduced the possibility 

theory (Zadeh, 1999), which naturally complements the 

fuzzy set theory for handling uncertainty induced by 

fuzzy and incomplete pieces of information. Possibility 

theory turns out to be a non-probabilistic view of 

uncertainty that aims to model states of partial or 

complete ignorance rather than capture randomness.  

Using this theory, Dubois and parade (Dubois & Prade, 

1983) have studied the ranking of fuzzy numbers 

considering the possibility and necessity of events. 

(Goetschel & Voxman, 1986) have introduced a model 

for ranking fuzzy numbers, which become the primary 

notion for introducing possibilistic moments by Carlson 

and Fuller (Carlsson & Fullér, 2001). 

On the other hand, the term "sensitivity" describes 

how our outcomes vary when assumptions in our model 

are changed. When sensitivity is high, the results 

fluctuate dramatically when specific assumptions are 

changed; these assumptions must be extremely well 

established (Fragoulakis et al., 2015). The Sensitivity 

Analysis (SA) method is a numerical model that 

examines how uncertainties in one or more input 

variables might lead to uncertainties in the output 

variables (Pichery, 2014). In general, there are two 

approaches to sensitivity analysis, global and local. The 

behavior of input parameters on the change of the model 

output is the focus of global SA, while a local SA looks 

at sensitivity concerning a single parameter value 

change. In contrast, a global analysis looks at sensitivity 

throughout the parameter field (Abedi et al., 2016).  

The present study aims to find the parameters that a 

circulating fluidized bed is sensitive to (using the local 

SA method) and apply the fuzzy set theory to the 

mathematical calculations. As numerical examples, the 

calculated minimum fluidization velocity and cyclone 

efficiency for the alumina chlorination FBR 

(Barahmand et al., 2021a) will be compared with the 

CPFD results. The mathematical approach focuses on 

Generalized Trapezoidal Fuzzy Numbers (GTrFN) 

algebraic operations through α-cuts (Zhang et al., 2014) 

and its application in the CFB. 

The present paper describes the fuzzy sets' basic 

definitions and algebraic operations, properties, and 

sensitivity analysis. Finally, some numerical examples 

have adopted the fuzzy model to calculate the minimum 

fluidization velocity and cyclone efficiency under 

uncertainty. 

2 Fuzzy Set Basics 

This section introduces the basic concepts and 

definitions used in fuzzy sets theory to facilitate future 

discussions. The notation and concepts introduced by 

(Carlsson & Fullér, 2001), (Fullér & Majlender, 2003), 

and (Zimmermann, 1985) are used in this section. 

Figure 1. The uncertainty modeling approaches  
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2.1 Definitions 

Definition 1 fuzzy set A, denoted �̃�, is characterized by 

a Membership Function (MF) 𝜇�̃�(𝑥), where 𝑥 ∈ 𝑋 

(Thavaneswaran et al., 2009). 

�̃� = {(𝑥, 𝜇𝐴(𝑋))|𝑥 ∈ 𝐴}   ,    𝜇𝐴(𝑋): 𝑋 → {0,1} (1) 

𝜇�̃�(𝑥)  is the degree of membership of 𝑋 in �̃�. The closer 

the value of 𝜇�̃�(𝑥) is to 1, the more 𝑥 belongs to �̃�. 

Definition 2 Let �̃� be a fuzzy set in 𝑋. Then the support 

of �̃�, denoted by 𝑆𝑢𝑝𝑝(𝐴), is the crisp set given by, 

𝑆𝑢𝑝𝑝(𝐴) = {𝑥 ∈ 𝑋: 𝜇𝐴 (𝑥) > 0}, (2) 

Definition 3 Let �̃� be a fuzzy set in 𝑋. The height ℎ(𝐴) 
of �̃� is defined as, 

𝑆ℎ(𝐴) = 𝑠𝑢𝑝
𝑥∈𝑋

𝜇�̃� (𝑥) (3) 

Definition 4 If ℎ(𝐴) = 1, then the fuzzy set �̃� is called 

a normal fuzzy set. 

Definition 5 A Fuzzy Number �̃� is a fuzzy set on the 

real-line R, which possesses the following properties 

(Carlsson & Fullér, 2001). 

(1) A is a normal, convex fuzzy set on R, 

(2) The 𝐴(𝛼) is a closed interval for every 𝛼 ∈ (0,1], 
(3)The membership function is an upper semi-

continuous, and 

(4) The support of �̃�, 𝑆(𝐴) = {𝑥 ∈ 𝐴 ∶  𝜇𝐴(𝑋) > 0}, is 

bounded. 

Definition 6 As shown in Figure 2, a trapezoidal fuzzy 

number �̃� = [𝑎1, 𝑎2, 𝑎3, 𝑎4](𝑚,𝑛) is defined to be 

Generalized Trapezoidal Fuzzy Number having orders 

of 𝑚 and 𝑛  (GTrFN or TrFN(𝑚, 𝑛)) if the MF is given 

by, 

𝜇𝐴(𝑥) =

{
 
 
 
 
 

 
 
 
 
 

    

0                             𝑥 ≤ 𝑎1

ℎ(𝐴) (
𝑥 − 𝑎1
𝑎2 − 𝑎1

)
𝑚

           𝑎1 ≤ 𝑥 ≤ 𝑎2

ℎ(𝐴)                    𝑎2 ≤ 𝑥 ≤ 𝑎3

ℎ(𝐴) (
𝑥 − 𝑎4
𝑎3 − 𝑎4

)
𝑛

           𝑎3 ≤ 𝑥 ≤ 𝑎4

0                             𝑥 ≥ 𝑎4

 (4) 

 

Definition 7 An 𝛼 − 𝑐𝑢𝑡 (interval of confidence) 

denoted by 𝐴(𝛼) is the crisp set of elements x∈ℛ whose 

degree of belonging to the fuzzy set �̃� is at least α 

(Thavaneswaran et al., 2013). 

𝐴(𝛼) = {𝑥 ∈ 𝐴| 𝜇𝐴(𝑋) ≥ 𝛼 ∈ (0,1]} = 𝐴(𝛼)

= [𝑎1
(𝛼), 𝑎2

(𝛼) ] 
(5) 

Putting membership functions in definition 6 equal to 𝛼,  

and by finding 𝑥, the equation (5) will be reached. 

𝐴(𝛼) = [𝑎1
(𝛼), 𝑎2

(𝛼) ] = 

[𝑎1 + (𝑎2 − 𝑎1) (
𝛼

ℎ(𝐴)
)

1
𝑚
 , 𝑎4 + (𝑎3 − 𝑎4) (

𝛼

ℎ(𝐴)
)

1
𝑛
] 

(6) 

Definition 8 Defuzzification (Karnik & Mendel, 2001) 

of a fuzzy set �̃� with Center of Gravity (CoG) method 

can be defined as whose domain, 𝑥 ∈ 𝑋, is discretized 

into N sub-areas, 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑁, is given as, 

𝑐�̃� =
∑ 𝑥𝑖
𝑁
𝑖=1 𝐴𝑖
∑ 𝐴𝑖
𝑁
𝑖=1

 (7) 

where, 𝑥𝑖 is the CoG in sub-areas. 

Definition 9 The f-weighted possibilistic mean value of 

a fuzzy number (�̃� = [𝑎1, 𝑎2, 𝑎3, 𝑎4](𝑚,𝑛)) is defined as 

(Carlsson & Fullér, 2001; Fullér & Majlender, 2003), 

�̅�(𝐴) =
𝑎1+𝑎4
2

+
(𝑎2 − 𝑎1)𝑚

(2𝑚 + 1)
+
(𝑎3 − 𝑎4)𝑛

(2𝑛 + 1)
 (8) 

3 Sensitivity Analysis 

The local sensitivity analysis (Zhou & Lin, 2008) 

technique defines how an independent variable will 

impact a specific dependent variable under a given set 

of assumptions. In this model, the sensitivity of the 

minimum fluidization velocity to five different 

parameters (which have uncertainty in nature) has been 

studied. These parameters are the voidage at the 

minimum fluidization condition, fluid and solid 

Figure 2 The generalized trapezoidal fuzzy number applying for different orders 
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particles density, average particle diameter, particle 

sphericity, and gas viscosity. 

In the simplified case, with microscopic particles 

(𝑅𝑒𝑚𝑓 < 20), the minimum fluidization velocity can be 

calculated by, 

𝑢𝑚𝑓 =
𝑑𝑝
2 (𝜌𝑠 − 𝜌𝑔)𝑔

150 𝜇
.
𝜀𝑚𝑓
3  ∅𝑠

2

1 − 𝜀𝑚𝑓
 (9) 

where, 𝑅𝑒𝑚𝑓 is Reynolds number at the minimum 

fluidization condition, 𝑔 is the acceleration gravity,  
𝜀𝑚𝑓 is the voidage at the minimum fluidization 

condition, 𝜌𝑔 and 𝜌𝑠 are the fluid and solid particles 

density, respectively,  𝑑𝑃 is the average particle 

diameter, 𝜇 is the fluid dynamic viscosity and  ∅𝑠 is the 

particle sphericity.  

Table 1. Sensitivity Analysis of minimum fluidization 

velocity in a fluidized bed 

 Output Input 

 𝑢𝑚𝑓 𝜀𝑚𝑓 

Initial 0.00452 0.4 

Secondary 0.01059 0.5 

% changed 134% 25% 

Sensitivity 134/25 = 5.36 

 𝑢𝑚𝑓 𝜌𝑔 

Initial 0.01059 0.93 

Secondary 0.01059 2 

% changed 0% 115% 

Sensitivity 

 

0/115 = 0 

 𝑢𝑚𝑓 𝑑𝑃 

Initial 0.01059 0.000098 

Secondary 0.01588 0.000120 

% changed 49.9% 22.5% 

Sensitivity 

 

49.9/22.5 = 2.22 

 𝑢𝑚𝑓 ∅𝑠 

Initial 0.00939 0.8 

Secondary 0.01188 0.9 

% changed 26.5% 12.5 

Sensitivity 

 

26.5/12.5 = 2.12 

 𝑢𝑚𝑓 𝜇 

Initial 0.01059 0.000042 

Secondary 0.00747 0.000060 

% changed -29.5% 42.8% 

Sensitivity 

 

29.5/42.8 = 0.68 

The results in Table 1 show that the highest sensitivity 

belongs to the 𝜀𝑚𝑓. On the contrary, the model is not 

sensitive to the 𝜌𝑔. The fluid’s dynamic viscosity has the 

second-lowest sensitivity. When it comes to defining a 

value for each, the value for the voidage must be chosen 

as accurately as possible because it has the highest 

sensitivity in the model.  

4 Fuzzy Models 

4.1 Minimum Fluidization Velocity 

Using definition (6), except for solid particle density and 

acceleration of gravity can be assumed as deterministic 

parameters, other parameters are considered as a 

GTrFN. Therefore,  

�̃�𝑝 = (�̃�𝑝1, �̃�𝑝2, �̃�𝑝3, �̃�𝑝4, ℎ(�̃�𝑝))𝑚,𝑛 

�̃�𝑔 = (�̃�𝑔1, �̃�𝑔2, �̃�𝑔3, �̃�𝑔4, ℎ(�̃�𝑔))𝑚,𝑛 

𝜀�̃�𝑓 = (𝜀�̃�𝑓1, 𝜀�̃�𝑓2, 𝜀�̃�𝑓3, 𝜀�̃�𝑓4, ℎ(𝜀�̃�𝑓))𝑚,𝑛 

�̃� = (�̃�1, �̃�2, �̃�3, �̃�4, ℎ(�̃�))𝑚,𝑛 

∅̃𝑠 = (∅̃𝑠1, ∅̃𝑠2, ∅̃𝑠3, ∅̃𝑠4, ℎ(∅̃𝑠))𝑚,𝑛 

The fuzzy form of the equation (7) is,  

�̃�𝑚𝑓 =
�̃�𝑝
2 (𝜌𝑠 − �̃�𝑔)𝑔

150 �̃�
.
𝜀�̃�𝑓
3  ∅̃𝑠

2

1 − 𝜀�̃�𝑓
 (10) 

Based on the introduced procedure in (Appadoo, 2006) 

and definition (7), the upper and lower  𝛼–cuts of the 

�̃�𝑚𝑓 (�̃�𝑚𝑓 = [�̃�𝑚𝑓
1 (𝛼) , �̃�𝑚𝑓

2 (𝛼) ]),  can be written as 

below: 

�̃�𝑚𝑓
1 (𝛼)

=
�̃�𝑝1
2  (𝜌𝑠 − �̃�𝑔1)𝑔𝜀�̃�𝑓1

3  ∅̃𝑠1
2

150 �̃�1(1 − 𝜀�̃�𝑓1)

+ (
�̃�𝑝2
2  (𝜌𝑠 − �̃�𝑔2)𝑔𝜀�̃�𝑓2

3  ∅̃𝑠2
2

150 �̃�2(1 − 𝜀�̃�𝑓2)

−
�̃�𝑝1
2  (𝜌𝑠 − �̃�𝑔1)𝑔𝜀�̃�𝑓1

3  ∅̃𝑠1
2

150 �̃�1(1 − 𝜀�̃�𝑓1)
) (

𝛼

ℎ(�̃�𝑚𝑓)
)

1
𝑚

 

(11) 

�̃�𝑚𝑓
2 (𝛼)

=
�̃�𝑝4
2  (𝜌𝑠 − �̃�𝑔4)𝑔𝜀�̃�𝑓4

3  ∅̃𝑠4
2

150 �̃�4(1 − 𝜀�̃�𝑓4)

+ (
�̃�𝑝3
2  (𝜌𝑠 − �̃�𝑔3)𝑔𝜀�̃�𝑓3

3  ∅̃𝑠3
2

150 �̃�3(1 − 𝜀�̃�𝑓3)

−
�̃�𝑝4
2  (𝜌𝑠 − �̃�𝑔4)𝑔𝜀�̃�𝑓4

3  ∅̃𝑠4
2

150 �̃�4(1 − 𝜀�̃�𝑓4)
) (

𝛼

ℎ(�̃�𝑚𝑓)
)

1
𝑛

 

(12) 

As a result, the standard form of the fuzzy minimum 

fluidization velocity will be: 

�̃�𝑚𝑓
= (�̃�𝑚𝑓1, �̃�𝑚𝑓2, �̃�𝑚𝑓3, �̃�𝑚𝑓4, ℎ(�̃�𝑚𝑓))𝑚,𝑛 

 

(13) 

where, ℎ(�̃�𝑚𝑓) can be calculated as the following, 

ℎ(�̃�𝑚𝑓) =

𝑀𝑖𝑛{ℎ(�̃�𝑝), ℎ(�̃�𝑔), ℎ(𝜀�̃�𝑓), ℎ(�̃�), ℎ(∅̃𝑠)}  
(14) 
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The membership function of the �̃�𝑚𝑓 can be calculated 

from equation (15).  

4.2 Cyclone Efficiency 

In general, cyclones are the most common kind of 

mechanical separator. This basic system has very high 

efficiency with a low-pressure drop without any moving 

mechanical components, which are the most favorable 

advantages. A cyclone is a device that separates solid 

particles from a fluid by centrifugal force and works 

simply by the kinetic energy of the incoming mixture 

(flow stream) and the geometry of the cyclone. Particle 

(in fluid) velocity and residence time are two main 

factors in cyclone design (Cooper & Alley, 2010). A 

typical cyclone scheme is shown in Figure 3.  

 

Figure 3. Components of a vertical axis tangential entry 

cyclone (Afework et al., 2018) 

Because of the cyclone's cylindrical form and the 

tangential entrance of the gas, the gas-solid suspension 

flows in two concentric vortices around the cyclone.  

The outer vortex is heading downward, while the central 

vortex is moving upward. Solids with a higher density 

than flue gas exit the outer vortex and pass against the 

wall due to centrifugal force. The comparatively clean 

gas rises through the inner vortex and leaves through a 

vertical exit on the cyclone's top (Basu, 2015). 

Many parameters affect cyclone efficiency. Table 2 

shows the effect of design and process parameters on 

cyclones’ efficiency (Cooper & Alley, 2010). If the 

parameter increases, the cyclone’s efficiency will: 

Table 2. Effect of parameters on the cyclone efficiency 

Parameter  

Particle size Increase 

Particle density Increase 

Dust loading Increase* 

Inlet gas velocity Increase* 

Cyclone body diameter Decrease 

The ratio of body length to diameter Increase 

The smoothness of cyclone’s inner wall Increase 

Gas viscosity Decrease 

Gas density Decrease 

Gas inlet duct area Decrease 

Gas exit pipe diameter Decrease 

*With these parameters, cyclone efficiency can only 

increase to a certain point and then decrease. 

 

Similarly, as explained in Section 4.1, the uncertainty 

has been applied to the cyclone calculations based on the  

𝜇𝑢𝑚𝑓(𝑥) =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

    

0                                                                                     𝑥 ≤ �̃�𝑚𝑓1

ℎ(�̃�𝑚𝑓)

(

 
 

𝑥 −
�̃�𝑝1
2  (𝜌𝑠 − �̃�𝑔1)𝑔𝜀�̃�𝑓1

3  ∅̃𝑠1
2

150 �̃�1(1 − 𝜀�̃�𝑓1)

�̃�𝑝2
2  (𝜌𝑠 − �̃�𝑔2)𝑔𝜀�̃�𝑓2

3  ∅̃𝑠2
2

150 �̃�2(1 − 𝜀�̃�𝑓2)
−
�̃�𝑝1
2  (𝜌𝑠 − �̃�𝑔1)𝑔𝜀�̃�𝑓1

3  ∅̃𝑠1
2

150 �̃�1(1 − 𝜀�̃�𝑓1) )

 
 

𝑚

           �̃�𝑚𝑓1 ≤ 𝑥 ≤ �̃�𝑚𝑓2

ℎ(�̃�𝑚𝑓)                                                               �̃�𝑚𝑓2 ≤ 𝑥 ≤ �̃�𝑚𝑓3

ℎ(�̃�𝑚𝑓)

(

 
 

𝑥 −
�̃�𝑝4
2  (𝜌𝑠 − �̃�𝑔4)𝑔𝜀�̃�𝑓4

3  ∅̃𝑠4
2

150 �̃�4(1 − 𝜀�̃�𝑓4)

�̃�𝑝3
2  (𝜌𝑠 − �̃�𝑔3)𝑔𝜀�̃�𝑓3

3  ∅̃𝑠3
2

150 �̃�3(1 − 𝜀�̃�𝑓3)
−
�̃�𝑝4
2  (𝜌𝑠 − �̃�𝑔4)𝑔𝜀�̃�𝑓4

3  ∅̃𝑠4
2

150 �̃�4(1 − 𝜀�̃�𝑓4) )

 
 

𝑛

           �̃�𝑚𝑓3 ≤ 𝑥 ≤ �̃�𝑚𝑓4

0                                                                                     𝑥 ≥ �̃�𝑚𝑓4

 

 

(15) 
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Table 3. Model’s deterministic and fuzzy parameters                              

 

Lapple method (Cooper & Alley, 2010). As a result, the 

cyclone efficiency can be calculated by equation 16.  

𝜂 =
1

1 + (
𝑑50
𝑑𝑝
)
2 

(16) 

 

where, 𝜂 is the cyclone efficiency, 𝑑𝑝 is the average 

particle diameter and 𝑑50 can be calculated by the 

equation below. 

𝑑50 = √
9𝜇𝑊

2𝜋𝜗𝑖𝑛(𝜌𝑝 − 𝜌𝑔)𝑁𝐴
 (17) 

where, 𝜗𝑖𝑛 in the fluid’s superficial velocity inlet to the 

cyclone, 𝑊 is the cyclone’s inlet width and 𝑁𝐴 is: 

𝑁𝐴 =
𝐿𝑏 + 0.5𝐿𝑐

𝐻
 (18) 

where, 𝐿𝑏 is the cyclone main body height, 𝐿𝑐 is the 

height of the conical part of the cyclone, and 𝐻 is the 

height of the inlet of the cyclone. All the parameters in 

this equation are deterministic. In equations 16 and 17, 

except 𝑁𝐴, 𝜌𝑝 and 𝑊 other parameters can be assumed 

as the fuzzy number as below,  

�̃�𝑝 = (�̃�𝑝1, �̃�𝑝2, �̃�𝑝3, �̃�𝑝4, ℎ(�̃�𝑝))𝑚,𝑛 

�̃�𝑔 = (�̃�𝑔1, �̃�𝑔2, �̃�𝑔3, �̃�𝑔4, ℎ(�̃�𝑔))𝑚,𝑛 

�̃�𝑖𝑛 = (�̃�1, �̃�2, �̃�3, �̃�4, ℎ(�̃�𝑖𝑛))𝑚,𝑛 

�̃� = (�̃�1, �̃�2, �̃�3, �̃�4, ℎ(�̃�))𝑚,𝑛 

In equation 15, defining the fuzzy 𝑑𝑝 is sufficient 

because the value for 𝑑50 (which all the uncertainties 

have been considered) will be calculated accordingly.  

Equation 16 is an intermediate equation that can be 

used in the central equation. Therefore, the possibilistic 
mean value of the uncertain parameters can be used to 

calculate 𝑑50. Based on definition 9, equation (17) can 

be written in the following form: 

�̅�50 = √
9�̅�𝑊

2𝜋�̅�𝑖𝑛(𝜌𝑝 − �̅�𝑔)𝑁𝐴
 (19) 

 

 

where, �̅�, �̅�𝑖𝑛, and �̅�𝑔 are the possibilistic mean value 

for the corresponding parameters.  

Now, the fuzzy form of the cyclone’s efficiency can be 

written as, 

𝜂 =
1

1 + (
�̅�50
�̃�𝑝
)

2 
(20) 

Based on definition 7, the upper and lower  𝛼–cuts of 

the 𝜂 can be written as below: 

𝜂 =
1

1 + (
�̅�50
�̃�𝑝1

)

2 +

(

 
 
 1

1 + (
�̅�50
�̃�𝑝2

)

2

−
1

1 + (
�̅�50
�̃�𝑝1

)

2

)

 
 
 
(
𝛼

ℎ(𝜂)
)

1
𝑚

 

(21) 

𝜂 =
1

1 + (
�̅�50
�̃�𝑝4

)

2 +

(

 
 
 1

1 + (
�̅�50
�̃�𝑝3

)

2

−
1

1 + (
�̅�50
�̃�𝑝4

)

2

)

 
 
 
(
𝛼

ℎ(𝜂)
)

1
𝑛
 

(22) 

 

where, ℎ(𝜂) can be calculated as the following, 

ℎ(𝜂) = 𝑀𝑖𝑛{ℎ(�̃�𝑝), ℎ(�̃�𝑔), ℎ(�̃�𝑖𝑛), ℎ(�̃�)}  (23) 

5 Numerical Examples 

5.1 Minimum fluidization Velocity 

The following trapezoidal fuzzy parameters are defined 

for the alumina chlorination in a fluidized bed reactor 

(Barahmand et al., 2021b). There are different methods 

to define a fuzzy number. For fuzzy particle diameter, 

  

Value 

Crisp 

Value 

Normal Linear Trapezoidal Fuzzy 

Number 

Weighted 

P-Mean 

Defuzzified 

(CoG method) 

𝑑𝑝 𝜇𝑚 98 (20, 75, 115, 190, 1)1,1 103 102 

𝜌𝑠 𝑘𝑔/𝑚3 3958 - - - 

𝜌𝑔 𝑘𝑔/𝑚3 9.29e-01 (1.04, 9.38e-01, 9.19e-01, 8.24e-01, 1)1,1 9.32e-01 9.31e-01 

𝜀𝑚𝑓 - 0.4 (0.35, 0.39, 0.41, 0.42, 1)1,1 0.39 0.4 

𝑔 𝑚/𝑠2 9.8 - - - 

𝜇 𝑘𝑔/𝑚𝑠 4.2e-05 (3.68e-05, 4.23e-05, 4.39e-05, 5.04e-05, 1)1,1 4.3e-05 4.3e-05 

∅𝑠 - 0.85 (0.5, 0.65, 0.75, 0.90, 1)1,1 0.7 0.7 
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as an example, this can be achieved by fitting a 

trapezoidal to the size distribution diagram (Figure 4). 

In this case, the fuzzy particle diameter can be defined 

as, 

 �̃�𝑝 = (20, 75, 115,190,1)1,1 

This fuzzy number shows that the particles with a 

diameter less and more than 25 and 190 microns do not 

belong to this fuzzy set (the range is between extreme 

values). The other helpful information given by this 

fuzzy number is that the particles with a diameter of 85-

125 microns 100% belong to this set. To make it more 

straightforward, as an example, assume a set defined as 

the black balls. The white, light grey, dark grey, and 

black balls belong to this set with different belonging 

degrees. In this case, the belonging degree in the range 

[0, 1] for these balls is 0, 0.2, 0.8, and 1, respectively.  

 

 

Figure 4. Fitted trapezoidal to the alumina size 

distribution 

Similarly, the other parameters can be defined by 

operating conditions, results from the dynamic system 

(fluctuations), experiments, etc.  

Table 3 gives the deterministic and fuzzy values used in 

the numerical example. As an example, for the fluid’s 

density and dynamic viscosity, the interval of the 

midpoints and endpoints are calculated based on ±10℃ 

and ±40℃, respectively. 

By applying the data into equations 11 and 12, the 

minimum fluidization velocity 𝛼–cuts can be derived as, 

�̃�𝑚𝑓 = [�̃�𝑚𝑓
1 (𝛼) , �̃�𝑚𝑓

2 (𝛼) ] 

         = [0.00012 + 0.00256𝛼 , 0.02133 − 0.014𝛼] 
To find the interior and endpoints, let 𝛼 = 1 and 𝛼 = 0 

in equation (13). As a result, the fuzzy minimum 

fluidization velocity can be defined as below, 

�̃�𝑚𝑓 = (0.00012, 0.00268, 0.00733, 0.02136), where 

the membership function is, 

 

𝜇𝑢𝑚𝑓(𝑥) =

{
 
 
 
 
 

 
 
 
 
 

    

0                                          𝑥 ≤ 0.00012

𝑥 − 0.00012

0.00256
    0.00012 ≤ 𝑥 ≤ 0.00268

1                    0.00268 ≤ 𝑥 ≤ 0.00733

𝑥 − 0.02136

−0.014
       0.00733 ≤ 𝑥 ≤ 0.02136

0                                          𝑥 ≥ 0.02136

 

 

Now, based on the above membership and calculated α-

cuts (Table 4) and the graphical fuzzy minimum 

fluidization velocity is presented in Figure 5.  

 

Table 4. �̃�𝒎𝒇 α-cuts with linear membership functions  

𝛼 0.00 0.20 0.40 0.60 0.80 1.00 

�̃�𝑚𝑓
1  0.012 0.063 0.114 0.166 0.20 0.27 

𝛼 0.00 0.20 0.40 0.60 0.80 1.00 

�̃�𝑚𝑓
2  2.14 1.72 1.43 1.29 1.01 0.73 

 

Considering all uncertain and certain parameters, the 

calculated fuzzy minimum fluidization velocity is given 

in Figure 4. 

 

 

Figure 5. Calculated fuzzy minimum fluidization velocity 

with linear membership functions.  

The results show that the minimum fluidization velocity 

without considering uncertainty has been calculated as 

0.32 cm/s, ideally in the range with the highest 

belonging degree in the fuzzy number. The fuzzy 

minimum fluidization velocity gives more information.  

This analysis illustrates that considering all the defined 

uncertainties, the minimum fluidization velocity will not 

be more than 2.14 cm/s and not drop below 0.012 cm/s, 

but the velocities in the range [0.27, 0.73] cm/s have the 

highest belonging degree to this set. As seen in Figure 

5, the average deterministic value of this fuzzy number 

(defuzzified based on the center of gravity method and 

possibilistic mean). Instead of the deterministic 

calculated value, these values can be used in further 

reactor design calculations, representing the model's 

uncertainty.  

5.2 Cyclone Efficiency 

5.2.1 Base model 

To study the performance of the cyclone in a specific 

operating condition, a CPFD simulation has been done 

to study the performance of the cyclone in a specific 

operating condition. The cyclone diameter has been 

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185350 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

356



chosen 0.5 m, and all other dimensions can be calculated 

accordingly. The model has been simulated under the 

following operating condition, as shown in Table 5. 

Figure 6 shows a snapshot of the cyclone simulation in 

an isothermal condition. As it is clear, most of the 

particles leave the system from the bottom. Therefore, 

the average cyclone efficiency can be calculated by 

dividing the average particle mass flow rates between 

the bottom and the inlet.  

 

Table 5. Cyclone’s operating conditions used for the 

simulations 

Number of cells in setup grid:  500000 

Fluid superficial velocity (inlet) 36.5   m/s 

Particle  duty in: 0.3  kg/s 

Temperature: 973.15  K 

Outlet pressure: 1.5  bars 

Average particle diameter: 20  microns 

Fluid density: 1.3318  kg/m3 

Fluid dynamic viscosity: 0.0000287893  pa.s 

Cyclone type: High-Efficiency 

Nominal efficiency: 99% 

Particle density: 2100  kg/m3 

 

 

Figure 6. Particle distribution inside the cyclone 

5.2.2 Uncertainty in Theoretical Approach 

As discussed in Section 4.2, for the first step, the fuzzy 

parameters should be defined. The particle diameter and 

superficial velocity inlet to the cyclone are assumed as 

fuzzy numbers with linear membership functions (m and 

n equal to 1). Other parameters are kept the same as 

Table 5. 

�̃�𝑝 = (10, 18, 20, 22, 1)  

�̃�𝑖𝑛 = (35.64, 36.42, 36.92, 37.34, 1)  

Following the procedure in Section 4.2, in the second 

step, using definition 9, �̅�50 can be calculated by using 

possibilistic mean values in equation 19. From 

equations 21 and 22, the fuzzy efficiency of the cyclone 

can be calculated as Figure 7. 

5.2.3 Uncertainty in CPFD Model 

In the base model, the particle duty entered into the 

system has been set to 0.3 kg/s. To study the uncertainty 

using Barracuda® as the best alternative, the particle 

duty inlet to the cyclone has been chosen because all 

other uncertain parameters directly or indirectly affect 

the particle mass concentration.  

 

 

Figure 7. Fuzzy cyclone efficiency 

 
According to Table 6, by increasing the particle duty, 

the cyclone’s efficiency will increase, and after a 

certain point, it will start to drop. By investigating this 

with the CPFD simulation, the following results have 

been observed (Table 6). 

Table 6. Sensitivity of Cyclone efficiency to particle 

concentrations inlet to the cyclone 

Particle duty 

(kg/s) 

Particle Escape 

 (kg/s) 

Efficiency  

(%) 

0.05 0.002676 94.6 

0.1 0.005447 94.6 

0.2 0.007239 96.4 

0.3 0.008284 97.2 

0.4 0.011694 97.1 

 

The calculated fuzzy efficiency is in the overall range of 

92.3-98.3%. On the other hand, the CPFD simulation 

shows the efficiency in the range 94.6-97.1%. Using the 

parameters in Table 5 and applying equation 16, the 

theoretical efficiency can be calculated at 98%. Figure 7 

clearly shows these calculated efficiency ranges with the 

highest belonging degree (97.5-98%). On the other 

hand, there is more information about the efficiency of 

the system. Considering all the defined uncertainties, the 

possibility of having efficiency lower than 92.3% and 

higher than 98.3% is very low, and the efficiency will 

be in the range of 92.3-98.3%. This range covers the 

range resulted from CPFD simulation.  
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6 Conclusion 

Solid particles and fine powders in many industrial 

systems behave in a state of uncertainty. In a circulating 

fluidized bed, specifically, both sources of uncertainty 

are available. These sources are the uncertainty in a 

mathematical sense due to the difference between 

measured, estimated, and actual values, including errors 

in observations or calculations, and the uncertainty in 

particle and fluid physical properties, reaction kinetics, 

reactor temperature, etc. 

The fuzzy set theory is one of the robust tools which 

can model these uncertainties mathematically. 

Moreover, applying generalized trapezoidal fuzzy sets 

to fluidized bed calculation gives designers and analysts 

a more dependable tool to analyze the uncertainty. As 

can be seen in the result, the fuzzy model is efficient and 

valuable, and without introducing this method, it would 

not be possible to consider this genuine uncertainty. 

Overall, it is pretty clear that except for engineering, 

this fuzzy modeling method has applications in most 

branches of science and life, such as biomedical 

sciences, finance, social sciences, etc. Furthermore, 

future research could extend our model by type-2 

incorporating different heights for fuzzy inputs. 
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Abstract 

Fluidization is a well-established and widely used 

technology in the process industry. The production 

stability and the large effective contact area between the 

active substances, resulting in high mass and heat 

transfer between the phases, are some of the main 

advantages of fluidization. However, this technology 

has not yet been adequately developed for alumina 

chlorination as a standard solution on an industrial scale. 

Although a circulating fluidized bed reactor design is 

complex by its nature, it is advantageous to simulate the 

process compared to running experiments on a lab scale. 

The Computational Particle-Fluid Dynamic (CPFD) 

simulation lays a foundation for studying the given 

reaction process. 

The reaction between the solid alumina particles and 

the gaseous chlorine and carbon monoxide results in the 

products (aluminum chloride and carbon dioxide). The 

present study aims to design a circulating fluidized bed 

reactor by simulating the process in Barracuda®. 

Simulations with a simple geometry contributed to a 

better understanding of the reaction process. Then the 

simulation results are compared with values from both a 

theoretical approach and parallel simulations in Aspen 

Plus®. The comparison revealed that the results from 

Barracuda® Virtual Reactor (VR), such as product flow 

rate, are within a reasonable range of what could be 

expected in a full-scale plant. The promising 

preliminary results imply that CPFD could be a 

promising approach for future research on the design, 

optimization, and implementation of the industrial 

alumina chlorination process. The final design includes 

a fluidized bed reactor with a 2.4 m internal diameter 

and 8 m height and four parallel internal cyclones on 

top. 

Keywords:     CPFD Simulation, Alumina Chlorination, 

Circulating Fluidized Bed Reactor (CFBR), Reactor 
Design, Barracuda, Fluidization, Multiphase flow 

1 Introduction 

The earth’s crust is rich in aluminum. It can only be 

found in mineral compositions, for example, alumina-

silicates, clays, and hydrated oxides like bauxite. 

Producing aluminum from bauxite is mainly done by 

extraction in a Bayer process (Survey of Potential 

Processes for the Manufacture of Aluminium, 1979). 

This is done by dissolving alumina with soda ash and 

lime in steel digesters and converting it to pure 

aluminum by an electrochemical process, namely Hall-

Héroult (Thonstad, 2001). This process has a 

considerable power requirement and greenhouse gas 

(GHG) emissions. Because of that, it is important to 

evaluate an alternative process. The challenge lies in 

finding a proper and economical solution, considering 

the complexity of alumina’s carbothermic reduction 

(Rao & Soleiman, 1986). Even if alumina is pure, the 

result is aluminum metal and aluminum carbide. This 

again needs to decompose carbide to metal at 2100℃.  

The solution could be a two-step process that converts 

alumina to aluminum chloride (AlCl3) and then reduces 

it to metal aluminum. At first, it was suggested to reduce 

AlCl3 with manganese, but it was not an excellent 

economical choice (Survey of Potential Processes for 

the Manufacture of Aluminum, 1979). Alcoa® proposed 

a solution for this second step as the electrolysis of AlCl3 

with alkali and alkaline earth chlorides (Rhamdhani et 

al., 2013). This solution appears to be a more 

economical and energy-saving method. Current 

research and development study has been focusing on 

producing aluminum chloride from alumina. 

One proposed technology for the chlorination of 

alumina is a fluidized bed reactor (National Fuels and 

Energy Conservation Act, 1973). This technology has a 

wide range of possible applications. The upward flow of 

a fluid through a bed of solid particles is a technique that 

results in an efficient heat and mass transfer and 

generally offers a stable and efficient production. The 

challenge of using a Circulating Fluidized Bed (CFB) 

reactor lies in the design of the reactors due to the 

complexity of the flow patterns and the flow dynamics 

with multiphase situations within the reactors. This 

makes it hard to ensure that optimal conditions and 

dimensions are obtained (Cocco et al., 2014). 

Traditionally the preliminary design of processes has 

been done by the experiments on a lab scale. The 

execution of experiments of CFB reactors can be both 
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expensive and not necessarily applicable since the scale-

up processes of a fluidized bed reactor are difficult and 

complex. The extrapolation from lab-scale to industrial 

size is unreliable, especially when the Fluidized Bed 

Reactor (FBR) involves a reaction (Kunii & Levenspiel, 

1991). Over the last decades, the possibility of 

simulating processes has been under constant 

development, compared to the traditional approach with 

experiments. Moreover, as computational power and 

knowledge increase, making accurate designs through 

simulations increases. 

The fluidized bed technology has a wide range of 

applications in the process industry. The upward flow of 

a fluid through a bed of solid particles is a technique that 

results in an efficient heat and mass transfer and 

generally offers the process a stable production. 

However, due to the complexity of the flow pattern and 

the flow hydrodynamics within the gas-solid 

multiphase, the challenge of using a fluidized bed 

reactor rests in the design. 

The current work aims to design a medium-scale 

chlorination reactor for producing a stream of AlCl3 that 

may later be converted into pure aluminum. First, the 

basic geometry and the size of the reactor specifications 

are figured out for suitable hydrodynamics based on the 

available gas-solid fluidization theories. Then, the 

design and operation of the reactor are evaluated and 

analyzed by the CFD simulations for actual operating 

and process conditions.  

As the first step of the study, a circulating fluidized 

bed reactor (CFBR) preliminary mechanical design is 

completed using SOLIDWORKS®. The reactor model 

is then simulated/optimized with the use of CFD 

software called Barracuda VR® version 17.4. 

Alumina chlorination is an aggressive exothermic 

reaction that occurs at higher temperatures (~700℃) 

(Bjarte, 2018), and the Cl2 and AlCl3 as a reactant and 

product are highly corrosive. Therefore the specification 

of material and the cooling system are essential parts of 

the design process. However, these are not considered 

within the scope of the current study.   

2 Fluidization Process 

Several variables affect the regimes in a fluidized bed; 

among them are the fluid properties of particles and 

fluid included in the process. Different regimes can 

categorize the behavior of the system. Generally, at the 

low velocity of the fluid, the bed of particles is stagnant, 

and flowing fluid passes through the void spaces of the 

particles. By rising velocity above minimum 

fluidization condition, the system's behavior depends on 

which kind of interface we have. In liquid-solid systems, 

a velocity above minimum fluidization gives a smooth 

expansion of the bed. However, in gas-solid systems, 

having a velocity above minimum fluidization velocity 

causes the expansion of the bed. 

Further increase of the superficial gas velocity causes 

bubbles and movement of particles to go stronger. As a 

result, the bed height remains the same as it was at 

minimum fluidization condition. This regime is known 

as a bubbling fluidized bed (Kunii & Levenspiel, 1991). 

2.1 Industrial application 

The fluidized bed process has a long history in the 

industry. The first commercial process was introduced 

in the 1920s with the advent of the Winkler coal gasifier 

in Germany. Further, that produced high-octane 

gasoline by fluidized catalytic cracking units (FCCUs) 

in the 1940s (Cocco et al., 2014). After that, in the 

United States, it was suggested to use natural gas instead 

of petroleum fractions to produce gasoline with the 

fluidized bed. From the first attempts to use the fluidized 

bed in industry and until now, many processes have been 

changed and improved; thus, the range of applications 

has been raised. This is because of the usefulness of 

fluidized beds in process operation, especially for 

uniform temperature requirements for sensitive 

reactions (Kunii & Levenspiel, 1991). 

Heat exchangers are an example of an application of 

fluidized beds due to their high rate of heat transport and 

uniform temperature. An example of a process that 

needs a high heat transfer rate is producing alloy with 

specific properties, a quench, and a tempering process 

(Liu et al., 2020). For this purpose, the utilization of a 

fluidized bed is often seen as a solution. Solidification 

of melt to produce granules is another application of 

fluidized bed in industry and is based on spraying 

molten urea by falling through a tower and passing cold 

air upward to solidify droplets and form granules. 

Another practical application is coating solids with 

plastic by suspending plastic particles through the air to 

collide a hot metal with a higher temperature than the 

melting point of plastic and perform coating it with 

plastic. Drying solids as a dryer for wet particles through 

hot gas is widely used to apply fluidized beds since it 

has a large capacity with low construction cost, high 

thermal efficiency, and easy operability (Chandran et 

al., 1990). In addition to the applications above, 

fluidized beds have many useful and extensive 

commercial applications based on physical operations. 

Among them are adsorption, transportation, mixing of 

fine powders, and chemical operations like 

carbonization, solid catalyzed reaction, and combustion 

(Kunii & Levenspiel, 1991). 

2.2 Fluidized Bed Pros and Cons 

Fluidized beds have three main advantages (Ahmadpour 

Samani et al., 2020). The first is the excellent heat and 

mass transfer between solids and fluids, leading to the 

low surface area needed for heat exchangers within the 

fluidized bed. The second one is the easy movement of 

solids, like fluid causes continuous operation and rapid 

mixing to the isothermal condition that avoids abrupt 
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temperature changes, making it a safe and stable 

method. The third one is the ability to process solids 

with a wide range of size distributions. As a result, they 

are suitable for all scale operations and have high gas 

and solid throughput.  

There are some challenges in designing and building 

fluidized beds as they have inherent difficulties scaling 

up from lab-scale experiments. They also tend to have 

erosion because of the collision of particles into surfaces 

of vessels and pipes. The substantial losses can raise 

operating costs, especially if they are expensive 

catalysts. In addition, the rapid mixing and attrition of 

solids make non-uniform residence time for solids. 

Managing the giant bubbles in mass transfer cases are 

another challenge for fluidized bed (Cocco et al., 2014). 

Despite these mentioned challenges, the benefits of the 

fluidizing bed raise interest in the widespread industrial 

application making it a proper method in many 

industrial processing operations. 

3 Reactor Design 

Based on the given chlorination reaction (Figure 1), the 

following steps have been taken to design an industrial 

CFBR for alumina chlorination, classifying them into 

six different categories as 1) theoretical calculations, 2) 

fluidization regime selection, 3) CPFD simulations, 4) 

design optimization, 5) corrosion analysis and material 

selection, and 6) mechanical design.  

The fluid’s superficial velocity directly affects the 

fluidization regime and thus the reactor performances. 

As discussed in Section 3.1.2, the favorable regime can 

be achieved by choosing the fluid’s velocity inside the 

reactor based on the calculated velocities. 

3.1 Theoretical Calculations 

In this section, the main calculations will be discussed 

step by step.  

 

 

Figure 1. Illustration of the FBR 

3.1.1 Mass Balance 

As seen in Figure 1, the reactor should be designed for 

the given reaction (0.6 kg/s solid alumina with an 

equimolar mixture of Cl2 and CO) at 700 ℃.  

The overall reaction and mass balance are given in 

equations (1) and (2). 

𝐴𝑙2𝑂3 + 3𝐶𝑙2 + 3𝐶𝑂 → 2𝐴𝑙𝐶𝑙3 + 3𝐶𝑂2 (1) 

 

�̇�𝐴𝑙2𝑂3 𝑀𝐴𝑙2𝑂3
+ �̇�𝐶𝑙2

𝑀𝐶𝑙2
+ �̇�𝐶𝑂 𝑀𝐶𝑂

= �̇�𝐴𝑙𝐶𝑙3 𝑀𝐴𝑙𝐶𝑙3
+ �̇�𝐶𝑂2 𝑀𝐶𝑂2

 
(2) 

where, M is molecular weight and �̇� is molar flow rate. 

Table 1 shows the calculated mass and molar flow rate 

for the reactants and products. 

Table 1. Summarized results of the mass balance 

Component M (
𝑔

𝑚𝑜𝑙𝑒
) �̇� (

𝑘𝑔

𝑠
) �̇� (

𝑚𝑜𝑙𝑒

𝑠
) 

Al2O3 101.9 0.6 5.88 

Cl2 70.9 1.252 17.65 

CO 28.01 0.494 17.65 

AlCl3 133.34 1.569 11.77 

CO2 44.01 0.777 17.65 

3.1.2 Effect of superficial gas velocity on fluidization 

There are several important velocities in a fluidized bed 

reactor hydrodynamics, such as minimum fluidization 

(𝑢𝑚𝑓), minimum bubbling  (𝑢𝑚𝑏) and terminal  (𝑢𝑡) 

velocity. Although many factors affect the fluidization 

regime, such as solid particle Geldart classification 

(Kunii & Levenspiel, 1991), the fluid’s superficial 

velocity significantly affects the bed regime. As 

discussed earlier, choosing the velocities below 

minimum fluidization velocity leads to having a fixed 

bed. By rising velocity above that velocity, a smooth 

expansion of the bed will happen accordingly. In a 

multiphase (gas-solid) system, bubbles are generated for 

velocities above minimum bubbling velocity, particles' 

movement is stronger, and bed height increases 

relatively. In the velocities above terminal velocity, 

fluidization will be transferred to a pneumatic transport 

scenario.  

The given alumina sample can be categorized as 

Geldart A, as per its characteristic properties. Therefore, 

the minimum fluidization velocity can be calculated by 

solving the following quadratic equation: 

 

1.75

𝜀𝑚𝑓
3  ∅𝑠

(𝑅𝑒)2 +
150 − (1 − 𝜀𝑚𝑓)

𝜀𝑚𝑓
3  ∅𝑠

2
(𝑅𝑒)

=
𝑑𝑝

3 𝜌𝑔 (𝜌𝑠 − 𝜌𝑔)𝑔

𝜇2
 

(3) 

𝑅𝑒 =
𝑑𝑝 𝑢𝑚𝑓 𝜌𝑔

𝜇
 (4) 

where, 𝑅𝑒 is the Reynolds number, 𝜀𝑚𝑓 is the voidage 

at minimum fluidization condition, ∅𝑠 is the solid 

sphericity, 𝑑𝑝 is the average particle diameter, 𝜇 is the 
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fluid’s dynamic viscosity, 𝑔 is the acceleration gravity 

and  𝜌𝑔 and 𝜌𝑠 are fluid and solid density. 

It is investigated that 𝑢𝑚𝑏/𝑢𝑚𝑓  is highly dependent 

on the weight fraction of particles smaller than 45μm 

(Abrahamsen & Geldart, 1980). Based on experiment on 

23 different particle types and 5 different types of 

fluidized gases, they found the following equation to 

calculate the minimum bubbling velocity for fine 

particles as below (Kunii & Levenspiel, 1991): 

𝑢𝑚𝑏 = 𝑢𝑚𝑓

2300𝜌𝑔
0.13𝜇0.52  𝑒0.72𝑃45𝜇𝑚

𝑑𝑝
0.8(𝜌𝑠 − 𝜌𝑔)

0.93  (5) 

where, 𝑃45𝜇𝑚 is the weight fraction of particles smaller 

than 45μm.  

One way to calculate the terminal velocity is using 

Stokes law as below (Barahmand, 2021): 

𝑢𝑡 =
𝑑𝑝

2((𝜌𝑠 − 𝜌𝑔)𝑔

18𝜇
 (6) 

 Based on the parameters in Table 2, the velocities have 

been calculated as 𝑢𝑚𝑓 = 0.0106 𝑚/𝑠, 𝑢𝑚𝑏 = 0.1 𝑚/

𝑠, 𝑢𝑡 = 0.489 𝑚/𝑠. 

Table 2. Input parameters for velocity calculations 

Parameter Value Unit 

∅𝑠 0.85 - 
𝑑𝑝 0.000098 m 

𝑔 9.81 m/s2 
𝜌𝑠 3958 Kg/m3 
𝜌𝑔 0.906 Kg/m3 

𝜇𝑔 4.45*10-5 Pa.s 

𝑃45𝜇𝑚 0.0897 - 

 

3.1.3 Reactor Diameter Calculation 

The required superficial velocity (𝑢𝑟𝑒𝑞) is equal to the 

inlet fluid volumetric flow rate (�̇�𝑖𝑛) divided by the 

cross-sectional area (which is a circle in this case). 

Hence, the reactor diameter (𝑑𝑡) can be calculated by:  

𝑑𝑡 = (
4�̇�𝑖𝑛

𝑢𝑟𝑒𝑞𝜋
)

1
2

 (7) 

In a fluidized bed reactor, the required superficial 

velocity can vary between the minimum bubbling 

velocity of 0.1 m/s and the terminal velocity of 0.489 

m/s, as per the values presented in Table 2, which give 

values from 5.94 m to 2.47 m for reactor diameter, 

respectively based on the demand of the inlet gas 

volumetric flow rate. The flow rate of gas is calculated 

from the flow rate of particles set by the industrial 

requirements. The current study is decided based on the 

stoichiometry of the chlorination reaction. This means 

that the flow rate of gas, 2.35 m3/s, can only be adjusted 

by changing the mass flow rate of particles or the 

number of reactors. The starting point was a somewhat 

arbitrary diameter, then the volumetric flow rates and 

the velocity were calculated stepwise. Then the three 

parameters were varied until an acceptable result was 

obtained, meaning that the velocity should be inside an 

acceptable range, the number of reactors was 

reasonable, and the diameter seemed appropriate. It 

ended with an internal diameter of 2.4 m, which resulted 

in the need for five reactors to handle 0.12 kg/s of solid 

particle feed in each reactor. 

3.1.4 Reactor Height Calculation 

An FBR has several heights with different definitions, 

and it is essential to differentiate between them. The 

fixed bed height (𝐿𝑚), the height of the bubbling bed 

(𝐿𝑓) and the height of the reactor itself (𝐻𝑅) are the main 

ones (Kunii & Levenspiel, 1991). Determining the 

height depends on several factors, but an important one 

is the fluid’s superficial velocity inside the reactor. 

As discussed in Section 3.1.3, the desired superficial 

velocity passing through the reactor can be achieved by 

adjusting the reactor diameter. Nevertheless, calculating 

the reactor height is relatively challenging. This is 

because many parameters, such as superficial velocity, 

terminal velocity, and fluidization regime, affect the 

reactor height simultaneously.  

As shown in Figure 2, the height of a fluidized bed 

reactor can be divided into two main sections: the dense 

and lean phases. The density of solids decreases with 

height (Kunii & Levenspiel, 1991). The lean phase (also 

known as freeboard) height can be divided into two 

zones, where the lower part of this makes up the 

Transport Disengaging Height (TDH). Above the TDH 

is where the reactor outlet or inlet to the cyclone should 

be placed (Cocco et al., 2014).  

 

Figure 2. Different heights in a fluidized bed reactor 

(Kunii & Levenspiel, 1991) 

The reactor height can be chosen above TDH. As a 

result, the minimum reactor height can be calculated by 

calculating the dense phase height and the TDH. The 

dense phase or bubbling bed height (𝐿𝑓) can be 

calculated by series of equations ab below: 

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185360 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

363



𝐿𝑓 =
𝐿𝑚 (1 − 𝜀𝑚)

1 − 𝜀𝑓
 (8) 

where, 𝐿𝑚 is the fixed bed height, 𝜀𝑚 is the voidage in a 

fixed bed condition and 𝜀𝑓 is the void fraction in a 

fluidized bed as a whole. 

𝜀𝑓 = 𝛿 + (1 − 𝛿)𝜀𝑚𝑏 (9) 

where, 𝛿 is the height of bed at minimum fluidization, 

and 𝜀𝑚𝑏 is the voidage at minimum fluidization 

condition. 

𝛿 =
𝑢𝑜  − 𝑢𝑚𝑓

𝑢𝑏 − 𝑢𝑚𝑓
 (10) 

where, 𝑢𝑜 is the superficial gas velocity through a bed 

(empty vessel) and 𝑢𝑏 is the velocity of a bubble rising 

through a bed. 

𝑢𝑏 = 𝑢0 −  𝑢𝑚𝑓 + 𝑢𝑏𝑟 (11) 

where, 𝑢𝑏𝑟 is the velocity of a bubble rising through the 

bed (Kunii & Levenspiel, 1991). 

𝑢𝑏𝑟 = 0.711(𝑔𝑑𝑏)1/2 (12) 

 

𝑑𝑏 = 0.853[1 + 0.272(𝑢0 − 𝑢𝑚𝑓)]1/3(1

+ 0.0684𝑧)1.21 
(13) 

where, 𝑧 is any height in the reactor. 

Considering 𝑢0 = 0.175 𝑚/𝑠, 𝐿𝑚 = 1.6 𝑚, and 𝜀𝑚𝑏 =
0.6, the dense phase height will be 4.2 m. By adding 2.5 

m as TDH according to Figure 3, the acceptable height 

for the reactor will be almost 7 meters. In the case of 

using an internal cyclone or other consideration, higher 

values can be chosen.  

 

 

Figure 3. Estimating TDH (Perry, 1950) 

4 CPFD Simulation and the Results 

The CPFD simulations are based on the particle size 

distribution. Although in the theoretical calculation in 

Section 3, the average particle size has been used to 

calculate 𝑢𝑚𝑓 and 𝑢𝑚𝑏. Based on these theoretical 

values, the required superficial gas velocity inside the 

fluidized bed reactor is estimated. This value is then fed 

into the CFD simulations as one of the inputs, and more 

sophisticated calculations are done with CFD to study 

the hydrodynamics of the bed with the entire distribution 

of particles.  The reaction kinetics are based on an 

isothermal condition at 700℃ (Barahmand et al., 

2021b). The activation temperature and pre-exponential 

factor in the Arrhenius equation are 4000 K and 4583 

L.mol−1s−1 for a second-order reaction. As the first 

step, a preliminary reactor height of 15 meters was 

selected as an initial estimate to prevent particle escape 

through the exit through the top of the reactor. As shown 

in Figure 4, by visual observation and studying the 

particle mass flow rate through the reactor, CPFD 

simulation shows that the maximum height particles can 

achieve at steady-state is around 10 meters, which are 

slightly higher than the calculated value of 7 m Section 

3.1.4. This may happen because of the model 

uncertainties (Barahmand et al., 2021a). However, the 

cylindrical reactor height selected is sufficient to contain 

the particles once it reaches a steady state. 

 

 

Figure 4. Bed height at the steady-state 

The alumina chlorination is an exothermic and fast 

reaction. Due to the low reaction time, the residence 

time for particles could be lower as well. Based on the 

transient barracuda simulations, the reactor is predicted 

to be stabilized in around two minutes of operational 

time. Figure 5 shows the variation of the AlCl3 and CO2 

produced at the reactor based on the reaction (1). 

Based on the reaction stoichiometry, the mole fraction 

of produced aluminum chloride and carbon dioxide at 

steady-state should be 2:3, equivalent to 2:1 mass 

fraction. Therefore, at the steady state, the average mass 

flow rate of AlCl3 and CO2 have been calculated as 

0.381 kg/s and 0.188 kg/s, respectively. 

The chlorination product composition in the outlet has 

been calculated and compared with the results based on 

theoretical manual calculation, process simulations 

(Aspen Plus®), and CFD simulations (see Table 3). 
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Figure 5. Product’s mass flow rate at the outlet 

Table 3. Component mass flow rates (kg/s) at the outlet 

 Mass Flow Rates (kg/s) 

CPFD 

Simulation  

(Barracuda®) 

Theoretical Process 

simulations 

(Aspen Plus®) 

AlCl3 0.381 0.314 0.313 

CO2 0.188 0.155 0.155 

CO 0.00145 0 0.00021 

Cl2 5×10-7 0 0.00055 

 

 

By changing the fluid’s superficial velocity from 

minimum bubbling to higher velocities, the reactor 

experiences different regimes. As the second step, the 

effect of the superficial velocity inside the reactor on the 

reaction and hydrodynamics has been studied. Table 4 

shows the aluminum chloride (AlCl3) production rate is 

low (minimum bubbling), medium, and high (terminal) 

velocities.  

 

Table 4. Effect of the fluid velocity on AlCl3 production 

Velocity 

m/s 

Particles 

Inflow 

Rate (kg/s) 

Number of 

Reactors1  

Total 

Production 

Rate (kg/s) 

0.1 0.12 5 1.9040 

0.3 0.35 1.7 1.9409 

0.52 0.6 1 1.9862 

 

As shown in Table 4, a higher production (around 1%) 

can be achieved by increasing the velocity, but the 

number of reactors is reduced from 5 to 1. Therefore, in 

the next step, the design will be optimized based on the 

turbulent regime. 

5 Design Optimization 

The reactor has been optimized based on the turbulent 

regime (fast fluidization), with four internal cyclones 

designed based on the Lapple cyclone design 

(Barahmand et al., 2021a). The reactor diameter has 

been kept the same as before (2.4 m).  

                                                 
1 To reach 0.6 kg/s. 

The inlet of the cyclones has a height of 7 meters which 

gives the reactor height 9.7 m. The cyclones have been 

designed for 99% efficiency, and the cyclones' 

arrangement has been chosen based on a Gasifier design 

reported in the Barracuda® training material (Barracuda 

User Manual, 2021). Figure 6 shows the particle 

distribution in the reactor. 

 

 

Figure 6. Simulated alumina chlorination reactor (fast 

fluidized bed with four internal cyclones) 

6 Mechanical Design and the 

Material Selection 

Operating conditions in this application (700℃ and 

50% dry-chlorine) are challenging to handle. A very 

high temperature decreases the resistance of the metals, 

and a high concentration of chlorine at the given 

temperature is insanely corrosive (Chang & Wei, 1991). 

Most of the strong alloys can tolerate just 2% of chlorine 

in long-term operations. Figure 7 provides a simple 

guide to select the different alloys for dry chlorine 

conditions and indicates design parameters for internals 

such as tubes in heat exchangers and vessel components 

or pipes (Davies, 2018). The corrosion rates are based 

on short-term tests and should not be considered a 

solution in long-term operations or higher 

concentrations. 

 

 

Figure 7. Upper design limits for various alloys in dry 

chlorine (Davies, 2018) 
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Some of the alloys, specifically nickel-base ones, are 

more resistant in these kinds of conditions. However, it 

should not be forgotten that all these experiments and 

results have been tested in dilute chlorine, which is not 

the case in a real-life application. 

As seen in Figure 8, HAYNES® 214 alloy shows 

remarkable resistance to corrosion in high-temperature 

chlorine. Test results are shown for less than 500 hours 

of contact in a flowing gas mixture of Ar + 20% O2 + 

0.25% Cl2. Note that the metal loss showed by 

HAYNES® 214 alloys is very low compared to other 

alloys tested. Another alternative to this is INCONEL® 

alloy 600 (HAYNES® 214® ALLOY, 2008). 

In many cases, constructing a massive reactor with 

these materials is not economical for design and cost. A 

carbon steel reactor with special refractory linings, as an 

example, should be replaced in industrial-scale design. 

 

 

Figure 8. Resistance to chlorine corrosion (HAYNES® 

214® ALLOY, 2008) 

Using the process data, the overall mechanical design 

for the reactor (Figure 9) has been used to draw the 3D 

model of the reactor (Figure 10).  As discussed earlier, 

the preferred material for the reactor itself is a 

combination of carbon steel and refractory lining. 

Despite being cost-beneficial, this method has more 

operational safety because of the high temperature. 

Therefore, two layers of semi-silica brick and high-

alumina refractory (150 mm each) have been chosen for 

the lining. The lining’s thickness and materials can be 

modified during detail engineering. 

Figure 11 shows the four internal parallel cyclone’s 

arrangement in the fast fluidized bed reactor. Figure 12 

illustrates the top and bottom views of the reactor both 

internally and externally. For the gas distribution 

system, a perforated (Kunii & Levenspiel, 1991) pipe 

sparger mechanism (Kulkarni et al., 2009) has been 

designed and located at the bottom of the reactor. 

 

 

 

Figure 9. Overall assembly design of the reactor 

 

 

Figure 10. Reactor general assembly 

 

 

 

Figure 11.  The cyclones arrangement 
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Figure 12. a) Internal top view, b) internal bottom view, 

c) external top view, and d) external bottom view 

7 Conclusion and future development 

The present study results have been evaluated and 

implied that the present approach can be a practical 

solution for industrial aluminum production with lower 

environmental effects as CO2 produced from the process 

can be separated directly after the crystallization of 

AlCl3. It can be concluded that the promising results 

suggest continuing the work and research towards 

implementing a real-life industrial-scale reactor. It is 

crucial to validate the CFD simulation data with a lab-

scale experimental unit as future work. However, the 

results have been verified within the considered design 

parameters with theoretical methods and Aspen Plus® 

simulations. The overall internal diameter and height of 

the reactor are 2.4 m and 8 m, respectively. The 

circulation unit includes four parallel cyclones with a 

0.45 m diameter.  
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Abstract 

Aluminum is one of the most used metals. Since 

aluminum has a unique combination of appealing 

properties and effects, it allows significant energy 

savings in many applications, such as vehicles and 

buildings. Although this energy-saving leads to lower 

CO2 emissions, the production process of aluminum still 

dramatically impacts the environment. 

The process used exclusively in the aluminum industry 

is the Hall-Héroult process with a considerable carbon 

footprint and high energy consumption. As the best 

alternative, Alcoa's approach (which is not 

industrialized yet) is based on the chlorination of 

processed aluminum oxide, reducing the traditional 

method's negative impacts. 

Further to Alcoa’s effort, this study aims to investigate 

the possibility of a new low-carbon aluminum 

production process. This aim can be achieved by 

designing an industrial fluidized bed reactor with an 

external (due to high corrosion inside the reactor) gas-

solid separation unit. The aim is to handle 0.6 kg/s of 

solid reactants and produce aluminum chloride as the 

main product. The research focuses on determining the 

best bed height based on the available reaction rates, 

choosing the best reactor dimension to reduce particle 

outflow under isothermal conditions (700°C). Autodesk 

Inventor® and Barracuda® are used for 3D modeling of 

the reactor and CFD simulation for multiphase (solid-

gas) reactions, respectively. Although results have 

shown that the bed aspect ratio (H/D; H- bed Height and 

D- bed Diameter) does not affect the reaction, it highly 

affects the reactor’s hydrodynamics and particle 

outflow. The final design shows the best hydrodynamics 

belongs to bed aspect ratio equal to 2.  

Keywords: CPFD simulation, Bubbling regime, 

Fluidized bed reactor, Reactor design, Alumina 

Chlorination 

1 Introduction 

Aluminum is now the second most used metal globally 

(Bray, 2021). This is because aluminum has a unique 

combination of appealing properties and functionalities 

allowance for significant energy savings in many 

applications, such as vehicles and buildings. Besides, 

recycled aluminum is highly energy-efficient, using 

only 5% of primary production energy (Mapping 

Resource Prices: The Past and the Future, 2012). 

Although this energy-saving leads to lower CO2 

emissions, the production process of aluminum still has 

a massive impact on the environment (The Aluminium 

Effect, 2021). One of the aluminum industry's key 

targets (such as many other sectors) has remained 

aluminum manufacturing with the lowest carbon 

footprint possible, thanks to growing concern about 

global climate change (Adoption of the Paris 

Agreement, 2015). The industrial sector contributes 

approximately 21% of global greenhouse gas (GHG) 

emissions, with aluminum industries accounting for 1.0 

percent (11.5 tons of CO2 per ton of aluminum) 

(Clemence, 2019), and many key players in the global 

aluminum sector have taken the lead and made progress 

in reducing CO2 emissions in their smelting operations. 

This becomes more important when the significant 

increase in the global aluminum market size from 

around 150 billion dollars in 2019 to 250 billion by 2027 

with a compound annual growth rate of 5.7% during the 

period is reported (Aluminium Market Size, Trends | 

Global Industry Forecast [2027], 2021). 

The process which is used almost exclusively in the 

aluminum industry is the Hall-Héroult process. This 

process has turned aluminum metal into a commodity 

product since its invention in 1886 (Kovács et al., 2020). 

Alumina is dissolved in a cryolite bath in this continuous 

process, and aluminum is produced by electrolysis. In 

this cryolite-alumina melt electrolysis, aluminum oxide 

is dissolved in molten cryolite (Na3AlF6) and afterward 

electrolytically reduced to aluminum at almost 960°C. 

Carbon anodes are used in the process, consumed during 

electrolysis, resulting in the formation of CO2. This 

process suffers from relatively high heat loss from the 

electrolytic cells and increased CO2 emissions from the 

anodes, even though manufacturers have gradually 

improved their production processes. Besides, the Hall-

Héroult process moves down to its potentially lowest 

energy consumption and CO2 emissions during decades 

(Prasad, 2000).  

Alternative aluminum processing strategies have 

been under intense investigation due to the 

comparatively high energy usage and carbon footprint 
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associated with anode consumption (Thonstad, 2001). 

In continuation of this, in 1973, an innovative process 

was introduced by Alcoa Corporation, and it had several 

advantages compared to the commonly used method 

(Hall-Héroult) at that time (National Fuels and Energy 

Conservation Act, S. 2176, 1973). Alcoa's process is 

based on the chlorination of processed aluminum oxide. 

The chlorination process has the advantages of being 

more compact and operating at a lower temperature than 

the Hall-Héroult process, normally 700°C. The 

chemical carbon footprint of the two processes, 

however, is similar since aluminum chloride is created 

by carbochlorination of aluminum oxide, which 

includes aluminum oxide reacting with carbon (C) and 

chlorine gas (Cl2) to form aluminum chloride (AlCl3) 

and CO2. As a result, the same amount of CO2 is 

extracted per kilogram of aluminum in classical 

electrolysis. However, there are some significant 

differences although that make this process fascinating. 

First, this process does not necessitate the use of pure 

aluminum oxide as a raw material exclusively. 

Consequently, the Bayer process could be skipped, 

eliminating the issue of disposing of vast amounts of red 

sludge (Survey of Potential Processes for the 
Manufacture of Aluminium, 1979). Second, 

carbochlorination can result in relatively high CO2 

concentrations in the process gas, making CO2 capture 

and storage easier to implement (Øye, 2019). The third, 

the mechanical properties of carbon, which is merely a 

chemical reactant in aluminum chloride production by 

chlorination, are unnecessary. As a result, biocarbon can 

be used instead of coke from petroleum refineries, 

required by the Hall-Héroult process requires anodes 

with high mechanical strength and density (Øye, 2019). 

Around the time of the Alcoa process's 

implementation, a great deal of work was conducted on 

both the process and the chlorination of raw materials. 

Later, interest somewhat waned, but it has recently 

reappeared. Theoretically, many minerals containing 

sufficient amounts of aluminum can be directly 

chlorinated. So naturally, minerals with such a weak 

thermodynamic bond to aluminum, such as clay 

minerals bauxite and kaolinite, as well as hydrated 

aluminum sulfates, are preferred (Peterson & Miller, 

2007). 

Until now, fluidized bed technology has been studied 

in a wide range of applications. Even though it is a well-

known technology, designing such a reactor with ideal 

and realistic operating conditions continues to be a 

challenge without advanced numerical calculations. The 

complexity of hydrodynamics and the uncertain nature 

of the particles’ behavior with their enormous influential 

characteristics in the fluidized bed reactor make this 

engineering process complex (Barahmand, Aghaabbasi, 

et al., 2021). A highly corrosive environment inside the 

reactor adds the design further challenges. 

2 Hydrodynamics 

The hydrodynamic models depict solid motion and 

distribution, gas-solid mixtures, bubble size, velocity, 

growth, the relationship between the bubble and 

emulsion phases, and mass and heat transfer processes 

(Yang, 2003). The balance of forces between particles 

and gas velocity defines the hydrodynamics of a 

fluidized bed. It is possible to set the required 

fluidization regime by adjusting the gas velocity 

(Philippsen et al., 2015). The fixed bed has a low gas 

velocity, which keeps the bed static. The minimal 

fluidization regime is the fluidization regime's 

beginning point. When the gas velocity exceeds the 

minimum fluidization velocity, the bubbles form, 

causing flow instability. When the gas velocity exceeds 

the terminal velocity, the pneumatic transfer of 

particulates occurs, and it is employed in circulating 

fluidized beds (Kunii & Levenspiel, 1991). 

Figure 1. Solids motion and of different solids volume fractions zones (Horio, 1997) 
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Because of interactions between the gas and solid 

phases, fluidized beds have highly complex 

hydrodynamics. The movements of gases and solids are 

tough to define and explain. Hydrodynamics in a 

fluidized bed reactor deals with the mechanics of gas-

solid suspensions and the hydrodynamic properties of 

gas-solid contacts. The dilute suspension’s clustering 

nature, first observed from the relatively high gas-solid 

slip velocity, has been the most significant point of 

concern from a theoretical perspective. On the other 

hand, the impact of structural factors such as column 

diameter, wall shape, gas distributor design, exit 

configuration, solid separation and recycling equipment, 

as well as operating conditions, on the performance of 

circulation systems are the main hydrodynamic 

concerns from an engineering standpoint which is 

relatively interrelated with scientific aspects (Horio, 

1997).  

Any mechanical interactions in the model must be 

considered in a mathematical model to correctly 

simulate all of the flow processes associated with gas-

solid flows. These interactions, which are dependent on 

the mean and fluctuating components of the gas and 

solid velocity fields, are described by (Sinclair & 

Jackson, 1989) as 1) the interaction between average gas 

and solid velocity results in the drag force between the 

two phases, 2) the gas-phase Reynolds stresses are 

created by the interaction of average and fluctuating gas 

velocities, 3) the interaction between average and 

fluctuating solid velocities in the solid assembly that 

causes stresses., and 4) the interaction of particles with 

a fluctuating gas velocity, resulting in an interfacial flux 

of kinetic energy correlated with arbitrary motion. 

The properties of the particles have a significant effect 

on fluidization. Geldart (Geldart, 1973) divided particle 

behavior in fluidization into four categories, which are 

now generally recognized and applied in fluidized bed 

modeling. 

 Group A: The particles are small (30–150 𝜇m) and 

have a low density (1.4 g/cm3). The fluidization is 

simple, smooth, and consistent. It allows operating 

with modest gas flows while still controlling the size 

and speed of the bubbles. 

 Group B: Medium-diameter particles (40–500 𝜇m) 

having a density of 1.4 – 4 g/cm3. For high gas flow 

rates, fluidization is appropriate. Bubbles emerge at 

the onset of fluidization and expand rapidly. 

 Group C: Particles with a diameter of less than 30 𝜇m. 

Fluidization is a complex process. 

 Group D: Particles that are dense and big (d > 500 

𝜇m). Fluidization is complex and uneven, making 

spouted beds suitable. 

                                                 
1 Averaging the local disparity between upward and downward 

mass fluxes across the cross-sectional area. 

2.1 Particle motion and solids mixing 

mechanisms 

Studying fluidized bed hydrodynamics (Hartge et al., 

1988; Zhang et al., 1991) has indicated that the solids 

volume concentrations in the fluidized bed reactor can 

be classified into mainly four regions (Figure 1). First, 

cross-sectional average solids volume concentrations of 

usually 0.1 to 0.2 characterize the bottom region, where 

solid particle acceleration occurs. Next, a dilute region 

follows the transition zone, occupying most of the riser 

height and marked by low solids volume concentrations 

(> 1%). Finally, the exit geometry governs the fluid 

dynamics throughout the exit zone at the reactor’s top 

(smooth or abrupt exit)  (Horio, 1997). 

2.1.1 Particle motion in the dense bed 

In a previous work (Svensson et al., 1993), it is reported 

that the dense bottom zone of a fluidized bed 

experiences hydrodynamic activity similar to bubbling 

or turbulent fluidized beds, with fluidization gas flowing 

through the reactor’s bottom typically in the form of 

voids, based on pressure variations at the bottom. These 

voids break and push solids into the transfer zone as they 

hit the bottom zone's surface. Since there have not been 

enough local experiments on solids mixing in the 

bottom zone of a fluidized bed, it is safe to conclude that 

the mixing processes are identical to those in bubbling 

fluidized beds. According to (Kunii & Levenspiel, 

1991), “the transport in the wakes of rising voids is the 

essential mixing mechanism.”  

2.1.2 Particle motion in the dilute zone 

The presence of two phases (lean and dense phase) can 

describe the dilute region. According to studies in local 

hydrodynamics (Hartge et al., 1988), the lean phase 

comprises an upward-moving dilute suspension, while 

the dense phase comprises downward traveling particle 

clusters. The dense phase is made near the riser wall for 

the most part and has solids concentrations at least 

marginally more significant than the lean phase. For the 

sake of convenience, the dense phase is often believed 

to be constrained to a layer near the wall. Figure 2 

demonstrates radial profiles of local solids mass fluxes 

collected by a suction probe as an example of solids 

motion in the dilute zone (Kruse & Werther, 1995). 

Reduced solids fluxes1 are plotted against r/R to 

demonstrate the results. The upward solids mass fluxes 

are highest at the reactor’s core and decline as they 

approach the sidewall, while the downward mass fluxes 

are the opposite. Under these operating conditions, 

comparatively high downward-moving mass fluxes 

have been observed at the wall. 

The presence of a radial profile of local average solids 

velocities is another feature of the dilute region. It is 
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reported that the reactor’s core has the highest solids 

velocities (Figure 3), with mean solids velocities of 1.5 

to 2 times the superficial gas velocity (Yang et al., 

1992). Showing a dominant downward movement of 

solid particles near the sidewall, negative values are 

registered. In 1992 (Rhodes et al., 1992), a high-speed 

video camera to perform a more thorough analysis of the 

acceleration of downward flowing solids in regions near 

the wall was used. At velocities ranging from -0.3 to -

0.4 m/s, high-density particle swarms were observed 

descending in contact with the wall. Falling solids were 

observed to drop with a velocity of -1 m/s as strands a 

few millimeters from the wall. 

 

 

Figure 2. Radial profiles of solids mass fluxes (Horio, 

1997) 

 

Figure 3. Radial profiles of solids velocities (Horio, 

1997) 

2.1.3 Particle motion in the transition zone 

A transition from the dense bottom zone to the dilute 

zone happens in this zone, with low solids volume 

concentrations of solid and the gas phase (Senior & 

Brereton, 1992). Significant volumes of solids are 

released from the bottom zone into the transition zone 

through bursting voids. Solids from the dilute zone are 

carried back into the zone by dropping clusters. As a 

consequence, this is a high-intensity mixing region. 

Solid particles mix in the transfer region; on the other 

hand, the phenomenon has not yet been studied 

separately (Horio, 1997). 

2.1.4 Particle motion in the exit zone 

In the literature, two primary forms of exit geometries 

have been identified as smooth and abrupt exits. The 

first is a smooth bent pipe from the top of the fluidized 

bed reactor to the gas separation unit (cyclone) entry, 

with no impact on the reactor’s flow regime, and the 

second geometry includes a sharp 90° take-off below the 

reactor's end cap. Experiments using an abrupt exit 

(Mabrouk et al., 2008) have revealed increasing solids 

concentrations at the top of the riser. This effect is 

caused by solids colliding with the reactor’s end cap. 

Heavier particles, which cannot follow the gas flow 

through the outlet, are mirrored at the riser's top, 

allowing solids to accumulate in this region (Horio, 

1997). 

2.2 Heterogeneous particles fluidization  

Solid segregation happens when different solids with 

varying sizes and densities are fluidized, closely related 

to solids mixing. Solids segregation in bubbling 

fluidized beds has gained much interest recently 

(Nienow, 1985). The consequences of segregation are 

commonly unfavorable and harm hydrodynamics inside 

the reactor (Barahmand et al., 2021c).  

2.3 Particle’s classification 

In (Zhang et al., 2014), The fluidization state has been 

described using a generalized flow regime diagram with 

the Reynolds number as a function of the Archimedes 

number. As seen in Figure 4, the Archimedes number 

(or Geldart classification) and the height to bed diameter 

ratio may be used to classify diverse materials properly. 

These experiments have studied the effect of different 

H/D based on hundreds of powders in different Geldart 

classifications on the fluidized bed hydrodynamics. In 

practice, there are, in many cases, there are different 

alumina types in a process that have different physical 

properties (Barahmand et al., 2021c). Hence, 

considering and studying the possibility of segregation 

is essential for designers.  

3 CPFD simulations and discussion 

The main goal of the present study is to simulate the 

alumina chlorination reaction under an isothermal 

condition at 700℃ in a simple cylindrical fluidized bed 

reactor and study the effect of different bed aspect ratios 

(H/D) on the reaction conversion rate and 

hydrodynamics of the system. The reactor height has 

been chosen relatively high enough to avoid particle 

escape in fluidization. The alumina size and reaction 
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kinetics are based on (Barahmand et al., 2021b). The 

Archimedes number for the alumina sample can be 

calculated as 3.59 (Geldart group A). Therefore, H/D 

below and above unity has been considered into 

simulations. This study investigates the effect of 

different bed aspect ratios and operating pressures on the 

reaction conversion rate. The overall reaction and mass 

balance are given in equations (1) and (2). 

𝐴𝑙2𝑂3 + 3𝐶𝑙2 + 3𝐶𝑂 → 2𝐴𝑙𝐶𝑙3 + 3𝐶𝑂2 (1) 

3.1 Bed aspect ratio (H/D) 

To study the effect of bed aspect ratio on reactor 

hydrodynamics and reaction efficiency, different H/Ds 

have been chosen (0.5, 1, 1.5, 2, 2.5, and 3). 

Figure 5 shows the initial bed at the time 0 for 6 

different cases. Almost 1500 seconds after fluidization, 

the system experiences a steady-state. The expanded 

beds are shown in Figure 6, where the red color 

represents the solid region in the bed. In all cases, the 

bed’s solid regions cause the fluid to escape through the 

area between the reactor wall and the bed.  

The Cl2 average mass concentrations and mole 

fractions at the outlet are given in Table 1. As shown in 

Figure 7, the highest and lowest Cl2 concentration 

belongs to H/D equal to 3 and 1, respectively. Thus, the 

results show that the bed aspect ratio (above unity) 

harms the reaction conversion.  

 

 

 

Figure 5. Initial bed for different H/Ds 

 

Table 1. Cl2 concentration and mole fraction at the outlet 

H/D Mass Concentration (g/m3) Mole Fraction 

3 38.15 0.0375 

2.5 21.2 0.0161 

2 19.2 0.0146 

1.5 5.6 0.0043 

1 0.62 0.0005 

0.5 1.96 0.0015 

 

 

Figure 4. Block flow regime diagram for different particle classification in a fluidized bed (Shaul et al., 2012) 
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Figure 6. Solid regions in the bed at steady-state 

Although the H/D equal to unity shows the best 

performance in reaction conversion, to choose a proper 

bed aspect ratio, it is necessary to consider the whole 

hydrodynamics of the bed (Barahmand et al., 2021a, 

2021b). Too low H/D can cause channeling, and it may 

reduce the reaction efficiency. As a result, Cl2 

concentration at the reactor outlet may increase. Even a 

tiny amount of Cl2 at the outlet could cause problems if 

there is no purification process on Cl2.  Too high H/D 

may also cause channeling because of creating strong 

solid regions in the bed. Simultaneously, too high H/D 

will increase energy consumption significantly due to 

the increased pressure drop of the reactor.   

 

 

Figure 7. Average Cl2 concentration in the outlet vs. H/D 

3.2 Pressure Effect 

In the next step, the present work aims to study the effect 

of the operating pressure on the reactor's chemical 

performance. The outlet pressure boundary condition 

directly affects the fluid’s superficial velocity for a 

certain fluid mass flow rate.  Choosing H/D=1, several 

simulations have been done in different conditions. 

Each simulation has a duration of at least 1500 seconds 

to reach the pseudo-steady-state. As seen in Figure 8, the 

average Cl2 mass concentration in the outlet increases 

by increasing the outlet pressure. Therefore, it can be 

concluded that it is favorable to operate the reactor with 

the lowest pressure to have better reaction conversion. 

There is a negative correlation between the reactor’s 

outlet pressure and the reaction conversion. Studying 

the effect of outlet pressure on Cl2 mass concentration 

illustrates that the minimum concentration belongs to 

the range when outlet pressure is between 1 and 2 bars. 

 

 

Figure 8. The effect of the pressure on the Cl2 

concentration 

4 Conclusions 

As simulation results show, almost all the Cl2 are 

consumed within the first meter of the reactor, which 

means the current range of bed and reactor height may 

not be fully activated in an actual chlorination process.  

However, the H/D value has a significant role when it 

comes to suitable hydrodynamics of the reactor. 

Therefore, selecting the reactor specification for good 

hydrodynamics of the gas-solid fluidized bed reactor is 

very important. Too low and high H/D can cause 

channeling. A low H/D may reduce the reaction 

efficiency. Too high H/D may also cause channeling 

because of creating strong solid regions or increasing 

energy consumption significantly.  The results show that 

the reactor performs best (minimum Cl2 mass 

concentration at the outlet) when the outlet pressure 

ranges between 1 and 2 bars. 

Considering all factors to ensure the reliable and 

effective operation of the fluidized bed reactor (such as 

hydrodynamics, change in Cl2 concentration over 

height, and particle outflow, etc.), the suitable height to 

diameter ratio (H/D) can be considered as 2. Results of 

further simulations related to the selected H/D ratio are 

reported by (Barahmand, 2021). 
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Abstract 

As a part of the new sustainable aluminum production 

process under study, alumina chlorination plays a 

crucial role. The relevant process is an exothermic 

reaction in a fluidized bed reactor. The solid alumina 

reacts with chlorine and carbon monoxide and produces 

aluminum chloride and carbon dioxide as the main 

products. Then carbon dioxide can be separated 

efficiently. The optimum temperature for the alumina 

chlorination is 700℃. The reactor’s temperature should 

be kept in the range of 650-850℃ (most preferably 

700℃) because below that temperature range, the 

reaction rate drops, and above that range, the alumina 

(which usually is γ-alumina) transfers to other alumina 

types, which is not desirable for the purpose.  

Extending other simulation studies by authors on 

alumina chlorination in an isothermal condition, the 

CPFD method has been utilized to thermal study and 

simulate the overall heat transfer of the system, 

including convective fluid to the wall, fluid to particle, 

and radiation heat transfer. Radial and axial heat transfer 

coefficient profiles at different levels show that almost 

all the heat should be transferred in the lower half of the 

reactor, making the design more challenging. At the 

steady-state, the range for the fluid temperature inside 

the reactor has been recorded 700-780℃. 

Keywords: Heat transfer, fluidized bed reactor, alumina 

chlorination, exothermic reaction, Barracuda, 
radiation, thermal simulation, CPFD simulation 

1 Introduction  

The Hall-Héroult process used almost exclusively in the 

aluminum industry suffers from relatively high heat loss 

from the electrolytic cells and increased CO2 emissions 

from the anodes, even though manufacturers have 

gradually improved their production processes (Kovács 

et al., 2020). In 2001, Jomar Thonstad, professor of 

Electrochemistry at the Norwegian university of science 

and technology (NTNU), and his colleagues, in their 

book (Thonstad, 2001), mentioned that “the Hall-

Héroult process remains the only modern method of 

producing aluminum today, having withstood many 

attempts to replace it. No other mechanism seems to be 

threatening it for the next twenty years or so,” and it has 

been 20 years now.  

Alternative aluminum processing strategies have 

been under intense investigation due to the 

comparatively high energy usage and carbon footprint 

associated with anode consumption (Thonstad, 2001). 

In continuation of this, in 1973, an innovative process 

was introduced by Alcoa Corporation, and it had several 

advantages compared to the commonly used method 

(Hall-Héroult) at that time (National Fuels and Energy 

Conservation Act, S. 2176, 1973). Alcoa's process is 

based on the chlorination of processed aluminum oxide 

in a fluidized bed. The chlorination process has the 

advantages of being more compact and operating at a 

lower temperature than the Hall-Héroult process, 

normally 700°C as well as less carbon footprint. 

During the last decades, fluidized bed reactors (FBR) 

have been used in a wide range of applications in the 

industry due to the inherited uniform thermal 

distribution through the reactor, high heat and mass 

transfer, and flexibility in operation in large-scale 

applications (Zhang & Wei, 2017). In a fluidized bed, 

solid particles are suspended by a stream of fluid that 

flows upward, causing the solid suspension to move 

fluidly (Alagha & Szentannai, 2020). Fluidized bed 

technology has become widely employed in power 

generation due to its superior mixing and heat transport 

characteristics (Basu, 2006; Scala, 2013), chemical 

(Kunii & Levenspiel, 1991; Yang, 2003), 

pharmaceutical industries (Almendros-Ibáñez et al., 

2019; Miller et al., 2018), etc.  

Heat transfer occurs either spontaneously or 

intentionally in many gas fluidized bed applications. 

Heat transfer may occur between the solid and gas 

phases, the two-phase mixture, a solid surface, or both 

(Yang, 2003). The fluidized chlorination of alumina, for 

example, is a process in which alumina particles are 

fluidized by an equimolar mixture of carbon monoxide 

and chlorine at 700 ℃. The exothermic chlorination of 

alumina at the particle surface raises particle 

temperature, which leads to natural heat transfer from 

the heated particles to the fluidizing gas mixture 

(Barahmand et al., 2021b). To keep the bed's overall 

energy balance (the reactor temperature should be kept 

around 700 ℃), heat must be transferred from the 

particle to the gas medium and then to a cooling surface, 
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such as heat exchanger tubes, reactor jacket, or any other 

cooling apparatus. 

In the FBR, several heat transfer mechanisms could be 

identified, such as fluid convection, solid particle 

conduction or convection, and radiation (Nauman, 

2001). Thermal diffusion (heat conduction), convection, 

and radiation are the three primary modes of heat 

transfer. These mechanisms may exist simultaneously, 

or one of them may predominate under particular 

circumstances (Fan & Zhu, 1998). These conduction 

and convection modes are similar to their fluid-based 

counterparts in terms of momentum transfer. Thermal 

radiation, a type of energy transport via electromagnetic 

waves, is regulated by a distinct set of principles and can 

even occur in a perfect vacuum. It should also be noted 

that due to the similarities of their governing equations, 

mass transfer and heat transfer (without radiation) may 

be compared. 

Intraparticle heat transport is dominated by 

conductive heat transfer. Conductive heat transfer is 

essential for fluid heat transfer at low Reynolds number 

flow conditions (Tsotsas, 2019). In addition to heat 

conduction, thermal convection enhances heat transfer 

from a thermal surface exposed to a flowing fluid 

(Garcia-Gutierrez et al., 2020). In a bubbling fluidized 

bed, the convective heat transfer mechanism occupies 

the total heat transfer flux (Qiu et al., 2016). Natural 

convection in a gas-solid system is generally negligible, 

even though thermal convection generally comprises 

forced and natural convection (Fan & Zhu, 1998). In a 

thermally radiative condition, absorption, reflection, 

refraction, and diffraction have happened for an element 

in the system.  Not only can the element transmit 

incoming radiative heat fluxes but also emits its 

radiative heat flux (Fan & Zhu, 1998). Gray bodies can 

represent most solid materials in gas-solid fluxes, 

including particles and pipe walls. The term scattering 

can describe several modes of radiative energy 

transmission (Filla et al., 1996). 

In thermal studies, solids not only alter the size as a 

result of pyrolysis, but the rates of reactions and fluid 

temperatures can also be affected by solid surface areas, 

solid material types, and discrete solid temperatures 

(Snider et al., 2011). The particle phase can be modeled 

in a variety of ways utilizing discrete computational 

particles or components. Only a small number of 

particles can be calculated using the direct numerical 

solution and Lattice Boltzmann computations. The 

CPFD approach to simulating a reactive thermal fluid-

solid flow is reported in the current manuscript. The 

multi-phase-particle-in-cell (MP-PIC) technique is used 

in the CPFD numerical methodology to calculate dense 

particle flows (Snider, 2001). The MP-PIC technique is 

a hybrid numerical approach that solves the fluid phase 

                                                 
1 This terms is positive when the heat leaves the control 

volume and includes all heat transport mechanisms 

with an Eulerian computational grid and models the 

solids with Lagrangian computational particles (Snider 

et al., 2011). 

The current simulation work aims to study heat 

transfer between reactive materials in an industrial FBR 

reactor (dedicated for alumina chlorination) and its wall. 

To maintain the pseudo-steady-state, the heat produced 

from exothermic reactions should be transferred outside 

the reactor (cooling). Further investigations are done on 

temperature gradient and its variations through the 

height of the reactor. 

2  Energy balance 

A flow reactor's thermal energy balance can be written 

in a reasonably general way as below, 

𝑑𝑈

𝑑𝑡
= �̇�𝑖 −  �̇�𝑒 + �̇�𝑓 + �̇�𝑉 + �̇�𝑟 + �̇�𝑇 (1) 

where, 
𝑑𝑈

𝑑𝑡
 is the accumulation of energy, �̇�𝑖 and  �̇�𝑒 are 

convective enthalpy of input and output streams, 

respectively, �̇�𝑟 is the heat generated by the reaction, �̇�𝑇 

is the heat transferred to the environment1 (radiation, 

convection, and conduction), �̇�𝑉 is added work 

associated with the volume change, and �̇�𝑓 ≥ 0 is the 

friction work.  

By neglecting volume and friction work, equation (1) 

can be simplified as,  

𝑑𝑈

𝑑𝑡
= �̇�𝑖 −  �̇�𝑒 − �̇�𝑟 − �̇�𝑇 (2) 

 

In thermodynamics, one of several energy expressions 

is enthalpy H, which simply is defined as (Lie, 2019), 

𝐻 ≜ 𝑈 + 𝑃𝑉 (3) 

 

Working on the left-hand side of equation (2) results, 

𝑈 = 𝐻 − 𝑃𝑉 ⇒
𝑑𝑈

𝑑𝑡
=

𝑑(𝐻 − 𝑃𝑉)

𝑑𝑡

=
𝑑𝐻

𝑑𝑡
− 𝑃

𝑑𝑉

𝑑𝑡
− 𝑉

𝑑𝑃

𝑑𝑡
=

𝑑𝐻

𝑑𝑡
 

𝐻 = 𝑚�̂� ⇒
𝑑𝐻

𝑑𝑡
=

𝑑(𝑚�̂�)

𝑑𝑡
= 𝑚

𝑑�̂�

𝑑𝑡
+ �̂�

𝑑𝑚

𝑑𝑡
= 𝑚

𝑑�̂�

𝑑𝑡
 

 

𝑑𝑈

𝑑𝑡
=

𝑑

𝑑𝑡
(�̂�𝑉) (4) 

 

In the same manner, by simplification of the right-hand 

side, the thermal energy balance is turned to,  

𝑑

𝑑𝑡
(�̂�𝑉�̂�) = �̇�𝑖𝑛𝜌𝑖𝑛�̂�𝑖𝑛 − �̇�𝑜𝑢𝑡𝜌𝑜𝑢𝑡�̂�𝑜𝑢𝑡

+ �̂�𝐴𝑉∆�̂�𝑟+ �̇�𝑟 − �̇�𝑇 

(5) 

 

This is an integral balance that can be applied to the 

whole system. The enthalpies are defined relative to a 
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reference temperature (𝑇𝑟𝑒𝑓). The temperature would 

commonly be used to replace the enthalpy expressions. 

𝐻 = ∫ 𝐶𝑝

𝑇

𝑇𝑟𝑒𝑓

 (6) 

Where, 𝐶𝑝 is the average specific heat capacity for the 

entire reactant mixture. Taking the thermodynamics 

convenient into account, for exothermic reactions 

∆𝐻𝑟 < 0. The heat-generation expression refers to the 

net effect of all reactions where there are several 

reactions. As a consequence, the ∆𝐻𝑟𝑟 expression is an 

implicit summation of all 𝑚 potential reactions 

(Nauman, 2001): 

∆𝐻𝑟𝑟 = ∑ (∆𝐻𝑟)𝑖(𝑟)𝑖

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

= ∑(∆𝐻𝑟)𝑖(𝑟)𝑖

𝑚

𝑖=1

 (7) 

3 Heat Transfer Mechanisms 

Barracuda® can quantify temperature gradients 

within the model due to initial particle and fluid 

temperatures, boundary state temperatures, thermal 

walls, or chemical reactions. In the computational 

particle fluid dynamics (CPFD) simulation, the 

following mechanisms can be studied by Barracuda® 

(Barracuda User Manual, 2021): the convective fluid-

to-wall heat transfer, which includes lean-phase and 

dense-phase heat transfer, fluid-to-particle heat transfer, 

and radiation, including P-1 model for thermal radiation 

and Wall to particle radiation. 

3.1 Convective fluid-to-wall heat transfer  

The sum of the coefficients for a lean and dense phase 

in the fluidized bed is often used to indicate the effective 

heat transfer coefficients as below (Yang, 2003), 

 

ℎ𝑓𝑤 = ℎ𝑙 + 𝑓𝑑ℎ𝑑 (8) 

𝑓𝑑 = 1 − 𝑒−10(𝜃𝑝/𝜃𝑐𝑝) (9) 

where, hfw is the local fluid-wall heat transfer 

coefficient, hl is a combination of contributions from a 

lean gas phase heat transfer coefficient, θcp is the close 

pack value fraction, θp is the particle volume fraction at 

the wall, and a dense particle phase’s coefficient, hd. The 

fluid-to-wall heat transfer coefficient is weighted by the 

function fd , which is the fraction of contact time by the 

dense particle phase. The time fraction of dense phase 

contact, fd is a function of the particle volume fraction at 

the wall. 

For the heat transfer in a lean phase, the general form 

of heat transfer coefficient is, 

ℎ𝑙 = ((𝑐0𝑅𝑒𝐿
𝑛1𝑃𝑟𝑛2 + 𝑐1)

𝑘𝑓

𝐿
+ 𝑐2) (10) 

where, 𝑐0, 𝑐1, 𝑐2, 𝑛1, and 𝑛2 are adjustable model 

parameters, 𝑘𝑓 is the thermal conductivity of the 

fluid,  L is the cell length, and 𝑅𝑒𝐿 is the Reynolds 

number,  and 𝑃𝑟 is the Prandtl number (Bergman et al., 

2011). 

In these simulations, the following default lean phase 

heat transfer coefficient, based on the correlation of 

Douglas and Churchill (Yang, 2003), has been used. 

(c0 = 0.46,  c1 = 3.66,  c2 = 0.0,  n1 = 0.5,  and n2 = 0.33) 

 

In the dense phase, the general form of the heat transfer 

coefficient is as below,  

ℎ𝑑 = (𝑐0𝑅𝑒𝐿
𝑛1)

𝑘𝑓

𝑑𝑝
 (11) 

where, 𝑑𝑝 is the particle diameter.  

Similarly, the following default dense phase heat 

transfer coefficients (Yang, 2003) have been used in the 

simulation. 

(c0 = 0.525,  n1 = 0.75) 

3.2 Fluid-to-particle heat transfer 

The fluid-to-particle heat transfer coefficient is used to 

describe heat transmission between the fluid and particle 

phases.  

ℎ𝑙 = ((𝑐0𝑅𝑒𝑝
𝑛1𝑃𝑟0.33 + 𝑐1)

𝑘𝑓

𝑑𝑝
+ 𝑐2) (12) 

where, the Reynolds number and Prandtl number are 

defined as, 

𝑅𝑒𝐿 =
𝜌𝑓|𝑈𝑓 − 𝑈𝑝|𝑑𝑝

𝜇𝑓
      ,        𝑃𝑟 =

𝜇𝑓𝑐𝑝,𝑓

𝑘𝑓
 (13) 

where, 𝑈𝑓 is the fluid velocity, 𝑈𝑝 is the particle 

velocity, 𝜌𝑓 is the fluid density, 𝜇𝑓 is the fluid’s dynamic 

viscosity, and 𝑐𝑝,𝑓 is the fluid heat capacity. 

In a fluidized bed, when the Reynolds number is less 

than 20, the Nusselt number for a single sphere is 

typically higher than the particle Nusselt number. A 

single sphere in a quiescent fluid has a Nup = 2, 

representing the limit of conductive heat transfer. On the 

other hand, the bubbling phenomena cause the observed 

magnitude of Nup to be less than 2 in a fluidized bed. 

Low Reynolds numbers correspond to tiny particle beds 

(small 𝑑𝑝 and 𝑈𝑝) with entrained particles clouding the 

bubbles. This reduces the efficiency of particle-gas 

interaction below the assumed plug flow level, resulting 

in lower Nup values. As particle diameter rises (coarse 

particle beds), the "bubbles" become less cloudy, and 

gas-particle interaction improves. 

Barracuda® uses a correlation for fluid-to-particle heat 

transfer coefficient dependent on McAdams' correlation 

to capture fluid-to-particle heat transfer in a fluidized 

bed (Fan & Zhu, 1998). 

(c0 = 0.37,  c1 = 0.1,  c2 = 0.0,  and n1 = 0.6) 
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3.3 Radiation model 

3.3.1 P-1 radiation model: 

This model, which is the simplest case of the more 

general P-N model (ANSYS FLUENT User Guide, 

2021), addresses the heat transfer, where thermal 

radiation between particles, particles and fluid, particles 

and thermal walls, and fluid and thermal walls are taken 

into account. In the P-1 radiation model, the incident 

radiation transfer equation is:    

∇ ∙ (𝛤∇𝐺) + 4(𝑎𝑛2𝜎𝑇4 + 𝐸𝑝) − (𝑎 − 𝑎𝑝)𝐺 = 0  (14) 

where, 𝛤 is the diffuse radiation coefficient, 𝐺 is the 

incident radiation to be solved, 𝑎  is the absorption 

coefficient of the fluid mixture, 𝑛 is the refractive index 

of the fluid mixture, 𝜎 is the Stefan-Boltzmann constant, 

𝑇 is the fluid temperature in units of K, 𝐸𝑝 is equivalent 

emission of the particles, and 𝑎𝑝 is the equivalent 

particle absorption coefficient. 

By defining a thermal boundary condition, the 

Marshak boundary condition (Elshin et al., 2018) is used 

for the radiative heat flux at the thermal wall (𝑞𝑤) as the 

following: 

−𝑞𝑤 = 𝛤𝑤 (
𝜕𝐺

𝜕𝑛
) =

𝜀𝑤

2(2 − 𝜀𝑤)
(4𝜎𝑇𝑤

4 − 𝐺𝑤) (15) 

𝛤 =
1

3(𝑎 + 𝑎𝑝 + 𝜎𝑓 + 𝜎𝑝)
 (16) 

Where, 𝜀𝑤 is the emissivity of the thermal wall, 𝑤 is 

subscript for thermal wall, 𝜎𝑓 is equivalent fluid 

scattering coefficient, and 𝜎𝑝 is identical particle 

scattering factor.  

3.3.2 Particle to Wall Radiation: 

The model is only used under thermal wall boundary 

conditions and only considers radiation between a 

thermal wall and the particle phase and ignores radiative 

heat transfer between particles-walls or wall-fluid. The 

radiation between a thermal wall cell and nearby 

particles (𝑞𝑤𝑝) is calculated as (Barracuda User 

Manual, 2021), 

 

𝑞𝑤𝑝 = 𝐴𝑤𝐹𝑤𝑝𝜀𝑤𝑝𝜎 (𝑇𝑤
4 − �̅�𝑝

4
) 

(17) 

𝛤𝜀𝑤𝑝 = (
1

𝜀�̅�
+

1

𝜀𝑤
− 1) 

(18) 

where, 𝐴𝑤 is the area of the thermal wall, 𝐹𝑤𝑝 is a 

calculated view factor, 𝜀𝑤𝑝 is the effective emissivity 

between the wall and the particles in a cell, 𝑇𝑤 is the 

temperature of the wall, �̅�𝑝 is the mass-weighted average 

temperature of particles in a cell, and 𝜀�̅� is the volume-

weighted average of particle emissivity.  

                                                 
2 Based on (Barahmand et al., 2021b) with the average 

diameter of 98 microns. 

4 CPFD simulations 

The CPFD simulations are based on the particle size 

distribution and reaction kinetics (pure 𝛾-alumina 

chlorination) in an isothermal condition at 700℃ 

(Barahmand et al., 2021b). The geometry (cylindrical 

reactor with extended section) and other operational 

conditions (Barahmand et al., 2021a) for the pure 𝛾-

alumina chlorination.  In Barracuda®, the thermal wall 

of a model applies a user-defined temperature to the 

reactor wall. Energy can be transferred via the reactor 

wall depending on the temperature in between the wall 

and the fluid near the wall. The model has been 

simulated under the following operating condition 

(Table 1): 

Table 1. Reactor’s Operating Condition 

Number of cells in setup grid:  65000 

Bed aspect ratio (H/D) 1.8 

Wall temperature 973.15  K 

Reactor initial temperature: 973.15  K 

Outlet pressure: 1.5  bars 

Particle diameter: Distribution2  

Particle density (envelope): 2100  kg/m3 

Particle sphericity 0.7 

Initial bed void fraction 0.44 

Fluidization regime Bubbling 

 

The alumina chlorination reaction is a rapid and 

exothermic reaction that mainly occurs at the bottom of 

the reactor (Barahmand et al., 2021b). As a result, the 

generated heat will not be distributed homogeneously 

through the entire height of the particle bed. Therefore, 

the surface area of the reactor has been divided into 7 

different sections, as shown in Figure 1 

 

Figure 1. Reactor geometry and thermal-wall sections 
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5 Result and discussion 

Due to a lack of information about the reactor wall 

emissivity, the heat transfer has been studied in three 

different cases. The first case is in the absence of 

radiation (emissivity = 0). In the second simulation, 

maximum possible radiation (emissivity = 1) has been 

set into the calculations, and in the last step, a relatively 

high emissivity (0.85) has been used.  

5.1 Thermal model without radiation 

The thermal simulations need much more time to reach 

pseudo-steady-state. Figure 2 shows the average fluid 

temperature distribution inside the reactor (middle 

cross-section). It seems like the local temperature is 

somewhat evenly distributed at the bottom part of the 

bed. The temperature at the bottom of the reactor is the 

highest since the reaction conversion is very high in that 

area. 

 

 

Figure 2 Particle distribution (left), and temperature 

distribution (right) at steady-state.  

Figure 3 shows the heat transfer through the wall of the 

reactor. It seems it is necessary to transfer 1.56 MW of 

heat through the reactor wall at pseudo-steady-state to 

keep the reactor wall at 700℃. Theoretically, the heat 

duty transferred through the wall is not equally 

distributed. Table 2 gives the information about the heat 

transfer rate in different reactor sections in Figure 1. 

Starting from bottom to top, the sections are named from 

1 to 7. Most of the heat leaves the reactor through the 

bottom half due to high energy generation from the 

exothermic chlorination reaction in the specific area. 

Figure 4 illustrates the average fluid temperature in 

different sections of the reactor. Comparing figures 2 

and 4 confirms that the fluid temperature inside the 

reactor is almost gradually decreasing from bottom to 

top. The highest recorded temperature is 792℃, and the 

average fluid temperature leaving the system is about 

744℃. 

 

 

Figure 3. Overall heat transfer through the reactor wall 

 

Table 2 Heat transfer in different sections 

Section Heat Transfer 

(MW) 

(%) 

of total 

1 0.22 14.2 

2 0.41 26.2 

3 0.61 39 

4 0.26 16.6 

5 0.31 2 

6 0.016 1 

7 0.013 < 1 

 

 

Figure 4. The fluid average temperature profile in 

different heights 

Average heat duty in steady-state 
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5.2 Thermal model with radiation 

5.2.1 Radiation (emissivity = 1) 

By activating the P-1 model with maximum possible 

emissivity, the overall heat transfer through the reactor 

wall increases significantly. In this case, the overall heat 

transfer is 2 MW, almost 30 % higher than the heat 

transfer with no radiation (Figure 5). The portion of the 

convective mode is 29 % by 0.58 MW, and radiative 

heat transfer is 71 % by 1.4 MW (see Figure 6). In the 

current simulation, radiation is the dominant heat 

transfer mechanism.  

Table 3 gives the overall view of heat transfer in the 

different sections of the reactor. Convective heat 

transfer has not been observed at the three upper 

sections of the reactor. The average fluid temperature in 

the middle vertical cross-section of the reactor is given 

in Figure 7. The fluid temperature is considerably lower 

because of the higher heat transfer (compared to the case 

with no radiation). 

 

 

Figure 5 Reactor’s overall heat transfer with maximum 

radiative heat transfer.  

 

Figure 6. Convective and radiative heat transfer in the 

reactor (max emissivity) 

 

Table 3. Convective and radiative Heat transfer in different 

sections of the reactor 

 Convection Radiation 
Section Heat Transfer 

(kW) 

(%) 

 

Heat Transfer 

(MW) 

(%) 

 

1 92.4 16 264.8 19 

2 163 28 240.6 17 

3 224.9 39 266 19 

4 90.3 16 180.4 13 

5 6 1 192.5 14 

6 2.9 < 1 224.3 16 

7 2.1 ~0 46.1 3 
 

 

 

Figure 7. Particle distribution (right), and temperature 

distribution (left) in steady-state. 

 

Figure 8. The fluid average temperature profile in 

different heights 

Average heat duty in steady-state 
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Figure 8 illustrates the average fluid temperature in

different sections of the reactor. The reactor temperature

distribution can be divided mainly into three areas. The

temperature in the first and the last three sections are

almost constant. Nevertheless, in the middle section

(4th), the reactor experienced a 20 ℃ temperature drop

which can easily be observed in Figure 7. The average

fluid temperature in the outlet is 709 ℃ which is very

close to the desired temperature.

5.2.2 Radiation (emissivity = 0.85)

In Sections 5.1 and 5.2.1, the extreme modes for 

the radiation (emissivity 0 and 1) have been 

investigated. In the last step, the emissivity is set to 

0.85. The average overall heat transfer is 1.94 MW 

(Figure 9) which is 2.5 percent lower than the case 

with the maximum emissivity.
 

 

Figure 9. Reactor’s overall heat transfer with maximum 

radiative heat transfer. 

Table 4. Convective and radiative Heat transfer in different 

sections of the reactor 

 Convection Radiation 

Section Heat Transfer 

(KW) 

(%) 

 

Heat Transfer 

(MW) 

(%) 

 

1 879 15 241.4 18 

2 141.2 24 214.5 16 

3 229.6 39 242.1 18 

4 110.7 19 178.5 13 

5 8 1 204.3 15 

6 3.9 < 1 226.3 17 

7 2.9 < 1 46 3 

 

As expected, change in emissivity shows no effect on 

the convective heat transfer.  The radiative heat transfer 

has been dropped to 1.35 MW. As seen in Table 4, the 

portion on each heat transfer mechanism in the different 

sections is almost the same as before. The average 

Outlet temperature has been recorded at 711℃ in 

comparison with 709℃ in the previous case.  

To compare the heat duty calculated by the CPFD 

method, the reaction has been simulated in Aspen Plus®   

using the Gibbs reactor. A Gibbs reactor is a reactor that 

uses equilibrium processes to minimize the Gibbs free 

energy (Haydary, 2018). The Gibbs reactor simulation 

gave the 1.6 MW, which is slightly higher than the heat 

transfer in the absence of radiation and much lower than 

the cases with radiation. Several reasons may cause this 

variation, such as the difference in enthalpy value or 

heat formation in the libraries and different conditions 

in the outlet (because of the system's dynamics in CPFD 

simulation).  

The enthalpy equation is used to explain energy. 

Energy transport in the fluid phase and energy transfer 

from the solid phase is described by energy 

conservation. Using a turbulent Prandtl number 

approximation, the turbulent thermal diffusion is 

derived from eddy conductivity. For each gas species, a 

transport equation is solved. Particle chemistry transfers 

mass and energy between solid and fluid phases. The 

enthalpy for each gas species includes the heat of 

formation from breaking and establishing chemical 

bonds. 

6 Conclusion 

Design an exothermic reactor with an efficient heat 

transfer performance is probably the most critical task 

from an engineering perspective. The efficiency of the 

reaction is highly affected by temperature. The CPFD 

method is applied to an industrial alumina chlorination 

reactor. The alumina chlorination calculation is three-

dimensional, with chemistry in a large industrial hot 

reactor. The CPFD method provided a chlorination 

solution to 10000 seconds and took 47 days computation 

time on a single Intel Xeon E5 computer.  

The Gibbs reactor simulation in Aspen Plus® shows 

lower heat transfer than thermal analysis by CPFD 

simulation.  In CPFD simulation, at the steady-state, the 

reactor temperature range is 744-792℃ in the case with 

emissivity equal to 0, 709-728℃ for the case with the 

maximum emissivity, and 711-730℃ in the case with 

emissivity equal to 0.85. The possibility of having 

higher radiation by using the material with high 

emissivity helps to reach more heat transfer and lower 

temperature in the reactor. As a result, less cooling duty 

will be needed. For future studies, it is suggested to 

validate the model with other computational or 

experimental studies. Moreover, the mesh convergence 

test can help future studies find the best mesh size for 

the model.    
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Abstract 

Alumina is one of the most widely used materials today, 

with a total annual production of millions of tonnes of 

highly pure alumina. A large portion of this is used to 

make metal aluminum. Apart from that, a growing 

amount of alumina is used in ceramics, refractories, 

catalysts, and various other products. In nature, alumina 

can be found in different phases. These phases can be 

transformed into each other in different temperatures. 

Among these, γ-alumina is used in the chlorination 

process in the aluminum production industry because of 

the higher reaction rates. Previously, the chlorination of 

pure γ-alumina has been considered in the CPFD 

simulations. Extending previous researches, the present 

study investigates the effect of seven percent α-alumina 

impurity on the overall chlorination reaction, bed 

hydrodynamics, and composition of the outflow of the 

reactor. Commercial CPFD software Barracuda® 

v20.1.0 is used for the simulations. The results are 

compared with the pure γ-alumina simulations, and the 

results show that the impurity has no considerable effect 

on the chlorine concentration at the outlet. However, the 

mass balance of the bed shows an unfavorable 

accumulation of α-alumina in the fluidized bed reactor. 

Keywords: Barracuda, CPFD simulation, α-Alumina 

chlorination, γ-alumina chlorination, Fluidized bed 
reactor (FBR), 

1 Introduction 

The Romans called materials with a styptic or astringent 

flavor "alumen." Impure forms of aluminum sulfate and 

alum could have been among them naturally occurring 

in volcanic areas. Term alumina appears to be derived 

from the mineral alumen (Beckmann, 1846). Alumina is 

the raw material used for the production of metal 

Aluminum. 

The process which is used almost exclusively in the 

aluminum industry is the Hall-Héroult process. This 

process has turned aluminum metal into a commodity 

product since its invention in 1886 (Kovács et al., 2020). 

Alumina is dissolved in a cryolite bath in this continuous 

process, and aluminum is produced by electrolysis. In 

this cryolite-alumina melt electrolysis, aluminum oxide 

is dissolved in molten cryolite (Na3AlF6) and afterward 

electrolytically reduced to aluminum at almost 960 °C. 

Carbon anodes are used in the process, consumed during 

electrolysis, are resulting in the formation of CO2. This 

process suffers from relatively high heat loss from the 

electrolytic cells and increased CO2 emissions from the 

anodes, even though manufacturers have gradually 

improved their production processes. Besides, the Hall-

Héroult process moves down to its potentially lowest 

energy consumption and CO2 emissions during decades 

(Prasad, 2000). The following reaction (2.1) can be the 

overall reaction of dissolved alumina with carbon to 

form the products (Thonstad, 2001). 

½ 𝐴𝑙2𝑂3 (𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑)  +  ¾ 𝐶 (𝑠)  
→  𝐴𝑙 (𝑙)  +  ¾ 𝐶𝑂2 (𝑔) 

(1) 

Alternative aluminum processing strategies have been 

under intense investigation due to the comparatively 

high energy usage and carbon footprint associated with 

anode consumption (Thonstad, 2001). In continuation of 

this, in 1973, an innovative process was introduced by 

Alcoa Corporation, and it had several advantages 

compared to the commonly used method (Hall-Héroult) 

at that time (National Fuels and Energy Conservation 
Act, S. 2176, 1973). Alcoa's process is based on the 

chlorination of processed aluminum oxide. The 

chlorination process has the advantages of being more 

compact and operating at a lower temperature than the 

Hall-Héroult process, normally 700 °C. Unlike the Hall-

Héroult process, which needs pure alumina, one of the 

main advantages of the chlorination process is the 

possibility of using impure alumina. The following 

simplified general reaction can be used to reflect 

carbothermic chlorination of alumina (Rao & Soleiman, 

1986): 

𝐴𝑙2𝑂3  + (𝑛)𝐶 +  3𝐶𝑙2  
→  2𝐴𝑙𝐶𝑙3  + (2𝑛 − 3)𝐶𝑂 
+ (3 − 𝑛)𝐶𝑂2 

(2) 

where, 1.5 ≤ 𝑛 ≤ 3. The following sequential reactions 

can explain the carbothermic chlorination of alumina as 

the reaction progresses with the production of carbon 

dioxide and carbon monoxide: 

𝐴𝑙2𝑂3 +  3𝐶𝑂 +  3𝐶𝑙2  →  2𝐴𝑙𝐶𝑙3  +  3𝐶𝑂2 (3) 

𝐶 +  𝐶𝑂2  →  2𝐶𝑂 , 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 (4) 

 

The experimental techniques for obtaining gas-solid 

contact and extracting gaseous materials containing 
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AlCl3 and impurity elements are crucial in deciding the 

chlorination rate.  

Experiments of different CO/Cl2 molar ratios revealed 

that CO/Cl2 = 1 has the highest chlorination rate, and 

this is clear from overall reactions (3), which involve 

equimolar concentrations of CO and Cl2 (Gokcen, 

1983). The optimal temperature for chlorinating 

aluminous resources with CO + Cl2 is between 600° and 

900°C, with 650 to 750°C being the most expected 

range. According to (Alder et al., 1977), 600°C could be 

a reasonable operating temperature for an alumina 

chlorination fluidized bed. In an industrial chlorination 

reactor, erosion and chlorination of reactor lining are 

significantly reduced at lower temperatures. Hence, 

chlorination at low temperatures tends to be desirable 

for designers. 

Commercial chlorination reactor construction 

materials must be kept cold enough to prevent being 

chlorinated. As a result, it seems that externally heated 

chambers are not feasible. An appropriate series of 

reactions must be chosen to produce enough heat to keep 

the internal reactor temperature up while retaining a 

temperature gradient that allows for a relatively cold and 

nearly non-reacting wall (Gokcen, 1983). 

The Alcoa process's overall chlorination reaction has 

been introduced by equations (2-4), where solid-phase 

alumina (mainly Al2O3) reacts with the gaseous chlorine 

and carbon monoxide at 700 ℃. It is vital to know that 

many alumina particles have different purities and size 

distribution, affecting the reaction rate. 

α-Alumina has outstanding mechanical properties and 

superb thermal properties at high temperatures; 

polycrystalline α-alumina is used as a structural 

ceramic. As a result, this type has much lower reaction 

rates in the chlorination process. The present study aims 

to investigate the effect of an impurity (𝛼-alumina) in an 

industrial γ-alumina chlorination fluidized bed reactor 

under the isothermal condition at 700 ℃. First, some 

critical information about the stoichiometry of alumina 

chlorination, reactants, and products is given. Next, the 

alumina chlorination kinetics for both types have been 

introduced, which are used from previous studies. In the 

current study, SOLIDWORKS®
 has been used for the 

mechanical design of the fluidized bed reactor, and the 

reactor model is then simulated/optimized with the use 

of CFD software called Barracuda VR®
 version 20.1. At 

the final step, the results have been compared with the 

same model reacting pure γ-alumina  (Barahmand et al., 

2021). 

2 Alumina chlorination stoichiometry 

The stoichiometry of chlorination of reactants is as 

reaction (5), 

𝐴𝑙2𝑂3 (𝑠)  +  3𝐶𝑙2  +  3𝐶𝑂 
→  2𝐴𝑙𝐶𝑙3  +  3𝐶𝑂2 

(5) 

Al2O3: In nature and different thermal conditions, 

alumina is found in different phases. These phases can 

be transformed into each other. Table 1 (Aswad, 2012) 

shows some properties of three main types of alumina. 

The density of the alpha type is more than other types. 

Table 1 Properties of different types of alumina 

Type Envelope 

Density (kg/m3) 

Melting Temp (°C) 

α-alumina 2600 2051 

γ-alumina 2100 γ →δ∶700-800 

θ-alumina 2330 θ →α∶1050 

 

AlCl3: because of low vapor pressure (1 atm) at 169.7℃, 

the gas phase is almost all Al2Cl6 (g). However, during 

chlorination at high temperatures, both gaseous AlCl3 

and Al2Cl6 are present in the process. It has a shallow 

melting point of about 192℃.  

2𝐴𝑙𝐶𝑙3  ⇄  𝐴𝑙2𝐶𝑙3 (6) 

AlCl3 in the gaseous phase is in equilibrium with Al2Cl6. 

Table 2 shows their volume percentage at different 

temperatures (Gokcen, 1983).  

Table 2 Volume percentage of AlCl3 and Al2Cl6 in 

equilibrium 

Temperature (𝐾) 600 800 1000 1200 

AlCl3 (%) 2.1 35.5 88.4 98.7 

Al2Cl6 (%) 97.9 64.5 11.6 1.3 

 

CO and Cl2: At the 1 atm pressure, CO and Cl2 are in 

equilibrium with phosgene (COCl2). The volume 

percentage of each in a mixture with different 

temperatures is given in Table 3 (Gokcen, 1983).  

Table 3 Volume percentage of CO + Cl2 and COCl2 in 

equilibrium 

Temperature (𝐾) 800 1000 

CO (%) 30.8 48.16 

COCl2 (%) 30.8 48.16 

Cl2 (%) 38.4 3.68 

 

An equimolar mixture of CO and Cl2 can contain small 

amounts of COCl2 in the normal temperature range of 

chlorination. However, This is not an issue because the 

reaction of alumina with phosgene is faster than an 

equimolar mixture of CO and Cl2  (Bertóti et al., 1981). 

𝐶𝑙2  +  𝐶𝑂 ⇄  𝐶𝑂𝐶𝑙2 (7) 

3 Process kinetics 

3.1 γ-Alumina chlorination kinetics 

In 1981 the temperature and partial pressure dependency 

and the influence of photo-irradiation of the reactive 

gases were studied to find reaction rate for γ-alumina 

chlorination with carbon monoxide and chlorine (Tóth 

et al., 1982) and phosgene (Bertóti et al., 1981) in 

different temperatures. To experiment with carbon 
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monoxide and chlorine, the isothermal TG 

measurements were taken at temperatures ranging from 

327 to 850°C. It has been shown that the reaction 

conversion and the specific initial reaction rate (R0) have 

a significant temperature dependency. The reaction rates 

for phosgene are higher than the mixture of CO and Cl2 

up to around 920 K, as observed, while the data obtained 

with both are almost the same as results in (Bertóti et al., 

1981). Unlike (Milne, 1976), solid samples have been 

preheated before chlorination, and as a result, they have 

been gotten rid of the uncontrolled behavior of the 

change in the sample's reactivity due to structural 

changes. The Arrhenius style of specific reaction rate 

(R0) is illustrated in Figure 1. 

 

 

 

Figure 1. The specific initial reaction rate (R0) vs. 

temperature (T) in reaction with phosgene (black) and 

CO+Cl2 mixture (white) (Tóth et al., 1982) 

For the reaction with CO+Cl2 mixture, the activation 

energies (E1) computed by the rate constant of the first-

order kinetic equation and initial reaction rate are 106 

and 118 kJ/mole. Between temperatures 775-878 K, E2 

is almost half of the E1 and equal to 56 kJ/mole, and for 

the range between 920-1123 K, E3 is the lowest and 

equal to 23 kJ/mole, indicating that the process at these 

temperatures is effectively regulated by external mass 

transfer. 

Figure 2 verifies the above-described phenomenon, as 

the results of an experimental investigation (Milne, 

1976) studied chlorination of two different sizes (7.9 

mm and 0.125 mm) of γ-alumina with an equimolar 

mixture of CO and Cl2. The particle’s surface area 

directly impacts the reaction (Kunii & Levenspiel, 

1991). As per the findings of this experiment, it is 

expected that the fluidized bed's reaction rate will be 

much quicker than the experiment when very tiny 

alumina particles are used in the reactor. 

 

 
Figure 2. Chlorination of γ-alumina with CO/Cl2=1. Solid 

lines are for 9.7 mm particles; broken lines are for 0.125 

mm particles (Milne, 1976). 

3.2 𝜶-Alumina chlorination kinetics 

As (Soleiman & Rao, 1987) reported, the reaction rate 

and activation energy of the 𝛼-alumina in a carbo-

chlorination reaction is much lower than that of the γ 

type. In the range 800-900℃, the activation energy is 

32±2.5 kJ/mole. In general,  

𝑟𝑒𝑥𝑝 = 𝐾(𝑃𝑐𝑙2
)

𝑚
(𝑃𝐶𝑂)𝑛 (8) 

 

where, 𝑃𝑥 is the partial pressure of component 𝑥, m and 

n are reaction orders, 𝐾 is the reaction constant, and 𝑟𝑒𝑥𝑝 

is an experimentally calculated reaction rate. Table 4 

gives calculated m and n in different temperatures. 

 

Table 4. Reaction orders in different temperatures  

 Reaction Temperatures (℃) 

 800 835 870 910 950 

m 0.71 0.60 0.59 0.56 0.48 

n 0.77 0.72 0.66 0.65 0.65 

The rate expression for the particular case considered 

under the experiment considerations can be written as, 

𝑟𝑒𝑥𝑝 = �̃�(𝑃𝑐𝑙2
)(𝑃𝐶𝑂) (9) 

 

where, �̃� is the apparent rate constant in gg-1min-1atm. 

Table 5 shows the different values for the apparent rate 

constant, 

Table 5. Values of �̃� obtained by regression analysis of 

𝒓𝒆𝒙𝒑 vs (𝑷𝒄𝒍𝟐
)(𝑷𝑪𝑶) results 

T (℃) 800 835 870 910 950 

�̃� 0.0234 0.0256 0.0281 0.0313 0.0368 

𝑙𝑛�̃� -3.755 -3.665 -3.572 -3.464 -3.302 

10000/T 9.3197 9.0253 8.8479 8.4531 8.1766 
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4 CPFD model 

The CPFD method is applied to an industrial alumina 

chlorination reactor with modified geometry 

(cylindrical reactor with a section with an extended 

diameter on top) with a smooth exit on top (Figure 5), 

and the bed aspect ration (H/D) equal to 2 has been used 

(Barahmand et al., 2021). The alumina chlorination 

calculation is three-dimensional, with chemistry in a 

large industrial reactor at isothermal conditions (700℃). 

The CPFD method provided a chlorination solution for 

3600 seconds. The calculation took 5 days to complete 

the computation on a single Intel Xeon E5 computer 

using 55000 cells in total. 

An equimolar mixture of CO and Cl2 enters 

continuously from the bottom of the reactor, and the 

products leave the reactor from the top. The initial bed 

contains mainly γ-alumina with only 7% of 𝛼-alumina 

as the impurity. The amount of γ (top) and 𝛼-alumina 

(bottom) types are patched in the particle bed as shown 

in Figure 5 (right). In terms of the concentration, the 

same percentage of the impurity (𝜶-alumina) has been 

applied to injected solid particles through the feeder 

(total particle feed is 0.6 kg/s). Specifications of the 

particles have a crucial role in the fluidized bed 

hydrodynamics, such as size distribution, sphericity, 

porosity, and the void fraction of the particle bed. The 

particle size distribution given in Figure 3 is used for 

both γ and 𝛼 alumina types. 

 

Figure 3. Particle size distribution of the alumina sample 

 
The particle sphericity, envelop density, and bed void 

fraction cannot be calculated easily and need special 

measuring apparatus and procedures. However, an 

extensive range of values has been reported in the 

literature. To get closer to the acceptable range, an 

experiment has been done. Finding a reasonable 

                                                 
1 Nikon smz745T 

estimation of sphericity, a random sample has been 

studied under a microscope1.  

 

 

Figure 4. Alumina sample under the microscope 

It has been observed that this shows a considerable 

amount of cracked particles (by attrition), which might 

be created during the process. Based on the 

approximation guideline (Liang et al., 2016), the 

cracked particles mostly have sphericity below 0.5, but 

the sphericity for the not cracked particles could be 

estimated close to 0.9 (Figure 4). All in all, 0.9 for the 

average sphericity of this alumina is somewhat 

optimistic, and finally, 0.7 has been chosen. 

The parameters defined for the γ-alumina particles in 

the simulation are given in Table 6. Except for the 

envelope density, other parameters are the same in both 

alumina types. The envelope density of α-alumina has 

been set to 2600 kg/m3. 

 

Table 6. γ-Alumina Properties 

Parameter Effects on Used-values 

Average diameter H, R 98 microns 

Sphericity H 0.7  

Emissivity R,HT 0.75  

Envelope Density H 2100 kg/m3 

Bulk Density H 1.19  kg/m3 

Diffusion coefficient R 2.2E-06 cm2/s  

Void Fraction H 0.46  

(H: Hydrodynamics, R: Reaction, HT: Heat Transfer) 

 

The WenYu-Ergun drag model (Xie et al., 2018) has

been used, and the reaction rate has been set using the

information in Sections 3.1 and 3.2. The 

superficial velocity has been set close to the 

minimum bubbling velocity (0.1 m/s). The pressure 

boundary in the outlet has been assumed 1 atm.
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Homogeneous Inflow 
  

 

Figure 5. Reactor meshed geometry (left), different types 

of alumina in the initial bed (right) 

5 Results and discussion 

Comparing the chlorine concentration in the outlet with 

pure γ-alumina (Barahmand et al., 2021) with the 

present study confirms that 7% impurity in the alumina 

sample does not affect reaction conversion. The average 

chlorine concertation in both cases is below 0.0003 

mole/m3 in the outlet. Although the reaction kinetics 

clearly shows that the reaction rate for α-alumina is 

much slower than the γ-alumina, the impurity shows no 

adverse effect on the Cl2 concentration in the outlet 

because the chlorination reaction is rapid. On the other 

hand, there are more solid particles than needed to react 

with the gaseous reactants.  

Figure 6 shows the α and γ-type alumina particle 

distribution through the reactor. However, because of 

the densification, α-alumina is relatively heavier than γ-

alumina. After only 700 seconds, it has been distributed 

homogeneously through the bed.  

Studying the particle outflow in the pseudo-steady-

state shows that the overall particle escape is 156 g/s, 

almost one-fourth of the feed. The average escaping rate 

of α-alumina (from 500 seconds in steady-state) 

particles has been recorded as only 6 g/s, almost 3.8 

percent, while this percent is 7 for the feed. As a result, 

α-alumina may accumulate inside the reactor. One 

reason can be the higher density (about 25 percent) of α-

alumina. Figure 8 shows that the distribution of the 

particles leaving the reactor. Almost 97 % of these 

particles have a mean diameter below 20 microns. 

 

 

  

Figure 6. Different types of alumina particle’s distribution 

after fluidization (left) in steady-state (right) 

 

 

Figure 7. Cl2 concentration (mole/m3) in different heights, 

a) Cl2 concentration at the specific time, and b) Average 

Cl2 concentration in the last 300 seconds. 

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185384 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

388



 
Figure 8. Composition of the particle outflow 

 

Figure 9 and Figure 10 show the size distribution of the 

different alumina components leaving the reactor. The 

biggest γ-alumina particle that can leave the system is in 

the range of 48-52 microns. This value for the α-alumina 

is in the range of 30-34 microns, emphasizing the higher 

density of these particles, leading to higher terminal 

velocity. 

 

 

Figure 9. 𝛄-Alumina size distribution in the outlet 

 

The mass balance of the bed shows an unfavorable 

accumulation of α-alumina in the fluidized bed reactor. 

During the one-hour simulation period, α-alumina is 

accumulated at the rate of 5 g/s, and the bed losses γ-

alumina at the same rate. Although the alumina inflow 

rate is constant (0.6 kg/s with a fixed 7 % impurity), α-

alumina in the bed is increased, and the overall reaction 

efficiency of the reactor went down. To minimize the 

harmful effects of the accumulated α-alumina particles, 

the particles inside the reactor should be replaced 

periodically.  

An increased amount of non-reactive particles in bed 

may also increase the particle outflow, but that could be 

minimized by introducing a proper solid circulation 

mechanism. However, this may not completely stop the 

α-alumina accumulation within the system.  

Nevertheless, the circulation system for particles can 

increase the particles' residence time, which may help α-

alumina particles reach complete chlorination.  

 

 

 

Figure 10. α-Alumina size distribution in the outlet 

6 Conclusion 

Compared with the model with pure γ-alumina, the 

results show that, as an impurity, α-alumina does not 

affect the chlorine concentration at the outlet. The 

overall particle outflow has become slightly higher in 

the case of pure γ-alumina. Compared with the α-

alumina inflow, which is 7 % of the total inflow, only 

3.8 % of the total particle outflow is belongs to α-

alumina. In the long run, as a result, α-alumina will be 

accumulated in the reactor, which is not favorable. In the 

operating temperature, the reaction rate of α-alumina is 

much slower, and the accumulation of α-alumina will 

affect the overall reaction negatively. As remedies, 

adding a circulation path or speeding up the fluid inside 

the reactor to a certain point may be helpful, which can 

be investigated in future works. 
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Abstract 
Virtual mass is an important quantity in the analysis of 

the unsteady motion of objects underwater or other 

fluids or unsteady flow around bodies, for example, the 

virtual mass effect is important in the inertia of ships, 

floaters, swimmers’ organs, airplanes, and bubbles. The 

additional mass resulting from the fluid acting on the 

structure can be calculated by solving the equation of 

potential flow around the object. In this paper, a system 

in which a square object is immersed in a channel of 

fluid and moves parallel to the wall has been considered. 

The corresponding virtual mass at a determined distance 

S from the wall and for the object size D (the side of the 

square object) is calculated via the Lattice Boltzmann 

Method. Here, it is tried to change D and S separately 

and investigate their effects on the virtual mass. 

According to the simulation results, for the systems in 

which the distance from the wall is more than four times 

the object size (S > 4D), the distance does not influence 

the added mass. Furthermore, the virtual mass rises 

when the object approaches the wall and experiences its 

maximum value as it reaches the wall (S → 0). As a 

result, in this case, the virtual mass is about 75% larger 

than in the case of S=4D. In addition, the simulations 

reveal that by increasing the dimensions of the object D 

the virtual mass increases and vice versa. 

Keywords:     Lattice Boltzmann simulation, 
added/virtual mass, variable size, various distance, 

bounce-back boundary condition 

1 Introduction 

The Lattice Boltzmann Method (LBM) which is a 

mesoscopic method based on simplified kinetic 

equations, has been significantly taken into 

consideration in classical statistical physics. LBM can 

be an appropriate alternative approach to the current 

finite difference, finite element, and finite volume 

techniques for solving the Navier Stokes equations. 

According to this method, it has been concluded that if 

only collective macroscopic flow behavior is 

investigated, the macroscopic behavior of a fluid system 
is generally not very sensitive to the underlying 

microscopic behavior of the particle.  In LBM, the 

simulation is based on the modeling of fluid flow as a 

collection of particles colliding over a discrete lattice 

sphere. In this method, the Boltzmann equation is solved 

on a discrete lattice and instead of solving Navier Stokes 

equations, the density of the fluid is simulated during 

two steps including streaming and collision. Owing to 

its underlying kinetic property, the ability to combine 

microscopic interactions, and using bounce back 

boundary conditions, the LBM has been increasingly 

applied in the simulation of fluid flow especially 

interfacial dynamics and complicated boundaries and 

geometries, such as multiphase/multicomponent flows 

in porous media (Hinebaugh et al., 2012; Tu et al., 2018; 

Succi, 2001). The Lattice Boltzmann Method has been 

used in the simulation of a wide variety of fluid 

dynamical applications. The method is really practical 

in the simulation of turbulent single-phase flow, flow in 

porous media, and multiphase flows in several industrial 

applications (Chen and Doolen, 1998). LBM has been 

applied in various simulations such as flow in porous 

media (Pan et al., 2006; Nabovati et al., 2009), colloidal 

suspensions (Kutay et al., 2006), multiphase and 

multicomponent flows (Yang and Boek, 2013; Inamuro 

et al., 2004), and several other applications.   

In this study, the additional mass of a two-

dimensional object is simulated using the Lattice 

Boltzmann Method. Numerous forces are exerted on a 

body moving in a fluid. Lift and drag forces are exerted 

on bodies in a fluid due to surface friction and the 

variation of pressure around the bodies. In order for a 

moving body to move in a fluid, it must counteract the 

fluid and move it. Therefore, not only should the body 

move its weight, but it should also move the surrounding 

fluid. Hence, to counteract the fluid’s inertia, the body 

faces additional forces, and it senses further weight than 

that of its weight. If the density of the body is greater 

than that of the fluid, the additional force can be 

overlooked. Otherwise, it must be considered. The 

additional force which is caused by the fluid inertia is 

called added mass. Other titles such as virtual mass, 

hydrodynamic mass, effective mass, inertial mass, 

apparent mass,  and  induced mass are also applied. The 

calculation of virtual mass is a challenging procedure in 

the analysis of bodies moving in the water. 
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In (Cebeci et al., 2005) the low-speed unsteady 

airfoils were investigated by researchers, and it was 

demonstrated that further forces are exerted on airfoils 

in moving fluids. Additional mass for various 

geometries was calculated by employing the complex 

function methods by Korotkin (Korotkin, 2008). The 

value of the body acceleration did not have any effect on 

the value of additional mass (Wakaba and Balachandar, 

2007). The additional mass for various figures in low-

depth water was calculated (Zhou et al.,  2005). The 

additional mass for a cylinder which was placed 

between two parallel plates was measured by 

Kharlamov (Kharlamov, 2012). The additional mass for 

a hydrofoil with cavitation was calculated by 

Benaouicha (Benaouicha et al., 2012). Investigated 

vibration characteristic of a thin layer in the air by 

implementing empirical methods was studied in 

(Yuanqi et al., 2011). Furthermore, the additional mass 

for a swimmer, the effects of deformation, and the size 

of a swimmer, i.e. a man or a woman were studied by 

Caspersen (Caspersen et al., 2010). The influence of 

additional mass on the forces exerted on insect wings 

was studied by Yan (Yan et al., 2011). Guo investigated 

the added mass effect of seawater on pipeline vibration 

(Guo et al.,  2013).   

In this investigation, initially, the additional mass for 

a body when it is far from a wall is calculated and it is 

compared with the exact results. Afterward, the effects 

of the wall near the body on additional mass are 

investigated. Moreover, the dimensions of the deformed 

body and its effects on the additional mass are taken into 

consideration.  

2 Fundamental equations 

Figure 1 presents the investigated problem of this study, 

which is a square body with dimensions that moves 

parallel to the wall. In order to determine the additional 

mass, potential fluid around the body is considered. 

Laplacian equation for the potential equation is as 

follows (Versteeg and Malalasekera, 2007): 
2 2

0
2 2x y

  
+ =

   
(1) 

 

Figure 1. Figure of square moving body 

It is feasible to assume that the fluid is moving 

instead of the body. Boundary conditions are depicted in 

Figure 2. For a uniform potential fluid flow in the x-

direction, the potential function changes linearly with x. 

The gradient of the potential function in the direction of 

perpendicular on the surface for the wall, the body, and 

the top boundary condition is equal to zero. The value 

of the potential equation is assumed for the right and left 

boundaries, which are zero, and 𝜑0 for the left and right 

boundaries, respectively. The length of the solution 

must be considered in a way that satisfies 
𝜕𝜑

𝜕𝑦⁄  and 

𝜕𝜑
𝜕𝑥⁄  in the regions which are near the wall 

boundaries. In fact, the amplitude of the solution should 

be chosen so that integration on the solution amplitude 

yields the proper results. The dimensions of solution 

amplitude are represented in Figure 3.  The distance 

between the body and the wall is specified by S and 9D 

is the length of the solution range. The accuracy of the 

presented dimensions is investigated in the results 

section. The dimensionless parameters are defined as 

(Mohamad, 2011): 
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L is the solution amplitude.  
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Figure 2. Boundary conditions 
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Based on the 2D or 3D body dimensions, the 

additional mass has numerous components. In this 

study, a two-dimensional body with one-dimensional 

moving and one component additional mass is taken into 

account. Additional mass is going to be dimensionless 

regarding the following equation. 

2

m
M

D
=

 

(5) 

The mass, m [kg/m] is defined as the additional mass 

of the object at a specified distance from the wall. 𝜌 

[kg/m3] is fluid density and D [m] is the distance from 

the wall. 

After determining the potential equation, the value 

of additional mass is calculated from (Graebel 2007): 

( , )
11

M M X Y dXdY=
 

(6) 

2 2( , ) ( 1) ( )
11

M X Y
X Y

  
= − +
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In contrast to regions near the body, the value of 

M11(X, Y) is zero in regions far from the body.  

 

 

Figure 3. Dimensions of solution amplitude 

3 Boltzmann Method 

The Boltzmann procedure is explained by Mohamad 

(Mohamad, 2011). The solution amplitude is divided 

into nodes of equal size. D2Q9 is implemented in this 

study and the g(i) distribution equation is employed. The 

following correlation is governed for the g(i) equations 

(Mohamad, 2011):  

( , )
eq

i i
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g g
g r e t t t g 



−
+ + = +  (8) 

r is the position vector of a node,  is the relaxation 

time, and eq

ig is the vector of the distribution equation. 

ie vectors are depicted in Figure 4 and its value is as 

follows. In addition, eq

ig is presented as (Mohamad, 

2011): 
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     Boltzmann correlation is solved at the two stages of 

collision and stream (Mohamad, 2011): 

( , )
eq

i i
ii

g g
g r t t g



−
+ = +  (11) 

 

( ) ( )α α
g r e t, t t r, t δti g+ + = +  (12) 

At the collision stage, Equation 11, the values of 

distribution equations are calculated from the previous 

stage. Each node at the stream stage transfers to another 

node in the opposite direction. 

 

Figure 4. D2Q9 Lattice model 

 

After the determination of the distribution equation 

in each node, the value of the potential equation and its 

derivatives are determined as follows (Mohamad, 

2011); 
8
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At the stream stage, no value is transferred to the 

distribution equations, i.e., g(i) on the boundaries. There 

are three paths on each node, in which no value is 

transferred to them so that the boundary conditions for 

these nodes can determine the distribution functions on 

unknown nodes. For example, the values of g3, g6, and 

g7 are unknown for the right boundary because there is 
no node after the right boundary to transfer the values 
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based on Equation 12 to these functions. The value of 

the potential equation is known for the right boundary  

(𝜑𝑅 ≡ 𝐿/𝐷): 

 

0 1 8...R g g g = + + +  (15) 

The value of the potential equation is constant at the 

direction of this boundary and hence the potential 

equation is zero in this direction: 

2 6 5 4 7 8

0.5
( ) 0g g g g g g

Y

 



 −
= + + − − − =


 (16) 

 

According to the bounce-back condition, the value 

of the distribution equation is equal for the directions 

normal to the boundary, thus for the right boundary: 

3 1g g=  (17) 

From Equations 15 and 16, it is concluded that: 

0
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The procedure for the left boundary is the same as 

the right boundary.  

The values of g4, g7, and g8 are unknown for the top 

boundary. This is due to the fact that on this boundary

0
y


=


, and Equation 16 is accurate if: 

4 2 7 6 8 5, ,g g g g g g= = =  (20) 

Therefore, the value of g(i) which is unknown for the 

nodes is equal to its symmetry concerning the boundary. 

The current method is used for the bottom boundary and 

the outer of the body. For the entire calculations in this 

study 1.5 = is assumed. The procedure of solving is 

started with an initial condition by assuming the value 

 is zero for every node. Afterward, this procedure 

continues until the variations of  or M become 

insignificant between two-time steps. 

4 Results 

In this contribution, the value of additional mass for 

a square body that is placed far from a wall is initially 

investigated, and in this case, M=1.189 is deduced. The 

problem is solved for the various node distances in order 

to determine the best number of nodes. The effect of 

node number on the value of additional mass is 

presented in Table 1. Regarding the presented relative 

error on the table, the distance between the nodes has 

been chosen to be 1/69. The number of nodes is 

630×630.  

 

 

 

 

Table 1. The influence of the number of nodes on added 

mass 

∆X M E% 

1/9 2.225 87 

1/19 1.448 22 

1/29 1.300 9.32 

1/39 1.246 4.8 

1/49 1.219 2.5 

1/59 1.204 1.3 

1/69 1.195 0.5 

The constant potential lines and M11 distribution are 

presented in Figure 5. The potential equation at the 

places far from the body is linear, and the velocity 

reaches its final constant value. According to the 

horizontal moving of the body, the M11 variations are 

higher at the front and back sides of the body.  

 

 

Figure 5.  M11 distribution, for dimension of D×D and 

S=4D 

Figure 6 represents potential lines and M11 

distribution for the case in which the body is 

approaching the wall and S=D. By approaching the 

wall, the displacement of the body is going to be more 

complicated, and this is due to an additional mass 

increase in the regions near the wall. The problem is 

solved for S/D= 4, 3, 2, 1, 0.75, 0.5, 0.25, 0. The 

variation of additional mass versus the distance from the 

wall is shown in Figure 7. By approaching the wall, the 

value of additional mass increases, and its value 

increased by approximately 75% as the body reach the 

wall. The diagram of Figure 7 can be expanded by 

applying Equation 21. The equation has been achieved 

by curve fitting in MATLAB. 

( )( 3.2 1.182)

0.857e
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− +

=  (17) 

  

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185391 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

394



 

 

Figure 6. M11 distribution, for dimension of D×D and 

S=D

 

 

Figure 7. The variation of additional mass versus the 

distance from the wall 

Moreover, the dimensions of the body have been 

changed and its influences upon additional mass are 

calculated.  Constant potential lines and M11 distribution 

are presented in Figure 8 for a body with 0.8D×D 

dimensions. Figure 9 demonstrates potential lines and 

M11 distribution for a case in which the body approaches 

the wall, i.e., S=D. By approaching the wall, body 

displacements become much harder, and this is because 

of the additional mass increase near the wall. The 

problem is solved for S/D= 4, 3, 2, 1, 0.75, 0.5, 0.25, 0. 

It is concluded that additional mass decreases by the 

decrease in the dimensions of the body.  

 

 

Figure 8. M11 distribution for dimension of 0.8D×D and 

S=4D 

 

 

Figure 9. M11 distribution, for size of 0.8D×D and S=D 

 

Figure 10 shows constant potential lines and M11 

distribution for a body with 1.2D×D dimensions. 

Figure11 shows potential lines and M11 distribution for 

a case in which the body approaches the wall, i.e. S=D. 

The displacement of the body becomes much more 

complicated as the body approaches the wall, and this is 

because of the increase in the values of additional mass 

in the regions near the wall. The problem is considered 

by determining S/D= 4, 3, 2, 1, 0.75, 0.5, 0.25, 0, and it 

is concluded that additional mass increases by 

increasing the dimensions of the body. 
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Figure 10. M11 distribution, for dimension of 1.2D×D 

and S=4D 

 

Figure 11. M11 distribution, for the dimension of 1.2D×D 

and S=D 

The added masses of the body in the different 

dimensions in the distance equal to 4D from the wall 

have been validated by the results by Korotkin, in 2008. 

The results in Table 2 revealed that the added masses 

calculated by the Lattice Boltzmann Method have a very 

good constancy with the results in (Korotkin, 2008). The 

deviation between measured added masses and data in 

(Korotkin, 2008) varies between 0.9 % and 5 %, and the 

root mean square error is 2 %. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Validation of the calculated added mass from 

Lattice Boltzmann Method for different dimensions in the 

distance equal to 4D from the wall with the results in 

(Korotkin, 2008)  

 
 

Furthermore, this procedure is employed for the 

cases in which the dimensions of the body are 2D×D, 

1.8D×D, 1.6D×D, and 1.4D×D, and the value of 

additional mass is calculated. Figure 12 represents the 

variations of the calculated added masses of a body with 

various dimensions at different distances from the wall. 

Figure 13 shows the effects of the dimension of the body 

on the calculated added mass. 

 

 

Figure 12. The variation of added masses of different 

sizes of body versus distance from the wall 
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Figure 13. The variation of virtual masses of a body in 

different distances of the wall versus the dimension of the 

body 

5 Conclusion 

Added mass is an important quantity in the analysis of 

the motion of a submerged object, for example, ships 

crossing canals. The added mass increases when the 

object approaches the wall and reaches its maximum 

value as it moves on the wall (S → 0). In this case, the 

added mass is about 75% larger than for the case with 

S=4D. In addition, it is observed that the added mass 

increases by an increase of the object size D and vice 

versa. By increasing the size of the object to twice, the 

amount of added mass enhances between 8 to 15% 

depending on the distance of the object from the wall. 

The results of the measured added mass using the 

Lattice Boltzmann Method at the distance of 4D from 

the wall were validated with the results in the book by 

Korotkin and the results have a good consistency 

(RMSE =2%).  
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Abstract
Application of advanced modeling and simulation

technologies is essential to meet future requirements for

higher wastewater treatment capacity and increased

discharge water quality without large investments in

construction projects.

This article describes an industrial pre-project for

digital twin simulator for Veas wastewater treatment

plant in Norway. The desired main functionalities of the

digital twin simulator were:

• Data- and model-based management as well as

decision support for process operators

• Predictive operational support and process

optimization for engineers

• Testing of process modifications, control system

modifications, new procedures and other changes

• Competency building and knowledge transfer

between the operators and engineers

Commercially available technologies were compared

according to the functional design specification and four

possible digital twin simulator concepts were developed

for wastewater treatment facilities.

Keywords: dynamic modeling, simulator, digital twin,

water treatment, wastewater treatment plant.

1 Introduction

As growing cities produce more wastewater, climate

change increases storm water intensity, and legislative

requirements for the discharge water quality tightens,

the capacity in the wastewater treatment facilities must

be increased. In order to meet these future requirements

without large investments in comprehensive

construction projects, it is essential to develop

innovative technology for process optimization and

knowledge building in the organization.
During the past decade, research and development 

in artificial intelligence (Kapelan et al,, 2020), digital 
twins (Molin, 2021; Valverde-Pérez et al., 2021) and 
advanced process control solutions (Zlatkovikj 
et al., 2020; ABB, 2021a; Dahlquist et al., 2019) in the 
water sector has increased significantly. Experiences 
with simulators (Komulainen and Sannerud, 2018) and 
digital twins (Cameron et al., 2018) in the oil 
industry have shown

good results in terms of knowledge building, process

optimization and plant integrity. There is a high

potential for use of digital twins at wastewater treatment

plants as several commercial simulator tools and AI

products are available in the international market.

Currently, the wastewater treatment plants in Viken

county, Norway, are dominated by traditional control

technology and do not use simulators or digital twins for

operator training, process optimization, energy

efficiency or other purposes.

This article describes the results of the DTS VANN

pre-project, a collaboration between Veas wastewater

treatment plant in Asker, Norway and Oslo

Metropolitan University during 1.9.2020-31.5.2021,

funded by RFF Viken (Johansen, 2021). During the 

pre-project, a functional design specification for a 

digital twin simulator for the wastewater treatment 

plant was developed, and available technologies were 

compared according to the specification. The 

comparison was further developed into possible 

digital twin simulator concepts for water treatment 

facilities.

The research question was “Which digital twin

simulator concepts can provide a platform for 1. Online

process optimization 2. Offline process optimization

and modification studies 3. Operator training?”

1.1 Nomenclature

AI artificial intelligence

APC advanced process control

BOD, COD biological and chemical oxygen demand

DCS distributed control system

FDS functional design specification

OPC open platform communications (originally

object linking and embedding for process control)

OPC UA open platform communications unified

architecture

PAX, PIX preconditioning chemicals

P&ID piping and instrumentation diagram

PS process simulator (high fidelity)

RFI request for information

TSS total suspended solids

VEAS Vestfjorden Avløpsselskap

WWTP wastewater treatment plant
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1.2 Plant description

The Veas plant is Norway's largest wastewater

treatment plant and a crucial contributor to the efforts in

keeping the Oslo Fjord clean. The process plant has an

annual production of around 100 million m3 of treated

wastewater, about 40 000 tons of Veas-soil and 10

million standard m3 of biogas (2019). Wastewater from

the equivalent of 835 000 inhabitants (2020) in Oslo,

Bærum and Asker is transported via the Veas tunnel to

the treatment plant at Bjerkås in Asker. The plant is

required to remove at least 70% of nitrogen, 90% of

phosphorus, and organic material: 70% BOD and 75%

COD.

The main processing facilities of the Veas plant

include:

1. Pumping of the wastewater from the Veas

tunnel to the Veas WWTP facility with centrifugal

pumps.

2. Mechanical treatment includes removal of

bulky, large solids and garbage with screens, and

removal of sand and skimming of fat in grit chambers.

3. In chemical treatment the suspended and

colloid fractions are removed from the water: water is

preconditioned with iron chlorides (PIX), aluminum

chlorides (PAX), and  polymers prior to sedimentation.

4. In biological processes Nitrogen and organic

materials are removed: these processes include water

screening, aerobic process in an aerated basins with

nitrification filter (bacteria on granules), flow

equalization, methanol addition, and anaerobic process

in a basin with denitrification filter. The cleaned water

is disposed to Oslo fjord.

5. Reject water from sludge treatment (after

chamber filter presses) is treated to remove nitrogen.

The process includes a stirred flow equalization tank,

screening, air stripping of ammonia in a countercurrent

column, absorption of ammonia to nitric acid solution in

a counter current column. The resulting ammonium

nitrate is sold to industry.

6. Actiflo-facility for excess rainwater includes

the following processing units stirred coagulation tank

with iron addition, stirred tanks with micro sand and

polymer addition, sedimentation basin with bottom

scraper, sludge cyclone. The cleaned water is disposed

to Oslo fjord.

7. Sludge treatment and soil production includes

the following processes fiber removal with rotating

screening drums, polymer addition, dewatering with

drum screen, sludge buffer tank, sludge heating, sludge

buffer tank; 20 day long batch process in mesophilic

anaerobic digester stirred with recirculated biogas and

recirculated, heated sludge; sludge buffer tank with

aeration to stop digestion; sludge buffer tank, sludge

screening, lime conditioning in a stirred tank, stirred

tank with polymer addition, dewatering with chamber

filter press using pressure up to 250 bar, sterilization

using hot membrane water (80°C); dried sludge is

transported via conveyor belt system to a stirred silo, 

export. 

8. Biogas treatment and liquefaction: gas from 

digesters through H2S filter, first stage CO2 removal in 

absorber using amine solution, gas pre-cooler, 

reciprocating compressor, second stage CO2 removal in 

absorber using amine solution, gas cooler, gas drier, 

amine regeneration; gas cooler, gas condenser, export 

pump (centrifugal), export system; systems for cooling 

medium. The liquefied biogas is sold to industry. 

9. Heat production using a pellet boiler and a 

biogas/oil boiler, primary and secondary hot water 

loops, heat pump, plate heat exchangers and centrifugal 

pumps. 

10. Cooling medium systems with glycol, water 

and sea water. 

2 Materials and methods  

This qualitative study was conducted using the 

following materials and methods. 

2.1 Materials 

The materials for this study included:  

• Piping and instrumentation diagrams (P&ID) and 

the distributed control system screens of the the 

process systems at Veas wastewater treatment plant 

Process areas included were water treatment, sludge 

treatment, biogas production, biogas refining and 

liquefaction and mechanical treatment of solids.  

• Technical documentation and presentations of 

simulator and digital twin products, provided by 

selected vendor companies. 

2.2 Methods 

The methods in this study included: 

• Preparation of functional design specification for 

Veas WWTP analyzing the process documentation 

(P&ID, DCS screens) and interviews with the Veas 

process engineers and system engineers. 

• Extraction of operational challenges from the 

interviews with process engineers. 

• Selection of possible commercial simulator and 

digital twin vendors. 

•  “Request for Information” – a questionnaire with 

quantitative and qualitative questions on 

offline/online simulator products (modules and 

functionalities) and digital twin functionalities 

based on the functional design specification. 

• Comparison of available simulator and digital twin 

products using the companies answers to the 

“Request for Information”, and technical material 

and presentations provided by the technology 

vendors. 

• Development of possible concepts fulfilling the 
goals for digital twin simulator for wastewater 

treatment plants.  
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3 Results

First, a short version of the functional design

specification is presented and some typical operational

challenges are described. Then, the formulation of

documents “request for information” and “request for

project information” are presented briefly. Finally,

possible solutions fulfilling the goals of the digital twin

simulator are described.

3.1 Functional Design Specification

A functional design specification (FDS) was prepared

for the Veas wastewater treatment processes, in short the

contents are as follows:

3.1.1  Overall goals of the digital twin simulator

The overall goal of the digital twin simulator is to

• Minimize the environmental impact

• Optimize the chemical consumption

• Optimize the energy use

• Improve the quality of the products

The digital twin simulator should provide:

Goal1: Online process optimization in order to achieve

better products and minimize chemical consumption

and energy use. Data- and model-based predictive

support for daily process optimization. To start with as

a decision support tool (open-loop, operators implement

suggestions manually to DCS), and in longer

perspective as automatic control (closed-loop, using

programmable logic controllers and advanced process

control algorithms).

Goal2: Testing of possible modifications to optimize the

WWTP process operation (tightening regulations,

population growth, climate changes). Tool for offline

process optimization, and testing of future modifications

for cost-effective operation as well as providing the

opportunity to utilize the margins in existing

infrastructure before expensive construction projects are

necessary.

Goal3: Training system that ensures effective

competency building among engineers and operators.

3.1.2 Description of the Veas wastewater treatment

processes and instrumentation

The detailed description of the process and

instrumentation included the three pretreatment stages,

the three chemical and biological treatment stages with

equipment, instruments and sensors. The pre-treatment

stages include inlet pumps, screening station, and grit

chamber. The main treatment stages include

sedimentation, nitrification and denitrification states.

The water treatment processes include 45 controllers,

123 transmitters, 446 valves, 203 pumps, tanks, mixers

and motors, and 16 other equipment, in total 833 objects

with a total of 5214 tags in the DCS system.

3.1.3 System integration

The digital twin simulator will be integrated with

ABB’s 800xA distributed control system and SCADA.

version 6.1. The data can be shared via OPC server,

preferably with OPC-DA, OPC-HDA, OPC-AE. It is

desired that the digital twin simulator can be integrated

together or co-simulated with other dynamic models, for

example DHI’s MIKE model of the urban drainage

tunnel leading wastewater to the Veas facility.

3.1.4  Simulator specification

The simulator specification includes typical

simulator functionalities for all user groups, like initial

conditions, scenarios, basic functions, process

equipment details and failure modes. Special functions

are required for engineering simulator, operator and

instructor interfaces. In addition the simulator should be

run online, parallel to the real process with adaptation of

the simulator model parameters, possibility for

snapshots and predictive what-if-scenarios towards

future.

3.1.5 Digital twin specification

The digital twin functionalities were not specified in

detail, but the functionalities should fulfill the goals 1-3

listed in the beginning of the FDS.

3.2 Operational challenges – need for digital twin

simulator

Based on review work the functional design

specification and interviews with the Veas process

engineers, the following areas of interest were

identified:

3.2.1 Early warning and monitoring with virtual

sensors

• General measurement quality using mass, molar or

energy balance based approach

• Screens, conveyor belts and transport screws:

blocking of these with solids, and faulty level

measurement around these equipment due to build-

up

• Basins: accumulation of sedimented particles and

sludge

• Biological filters: effectivity and activity of bacteria

• Filters: fouling and timing for backwash cycle, as

increased pressure difference over filter increases

energy use in downstream pumps;

• Pumps: pump effect, energy use, wear-and-tear,

challenges with sludge pumps

• Mixers: solids build-up/fouling, wear-and-tear,

insufficient mixing of polymer

• Digesters: monitoring of the rotting process, stop in

gas-circulating compressor leads to foaming;

• Heat exchangers: efficiency, heat transfer

coefficients, stopping, leakage
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• Tank after digesters: end the rotting process with 

aeration. 

• Chamber filter press: many components and multi-

stage sequences with high pressure and high 

temperature, degree of sterilization is dependent on 

hot water temperature in membrane water system 

• Water tanks: decreasing level due to small inlet flow 

or leakage. 

• Oil tanks: high pressure/temperature leads to 

process shutdown 

• Gas tanks: possible hazards like leakage, 

emergency shutdown 

3.2.2 Process optimization and/or advanced process 

control 

• Inlet pumps: during varying hydraulic loads 

optimize the load sharing between eight inlet 

pumps.  

• Chemical addition: optimize dosing of chemicals 

PIX, PAX, methanol, lime slurry, polymer and 

micro-sand based on influent quality. 

• Sedimentation basins: optimize sludge pumping out 

of basin to avoid accumulation 

• Nitrification basin: optimize aeration rate 

• Denitrification basins: balance flow between the 

eight basins 

• Nitrification, denitrification and stripping: optimize 

degree of purification with process parameters 

including backwash 

• Digesters: optimize biogas production using 

parameters such as sludge retention time based on 

total suspended solids (TSS) in, sludge heating and 

circulation, biogas circulation and mixing; balance 

organic load between the tanks. 

• Digesters: improve temperature setpoint tracking in 

digester tank with sludge heating and circulation. 

• Filters: optimize pressure difference over the rag 

filters and dewatering of sludge in drum screens. 

• Chamber filter presses: improve temperature 

setpoint tracking in membrane water system. 

3.2.3 Operator training 

• All scenarios given above, especially process 

optimization and advanced process control should 

be included to operator training. 

• Emergency scenarios especially with biogas 

production, refining and liquefaction should be 

included to operator training. 

• Process shutdown scenarios related to the logic in 

the safety and alarm system should be included to 

operator training. For example, pump stop in “less 

critical” parts of the plant can lead to full process 

shut down. 

3.2.4 Simulation studies on possible modifications 

• Case studies for increasing water treatment capacity 

with current equipment 

• Case studies for new parallel operations (keeping in

mind the limited space available), i.e. replacing

existing water treatment equipment with new, more

effective alternatives.

• Case studies with control system modifications.

3.3 Selection of companies

The possible vendors were selected from list of

technology companies working with water, water

networks and wastewater.

The following companies answered positively to the

RFI: ABB, Aquasight, Aspentech, Corys, DHI,

Hatch/Hydromantis, Kongsberg,

KrügerKaldnes/Veolia, and Statsoft.

The following companies did not reply to our request

for information or gave a negative answer: Andritz,

Createch 360, Cybernetica, Envidan, EnviroSim,

H2Ometrics, Perceptive Engineering, Prediktor, Royal

Haskoning DHV, Xylem (Emnet).

We also invited presentations from ABB Västerås

about MPC solution for a WWTP facility in the

FUDIPO EU-project (Dahlquist, 2021), from ABB 

Italy about advanced process control for WWTP 

facilities (ABB, 2021a) and collaboration with DHI 

in the Singapore PUB project (ABB, 2021b) and ri.se 

about digital twin projects for WWTP facilities 

(Molin, 2021; Valverde-Pérez et al., 2021).

3.4 Request for information

To get an idea of the dynamic simulation modules and

digital twin functionalities the available commercial

tools have, a request for information (RFI) was sent to

the companies. The request of information included

three sections, Veas plant description, a multiple-choice

questionnaire on dynamic simulation modules and

system integration, and open written questions on

system integration and digital twin functionalities. The

multiple-choice part was divided to five categories:

Generic dynamic simulation modules including:

Pipelines with two phase flow (liquid and solids),

Pipelines with two phase flow (gas and liquid), Control

valves, on/off valves, manual valves, safety valves,

Centrifugal pumps (water), Eccentric U-pump (sludge),

Heat exchangers: plate, spiral and tube, Fans, Stirred

tanks, Buffer tanks, Cyclones, Pellet boiler, Biogas

boiler, ESD/PSD system.

Wastewater treatment-specific dynamic process
modules including: Grit chambers, Sedimentation basin,

Basin/reactor with nitrification filter and aeration,

Basin/reactor with denitrification filter, Continuous

stirred tanks with chemical, sand or polymer additions.

Sludge treatment dynamic process modules including:

Digester tank (anaerobic sludge rotting), Buffer tank

with air inlet from bottom, Chamber filter press

Biogas specific dynamic process modules including:
Gas coolers, CO2-absorbtion and stripping columns,

Gas compressor (piston and screw), Gas drying/H2O
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removal: absorption in silica gel, H2S-filter, Flare

system, Gas cooler (plate heat exchanger), Gas

condenser, Pump (LNG, glycol), Expansion drum,

Coalescer (oil droplet removal), Drum for gas/liquid

separation

Mechanical processing and transportation of dry solids
dynamic process modules including:

Screens, Screws (transport of solids), Conveyor belts,

Flip-flops, Containers, Fiber/rag removal with rotating

screening drum

System integration including:
Communication via OPC-DA/HDA communication

protocol, two-way communication with third party

process modeling software, online simulation and

requirements for communication outside Veas firewalls.

Open-ended questions

• Supported system integration protocols

• Maximum amount of signals

• References to previous projects with system

integration to a control system like ABB’s 800xA

• References to previous projects with system

integration to third-party simulation software.

• Experience with co-simulation

• Description of digital twin functionalities for

WWTP

4 Analysis: Possible solutions with

commercial tools for WWTP

The information gathered from FDS, interviews with

Veas engineers, presentations and discussions with the

companies were merged and compared with the goals

Veas has for the digital twin simulator.

4.1 Goal1: online process optimization

The first goal of the digital twin simulator is to provide

online process optimization. If the decision support

system is to suggest manual control actions to process

operators, either an online simulator covering the whole

plant or an AI tool for specific operational cases can be

implemented.
An online simulator based on high-fidelity 

process models, gives holistic approach to the 

whole plant operation and covers more than cases in AI 

tools, i.e. the process interactions. Available 

online simulator simulator tools include DHI’s 

TwinPlant (DHI, 2021a), Hatch’s Mantis.AI (Hatch 

Hydromantis, 2021a), and Kongsbergs K-Spice 
Assure (Kongsberg, 2021a; 2021b). All of the online 

simulators can be run with ABB’s 800xA DCS 

simulator (ABB, 2021c) for example using OPC-UA 
protocol.

Data-driven, artificial intelligence or model-based 
tools use real-time data to monitor selected
process units and assist process operators. Products like
Aquasight’s Apollo (Aquasight, 2021), 
Veolia’s Hubgrade (Krüger Kaldnes Veolia, 2021), or 
Statsoft’s TIBCO (TIBCO, 2021) can be applied 
case-based for

process units with largest potential for cost savings.

Examples of research projects on digital twins, virtual/

soft sensors based on artificial intelligence and models

can be found from (Molin, 2021; Valverde-Pérez et al.,

2021)

If closed-loop control is desired, advanced

process control packages like ABB’s APC (ABB,
2021d) can be applied case-based to cover the 
process units with largest potential cost savings in 

energy and chemicals. In order to minimize the 

model mismatch between the simplified model in the 
APC algorithm and the “real process”, an online 

simulator or an extended Kalman filter can be 

used to update the model parameters. Examples 
on MPC applications for wastewater treatment 

plants can be found from research projects (Dahlquist, 

2021) and commercial projects (ABB, 2021b).

4.2 Goal 2: offline process optimization and

modification studies

Testing of possible modifications to optimize the

WWTP process operation for future requirements

requires a holistic tool that covers the interconnections

of the whole wastewater treatment plant. This can only

be done with high/medium fidelity process simulators.

The functionalities of six different commercial

simulator products were compared according to the

functional design specification and the request for

project information. The modeling score, presented in

Table 1, were calculated based on the vendors answers

to the request for information. Only GPS-X modeling

tool from Hatch Hydromantis (Hatch Hydromantis,

2021b) covers all the wastewater treatment, 

sludge treatment, biogas production, biogas 

refining and liquification. An older version of 

the Indiss Plus modeling tool from Corys (2015) 

covers the different process stages excluding some 

parts of the sludge treatment and mechanical 

processing, conversion to the new modeling tool will 

be necessary. The WEST modeling tool from DHI 

(DHI, 2021b) covers unit operations in general 

WWTP processing, wastewater treatment, sludge 

treatment and biogas production, but lack most of 

biogas liquefaction and mechanical processing. 

The K-SPICE modeling tool from Kongsberg 

(2021c) is developed for oil and gas processing and 

lacks ions, pH and solids. Therefore, it can calculate 

rough approximations for unit operations in general 

WWTP process, wastewater treatment, sludge 

treatment, biogas production and mechanical

processing. K-SPICE covers well the biogas refining

and liquefaction processes. The Apollo process

modeling tool from Aquasight (2021) was not well 

enough described and demonstrated well enough 

to compare with the other products. The

documentation and presentation from Aspentech also
lacked necessary information about the AspenPlus

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185398 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

402



 

 

modeling tool and APM solutions tool for WWTP unit

operations (AspenTech, 2021).

4.3 Goal 3: operator training system

Training system that ensures effective competency

building among engineers and operators should also rely

on a holistic view of all the Veas processes, because

fluid/mass flow and heat flow between the different

parts of the wastewater treatment plant are heavily

interconnected. High/medium-fidelity process model 

with a virtual replica of the distributed control system 

will give realistic look-and-feel for the training system. 

It is possible to build case-based training scenarios with 

partial models, like data-driven AI models, but these 

will most likely not be able to replicate the 

interconnected nature of the WWTP processes.  

 

Table 1. Dynamic simulation modules from process simulator vendors. 

Process modeling product AspenPlus Apollo GPS-X IndissPlus K-Spice WEST 

Vendor Aspentech Aquasight Hatch Corys Kongsberg DHI 

Total modeling score (max 5) 1,4 2,6 5 4,3 2,5 3,2 

General process modules 0,4 0,7 1 1 0,8 0,7 

Wastewater treatment 0 1 1 1 0,2 1 

Sludge treatment and biogas production 0 0,7 1 0,7 0,2 0,9 

Biogas refining and liquefaction 0,8 0 1 1 1 0,4 

Mechanical processing 0,2 0,2 1 0,6 0,3 0,2 

Table 2: Overall assessment of simulator tools, AI tools and APC tools according to project goals. PS=process 

simulator, CB=case-based 

 Process 

simulator 

(PS) 

DCS 

simulator 

Online 

simulator 

AI 

tool 

APC 

Goal1a: Online optimization with manual control  Partly With PS YES CB CB 

Goal1b: Online optimization with closed loop control No No No No CB 

Goal2: Offline optimization and modification studies Yes With PS No No No 

Goal 3: Operator training Yes With PS Partly No No 

 

5 Conclusions and further work 

5.1 Overall assessment of possible digital twin 

simulator concepts 

Possible digital twin simulator concepts fulfilling the 

goals are: 

• offline process simulator with DCS simulator (G2, 

G3) and online simulator with decision support 

interface (G1 manual control) 

• offline process simulator (G2, G3) and online 

simulator with decision support interface (G1 

manual control) 

• offline process simulator (G2, G3) and AI-based 

decision support system (G1 manual control) 

• offline process simulator (G2, G3) and advanced 

process control (G1 closed-loop control) 

In order to fulfill goals 2 and 3, it is recommended 

to base the digital twin simulator on a high/medium-

fidelity process simulator. To add realistic DCS 

functionalities in the simulator, a DCS simulator should 
be considered. In order to fulfill goal 1 with manual 

control, it is recommended to add an online simulator 

with decision support interface, or an AI tool for the 

most-profitable cases. In order to fulfill goal1 with 

closed-loop control, it is recommended to implement 

advanced process control for most-profitable cases. The 

overall assessment is further illustrated in Table 2. 

5.2 Research and development possibilities 

Future work is recommended for development of virtual 

sensors, process optimization and advanced control for 

cases given in Section 3.2 using data-driven and model-

based algorithms. The algorithms can be effectively 

tested with a high-fidelity process simulator to quantify 

the environmental and economical benefits, and to 

increase the operators trust before implementation in the 

plant. Possibilities within vocational education research 

include evaluation of the learning process during the 

process simulator commissioning and training, and 

evaluation of the effects to life-long learning, work-

place competency development, workplace safety and 

working environment. 
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Abstract
In the work, averaging level control using model-based

control and estimation algorithm on a buffer tank system

is studied. Implementation of Model Predictive Control

(MPC) and Proportional-Integral (PI) control together

with Kalman filter for state and disturbance estimation

show decent benefits and potentials. Results show that

acceptable setpoint tracking of water level in the basin

under varying inflow can be achieved. MPC precedes PI

for smoother pump actions. Python as a popular

programming language is adopted and showed potential

for real-time control (RTC).

Keywords:     Averaging level control, MPC, PI,

Extended Kalman filter, Urban Drainage System

1 Introduction

Real-time control (RTC) of Urban Drainage System

(UDS) is an important part for different goals in the

drainage network.

Literature review (Lund et al., 2018) shows that 

MPC is an efficient tool for UDS control, and there 

have been a few projects provided promising results, 

even though the total number of operational 

implementations is limited. MPC has been used for 

controlling different components in UDS, including 

basin, pipe, junction, reservoir, etc. with linear 

and/or nonlinear models available internally or 

externally. More than 60 percent of 113 references 

addressed using MPC for UDS control from 1983 to 

2018 in a few cities globally. Reported applications 

are mostly found in North America and central 

European countries. In particular, more active

research projects can be found in Span, Canada and

Denmark.

Kalman filter is an important data assimilation

algorithm in weather forecast to combine numerical

methods and observations (Sun et al., 2016).

We present results from a research project, which is

about potential use of automatic control on an existing

UDS in Norway. Figure 1 illustrates a 42 km long

tunnel, which is a main component of the drainage

system, transports total volume up to 110 million

m3/year combined sewage overflow (CSO) to one of the

largest Water Resource Recovery Facility (WRRF) in
Norway named VEAS. An equalization magazine

downstream the tunnel works as a buffer tank of the

wastewater before it enters the VEAS plant, being 

processed and discharged into the Oslo Fjord.  

Due to the process requirement at VEAS and flow 

control along the tunnel, the combined drainage must be 

controlled for different purposes: 

 Smoothed inflow to the plant. 

 Relatively short retaining time of water inside the 

tunnel. 

 The water flow has certain constraints/ limits, i.e., 

the tunnel should not be total empty, meanwhile, as 

less overflows into the Oslo Fjord as possible.  

 Dealing with precipitation according to weather 

data/ forecast. 

A laboratory buffer tank in Figure 2 is to be used to 

emulate the actual basin part in the end of the tunnel. 

Details of the system is to be presented in Section 2.1. 

This work aims at:  

1. Mathematical modelling of the buffer tank. 

2. Averaging level control using model-based control.  

3. Inflow estimation using Extended Kalman filter 

(EKF). 

 

Figure 1. VEAS tunnel for transporting wastewater from 

urban areas to the treatment plant. (VEAS, 2018) 

 

Figure 2. Buffer tank system for averaging level control. 
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2 Materials and methods 

The simulated buffer tank as the testing bench and 

algorithms for control and estimation are introduced.  

2.1 Buffer tank system 

Main components of the laboratory buffer tank in Figure 

2 consist of:  

 Left-hand side: A buffer tank equipped with an 

ultrasonic level transmitter (Level sensor); a pump 

(Pump 1) followed by a flowmeter measuring the 

flowrate of outflow from the buffer tank;  

 Right-hand side: A tank as a reservoir of outflow; a 

pump (Pump 2) to transport simulated varying 

“precipitation and wastewater” into the buffer tank.  

 Bottom center: I/O devices for communication 

between computer and the buffer tank system. 

Power supply unit for powering the electronic 

devices and electrical components. Table 1 lists the 

main components used in the system.  

 Local PI controllers: The flow from each pump is 

controlled based on readings of inline flow meters. 

Table 1. Main components in the buffer tank system for 

averaging level control. 

Component Brand/ Model 
Measurement 

range 

Pump (x2) Johnson Pump/  

SPXFlow CM30P7-1 

<26 L/min 

Level 

sensor 

Pepperl Fuchs/ 

UB300-18GM40-I-

V1 

35~300 mm 

Flow meter 

(x2) 

Sea/ YF-S201 1~30 L/min 

I/O device National Instruments/ 

USB-6008 

AO: 0~5V 

AI: 0~5V 

2.2 Simulation and testing environment  

Python (Python.org, 2021) with open libraries for 

computation and interfaces is used as the simulation and 

testing environment in this project. The open-access 

libraries are listed in Table 2.  

Table 2. Open-access libraries for averaging level 

control.  

Module Function Reference 

Numpy Matrix and 

random noise 

related 

calculation 

(numpy.org, 2021) 

Scipy Optimization (SciPy.org, 2021b) 

nidaqmx  Interface for NI-

DAQmx driver 

(National 

Instruments, 2017) 

Matplotlib Data 

visualization 

(Matplotlib.org, 

2021) 

2.3 Mathematical modelling 

The mathematical model of the system can be derived 

from mass balance of the water tank, given in 

continuous state-space form by (1):  

{
ℎ̇ =

1

𝑎
(𝐹𝑖𝑛 − 𝐹𝑜𝑢𝑡) + 𝑤

𝑦 = ℎ + 𝑣
 (1) 

where, 

 ℎ [cm], the process state variable, the water level 

inside the tank. 

 𝑦  [cm], the process output, the water level 

measurement.  

 𝐹𝑜𝑢𝑡  [cm3/s], the control variable of the pump to 

manipulate the outflow from the buffer tank.  

 𝑎 [cm2], the tank cross-sectional area. In this 

system, a cylindrical tank is installed vertically so 

𝑎 = 𝜋𝐷2/4 is a constant, with tank inner diameter 

𝐷 = 8.5 cm. In reality, the basin cross-sectional area 

varies with the water level, i.e., 𝑎 = 𝐻(ℎ), where 𝐻 

is a nonlinear function.  

 𝐹𝑖𝑛 [cm3/s], inflow into the tank, which in the real 

VEAS case is unknown.  

 𝑤 and 𝑣 are process noise and measurement noise 

with covariances 𝑄 = 𝐸[𝑤2]  and 𝑅 = 𝐸[𝑣2] , 

respectively.   

2.4 Control and estimation algorithms  

MPC and PI as the control algorithms and EKF as the 

estimation method are introduced in this section.  

2.4.1 Averaging level control 

The overall purpose of averaging level control is to 

smooth the inflow in real-time through the buffer tank 

so that the variation of outflow from the buffer tank is 

smoothed (Haugen, 2010). Block diagram of such 

principle is presented in Figure 3.  

The level of water inside the buffer tank is to be 

maintained close to a user-specified value by 

manipulating Pump 1 based on the level measurement 

from Level sensor. Situations like full tank and empty 

tank are restricted.  

The pump control signals are limited to be:  

𝑢 ∈ [𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥]  (2) 

where, 𝑢𝑚𝑖𝑛  and 𝑢𝑚𝑎𝑥  are the allowed minimum and 

maximum flow, respectively. In addition, to have 

smooth pump actions as the process required, constraint 

for Δ𝑢 is introduced as: 

|
Δ𝑢𝑘

𝑇𝑠

| = |
𝑢𝑘 − 𝑢𝑘−1

𝑇𝑠

| ≤ 𝐿 

⇒ 𝑢𝑘 ∈ [𝑢𝑘−1 − 𝐿 × 𝑇𝑠, 𝑢𝑘−1 + 𝐿 × 𝑇𝑠]  
(3) 

where, 𝐿=10 cm3/s2 is the user-specified limit, 𝑇𝑠=0.2 s 

is the time step, the pump action 𝑢𝑘 is limited to be: 

𝑢𝑘 ∈ [𝑢𝑘−1 − 2 cm3/s , 𝑢𝑘−1 + 2 cm3/s] 

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185405 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

406



2.4.2 State and inflow estimation 

The water level measurement is the only measurement 

for feedback control in the buffer tank.  

As mentioned, the inflow 𝐹𝑖𝑛  in (1) is a random 

variable representing the unknown precipitation and 

wastewater flowing into the buffer tank/ basin. 

Extended Kalman filter (EKF) is used for the inflow 

estimation in this work (Simon, 2006). To estimate the 

inflow, the state vector is augmented with inflow 

disturbance as is given by (4): 

�̇� = [
ℎ̇

𝐹𝑖�̇�
] = [

1

𝑎
(𝐹𝑖𝑛 − 𝐹𝑜𝑢𝑡)

0
] + 𝒘 (4) 

where, �̇�𝑖𝑛 [cm3/(s2)] is the first order derivative of the 

inflow, �̇�𝑖𝑛 =
𝑑𝐹𝑖𝑛

𝑑𝑡
. The only measurement 𝑦 = ℎ  is 

used to update the EKF in this work. 𝒘 =

[
𝑤1

𝑤2
] ~𝒩(0, 𝛿𝒘

2 ) is assumed Gaussian noise vector for 

the augmented state vector with zero-means and 

variance matrix 𝛿𝒘
2 = [

𝛿𝑤1

2

𝛿𝑤2

2 ]  to be determined by 

experiments.   

Process distribution covariance: 

𝑄 = [
𝑄ℎ 0
0 𝑄𝐹𝑖𝑛

] = [
𝛿𝑤1

2 0

0 𝛿𝑤2

2 ] 

Tuning of the EKF with covariance matrices is done 

by using: 

𝑄𝐾𝐹 = 𝑄, 𝑅𝐾𝐹 = 10 × 𝑅 

2.4.3 Discretized state-space model  

Based on the model (1), discretization of (4) gives the 

process model in discretized state-space form as in (5): 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘 
(5) 

where, the system matrices are 

𝐴 = [1
𝑇𝑠

𝑎
0 1

] , 𝐵 = [−
𝑇𝑠

𝑎
0

] , 𝐶 = [1 0] 

with state vector 𝑥𝑘 = [
ℎ𝑘

𝐹𝑖𝑛,𝑘
] , control variable 𝑢𝑘 =

𝐹𝑜𝑢𝑡,𝑘 , time step 𝑇𝑠 = 0.2s , process noise vector 

𝑤𝑘~𝒩(0, 𝑄𝑘), measurement noise 𝑣𝑘~𝒩(0, 𝑅𝑘).  

The controllability matrix 𝒞 and observability matrix 

𝒪 can be calculated as: 

𝒞 = [𝐵 𝐴𝐵] =  [−
𝑇𝑠

𝑎
−

𝑇𝑠

𝑎
0 0

] 

𝒪 = [
𝐶

𝐶𝐴
] =  [

1 0

1
𝑇𝑠

𝑎
] 

Checking the rank of these matrices, giving: 

𝑅𝑎𝑛𝑘(𝒞) = 1, ℎ is controllable.   

𝑅𝑎𝑛𝑘(𝒪) = 2, the system is observable. 

 

Figure 3. Block diagram of averaging level control. 

 

Figure 4. Block diagram of output feedback MPC. 

2.4.4 Output feedback MPC 

The main idea of implementing MPC is to solve an 

open-loop optimal control problem over a moving 

horizon with finite length at each sampling time, starting 

at the current state. At the next time step, the 

computation is repeated starting from the new state and 

over a shifted horizon. 

In an output feedback MPC, feedback of states is 

obtained through an estimator, i.e., EKF, to recursively 

estimate the states based on the measurement at every 

time step. The estimated states �̂�𝑘 = [
ℎ̂𝑘

�̂�𝑖𝑛,𝑘

] is sent to 

MPC, instead of the states measured directly from the 

process 𝑥𝑘. 

Figure 4 shows the block diagram of the principle of 

output feedback MPC. 

For a Single-Input-Single-Output (SISO) MPC, the 

cost function in this case is defined by (6): 

min
𝑢𝑘

𝐽 =
1

2
{∑ 𝑀 × 𝑒𝑘

2 +
𝑁𝑝

𝑘=1
∑ 𝑁 × Δ𝑢𝑘

2𝑁𝑐
𝑘=1 }  (6) 

where, 

 𝑢𝑘  is the control signal to be optimized. Control 

error Δ𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1.  

 Constraints on 𝑢𝑘 and Δ𝑢𝑘 are as in (2) and (3). 

 𝑒𝑘 = 𝑦𝑘
𝑟𝑒𝑓

− 𝑦𝑘 , is the prediction error defined as 

the difference between the setpoint 𝑦𝑘
𝑟𝑒𝑓

 and 

process output 𝑦𝑘. 

 𝑁𝑝  and 𝑁𝑐  are the length of prediction horizon 

( 𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑁𝑝 × 𝑇𝑠 ) and control horizon 

(𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 𝑁𝑐 × 𝑇𝑠), respectively.  

 𝑀 ∈ ℝ1×1  and 𝑁 ∈ ℝ1×1  are positive definite 

weighting matrices for prediction error and control 

error, respectively.  
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2.4.5 PI control  

PI is a control algorithm widely used in various 

industries. The PI controller in time domain to be used 

is of the discretized form (Haugen, 2010) in (7): 

𝑢𝑘 = 𝑢𝑘−1 + [𝑢0,𝑘 − 𝑢0,𝑘−1]  

               +𝐾𝑝[𝑒𝑘 − 𝑒𝑘−1] +
𝐾𝑝𝑇𝑠

𝑇𝑖
𝑒𝑘 

(7) 

where, 

 𝑢𝑘, controller output at time step 𝑡𝑘 with constraints 

introduced as in (2) and (3). 

 𝑢0, manual control input.  

 𝑒𝑘 = 𝑦𝑘
𝑟𝑒𝑓

− 𝑦𝑘 , where 𝑦𝑘  and 𝑦𝑘
𝑟𝑒𝑓

 are the 

measurement and the reference at 𝑡𝑘, respectively. 

 𝐾𝑝, 𝑇𝑖, proportional gain and integral time of the PI 

controller. Skogestad’s method as a model-based 

tuning method (Haugen, 2010) is used for tuning of 

these parameters. 

3 Results and discussion 

In this section, results of averaging level control are 

presented and discussed.  

3.1 Averaging level control using PI 

Experiment results are shown in Figure 5 with controller 

settings: 𝐾𝑝
ℎ= -5.67 (direct actions), 𝑇𝑖

ℎ=20 s. 

In general, the water level ℎ showed smooth changes 

in the meantime of tracking the setpoint ℎ𝑠𝑝, as can be 

seen from the top plot. The real-time measurement ℎ𝑚 

and the estimated signal ℎ̂ match each other well, except 

for slight deviation in the beginning phase (< 10 s) due 

to a guessed initial value used for the EKF estimator.  

PI controller calcucates 𝐹𝑜𝑢𝑡,𝑘 based on the estimated 

inflow �̂�𝑖𝑛,𝑘 for updating the pump actions at each time 

step. The estimated inflow �̂�𝑖𝑛,𝑘 started to reflect the real 

data after about 10 s as the middle plot shows. The large 

deviation of the estimated inflow from the real value in 

the beginning phase caused delayed controller actions, 

in addition to the 𝛥𝑢/𝛥𝑡 constraint for smooth pump 

actions shown in the bottom plot. Even though the 

estimation of inflow is noisy, the Pump 1 control actions 

𝑢 = 𝐹𝑜𝑢𝑡  slowly resembled the varying inflow, 

including conditions of two stepwise changes at 𝑡=0 s 

and 𝑡=50 s. The Pump 1 control actions fluctuated at 

low flow rate, i.e., from 𝑡=50 s to 𝑡=100 s when the 

inflow is ~20 cm3/s shown in the middle plot, caused by 

the nonlinear pump characteristics.  

3.2 Averaging level control using MPC 

Results of MPC control algorithm are presented in 

Figure 6, with the following controller settings: 

 Optimization method: SLSQP (SciPy.org, 2021a), 

tolerance = 0.001.  

 Constraint/ boundaries: as in (2) and (3).  

 
Level:  ℎ𝑠𝑝   ℎ  ℎ̂  

Flow:  𝐹𝑜𝑢𝑡  𝐹𝑖𝑛   �̂�𝑖𝑛  

Figure 5. Results of implementing PI for buffer tank 

averaging level control. 

 
Level:  ℎ𝑠𝑝   ℎ  ℎ̂  

Flow:  𝐹𝑜𝑢𝑡  𝐹𝑖𝑛   �̂�𝑖𝑛  

Figure 6. Results of implementing MPC for buffer tank 

averaging level control.  

 𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡 =10 s, and 𝑁𝑐 = 𝑁𝑝=20. 

 Weighting matrices: 𝑀 = 5, 𝑁 = 1. 

 𝐹𝑖𝑛: Estimated inflow at each time step 𝐹𝑖𝑛,𝑘 is used 

for prediction and cost function calculation, 

meaning that the inflow is a “fixed” value for the 

entire prediction horizon 𝑁𝑝. 

Comparing the results from MPC to from PI control, 

one can firstly notice that the MPC outperforms PI with 

“smoother” 𝐹𝑜𝑢𝑡  (middle plot) and much less varied 

outflow Δ𝑢/Δ𝑡  (bottom plot). This is because of the 

moving horizon and optimization algorithm used for 

optimal control in the prediction horizon, given the same 

constraints of on 𝐹𝑜𝑢𝑡 and 𝛥𝑢/𝛥𝑡 as for PI controller.  

It is worth noting that, with smoother outflow, more 

overall setpoint deviation of the water level should have 
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been observed since the volume would have varied more 

to buffer against inflow. However, from the results, the 

differences are noticeable but not obvious, comparing 

the two “level” plots in Figure 5 and Figure 6.  

Estimation of both water level ℎ̂ and the inflow �̂�𝑖𝑛 

are about the same overall performance as in PI 

controlled case. However, the less noisy control actions 

led to less noisy �̂�𝑖𝑛.  

Both PI controller and MPC can be tuned for less 

tracking error suffering more abrupt control action 

changes or more varied water level with less fluctuated 

pump actions.  

3.3 “Time” issue in real-time control 

One problem of using Python for real-time control 

(RTC) is how to ensure the time step 𝑇𝑠  during the 

computation, since Python is not designed for real-time 

purpose and the computation speed is dependent on 

many factors.  

Figure 7 presents the differences between 

computational load for the averaging level control using 

MPC and PI, given computer configurations in Table 3. 

The two upper plots are the cycle time for each cycle 

(totally 200 s / 0.2 s = 1000  cycles). The lower 

histogram plots show the distribution of the cycle time 

for both control algorithms, in which the 1000 cycles are 

binned into 40 groups with the largest group marked red.   

 

Figure 7. Comparison of computation load of PI and 

MPC for averaging level control. 

Table 3. Computer configurations. 

Hardware  Processor: Intel(R) Core(TM) 

i7-8750H @ 2.20GHz 

Installed RAM: 32.0 GB  

Operating system Windows 10 Enterprise 64-bit 

Version 20H2  

OS build 19042.985 

The computational load is relatively less heavy using 

PI control than using MPC. In the experiments based on 

PI control, more than 70% cycles have about 9~10 ms 

computation time (not the “average” computation time) 

and maximum cycle time is ~31 ms. For MPC case, 

more than 50% cycles have 29~31 ms running time and 

maximum is ~70 ms, both are much higher than using 

PI control. As can be seen from the histogram, the cycle 

time distribution for MPC is much “wider”, meaning the 

cycle time varies a lot from loop to loop. This is because 

MPC is an optimization-based algorithm. The 

computation depends highly on the problem 

construction, optimization method, and solver setup, 

etc. A few other factors can also influence the cycle time 

including file I/O, hardware communication and setup, 

computer configurations, etc.  

In this work, Python built-in “time” module is used 

with the following method to handle the issue: 

1. Define a time step/ cycle time, i.e., 𝑇𝑠 = 0.2 s. The 

value has to be far greater than the largest actual 

cycle time, which can be determined from 

experiments.  

2. For each loop: 

a. Count the actual cycle time 𝑇𝑐𝑦𝑐𝑙𝑒,𝑘 [s] of each 

loop 𝑘.  

b. “Wait” for 𝑇𝑤𝑎𝑖𝑡,𝑘 = 𝑇𝑠 − 𝑇𝑐𝑦𝑐𝑙𝑒,𝑘 [s] at the end 

of each loop. In Python, the built-in “time” 

module can be used as:  

time.sleep(T_wait_k)  

c. If for some reason 𝑇𝑤𝑎𝑖𝑡,𝑘 ≥ 𝑇𝑠, let 𝑇𝑤𝑎𝑖𝑡,𝑘 = 0. 

d. Pump control signal 𝑢𝑘 is maintained until next 

time step.   

To speed up the simulation/ shorten the cycle time, 

some options are recommended: Cython (Cython.org, 

2020), multi-threading and multi-processing 

(Python.org, 2021), use well-accepted open libraries and 

proper setup of modules, separate file I/O and 

computational tasks, etc.  

4 Conclusions and future 

development 

The work presents a demonstration of using model-

based control algorithms for averaging level control of 

urban drainage system, to be specific, a wastewater 

equalization magazine using a small-scale buffer tank. 

The conclusions are:  

 Averaging level control using model-based control 

algorithms is successful, with unknown inflow.  

 MPC is based on the system model and optimization 

solver. PI controller does not require the system 

model to compute the control action. With proper 

settings, MPC can achieve smoother control actions 

than PI control. 

 The process can benefit from both PI and MPC 
algorithms for averaging level control, given 

constrained control signal with upper/ lower limits 

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185405 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

409



([𝑢𝑚𝑎𝑥, 𝑢𝑚𝑖𝑛]) and allowed maximum change of 

flow rate (|Δ𝑢 Δ𝑡⁄ |).  

 For the buffer tank system, the inflow is observable 

so that it can be estimated as an augmented state 

with water level as the only measurement. EKF is 

easy to implement for the estimation but some effort 

is required for tuning.   

 Python is a promising option for programming for 

real-time control. As one can see, a number of open 

libraries are available for the purpose. 

To improve the MPC performance in the future, 

instead of using a “fixed” 𝐹𝑖𝑛 for the entire prediction 

horizon, a “forecast horizon” 𝑁𝑓 can be used to obtain a 

sequence of “future inflow” for the MPC optimization, 

i.e., [𝐹𝑖𝑛,𝑡𝑘
, 𝐹𝑖𝑛,𝑡𝑘+1

, … , 𝐹𝑖𝑛,𝑡𝑘+𝑁𝑓
] . Choosing of 𝑁𝑓  is 

based on the information available and computation 

resource. 𝑁𝑓 ≥ 𝑁𝑝  is suggested so that the inflow 

information is available throughout the prediction 

horizon 𝑁𝑝 for the optimizer. Different algorithms for 

estimating/ forecasting inflow can be tested, i.e., Particle 

Filter (PF), Ensemble Kalman filter (EnKF), Moving 

Horizon Estimation (MHE), neural network, etc. Trade-

off between extra computational load and performance 

should be taken into consideration.    
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Abstract 
A moving bed biofilm (MBB) process was modelled in 

AQUASIM using the standard activated sludge model 1 

(ASM1) as a baseline. The model was controlled against 

experimental data from a  pilot Hybrid Vertical 

Anaerobic Biofilm (HyVAB) reactor installed at 

Knarrdalstrand wastewater treatment plant, Porsgrunn, 

Norway. High ammonium concentration removal from 

reject water was studied by applying different aeration 

schemes at the plant and the modelling tool. Results 

show that the standard ASM1 model was poor to fit 

experimental data. Simulation results evidenced missing 

biochemical mechanisms related to anaerobic 

ammonium oxidation (Anammox) and short cut 

nitrogen removal processes. However, the essential 

simulation outputs are biofilm thickness, substrates 

concentration variation, and biomass distribution, 

partially validated with experimental results. The 

model, therefore, helped to realise the nature of the 

bioprocess observed at the pilot reactor. 

  

Keywords:     Moving bed biofilm reactor, Reject water, 

Activated sludge model, Intermittent aeration, 

AQUASIM 

1 Introduction 

Reject water originated from digested sludge 

dewatering is usually rich in ammonium (Guo et al., 

2010). The untreated discharge causes many 

environmental and health hazards (i.e., eutrophication 

and blue baby syndrome) that strictly requires proper 

treatment. Mixing reject water into the mainstream 

wastewater line is a common practice (Sivalingam et al., 

2019). However, the higher nutrient load of reject water 

causes process instabilities. Reject water requires, 

therefore, an additional treatment before mixing with 

the mainstream treatment process. 

A pilot Hybrid Vertical Anaerobic Biofilm (HyVAB) 

reactor was installed in the reject water line (Figure 1). 

Intermittent aeration was implemented into the aerobic 

chamber to achieve simultaneous nitrification and 

denitrification. The intermittent aeration strategy has 

several advantages compared to the conventional 
activated sludge process; thus, less aeration energy 

requirement and a single rector setup are sufficient to 

achieve aerobic and anoxic treatments (Di Bella and 

Mannina, 2020).  

Authors have earlier investigated different 

intermittent aeration patterns to remove higher 

ammonium concentrations from Knarrdalstrand 

wastewater treatment plant (KWWTP) reject water 

(Sivalingam et al., 2020). However, experimentally 

examining various aeration schemes is tedious and 

resource-intensive. Therefore, a theoretical study was 

carried out by modelling and simulation. 

 

 

Figure 1. HyVAB pilot reactor integration at KWWTP. 

This research develops a moving bed biofilm (MBB) 

model to study the impact of intermittent aeration on the 

HyVAB pilot reactor, treating reject water. The standard 

activated sludge model 1 (ASM1) is applied to the MBB 

compartment in the HyVAB reactor modelled by 

AQUASIM software. We present the preliminary 

simulation results of the 1D multi-substrate and 

multispecies biofilm model to give an overview of the 

possible process parameters examination when 

integrating the MBB process and ASM1 model into 

AQUASIM.  

1.1 Activated Sludge Model 1 

The ASM1 was introduced in 1983 and has been 

extensively studied (Nelson and Sidhu, 2009); it was 

developed futher to investigate the activated sludge 

organic and nitrogen removal process (Van Loosdrecht 
et al., 2015). Only a few key elements are briefly 

presented here to ensure the proper reading flow of this 

article. 
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In ASM1, oxygen and nitrate are the primary electron 

acceptors. The organic matters are classified into 

biodegradable chemical oxygen demand (COD), non-

biodegradable COD, and active biomass. The active 

biomass has two subsets pertaining to heterotrophic and 

autotrophic organisms. The ASM1 model consists of 13 

state variables. Some of the essential variables are: 

Active heterotrophic and autotrophic biomass, 

alkalinity, ammonium, nitrate, soluble and 

biodegradable organics, and dissolved oxygen. 

The ASM1 consists nitrification and denitrification as 

conventional single-step reactions, converting ammonia 

to nitrate (nitrification) and nitrate to nitrogen gas 

(denitrification) (Henze et al., 2000). However the  

intermittent aeration facilitates conventional, short cut 

and anaerobic ammonium oxidative pathways to 

remove nitrogen from the wastewater (Miao et al., 2018) 

1.2 Moving Bed Biofilm Process 

Moving bed biofilm process is a Norwegian technology 

specially designed for nutrient removal from wastewater 

(Rusten et al., 1997). It is an attractive solution for high 

strength wastewater treatment (Sivalingam et al., 

2020b) due to stable biofilm growth into a protected 

surface area, which is more tolerant to the process 

variance. 

The biofilm consists of different layers of mixed 

culture microorganism clusters, referred to as attached 

growth. The diversity of microorganisms depends on 

nutrient and oxygen gradients along with the biofilm 

thickness (Wang et al., 2019). For instance, in an aerated 

system, the outer layer of the biofilm is rich in aerobic 

culture. In contrast, the inner layers favour anoxic 

growth, and the layers near to the substratum contain 

anaerobic cultures. The different cultures perform 

specific biochemical reactions, such as nitrification 

occurs at the outer layer and denitrification happens at 

the inner layers. This is a key benefit of using moving 

beds (bio carriers) in this pilot study, facilitating biofilm 

growth.  

2 Material and methods 

The HyVAB pilot reactor has two compartments, the 

anaerobic part is at the bottom, and the aerobic part is at 

the top. The purpose of the anaerobic part is to recover 

energy as biogas. The anaerobic effluent enters to the 

aerobic compartment to undergo a nutrient removal 

process, especially ammonium removal. The aerobic 

part contains BWT15® type carriers (Biowater 

Technology AS, Tønsberg, Norway). The sketch of the 

reactor is presented in Figure 2, adapted from 

(Sivalingam et al., 2020a).  

 

 

Figure 2. HyVAB reactor and matured moving bed bio 

carrier. 

2.1 Reactor operation and experiments 

Centrifuged effluent from the KWWTP anaerobic 

digestor was used as the reject water feed to the HyVAB 

reactor. The hydraulic retention time was one day, and 

the operational temperature was 30±2 °C. Two different 

intermittent aeration schemes were tested, i.e., (1) 5 min 

on/ 15 min off (20 min. Aeration cycle); (2) 3 min on/4 

min off (7 min aeration cycle). The 2nd aeration pattern 

achieved 50% ammonium removal. The complete 

experimental study is presented in (Sivalingam et al., 

2020a). The 2nd aeration scheme is used here to compare 

the simulation results. 

2.2 Model Development 

Since ammonium removal is our primary concern in 

reject water treatment, only the aerobic part of the pilot 

reactor (Biofilm compartment) and the ASM1 are 

modelled.  The activated sludge process was 

incorporated into the biofilm compartment (attached 

growth). 

The biofilm compartment in AQUASIM has been 

modified to comply with the biofilm part of the pilot 

reactor. The following assumptions are adapted from a 

similar study (Wanner and Morgenroth, 2004): (1) The 

type of reactor is confined; (2) The pore volume consists 

only a liquid phase and dissolved solids; (3) The biofilm 

matrix is in rigid form, and the volume can be changed 

only due to microbial activities; (4) The surface 

detachment velocity was assumed as a global value of 

0.5*UF, where UF is the velocity by which the biofilm 

surface displaced due to the production and decay of 

microbial mass in the biofilm; (5) Biofilm surface area 

is constant at 10 m2. The porosity rate was considered 

zero by assuming that the fraction of pore water volume 

of the biofilm is constant. 

Nitrification, denitrification, aeration, autotrophic 

inactivation, heterotrophic inactivation, and aerobic 

heterotrophic growth are the main processes taken into 

account in the biofilm compartment. The complete 

process kinetics and stoichiometry coefficients are 

adapted from (Henze et al., 2000).  

 

BWT15® 

Carrier 
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2.3 Intermittent Aeration implementation 

Two approaches were performed to implement the 

intermittent aeration into this model. Firstly the aeration 

process activated in the biofilm compartment when 

aeration is 'on' and deactivated when aeration is 'off'. 

After activation and deactivation of the aeration process, 

the model was simulated with appropriate on/off time 

via the start/continue option from the simulation tool. It 

was challenging to simulate the model for a long time, 

like 250 days for a concise aeration cycle.  

Therefore, in approach an aeration switch was 

introduced. First, a formula variable called 'AerSwitch' 

was created. The expression was defined as a sinusoidal 

function 207*(sin(500*t) ^2). This expression was 

determined by trial and error to match with 

experimentally calculated gas-liquid mass transfer 

coefficient (KLa). The desired 3 min on/off cycle was 

achieved by increasing the omega terms in the sine 

function (ω of sin ωt). Then 'AerSwitch' was assigned as 

the expression for KLa. 

Approach 2 provides an equal time interval for both 

the 'on' and 'off' cycle because of the sine function. 

Therefore, if we indeed need more accurate cycles, the 

'AerSwitch' function should be fine-tuned. However, in 

our experimental case, on/off cycle was 3 min on and 4 

min off. Therefore 3 min on/off was considered as a 

reasonable number for the simulations.  

The initial conditions and the input values derived 

from the experimental study (Sivalingam et al., 2020a) 

are presented in Tables 1 and 2. Other required 

parameters are adapted from (Rauch et al., 1999;  

Mannina et al., 2011; Reichert, 1998), listed in Table 3.  

Table 1. Initial conditions for the model. 

Variable Description 
Initial 

values 
Units 

𝐿𝑓 Biofilm 

thickness 

1e-005 
𝑚 

𝑋ℎ𝑒𝑡   Heterotrophs 0.1*rho 𝑚𝑔𝐿−1 

𝑋𝑎𝑢𝑡 Autotrophs 0.1*rho 𝑚𝑔𝐿−1 

𝐶𝐻𝐶𝑂3
 Alkalinity 1e-005 𝑚𝑔𝐿−1 

𝐶𝑁𝐻4
 Ammonium 1e-005 𝑚𝑔𝐿−1 

𝐶𝑁𝑂3
 Nitrate 1e-005 𝑚𝑔𝐿−1 

𝐶𝑆𝑂𝑟𝑔
 Soluble organics  1e-005 𝑚𝑔𝐿−1 

𝐶𝑂2
 Dissolved 

oxygen 

1e-005 𝑚𝑔𝐿−1 

Table 2. Model input parameters. 

Variable Description Inputs Units 

𝑄𝑖𝑛 In flow rate 0.065 𝑚3𝑑−1 

𝑋ℎ𝑒𝑡   Heterotrophs 0 𝑚𝑔𝐿−1 

𝑋𝑎𝑢𝑡 Autotrophs 0 𝑚𝑔𝐿−1 

𝐶𝐻𝐶𝑂3
 Alkalinity  1952 𝑚𝑔𝐿−1 

𝐶𝑁𝐻4
 Ammonium  450 𝑚𝑔𝐿−1 

𝐶𝑆𝑂𝑟𝑔
 Soluble organics 100 𝑚𝑔𝐿−1 

𝐶𝑂2
 Dissolved oxygen 0.5 𝑚𝑔𝐿−1 

3 Results and Discussion 

Figure 3 shows the biofilm propagation. On day 75, the 

biofilm thickness (Lf) reached steady-state at 1.16 mm. 

The biofilm contains both autotrophic (XAut) and 

heterotrophic (Xhet) biomass. The distribution along the 

biofilm matrix is presented in Figure 4. Heterotrophic 

growth dominates the biomass composition. At 

substratum, heterotrophic biomass concentration 

decreases with time, the opposite happens for 

autotrophic biomass concentration. This could be due to 

the diffusion limitation of substrates. 

 

Figure 3. Biofilm thickness progression. 

 

 

Figure 4. Autotrophic and heterotrophic bacterial 

distribution in the biofilm matrix on 50th and 250th days. 
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Table 3. Model parameters. 

Symbol Parameter description Values Units Reference 

𝐷𝑆𝑂2 Diffusion coefficient of oxygen 2.1 𝑐𝑚2𝑑−1 (Rauch et al., 1999) 

 

𝐷𝑆𝑂𝑟𝑔 Diffusion coefficient of organic matter 0.58 𝑐𝑚2𝑑−1 (Rauch et al., 1999) 

 

𝐷𝑆𝑁𝑂3
 

 

Diffusion coefficient of nitrate nitrogen 2 𝑐𝑚2𝑑−1 (Rauch et al., 1999) 

 

𝐷𝑆𝑁𝐻4
 

 

Diffusion coefficient of ammonium nitrogen 1.8 𝑐𝑚2𝑑−1 (Rauch et al., 1999) 

 

𝐷𝑆𝐻𝐶𝑂3 

 

Diffusion coefficient of alkalinity 2 𝑐𝑚2𝑑−1 (Reichert, 1998) 

𝐷𝑆𝑁2
 

 

Diffusion coefficient of nitrogen gas 1.9 𝑐𝑚2𝑑−1 (Reichert, 1998) 

𝐷𝑋 

 

Diffusion coefficient of biomass 1e-7 𝑐𝑚2𝑑−1 (Reichert, 1998) 

µ𝐻𝑒𝑡 and µ𝐴𝑛𝑜𝑥  Maximum growth rate heterotrophs  2.8 𝑑−1 (Mannina et al., 2011; 

Rauch et al., 1999) 

µ𝐴𝑢𝑡 Maximum growth rate autotrophs 

 

1.0 𝑑−1 (Mannina et al., 2011) 

𝑌ℎ𝑒𝑡 Heterotrophic yield coefficient 0.65 𝑚𝑔𝐶𝑂𝐷

𝑚𝑔𝐶𝑂𝐷
 

(Rauch et al., 1999) 

𝑌𝐴𝑢𝑡 Autotrophic yield coefficient 0.22 𝑚𝑔𝐶𝑂𝐷

𝑚𝑔𝑁𝐻4
 

(Mannina et al., 2011) 

𝑏ℎ𝑒𝑡 Heterotrophic decay rate 

 

0.1 𝑑−1 (Mannina et al., 2011) 

𝑏𝐴𝑢𝑡 Autotrophic decay rate 

 

0.06 𝑑−1 (Mannina et al., 2011) 

𝜂ℎ𝑒𝑡 Coefficient for anoxic heterotrophic growth 0.80 - (Mannina et al., 2011) 

𝑖𝑋𝐵𝑎𝑢𝑡 Ammonia fraction in biomass 0.08 𝑚𝑔𝑁

𝑚𝑔𝐶𝑂𝐷
 

(Mannina et al., 2011) 

𝑖𝑋𝑃𝑎𝑢𝑡 Ammonia fraction in particulate fraction 0.06 𝑚𝑔𝑁

𝑚𝑔𝐶𝑂𝐷
 

(Mannina et al., 2011) 

𝐾𝑁𝐻 Saturation coefficient for ammonia 1 𝑚𝑔𝐿−1 (Mannina et al., 2011) 

𝐾𝑆𝑂𝑟𝑔
 Saturation coefficient for organic matter 20 𝑚𝑔𝐿−1 (Mannina et al., 2011) 

𝐾𝑁𝑂3
 Saturation coefficient for nitrate 0.5 𝑚𝑔𝐿−1 (Mannina et al., 2011) 

𝐾𝑂2
 Saturation coefficient for oxygen 0.2 𝑚𝑔𝐿−1 (Mannina et al., 2011) 

𝐾𝑂2ℎ𝑒𝑡
 Saturation coefficient for oxygen 

heterotrophic organism 

0.2 𝑚𝑔𝐿−1 (Mannina et al., 2011) 

𝐾𝐿𝑎 Oxygen transfer coefficient 207 𝑑−1 Calculated 
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The XAut and Xhet biomass distribution in the biofilm 

bulk profiles are depicted in Figure 5. In the beginning, 

the Xhet reached 30 mg L-1, which is six times higher 

than XAut. However, after 50 days of operation, it 

levelled at 10 mg L-1, while the XAut remained stable at 

around 5 mg L-1. The lack of soluble organics is the 

reason for such a remarkable reduction in Xhet. 

 

 

 

 

 

 

Figure 5. Autotrophic and heterotrophic biomass 

distribution in the biofilm bulk. 

Figure 6 illustrates the dissolved oxygen (DO) 

concentration during the changes in aeration cycles. The 

on/off aeration scheme facilitates the nitrification and 

denitrification process, resulting in 13% ammonium 

removal. In addition, nitrogen gas evolution was 

observed. Small amounts of nitrate were also produced. 

All these nitrogen species concentration profiles are 

shown in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. On/off aeration scheme enlarged version. 

The DO concentration along the biofilm thickness 

was investigated when the aeration was switched 'on' 

(aerobic) and switched 'off' (anoxic). The simulation 

results are depicted in Figure 8. Oxygen concentration 

(along with biofilm thickness) is higher when aeration is 

"on" than where aeration is "off". The significant change 

in the aeration profile proves that DO concentration is 

the rate-limiting factor for the nitrogen removal process. 

However, the DO difference in those two conditions is 

less significant at the substratum, while a notable 

difference is in the outermost layer.  
 

 

 

 

 

 

Figure 7. Nitrogen species variation in the bulk liquid. 

 

 

 

Figure 8. DO concentration profiles along with the 

biofilm thickness at aerobic and anoxic conditions. 

Ammonium, nitrate, soluble organics, and nitrogen 

gas concentration changes along with the biofilm matrix 

at 250th day are presented in Figure 9. The ammonium, 

nitrate and soluble organic concentration trends have 

corresponded to each other; however, the gradient 

differs due to the different diffusion coefficients. The 

nitrogen gas concentration remains stable at 50 mg L-1 

throughout the entire biofilm matrix. It is reasonable 

because of very sparingly soluble behaviour. 
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4 Conclusion and Further 

Development 

The MBB model with activated sludge processes was 

successfully implemented in AQUASIM software. The 

simulation results illustrate that the model can study the 

impact of intermittent aeration on biofilm thickness, 

biomass and substrate distribution within the biofilm, 

biomass and substrates concentration in the bulk liquid. 

The simulation results showed lower ammonium 

removal efficiency (13%) than the experimentally 

achieved efficiency (50%) from the pilot reactor. This is 

because the ASM1 does not include the possible 

shortcut and anaerobic ammonium oxidative pathways 

that occur in the experiment. Therefore, the model 

requires further development by integrating all possible 

ammonium nitrogen removal pathways to match the 

experimental results.  
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Abstract
In a wastewater treatment plant reliable fault detection is
an integral component of process supervision and ensur-
ing safe operation of the process. Detecting and isolat-
ing process faults requires that sensors in the process can
be used to uniquely identify such faults. However, sen-
sors in the wastewater treatment process operate in hostile
environments and often require expensive equipment and
maintenance. This work addresses this problem by identi-
fying a minimal set of sensors which can detect and isolate
these faults in the Benchmark Simulation Model No. 1.
Residual-based fault signatures are used to determine this
sensor set using a graph-based approach; these fault signa-
tures can be used in future work developing fault detection
methods. It is recommended that further work investigate
what sizes of faults are critical to detect based on their po-
tential effects on the process, as well as ways to select an
optimal sensor set from multiple valid configurations.
Keywords: fault detection, wastewater treatment, de-
tectability, isolation

1 Introduction
Fault detection (FD) is an important part of process su-
pervision; monitoring the state of the process, identifying
undesirable states, and initiating action to prevent nega-
tive consequences (Isermann, 2006, pg. 13). The safe and
reliable operation of a process depends on the process su-
pervision, this is no less the case in a wastewater treat-
ment plant (WWTP) where poor performance can result
in the release of untreated wastewater subsequently endan-
gering human health and the environment (Ryder, 2017).
The successful implementation of automatic control also
hinges on the quality of process supervision. Control
and automation in WWTPs has historically lagged behind
other industrial processes, but is becoming increasingly
important as effluent standards have become more strict
and processes move from wastewater treatment to recov-
ery (Olsson et al., 2005).

In a WWTP there are numerous types of faults that can
occur, such as instrument faults and process faults. Spe-
cific process faults that have been the focus of FD research
include: a decrease in the growth rate of autotrophic bacte-
ria causing a decrease in nitrification (Choi and Lee, 2004;

Lee et al., 2003, 2004b,a; Yoo and Lee, 2006), a decrease
in the growth rate of heterotrophic bacteria (toxicity fault)
(Aguado and Rosen, 2008; Borowa et al., 2007; Garcia-
Alvarez et al., 2009; Yin et al., 2017; Yu, 2012), a com-
bined decrease in growth rate and increase in death rate
of heterotrophic bacteria (inhabitation fault) (Aguado and
Rosen, 2008; Garcia-Alvarez et al., 2009; Yin et al., 2017),
a decrease in ammonification rate (Yu, 2012), and a de-
crease in the settling velocity to simulate a bulking fault
(Aguado and Rosen, 2008; Choi and Lee, 2004; Garcia-
Alvarez et al., 2009; Yoo and Lee, 2006).

Each of these faults possess a fault signature based on
how they affect the measurable states. These fault signa-
tures are independent of any particular FD strategy (Ding,
2013, pg. 52), and knowledge of their detectability and
isolability can be beneficial when quantifying the perfor-
mance of different FD methods (Basseville, 2001).

Sensors and measurement devices are pivotal to FD as
they provide information about the state of the process.
However, the hostile environment in a WWTP commonly
places sensors at risk of, for example, clogging and bio-
fouling (Li et al., 2017). This can result in high mainte-
nance costs due to required cleaning and calibration. Ad-
ditionally, the sensors themselves are costly, can disturb
the process, and in some cases are unavailable. Due to
this, it is important to strategically select and place sen-
sors in order to obtain as much information as possible
while minimising the costs associated with monitoring.

There are numerous ways to approach the problem
of sensor placement, such as considering observability
and redundancy within the process (Villez et al., 2016,
2020), or considering fault detectability and isolability
(Krysander and Frisk, 2008; Jung et al., 2020). In this
work we consider the latter approach, focusing also on
the determination of fault signatures for common process
faults within a WWTP.

This type of analysis has been done extensively in other
fields. For example, in gas turbines analysing fault sig-
natures based on sensitivity (Chen et al., 2015), correla-
tion (Stenfelt et al., 2019), and measurement uncertainty
(Chen et al., 2015; Zaccaria et al., 2020) are all com-
mon procedures to determine a sensor set. However, a
correlation based method is not easily applicable to a
WWTP. WWTPs consist of process units in series, with
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similar biochemical mechanisms occurring in each unit.
This structure inherently leads to high correlation between
measurements in successive units and renders futile the
use of correlation analysis for sensor selection.

An alternative approach is to utilise the structural in-
formation of the process model. In this method variables
and equations are represented as separate node sets in a
bipartite graph and a graph theoretic approach is used to
select a minimal sensor set (Krysander and Frisk, 2008).
This approach yields ‘best case’ results for an ideal sys-
tem. Using a distinguishability criterion that facilitates
the specification of thresholds on the probability of false
alarms and missed detections the method can be extended
to a more realistic case, and when combined with model
analysis a greedy stochastic search method can be used to
determine an optimal sensor set to satisfy the requirements
(Jung et al., 2020)

In this work a combined approach is used. Simula-
tions are performed to observe the effects of faults on
the various measurements, and responses that are be-
low noise thresholds are discarded. The remaining fault-
measurement combinations are represented as a bipartite
graph, with non-zero residuals specifying the edges. De-
tectability and isolability conditions are defined in terms
of neighbourhoods on the graph, and both a greedy ap-
proach and a Monte Carlo approach are implemented to
obtain a minimal sensor set to satisfy the requirements.

2 Method
2.1 Simulation
The Benchmark Simulation Model No. 1 (BSM1) was
used for simulating the WWTP. The benchmark plant con-
sists of five biological reactors in series, where two are
anoxic (total volume 2000 m3) and three are aerated (to-
tal volume 3999 m3), the reactors are modelled with the
Activated Sludge Model No. 1 (ASM1). The reactors
are followed by a secondary settler with a volume of
6000 m3 which is modelled as a nonreactive ten layer set-
tler with the Takács model (Gernaey et al., 2014, pg. 9–
10). The model assumes a constant temperature of 15 °C.
The BSM1 is used with the two standard control loops
for NO3 – N and dissolved oxygen control, with set-points
of 1 gNm−3 and 2 gO2 m−3 respectively (Gernaey et al.,
2014, pg. 55–56). The layout of the process is shown in
Figure 1 with the control loops, and the locations where
for this study it was considered feasible to place sensors.

The MATLAB Simulink implementation of the steady-
state form of the BSM1 was run with constant influent.
The steady-state model utilises ideal sensors in the control
loop but is otherwise similar to the normal BSM1. This
simulation set-up was used to be able to easily detect the
new steady-state that is reached after a fault has occurred.

The simulation model was modified to allow for the in-
troduction of process faults. These faults were added as
bias faults, where the size of the step was a percentage of
the normal value of the parameter. Table 1 shows the list

of faults, along with the normal values for the single pa-
rameters. The fault sizes used for simulation were 1 %,
5 %, 10 %, 20 %, 30 %, 40 %, 50 %, and 75 %. Consider-
ing each fault fault-size combination as a unique fault, a
total of n f = 96 faults were tested.

Table 1. Summary of faults that were introduced to the system.
The fault symbol shows whether there was an increase or a de-
crease in the parameter. All growth rates are maximum specific
growth rates as used in the ASM1.

Faulty
Parameter(s)

Normal
Value

Symbol Fault No.

Ammonification
rate 0.05a +ka 1

−ka 2
Heterotrophic
growth rate 4 d−1 +µH 3

−µH 4
Heterotrophic
death rate 0.3 d−1 +bH 5

−bH 6
Heterotrophic
growth rate

4 d−1
Ib 7

Heterotrophic
death rate

0.3 d−1

Autotrophic
growth rate 0.5 d−1 +µA 8

−µA 9
Autotrophic
death rate 0.05 d−1 +bA 10

−bA 11
Settling
velocity

NAc −vs 12

a The ammonification rate constant has units of
m3 gCOD−1 d−1.

b The inhabitation fault is a combination of−µH and +bH .
c The settling velocity is calculated from the double-

exponential settling velocity function and therefore has
no single normal value.

The simulation was loaded from a predetermined
steady-state and run for 50 days before introduction of a
fault. After the fault was introduced the simulation con-
tinued until the system reached a new steady-state. The
post-fault steady-state values were used for the residual
analysis.

2.2 Sensors and Measurement Noise
The starting set of sensors was taken as those variables that
are commonly measured and have available commercial
sensors. These included flow rates (Q), dissolved oxygen
(SO), alkalinity (SALK), total suspended solids (T SS), as
well as nitrate/nitrite nitrogen (SNO), and ammonium/am-
monia nitrogen (SNH) (Olsson et al., 2005; Rieger et al.,
2003). All six variables were considered to be measur-
able at the eight locations indicated in Figure 1. These
locations are used as subscripts to describe a specific sen-
sor, e.g. SO,5 indicates the dissolved oxygen measure-
ment in the fifth reactor. Additional flow rates were mea-
sured in the wastage (Qw) and internal recycle (Qa). It
was also assumed that the oxygen mass transfer coefficient
(KLa), which represents the airflow into the final reactor,
is known or measured. This resulted in a starting set of
51 measurements; 40 concentration sensors, 10 flow rate
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Figure 1. The plant layout for the BSM1 WWTP, the two standard control loops are shown on the diagram with the measurements
involved, as well as all locations where it is assumed possible to install sensors and take measurements marked by 1-5 (inside
biological reactors), e and u (in settler effluent and underflow respectively), and ASi (in the inflow to biological reactors).

sensors, and the KLa value in the fifth tank. We represent
the total number of sensors with ns.

As stated previously, ideal sensors were used in the sim-
ulation of the process. However, sensor ranges and mea-
surement uncertainty were considered when analysing the
residuals. In the non-ideal BSM1 measurement noise is
specified as 2.5 % of the maximum measurement range
boundary for the sensor of interest, and measurement
ranges for variable-specific sensors are provided (Gernaey
et al., 2014; Rieger et al., 2003). We denote the measure-
ment noise for sensor j as σ2

j .
A sensitivity analysis was performed by changing the

noise to 1 % (Rosen et al., 2008) and 4 % and comparing
the main results.

2.3 Analysis of Residuals
Residuals were calculated for each fault, fault size, and
sensor based on the normal operating conditions and the
post-fault steady states obtained from simulations per-
formed using the modified BSM1. These residuals form
an n f × ns influence matrix M′, where M′i, j represents the
size of the residual detected by sensor j caused by fault i.
We then construct an n f × 2ns binary influence matrix M
as follows:

Mi, j =

{
1, M′i j > σ2

j

0, otherwise
Mi, j+ns =

{
1, M′i j <−σ2

j

0, otherwise
(1)

If we represent this matrix blockwise M = [M+ M−] then
the block M+ shows that fault i caused a positive residual
above the noise threshold of sensor j; block M− shows the
same thing for negative residuals.

This can be interpreted as the biadjacency matrix of a
bipartite graph G = (F,S,E), where F = { fi}

n f
i=1 is a set

of vertices representing faults, S = {s+j ,s
−
j }

ns
j=1 is a set of

vertices representing positive or negative residuals on sen-
sors, and E is the set of edges. A fault, fi, is detectable
only if it is connected to at least one sensor s+j or s−j . For-
mally, we can say that the neighbourhood of a detectable
fault in G is non-empty, i.e. N( fi) 6= /0. A fault can be
isolated if it is detectable and the residual set it creates is
distinct from all others, i.e. N( fi) = N( f j) if and only if
i = j.

Call a subgraph H = (F,S′,E ′) of G a minimal sen-
sor graph if: 1) all faults which are detectable in G are
detectable in H, 2) all faults which are isolable in G are
isolable in H, 3) removing any vertex pair (s+j ,s

−
j ) from

S′ would violate 1) or 2). To find a minimal sensor graph
in G we used both a greedy method for removing vertices
from G, as well as a Monte Carlo approach.

For the greedy method residual pairs (s+j ,s
−
j ) are iter-

ated through, if a pair is found which can be removed with-
out affecting the overall isolability and detectability, it is
removed. This continues until no more residual pairs can
be removed. The Monte Carlo approach samples from the
existing residual pairs randomly and removes pairs while
preserving isolability and detectability. When the sub-
graph stagnates the search terminates.

3 Results and Discussion
Following the procedure detailed above, both the greedy
method and the Monte Carlo approach identified a mini-
mum of eleven sensors as necessary to detect and isolate
the maximum number of fault cases. Ten thousand itera-
tions of the Monte Carlo approach resulted in no changes
to the minimum number of sensors, but different combi-
nations of sensors were identified. Future work will inves-
tigate additional criteria which may be used to determine
an optimal sensor set from the results of the Monte Carlo
approach, however, this work considers the set obtained
with the greedy method. These sensors are: SNH,1, SNH,3,
SNO,3, SO,3, SO,4, SNO,e, SALK,e, T SSe, T SSu, T SSASin ,
KLa5.

3.1 Fault Detectability and Isolability
Considering the faults described in Table 1, faults +ka and
+µH were found to be undetectable by any of the possi-
ble sensors, given the sensor noise thresholds. This is not
unexpected as they were unconventional faults; increasing
either of these parameters may in some circumstances be
beneficial, however, any deviation from the desired oper-
ating point satisfies the definition of a fault.

Additionally, small deviations, the 1 % and 5 % fault
sizes, were found to be undetectable. Considering that the
smallest deviation in these parameters that was found in
the literature was 6 % (Lee et al., 2003), with 40 % to 60 %
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being more common sizes for changes in the parameters,
this is an expected result. Future work should consider the
effect that different fault sizes have on the performance of
the WWTP in order to understand which sizes are criti-
cal to detect. These aforementioned non-detectable faults
account for 36 of the original 96 tested faults.

Figure 2 shows for the detectable faults and fault sizes,
at what size each fault became detectable, and where the
signatures were unique. From this Figure we can see that
31 of the original 96 faults were detectable and isolable,
while 43 were detectable.

Figure 2. The detectability and isolability of faults is shown for
different sizes of faults. White indicates an undetectable fault
while colored indicates a detectable fault. The dark green with
hatching shows completely unique fault signatures, green with
a dotted pattern indicates that within a particular fault different
sizes have the same signature, and the unpatterned light green
shows identical signatures in different fault types. The letters
show which fault signatures are the same.

There are several interesting observations to be made
from this Figure. Firstly, we see that certain faults at
particular sizes can resemble different faults at either the
same, or different fault sizes. Consider the faults marked
‘A’ as an example of the latter case; this occurs at a 10 %
deviation for fault −µA, and at 40 % for +bA and shows
that these two faults share the same signature. This makes
sense as a decrease in growth rate and an increase in death
rate of the autotrophic bacteria can be expected to have a
similar effect on the process. However, the faults are dis-
tinguishable if their evolution is monitored as they only
share a signature at one size. The faults marked ‘B’ and
‘D’ show a similar relationship between +µA and−bA, but
identical signatures also exist within the +µA fault across
several sizes as shown by the ‘D’ faults.

Faults +bH and I are interesting due to the appearance
of ‘C’ and ‘E’, marking two unique signatures shared by
these two faults at the same sizes. This is likely due to the
fact that I, as mentioned previously, is a combination of
+bH and −µH . In Figure 2, fault −µH is seen to be un-
detectable until a size of 50 %, this is the size at which the
signatures of +bH and I become distinct from each other,
indicating that at smaller sizes the dominant effect was
+bH and we could expect the two signatures to be equal.
From this observation we can state that it is likely that if

an additional fault was tested that was the combination of
+bA and −µA, this fault would share signatures with −µA
until fault size 30 %.

The uniqueness of signatures across fault sizes, within
a fault, can be a useful property as fault sizes can be iden-
tified purely from the signs of the residuals, without anal-
ysis of the size of the residuals. In the case where certain
fault sizes require immediate action this property can pro-
vide an early warning if the evolution of fault signatures
are monitored.

3.2 Fault Signatures
Discussing now the fault signatures, in Figure 3 all fault
signatures are shown. Each subplot is for a single fault,
the columns represent the different sizes of the fault, and
the rows show which sensor is used in detecting that oc-
currence of the fault. The sign of the residual is shown by
the fill on the Figure.

The first observation to make from Figure 3 is that,
when considering fault pairs of “+" and “−" of the same
parameter, we observe similar residual patterns yet oppo-
site signs. This is an expected response, and if the process
were perfectly linear we would expect identical but op-
positely signed residual patterns. There are three pairs to
observe this behavior in: µA, bA, and bH .

Secondly, pairs of parameters that have a similar effect
on the process have similar residual patterns. These pairs
are the oppositely signed changes of growth and death
rates of either the autotrophic or heterotrophic bacteria.
This was mentioned in the discussion of Figure 2 in rela-
tion to the labelled pairs of identical signatures (‘A’, ‘B’,
‘C’, etc.). Considering ‘C’ and ‘E’ which were seen be-
tween faults +bH and I, these are easily identified in Fig-
ure 3. We see SO,4, T SSASi , T SSu, and KLa5 responding
to both of these faults identically up until fault size 50 %
where the effect of −µH becomes significant.

Considering some specifics, the sensor T SSe is only
used to detect a decrease in the settling velocity (−vs).
This suggests that despite this fault having a more com-
plex signature based on the sensor set, it could be identi-
fied and isolated with that single sensor if the size of the
fault was not of interest. Similarly, SALK,e is only used
in fault −µA and causes size 20 % and 30 % to be distin-
guishable. If we were uninterested in isolating the sizes of
this fault based on the binary residual approach followed,
this sensor could be excluded from the sensor set.

Finally, if we consider KLa5 in the fault −µA, the resid-
ual can be observed to change sign as the fault size in-
creases which is a clear indicator of nonlinearities in the
process.

3.3 Sensitivity to Measurement Noise
Sensitivity of the selected sensor set and detectable faults
to measurement noise can be evaluated by repeating the
analysis for different sensor noise levels. Table 2 shows
the maximum possible number of isolable faults, the num-
ber of sensors required for fault isolation, and the changes

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185418 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

421



Figure 3. Fault signatures for the tested, detectable, faults. The hatched red squares indicate a positive residual observed in a
specific sensor while unpatterned blue indicates a negative residual.

to the sensor configuration specified previously.

Table 2. Sensitivity of analysis to measurement noise.

1 % 2.5 % 4 %

Isolable faults 34 31 31
Number of sensors 13 11 10
Sensors to remove - - SALK,e, SO,4
Sensors to add SNH,4, Qa - SNH,4

An interesting observation is the addition of sensor
SNH,4 in both cases, this suggests that including this sensor
in the recommended sensor set may make the FD and iso-
lation more robust to variations in noise and uncertainty.
The additional number of sensors required to detect the
faults with less noise is due to more sensors producing
residuals above the threshold and subsequent isolation of
the faults requiring more information. We can similarly
discuss the fewer number of sensors required to isolate the
same number of faults with the 4 % noise when compared
to 2.5 %. As the noise increases the number of residuals
above the threshold decreases, which means fewer sensors
may be required to isolate the same number of faults. This
suggests that clearly defining a threshold for each sensor
is a vital step in the FD procedure.

4 Conclusions and Recommendations
Using a combined simulation based-graph theoretic ap-
proach a minimal sensor set was suggested in order to al-

low for the detection and isolation of the maximum num-
ber of fault fault-size combinations. The required sensors
were SNH,1, SNH,3, SNO,3, SO,3, SO,4, SNO,e, SALK,e, T SSe,
T SSu, T SSASin , KLa5; a total of eleven. However, other
combinations of eleven sensors were capable of detecting
the same faults and future work should consider how to se-
lect the optimal combination of sensors. It was found that
replacing SALK,e with SNH,4 may increase the robustness
to variations in measurement noise, and the importance of
defining a noise threshold was highlighted.

Fault signatures were identified for faults relating to
changes in the growth and death rates of the autotrophic
and heterotrophic bacteria, as well as changes to the
ammonification rate, and settling velocity. It was ob-
served that small changes to these parameters do not pro-
duce residuals that are distinguishable from measurement
noise, and it is recommended that future work investigate
the effect that different fault sizes have on the performance
of the WWTP in order to highlight which fault sizes are
critical to detect.

The results were based on a binary approach, consid-
ering only the sign of the residual and not its magnitude.
It may be possible to reduce the sensor set and increase
isolability by considering residual magnitude, and this can
be investigated further in future work. Following the bi-
nary approach simplifies the residual analysis and is easier
to visualise; which is an important consideration in terms
of potential implementation in industry.
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Abstract
Treatment of wastewater is fundamental to protect the en-
vironment and to ensure a healthy water supply. Higher
demands are put on the treatment of the effluent from
wastewater treatment plants (WWTP) to reduce more pol-
lutants as well as remove pharmaceutical residues. To be
able to deliver better water quality monitoring and control
is of importance but wastewater treatment is far behind
many industrial processes when it comes to automation.
Digital twins and machine learning could offer many ben-
efits but not much work has been done in this field con-
cerning wastewater treatment. How do you move from an
existing traditional process automation system to an inte-
grated machine learning platform?

This paper investigates the challenges of implementing
an integrated machine learning platform for a wastewater
treatment plant. The paper is based on experience from a
project where a number of different processes, including a
WWTP where integrated into a machine learning platform
in an online cloud environment. In this paper we focus on
the integration of the WWTP. On the platform a model
is run in real-time using process data. Machine learning
algorithms are used to treat the process data and for sen-
sor fault detection. The challenges and considerations are
many, such as cyber-security when it comes to data access
and data transfer and how to convert the process data to a
format that can be used by the model.

Multiple defining choices must be made along the way
that can have a major impact on the final platform func-
tionality. It is important not only to evaluate these choices
but also to have enough knowledge and jurisdiction to
make both the right decisions and to also make them in
time. Many projects run out of time and/or money for dif-
ferent reasons and strategies will be discussed for how to
mitigate risk factors.
Keywords: Wastewater Treatment, Machine Learning,
Cloud Environment

1 Introduction
Many wastewater treatment plants today have sensors to
measure water quality and also to control parts of the
plants. A common control is the aeration of the biolog-
ical treatment to send enough air in to the water to fulfill a
set-point of the level of oxygen in the water. Other com-

mon measurements is the level of ammonia and nitrate in
the water and some plants also use these measurements
as control parameters. The wastewater treatment plant of
Västerås, that was used as reference plant in this project,
have all of the above mentioned measurements as well as
water temperature, water flow-rate and phosphor concen-
tration sensors. Data from these sensors have been stored
in a historical database since at least 5 years back to pro-
duce graphs for operators of the plant and to create reports
to authorities. The goal was to do more with all this data
and use modern machine learning technologies to achieve
better control and monitoring of the water and the treat-
ment plant.

2 Method
Historical data at the WWTP were stored in a process
database. A model had also been developed of the WWTP
based on the BSM2G Matlab Simulink simulation model
(Vrecko et al., 2006) but for other purposes than was in-
tended within this project. The model was used for online
simulations of the plant and needed to be adapted to con-
nect to the data from sensors and analysis. It also needed
to be stable and have a reasonable simulation time. In
the end a BSM2 model (Jeppsson et al., 2007) adapted for
the plant was used, but the ASM1 (Henze et al., 1987) and
BSM2G models were also tested. Since sensor data would
be used for the models, sensor fault detection was also of
importance and multiple strategies were evaluated. In ad-
dition we wanted to add Model Predictive Control (MPC)
as extra functionality to optimize the process.

2.1 Using a Cloud Platform
To ensure the existing data was not altered by mistake and
to avoid unauthorized access the data needed for new mod-
els and analysis was cloned from the existing database.
The cloned data and models could either be hosted on-site
or using an online cloud platform. There are benefits with
self-hosting since data never leaves the site but there are
also drawbacks in terms of accessibly and scaling as well
as needing new hardware to be purchased and maintained.
For this project a cloud-based solution was selected. With
a cloud-based solution initial costs for investing in infras-
tructure could be avoided and it made it possible to get
started before the full benefit and return value of an in-
vestment could determined.
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2.2 Models
Throughout the project numerous different models and
model interfaces have been used and evaluated. To build
a scale-able platform that is able to support effortless inte-
gration of as many different models as possible it is impor-
tant to choose a platform that is not built only to support a
specific model vendor. As the project was founded by the
EU Research and Innovation program ”Horizon 2020” all
models were required to be open source models. This does
not limit the use of commercial software such as MAT-
LAB but requires the final models created to be exported
to an open-source format. One of the benefits with open-
source models is that they allow for better sharing of ex-
periences between organisations. Another benefit is that
the open-source models are often less platform-dependent
which also gives more options to the final user.

The models used in this project was built using MAT-
LAB Simulink. MATLAB models can be run outside of
MATLAB using runtime dll-file but it still requires a MAT-
LAB runtime license. This could be a working solution for
many but with our requirement to be fully open-source it
was not possible to use this in our project. Another pos-
sibility is to convert an existing model to an open-source
model, but the resulting model would essentially be a new
model which would require time to build and test it. In
this project it was solved by using the Simulink model
but compile it is an open-source model using the Modelon
"FMI TOOLBOX FOR MATLAB/SIMULINK" (Mode-
lon AB, 2021). This toolbox makes it possible to compile
a Simulink model as a Functional Mock-up Unit (FMU)
which creates a file with the simulation model based on
the Functional Mock-up Interface (FMI) which is an open
standard for simulation models.

2.3 Data
Data was extracted in two ways: Initially historical data
of interest was extracted and then followed by a continu-
ous extraction of new data. The data was extracted using
Excel-scripts and the two different types of extractions had
to be treated separately. As Excel has limitations in how
much data that can be stored in one file and the amount
of data from certain sensors that had been storing data for
several years where extensive. The historical data had to
be extracted for one sensor at a time and in some cases
also in batches of as little as a few months while the con-
tinuous extraction of new for all sensors could fit in a sin-
gle file. Even though the time-resolution varied among
the different sensors, the extracted files was created us-
ing batches of data based on one-minute averages for each
sensor. Intervals of 15-minutes were used between extrac-
tions, meaning each extracted file contained 15 lines, one
for each minute, of the data for each sensor for the last
15-minute period.

The chosen time resolution of 1 minute and 15 minutes
between extractions impacted the amount of storage space
required to store the extracted data as well as what models

can be run using the data. The time resolution was chosen
to work well with all models used and could be increased
if too much storage would be consumed. 15 minutes be-
tween each batch of new data was also considered enough
since the models would not be used for direct control. A
delay of up to 15 minutes would be sufficient to decide the
set-points of faster controllers or to detect sensor failing
over time. If the models should instead be used for direct
control of for example valves or pumps the time resolution
and time between extractions would need to be reconsid-
ered.

2.4 Integration
The models need to be connected to the data storage. Be-
tween the storage of data and the model the data needs to
be checked as well as translated into a form that can be
used as input by the model. The model results also need
to be stored as well as the model state in case of state-
based models. An alternative to storing the model state is
to have a default state and an initialization period before
each batch of new data feed into the model.

The data and model integration framework used to han-
dle management of data between the data-store and the
models used in this project was Node-RED (JS Founda-
tion, 2021). In addition to data management the frame-
work also contains the functionality to create websites
to visualize data and model output as well as providing
the possibility to get user input to models. Having such
a framework is essential to prepare raw data from the
database storage in a suitable input format for each of the
models and to sort through the model output to format
and store essential model output. We decided to have a
full separation of stored raw data from the treatment plant
and the data stored from model output to never risk losing
track of the origin of the stored data.

Some of the models that were used required data from
chemical analysis as well as sensor data for model in-
put. The chemical analyses are made at the plant manually
about once every week. The data from the analysis were
stored separately from the sensor data. Each of the anal-
ysed values was assumed to remain the same until a new
analysis was made. The load on the plant varies over the
day but since the analysis are made as collected samples
each week the values does not reflect daily variations. In-
stead to simulate daily variations, a normal daily variation
curve was used. The resolution was 15 minutes and the
average for each day was the chemical analysis value for
the week the day belonged to.

2.5 Output and presentation
One of the most important parts for a project like this to be
considered successful is to make good use of the produced
outputs. The performance of the models does not matter
much if the outputs cannot be visualized to an end user
to make better or more informed decisions or to optimize
actions as plant control or maintenance planning. Writing
information back to the control system can be a real chal-
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Figure 1. File transfer from historian database to cloud storage

lenge from a security perspective and it should be handled
with care. Even if the write-back of data to the system is
secured, the models also need to be thoroughly tested be-
fore actual control actions can be taken based on the model
results. It would also be advisable to have model input and
output validation to make sure that all variables are within
reasonable levels. If any of the variables would deviate a
default fallback option ignoring the models could be used
as a fail-safe.

In this project nothing was written back to the system,
results were instead presented on a webpage for operators
to read to take actions, with a security air-gap between the
new cloud models and the control system.

3 Results
3.1 Implemented models
Several physical simulation models both of generic and
plant specific tuned models have been integrated in the
platform. All physical plant simulation models used orig-
inates form MATLAB Simulink models that was wrapped
as Function Mockup Units (FMU:s) so they could be run
in any environment without the requirement of a Simulink
runtime. First the generic benchmark model BSM1 (Alex
et al., 2008) got implemented as a proof of concept to val-
idate that the FMU models would produce the same re-
sults as when they were run inside Simulink which was
successful. Following that the more complex models
BSM2 (Jeppsson et al., 2007) and BSM2G (Vrecko et al.,
2006) modified and tuned as digital twins of the Västerås
wastewater treatment plant named Kungsängsverket were
also integrated and tested in the platform.

Some live sensors have been connected to these models
and the current ongoing task is to create the required influ-
ent datapoints from live sensors together with information
gather from recent lab measurements. This is needed as
the models requires a large set of input parameters which
is not directly measured with live sensors as the contam-
ination in the incoming water make continuous measure-
ments very challenging.

Models for Model Predictive Control (MPC) was also
developed in Matlab Simulink using the MPC Toolbox
and like the full plant model they were exported to FMU.
Several different FMU:s have been tested to run the BSM1

and the BSM2 models. For security reasons no write-back
to plant is currently allowed and would have to be solved
in future project which make closed-loop MPC impossible
but the possibility to manually read MPC output and use
this as manual input to the control system is still useful
whilst not as manageable as a closed-loop solution. The
output from the MPC in all cases have been supervisory
control as in set-points for existing PI controllers. The
main improvement observed is in the possibility to lower
the amount of aeration during lower plant load to save en-
ergy but a small improvement to water quality has also
been seen in some scenarios.

To compare and analyze the correlation between mul-
tiple oxygen and air-flow sensors a Bayesian Network
model was developed using the Hugin tool (HUGIN EX-
PERT A/S, 2021). However, this model required a lot of
training data to provide accurate results which was not
available in the quantities needed. Instead the fault de-
tection was moved to Python models. A model to classify
normal data from disturbance data from event of sensor
cleaning was developed and tested with good result using
historical data. This was not suitable to classify new data-
points from continuous sensor measurements and instead
focus was moved an Auto-regressive Integrated Moving
Average Model (ARIMA) model to look at multiple air-
flow sensors together with oxygen sensor readings to de-
termine normal conditions and detect deviations from this.

3.2 Data Extraction
A file is cyclically exported from PGIM database and put
in an internal file area and a scheduled job is moving this
to an area where an edge server can consume this file. This
flow is illustrated in Figure 1.

The edge server is a virtual machine placed inside
Mälarenergi network which runs on Ubuntu operating sys-
tem. Edge server ingest data from a share drive located in
Mälarenergi network and then performing data process-
ing, anonymization and transfer to JavaScript Object No-
tation (JSON) format, and sending to cloud will be man-
aged by scheduled data collecting modules. JSON files
are processed directly to database by scripts that runs in
Azure functions. Functions are triggered on incoming files
at Azure BLOB Storage. Data is continuously transferred
from history database to Azure Cloud MS SQL Server and
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Figure 2. Data flow in cloud environment

the data is available in the cloud storage less than 5 min-
utes after the data has been written from the control system
to the history database.

3.3 Data and Model Integration
Using a variety of Microsoft Azure resources; virtual ma-
chines, storage, databases and application-services, it is
possible to use the data originating from the customer site
database to call i.e. a FMU-model and store back the
model results. The results could later be used to control
the plant or give suggestions to plant staff of how to op-
timize the process of running the plant or optimize main-
tenance. Data flow from database through data prepara-
tion stages to model execution, retrieving model results
and finally writing results back to a database is illustrated
in Figure 2.

The process of running the models inside the cloud plat-
form was built in the flow-based programming tool named
Node-RED which is running inside a Linux Docker con-
tainer in the MS Azure cloud. Inside Node-RED a flow
is created which retrieves the necessary data from the MS
Azure Database pre-process the data to a format suitable
for the intended model to be run and send a http request to
a Windows virtual machine also running in the MS Azure
environment. This virtual machine, which has the nec-
essary run-times required to run the models, run a web-
service that listens for request on different ports for dif-
ferent models to know what model should run with what
data. Once data is sent to a web-socket a program exe-
cute the corresponding model based and feed it the input
data sent to the virtual machine. Once the model has fin-
ished running the results are sent back the Node-RED flow
which then take care of the model output and make it pos-
sible to store it back in the cloud database. An example
of how such a Node-RED data-flow is created within the
Node-RED user interface has been illustrated in Figure 3.
Here each node i.e. SQL code to retrieve or store data to
a database or JavaScript code to prepare data for model
execution.

4 Discussions
Making sensor data available to be processed and accessed
by modern machine learning algorithms and simulation
models is the start of a new era of process control. There

are numerous studies simulating the WWTP and different
possible advanced control strategies. This implementa-
tion and evaluation framework is a step to bring advanced
control closer toward full-scale testing and final imple-
mentation. Having a framework in place where data can
very easy be made accessible to new model developers
also reduce both the complexity and the effort required
in any future project looking to further improve the pro-
cess. Adding feed-forward and feedback MPC to the ex-
isting aeration control strategy give both the possibility to
reduce effluent violations and to reduce the energy used
during periods when the aeration demand is lower.

When adding more algorithms and models to a system
the quality of input data become increasingly important.
Sensor maintenance already requires a lot of work for
plant owners and maintenance personnel. When this main-
tenance can be planned in according to where and when
a sensor is in most need of maintenance such as cleaning
with addition of added sensor diagnosis tools both the cost
of maintenance and the accuracy of sensor data could be
improved. Today every sensor is cleaned in intervals based
on experience but with the possibility of analyzing actual
sensor performance it could be both better and without re-
quiring experienced staff to plan the work.

Digital Twin(s) give endless comparison opportunities
both for process control and sensor maintenance. Future
control strategies should be evaluated by numerous clones
with different settings and models can also be made acces-
sible for experienced operators to try new strategies with-
out the risk of affecting the process. The platform can also
be a valuable tool for new personnel to train, learn and ex-
periment with the process in a safe environment. It would
also be possible to record special scenarios to be replayed
either to try strategies or to teach already know strategies.

The biggest achievement is the implementation of the
platform itself and the endless possibilities for further de-
velopment of new models and possible plant control. It
has been shown that it is possible to achieve better water
quality and reduce energy consumption by applying MPC
to the aeration process of a WWTP. Having a full plant
model implemented in a cloud environment connected to
live data, makes it possible to evaluate strategies in a close
to live environment which further increase the possibility
to develop and test new strategies.
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Figure 3. Example of Node-RED data flow editor

Numerous papers and research project already exit out-
side of this project at a theoretical level and having this
implementation and evaluation framework is a step to take
the theories toward further testing and finally implement-
ing actual control of treatment plants using new technolo-
gies.

With many models to integrate, strategies to evaluate
and a complex platform it is important to start with getting
the simplest model (or simply just present data) to fully
work as a proof of concept before moving to more com-
plex tasks. Hopefully the information within this paper
can serve as a guide for others to more easily accomplish
this.

5 Conclusions
In this study an integrated machine learning platform was
implemented for a WWTP. Data was extracted every 15
minutes from the plant’s historical database to a cloud
storage. In the cloud storage data cleaning and fault de-
tection was performed. The data was used to run models
of the WWTP and create suggestions of control actions
for the operators. It shows an important step towards im-
plementation of advanced control in wastewater treatment.
Further work is needed but it is possible in the future that
advanced models could be run in the cloud to directly con-
trol wastewater treatment plants and optimize their perfor-
mance.
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Abstract 
Due to climate change, the storms have intensified 

leaving the urban drainage system and wastewater 

treatment plants hard to tackle with the large water 

quantities. In this study we develop a data-based 

screening method to identify which drainage zones 

would benefit most of blue-green infrastructure to avoid 

spilling of uncleaned water. First the precipitation and 

drainage zone flow rate data are pre-processed and de-

seasonalized to remove the flow rate due to consumer 

wastewater. Then, system identification is applied for 

the rain periods and transfer function parameters for first 

order plus time delay model are collected. The screening 

index is calculated from the transfer function model 

parameters. The results show that the system is very 

nonlinear, but the mean values for the screening index is 

statistically significantly different for the drainage zones 

included to this study. The screening index clearly 

separates the different types of drainage zones and gives 

a reasonable suggestion for which drainage zones 

should be considered further for implementation of 

blue-green infrastructure like nature-based solutions.  

Keywords: dynamic modeling, system 
identification, urban drainage system, nature-based 

solutions, blue-green infrastructure, flood risk 

mitigation. 

1 Introduction 

It is expected that the climate change is going to have 

increasing impact on urban water resources. Currently, 

for the most European regions the rainfall patterns and 

temperature regimes are changing (Field, 2014). 

Precipitation frequency and temporal distribution leads 

to shorter but more intense rainfall events. 

In rapidly expanding urbanization the urban 

drainage system and wastewater treatment plants are 

unprepared for treatment of large water quantities. This 

causes flooding in cities and disposal of uncleaned water 

to nearby sea/rivers/lakes. Flood damages the city 

buildings and polluted urban water systems have high 

economical and ecological consequences for the citizens 
and marine life (Leal Filho, 2019). 

In recent years the idea of nature-based solutions (NBS) 

has gained significant attention for storm water 

mitigation (Dolman, 2020, Kalsnes, 2019). Nature-

based solutions are blue-green infrastructures 

implemented at the human habitats (Somarakis, 2019). 

The main goal of NBS is to support sustainable and 

resilient city growth, mitigate climate change and 

restore the local ecosystem. Nature-based solutions can 

potentially be used for flood risk mitigation and water 

quantity and quality improvement. The principal of 

NBS lies in natural process of water evapotranspiration, 

phytoremediation and infiltration (Haase, 2015, 

Beloqui, 2020). Rainwater, instead of being transported 

directly into the storm channels grid, can be 

accumulated in NBS and slowly disposed hours or even 

days after the precipitation event. Thanks to this ability, 

the water runoff peak can be flattened and prolonged. 

Lowered runoff amplitude is easier to handle by 

wastewater treatment facilities, which makes the city 

more flooding resilient (Eisenberg 2018). 

There are many types of NBS dedicated to 

support surface water regulation function in the city 

areas. The most effective are arboretums, residential 

parks, green roofs (intensive/smart), detention ponds 

(dry), retention ponds (wet), biofilters and mounds 

(Somarakis, 2019, Eisenberg, 2018). Recently, green 

roofs have been implemented at Fossum Terrasse in 

Bærum. At the moment the constructed wetlands are 

built at Hovseterdalen in Oslo. 

1.1 Drainage zones and storm water 

problem 

A drainage zone is an area of land, forest, buildings, 

infrastructure and a subterranean urban drainage 

pipeline network that leads the rainwater and 

wastewater from households towards a joint urban water 

tunnel. The joint urban water tunnel collects water from 

the drainage zones in Oslo, Bærum and Asker 

municipalities and leads the water to the Veas 

wastewater treatment plant.  In Asker municipality the 

rainwater is flowing in its own pipelines whereas in 

many parts of Oslo and Bærum the rainwater and 

household water are flowing in the same subterranean 

pipelines. During heavy rain the joint urban water tunnel 
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can get filled up with water, and the excess uncleaned 

water will be spilled to the Oslo fjord. This is a major 

threat to the marine life the Oslo fjord and closes of 

beaches along the fjord. 

1.2 Problem statement and research 

questions  

More targeted efforts are needed to reduce disposal of 

uncleaned water to the Oslo Fjord during heavy storms. 

The Veas wastewater treatment plant and municipalities 

at Oslo, Bærum and Asker have challenged researchers 

at OsloMet to develop a screening method that can 

pinpoint drainage zones which have the greatest 

influence to the excess water into the Veas tunnel during 

rainy periods.  

We aim to develop a screening method based on 

dynamic characterization of the drainage zones using 

collected time series. The screening method should 

illustrate which drainage zones could benefit most of 

blue-green infrastructures by slowing down the water 

flow through the drainage zone, and thereby flattening 

the flow profile into the tunnel. 

Our research questions are: RQ1: Is it possible to 

approximate the dynamic behavior of water flow 

through a drainage zone with a simple time-series 

model? RQ2: Can the drainage zones be classified using 

an index based on the dynamic model parameters?  

Table 1. Bærum drainage zones with precipitation 

stations, number of inhabitants and maximum values 

for precipitation and flow sensors. 

Draina

ge 

zone 

Precipitation 

station 

Per-

sons 

Max 

precipitati

on [mm] 

Max 

flow 

[L/s] 

Bjørne

-gård 

Gjettum_II 914 15.4 92.2 

Sør-

aasen 

Aurevann 2882 8.9 208.7 

Evjeba

kken 

Gjettum_II 2072 15.4 250.8 

Jar Øvrevoll 8497 6.0 341.8 

Sand-

vika 

Bærum_kom

munegården 

9264 12.3 435.9 

Ha-

mang 

Økeriveien, 

Bærums_vær

k,Øvre_Topp

enhaug,Gjett

um_II 

34582 17.0 915.1 

Sta-

bekk 

Storøya 9358 6.1 966.5 

 

 

Figure 1. Drainage zones (blue text) and precipitation 

stations (black text) in Bærum municipality. The joint 

urban water tunnel (red line) is built along the coast. 

1.3 Scope of the study, Bærum municipality 

The scope of this case study is the urban drainage system 

in Bærum, because the data set for this area is more 

complete than data sets collected for Oslo and Asker 

municipalities. The drainage zones, the precipitation 

stations, the number of inhabitants and the maximum 

values for the precipitation and flow measurements are 

given in Table 1 and Figure 1. The drainage zones 

omitted from this study due to missing data are 

Engervann, Fossveien, Fornebu, Skallum Skytterdalen, 

Slependen, and Tanum.  

Rainwater is measured at precipitation stations, 

located in different drainage zones. Some drainage 

zones do not have its own precipitation station, and 

therefore, the closest precipitation measurement is used 

to estimate the rain fall in this zone. The rainwater and 

wastewater from one drainage zone are led into an inlet 

point to the joint urban drainage tunnel. The flow 

measurement device is installed at this inlet point. 

2 Modeling of urban drainage 

systems 

Hydrology refers to water, its occurrence, distribution, 

circulation as well as its physical and chemical 

properties (Marshal, 2013). Hydrological phenomena 

like rainfall, interception, infiltration, transportation, 

evaporation or storage are components of water cycle. 

There are many hydrologic models trying to represent 

water behavior. These models can be divided into three 

categories, depending on used parameters and physical 

principles applied (Devia, 2015). 

First group consists of empirical models representing 

a data-driven approach. Water behavior modeling is 
based on finding relations between input (usually 

rainfall) and output (water runoff) without taking into 
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account actual the complex physics. The second group 

covers parametric-based models. These models try to 

represent the water runoff behavior with a multi-

parameter equations. The parameters are usually 

obtained empirically and calibrated for each specific 

case. The physically based models are the third group. 

Their principle of operation is based on modeling 

physics behind hydrological processes. The water 

dynamics is usually represented with differential 

equations. 

2.1 Physically based approach 

MIKE SHE is one of the most widely used physically 

based hydrological models (Ma, 2016).  The principle of 

operation lies in dividing the watershed into a unit grid 

horizontally for discrete calculations of complex terrain. 

The relationship between the ecohydrological processes 

(precipitation, evaporation etc.) and water runoff is 

calculated through continuity and motion equations 

(Zhou, 2013). The MIKE SHE contains three modules: 

water body motion module, water quality module and 

water balance tool, as well as several submodules, 

including snow melting module, overland flow module, 

rivers and lakes module, evapotranspiration module, 

unsaturated flow module and saturated flow module. 

The accurate calculations require selection of proper set 

of modules. It is a complex and challenging task 

depending on multidisciplinary skills. 

2.2 Parameter based approach 

SWIMM model is one of well-recognized parameter-

based models used for dynamic rainfall-runoff 

simulation (Rossman, 2015). It can be used for single 

event as well as for long-term simulations. The modeled 

land area is divided into subcatchment areas, which are 

characterized by different the soil types and ground 

covers. The SWIMM model collects the subcatchment 

areas that generate rainwater runoffs as a result of 

precipitation. The SWIMM model then simulates the 

water transportation through pipes and channels. Water 

storage and treatment devices (pumps and regulators) 

can be also implemented. The SWIMM can model both 

runoff quantity and quality, separately for each 

subcatchment area, pipe or channel. 

2.3 Data-driven approach with system 

identification 

System identification is a data-driven method to create 

models from time-series data (Ljung, 1999). The system 

identification toolbox in Matlab uses subspace 

algorithm to identify parameters for models with pre-

defined structures such as transfer functions, state-space 

models and many more.  

2.4 The idea for simplified modeling for 

urban drainage zone 

In order to develop a simple screening method, we need 

to characterize the dynamic behavior between 

precipitation and flow. We assume that the hydrological 

system, i.e. the soil and built infrastructure, in a drainage 

zone can be approximated as a first order transfer 

function system. Further we assume that the hydraulic 

system, i.e. the water flow through the subterranean 

pipelines in a drainage zone, can be approximated as 

plug-flow. This gives us a first order plus time delay 

(FOPTD) transfer function model structure between 

precipitation P(s) and flow F(s) to the joint urban 

drainage tunnel: 

𝐹(𝑠) =
𝐾𝑝

𝑇𝑝𝑠+1
∙ 𝑒−𝑇𝑑𝑠 ∙ 𝑃(𝑠) (1) 

Where Kp is the process gain, Tp is the time constant and 

Td is the time delay. 

2.5 The idea for screening method for urban 

drainage zones 

Assume that the drainage zones can be modeled with 

FOPTD system and the dynamic characteristics of the 

precipitation are similar to a pulse signal. Then, the 

rainwater flow from each drainage zone will be a pulse 

response. Further, assume that these pulse responses 

from each the drainage zone can be summed up using 

the principle of superposition. The total flow profile into 

the joint urban water tunnel is then the sum of the flow 

profiles from each drainage zone.  

Now, the drainage zone with the largest process gain 

and the shortest time delay and shortest time constant, 

will have the sharpest flow profile that contributes most 

to the problem of overflow in the joint urban water 

tunnel.  

We suggest to construct the screening index for 

drainage zone i, Si, as follows:  

𝑆𝑖 =
𝐾𝑝𝑖

𝑇𝑝𝑖+𝑇𝑑𝑖
  (2) 

Drainage zones with high Si have most aggressive 

flow profile whereas drainage zones with low Si index 

have smoother flow profile. 

Constructing blue-green infrastructure to drainage 

zones with high Si would flatten the total flow curve into 

the joint urban water tunnel. Thus, inhibiting the sharp 

flow peaks into the tunnel that forces the excess water 

to the Oslo fjord. 

3 Materials and methods 

3.1 Data collection 

The data was collected from Bærum municipality during 

January 2018 – December 2019 using resolution of 10 

minutes. The data consists of precipitation 
measurements in [mm] at the 11 precipitation stations 

and flow rate measurements in [L/s] at the Veas tunnel 

inlet points from the drainage zones.  
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3.2 Software tools 

Matlab R2021a with system identification toolbox was 

used for data pre-processing and modeling. 

3.3 Data pre-treatment 

The dataset contains flow rate and precipitation 

measurements collected by several stations in Bearum 

municipality. Some of the drainage zones do not have a 

measuring station. Thus, the first data pre-treatment step 

was to assign the closest precipitation measurement to 

those areas which do not have their own station. In the 

next step, all winter months (November-April) were 

excluded from further processing. Snow melting impact 

is hard to evaluate and including winter months could 

affect further modelling. In the next step, data were 

synchronized in the manner that flow rate measurement 

sampling was changed from 1/minute to 1/10minutes.  

3.4 Removal of seasonal trends 

The joint urban drainage tunnel collects stormwater, but 

also municipal wastewater. The municipal wastewater 

flow with daily and weekly variation had to be removed 

to improve the data quality for modeling. In the first 

step, the data was split into four quarters: May 2018 to 

June 2018, August 2018 to October 2018, May 2019 to 

June 2019 and August 2019 to October 2019. In the next 

step, a full no-rain week was manually selected from 

each period. It was assumed that no-rain week is a good 

representation of municipal wastewater production. 

Lastly, for each period, no-rain week was subtracted 

from the data. 

3.5 Selection of data for modeling 

After data pre-treatment and removal of seasonal trends, 

the rain periods were chosen manually. It was decided 

that only periods at least 2 hours long will be taken into 

account for further analysis. 

3.6 System identification procedure 

System identification toolbox was used to calculate the 

dynamic parameters of each drainage zone. The first 

order transfer function with delay was chosen (2). 

Parameters were calculated independently for each rain 

period. Initial result assessment shows that some of 

calculates parameters has non-physical values. 

Therefore, all the transfer functions with very large Kp 

or very large Tp were removed, as these are seen not 

sensible considering the geographical distances between 

the drainage zones and the joint urban water tunnel. 

Transfer functions with negative Kp were also removed 

as these are seen physically impossible. 

3.7 Screening index and statistical analysis 

The screening index was calculated based on the transfer 
function parameters Kp, Tp and Td for each of the rain 

periods in each of the drainage zones. The box plots 

were prepared for each drainage zone. The screening 

indices were then imported to SPSS, and the null 

hypothesis of equal means between the different 

drainage zones was tested with Student T-test. 

3.8 Multivariate correlation analysis 

Multivariate analysis was applied to find linear 

corrections between the transfer function model 

parameters (Kp, Tp and Td) and features extracted from 

the precipitation data (total accumulated precipitation 

during rain shower, maximum precipitation, and 

duration between rain showers). The Matlab Statistics 

and Machine Learning toolbox, Regression Learner App 

with different linear regression models, regression trees 

and support vector machines were used. 

4 Results 

This section shortly presents the results for data pre-

processing and system identification, and the results for 

the proposed screening index. 

4.1 Results for system identification 

The characterization of the system dynamic model 

parameters Kp, Tp and Td for the different drainage 

zones are given in Table 2. The box plots are given in 

Figure 2 for the process gains, Kp, Figure 3 for the time 

constants Tp and Figure 4 for the time delays Td.  

The results for process gain Kp between precipitation 

and tunnel inlet flow rate seem reasonable; Large 

drainage zones like Sandvika, Hamang, Stabekk 

“harvest” more rain and therefore they have larger 

process gains than small drainage zones like Bjørnegård 

and Evjebakken.  

The results for time delay Tp between precipitation 

and tunnel inlet flow rate seem reasonable; rain seeps 

faster through drainage zones with lots of buildings, 

roads and infrastructure like Sandvika than drainage 

zones with lots of private houses, parks and forest like 

Hamang. 

The results for time delay Td between precipitation 

and tunnel inlet flow rate seem reasonable; Drainage 

zones close to the joint urban water tunnel inlet like 

Sandvika and Stabekk have shorter time delay than 

drainage zones further away like Søraasen, Jar and 

Hamang.  

The standard deviation for all the dynamic 

parameters is high, which can also be observed from the 

box plots. This indicates that water flow through the 

urban drainage zone is a very nonlinear phenomenon. 

Two approaches to “linearize” the system were 

attempted. First, to preprocess the input data by taking 

an inverse of the precipitation data p(t)-1 before system 

identification, and second, by taking a square root of the 

precipitation data p(t)(1/2) before system identification. 

Both of these preprocessing approaches resulted in 

similar variation in the dynamic process parameters Kp, 

Tp and Td.  
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Table 2. Number of rain periods included N, average 

value and standard deviation for dynamic model 

parameters Kp, Tp and Td for the drainage zones. 

Draina

ge zone N 

Kp_

ave 

Kp

_std 

Tp_

ave 

Tp_

std 

Td_

ave 

Td_

std 

Bjørne

gård 63 5,5 3,9 35 82 54 97 

Søraase

n 61 392 907 439 925 86 105 

Evjeba

kken 71 127 159 172 439 25 61 

Jar 52 684 

116

4 480 

134

0 40 52 

Sandvi

ka 52 225 188 82 171 24 37 

Haman

g 69 511 868 409 721 39 51 

Stabek

k 61 765 810 178 227 26 52 

 

 

Figure 2. Box plots for identified process gain Kp in 

drainage zones Bjørnegård, Søraasen, Evjebakken, Jar, 

Sandvika, Hamang, Stabekk. 

 

 

Figure 3. Box plots for identified time constants Tp in 

drainage zones Bjørnegård, Søraasen, Evjebakken, Jar, 

Sandvika, Hamang, Stabekk. 

 

 

Figure 4. Box plots for identified time delays Td in 

drainage zones Bjørnegård, Søraasen, Evjebakken, Jar, 

Sandvika, Hamang, Stabekk. 

4.2 Results for multivariate analysis of the 

dynamic parameters 

In order to explain the variation in the dynamic 

parameters Kp, Tp and Td, different explanatory 

variables were constructed from the available data, i.e. 

the precipitation measurements. To characterize the rain 

intensity, two indicators for each rain period j were 

constructed: Maximum precipitation during the rain 

period Pmax,j, and total rain during the corresponding rain 

period Ptot,j. To characterize the water absorption 

capacity of the soil, one indicator was constructed, dry 

period before the rain period Tdry,j. 
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Linear regression models, regression trees and 

support vector machines in Matlab regression Learner 

app were applied to find linear correlations between 

dynamic parameters and constructed explanatory 

variables of the drainage zones, but no correlations with 

R2 index over 0,3 were found. It is suggested to find 

other explanatory variables to characterize the water 

flow through the drainage zone and to use nonlinear 

multivariate methods such as neural networks to find the 

correlation. 

4.3 Results for screening index 

The screening index was constructed using the 

identified dynamic process parameters Kp, Tp and Td for 

each drainage zone. The screening indices are presented 

in Figure 5 and the average values and standard 

deviations are given in Table 3. The standard deviation 

for the screening indices Si are much smaller than for 

the dynamic process parameters Kp, Tp and Td. The 

results for screening index Si seem logical, small 

drainage zones like Bjørnebård and Søråsen and 

drainage zones further away from the joint urban water 

tunnel like Hamang have smaller Si index, and therefore 

contribute less to the excess water in the joint urban 

water tunnel. Larger drainage zones close to the urban 

water tunnel like Sandvika and Stabekk have large Si 

index, and therefore contribute more to the excess water 

in the joint urban water tunnel. Based on the Screening 

index, we suggest that possibilities for blue-green 

infrastructure will further be investigated in these two 

drainage zones.  

SPSS was used to run t-test on equality of 

means between two drainage zones. The null hypothesis 

states that the means of two drainage zones are equal. 

Equal variances are not assumed. The decision criteria 

are: For a two-tailed test with n-2 degrees of freedom, 

the level of significance is 0.05. The results of the 

independent samples t-test are given in Table 4. As the 

t-test values are much higher than 1.96 or much lower 

than -1.96, the null hypothesis is proven false. Thus, the 

mean values for screening indices between the Bærum 

drainage zones are statistically significantly different. 

Table 3. Number of rain periods included N, average 

value and standard deviation screening index Si for 

the different drainage zones. 

Drainage zone N Si_ave Si_std 

Bjørnegård 63 0,3 0,3 

Søraasen 61 0,7 0,7 

Evjebakken 71 1,3 0,9 

Jar 52 2,2 1,7 

Sandvika 52 3,0 1,6 

Hamang 69 1,2 0,8 

Stabekk 61 4,3 1,5 

  

Figure 5. Box plot of the proposed screening index Si for 

drainage zones Bjørnegård, Søraasen, Evjebakken, Jar, 

Sandvika, Hamang, Stabekk. 

Table 4. T-test results for null hypothesis testing 

equality of means between drainage zones. 

Draina

ge 

zone1 

Drain

age 

zone2 

t df 2-tail 

sig. 

Mean 

diff 

Std 

diff 

Bjørne-

gård 

Søraa

sen 

-5,1 78 0,000 -0,48 0,09 

Søraase

n 

Evjeb

akken 

-4,2 129 0,000 -0,58 0,13 

Evjeba

kken 

Jar  -3,7 71 0,000 -0,93 0,25 

Jar Sand-

vika 

-2,5 102 0,016 -0,79 0,32 

Sandvi

ka 

Hama

ng 

7,3 71 0,000 1,8 0,25 

Haman

g 

Stabe

kk 

-14 90 0,000 -3,1 0,22 

Stabek

k 

Bjørn

e-

gård 

20 64 0,000 4,1 0,20 

Stabek

k 

Sand

vika 

4,5 106 0,000 1,27 0,30 

5 Discussion 

This is study is first stage in modeling of nature-based 

solutions at urban drainage zones. To answer our first 

research question (RQ1), we applied system 

identification to the available, pre-processed and de-

seasonalized data sets consisting of precipitation and 

drainage zone outlet flow rates. We conclude that it is 

possible to approximate the dynamic behavior of water 

flow through a drainage zone with first order plus time 

delay transfer function model. The model parameters 
highly nonlinear, and dependent on explanatory 

variables that were not included into the data collected. 
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To answer our second research question (RQ2), we 

introduced a screening index calculated with the 

dynamic parameters of transfer function model. The 

screening index was applied to all the rain periods at all 

of the drainage zones. The mean values of the screening 

index were statistically significantly different from each 

other. The classification of the drainage zones to high 

contributing and low contributing areas was based on 

the size of screening index. Small areas and areas far 

away got relatively small indices whereas large areas 

close to the water inlet point got relatively high indices. 

We conclude that the drainage zones can be classified 

using the proposed screening index. The drainage zones 

with high screening index should be considered for 

construction of blue-green infrastructure like NBS to 

avoid water spill to Oslo fjord. 

6 Conclusions and further work 

This study is a proof of concept that the available 

measurements, precipitation and drainage zone outlet 

flow rates, are enough to create a screening index that 

can separate the flow profiles of the different drainage 

zones according to their contribution to the excess water 

in the joint urban drainage tunnel. The simple dynamic 

modeling method with screening index is less accurate 

than traditional physically based and parameter based 

modeling methods, but a much faster and more cost-

effective method to classify the drainage zones. 

We suggest to continue the work by collecting data 

for the rest of the drainage zones in Bærum and the 

drainage zones in Oslo, and repeating the analysis for 

these drainage zones. As this is a data-driven approach, 

it is suggested that the method will be applied for large 

amounts of data, i.e. long time series of at least one year. 

The next goal in the project is dynamic modeling of 

the different NBS approaches and testing of the effect of 

NBS for the Bærum and Oslo drainage zones. We are 

suggesting to create a simple NBS model that can 

evaluate the performance of the NBS for a certain size 

and type of drainage zones. Further we propose to apply 

multi-criteria analysis to consider the effect for excess 

water and the costs for building and maintaining the 

NBS at high risk drainage zones. 
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Abstract  
Wastewater treatment plants (WWTPs) receive 

wastewater that carries a variety of pollutants, including 

antibiotics and antibiotic-resistant bacteria. The 

potential for horizontal gene transfer of resistance 

through conjugation – direct cell-to-cell transfer of 

genes carried on a plasmid – is high in WWTPs because 

of high cell density and residence time in bacterial flocs. 

To better understand how resistance spreads by growth 

and conjugation in such flocs, we propose an individual-

based model with a solver algorithm for dynamic 

simulation. Our model includes only the most relevant 

bacteria properties and functions such as movement, 

growth, division, gene transfer, and death. Simulation of 

our model suggests that resistance can increase by 

conjugation at the early growth stages of a floc and that 

the overall rate of gene transfer depends on floc size. 

Results indicate that our simple model can be a useful 

tool for examining how gene exchange and 

heterogeneity contribute to the spread of antibiotic 

resistance in bacterial flocs. 

 

Keywords: antibiotic resistance, wastewater 

treatment, individual-based model, simulation 

1 Introduction 

Antibiotics are important pharmaceuticals for the 

treatment of infectious bacterial diseases (Hellweger et 
al., 2011; Sabri et al., 2020). Overuse and misuse of 

antibiotics have led to the increased development of 

antibiotic resistance (AR) (Duarte et al., 2019). AR was 

estimated to be responsible for at least 700 thousand 

deaths in 2014 and is estimated to claim 10 million lives 

yearly by 2050, more than other major diseases such as 

diabetes and cancer (O’Neil, 2016). 

Biological wastewater treatment plants (WWTPs) are 

environments with high potential importance for the 

spread of AR (Uluseker et al., 2021). WWTPs contain 

rich microbial populations with very high cell densities 

(around 108 – 1010 cells per mL) supported by high 

nutrient availability (Jenkins and Wanner, 2014). Raw 

sewage originates from various sources and can contain 

large numbers of resistant bacteria (Hassoun-Kheir et 

al., 2020). Studies have shown that resistance levels stay 

high throughout WWTPs (Amarasiri et al., 2020; Gao et 
al., 2012). Most resistant bacteria are fortunately  

 

removed together with other microorganisms during the 

final settling and sedimentation stages; the 

concentration of resistant bacteria in the sludge, 

however, can be as high as in the inlet raw sewage (Gao 

et al., 2012). Resistant bacteria can proliferate in 

WWTPs, and they can spread their resistance genes to 

nonresistant bacteria through horizontal gene transfer 

(HGT). This is worrisome as resistance can spread from 

pathological bacteria that arrive with the wastewater to 

aquatic and soil bacteria that are well adapted to both the 

WWTP environment and to river and soil environments 

that receive WWTP effluents and biosolids. 

Bacterial conjugation is a natural process of plasmid 

transfer between bacteria. A bacterium that contains a 

plasmid with one or several resistance genes can by 

conjugation transfer a copy of this plasmid to other 

bacteria, but only to bacteria that are compatible with 

the plasmid and the biological conjugation process 

(Koraimann et al., 2004). Plasmids that can be shared 

through conjugation are called conjugative plasmids, 

and bacteria that can receive and transfer a conjugative 

plasmid are said to be competent. Such plasmids can 

carry antibiotic resistance genes (ARGs) and replicate in 

a wide range of host bacteria (Krone et al., 2007).  

In order to address the effect of bacterial growth and 

conjugation on the spread of AR in WWTP bacterial 

aggregates, we have designed an individual-based 

model (IbM) where each bacterium cell is a single and 

discrete entity that has its own internal state and that 

interacts only with its closest neighbours. Our model 

captures local heterogeneity and local interactions and 

can be used to simulate how resistance genes are 

transferred by conjugation within a bacterial floc. The 

IbM is constructed as a minimum model but includes 

key processes to capture the spread of ARGs.  

2 Modelling 

Individual bacteria are in the model placed in a bacteria 

position grid where each point in the grid corresponds 

to a position in the environment. There is also a substrate 

grid that is used to keep track of the concentration of the 

growth-limiting substrate, S, at each location and to 

model how substrate diffuses into the bacterial floc. 

Individual bacteria are described by their main 

processes: substrate uptake and cell growth, 
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reproduction, and cell death. Individual bacteria can 

interact with neighbours by conjugation of resistance 

plasmid and displacement (shoving), which happens as 

bacteria grows. The model is developed with a 

minimum of complexity to be suitable for simulating the 

spread of AR in a growing floc. It is implemented 

according to the Overview, Design and Details (ODD) 

standard protocol proposed by Grimm et al. (2006) and 

implemented in MATLAB. 

Each bacterium has the following state variables: - 

position P, the bacterium’s current position in the 

environment; - cell size X, the current dry mass of the 

bacterium; - resistance R, indicating whether the 

bacterium is resistant or not; - conjugation compatibility 

C, indicating whether the bacterium has the molecular 

machinery for horizontal gene exchange; - and 

remaining recovery time T, indicating the remaining 

recovery time after a conjugation event, i.e., the time 

before a donor or receiving bacterium again is capable 

of exchanging genetic material. 

Our algorithm for simulation of bacterial growth and 

resistance gene transfer starts with individual bacteria 

being placed randomly in a defined region within the 

environment. This region represents the bacterial floc. 

A selected number of the cells are initialized, some with 

and some without resistance. Resistant bacteria are 

defined as carriers of a resistance plasmid. The substrate 

grid is also initialized. The algorithm then starts 

simulating the temporal evolution of the floc by an outer 

loop where shoving of overlapping bacteria and 

substrate diffusion occurs. For each temporal iteration, 

an inner loop tracks through all the individual cells. The 

algorithm is summarized in the flow chart in Figure 1 

and model parameters are shown in Table 1. 

The algorithm is explained in detail in the following: 

 

Cell movement: Bacteria in the floc are considered 

non-motile, i.e., they do not move actively. 

Displacement of bacteria from shoving due to growth 

and division is implemented by a shoving mechanism 

based on Kreft et al. (2001). The bacteria are considered 

as hard spheres in a 2-dimensional plane. The radius of 

a bacterium is calculated as: 

𝑟 = √
3𝑋

4𝜋𝜌

3

 

(1) 

where X is the cell size (in dry mass) and ρ is the density 

of the bacterium. 

 

The overlap distances 𝑑𝑖
𝑗
 from bacterium i to 

bacterium j is then calculated by using the formula: 

 

Figure 1. Flow chart of the simulation algorithm. 

Division, gene exchange, shoving and death are 

probabilistic events that depend on the properties of the 

individual cell and its neighbours. See the main text for a 

detailed explanation of the different steps. 

 

𝑑𝑖
𝑗

 = 𝑘𝑟𝑖 + 𝑟𝑗 − ||𝑃𝑖 − 𝑃𝑗||
2

 (2) 

where 𝑃𝑖  and 𝑃𝑗 are the position coordinates of 

bacterium i and j respectively, and k is a constant that 

accounts for maximal bacterial density or as Kreft et al. 
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(2001) states, the minimum spacing. The shove vector 

for bacterium i is then calculated as: 

𝛥𝑃𝑖 = ∑

𝑗∈𝐺𝑖

𝑑𝑖
𝑗
 

𝑃𝑖 − 𝑃𝑗

||𝑃𝑖 − 𝑃𝑗||
2

 

(3) 

where 𝐺𝑖 is the set of bacteria that overlap with 

bacterium i, i.e., all bacterium j for which the overlap 

distance 𝑑𝑖
𝑗
  is positive. 

The maximum distance between bacteria that can 

have a positive overlap distance is (𝑘 + 1)𝑟𝑚𝑎𝑥. Since 

only positive overlap distance is needed in the shoving 

algorithm, all the potential members of 𝐺𝑖 is found by 

only checking bacteria localized at grid points in the 

bacteria location grid that have a distance less 

than 
(𝑘+1)𝑟𝑚𝑎𝑥

2
 away from the grid point containing 

bacterium i. The grid resolution is specified so that the 

8 connected neighbourhood grid points contain all 

potential members of 𝐺𝑖. 

 

Substrate diffusion: The substrate grid is initialized 

with a given substrate concentration at each point. The 

substrate is used during bacteria growth and a part of the 

bacteria dry mass is returned as a substrate when 

bacteria die. Therefore, the substrate concentration (in a 

location) is not constant, and the substrate will diffuse 

towards lower concentrations. A simple diffusion 

algorithm based on Kreft et al. (1998) is used where a 

2-dimensional filter DF is used to calculate the transfer 

of the substrate from each point in the grid to the 8 

adjacent points. 

𝐷𝐹 =  [
1 4 1
4 −20 4
1 4 1

] 
(4) 

 

The concentration at the border of the grid is kept 

constant and the substrate grid is updated according to: 

 

𝑆𝑔𝑟𝑖𝑑,𝑡+1 = 𝑆𝑔𝑟𝑖𝑑,𝑡 + 𝑑𝑘(𝐷𝐹 ∗ 𝑆𝑔𝑟𝑖𝑑,𝑡) (5) 

where 𝑑𝑘 is a diffusion constant that accounts for the 

diffusion coefficient and the length of each time step and 

∗ is the convolution operator. 

 

Bacteria functions and interactions: At every time 

step each cell performs the following: 

 

1. Substrate uptake: The bacterium takes up 

nutrients from the substrate grid corresponding to the 

bacterium's current position. The concentration in the 

substrate grid is immediately updated. The substrate 

uptake rate is determined by a saturable function that 

depends on substrate concentration and cell size 

according to Monod kinetics: 

𝑣 = 𝑉𝑚𝑎𝑥𝑋
𝑆

𝐾𝑚 + 𝑆
   

(6) 

where 𝑉𝑚𝑎𝑥  is the maximum uptake rate per unit of dry 

mass and 𝐾𝑚 is the half-saturation constant.  

2. Growth and maintenance: Nutrients taken up 

from the environment are used for cell growth with 

efficiency according to a yield constant Y. The 

maintenance rate, i.e., how much substrate is used for 

non-growth metabolism, is modelled to be linearly 

dependent on cell size. The total growth rate is given by: 

𝛥𝑋 = 𝑌𝑣 − 𝑘𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝑋 (7) 

Resistant bacteria are modelled to have a 1% lower 

growth yield than non-resistant bacteria due to the 

metabolic burden of producing resistance enabling 

proteins (Gregory et al., 2008). The effect of the 

metabolic burden is that it reduces the growth rate and 

increases the generation time. The cell shrinks if the 

available nutrients are insufficient for growth. 

3. Dormancy and Death: If the cell size is below 

Xmin the cell is starved and becomes dormant – a state 

where growth and maintenance stop. At each time step, 

a dormant bacterium may die with probability Pdeath, in 

the algorithm determined by the generation of a random 

number.  

4. Division: If the cell size is above the normal 

size of a full-grown cell, Xmax, the cell divides. A 

neighbourhood position is randomly selected and the 

cell divides by displacing occupants of the neighbouring 

position. The cell divides into two daughter cells where 

both cells get 40% of the size of the mother cell, and the 

remaining 20% of the mother cell is divided randomly 

between the two daughter cells. This unequal size helps 

to disrupt synchronous growth in the model. If the 

mother cell is resistant there is a probability Ploss that 

resistance is not transferred to the daughter. Resistant 

bacteria are competent for conjugation and there is a 

chance 𝑃𝑐𝑜𝑚𝑝𝑒𝑡𝑒𝑛𝑡 that nonresistant bacteria become 

competent for conjugation during cell division or when 

they are added to the environment. 

5. Gene exchange: If the cell size reaches 

Xconjugation, which is 80% of full-grown size Xmax, and the 

cell is resistant it might spread its resistance to a 

competent nonresistant cell in its neighbourhood (Park 

et al., 2018). Plasmid transfer has been estimated to 

happen on average at a rate of 10-3 per individual cell-

to-cell interaction (Gregory et al., 2008). Each time step, 

each potential donor cell checks whether neighbourhood 

cells are competent and nonresistant. If they are, 

conjugation occurs with probability Pconjugation. Plasmid 

transfer to the receiving nonresistant bacterium happens 

instantaneously. Under the condition that conjugation 

occurs, there is a recovery time (𝑇) before the donor and 
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recipient cell can transfer a new plasmid (Gregory et al., 

2008). 

Table 1. Simulation parameters. References: a (Kreft et 

al., 1998), b (Kreft et al., 2001), c (Gregory et al., 2008), d 

(Park et al., 2018). The values for unreferenced parameters 

are arbitrarily decided under the condition that they are 

plausible compared to the value of other parameters and 

that they give a reasonable system response. All parameters 

are given in arbitrary units. 

Parameter description Parameter Value 

Grid size 500x500 

Xmin, minimum cell sizea 0.1 

Xmax, maximum cell sizea 0.5 

k, minimum spacingb 1.3 

𝐾𝑚, half-saturation 

constant 

0.01 

𝑘𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒, 

maintenance rate 

0.002 

Y, yield constanta 0.4 

Cost of resistance on 

growthc 

1%  

Plasmid transfer ratec 10-3 per interaction 

Xconjugation, cell size for 

conjugationd 

80% of Xmax 

3 Results 

We will here present some results from using our model 

to simulate how resistance spreads through conjugation 

and growth in a growing bacterial floc. Three different 

simulations have been implemented to illustrate how the 

two factors recovery time and probability for 

competence affect the spread of resistance.  

The first simulation describes a small floc that starts 

with equal amounts of ten resistant and ten competent 

nonresistant bacteria with parameters from Table 1 and 

a modest recovery time of 200 time steps. The 

probability for nonresistant bacteria to be competent is 

set to 20%. 

The second simulation is similar to the first one 

except for a longer recovery time of 300 time steps with 

a similar 20% probability for competence. This 

simulation is set up to illustrate the importance of 

recovery time on the spread of resistance in the floc. 

A final simulation is made to understand the specific 

effect of the probability for competence. The probability 

for nonresistant bacteria to be competent is set to 10% 

while keeping the recovery time similar to simulation 1, 

as 200 time steps.  

Note that the system parameters are set in arbitrary 

units. Our intention is to illustrate the function and 

qualitative behaviour of the model and not necessarily 

to show results that have a one-to-one relationship in 

specific biophysical units. Quantifying the model 

parameters with proper biophysical units would require 

experimental data and we will leave this for future 

development.  

 

3.1 Gene exchange and resistance 

For the first simulation, the floc is set up to initially 

contain ten resistant and ten nonresistant competent 

bacteria. The probability for a bacterium being 

competent, 𝑃𝑐𝑜𝑚𝑝𝑒𝑡𝑒𝑛𝑡, is set to 0.2 and the recovery 

time, T, is set to 200 time steps, which is higher than the 

typical division time. Figure 2 provides snapshots of 

floc development for resistant (red) and nonresistant 

bacteria (blue) and transconjugant bacteria (green) 

during simulation. In the early stages of floc 

development, conjugation occurs in most of the floc. At 

t=500 most of the floc has become resistant as shown in 

the population plot in the bottom right of Figure 2. 

Transconjugants, bacteria that have received a plasmid 

are marked green to express the frequency of 

conjugation in the floc. At the later stages of floc 

development (t > 1000) conjugation is limited and 

happens mainly in the intersection of resistant and 

nonresistant bacteria at the edge of the floc. This is 

because most of the bacteria inside the floc are already 

resistant and because nutrient limitations, illustrated by 

the background colour that changes from white to grey 

and black as the substrate concentration reduces, cause 

bacteria in the deeper part of the floc to become 

dormant. At t=1000 regions of nonresistant bacteria 

surrounded by resistant bacteria have emerged, 

primarily due to shoving. Moreover, transconjugant 

bacteria occur on the border of the protrusions. The 

increase in resistance is after t=1000 mostly from 

growth. At t=4000, conjugation stops playing any 

significant part since resistant and nonresistant bacteria 

form and grow on different protrusions. 

The population plot to the bottom right of Figure 2 

summarises the resistant and nonresistant bacteria 

population during the simulation. It is apparent that 

since the very beginning of the simulation, resistant 

bacteria population in the floc is higher than 

nonresistant bacteria. In this case, it is seen that the 

population of resistant bacteria increase even though the 

resistant cells have a higher metabolic burden and a 

reduced growth rate compared to nonresistant cells. 
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3.2 Effect of longer recovery time 

The second simulation is conducted to examine the 

effect of the recovery time on the spread of resistance. 

The recovery time, T, is increased to 300 time steps. 

Initial conditions and probability for competence are 

identical to the previous simulation, and ten resistant 

and ten nonresistant are placed in the middle of the 

environment at t=0. Figure 3 displays the snapshot 

results and the change in the bacteria population during 

the simulation. The results indicate that the relative 

bacteria populations are highly affected by the recovery 

time, T. As expected, increasing the recovery time 

decreases the resistant bacteria population in the floc.  

The effect of conjugation is again larger in the early 

growth stages of the floc up till about time step t=2000. 

In the later growth stages, resistant and nonresistant 

populations grow in more distinct protrusions at the 

edge of the floc but a much larger proportion of bacteria 

are nonresistant in this simulation than in the previous. 

The population plot in the bottom right of Figure 3 

reveals that resistant bacteria have a minor advantage 

and that their population increases faster than 

nonresistant when the overall population is small. As the 

size of the floc increases, the intersection where 

conjugation can occur between resistant and 

nonresistant bacteria becomes smaller compared to the 

intersection between bacteria and substrate rich media 

where most of the growth occurs. The resistant 

population is noticeably higher than the nonresistant at 

t=2000, demonstrating the contributing effect of 

conjugation. As the floc grows, conjugation loses its 

effectiveness and the nonresistant bacteria population 

eventually overtakes the population of the resistant 

bacteria. Moreover, it is observed that a longer recovery 

time also affects the relative population of 

transconjugants. In simulation 2 there are fewer 

transconjugants than simulation 1.  

 

3.3 Effect of lower probability for competence 

The third simulation is performed to examine the 

effect of the probability for competence on the spread of 

resistance. The probability for a bacterium being 

competent, 𝑃𝑐𝑜𝑚𝑝𝑒𝑡𝑒𝑛𝑡, is reduced to 0.1 and the 

recovery time, T, is kept 200 time steps as in simulation 

1. Apart from this, simulation 3 uses the same initial 

Figure 2. Population plot (lower right) and snapshots of floc development (other panels) from simulation 1. Timestep and 

size of the viewed grid are shown above the panels. Resistant (red),  nonresistant bacteria (blue) and transconjugants (green). 

Substrate concentration is constant at the border of the nutrient grid and diffuses toward lower concentration, i.e., into the 

floc (grayscale, white is high concentration). Initially, at t=0 (not shown), ten resistant (red) and ten nonresistant bacteria are 

initialized in the middle of the environment. The probability of nonresistant bacteria being compatible is 20% while all 

resistant bacteria are competent. Conjugation recovery time is 200 time steps. At each time step, t, the simulation algorithm 

is run once. The rightmost snapshot of timestep 8000 (lower middle) shows a further zoomed in image of the floc shown in 

the snapshot to its left and illustrates how the resistant and nonresistant bacteria grow on separate protrusions. 
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conditions as in simulation 1, with ten resistant and ten 

nonresistant bacteria in the middle of the floc at t=0. The 

results of simulation 3 are shown in Figure 4, which 

shows the snapshot results and relative the population. 

The overall growth and shape of the floc are similar 

to simulation 1, but the nonresistant bacteria population 

is higher. Initially, conjugation plays a significant role 

and transconjugants spread in the floc. However, in the 

later stage at t=2000, the floc starts to have a shape with 

clear distinct protrusions and the relative amount of 

transconjugants decrease. 

The relative population plot in the bottom right of 

Figure 4 shows similarities with the results of simulation 

1. It is observed that a lower value of the probability of 

competence has an impact on the relative population of 

resistant bacteria. It introduces a drop in the resistant 

bacteria population. 

4 Discussion 

The persistence of resistance and the interactions 

between bacteria with and without resistance are of 

utmost concern in a wastewater environment. In this 

work, relevant information about bacterial behaviour 

and interactions, especially on conjugation, are put 

together into an IbM. The model is a structurally 

realistic test environment for examining the effect of 

conjugation and nutrient limited growth on the spread of 

resistance in a bacterial floc. The model presented here 

is simplified but is still able to show that population size 

and substrate availability have notable effects in the 

floc.  

A number of other mathematical models have been 

published to analyse bacterial interactions and improve 

our knowledge of the spread of antibiotic resistance 

(Birkegård et al., 2018) and other biological 

phenomena. More specifically, IbMs have been used to 

shed light on interactions on the micro-level and to 

produce more mechanistically accurate representations 

of microbial systems (Kreft et al., 2001; Hellweger et 

al., 2016). Moving aside from resistance spread, in 

particular, there have been attempts to make more 

general-purpose IbMs and solvers for bacterial systems, 

which in addition to basic functions like growth and 

substrate diffusion typically includes physical aspects 

like fluid flow, shear forces, and extracellular polymeric 

substance adhesion forces. Notable are iDynoMiCS 

(Lardon et al., 2011) and NUFEB (Li et al., 2019). Such 

IbMs may also include the possibility to have different 

Figure 3. Population plot (lower right) and snapshots of floc development (other panels) from simulation 2. Timestep and 

size of the viewed grid are shown above the panels. Resistant (red),  nonresistant bacteria (blue) and transconjugants (green). 

Substrate concentration is constant at the border of the nutrient grid and diffuses toward lower concentration, i.e., into the 

floc (grayscale, white is high concentration). Initially, at t=0 (not shown), ten resistant (red) and ten nonresistant bacteria are 

initialized in the middle of the environment. The probability of nonresistant bacteria being compatible is 20% while all 

resistant bacteria are competent. Conjugation recovery time is 300 time steps. At each time step, t, the simulation algorithm 

is run once. 
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species of bacteria in the system, e.g., species that are 

metabolically different like heterotrophic bacteria and 

autotrophic nitrifying bacteria. We will in the future 

examine the possibility to use such general-purpose 

bacterial IbMs for the task of modelling and simulating 

resistance spread, for example by including our model 

or parts of it into them, or by extending our model with 

functionality from them.  

5 Conclusion and future development 

In this paper, we have introduced an individual-based 

model for the spread of resistance in a bacterial floc 

through growth and horizontal gene transfer by 

conjugation. The attributes of each individual bacteria 

in the model includes metabolic processes such as 

substrate uptake and growth in addition to the processes 

of reproduction and conjugation. During the simulation, 

each bacterium in the model is updated according to an 

algorithm that considers the current state of the 

bacterium and its local neighbourhood. Simulations of 

the model show that the effect of conjugation varies as 

the floc grows. Conjugation can only occur between 

bacteria that are neighbours, and resistant and 

nonresistant bacteria seem to grow more and more on 

distinct protrusions as the floc and the overall 

population grows. Compared to population size, more 

conjugation occurs at the start of the simulation while it 

decreases in the later part of the simulation. 

We plan to in the future work on finding ways to 

parameterize our current model with biological data 

from suitable experiments. And then to work on 

extending the model’s functionality. 
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Abstract 

Methanol is one of the major candidates to take over the 

petroleum based liquid transportation fuel. Methanol 

synthesis from syngas is proposed in this paper. The 

Aspen Plus simulation software was used to simulate the 

conversion process from syngas into methanol. A CSTR 

reactor with defined reaction kinetics was taken at 40 

bar and 270°C to simulate the methanol synthesis.  

Hydrogen recycles gave an increase of 50.4% in the 

production of methanol as compared to the results 

without a H₂ recycle stream. The conversion of CO, CO₂ 

and H₂ are 50.4%, 99.8% and 100% respectively for the 

case with the H₂ recycle. Considering an operation of 

8600 hr/year, the annual mass production of methanol is 

equal to 96492 tonnes for a feed rate of 154972 t/year. 

A distillation column is used to separate the methanol 

from water. Simulations were performed to calculate the 

minimum number of stages for the different recovery 

ratios of methanol in distillate and the required molar 

reflux ratio versus the purity of methanol in the 

distillate. The column temperature and the composition 

profile were analyzed for the column. The model 

provides the insights of the methanol synthesis plants for 

a specific quality and the quantity of methanol 

production.  

  

Keywords:     methanol synthesis, Aspen Plus, process 

simulation, CO₂ mitigation, Distillation.  

Abbreviations: CSTR - Continuous Stirred Tank 

Reactor, GHG - Green House Gas, STM - Syngas to 

Methanol, TPC - Thermo-Photo Catalyst, 

 

1 Introduction 

The increasing environmental problems due to the 

excessive use of fossil fuels have led to implementing 

laws and agreements to limit global Green House Gas 

(GHG) emissions. Several countries agreed to the 

objective of the Paris Climate Change Conference 

(COP21), i.e. to limit the rise of global temperature less 

than 2°C by 2035 as compared to the preindustrial era 

(Dessens et al., 2016). Thus, biomass is one of the 

promising alternatives for the replacement of fossil fuels 

based liquid transportation fuels in the near future. As 

compared to the other renewable energy sources, 

biomass can be converted into added-value products 

similar to that of fossil fuels and power (Puig-Gamero 

et al., 2018). 

Lignocellulosic biomass and biomass waste can be 

converted into value-added chemicals and biofuels via 

thermochemical or biochemical conversion. The 

biochemical route is complex and more expensive than 

thermochemical conversion (Sikarwar et al., 2017). 

Among the different thermochemical conversion 

technologies, gasification is considered the cost-

effective and efficient technology for lignocellulosic 

biomass (Sikarwar et al., 2017). The lower emission of 

GHGs is due to the low-oxidation environment and 

lower amount of sulfur and nitrogen present in the 

biomass (Kumari & Mohanty, 2020; Pauls et al., 2016). 

Gasification of biomass gives a product gas mainly 

consisting of syngas (CO, H₂). However, the gas also 

contains CH₄, CO₂, H₂O, N₂ and impurities such as tars, 

NH₃, H₂S.  

After gas cleaning and conditioning, the syngas 

obtained from biomass gasification can be used to 

produce biofuels and chemicals such as methanol. 

Methanol is one of the important industrial chemicals 

that can be used directly as a fuel or can be blended into 

conventional fuels. Methanol is an important ingredient 

for the production of formaldehyde, acetic acid, methyl 

tertiary butyl ether, and gasoline. 

China is the leading producer of methanol, 

approximately 50% of the global production and a total 

of 43 million tons was produced in 2016 (Yang et al., 

2018). However, methanol production is mainly based 

on natural gas and coal. Olah et al.  (Olah, 2005) 

proposed a ‘methanol economy’ as a realistic technique 

compared to the widely mentioned ‘hydrogen economy’ 

due to the suitability of the existing liquid fuel 
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infrastructure (with a little modification) and higher 

safety compared to a hydrogen vehicle. 

The current study gives insights into a methanol 

synthesis plant, its production scale. A study of the 

distillation column was done in greater detail. The 

column temperature and composition profile are 

presented. The relation between the minimum number 

of stages for the different recovery ratios of methanol in 

distillate and the required molar reflux ratio versus the 

purity of methanol in the distillate are presented in the 

paper. 

2 Methanol synthesis from syngas 

and carbon dioxide 

As the synthesis gas stream usually contains some 

amounts of CO₂, methanol can be produced via direct 

hydrogenation of CO and CO₂.  Table 1 shows the 

reactions concerning the methanol synthesis and their 

reaction heats. Reaction (c) is the reverse water gas shift 

reaction which is mildly endothermic as opposed to 

reactions (a) and (b). Therefore,  a significant amount of 

cooling duty is required for these types of reactors. The 

thermodynamics of the conversion limits the overall 

conversion and thus recycling of the unreacted gas is 

required to achieve higher conversion. Therefore, 

cooling duty and recycling capacity determines the 

successful operation of such reactors.  

The mixture of CO and H₂ can also react to produce 

other hydrocarbons such as methane, ethanol, or higher 

hydrocarbons. Therefore, the selectivity and efficiency 

of the catalyst play an important role in the conversion 

efficiency of these types of reactors.  

The methanol synthesis reactor requires a specific 

ratio of CO/CO₂:H₂, and it is hard to obtain the desired 

ratio directly from a gasifier. The ratio needs to be 

shifted to a higher hydrogen content and is usually done 

via a water gas shift reaction. Two moles of H₂ are 

needed to react with CO and three moles of H₂ are 

needed to react with CO₂ for methanol formation 

according to the reaction stoichiometric given in Table 

1. 

Table 1. Reaction formulas for methanol synthesis 

Reactions 
Reaction heat 

(kJ/mol) 

(a) CO + 2H₂ ⇌ CH₃OH -90.64 

(b) CO₂ + 3H₂ ⇌ CH₃OH +H₂O -49.67 

(c) CO₂ +H₂ ⇌ CO + H₂O +41 

 

2.1  Previous works 

Different literature studies on methanol production are 

based on different feedstock such as natural gas (Al-

Sobhi & Elkamel, 2015; Kralj & Glavič, 2009), 

synthesis gas (Lange, 2001), CO₂ hydrogenation (Van-

Dal & Bouallou, 2013) and coal (Li et al., 2018).  

Methanol synthesis has been a wide research topic 

over the years. Methanol synthesis from syngas was first 

suggested by Paul Sabatier in 1905 and the first 

industrial scale plant came into operation in 1923 by 

Badische Anilin-und-Soda-Fabrik (BASF). The 

technology has been studied extensively during the 

1970’s Arab Oil Embargo, as an alternative to fossil-

based petroleum (Wu-Hsun 1994). 

Inlet temperature, reactor pressure and temperature, 

reactor types, catalysts system and process 

configurations have been the most investigated 

parameters. Hoseiny et al. (Hoseiny et al., 2016) and 

Manenti et al. (Manenti et al., 2011) have investigated 

 

Figure 1. Schematic diagram for Aspen Plus model. Comp: Compressor, Sep: Separator, COx: Carbon oxides 
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the influence of feed temperature and reactor pressure in 

the methanol synthesis. 

Cui and Kær (Cui & Kær, 2020) have studied the 

three different types of reactors i.e., adiabatic, water-

cooled and gas-cooled reactor to investigate the 

traditional syngas to methanol (STM) process. The 

water-cooled reactor showed efficient heat removal, low 

hot-spot temperature and a relatively wide range of inlet 

temperature for control. The adiabatic reactor and the 

gas-cooled reactor demonstrated a relatively low and 

medium performance and low to medium capital costs 

(Cui & Kær, 2020). 

Wu et al (Wu et al., 2019) have developed a novel 

thermo-photo catalyst (TPC) for methanol production 

from syngas over Cu/Zn/Al catalyst. The authors 

demonstrated that the yield of methanol from TPC was 

2.8 times higher than that from the thermal catalyst. TPC 

proved to be superior as compared to the thermal 

catalyst for the STM process. 

Luyben (Luyben, 2010) has developed an 

economically feasible design for methanol production 

with three gas recycle streams to produce high quality 

methanol from syngas. Luyben showed a tradeoff 

between reactor pressure and feed compressor energy, 

reactor size and recycle flow rate, venting rate and 

reactant losses and flash pressure and flash compression 

energy (Luyben, 2010). 

3 Materials and methods 

Aspen Plus V11 was used to simulate the conversion of 

syngas into methanol. The process model developed in 

Aspen Plus is presented in Figure 1. The ‘RK-Aspen’ 

physical properties model was used for all the unit 

operations except the distillation column. Van Laar 

equations were used in the distillation column for the 

calculation of liquid activity coefficients. Different 

components as present in Table 4 were also defined in 

the physical property’s environment. Table 4 also gives 

the mass flow rate for the different gases present in the 

feedstock and the molar ratio of CO:CO₂:H₂ is 1:3:10. A 

total of 11 moles is required to react completely with 1 

mole of CO and 3 moles of CO₂, however, 10 moles of 

H₂ were taken due to the presence of the H₂ recycle path.  

The following assumptions were considered for the 

simulation process.  

1. All gases were ideal. 

2. Pressure and temperature were uniform inside the 

reactor. 

3. The process was steady and isothermal. 

4. The synthesis gas is pure and is supplied at a 

specified molar flow rate. 

The standard operating condition for the methanol 

synthesis reactor are in pressure and temperature in the 

range of 50-100 atm and 220-280°C respectively (Ortiz 

et al., 2013). The blocks used to simulate the methanol 

synthesis are summarized in Table 2. 

Table 2. Block description used for methanol synthesis 

Name Type, description 

Comp 
Compressor: Both compressors 

compress the gases into 40 bars. 

Reactor 

RCSTR: Rigorous continuous stirred 

tank reactor with rate-controlled 

reactions based on known kinetics. 

Sep Separator: Separates liquids and gases. 

COx Sep Separator: Separates COx from H₂. 

Distillation 

column 

RadFrac: Rigorous 2 or 3- phase 

fractionation for single columns. 

 

The pure syngas feed was compressed and heated up 

to the reactor operating pressure and temperature. 

Exothermic gas phase reactions were defined in the 

reactor for the synthesis of the methanol. The defined 

reactions in the reactor are presented in Table 1 and the 

reaction kinetics were taken from the study of Luyben 

(Luyben, 2010). The product from the reactor is 

depressurized to separate the non-converted gases from 

the liquid. The liquid enters into the distillation column 

to give methanol in the distillate and water in the 

bottom.  

Table 3. The thermodynamic state of different units/flows 

 Thermodynamic state 

Temperature(°C) Pressure (bar) 

Feed 50 1 

Comp1 - 40 

Reactor 270 40 

Valve1 - 10 

Sep 60 10 

Comp2 - 40 

COx Sep 270 40 

Valve2 - 1.5 

Fdistil 60 1.5 

  

The conversion of hydrogen at this stage (without a 

recycle stream) is only about 50%, therefore a recycle 

stream is chosen to increase the hydrogen conversion. 

The separated gas is compressed to separate COx in 

another separator. H₂ separated from the COx separator 

enters the mixer before the reactor as a recycle feed. The 

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185444 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

446



overview of the temperature and pressure in the different 

blocks and streams is presented in Table 3. 

The methanol-water separation is fairly easy and is 

performed at 1.4 bar condenser pressure and 1.7 bar 

reboiler pressure. Txy diagram at 1.5 bar pressure is 

given in Figure 2. The plot gives the temperature range 

at which the distillation column should operate to give 

higher purity of methanol in the distillate. In the 

simulated case, the distillation column operates in the 

temperature range of 74.9 to 100.15°C.  

 

Figure 2. Txy diagram for methanol/water 

A total condenser is selected for this simulation as 

sufficient cooling is available as the feed consists of 32.5 

mass% of water at 60°C. This water is sufficient to 

condensate all the condensable vapor generated at the 

column overhead. 

 

4 Results and discussion 

Table 4 shows the mass balance for the simulated case. 

The table shows the yield of 2.33 tonnes of methanol per 

tonne of syngas (CO+H₂) supplied [calculated as 

methanol_out/(CO_in + H₂_in)]. Considering an 

operation of 8600 hr/year, the annual mass production 

of methanol is equal to 96492 tonnes.  The conversion 

of CO, CO₂ and H₂ are 50.4%, 99.8% and 100% 

respectively and the results are similar to the study of 

Luyben (Luyben, 2010). 

Table 4. Mass balance for the simulated case 

Compound In (t/hr) Out (t/hr) 

CO 2.8 1.39 

CO₂ 13.2 0.01 

H₂ 2.02 0 

Methanol 0 11.22 

H₂O 0 5.40 

 

Several studies by different researchers show that 

methanol mainly originates from the CO₂ 

hydrogenation, and hardly from the CO hydrogenation 

(Kagan et al., 1975; Nestler et al., 2018). Therefore, CO 

conversion to methanol principally occurs via water gas 

shift reaction with subsequent CO₂ hydrogenation. 

Simulations were performed to know the minimum 

number of stages for the desired recovery of methanol 

in distillate and the required molar reflux ratio for the 

desired purity of methanol in the distillate. 

Figure 3 shows the minimum number of stages 

required to achieve the methanol recovery from 0.9 to 1. 

The number of minimum stages required increases 

linearly for up to around 98% methanol purity and 

increases exponentially after 98%. As most of the 

industrial scale, methanol synthesis plant operates at 

around 95% purity of methanol, which is relatively 

straightforward and doesn’t overburden the column 

cost.   

 

 

Figure 3. Minimum number of column stages required for 

corresponding  methanol recovery  

Figure 4 shows the purity of methanol for different 

molar reflux ratios. The purity of methanol increases 

with an increase in the molar reflux ratio, however the 

reboiler duty and cost increase linearly with an increase 

in reflux ratio. The purity of methanol synthesis 

increases steadily initially and exponentially for the 

higher methanol purity. Therefore, a tradeoff is required 

for the reflux ratio and the desired methanol purity in the 

column distillate. 
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Figure 4. Molar reflux ratio vs methanol purity in distillate  

As the total number of stages increases, energy costs 

and heat exchanger capital costs decrease, however, the 

total capital costs of the plant will increase. Therefore, a 

rigorous single distillation column with 7 stages was 

chosen to separate water from methanol. The selected 

number of stages gave the desired purity of methanol 

(95 mass percentage) in the distillate. The temperature 

profile across the stages is presented in Figure 5 and the 

liquid molar composition across the stages is presented 

in Figure 6. Stage 1 is the top of the column and stage 7 

is the bottom of the distillation column. 

 

Figure 5. Column temperature profile 

 

Figure 6. Column composition profile 

The figure illustrates a gradual decrease in 

temperature from the bottom of the tower to the top of 

the distillation tower. The change of composition of 

methanol increases steadily from the bottom (stage 7) to 

the top (stage 1) and the mole fraction of water decreases 

steadily from the bottom to the top of the distillation 

tower. 

The higher the system pressure, the smaller the 

reactor for a given recycle flow rate, which reduces the 

reactor and catalyst capital investment. However, for a 

given reactor size, the higher the pressure, the smaller 

the recycle flow rate, which reduces the recycle 

compressor capital investments and recycle 

compression energy. 

Therefore, the design specification for a methanol 

synthesis plant depends upon the different parameters 

such as system pressure, temperature, reactor size, 

recycle flow rate, compressor energy, reflux ratio in the 

distillation column and the purity of methanol in the 

distillate.  

Sensitivity analysis for the CSTR reactor showed 

relatively low sensitivity towards the change of 

temperature and pressure inside the reactor in the range 

of 220-280°C and 40-100 bar. The change in reactor 

pressure from 40 bar to 100 bar gave an increase of 1.7% 

in methanol production. Temperature variation from 

220-280°C gave a 0.02% reduction in methanol 

synthesis.   

 

5 Conclusion 

A steady-state Aspen Plus™  model was developed to 

study the conversion of syngas into methanol. 

Simulations were performed to analyze the conversion 

process. The model was used to study the different 

integral parts of a methanol synthesis reactor such as 

compressor, heater, reactor, separator, and distillation 

column. The desired purity of methanol in the distillate 

was 95%. In order to achieve this for the given mass 

flow rate, a 7-stage  rigorous two-phase single column 

was used.  

The following results were obtained from the 

distillation column for the specified thermodynamic 

conditions. 

• 
CH₃OH in distillate

CH₃OH in feed
∶ 87.1%  

• Distillate to feed ratio: 0.5 

• Reflux ratio (molar): 1.2 

• Purity of methanol in distillate: 96.4% 

• Methanol production: 96492 tonnes/year 

A cooling duty of 23.62 GJ/hr was required for the 

given flowrate specifications and a reactor size of 5 m³.  
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The model can further be improved by adding a 

suitable catalyst in the reactor, selecting/optimizing the 

reaction kinetics as well as performing the sensitivity 

analysis for the synthesis reactor. The distillation 

column can be optimized further based on the required 

specification for the methanol plant. 
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Abstract 
In this study, we develop a mechanistic model that 
contributes to the application of microbial 
electrochemical synthesis (MES) technology for biogas 
upgrading. The model considered two reactor 
compartments- a continuous-flow stirred-tank reactor 
(CSTR) and an MES biofilm reactor which are coupled 
through a recycle loop. The modelling of biogas 
production (i.e. anaerobic digestion (AD) process) in the 
CSTR follows the most used model for biogas process 
modelling, ADM-1. The MES biofilm model 
incorporates microbially active CO2 reduction to CH4. 
To formulate this reduction reaction rate, the Nernst 
expression was incorporated as a Monod-type kinetic 
expression. The simulations demonstrate the basic 
concepts of coupling MES reactor for biogas upgrade 
and its limitations. According to the simulation result, 
maximum CH4 content of 87 % is achievable with 
recycling ratios of 0.4 and 0.6 when the biofilm volume-
specific area is equal to 0.18 m2/m3, and 0.36 m2/m3 
respectively. However, the conversion of CO2 to CH4 
results in increased pH and consequently CH4 
production decreases by ~ 40 % compared to AD-CSTR 
without MES. Therefore, it is essential to maintain a 
proper pH to prevent the inhibition of AD. The rate of 
the CO2 conversion to CH4 can mainly be constrained 
by available substrate concentration (dissolved CO2). 
The local potential of the cathode and the volume-
specific area above 0.36 m2/m3 have minimum effects. 

Keywords: MES, Biofilm, Anaerobic digestion, ADM-1, 
Bio-methane, Biogas, AQUASIM 

1 Introduction 
Anaerobic Digestion (AD) is a biological process that 
produces biogas from organic matter. Biogas contains 
50-70 % methane (CH4) and 30-50 % carbon dioxide 
(CO2). The CH4 content has a significant impact on 
biogas quality; thus, biogas should be purified before 
using as a transport fuel. Microbial Electrosynthesis 
(MES) is an effective technology to convert CO2 to CH4 
with the help of electroactive microorganisms powered 
by electrical energy (Nelabhotla and Dinamarca, 2018). 
Thereby the CH4 content of the biogas can be increased.  

The MES cell consists of a cathode as the working 
electrode and an anode as the counter electrode. The 
possible chemical reactions of CO2 conversion to CH4 

are presented (1-3) with standard potential in Volts (V)  
vs. Normal Hydrogen Electrode (NHE) (Geppert et al., 
2016). The conversion of CO2 to CH4 occurs at the 
cathode through direct electron transfer (1) or indirectly 
via production of intermediates (2-3). The conversion of 
CO2 to CH4 with intermediate production of hydrogen 
(H2) follows two steps: protons reduction to H2 and then 
the produced H2 is used as an electron donor for CO2 
reduction to CH4.  

𝐶𝑂ଶ + 8𝐻ା + 8𝑒ି → 𝐶𝐻ସ + 2𝐻ଶ𝑂    -0.24 V     (1)

8𝐻ା + 8𝑒ି →  4𝐻ଶ -0.41 V     (2)

𝐶𝑂ଶ + 4𝐻ଶ →  𝐶𝐻ସ + 2𝐻ଶ𝑂                  (3) 
 
Equation (1) is performed by electroactive microbes 

growing in the biofilm on the cathode (Siegert et al., 
2015). These microorganisms use CO2 as the only 
carbon source. Equation (2) can be biotic (Rozendal et 
al., 2008) or abiotic.  The protons (H+) and electrons (e-

) needed for the reduction reaction at the cathode are 
generated at the anode, by oxidizing water or easily 
degradable short-chain organics such as acetate. 
Another possible oxidation compound is ammonium 
(Sivalingam et al., 2020).  

The surface area of the electrodes has a major impact 
on reactor efficiency. Increasing the cathode surface 
area can increase the number of catalyst bacteria 
available and enhance the MES system's efficiency by 
lowering the biocathode electrode's activation 
overpotential. Further, a lower potential for the 
transition of a certain quantity of electrons is more 
effective than a higher potential for the same amount of 
electrons (Mueller, 2012). Therefore, direct electron 
transfer (1) is more desirable than indirect reactions 
since it occurs at lower potentials. 

Even though it is experimentally proved that 
integrating MES system in AD reactor system can 
increase the quality of biogas, the technology is still not 
mature for full-case implementations. The technology is 
still to be economically optimized. An MES unit 
(relatively smaller than a large-scale biogas reactor) can 
be integrated into an existing AD reactor before a full-
scale implementation. Thereby, the technical and 
economic feasibility of the application can be evaluated. 
Further, in a unit as such, a pure electroactive 
methanogenic culture or an enriched methanogenic 
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consortium can be maintained at the cathode, while the 
biogas process happens in the main reactor.  

This study focuses on a mechanistic modelling 
approach to study an MES reactor as an auxiliary unit to 
a main biogas reactor. The experimental work requires 
significant efforts to test a wide variety of operational 
conditions, while mathematical modelling can 
extrapolate such results and enhance our understanding 
of MES application in the biogas process.  

2 Materials and methods 
Figure 1 shows the reactor configuration of the model. 
An MES biofilm reactor compartment (MES-RBC) is 
coupled as an auxiliary unit to a main biogas reactor, 
which is a continuous-flow stirred-tank reactor (AD-
CSTR).  The MES-RBC is fed with the effluent from 
AD-CSTR. The effluent of the MES-RBC is recycled 
back to AD-CSTR. The reactors are operated under the 
mesophilic condition (35 °C). The model is formulated 
in the simulation tool, AQUASIM 2.1. 

 

Figure 1. Schematic diagram representing MES biofilm 
reactor coupled with AD-CSTR reactor (for biogas 
production). CSTR – continuous-flow stirred-tank reactor, 
AD – Anaerobic digestion, MES - Microbial 
electrosynthesis, PS – power supply. 

2.1 AD-CSTR reactor  
The main biogas process occurs in AD-CSTR. The 
reactor has a volume of 28 m3. The reactor is fed as 
described in the simulation outline (Section 2.4). The 
most common platform for biogas process modelling 
Anaerobic Digestion Model No.1 (ADM-1) (Batstone et 
al., 2002) was used to simulate the biogas process in 
AD-CSTR. 

2.1.1 ADM-1 model  

The ADM-1 is structured on anaerobic biochemical 
reactions catalysed by intra or extracellular enzymes and 
act on the pool of biologically available organic material 
(Figure 2). 

 

Figure 2. The reaction paths in ADM-1 (Batstone et al., 
2002), with the following microbial groups: (1) sugar 
degraders, (2) amino acid degraders, (3) LCFA degraders, 
(4) propionic acid degraders, (5) butyric and valeric acid 
(VFA) degraders, (6) acetoclastic methanogens, and (7) 
hydrogenotrophic methanogens, taken from  (Lauwers et 
al., 2013). 

The anaerobic digestion (AD) process decomposes 
complex organic materials into the final product, biogas 
(CH4 and CO2) through several decomposition steps. 
The first step is the disintegration of complex organic 
material into particulate constituents (carbohydrates, 
proteins, and lipids). The next step is the hydrolysis of 
those particulate constituents into soluble sugars, amino 
acids and long-chain fatty acids (LCFAs). The 
hydrolysis products are then fermented into volatile 
fatty acids (acidogenesis step in Figure 2). These acids 
are broken down to acetate and hydrogen 
(acetogenesis). The final step is methanogenesis in 
which acetoclastic methanogens converts acetate to 
methane, and hydrogenotrophic methanogenesis 
converts carbon dioxide and hydrogen to CH4.  

The model incorporates these steps as rate equations. 
The kinetics of disintegration and hydrolysis steps are 
expressed as a first-order reaction rate. The substrate 
uptake rates are described using substrate-level Monod 
saturation kinetic equations (Monod, 1949). Biomass 
decay rates for each microorganism type is first order 
and is described with an independent set of expressions. 
The detailed description of the model can be found 
(Batstone et al., 2002). 

2.2 MES-BRC  
The volume of MES-BRC is 2.8 m3 (10 % of AD-CSTR 
volume). The reactor is fed with effluent from AD-
CSTR, and the flow rate is increased stepwise as a ratio 
of the effluent flowrate from AD-CSTR. 
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To simplify the process modelling in MES-BRC, 
only the chemical reaction which is based on the direct 
electron transfer process (1), was considered. The 
electroactive microorganism performs the reaction as 
microbial growth on a substrate. The specific microbial 
community in this case is electroactive methanogens 
which grow on the cathode surface. These bacteria take 
electrons from the cathode and deliver them to CO2 as 
the final acceptor, using CO2 as a carbon source for 
biomass growth. As a result, the availability of both the 
electron donor and the electron acceptor will limit the 
reaction rate. The overall reaction rate can be defined as 
(4) detailed in (Samarakoon et al., 2019). The 
stoichiometric coefficient of this biotic process is the 
same as in hydrogenotrophic methanogenesis (i.e H2 
uptake) in ADM-1.  

𝜌௧ = 𝑘ି௧
 𝑋௧(

ௌೀ

ೄೀమ
ାௌೀమ

)(
ଵ

ଵାୣ୶୮ቂି
ಷ

ೃ
ఎቃ

)𝐼𝐼_𝑁𝐻_𝑙𝑖𝑚𝑖𝑡 

      (4) 
ρeet- kinetic rate. The last term in the parenthesis in 

(4) which is derived from the Monod equation is 
referred as the Nernst-Monod term. The main 
assumption for its use is that microbial kinetics control 
electron consumption. The Nernst-Monod term shows 
that the rate of substrate uptake increases as the local 
potential increases until a constant maximum level is 
reached. R is the ideal gas constant, T is absolute 
temperature, F is Faraday constant, η is local potential 
in reference to EKA. EKA is the potential in which the 
substrate consumption rate will reach half of the 

maximum substrate consumption. η is equal to η =EKA 
– Ecathode. EKA refers to the reference potential (E ≡ 0), 
thus η= – Ecathode (Marcus et al., 2007). Xeet is the 
concentration of electrically active microorganisms, Iph 
is an inhibitor that describes microbial growth due to 
extreme pH conditions, I_NH_limit is an inhibitor that 
describes microbial growth due to the limitation of 
soluble inorganic nitrogen. Other parameters: km-eet

0 - 
maximum uptake rate, SCO2 - dissolved CO2 
concentrations, KCO2 – half maximum rate 
concentrations for substrates Sco2. In addition to the bio-
electrochemical process, decay of electrochemical 
active biomass Xeet is defined as a process in MES-BRC. 
The rate (dec_Xeet) is first-order (5) where kdec-eet is the 
first-order decay rate. 

 
𝑑𝑒𝑐_𝑋௧ = 𝑋௧𝑘ௗି௧     (5) 
 

The type of biofilm reactor (in AQUASIM tool) was 
set to be “confined”. The biofilm matrix is a rigid 
structure with no suspended solid in pore volume. The 
pore volume consists of only a liquid phase and 
dissolved solids. The rate of porosity was considered 
zero. The surface detachment velocity of the biofilm is 
assumed to be global and set initially as 0.63 times the 
growth velocity of the biofilm as proposed by (Botheju 
and Bakke, 2008). More detail about the biofilm reactor 
compartment in AQUASIM tool can be found in 
(Wanner and Morgenroth, 2004). Other assumptions 
made for MES-BRC modelling:  

Table 1. Model parameters used for bioelectrochemical processes in MES-BRC  according to a (Samarakoon et al., 
2019); b (Processes, 2002); c(Reichert, 1998); d(Cunningham, 2001); m.d.-determined by the model. MES - Microbial 
electrosynthesis, RBC - biofilm reactor compartment.  

Parameters Description Unit Value 
km_eet maximum electrons uptake rate Kmol-e Kg COD 

Xd-1 
4.5a  

X_eet concentration of electroactive biomass  Kg COD m-3 m.d. 
S_co2 concentration of dissolved CO2  M m.d. 
Ks-co2 Half saturation constant for CO2 reduction M 0.06a 
F Faraday’s constant C mol-e-1 96485  
R Ideal gas constant J mol-1 K-1 8.314  
T Temperature K 308 
ƞ Local potential V change 
I_NH_limit Microbial growth inhibition due to limitation of inorganic 

nitrogen 
- reported formulab 

Y_eet Yield of bio-electroactive biomass  Kg COD-X/Kmol-e 0.48a 
D_X Diffusivity of biomass m2d-1 1×10-7 c 
D_S_co2 Diffusivity of dissolved CO2 m2d-1 0.00012171 
rho Biomass density  Kg COD m-3 25c  
LF Biofilm thickness m m.d. 
LL Boundary layer thickness m 0.0001c  
uf Growth velocity of biofilm md-1 m.d. 
A Cathode biofilm area m2 change 
R‘ Recycle ratio   change 
Kdec_x_eet first order decay rate of X_eet d-1 0.02a 
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1. The biofilm model is one-dimensional. 
2. Biofilm surface area is constant at the given areas 

(A) for the simulation.  
3. The electroactive methanogens catalyze CO2 

reduction to CH4 (1). This microbial community can 
acquire electrons directly from the solid cathode. 

4. Only the cathodic biofilm in MES-BRC is 
considered in the modelling (the reaction at the 
anode is not included). 

5. Only electroactive methanogens are present in the 
biofilm on the cathode surface (any other parallel 
biochemical and bio-electrochemical reactions are 
neglected). 

6. The inhibition that describes electroactive microbial 
growth due to extreme pH conditions (Iph) is 
neglected. 

7. The anode side (which is not included in the 
modelling) supplies an unrestricted proton flow and 
electron current flow (to the cathode side).  The 
transport of H+ in biofilm is comparatively faster. 

2.3 Model parameters  
The model parameters used for the processes in AD-
CSTR are similar to the reported sludge digestion 
experiment with ADM-1 simulations (Siegrist et al., 
2002) and are presented in Table . 

2.4 Simulation outline 
First, a simulation was run only with AD-CSTR without 
coupling MES-BRC i.e., there was no feed flow to 
MES-BRC and the processes (4 and 5) were deactivated. 
The reactor settings of AD-CSTR, and its feed 
composition were the same as in (Siegrist et al., 2002). 
The composition of the feed is given in Table 2. The 
reactor is fed with sludge from a wastewater treatment 
plant for 50 days (Figure 3). The feed flow increases at 
day 16 and day 37 (AD reactors are in general started 
with low organic loading and then gradually increased 
so that stable reactor operation is achieved). 

Table 2. Influent feed composition to AD-CSTR. 

Compounds Concentrations 
kg COD/m3 

Amino acids 4.2 
Fatty acids 6.3 
Monosaccharides 2.8 
Complex particulates 10.0 
Total 23.3 

The bio-electrochemical process was activated at day 
50 while maintaining a constant feed rate (5.31 m3/d) to 
AD-CSTR. The influent flow to MES-BRC reactor was 
set as a fraction of effluent from AD-CSTR (i.e., 
Recycle ratio, R’ × effluent flow). The recycle ratio (R’) 
increase stepwise from 0.1 to 0.8 (0.1, 0.2, 0.4, 0.6 and 
0.8).  The corresponding hydraulic retention times 
(HRT) for each R’ are 5.3, 2.6, 1.3, 0.9 and 0.7 days 

respectively. The local cathode potential (η) was 
increased from -0.200 to +0.200 V stepwise (step size 
=0.05) at every 10 days for each recycle ratio. This 
simulation procedure was followed for 3 different 
cathodic biofilm areas: 0.5 m2, 1 m2 and 1.5 m2 which 
are equal to volume-specific areas of 0.18, 0.36 and 0.54 
m2/m3, respectively. 
 

 
Figure 3. The sludge feed flow to AD-CSTR (Siegrist et 
al., 2002).  

3 Results and Discussion 
Figure 4 shows the biogas production rate and the 
composition of the biogas from AD-CSTR when it is not 
coupled with MES-RBC. As the feed rate is increased 
during the first 50 days, the biogas production rate 
increases. The reactor produces biogas ~ 45m3/d at day 50 
with ~ 65 % CH4 content. This simulation reported 
(Siegrist et al., 2002) was done for baseline results and the 
microbial adaptation before any change was made to the 
conventional biogas process. 

Figure 5 shows how the CH4 content in the biogas 
from AD-CSTR changes at different recycle ratios (R’) 
when it is coupled with MES-BRC and the local 
potential of the biocathode varies. CH4 content increases 
with the recycle ratio (i.e. the feed flow to MES-BRC 
increases). The reason is that dissolved CO2 coming 
with the recycle flow from the main reactor is converted 
to CH4 in MES-BRC and more CH4 is fed back to AD-
CSTR. Increasing local potential (Ƞ) does not make a 
significant influence on CH4 content under the condition 
of this study. This indicates that it is the electron 
acceptor; in this case, dissolved CO2 that limits the rate 
of the conversation reaction (1). 

Similarly, the cathodic biofilm area over 1 m2 does 
not influence CH4 content. However, when the area is 
chosen as 0.5 m2 and R’ is equal to 0.4, the CH4 content 
is about 87 % (which is the same at R=0.6). On the other 
hand, when the area is equal to 1 m2, at the same recycle 
ratio (R= 0.4) the CH4 content is lower, about 72 %. This 
indicates that increasing the area from 0.5 to 1 m2 has 
given a negative impact on the CO2 reduction processes. 
It is in contradiction to the fact that the increased area 
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provides more biomass available for the conversion 
processes. A higher cathode area causes higher electron 
flow and sufficient area for biofilm to grow (Nelabhotla 
and Dinamarca, 2018; Sydow et al., 2014; Zhang et al., 
2019). The reason for this negative influence observed 
in the current simulation might be due to the larger 
biofilm thickness at A=1 m2 compared to A=0.5 m2. 
Initially higher biomass concentration is available for 
A=1 m2 compared to A=0.5 and it results in the thicker 
biofilm for A=1 m2. Thicker biofilm makes resistance to 
substrate transfer within the biofilm. This finding 
suggests the importance of maintaining a proper biofilm 
thickness in the process. Further, it is also important to 
properly model the biofilm surface detachment velocity 
so that an applicable biofilm thickness is maintained.  

 

 
Figure 4. Biogas production rate (A) and its composition 
(B) from AD-CSTR (when it is not connected with MES-
RBC). The feed rate changes at days 16 and 37. 

Even though CH4 content increases with the recycle 
ratio, the total biogas production decreases with the 
recycle ratio (Figure 6, the simulation results are the 
same for A=1 and 1.5, therefore the result corresponding 
to A=1 is only presented). In another word, biogas 
production decreases as CH4 content increases. For the 
case corresponding to the highest CH4 content (87 %), 
biogas production decreases by 55 % compared to AD-
CSTR without MES.  

 

 

 
Figure 5. CH4 content (%) in biogas from AD-CSTR 
(coupled with MES-BRC) vs. local potential (Ƞ) from -0.2 
to +0.2V (step size=0.05) at different recycle ratios (R’) 
and area (A)=0.5,1.0 and 1.5m2. 

The increasing recycle ratio allows more CO2 from 
the biogas rector (AD-CSTR) to convert to CH4. 
Consequently, bicarbonate strength in the bulk liquid of 
the reactor (AD-CSTR) decreases and hence pH rises 
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(Figure 8). The elevated pH can lead to deprotonation of 
ammonium ions, releasing free ammonia. Free ammonia 
strictly inhibits acetoclastic methanogens, the bacterial 
group which is responsible for the decomposition of 
acetate into methane (Figure 2). In conventional AD, a 
major portion of biogas is produced via this acetate 
pathway. When recycle ratio is equal to 0.8, pH rises to 
10 (the result is not presented) and acetoclasic 
methanogens’ activity completely terminates. The result 
is the same for all three biofilm areas studied. However, 
in the real-case application of MES, the free ammonia 
can oxidize at the anode (Sivalingam et al., 2020), 
thereby its inhibition can be mitigated. 

 

 

Figure 6. Biogas production in AD-CSTR reactor coupled 
with MES-BRC compared to AD-CSTR without MES 
when the local potential (Ƞ) increases from -0.2 to +0.2V 
(step size=0.05) for different recycle ratios (R’) and A=0.5 
and 1m2. 

Due to the reduction in total biogas production in 
AD-CSTR coupled with MES-BRC, the CH4 production 
also decreases as CH4 content increases or the recycle 
ratio increases (Figure 7,  the simulation results are the 
same for A=1 and 1.5, therefore the result corresponding 
to A=1 is only presented). CH4 production decreases by 

40 % at the highest CH4 content observed (87 %) at R= 
0.4 and 0.6 when the biofilm area is equal to 0.5 m2 and, 
at R=- 0.6 when the biofilm area is equal to 1 m2. 
However, a previous experimental study reported that 
MES could increase CH4 yield by 10-15 %  compared 
to that produced in a reactor without MES operation 
(Nelabhotla and Dinamarca, 2019). 

 

 

Figure 7. CH4 production in AD-CSTR reactor coupled 
with MES-BRC compared to AD-CSTR without MES 
when the local potential (Ƞ) increases from -0.2 to +0.2V 
(step size=0.05) for different recycle ratios (R’) and 
A=0.5 and 1m2. 

In the present modelling approach, the other 
processes (both microbial processes and Physico-
chemical reactions) in AD were not considered in MES-
BRC. If the processes as such were taken into account, 
the severe impact on biogas production due to pH rise 
might not be observed, since the AD processes itself can 
produce some alkalinity/buffer capacity. Further, such a 
pH rise can also be avoided if extra CO2 is added from 
an external source as suggested by (Samarakoon et al., 
2019).  
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Figure 8. Response of pH in AD-CSTR coupled with 
MES-BRC when the local potential (Ƞ) increases from -
0.2 to +0.2V (step size=0.05) for different recycle ratios 
(R’) and A=0.5 and 1 m2. 

The diffusion coefficient can also have a significant 
impact on the CO2 reduction rate. To understand the 
effect of diffusivity on CH4 production, low and high 
values were chosen for the diffusivity coefficient of 
dissolved CO2 for a single simulation case. This 
examination was done on the case where the local 
potential is equal to +0.2 V, A=1, and for all recycle 
ratios. The high and low diffusivity coefficient values 
were 0.002 m2/d and 0.00002 m2/d, respectively. Only a 
0.11% increase in CH4 production at the higher value 
(result not presented) was observed. However, it could 
be expected that at the lower local potential the 
diffusivity constant may influence the production. 

3.1 Limitations of the model and suggestions 
for improvement. 

In the present model, only the bioelectrochemical CO2 
reduction process and microbial decays are the activated 
processes in the biofilm reactor (MES-BRC). It means 
that the model modification assumes only one 
microorganism (Xeet) is growing in the cathodic biofilm, 
while in the real case, other microorganisms’ growth or 
other microbial processes (Figure 2) also exist.  

Both pH and IN have a greater impact on the 
biological processes. However, the acid-based 
equilibrium and charge balance (i.e. physicochemical 
processes) which are vital for pH and inorganic nitrogen 
(IN) concentration determinations were also not 
considered in the biofilm modelling (in MES-BRC).  
Hence, their influence on biofilm growth cannot be 
studied with the current model. Due to these limitations, 
the model prediction might be far-off from the real case 
scenarios even though the model can give a qualitative 
understanding of the new application. 

As a suggestion to improve the model one step 
further, ADM-1 with the bioelectrochemical CO2 
reduction process can be implemented in MES-BRC. 
However, ADM-1 model with AQUASIM software 
uses a differential-algebraic system of equations (DAE) 
to model the AD process in CSTR. On the other hand, 
the solver for the biofilm reactor compartment (BRC) 
model in AQUASIM cannot numerically handle the 
DAE system. Therefore, implementing ADM-1 with 
BRC in AQUASIM is not straightforward. The acid-
base equilibrium processes should be removed and 
redefined as dynamic processes as reported by (Botheju 
and Bakke, 2008). In Addition, how it will affect ADM-
1 with CSTR should also be investigated since the 
reactor configuration (Figure 1) consists of both CSTR 
and BRC. 

Furthermore, the present model requires proper 
parameter estimation and validation based on real case 
scenarios. 

4 Conclusion 
The proposed model can be used to illustrate the 
principle of MES coupled with AD for biogas upgrading 
by bio-electrochemically transforming CO2 to CH4. The 
model can be used to study some significant process 
parameters such as cathode local potential (ƞ) recycle 
ratio, cathode area, and biofilm detachment velocity on 
the MES integrated with AD reactor.  

The simulations show that coupling the MES biofilm 
reactor with a recycle loop increases CH4 content in the 
biogas. The maximum CH4 content achieved is 87 % 
with recycle ratios (R’) of 0.4 (1.3 d HRT) and 0.6 (0.9 
d HRT) when the biofilm volume-specific area is equal 
to 0.18 m2/m3 and 0.36 m2/m3 respectively (under the 
reactor condition studied). However, the conversion of 
CO2 to CH4 results in elevated pH in the main biogas 
reactor and consequently CH4 production decreases by 
~ 40 % compared to AD-CSTR without MES. 
Therefore, it is essential to maintain a proper pH to 
prevent the inhibition.  

The rate of the CO2 conversion to CH4 can mainly be 
constrained by available substrate concentration 
(dissolved CO2) and the cathode local potential and 
volume-specific area above 0.36 m2/m3 have minimum 
effects. 
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Abstract 
Aqueous pyrolysis liquid (APL) is formed from 

pyrolysis of lignocellulosic biomass and is considered 

as a possible feed for anaerobic digestion (AD). APL is 

known to contain many components that can have a 

negative impact on the AD process. In this study, APL 

is fed into experimental AD batch reactors and modelled 

as a substrate using the Anaerobic Digestion Model No. 

1 (ADM1), extended by addition of the inhibitors 

phenol, furfural, and 5-hydroxymethylfurfural (HMF). 
Simulation performed with the extended ADM1 has a 

better ability to predict the behavior of APL than the 

standard ADM1. Reducing the inhibition constants and 

startup concentration of active biomass during 

simulation of APL at high organic load resulted in 

improved fit with experimental results, but these 

inhibitors alone cannot explain the reduced methane 

production rate at high organic load.  

Keywords:     Anaerobic Digestion, Lignocellulosic 

biomass, Aqueous Pyrolysis Liquid, phenol, furfural, 
HMF, inhibition, ADM1 

1 Introduction 

Dry lignocellulosic biomasses are abundant in nature 

and can be harvested sustainably (Feng and Lin, 2017). 

Using thermochemical and biochemical processes, we 

can convert such biomasses into energy, either for heat 

or electricity generation or even as a transport fuel such 

as biomethane (Pang, 2019). Pyrolysis, a 

thermochemical process used for dry biomasses, 

produces value added products such as biochar, syngas, 

bio-oil, and aqueous pyrolysis liquid (APL) (McNamara 

et al., 2016).  

APL has a high organic content, showing potential 

for conversion to biogas through anaerobic digestion 

(AD) (Hübner and Mumme, 2015). However, APL is a 

complicated mixture – known to contain more than 400 

chemical compounds – many of which can have a 

negative impact on the AD process (Seyedi et al., 2019). 

Compounds such as phenols, furfural, and 5-

hydroxymethylfurfural (HMF) present in APL are 

known to be inhibitory to AD (Torri and Fabbri, 2014). 

Anaerobic digestion, a biochemical process mostly 

used for treating wastewater, produces biogas that can 

be upgraded to biomethane. Methanogenesis is the final 

step that converts acetate (acetoclastic) and hydrogen 

(hydrogenotrophic) into methane and is also often a rate 

limiting step in the AD process. APL concentration of 

2-4 g COD/L (COD: chemical oxygen demand) has 

been previously reported to completely inhibit the AD 

process (Seyedi et al., 2019). Constituents of APL such 

as phenol, furfural and HMF inhibits the 

methanogenesis process completely at concentration of 

2.5 g/L (Olguin‐Lora et al., 2003), 2 g/L (Ghasimi et al., 

2016) and 2 g/L (Ghasimi et al., 2016) respectively.   

However, microorganisms present in AD are known 

to thrive in the presence of inhibitory compounds, 

managing to degrade them during the AD process. 

Phenol, a weak acid, is broken down to the intermediate 

benzoate, before it is degraded completely to acetate and 

hydrogen (Fezzani and Ben Cheikh, 2009). Similarly, 

furfural and HMF also breaks down anaerobically 

producing acetate as the final product (Zhang et al., 

2012). 

The Anaerobic Digestion Model No.1 (ADM1) 

(Batstone et al., 2002), developed by the International 

Water Association (IWA), has been widely used by the 

scientific community for evaluating the performance of 

AD processes under different substrate and reactor 

configurations. However, the model has been limited to 

only major AD processes to make it simpler and easier 

for modification in the future as per need. Complex 

substrates such as APL are gaining interest and the 

constituent phenol is already implemented in ADM1 

(Fezzani and Ben Cheikh, 2009),  but modifications are 

needed to study the inhibition caused by the APL 

constituents furfural and HMF. 

Through this study, we aim to better understand the 

effects of inhibitory compounds present in APL, 

represented by phenols, furfural and HMF, to predict 

and simulate the dynamic behavior of AD of APL using 

ADM1.  
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2 Materials and Methods 

Batch anaerobic reactors, fed APL and run mesophilic, 

are compared with ADM1 extended with the inhibitor’s 

phenol, furfural, and HMF, known to be present in APL. 

2.1 Analytical methods 

Total COD (tCOD), soluble COD (sCOD), volatile fatty 

acids (acetic acid, propionic acid, butyric acid, iso-

butyric acid), pH, and ammonium content were 

analyzed as described in Bergland et al., (2015).  

2.2 Material Characterization 

2.2.1 APL 

APL was obtained from pyrolysis of commercial 

softwood pellets (Norway spruce and Scots pine 60/40 

per volume, Hallingdal Trepellets AS) at 600˚C, using 

the Biogreen® technology. The pyrolysis liquid was 

condensed from syngas cooled to 5-8 ˚C, and the APL 

provided was the top phase decanted after settling by 

gravity for two weeks in a cool environment. 

APL had a tCOD and sCOD of 456 and 428 g/L and 

contained 75.83 and 5.33 g/L of acetic acid and 

propionic acid, respectively. APL had a low pH of 2.46. 

2.2.2 Inoculum 

Inoculum was obtained from Lindum AD plant in 

Drammen, Norway, a mesophilic process with an 

installed thermal hydrolysis step prior to AD. The plant 

treats sewage sludge from surrounding municipalities 

(about 90% of total volatile solids) and food waste from 

industry. The inoculum was collected from the effluent 

stream of the reactor and had a pH of 7.97, total solids 

(TS) of 16.78 g/L, volatile solids (VS) of 13.14 g/L, and 

total ammonium nitrogen (TAN) of 486 mg/L. 

2.3 Batch Reactor Set up 

Anaerobic biogas potential tests were performed in the 

Automatic Methane Potential Test System II (AMPTS 

II, Bioprocess Control® Sweden AD, Lund, Sweden 

2017). It is used to determine the methane production 

from any biodegradable material. The experimental 

procedure can be found in Ghimire et al. (2020). Batch 

reactors of 500 mL were used with 300 mL of inoculum, 

and APL was added to have an organic load (OL) of 1.2 

and 2.4 g COD APL per litre of inoculum. Additional 

blank reactors included only inoculum and was used to 

consider the background methane production. All the 

reactors were run at 35 ℃ for 54 days with 2 parallels 

for each test. 

2.4 Modelling and Simulation  

The original ADM1 was extended by the addition of 

phenol, furfural and HMF as inhibitory compounds 

(extended ADM1) (Figure 1). The inclusion of these 

inhibitory compounds requires the addition of 8 

processes (Table 1).  

Figure 1. A brief schematic of the extended ADM1. 

Table 1. Biochemical stochiometric coefficients and 

kinetic rate equations for compounds (only additional 

processes and compounds to standard ADM1 are shown). 

 

Com
ponent --> i
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S_phe
S_bnz

S_fu
S_HM

F
S_ac

S_h2
S_ch4

S_IC
S_IN
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X_bnz

X_fu
X_HM

F
X_ac

6a
Uptake of Phenol

-1

f_bnz_phe 
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f_h2_phe*(

1-Y_phe)

-sum
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Each conversion process was implemented by several 

kinetic expressions that describe the conversion 

processes in terms of rate constants and substrate 

concentration. The conversion of inhibitory compounds 

to their respective products was described using 

Monod’s growth kinetic equation. Endogenous decay of 

the biomass degrading the inhibitory compounds was 

modelled using first order kinetics, and dead biomass 

was maintained as composite particulates as in the 

original ADM1.  

The detailed stoichiometry of all the processes and 

rate equations used are presented (Table 1) with their 

respective values (Table 2). The uptake of acetate in the 

extended ADM1 was modified by addition of inhibition 

from phenols, furfural and HMF as shown by process 7 

in Table 1. Inhibition by phenol, furfural and HMF was 

modelled using a non-competitive inhibition function 

(1) (Batstone et al., 2002).  

I = 
1

1+
S 

𝐾𝑖   

 
(1) 

  

I = Inhibition, S = concentration of substrate in kg 

COD/m3, and Ki = inhibition constant (concentration of 

substrate that inhibits the activity of the microorganisms 

by 50%).    

 
a (Fezzani and Ben Cheikh 2009) 

b (Elshahed et al. 2001) 

c (Liu et al. 2017) 

Phenol is a weak acid and both phenol and benzoate 

contribute to pH changes. The charge balance equation 

used in the standard ADM1 (Batstone et al., 2002) was 

extended to include the contributions from phenol and 

benzoate (2). 

SH+  -SOH-  = 

SHCO3
- +

Sac-

64
+

Spro-

112
+

Sbu-

160
+

Sva-

208
+

Sphe-

224
+

Sbnz-

240
 

+ SAn+-Scat+-  SNH4
+ 

(2) 

 

Where Sphe- and Sbnz- are phenol (3) and benzoate ion 

concentration (4), implemented in ADM1 as described 

by Batstone et al. (2002). 

Sphe- − 
Ka,phe×Sphe  

Ka,phe+ SH+
= 0 (3) 

 

Where Ka,phe (phenolic acid dissociation constant) is 

1×10-10(Sharma and Kaminski, 2012).  

Sbnz-- 
Ka,bnz×Sbnz  

Ka,bnz+ SH+
=  0 

 

(4) 

 

Where the Ka,bnz  (benzoic acid dissociation constant) is 

6.3×10-5 (Ionization Constants of Organic Acids, n.d.) 

d (Brune, Schoberth, and Sahm 1983) 

e calculated 

 

Parameter Description Unit Phenol Benzoate Furfural HMF Value 

C Carbon content in compound  

KmoleC/kg 

COD 0.391a 0.0343 a 5/160e 

6/192 

e - 

Km Maximum uptake rate  d-1 15 a  8 a 10c 10 c - 

Ks 

Half saturation constant for 

uptake kg CODs/m3 30 a  15.5 a 10 c 10 c - 

Kdec Decay rate for biomass d-1 0.02   0.02  0.02d 0.01 c - 

Y Yield of biomass on uptake 

kg CODx/kg 

CODs 0.01 a 0.013 a 0.08 d 0.1 c - 

Ki 

Inhibition on methanogens 

from compound kg CODs/m3 1.12 a  - 2.105 e 2.05 e - 

Ki_bnz_h2 

Inhibition on benzoate 

degraders by hydrogen kg CODs/m3 - 9.50E-05b - - - 

X Concentration of biomass kg CODx/m3 0.21 0.24 0.12 0.18 - 

f_bnz_phe Yield of benzoate from phenol   - - - - 0.87 a 

f_h2_phe Yield of hydrogen from phenol   - - - - 0.13 a 

f_ac_bnz Yield of acetate from benzoate   - - - - 0.51 a 

f_h2_bnz 

Yield of hydrogen from 

benzoate   - - - - 0.49 a 

f_ac_fu Yield of acetate from furfural   - - - - 0.8 d 

f_h2_fu Yield of hydrogen from furfural   - - - - 0.2  d 

f_ac_HMF Yield of acetate from HMF   - - - - 0.88 c 

f_h2_HMF Yield of hydrogen from HMF   - - - - 0.12 c 

Table 2. Kinetics parameters and their respective value used for degradation of phenol, furfural and HMF 
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2.4.1 APL characteristics 

APL concentrations implemented in ADM1 (Table 3) 

were measured based on APL characteristics. Phenol, 

furfural and HMF concentrations are not known and 

were from reporting APL from birch bark (hardwood) 

pyrolysed at 600 ℃.  

Table 3. APL composition used for simulations. 

Parameters Value 

Acetic acid (g/L) 75.832f 

Propionic acid (g/L) 5.33 f 

Phenol (g/L) 25g 

Furfural (g/L) 10h 

HMF (g/L) 7 h 

Soluble Inorganic Nitrogen 

(kmole/m3) 0.025e 

X_C Calculated 

Around 50 % of the APL COD is unknown and was 

added as complex particulate (X_C) already present in 

the ADM1. 

2.4.2 Determination of inhibition constant for 

furfural and HMF 

Prior knowledge of the inhibition constant for furfural 

and HMF (1) required for modelling the inhibition effect 

is not found in the literature. Experimental results of 

specific methanogenic activity (SMA) from Ghasimi et 

al. (2016) is used to determine the IC50 value that can be 

used as inhibition constant Ki (1). Thus, inhibition 

constant values are calculated graphically to obtain the 

IC50 value, the concentration of substrate at which 50% 

inhibition occurs (Figure 2).  

 

Figure 2. IC50 value determination using graphical method 

for a: furfural and b: HMF. Based on SMA activity from 

Ghasimi et al. (2016). 

2.4.3 Simulation strategy 

To evaluate the extended model, the simulation was 

performed based on three strategies: 

1. Vary the concentration of inhibitory compounds to 

evaluate the effect (Table 4). 

2. Vary the inhibition constant to evaluate the 

sensitivity in the model (Table 5). 

3. Vary the startup active biomass concentration of 

inhibitory compounds degraders. Both sufficient 

 
f Measured 
g (Yu et al. 2020) 

and low startup concentration of biomass 

(X_low=X×0.1) were tested. 

Table 4. Concentration of inhibitory compounds in APL 

used in simulations of AD of APL at OL of 1.2 and 2.4 g 

COD/L. 

 Inhibitory 

compounds 

Sim-

base 

Sim-

inhib-

low 

Sim-

inhib-

avg 

Sim-

inhib-

high 

Phenol (g/L) 25 5 25 40 

Furfural (g/L) 10 5 25 40 

HMF (g/L) 7 5 25 40 

Table 5. Inhibition constant used in simulations of AD of 

APL at OL of 2.4 g COD/L. 

 Inhibitio

n 
constant 

Sim

-

bas
e 

Sim-

Ki_low_
1 

Sim-

Ki_low_
2 

Sim-

Ki_low_
3 

KI_fu (kg 

COD/m3) 2.10 0.84 0.21 0.11 

KI_HMF 

(kg 

COD/m3) 2.05 0.82 0.21 0.10 

KI_phe 

(kg 

COD/m3) 1.12 0.45 0.11 0.06 

3 Results and Discussion 

3.1 Experimental Results 

The methane production rate (Figure 3) was low for 

APL with OL of 2.4 g COD/L (APL2.4) and was same 

as Blank (only inoculum) till day 2, whereas APL with 

OL of 1.2 g COD/L (APL1.2) had a gradual methane 

production until day 20 with no lag phase. Unpublished 

results during batch AD tests of the same APL gave 

increased lag phase when the organic load was higher 

than 2 g COD/L and total inhibition at OL of 3 g COD/L. 

 

Figure 3. Methane production rate from batch test of APL 

at organic load of 1.2 and 2.4 g COD/L referred to as 

h (Torri and Fabbri 2014) 
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APL1.2 and APL2.4, respectively, along with results from 

blank (only inoculum). 

3.2 Simulation results 

3.2.1 Simulation of APL 

Simulation of APL1.2 (sim1.2) by standard ADM1 and 

extended ADM1 shows a good fit to the experimental 

results (Figure 4), however, both standard and extended 

ADM1 was not able to follow the trend of methane 

production rate at high OL (sim2.4).  

 

Figure 4. Simulated methane production rate using 

standard ADM1 (red line), extended ADM1 model (blue 

line) and experimental results (black dots) for APL a: at 

organic load of 1.2 g COD/L (Sim1.2-base) b: at organic 

load of 2.4 g COD/L (Sim2.4-base). 

3.2.2 Simulation with varying inhibitory compound 

concentration 

Simulations performed with varying concentrations of 

inhibitory compounds revealed only a small effect on 

the methane production rate for APL at low OL of 1.2 g 

COD/L (Figure 5). However, the effect from high 

inhibitor concentrations at OL of 2.4 g COD/L of APL 

was more pronounced. High OL and thereby high 

concentration of inhibitory compounds resulted in 

inhibition and a lower maximum methane production 

rate. 

 

 

 

 

Figure 5. Simulation with varying concentration of 

inhibitory compounds (Table 5). a: simulated methane 

production rate for APL1.2 with experimental results 

(black dots) b: simulated methane production rate for 

APL2.4 with experimental results (black dots). 

The inhibition by the individual inhibitory 

compounds increased with an increase in concentration 

(Figure 6). Phenol causes the highest inhibition effect on 

the methanogens. The total effect from the inhibitors can 

however not explain the low fit between the simulations 

and the experiment with OL of 2.4 g COD APL/L 

(Figure 5). 

 

Figure 6. Inhibition by inhibitory compounds on 

methanogens. 1 is no inhibition at all and 0 is full 

inhibition. a: simulated inhibition for APL OL of 1.2 g 

COD/L b: simulated inhibition for APL OL of 2.4 g 

COD/L. 
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3.2.3 Simulation with varying inhibition constant and 

low biomass concentration of inhibitory 

compound degraders 

Reducing the estimated inhibition constants (Table 5) 

resulted in a maximum methane production rate that 

decreased drastically (Figure 7). This is however not 

based on real inhibition constants but rather reveals the 

high degree of sensitivity towards a change in the 

inhibition constant. The concentration of active initial 

biomass degrading the individual inhibitory compounds 

is not known and reducing these concentrations (Figure 

7) also reveals an effect further reducing the gap 

between experiment and simulated methane production 

rate at OL 2.4 g COD APL/L. 

 

 

Figure 7. Simulated methane production rate with low 

initial startup concentration of inhibitory compounds 

degrading biomass (Sim-Ki_low_3-X_low, Sim-

Ki_low_2-X_low, and Sim-Ki_low_1-X_low) represented 

by dashed lines and simulation with only change in 

inhibition constant for inhibitory compounds represented 

by lines. Experiment with OL 2.4 g COD APL/L (black 

dots). 

Even though the inhibition constant used in Sim-

Ki_low_3-X_low was low, it can be justified that there 

are a lot of unknown compounds in APL that have 

potential to inhibit the methanogenesis. Compounds 

such as chlorinated alkenes and alkanes, nitros and 

nitriles are known to severely inhibit the 

methanogenesis even at low concentrations (Blum and 

Speece, 1991). Thus, there is the possibility that the 

inhibition seen using the lowest inhibition constant 

(Sim-Ki_low_3 and Sim-Ki_low_3-X_low in Figure 7) 

could also be observed if further inhibitory compounds 

are added to the model, such as ketones, polyaromatic 

hydrocarbons and esters – which are also known to be 

present in APL and known to inhibit methanogenesis 

(Blum and Speece, 1991). Microorganism can however 

also be adapted to inhibitors (Badshah, 2012;Wen, 

2020) suggesting lower inhibition over time in 

continuous AD reactors. 

4 Conclusion 

The effect of the inhibitors furfural, HMF, and phenols 

present in APL using ADM1 reveals a high sensitivity 

of the inhibition constant (made from 50% inhibition of 

the methanogens). When using realistic values for the 

inhibition constants and concentrations of inhibitory 

compounds, the reduced methane production rate at 

high organic load of APL cannot be explained by 

furfural, HMF, and phenols alone in batch AD. APL 

contains several known and unknown compounds and it 

is suggested to study more of these to find the combined 

inhibitory effect. 
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Abstract
We present a mathematical model of metabolism in can-
cer cells that is capable of describing both aerobic oxida-
tive metabolism and anaerobic fermentation metabolism,
and how cancer cells shift between these metabolic states
when exposed to different substrates and different enzy-
matic inhibitors. The model is designed to be used in com-
bination with experimental data gathered with an Agilent
Seahorse XF metabolic analyzer. The model is param-
eterized in a manual tuning procedure to fit experimental
data, and validated against experimental data from another
setup, to which the model shows good conformity. We
also investigate the structural identifiability of the model.
The results indicate that the model is structurally identifi-
able, and that it can thus be uniquely parameterized, using
the following 5 measurements: extracellular concentra-
tions of glucose, glutamine and lactate, proton production
rate (a Seahorse XF analyzer measurement) and oxygen
consumption rate.
Keywords: biological systems, cancer metabolism, simu-
lation, parameter estimation, biotechnology

1 Introduction
Cancer is a group of diseases where cells grow and pro-
liferate uncontrollably (Jones and Thompson, 2009). An
emerging hallmark of cancer is reprogrammed energy
metabolism (Hanahan and Weinberg, 2011). Metabolism
is important in understanding how different cancer cells
proliferate and develop into tumors and metastases, and
for designing and testing therapeutic strategies.

Cancer cells differ from non-cancerous cells in that they
typically have a high uptake of glucose and a shift from en-
ergetically efficient oxidative metabolism to less efficient
anaerobic fermentation even in the presence of O2. This
phenomenon is the so-called Warburg effect (Liberti and
Locasale, 2016; Warburg, 1956). Many cancer cells also
have an increased metabolic reliance on glutamine (Wise
and Thompson, 2010), which is the most abundant free
amino acid in muscles and blood plasma.

In this paper we present a model of aerobic and anaer-
obic metabolism in cancer cells designed to be used in

combination with experiments performed using an Agilent
Seahorse XF analytic instrument, a commonly used tool
for studying and metabolic phenotyping cancer cells. The
Seahorse XF instrument measures oxygen consumption
rate (OCR) and extracellular acidification rate (ECAR) in
live cells under controlled conditions. The instrument fea-
tures automatic injection and mixing of up to four sub-
stances and can run experiments that reveal how cells re-
spond to addition of metabolic substrates and how they
respond to forced blocking of certain metabolic pathways
by the addition of enzymatic inhibitors (Agilent, 2019).

2 Modeling
Our model includes cellular uptake and metabolism of
glucose and glutamine, and describes the most promi-
nent metabolic processes by simplified kinetic expres-
sions. The model deals with enzymatic reactions, i.e. fast
changes in metabolic reaction rates, due to immediate ad-
ditions of substrates and inhibitors. Since the timescale
of experiments are in the order of minutes to a maxi-
mum of a few hours, significantly shorter than the dou-
bling time for typical cell lines used in these experiments,
cell growth is not considered in the model. The Caco2
cell line used in this work has a doubling time in the
range of days (Hidalgo et al., 1989). Figure 1 shows a
schematic overview of the model (see also Table 1 for a list
of abbreviations). The model has the following 12 state
variables: the internal concentrations of metabolites and
metabolic intermediates (glucose, pyruvate, glutamine, α-
ketoglutarate, and lactate), the internal concentration of
ADP and ATP (for energy production and balance), the
concentration of NAD+ and NADH (the electron carrier in
oxidative production of ATP), and the external concentra-
tions of glucose, glutamine, and lactate. There are in total
11 metabolic reactions, or flow expressions, in the model.
As indicated by the red and green symbols in Figure 1,
the model also includes the effect of the following 5 in-
hibitors: 2-DG (2-deoxyglucose), rotenone, antimycin A,
oligomycin and CCCP (Carbonyl cyanide m-chlorophenyl
hydrazone). These inhibitors are often used in Seahorse
experiments, such as glycolysis- and mitochondrial stress
tests (Agilent, 2019).
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Figure 1. Overview of the model. The fully drawn circle is the
cell membrane. Inside the dotted line is the mitochondria. The
black arrows are metabolic reactions and the red and green lines
show inhibitors/activators often used in Seahorse experiments.

Notation
The reactions in the model are simplified and each reac-
tion actually covers multiple enzyme catalyzed reaction
steps. Unless otherwise stated, we assume that the overall
reactions are irreversible and we use the rate constants k
to describe the maximum reaction- or transport rate. We
use subscript to denote the reaction, e.g., the rate constant
for glycolysis, jGP, is kGP. The effect of substrates in re-
actions are expressed by saturation ratios r (0 ≤ r ≤ 1),
where we use subscript to denote the reaction and super-
script to denote the substrate. We use saturation ratios
based on the Micahelis-Menten equation. As an example,
the contribution of glucose G to the glycolysis rate jGP
is described in the saturation ratio given as rG

GP = G
KG

GP+G
,

where KG
GP is the half-saturation constant.

The expressions for the different reactions in the model
will be explained in the following.

Transport
With a few exceptions, such as O2 and CO2, most
molecules cannot freely diffuse across the cell membrane,
and thus, transport across the cell membrane is dependent
on transport proteins. Glucose is transported across the
cell membrane by glucose transporter proteins (SLC2A
family) through facilitated diffusion – a passive process
where the concentration gradient provides energy for pro-
tein mediated transport across the membrane. The so-
called GLUT1 transporter protein (SLC2A1) is of special
interest in studies of cancer metabolism, as it is abundant
in many human tumor types (DeBerardinis et al., 2008;
Hanahan and Weinberg, 2011).

Glutamine is transported across the cell membrane

Table 1. List of abbreviations.

G glucose
P pyruvate
Gn glutamine
K α-ketoglutarate
L lactate
NAD+ nicotinamide adenine dinucleotide

(oxidized form)
NADH nicotinamide adenine dinucleotide
ATP adenosine triphosphate
ADP adenosine diphosphate

Gext extracellular glucose
Gnext extracellular glutamine
Lext extracellular lactate

OCR oxygen consumption rate
ECAR extracellular acidification rate
PPR proton production rate
TCA cycle tricarboxylic acid cycle
2-DG 2-deoxyglucose

by several amino acid transporters, but most notably by
SLC1A5 and SLC6A14 which are commonly upregulated
in cancer cells (Scalise et al., 2017; Cha et al., 2018).

Lactate is transported out of the cell by monocarboxy-
late transporters (MCTs), a type of symporter that couple
protons (H+) and monocarboxylate transport, and hence,
lactate excretion is coupled with extracellular acidifica-
tion.

The expressions for transport of glucose, glutamine and
lactate in Eqs.(1)-(3) respectively, are all modeled as facil-
itated diffusion through transporter proteins where we use
the fixed site carrier model (Baker and Widdas, 1973) de-
scribing transport through a membrane pore with binding
sites on both sides of the membrane.

jGextG = kGextG
Gext −G(

KGext
GextG +Gext

)(
KG

GextG +G
) (1)

jGnextGn = kGnextGn
Gnext −Gn(

KGnext
GnextGn +Gnext

)(
KGn

GnextGn +Gn
)
(2)

jLLext = kLLext

L−Lext(
KL

LLext
+L

)(
KLext

LLext
+Lext

) (3)

The transport of glucose ( jGextG) and glutamine ( jGnextGn)
are defined positive into the cell, whereas the transport of
lactate ( jLLext) is defined positive out of the cell.

Glycolysis and fermentation
Glucose is converted to pyruvate in a series of 10 enzyme
catalyzed reactions in the glycolysis pathway. The net pro-
duction for each glucose molecule through the glycolysis
is 2 pyruvate-, 2 ATP- and 1 NADH molecules. The mod-
eled expression for the glycolytic flux, jGP, given as

jGP = kGP rG
GP rADP

GP rNAD
GP (4)
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depend on glucose, ADP and NAD+.
Cells regenerate NAD+ to sustain glycolysis, and if O2

is available most cells prefer to oxidize NADH in the mito-
chondria to produce more ATP. In the absence of O2, cells
regenerate NAD+ through fermentation by reducing pyru-
vate to lactate. Cancer cells, however, often show a pref-
erence for fermentation even in the presence of O2, which
refers to the so-called Warburg effect or aerobic glycoly-
sis. The expression for fermentation, jPL, is given as

jPL = kPL rP
PL rNADH

PL (5)

Oxidative metabolism
In the mitochondria (the inside of the dashed line in Fig-
ure 1) organic material such as pyruvate can be further
catabolized in the TCA cycle (tricarboxylic acid cycle) to
produce large quantities of NADH, which is oxidized to
NAD+ by O2 in the electron transport chain. The oxida-
tion of NADH is coupled to ATP production by a proton
gradient across the inner mitochondrial membrane, where
the gradient is sustained by proton transport by the elec-
tron transport chain and used by ATP synthase to produce
ATP. This process is called oxidative phosphorylation. To
account for proton leak, we use the following two fluxes
to describe oxidative phosphorylation.

jNN = kNN rNADH
NN rADP

NN (6)
jNNI = kNNI NADH (7)

where jNN describe the regeneration of NAD+ coupled
to ATP production and jNNI describe the regeneration of
NAD+ coupled to proton leak across the membrane.

Pyruvate is transported into the mitochondria where
it is completely catabolized in the TCA cycle produc-
ing 4 NADH molecules for each pyruvate molecule. In
the model we describe the catabolism of pyruvate in two
steps: first conversion of pyruvate to TCA intermediate α-
ketoglutarate, jPK in equation (8), and second conversion
of α-ketoglutarate to oxaloacetate, jKO in equation (9).

In addition, glutamine enters the TCA cycle through
glutaminolysis, jGnK in equation (10), where glutamine is
converted to α-ketoglutarate that also produce NAD(P)H.
Oxaloacetate is in the model treated as a sink (symbol Ø in
Figure 1) as we do not include further anabolic processes.

jPK = kPK rP
PK rNAD

PK (8)

jKO = kKO rK
KO rNAD

KO (9)

jGnK = kGnK rGn
GnK rNAD

GnK (10)

Energy consumption
We assume that the cellular energy consumption, jAA, de-
pends on ATP availability as follows:

jAA = kAA rATP
AA (11)

State equations
Equations (1) - (11) represent the 11 reactions in our
model, giving the following 12 state equations of our
model:

Ġ = jGextG − jGP (12)

Ṗ =2 jGP − jPK − jPL (13)

Ġn = jGnextGn − jGnK (14)

K̇ = jPK + jGnK − jKO (15)

L̇ = jPL − jLLext (16)
˙NAD = jPL + jNN + jNNI − jGnK

−2 jGP −2 jPK −2 jKO (17)
˙NADH =− ˙NAD (18)

˙ATP =2 jGP +2.5 jNN − jAA (19)
˙ADP =− ˙ATP (20)

˙nGext =−Vi jGextG (21)
˙nGnext =−Vi jGnextGn (22)

ṅLext =Vi jLLext (23)

where Vi is the total cellular volume. Note that the extra-
cellular state variables are expressed in amount in moles
instead of concentration because the extracellular volume
may change. The extracellular concentration of glucose,
glutamine and lactate are found by dividing their respec-
tive amount by the extracellular volume Ve.

3 Seahorse XF
The Seahorse XFp Analyzer measures OCR and ECAR
on live cells placed in a specialized well plate. The mea-
surements are performed by sinking a sensor into the well
creating a microchamber with a volume of 2 µl where
changes in pH and O2 concentration occur more rapidly
due to the small volume.

ECAR measurements, which is the change of pH in the
microchamber (− dpH

dt ), are converted to PPR (proton pro-
duction rate), which is a measure of the number of protons
(H+) excreted from the cells. Excretion of lactate is the
primary source of extracellular acidification and is related
to PPR (mol/s) by

PPR = Vi jLLext (24)

OCR is a measurement of cellular O2 consumption,
(− dO2

dt ), where oxidation of NADH in oxidative phospho-
rylation is the primary consumer of O2. Since 2 NADH
molecules is oxidized for each O2 molecule, OCR (mol/s)
is related to oxidative phosphorylation by

OCR =
Vi

2
( jNN + jNNI) (25)

Inhibitors
The model is designed to be used in combination with
experimental results from so called glycolysis- and mito-
chondrial stress tests performed with the Seahorse XFp
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Analyzer. In these experiments, inhibitors that block or
disrupt certain metabolic pathways in the cells are injected
into the wells. The following describe these inhibitors and
how we implement their effect in the model.

2-Deoxyglucose (2-DG) is a glucose analogue that is
transported through the cell membrane by GLUT1. Inside
the cell 2-DG and its derivatives inhibit early steps in gly-
colysis, jGP. We implement the injection of 2-DG as a
99% decrease in the rate constant for glycolysis, kGP.

Oligomycin is an inhibitor of the enzyme complex
ATP synthase, which phosphorylate ADP in oxidative
phosphorylation, and we implement the injection of
oligomycin as a decrease in the rate constant kNN by 99%.
Oxidation of NADH still occurs, but at a lower rate, pri-
marily due to proton leak across the mitochondrial inner
membrane, which is described by jNNI.

CCCP is an inhibitor of oxidative phosphorylation, i.e.
it uncouples the oxidation of NADH with ATP synthesis
by destroying the proton gradient across the inner mito-
chondrial membrane and therefore acts as an activator of
oxidative phosphorylation coupled to proton leak. We im-
plement the injection of CCCP as an increase in the rate
constant for the oxidation of NADH coupled to proton
leak kNNI. The factor of increase is a tuning parameter
during parameter estimation, where we initially increase
kNNI by a factor of 100.

Rotenone and antimycin A inhibit oxidative phosphory-
lation by limiting the oxidation of NADH. We implement
the effect of these inhibitors as a 99% decrease in the rate
constants for oxidative phosphorylation kNN and kNNI

4 Parameter estimation
The model was fitted to experimental data from a gly-
colysis stress test, a method that measures key properties
of the glycolytic pathway, in a manual parameter tuning
procedure. We performed the experimental test on can-
cer cells from the cancer cell line Caco2 (Hidalgo et al.,
1989). In the test the cells are initially starved for glu-
cose, but glutamine is available in the media. The Sea-
horse XFp Analyzer then sequentially adds: (i) glucose,
starting glycolytic activity, (ii) oligomycin, inhibiting mi-
tochondrial ATP production in oxidative phosphorylation
and thereby increasing glycolytic activity to maximal ca-
pacity, (iii) CCCP, further inhibiting oxidative phosphory-
lation, and (iv) 2-DG, inhibiting glycolysis. Initial media
volume in the wells, the extracellular volume Ve, is 180 µl
and for each injection the volume increase by 25 µl. The
cell culture contained an estimate of 15000 cells, which
based on average cell size for Caco2 cells (Hidalgo et al.,
1989), correspond to a total cell volume Vi of 0.0204 µl.

The possible ranges of the reaction fluxes in the model
were calculated from OCR and PPR measurements based
on the stoichiometry. Prior to glucose injection, glucose
uptake is restricted since glucose is not available in the
media and therefore glucose uptake jGextG is zero. By as-
suming that oligomycin and 2-DG completely inhibit ATP

coupled oxidative phosphorylation and glycolysis respec-
tively, further restrictions on fluxes were possible; jNN
was set to zero after oligomycin injection and jGP was set
to zero after 2-DG injection.

In order to identify a set of initial model parameters,
we use the glucose phase which is after the addition of
glucose but prior to the addition of inhibitors. Having
both glucose and glutamine present in the growth me-
dia is common in experiments, and thus, it enables us
to use available literature data, see Table 2. To ob-
tain stationary conditions in the model, external concen-
trations of glucose, glutamine and lactate were consid-
ered constant and the differential equations were solved
for the rate constants. Uptake of glucose jGextG and
glutamine jGnextGn, excretion of lactate jLLext and ATP
coupled oxidative phosphorylation jNN were considered
known in the calculation since they are the easiest fluxes
to measure or estimate from OCR and PPR. We use
jGextG = 2.26mM/min, jGnextGn = 3.47mM/min, jLLext =
4.25mM/min and jNN = 10.4mM/min. As a starting
point the saturation ratios r were set to 1

2 , which is equiva-
lent to setting the half-saturation constants K equal to their
respective substrate concentrations in Table 2.

Table 2. Assumed steady state concentration (SS [mM]) after
glucose injection. These values are used in the manual tuning
procedure. *Obtained from (Shestov et al., 2014). **Experi-
mental setup.

G 5 K 1 NADH 0.1 Gext** 10.0
P* 0.5 L 0.5 ATP* 3.0 Gnext** 0.2
Gn 0.1 NAD* 0.5 ADP 1 Lext 0.1

Manual tuning
With the initial parameter set (Table 3), we simulated the
model and compared it to measurements of OCR and PPR,
see Figure 2, panel A. We see that the model poorly cap-
tures the dynamics, especially PPR in phases 3-5.

As a measure to improve the model, we decreased
KNAD

GP and KNADH
PL significantly; in such a way that glycol-

ysis and fermentation became saturated with NAD+ and
NADH, respectively, causing PPR to increase as response
to oligomycin and CCCP injection, see phases 3 and 4 of
panel B. The increased rate of glycolysis from saturated
NAD+ was compensated for by reducing the rate constant
for glycolysis kGP by a factor of 2. It was not necessary to
compensate the rate of fermentation, as it is limited by gly-
colysis, and most pyruvate is already fermented to lactate,
i.e. the flux from pyruvate to α-ketoglutarate is small.

We observe that the model response in panel B is im-
proved compared to panel A. In order to further improve
the model response with respect to proton leak (OCR) be-
fore CCCP injection (phase 1-3), we adjusted the rate con-
stant kNNI until the model response fitted the experimental
results in phase 3. This is a well suited tuning method
as oxidative phosphorylation coupled to ATP production,
jNN, is inhibited in phase 3.
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Figure 2. Simulation (blue) and experimental measurements (black) of oxygen consumption rate (OCR) and proton production
rate (PPR calculated from ECAR) for the parameter estimation procedure. Injections of glucose and metabolic inhibitors shown
on vertical lines. A Simulation based on the initial parameter set, see main text. B Glycolysis and fermentation were saturated
with NAD+ and NADH respectively to increase PPR as a response to oligomycin and CCCP injection. The increased glycolytic
flux from this adjustments was compensated. C Oxidative phosphorylation coupled to proton leak prior to CCCP injection was
adjusted so it described OCR after oligomycin injection. Glutaminolysis and the energy consumption rate was adjusted so that
it better described the glucose injection. D Response after last adjustments. Glycolysis was increased until PPR coincided with
experimental data after oligomycin injection. The increased glycolytic flux after glucose injection was compensated by reducing
ADP availability through increasing oxidative phosphorylation coupled to ATP production. As a last step the effect of CCCP on
oxidative phosphorylation coupled to proton leak was adjusted until OCR after CCCP injection coincided with experimental data.

We also observe that after glucose addition (panel B,
phase 2), the model response of OCR is opposite of the ex-
perimental results. To improve this response, we increased
the rate of glutaminolysis kGnK and decreased the energy
consumption rate kAA, see panel C. This adjustment of the
energy consumption rate was necessary both to decrease
the rate of glutaminolysis and glycolysis, and to shift the
glucose metabolism towards fermentation in phase 2.

The response in panel C shows a relative good fit to the
experiment in OCR but a not so good fit in PPR. To im-
prove the PPR response in phases 3 and 4, we increased
the rate for glycolysis kGP to ensure that glucose is fer-
mented to lactate at maximal capacity after oligomycin
injection (phase 3). As this adjustment also increase the
rate of glycolysis during phase 2, were the PPR became
too high, an increase in the rate of oxidative phosphoryla-
tion coupled to ATP production kNN was necessary. Fur-
thermore, to improve the OCR response in phase 4 after
the addition of CCCP, we decreased kNNI once again, this
time however, we changed the value of kNNI when it is
affected by CCCP.

The resulting simulation after tuning, shown in panel
D, shows a good fit with the experimental data, especially
considering that only 8 parameters were adjusted during
the manual tuning. Parameter values before and after tun-
ing are listed in Table 3. However, in phase 3 after the ad-

dition of oligomycin, the response is too fast with respect
to PPR, and too slow with respect to OCR. This is possi-
bly a result of not including compartmentalization in the
model, resulting in increased ADP availability in the mito-
chondria from inhibition of ATP synthase by oligomycin,
immediately affecting the glycolysis in the model.

The rapid increase and peak in OCR after CCCP injec-
tion in phase 4 is in the model caused by rapid depletion of
accumulated α-ketoglutarate after oligomycin injection,
i.e. it signifies accumulation of TCA intermediates in the
cells. Similarly, the small transient increase in PPR from
CCCP injection is in the model a result of accumulation
of lactate after the preceding oligomycin injection. This
is due to saturation in lactate excretion where increased
external volume from the injection of CCCP is associated
with dilution of external lactate, which increases the con-
centration gradient and therefore allows a higher flux.

The experimental data show a transient increase in OCR
after injection of 2-DG in phase 5, which is not captured
by the model; it is not clear why this transient occurs.

Validation
To validate the model and parameters identified through
the glycolysis stress test, we compared the model with ex-
perimental data from a so-called mitochondrial stress test
which measures key properties for mitochondrial respira-
tion. We used the same cell line Caco2 with the same
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Table 3. Estimated parameter values. Rate constants k [mM/s]
and half saturation constants (K) in [mM]. For parameters that
were adjusted in the manual tuning both the initial- and final
estimates are included. * kNNI when CCCP is present.

Par Value Par Value Par Value

KGext
GextG 10 KLext

LLext
0.1 KGn

GnK 0.1
KG

GextG 5 kLextL 0.0354 KNAD
GnK 0.5

kGextG 1.508 KP
PK 0.5 KK

KO 1
KG

GP 5 KNAD
PK 0.5 KNAD

KO 0.5
KADP

GP 1 kPK 0.018 kKO 0.2493
KP

PL 0.5 KGnext
GnextGn 0.2 KNADH

NN 0.1
kPL 0.2833 KGn

GnextGn 0.1 KADP
NN 1

KL
LLext

0.5 kGnextGn 0.04624 KATP
AA 3

Par Initial Final Par Initial Final

KNAD
GP 0.5 0.001 KNADH

PL 0.1 0.001
kGP 0.3013 0.377 kGnK 0.2313 0.37
kAA 1.0173 0.865 kNN 0.693 1.11
kNNI 0.2267 0.057 *kNNI 22.67 1.995

number of cells as in the glycolysis stress test. The me-
dia in the mitochondrial stress test contain glutamine and
glucose, but at a lower concentration (5mM) than after the
glucose injection in the glycolysis stress test (10mM). The
Seahorse XFp Analyzer sequentially adds (i) oligomycin,
(ii) CCCP, (iii) Rotenone and (iv) antimycin A. The last
two are new compared to the glycolysis stress test, and
they both inhibit oxidative phosphorylation.

The simulation and the experimental data from the mi-
tochondria stress test is shown in Figure 3 and shows a
remarkable good fit. The relatively unaffected PPR re-
sponse (both experimentally and simulated) is expected
since all the injections inhibit oxidative phosphorylation
and fermentation operate at maximal capacity to sustain
glycolysis for energy production.
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Figure 3. Simulation (blue) and experimental measurements
(black) of oxygen consumption rate (OCR) and proton produc-
tion rate (PPR calculated from ECAR) for a mitochondrial stress
test. Injections of metabolic inhibitors shown on vertical lines.

5 Structural properties
Intrigued by the model’s ability to fit the experimental re-
sults and to capture the main dynamics, we wanted to ex-
amine the structural properties of the model in more detail.
We wanted to investigate the possibilities for using an au-
tomated method for parametrization. Thus we needed to
see if the model could be uniquely parameterized from
available data and chose to look at the structural identi-
fiability of the model.

In this context, the number of measurements are of
importance. Adding more measurements to the experi-
mental setup, especially substances inside the cell, like
internal concentrations of metabolites, will increase the
experimental complexity and cost. We therefore wanted
to explore whether the Seahorse measurements (PPR and
OCR) together with the external concentrations of glu-
cose, glutamine and lactate form a sufficient set of mea-
sured outputs for parameter identifiability.

Structural identifiability
We will first briefly explain the concept of structural
identifiability. A model based on a general non-
linear state space form: dx(t)

dt = f (x(t),u(t),θ) and
y(t) = h(x(t),u(t),θ) is identifiable if all parameters θ

can be uniquely determined from the system input u(t)
and the measured system output y(t) (Miao et al., 2011).
A generic form of identifiability is structural identifiabil-
ity, where the term structural indicates that it depends
solely on the model structure, i.e. structural identifiability
is completely determined by the structure of the system
equations and the output function (Villaverde, 2019). For
a model to be structurally identifiable, all of its parameters
must be structurally identifiable. If this is not the case, it is
structurally unidentifiable. If a model is found to be struc-
turally identifiable with a chosen set of measured outputs,
it is theoretically possible to uniquely estimate the param-
eters of the model based on these measurements.

Method
Over time a variety of methods to investigate structural
identifiability have been suggested. Some examples are
analytic approaches using Taylor series or similarity trans-
formation (Chis et al., 2011; Miao et al., 2011). One major
weakness of these and other analytic methods are that the
resulting set of non-linear equations can be computation-
ally difficult to solve because of their complexity. Given
the amount of parameters in our model, this would be the
case for us. Therefore we chose a method suggested and
used by Stigter et al. in (2015), (2017), (2018). This
method is designed for use on models with many parame-
ters and uses a hybrid numerical and symbolic approach.

With this method the model is simulated with param-
eter values randomly chosen within a constrained box of
realistic parameter values. This is repeated 10 times to
ensure robustness. A set of singular values and a set of
correlated parameters θcorr are calculated from these simu-
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A1 B1

A2

B2

Figure 4. A1 Log scale plot of singular values. No discernible gap between the smallest singular values indicates structural
identifiability. B1 Log scale plot of singular values without measurement of external lactate Lext. Singular values 103 orders of
magnitude smaller than panel A1 and a defined gap indicates structural unidentifiability. A2 Plot of correlated parameters related
to panel A1. This plot does not give any relevant information when the model is structurally identifiable. B2 Plot of correlated
parameters related to panel B1. From the plot we see that the parameters [KL

LLext
,KLext

LLext
,L0,Lext] are correlated.

lations. The singular values, or more specifically a promi-
nent jump in numerical value of the lowest singular values,
will indicate whether the model is structurally unidentifi-
able, while the set of correlated parameters will indicate
which parameters are causing this structural unidentifia-
bility. A symbolic calculation with this reduced set of pa-
rameters θcorr can then be performed to confirm the results
indicated by the simulations. For a more in depth expla-
nation of the method see (Stigter and Molenaar, 2015).

Experiments and results
In addition to the 12 states of the model, we add PPR and
OCR as states to be used as measured outputs in the algo-
rithm. The model has a total of 47 parameters, including
20 half saturation constants, 11 rate constants, internal and
external volume, and the initial conditions of the 14 states.

A natural first choice of measurements are the PPR and
OCR provided by the Seahorse XFp analyzer. However,
they proved insufficient to obtain structural identifiability.

We included therefore the three external concentrations
[Gext,Gnext,Lext] in our measured output set as they are
relatively easy to measure during an experiment. Run-

ning the algorithm with these 5 measured outputs gave
the results shown in Figure 4, panels A1 and A2. Very
small singular values and a clear gap, typically greater
than 3 (Joubert et al., 2018), between the smallest singular
values would indicate structural unidentifiability. In panel
A1 we observe a gap of an order between 0 and 1, indi-
cating structural identifiability. When a model is found to
be structurally identifiable from the singular values plot,
the plot of correlated parameters (such as in panel A2)
does not contribute with any relevant information (even
if it looks like two or more parameters are correlated).
The symbolic verification supports the conclusion from
the simulations.

Having a situation where measurements of OCR and
PPR together with the 3 external concentrations are
enough for the model to be structurally identifiable, we
wanted to investigate whether we could remove one of the
external concentration measurements and still obtain the
same result. Thus, running the algorithm three times with
one of the external measurements left out for each run re-
sulted in all runs indicating a lack of structural identifi-
ability. Panels B1 and B2 in Figure 4 show the results
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with the measurement of external lactate Lext left out. The
plot of singular values in panel B1 shows that the smallest
singular values are of order 10−15 to 10−16 and that there
is a clear gap between the two smallest singular values.
Panel B2 shows a plot of the correlated parameters for this
case, i.e. θcorr = [KL

LLext
,KLext

LLext
,L0,Lext]. This is a reason-

able result since all these parameters can be found in equa-
tion (3) describing the transport of lactate out of the cell.
Performing the symbolic calculation with this reduced pa-
rameter set θcorr also indicates structural unidentifiability,
confirming the numerical results.

6 Conclusions
We constructed a dynamic model of aerobic and anaerobic
metabolism in cancer cells designed to be used in combi-
nation with experiments performed using an Agilent Sea-
horse XF analytic instrument. The model consist of 12
state variables including the external concentration of glu-
cose, glutamine and lactate and describes 2 common types
of reprogrammed energy metabolism in cancer cells, i.e.
aerobic glycolysis and glutamine addiction.

Parameter values were estimated based on experimental
data from a glycolysis stress test on the Caco2 cell line in
a manual tuning procedure. The model was then validated
with experimental data from a mitochondrial stress test on
the same cell line with promising results.

Our experiments indicate that the model is struc-
turally identifiable with a set of 5 measured outputs
[Gext,Gnext,Lext,PPR,OCR]. These are measurements
that are simple to perform experimentally and that can be
performed in vivo (without killing cells). However, we
must keep in mind that this is a purely theoretical result
and in practice it could still be difficult to uniquely param-
eterize the model based on only these 5 measured outputs.

For future work we will investigate an automatic
method for parameterization as an alternative to manual
parameter tuning. Our results from the structural identi-
fication analysis supports a possible unique parameteriza-
tion with an automated algorithm.
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Abstract  
 

Condensation in raw biogas during compression is a 

problem because the CO2 and water in the liquid phase 

is very corrosive.  Raw biogas typically contains 60 mol-

% methane, 40 mol-% CO2, is saturated with water and 

may contain contaminants as ammonia (NH3).  In case 

of NH3, it is of interest whether it has influence on the 

dew point (condensation) temperature.  The aim of this 

work is to calculate the dew point under different 

conditions using different equilibrium models.  Phase 

envelopes showing the two-phase area are also 

calculated.  For dry mixtures of methane and CO2 with 

up to 1 mol-% NH3 (a high value for biogas), the 

different models gave similar results.  When the NH3 

increased from 0 to 1 mol-%, the dew point temperature 

increased with approximately 3 K. When water was 

included, the amount of calculated NH3 dissolved in 

water varied considerably with the model.  The 

electrolyte based models Sour PR, Sour SRK and 

Electrolyte NRTL did not calculate reasonable dew 

point temperatures, but the dissolved amounts of NH3 

and CO2 were more reasonable using the electrolyte 

models compared to using PR or SRK.  For biogas 

simulation including NH3, a simple equation of state as 

PR or SRK can be recommended to determine the dew 

point.  If accurate composition of the condensed liquid 

is to be calculated, an electrolyte based model like Sour 

PR, Sour SRK or the Electrolyte NRTL is 

recommended.  

 

Keywords: CO2, methane, water, biogas, phase 

envelope, Aspen HYSYS, Aspen Plus 

 

1 Introduction  

Condensation in biogas containing water is a challenge 

because the CO2 and water in the liquid phase is very 

corrosive.  Raw biogas typically contains 60 mol-% 

methane, 40 mol-% CO2, is saturated with water and 

may contain contaminants as H2S and NH3.  Under 

compression up to 300 bar, it is a question whether 

condensation will occur. NH3 is very soluble in water, 

and the solubility increases in the presence of CO2 

because the liquid becomes acidic. When the biogas 

contains NH3, it is of interest whether it has influence on 

the dew point temperature.  It is also of interest how 

much CO2 and NH3 will condense in the liquid phase. 

This work is a continuation of the work from Øi and 

Hovland (2018), Bråthen et al. (2019) and Bråthen et al. 

(2020) which did not consider NH3. 

Traditionally, gas mixture properties of methane, 

CO2 and water are calculated in a process simulation 

program with standard models like PR (Peng and 

Robinson, 1976) and SRK (Soave, 1972).  There is 

traditionally only one constant binary parameter for 

each component pair, but in the process simulation tools 

Aspen HYSYS and Aspen Plus, the binary parameter for 

e.g. water/CO2 can be made temperature dependent.  

Other models including electrolyte models are also 

available in Aspen HYSYS and Aspen Plus.  Properties 

of mixtures of the biogas components have been studied 

extensively in natural gas processing where the methane 

concentration is very high (Kunz and Wagner, 2012).  

The same components have also been studied in the 

development of CO2 injection into different 

hydrocarbon reservoirs (Ziabakhsh-Ganji and Kooi, 

2012).  There have been found few articles about 

process simulation of biogas (Tan et al., 2017; Pellegrini 

et al., 2015; Ahmad et al., 2018).  The articles Nabgan 

et al. (2016) and Sotoft et al. (2015) are about simulation 

of ammonia stripping in biogas production reactors and 

processes.   

When using fitted binary parameters (kij parameters) 

these models simulate the gas phase and the 

condensation point reasonably accurately (within a few 

degrees) at least below the critical point which is 46 bar 

for methane and 74 bar for CO2 (Øi and Hovland 2018;  

Bråthen et al., 2019; Bråthen et al., 2020).   

Studies of models for vapour/liquid equilibrium in 

the methane/CO2/water-system have been performed by 

Jarne (2004), Austegard et al. (2006), Privat and Jaubert 

(2014), Al Ghafri et al. (2014), Legoix et al. (2017) and  

Bråthen et al. (2019).  Austegard et al. (2006) concluded 

that a simple equation of state like SRK is satisfactory 

to describe the vapour phase, but more complex models 

are necessary to describe the liquid phase.  

Several authors have studied models for the system 

CO2/water (Spycher et al., 2003; Longhi, 2005; Aasen 

et al., 2017).  Bråthen et al. (2019; 2020) concluded that 
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PR and SRK with a standard kij value were able to 

simulate this system satisfactory, at least for the vapour 

phase up to the critical point (40-70 bar). 

There are much available literature on data, 

thermodynamics and simulation of mixtures of NH3.  

Neumann et al. (2020) present an equation of state for 

many components.  It is based on a Helmholz energy 

model similar to the Gerg-2008 model (Kuntz and 

Wagner, 2012) which is a standard model in natural gas 

simulation. 

The NH3/CO2/water/system is extensively studied 

(Ayers, 1985; Kurz et al., 1995; Jilvero et al., 2015).  

Gudjonsdottir et al. (2016) discuss models also 

including solid formation of different salts from 

concentrated solutions of NH3 and CO2 in water.  This 

is typical conditions for ammonia based processes for 

CO2 capture.  

In this work, the emphasis is on the standard PR and 

SRK methods available in the process simulation 

programs Aspen HYSYS and Aspen Plus.  In the case 

of calculation of the liquid composition after 

condensation, the electrolyte based models Sour PR, 

Sour SRK and Electrolyte-NRTL are evaluated.   

The aim of this work is to calculate the dew point or 

condensation of biogas containing NH3 under different 

conditions with varied temperature, pressure and gas 

composition and using different equilibrium models. 

 

2 Simulation Programs and Models  

2.1 Available models in Aspen HYSYS and 

Aspen Plus  

 

Øi and Hovland (2018) and Bråthen et al. (2019) 

simulated dry biogas (CH4 and CO2) and mixtures also 

containing water using the process simulation programs 

Aspen HYSYS and Aspen Plus.  The equilibrium 

models SRK (Soave, 1972), PR (Peng and Robinson, 

1976) and also other models were used. 

The reason why the simple models PR and SRK are 

selected, is that the models and fitted binary parameters 

are usually available in different process simulation 

programs.  Other commercial process simulation 

programs are ProMax, ChemCad and ProTreat. 

In Aspen HYSYS and Aspen Plus the PR and SRK 

models have only one adjustable parameter for each 

binary component pair, but for some components, and 

especially water/CO2 and water/H2S, this parameter 

may be temperature dependent. 

 

2.2 Description of the PR Equation of state 

Equations for the SRK equation of state are shown in (1) 

to (8) from Aspen HYSYS Version 10.  Aspen HYSYS 
and Aspen Plus Version 10 were used in the simulations. 

More details are discussed in Bråthen et al. (2019). 

 

𝑝 =
𝑅𝑇

𝑣−𝑏
− 𝑎

𝑣(𝑣+𝑏)
                             (1) 

𝑏 = ∑ 𝑥𝑖𝑏𝑖                                                  
𝑁
𝑖=1 (2) 

 𝑏𝑖 =
0,08664𝑅𝑇𝐶

𝑝𝑐
                                               (3) 

𝑎 = ∑ ∑ 𝑥𝑖𝑥𝑗(𝑎𝑖𝑎𝑗)
0,5

(1 − 𝑘𝑖𝑗)   𝑁
𝑗=1   𝑁

𝑖=1 (4) 

                𝑎𝑖 = 𝑎𝑐𝑖𝛼𝑖                                                        (5) 

     𝑎𝑐𝑖 =
0,42748𝑅2𝑇𝑐

2

𝑝𝑐
                                            (6) 

𝛼𝑖 = [1 + 𝑚𝑖 (1 − 𝑇𝑟

1
2⁄

)]
2

                         (7) 

𝑚𝑖 = 0,48 + 1,574𝜔𝑖 − 0,176𝜔𝑖
2            (8) 

P, T, v and R are the pressure, temperature, molar 

volume and the universal gas constant. Tc is the critical 

temperature, ω is the acentric factor and Tr is the 

reduced temperature (the ratio between T and Tc).  The 

binary interaction parameter kij (= kji) is a constant for a 

binary component pair and xi is the mole fraction for 

component i.  In the PR equation, equation 1, 3, 6 and 8 

are replaced by equation 9, 10, 11 and 12.  

  

𝑝 =
𝑅𝑇

𝑣−𝑏
− 𝑎

𝑣(𝑣+𝑏)+𝑏(𝑣−𝑏)
                           (9) 

  𝑏𝑖 =
0,077796𝑅𝑇𝐶

𝑝𝑐
                                                        (10) 

                𝑎𝑐𝑖 =
0,457235𝑅2𝑇𝑐

2

𝑝𝑐
                                                    (11) 

 

𝑚𝑖 = 0,37464 + 1,54226𝜔𝑖 − 0,26992𝜔𝑖
2    (12) 

 

2.3 Recommended Binary Parameters 

 

The binary parameter kij is normally a constant for each 

binary pair.  When utilizing the default kij values in 

Aspen HYSYS and Aspen Plus, the kij values are 

constant for all component pairs except for water/CO2 

and water/H2S where it is a temperature dependent 

function.  Different optimized values for the kij values 

can be found because the parameters may be optimized 

for different conditions, e.g. for accurate prediction of 

either the gas phase or the condensate phase.  For the 

calculation of dew points, it is reasonable to use binary 

interaction coefficients optimized for the gas phase 

(Bråthen et al., 2019).  

The PR and SRK versions used in Aspen Plus are 

equal to the Aspen HYSYS versions shown in (1) to 

(12), except that some of the numerical values are 

slightly different. Especially the coefficients in the mi 

expressions (8) and (12) are slightly different. 

The parameters in (1) to (12) may be slightly 
different in different process simulation programs.  The 

alfa (αi) parameter in equation (7) is calculated 
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differently in the PR-Twu and SRK-Twu models (Twu 

et al., 1991). 

A kij value for water/CO2 close to 0.19 is suggested 

by Ziabakshsh-Ganji and Kooi (2012), Li et al. (2014) 

and Bråthen et al. (2019).  Some recommends different 

kij values dependent on emphasis on the vapour or liquid 

phase (Austegard et al., 2006).  

The standard kij value in Aspen HYSYS and Aspen 

Plus for water/NH3 is -0.253 for PR and -0.273 for SRK.  

Skogestad (1980) states that the value -0.28 for SRK 

gives a good fit to experimental data. 

 

2.4 Electrolyte models in Aspen HYSYS and 

Aspen Plus 

 

Traditional equations of state are not taking ions in 

solution into account.  Aspen HYSYS and Aspen Plus 

have two models Sour PR and Sour SRK which are 

based on electrolyte calculations.  The Sour PR model is 

using PR for the gas phase and a Wilson equation (API, 

1980) for the liquid phase.  It is developed for stripping 

components like CO2, H2S and NH3 from water in 

hydrocarbon processing.  More complex models are also 

available.  In Aspen Plus, the Electrolyte NRTL model 

is available.  The standard Electrolyte NRTL in Aspen 

Plus use the Redlich Kwong equation of state for the 

vapour phase.  Que and Chen (2011) have combined 

Electrolyte NRTL in Aspen Plus with the SAFT model 

for the vapour phase.  Gudjonsdottir et al. (2016) 

compare different models including the extended 

UNIQUAC equation and is also including solid salt 

simulation and non-ideality in the liquid phase.   

The most important equations in electrolytic 

calculations of the CO2/carbonate and NH3/ammonium 

systems are based on the solubility of the gases in water 

and on the ion equilibriums of the ionization step for 

NH3 and two ionization steps for CO2.  The equations 

(15 to 24) are from Øi (2012) with equations for 

solubility and ionization of NH3 included.  These are 

similar to equations found in API (1980) and 

Gudjonsdottir et al. (2016).  One challenge with these 

models in a process simulation tool is that the electrolyte 

models normally use concentrations in e.g. (mol/liter) 

while process simulation tools like Aspen HYSYS and 

Aspen Plus use calculations based on mole fractions. 

Equation (13) and (14) shows solubility and 

ionization of NH3.  The “g” and “liq” in equation (13) 

and (15) indicate the gas and liquid phase.  All the other 

equations are indicating concentrations in the liquid 

phase. 

   

   

𝑁𝐻3(𝑔) ↔ 𝑁𝐻3 (𝑙𝑖𝑞)   (13) 

 
𝑁𝐻3 + 𝐻2𝑂 ↔ 𝑁𝐻4

+ + 𝑂𝐻−  (14) 

 

CO2(𝑔)  ↔  CO2(𝑙𝑖𝑞)   (15)  

 

In the liquid phase, CO2 reacts with hydroxide to 

bicarbonate according to Equation (16).   

 

CO2  + 𝛰𝛨− ↔  HCO3
−  (16) 

 

The fast proton transfer reactions (17 and 18) also occur.  

Equation (17) is the water self-ionization reaction and 

(18) describes the deprotonation of the bicarbonate ion 

to carbonate ion: 

 

𝛨2𝑂 ↔  H+  +  𝛰𝛨−  (17) 

 

𝐻𝐶𝑂3
− ↔  𝐶𝑂3

2− + 𝐻+  (18) 

 

 

The reactions in Equations (13 to 18) can be described 

with equilibrium constants.  The equilibrium in 

Equations (13 and 15) is normally described by a 

temperature dependent Henry’s constant which 

connects the partial pressure of the CO2 in the gas with 

the concentration of CO2 in the liquid. 

 

𝑝𝐶𝑂2 = 𝐻𝑒𝐶𝑂2 ⋅ 𝐶𝐶𝑂2  (19) 

 

𝑝𝑁𝐻3 = 𝐻𝑒𝑁𝐻3 ⋅ 𝐶𝑁𝐻3  (20) 

 

 

Equations (21 to 24) represent the equilibrium constants 

for the reactions in Equations (14) and (16 to 18). 

 

𝛫14 =
𝐶

𝑁𝐻4
+  ⋅𝐶H+

𝐶NH3.𝐶𝐻2𝑂
    (21) 

  

𝛫16 =
𝐶HCO3

−  

𝐶CO2·COH-
      (22) 

 

𝛫17 =
 𝐶𝐻+⋅𝐶𝑂𝐻−

𝐶H2O
    (23) 

 

𝛫18 =
𝐶

CO33
2-·C𝐻+ 

𝐶𝐻𝐶𝑂3
−

     (24) 

 

In addition an equation for the charge balance is needed, 

e.g. by setting the sum of concentrations for the negative 

ions equal to the sum of concentrations for positive ions.  

To solve this equation set, component material balances 

for the total of nitrogen containing components and for 

the total of carbon containing components can be 

included.  This is traditional if only the liquid phase is 

simulated. 

If the gas composition, pressure and the temperature 

dependent equilibrium constants are known, this 

equation set can be used to calculate the dew point 

temperature and all the liquid concentrations including 

the ion concentrations.   
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3 Process Description and Simulation 

Specifications 

3.1 Process description of raw biogas 

compression  

 

Figure 1. A raw biogas compression process 

 

The principle for a traditional raw biogas compression 

process is shown in Figure 1.  The compression can be 

up to 300 bar. 

The actual process is discussed in more detail in 

Hovland (2017), Øi and Hovland (2018) and Bråthen et 

al. (2019). Bråthen et al. (2020) used the same approach 

for dew point calculations of biogas mixtures containing 

H2S.   

In Øi and Hovland (2018), Bråthen et al. (2019;  

2020) it is stated that condensation during compression 

is a problem that should be avoided.   

 

 

3.2 Simulation specifications  
 

In earlier work, process simulations have been 

performed for different conditions relevant for biogas 

production as in Øi and Hovland (2018) and Bråthen et 

al. (2019; 2020).  The models PR, SRK, PRSV (Stryjek-

Vera, 1986), TST, PR-Twu and SRK-Twu were used.  

The default parameters (especially the kij for water/CO2) 

were used.  Phase envelopes showing the dew and 

bubble point curve for a temperature and pressure range 

have been calculated.  In the dry gas cases, the HYSYS 

2-phase option was selected for phase envelope 

calculations.  In the cases including water and NH3, the 

ComThermo 3-phase option was selected. 

Calculations have been performed with both Aspen 

HYSYS and Aspen Plus.  In Aspen Plus the Peng-

Robinson and RKSoave models were selected.  The B 

and D cases are referring to Øi and Hovland (2018) and 

simulated in Bråthen et al. (2019; 2020). 

In earlier simulations (Case B) dry biogas with 40 

mol-% methane and 60 mol-% CO2 starts at 37 °C and 

1 bar, is cooled to 10 °C and is compressed to 64 bar.  In 

this work, 1 mol-% NH3 is added, and the mol-% 

methane is reduced to 39. 

In earlier simulations (Case D), 59.9 kmol/h 

methane, 40 kmol/h CO2 and 0.1 kmol/h water is mixed 

at 37 ºC and 1 bar, cooled to 10 °C, and then compressed 
to 64 bar.  In this work, 1 mol-% NH3 is added, and the 

mol-% methane is reduced to 58.9. 

4 Process Simulation, Results and 

Discussion  

4.1 Simulation of dry methane/CO2 mixture 

including H2S/NH3 (Case B) 

 

An Aspen HYSYS flow-sheet model of the process for 

the base case simulation is presented in Figure 2. 

 

Figure 2. Aspen HYSYS flow-sheet for compression and 

cooling 

 

In earlier calculations, Case B was of interest because 

a 40 % methane and 60 % CO2 has a dew point close to 

0 °C.  Earlier evaluations from Øi and Hovland (2018) 

and Bråthen et al. (2019) have shown that below 60 mol-

% CO2, no condensation should appear if the 

temperature is kept above -3 °C. 

 

Table 1. Dew point at 64 bar, cricondenterm and 

cricondenbar for a mixture of 39 mol-% methane, 60 mol-

% CO2 and 1 mol-% NH3 (Case B)  

Model TDEW TCRIC (ºC) PCRIC (bar) 

PR Hysys -2.8 1.0 91.0 

SRK Hysys -2.7 1.3 89.8 

TST Hysys 1.6 2.0 83.9 

PR-Twu Hysys -3,7 0.1 91.6 

SRK-Twu Hysys -3.2 0.8 92.2 

Sour PR Hysys -2.8 1.0 91.0 

Sour SRK Hysys -2.7 1.4 90.0 

PR Aspen Plus -2.9 -0.9 90.0 

SRK Aspen Plus -1.2 -0.9 89.9 

 

The results in Table 1 are similar to the results from 

Øi and Hovland (2018) and Bråthen et al. (2019), and 

also similar to the results with 1 % H2S (Bråthen et al., 

2020).  The results in Aspen HYSYS and Aspen Plus 

are not identical due to slightly different model 

parameters.  The dew points are typically 2-4 K less than 

the calculations for mixtures without NH3.  These 

deviations are in the same order of magnitude compared 

to the deviation in calculated dew point between 

different models used.  The dew point change was 

slightly higher when adding NH3 compared to the 

change when H2S was added (Bråthen et al., 2020). 
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Figure 3. Phase envelope, Peng-Robinson, CH4=0.39, CO2=0.6, NH3=0.01. PR with default kij values. 

 

 
 

Also when NH3 is included, the calculated 

cricondenterms with different models have a deviation 

of typically 2-4 K.  It is concluded that the results can be 

expected to be fairly accurate for all the models 

evaluated.  Even with 1 mol-% NH3, very little 

condensation will appear above 0 °C in a dry biogas with 

more than 40 mole-% CH4.  This was also the 

conclusion without H2S from Hovland (2017), Øi and 

Hovland (2018) and Bråthen et al. (2019; 2020). 

The phase envelope from Aspen HYSYS is shown in 

Figure 3.  The dew point curve is to the right.  The point 

with the highest temperature is the cricondenterm.  The 

point with the highest pressure is the cricondenbar.  In 

the critical point for the mixture, the compositions in 

both phases are equal. 

The phase envelope in Figure 3 is very close to the 

phase envelope in Bråthen et al. (2019) which was 

calculated without NH3.  But the cricondenterm is 3 K 

higher.   This is the same comparison as the comparison 

in Table 1 which was also compared with simulations 

without NH3. The deviation in temperature seems to be 

less than 4 K.  According to Figure 3, there should not 

occur any condensation (two-phase) between 90 and 

300 bar.    

These simulations indicate that the calculated dew 

points and phase envelopes for dry biogas including up 

to 1 mol-% NH3 are reasonably accurate for all the 

models tested. 
 

 

4.2 Simulation of compression of a raw 

biogas including water and NH3, CaseD 

The process (Case D) was simulated with water and NH3 

included.  The simulations are similar to the simulations 

in Bråthen et al. (2019; 2020) and in this work 1 mol-% 

NH3 is added, and the mole fraction of methane is 

reduced correspondingly.  The results are shown in 

Table 2. 

Table 2.  Dew point at 64 bar, cricondenterm and 

pressure at cricondenterm for 58.9 mol% CH4, 40 mol% 

CO2, 1 mol% NH3, 0.1 mol% water, Case D  

Model 

TDEW 

(ºC) 

TCRIC 

(°C) 

PCRIC 

(bar) 

PR 30.4 -18.6 86.3 

SRK 31.1 -19.5 85.5 

PRSV 30.9 -19.7 85.9 

PRTwu 21.4 -22.1 86.1 

SRKTwu 22.5 -18.9 86.8 

 

Compared to the dew point temperatures without 

NH3 (Bråthen et al., 2019), the dew point was 4-6 K 

higher.  The deviation between the models were small.  

The TST model was also tried (as in earlier work), but 

the deviation in dew point temperature was considerable 

compared with the other models (about 10 K).   The dew 

point temperatures in Table 2 were also calculated in 
Aspen Plus with PR and SRK and that gave as expected 

similar results. 
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The calculated cricondenterm values in Table 2 are 

very much lower than the values in Bråthen et al. (2019) 

but similar to the values calculated by Bråthen et al. 

(2020).  The reason for the difference is probably 

because the values in Aspen HYSYS Version 10.0 and 

later are calculated without taking water into account.  

This is a problem also when calculating a phase 

envelope as in Figure 4.  The phase envelope in the 

figure is without NH3. 

The dew point temperature was also calculated with 

the electrolyte models Sour PR and Sour SRK (in Aspen 

HYSYS) and with the Electrolyte NRTL model (Electr-

NRTL in Aspen Plus).  When using the Sour PR model, 

the dew point was calculated to 37.7 °C without NH3, 

and it gave unreasonable values for gas streams with 

NH3.  When the Electrolyte NRTL model was used, the 

dew point temperature increased slightly from 51.4 °C 

without NH3 to 53.0 °C with 1 mol-% NH3.  This 

indicates that the simple PR and SRK models give more 

accurate dew point temperatures than the electrolyte 

based models, at least for low NH3 content. 

The challenge with combining an electrolyte model 

with a gas phase model is well known.  In the Aspen 

HYSYS user guide, it is stated that the flash calculation 

for Sour PR is much slower than the standard EOS 

because the method performs an ion balance for each 

calculation of the electrolyte model.  Que and Chen 

(2011) have combined Electrolyte NRTL in Aspen Plus 

with the SAFT model for the vapour phase.        

 

4.3. Calculation of dew point and liquid 

composition at different NH3 levels in gas 
 

In Table 3, the calculated liquid composition is shown 

for different NH3 compositions for the traditional PR 

equation and for the electrolyte Sour PR model.  

Table 3.  Dew point at 64 bar and liquid composition for 

different NH3 concentrations in gas and for the PR and 

Sour PR models of 59.9 mol% CH4, 40 mol% CO2, 0.1 

mol% water, Case D  

Model yNH3=0 0.01% 0.1% 1% 

TDEW(PR) 26.5 26.8 27.3 30.4 

xCO2(PR) 0.009 0.0085 0.0086 0.0092 

xNH3(PR) 0 0.0032 0.027 0.14 

TDEW(SOUR PR) 37.7 -3.51 -1.60 -19.5* 

xCO2(Sour PR) 0.009 0.108 0.266 0.7709* 

xNH3(Sour PR) 0 0.0848 0.263 0.0791* 

 

As commented in the previous subsection, the Sour 

PR model calculates unreasonable dew points (which 

decrease with increasing NH3 amount) for these 

conditions, even without NH3.  The PR model calculates 

a slight increase in dewpoint, which is reasonable.   

The PR equation calculates too low solubilities of 

CO2 and NH3 in the liquid.  This is expected because PR 

and SRK are not electrolyte based models. Non-

electrolyte  models calculate the dissolved NH3 and CO2 

only based on equation (19 and 20). 

  Because NH3 makes the water phase less acidic, the 

CO2 concentration is expected to increase when the NH3 

concentration increases.  This is the case for the 

electrolyte model Sour PR.  It is also seen that the 

amount of CO2 and NH3 is about equal for the case of 

0.01 % and 0.1 % NH3.  This is reasonable because that 

gives a close to neutral water solution.  Equation (21) 

shows that the ratio between the NH4
+ and NH3 

concentrations increases when the H+ concentration (or 

pH) increases.  Equation (22) shows that the ratio 

between the HCO3
- and CO2 concentrations increases 

when the OH- concentration increases. 

 For the case of 1 % NH3 in the gas, the 

concentrations of CO2 and NH3 become very large, and 

this is probably outside the reasonable range for the Sour 

PR model. Similar calculations have also been 

performed using the Electrolyte NRTL model.  That 

gave more CO2 and less NH3 in the solution compared 

to the Sour PR model.  For NH3 values typically for 

biogas which are lower than 0.1 %, the calculated liquid 

compositions using the Sour PR model are reasonable. 

   

4.4. Phase envelope calculations 

 
The phase envelope for PR with kij=0.19 from Table 2 

is shown in Figure 4.  The phase envelope in Figure 4 is 

from Bråthen et al. (2019) without NH3.  Based on the 

results in Table 2, the dew point line to the right in the 

figure will deviate (increase) with order of magnitude 3 

K.  For reasonable NH3 levels in biogas below 0.1 mol-

%, the deviation compared to the phase envelope is 

expected to be less than 1 K.  For pressures above the 

critical point (about 90 bar), the dewpoint is expected to 

decrease slightly according to Figure 4.   

As stated in earlier work, it is expected that the 

uncertainty in dew point calculations increases when the 

pressure increases and the mixture is close to the critical 

point which is about 70 bar (Øi and Hovland, 2018; 

Bråthen et al., 2019). 
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Figure 4. Phase envelope for PR model, 59,9 mol% CH4, 40 mol% CO2, 0.1 mol% water: kij =0.19 for water/CO2 

(Bråthen et al., 2019) 

 

 

5  Conclusion  

Specified mixtures of raw biogas with and without water 

have been simulated at different temperatures and 

pressures.  The effect of adding up to 1 mol-% NH3 to 

the mixtures have been evaluated.   For some conditions, 

phase envelopes have been calculated and different 

models have been compared.  

For mixtures of methane and CO2 with up to 1 mol-

% NH3 (a high value for biogas), the different models 

gave similar results.  Under normal ambient 

temperatures (above 0 °C), a mixture with more than 40 

mol-% methane will not give any condensation.  When 

the NH3 increased from 0 to 1 mol-%, the dew point 

temperature increased with 3.0 K.  A phase envelope for 

biogas with 1 mol-% NH3 is only slightly different from 

an earlier calculated phase envelope for biogas without 

NH3. 

When raw biogas is cooled or compressed, water will 

condense first. NH3 will dissolve in the water, and the 

amount of calculated NH3 dissolved in water varied 

significantly with the model. 

  For biogas simulation including NH3, a simple 

equation of state as PR or SRK can be recommended to 

determine the dew point.  If accurate composition of the 

condensed liquid is to be calculated, an electrolyte based 

model like Sour PR or Electrolyte NRTL is 

recommended.  
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Abstract
The paper discusses the principles behind epidemiol-
ogy models, with examples taken from the classic SIR
(suspectible-infected-recovered) and SEIR (S-exposed-
IR) models. Both continuous time deterministic and
stochastic models are treated, where the stochastic models
are based on Poisson-distributed events/reactions. These
models use real approximations to the integers represent-
ing the number of people in each of the classes S, (E,) I,
R. An alternative stochastic representation is the first re-
action time description, where the variables are kept as in-
tegers, and where one instead computes the time between
each event. The models are presented in a form compati-
ble with standard chemical engineering models.

Based on the model description, the SIR and SEIR
models are fitted to a measles case study using the Markov
Chain Monte Carlo approach. For the given data, the SIR
model appears to give much smaller uncertainty in predici-
tons. The continuous time stochastic description and the
firt reaction time approaches give similar variation in the
models.

An important measure of the state of epidemics is the
reproduction number, R, which tells whether the infection
is growing or decreasing from an initial infection. The
development of an expression for R is indicated both from
eigenvalues and from the Next-Generation Approach, and
it is shown that the expression for R is identical for the
SIR and the SEIR model.

The principles of epidemiology model development
discussed in the paper are used in models ranging from
HIV/AIDS to COVID-19.
Keywords: epidemiology, reaction engineering, determin-
istic models, stochastic models, model fitting, measles
case study

1 Introduction
1.1 Background
The COVID-191 pandemic spreading in 2020 initially
caused fear, irrational hoarding of consumer goods, un-
certainty about future food supply, and economic depres-
sion. References to historic disasters such as the Black
Death and the “Spanish Flu” were drawn. This period
also spawned a renewed interest in epidemiology to un-

1COVID-19 is the COrona VIrus Disease originating in 2019. The
World Health Organization and Wikipedia.com both appear to write
COVID-19 in all caps.

derstand how infections spread, and a massive effort in
development of virus medicine and vaccines. Policy mak-
ing and society saw challenges hardly faced before on how
to adapt to the development in real time. The effort to
develop vaccines has probably been the largest directed
effort since space exploration, and similar to space tech-
nology, the medical developments will have wide ranging
consequences. The sociological experiment faces serious
questions regarding the limits of governing and personal
freedom.

Although developed within life sciences, epidemiolog-
ical models have much in common with chemical reac-
tion engineering. A key difference is that while chem-
istry operates with particle numbers in the order of 1023,
epidemiological models operate with number of people in
the range of 102– 109. Deterministic epidemics models
are common, but the “law of large numbers” as used in
chemical engineering does not really apply, and stochastic
formulations are of interest.

Policy making and epidemics mitigation has much in
common with feedback control under uncertainty. It is
therefore of interest to relate epidemiological models to
formulations and notation from chemical reaction engi-
neering and process control.

1.2 Previous work
Pandemics such as COVID-19 are not new. The (bacte-
rial) bubonic plague2 that came to Europe ca. 1346-47 be-
came known as the Black Death (1346–1353), and killed
an estimated 60% of the population in Europe (50-80 mil-
lion), and some 75–200 million worldwide. Poland closed
its borders, and was more or less spared from the plague;
Iceland was partially spared since sailors died before the
ships arrived to Iceland. An artistic work from this period
expressed an almost modern belief in science:

“Elegant ladies, as I believe you know, the
wisdom we mortals possess does not merely
consist of remembering things past and appre-
hending the present, but on the basis of these
two activities being able to predict the future,
which is considered by serious men to be the
highest form of human intelligence.”

Boccaccio, Giovanni (1349-1351/-52). The
Decameron, p. 851. Translated by Wayne A.
Rebhorn. W. W. Norton & Company. Kindle
Edition.

2https://en.wikipedia.org/wiki/Bubonic_plague
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The “Spanish Flue”3 or the 1918 influenza pandemic, in-
fected up to 500 million, with 17–100 million deaths.
Classical epidemiology models were developed in the
decade following the “Spanish Flu”.

Historically, the population of N individuals was par-
titioned into a deterministic 3 compartmental model con-
sisting of those who are susceptible to an infection (S),
those who have been infected (I), and those who have
recovered (R), (Kermack and McKendrick, 1927). Con-
sidering infections as reactions, and reaction events fol-
lowing a Poisson distribution, a determistic model can be
converted to a stochastic model and solved using stochas-
tic differential equation solvers. Alternatively, the model
can be solved using Gillespie’s algorithm, which is based
on work in the statistics community ca. 1930–19504 and
also assumes that reactions follow a Poisson distribution
(Gillespie, 1976, 1977).

Approximately at the same time as the deterministic
Kermack-McKendrick model, the stochastic Reed-Frost
model was formulated which describes the same SIR
types; this model was published much later, (Schwabe
et al., 1977). This model is based on SIR compartmen-
talization, is discrete in time, and assumes a stochastic in-
fection transmission with a fixed probability. To some de-
gree, this model is related to agent-based models, where
one could envision tracking of individuals within a com-
partment.

A good, general introduction to epidemiology models is
(Keeling and Rohani, 2008). See also (Martcheva, 2015),
who gives a more mathematically oriented overview with
elements of stability results using Lyapunov theory. In
(Brauer et al., 2019), various complex epidemiology mod-
els are discussed, with a number of case studies. An im-
portant concept related to infection spreading is the so-
called reproduction number, R, which is related to ini-
tial stability of the infection model. An alternative to the
above “balance” type models, is models whare “particles”
move around in space, and are infected based on some
stochastic model due to proximity to other infected “par-
ticles”, e.g., (Britton and Pardoux, 2019).

Classical epidemiological models use a spatial descrip-
tion (Euler description) where the focus is on a number
of compartments of fixed area/people with fixed attributes
(age, immune level, etc.) where people move in and out of
the various compartments/attributes. An alternative could
be a material description (Lagrangian description) where
one instead track the status of each individual or a group
of individuals of similar attributes, and how these move
about in the world, get into proximity with other people,
and get infected with a certain probability. Such mate-
rial descriptions are sometimes referred to as agent-based
models.5 Agent-based models are not discussed in this

3The disease apparently was first observed in Haskell County,
Kansas, USA in January 1918, with first known case being an army
cook at Camp Funston in Kansas, March 4, 1918.

4https://en.wikipedia.org/wiki/Gillespie_algorithm
5Some presentations of epidemiology refer to Lagrangian and Eu-

paper.

1.3 Scope
The focus in this work is to relate basic epidemiology
models to process engineering concepts such as balance
equations, “chemical” reactions, and mass action rates.
A comparison between deterministic and various stochas-
tic models is given. Some basic analysis is provided, to-
gether with methods for model solution and model fitting.
As a simple case study, a model of a measles outbreak
is used, and model fitting is developed. The paper is orga-
nized as follows: in Section 2, some details of the problem
scope with materials and methods is given, in Section 3,
the methods in Section 2 are applied to a case of measles
infection. Section 4 provides basic analysis of models
with reference to epidemics growth and reduction: devel-
opment of expressions for the basic reproduction number.
Section 5 provides some conclusions.

All computations in the paper are carried out using
language Julia, which has an excellent package for solv-
ing both deterministic and stochastic differential equa-
tions (DifferentialEquations.jl; (Rackauckas
and Nie, 2017a), (Rackauckas and Nie, 2017b), (Rack-
auckas and Nie, 2018)), as well as standard least
squares model fitting (package BlackBoxOptim.jl)
and Markov Chain Monte Carlo methods (Turing.jl).
Plotting is done with package Plots.jl.

2 Materials and methods
2.1 Number balance
In epidemiology models, individuals are categorized into
nX types/classes X j with j ∈ {1, . . . ,nX}. The number of
individuals in class/compartment X j is denoted X j ∈ N0,
and the total number of individuals in the population is
N = ∑

nX
j=1 X j. For efficiency, we collect individuals X j into

vector X ∈ NnX
0 .

A general (vector) number balance for the individuals
in the compartments is

X (t +∆t) = X (t)+
∫ t+∆t

t

(
Ẋi (θ)− Ẋe (θ)+ Ẋg (θ)

)
dθ .

(1)

Here, Ẋ ∈ ZnX denotes flow rate, with subscripts i: immi-
gration, e: emigration, and g: generation, and Ẋg = N · rg,
where the per capita rate of generation vector rg for the nX
classes is

rg = ν
Tr (2)

and ν ∈ Qnr×nX is the stoichiometric reaction matrix,
while r is the rate of reaction per capita for the nr reac-
tions.

If we make the assumption that the elements of X are
“large” numbers so that

∣∣∣(X (t +∆t)−X (t)) j

∣∣∣� ∣∣∣X (t) j

∣∣∣,
lerian movement in an unconventional way, e.g., Martcheva (2015), pp.
389–392.
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we make the approximation X ∈ RnX
0 . If we also assume

that the integrand is a continuous function of time6, the
mean value theorem allows the result

dX
dt

= Ẋi− Ẋe +N ·
(

ν
Tr
)
. (3)

With similar assumptions, we can describe the total popu-
lation as

dN
dt

= Ṅi− Ṅe + Ṅg. (4)

Introducing the per capita number X̌ , X̌ , X/N, and simi-
larly Ẋi , Ṅi · X̌i, Ẋe , Ṅe · X̌e, the per capita model is

dX̌
dt

=
Ṅi

N

(
X̌i− X̌

)
+ν

Tr−
Ṅg

N
X̌ . (5)

2.2 Assumptions on the total population
Simple epidemiology models consider a single compart-
ment with constant population: either dead people are
considered part of the population and births are neglected,
or birth rate and death rate are assumed to be equal. If the
spread of the infection is slow compared to the birth/death
cycle, population growth must be included in the model.

If infection rate and level of illness depends on internal
coordinates such as age, underlying illnesses, etc., it may
be necessary to pose separate models for each age group,
etc. In this case, “birth” and “death” into each age group
or group of underlying conditions must be included.

If there is a geographical distribution in the number of
infected per capita, some sort of distributed model should
be used. Examples could be one compartment per country,
per region, per municipality, per suburb, or other natural
groupings. In this case, it may be necessary to include im-
migration and emigration for the individual compartments
— this depends on the level of interaction vs. the rate of
infection spread.

2.3 The classical continuous SIR description
In the classical (Kermack and McKendrick, 1927) model,
the population of N individuals is divided into 3 groups:
individuals of type S are susceptible for infection, individ-
uals of type I are infected, while individuals of type R have
recovered from the infection (or died), thus X = (S, I,R).
There is a chain of “reactions” S→ I→ R, which can be
broken down into two independent parallel events E j —
interaction with infection Ei of rate ri, and recovery Er of
rate rr:

Ei :S I→
ki

I, ri

Er :I→kr R, rr.

Here, S I→
ki

I indicates that an infected individual catal-
yses the transformation of a susceptible S into a new in-
fected individual I without “consuming” the original in-
fecting individual, with a frequency factor ki or with a

6Invalid for stochastic processes!

mean interval τi = 1/ki.7 The infection rate ri per capita
takes place with a certain probability when a susceptible
individual is in proximity of an infected individual, thus
the probability of infection depends on the relative con-
centration of the two types, in accordance with the law of
mass action in chemical kinetics,

ri =
1
τi

ŠǏ = kiŠǏ.

At the same time, I→kr R indicates a simple recovery
(i.e., no catalysis) from infected I to recovered R during a
mean time of τr = 1/kr. The reaction rr depends only on
the concentration of the infected type, thus

rr =
1
τr

Ǐ = krǏ.

The stoichiometric reaction is(
−1 1 0
0 −1 1

)
︸ ︷︷ ︸

=ν

 S
I
R

← ( 0
0

)

where ν is the stoichiometric matrix. It follows that rS,g
rI,g
rR,g

= ν
T
(

ri
rr

)
=

 −ri
ri− rr

rr

 .

2.4 Extension: the SEIR description
In the SEIR description, individuals are classified as type
S (susceptible), type E are exposed to infection, but the in-
fection is latent, type I (infected), and type R (recovered).
This gives X = (S,E, I,R), and neglecting birth and death,
N = S+E + I +R. The chain of events S→ E→ I→ R,
can be broken down into the three parallel independent
events Ei, Ee, and Er with rates ri, re, and rr, respectively:

Ei :S I→
ki

E, ri =
1
τi

ǏŠ = kiǏŠ

Ee :E→ke I, re =
1
τe

Ě = keĚ

Er :I→kr R, rr =
1
τr

Ǐ = krǏ.

The stoichiometric reaction is −1 1 0 0
0 −1 1 0
0 0 −1 1


︸ ︷︷ ︸

=ν


S
E
I
R

←
 0

0
0


7Note that τi = 1/ki is not the length of time an infected person stays

infected (which probably is more or less constant), but rather the mean
interval between each time one infected individual causes a suscepti-
ble to become infected. In other words, if a freshly infected person is
removed from society (e.g., locked up, or otherwise put away), then
τi → ∞, alternatively ki → 0, but the same infected person will still re-
cover (or die) in finite time.
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where ν is the stoichiometric matrix. It follows that
rS,g
rE,g
rI,g
rR,g

= ν
T

 ri
re
rr

=


−ri

ri− re
re− rr

rr

 .

2.5 Poisson distribution in events
Let Nt be the (random) number of events that already
have occurred at time t, and let Nt+∆t denote the number
of events that have occurred at time t +∆t. Introducing
∆Nt , Nt+∆t −Nt, it follows that in the interval [t, t +∆t],
we have ∆Nt ∈N0 new occurrences. When occurances ap-
pear with a constant mean rate λ , random variable ∆Nt is
Poisson distributed, ∆Nt ∼ Pois(λ ), with

E(∆Nt) = λ

V(∆Nt) = λ .

Next, consider the random generation rate R = ∆Nt
∆t in

a relatively short time interval ∆t, and an average rate of
generation r̄ so that λ = r̄ ·∆t. There is no guarantee that
realization r = ∆n

∆t is an integer, but the random variable
R is distributed according to a quasi continuous Poisson
distribution, R∼ cPois(r̄), where for “large” r̄,

E(R)≈ r̄
V(R)≈ r̄.

Furthermore, for realistic values of r̄, the random rate R
will approach a normal distribution R∼ N

(
r̄,
√

r̄
)
.

2.5.1 Stochastic differential equation

When the reaction rate is random (r in Eq. 3 becomes
R), the mean value theorem is invalid, and Eq. 3 must be
rephrased as a stochastic differential equation (SDE)

dX = Ẋidt− Ẋedt +N ·
(

ν
TR
)

dt.

With R∼ N
(
r̄,
√

r̄
)

and introducing Z ∼ N(0,1), this can
be rephrased as

dX =
(

Ẋi− Ẋe +N ·
(

ν
Tr̄
))

dt +N ·
(

ν
T
√

r̄
)

Zdt.

Using an SDE solver, a number of realizations are found.
Then based on these realizations, statistics (mean, etc., in-
cluding the distribution) can be computed for each time
instance. Alternatively, an associated determistic Fokker-
Planck equation can be posed, and solved to find the prob-
ability distribution directly.

When formulating the SDE, the approximation X ∈RnX

is used.

2.5.2 First reaction time
Let Nt be the random number of arrivals accumulated at
time t. Let ∆Tt be the random time it takes for the event
of one additional arrival, assuming that someone arrived
at time t.

By definition, the following two events are equivalent:

(∆Tt > ∆t)≡ (Nt = Nt+∆t) .

With ∆Nt ∼ Pois(λ ), it can be shown that ∆T is Exponen-
tially distributed, ∆T ∼ Exp(r̄), or alternatively with U
uniformly distributed U ∼ U[0,1) we can use

∆T =−1
r̄

ln(U) .

In the simplest version of Gillespie’s algorithm, a three
step procedure is used: (i) first, a uniform random num-
ber generator is used to find which event takes place (i.e.,
which of the reaction takes place), (ii) secondly, the time
∆T until next event is computed by drawing from an Ex-
ponential distribution. (iii) Then only the event found
from (i) is carried out, and the time index is updated to
ti+1 = ti +∆T .

A number of realizations of the first reaction time model
can be carried out, and it is possible to compute statistics
for each time point.

Alternatively, similarly as for SDEs and the Fokker-
Planck equation, a deterministic master equation can be
posed to describe the probability distribution of the solu-
tion for the first reaction time model.

When using the first reaction time formulation, we
maintain the fact that the number of people are integers,
X ∈ NnX

0 .

2.6 Reproduction number
The reproduction number of the disease is the average
number of persons that an individual infects before recov-
ering. The basic reproduction number R0 is the reproduc-
tion number when (i) starting from a disease-free state, (ii)
for the zeroth generation, i.e., the natural reproduction at
initial time when everyone are susceptible, prior to invok-
ing any mitigation policy.

For the SIR model, the initial time Jacobian JX̌ of the
model vector field is

JX̌ =

 −kiǏ −kiŠ 0
kiǏ kiŠ− kr 0
0 kr 0

 .

Starting from a disease-free state, Ǐ (0)≡ 0,

JX̌ =

 0 −kiŠ (0) 0
0 kiŠ (0)− kr 0
0 kr 0

 .

JX̌ has two eigenvalues in the origin, and one eigenvalue
at

λ = kiŠ (0)− kr.
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Table 1. Daily number of measles infected at boarding school
with 763 boys in Northern England, January-February 1978.
Taken from (Martcheva, 2015).

Day # infected Day # infected
3 25 9 192
4 75 10 126
5 227 11 71
6 296 12 28
7 258 13 11
8 236 14 7

Stability requires λ < 0,

kiŠ (0)
kr

< 1.

The infection rate constant ki varies with mitigation pol-
icy, etc. Let k0

i denote the natural rate constant without
mitigation. The basic reproduction number R0 is assessed
when Š (0)≡ 1 and without mitigation, hence

R0 =
k0

i
kr
.

With mitigation, we could define an effective reproduction
number R, ki/kr.8

2.7 Model fitting

In simple model fitting, model parameters and initial states
are posed as unknowns in a loss function that measures
the difference between experimental data and a shooting
(ballistic) formulation of the model. More sophisticated
methods for Bayes estimation are conveniently solved us-
ing Markov Chain Monte Carlo methods (MCMC), see,
e.g., (Evensen, 2009) for a practical introduction with his
Ensemble Kalman Filter approach. Other methods and
tools exist.

2.8 Measles case study

At a boarding school in North England, January–February
1978, measles infection was observed among the 763
pupils, with 25 infections on assumed day 3 of the epi-
demic. The evolution of observed infections was as
recorded in Table 1.

In (Martcheva, 2015), a SIR model is used to model the
infection, assuming that N = 763 is constant, and that all
pupils are locked up in the school. The basic reproduc-
tion number for measles is estimated to be in the range
R0 ∈ [16,18], (Keeling and Rohani, 2008), which should
be contrasted to the range [3,4] for seasonal flu.

8R0 and R has nothing to do with the number R of recovered.

Figure 1. Comparing SIR model with original parameters vs.
registered infection data for boarding school in North England,
January–February 1978.

Figure 2. Distribution in Bayes estimates of parameters τr =
1/ki and τi = 1/kr in SIR model based on infection data for
boarding school in North England, January–February 1978. Dr.
Tamas Papp, TU Wien, provided the function of doing this plot.

3 Measles case study
3.1 SIR model
3.1.1 Deterministic model with model fitting

With the data in Table 1, and using parameters
((Martcheva, 2015), p. 127 )

ki = βN = 0.0025 ·763 = 1.9075
kr = α = 0.3,

the deterministic model fits data reasonably well, Figure 1.

It is of interest to find better model parameters. With-
out going into details, the Turing.jl package for Julia
supports Markov Chain Monte Carlo (MCMC) estimation
of the model parameters, with parameter probability dis-
tribution as in Figure 2.
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Figure 3. Comparing SIR model data retrodiction vs. registered
infection data for boarding school in North England, January–
February 1978. Dark/thick lines are based on the point esti-
mates.

Point estimators (mean values) of the parameters are
found to be:

ki ≈ 1.817
kr ≈ 0.4618,

which gives an effective reproduction number of R ≈
1.817/0.4618≈ 3.9. MCMC provides a number of possi-
ble parameter values, and this parameter uncertainty trans-
lates into prediction uncertainty, known as data retrodic-
tion; results are given in Figure 3 in pale/thin lines, to-
gether with the simulation when using the point estimates
in dark/thick lines.

From the data retrodiction, we see that there is rela-
tively little uncertainty in the model even with varying pa-
rameters. This indicates that the model has quite good
predictive properties.

3.1.2 SDE model

Using basic data from the deterministic simulation, we ex-
pand the model to a set of stochastic differential equations
as described Section 2.5.1. The results are shown in Fig-
ure 4.

3.1.3 First reaction event model

Instead of formulating the model as Stochastic Differen-
tial Equations, we can write integer difference equations
with first reaction event description for changes, see Sec-
tion 2.5.2. The results are shown in Figure 5, and should
be compared to the results in Figure 4.

3.2 SEIR model
It is of interest to consider the SEIR model for the measles
case, where we assume that I3 is known, that R3 = 0, that
N is known, but that S3 or E3 are unknown; we choose to
estimate S3. Reusing the model parameters for ki and kr
from the SIR model, we initially assume that ke = 2; see
Figure 6.

Figure 4. Stochastic realizations (trajectories) for an ensemble
of 100 possible scenarios.

Figure 5. Stochastic realizations (trajectories) for an ensem-
ble of 100 possible scenarios using Gillespie’s First Reaction
Method.

Figure 6. SEIR model with original parameters vs. registered
infection data for boarding school in North England, January–
February 1978.
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Figure 7. Comparing SEIR model data retrodiction vs. reg-
istered infection data for boarding school in North England in
January–February 1978. Dark lines are based on the point esti-
mates.

We can also fit the parameters of the SEIR model, in-
cluding the initial value of S3. The result are the following
point estimates (mean value):

ki ≈ 2.50
ke ≈ 2.826
kr ≈ 0.477
S3 ≈ 720

If we draw estimates of these parameters and initial
value and redo simulations, the data retrodiction is as in
Figure 7. As we see, the uncertainties in the retrodiction
of the SEIR model, Figure 7, are far larger than the un-
certainties in the retrodiction of the SIR model, Figure 3.
This may indicate that the measles infection is best mod-
eled by a SIR model, but it must be remembered that we
have few data points and the SEIR model has almost twice
as many parameters as the SIR model9.

4 Analysis of epidemiology models
4.1 Condition for infection growth
With model

dX̌
dt

= F
(
X̌
)

in per capita variables X̌ , a standard procedure for finding
conditions for infection growth is to analyze the Jacobian

JX̌0
=

∂F
∂ X̌

∣∣∣∣
X̌0

,

where X̌0 is the operating point. In general, the operating
point will depend on the current states.

9Estimated parameters for the SIR model: ki, kr, and standard devi-
ation in output error. Estimated parameters for the SEIR model: ki, ke,
kr, initial value for S3, and standard deviation in output error.

In a standard way, stability can be assessed based on
eigenvalues, or related Routh-Hurwitz criteria. However,
eigenvalues are often difficult to compute for realistic
models.

An alternative is the Next-Generation Approach
(van den Driessche, 2017; Martcheva, 2015). With model

dX̌
dt

= ν
Tr

where r = r
(
X̌
)
, assume that X̌ has been sorted such that

X̌ = (x,y) and x contains the infected compartments while
y contains all other compartments. Thus, we have the dif-
ferential equations

dx
dt

= f (x,y)

dy
dt

= g(x,y)

where (
f (x,y)
g(x,y)

)
= ν

Tr (x,y) .

We split f (x,y) into two terms,

f (x,y) = F (x,y)−V (x,y)

where Fi (x,y) contains the rate of appearance of new in-
fections in compartment i, while Vi (x,y) include all other
terms: births, deaths, disease progression, recovery. Ob-
serve that F (x,y) and V (x,y) are not necessarily unique.

Let F and V be the Jacobians of F and V in the
disease-free case given by x0,y0, where x0 = 0 and y0 ≥ 0:

F =
∂F (x,y)

∂x

∣∣∣∣
0

V =
∂V (x,y)

∂x

∣∣∣∣
0
.

Then N = FV−1 is the Next-Generation Matrix. Let
ρ (N) denote the spectral radius of matrix N: with λi the
eigenvalues of N, ρ (N) = maxi |λi|. We can then define
the reproduction number R as

R, ρ
m (FV−1)

where m is some integer to make R ∝ ki. The infection is
under control/decreases if R < 1, and is out of control/-
grows if R> 1.

4.2 Stability from SEIR model
For the SEIR model with Š (0) = 1, the disease-free Jaco-
bian is

JX̌(0) =


0 0 −ki 0
0 −ke ki 0
0 ke −kr 0
0 0 kr 0

 ,
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and it is feasible to find R from eigenvalue analysis. How-
ever, for illustration, we consider the Next-Generation Ap-
proach.

Here, x =
(
Ě, Ǐ
)
, and we need to extract elements

(2 : 3,2 : 3), i.e.,

J0 =

(
−ke ki
ke −kr

)
=

(
0 ki
ke 0

)
︸ ︷︷ ︸

=F

−
(

ke 0
0 kr

)
︸ ︷︷ ︸

=V

,

and the Next-Generation Matrix N is

N = FV−1 =

(
0 ki
ke 0

)(
ke 0
0 kr

)−1

=

(
0 ki

kr
1 0

)
,

with eigenvalues

det

 λ − ki

kr
−1 λ

= λ
2− ki

kr
= 0

and spectral radius

R= ρ
m (N) = m

√
ki

kr
;

where we choose m = 2 so that R ∝ ki; R = ki
kr

— just as
for the SIR model, see Section 2.6.

5 Conclusions
An overview of principles for formulating epidemiologi-
cal models has been given. Here, models based on bal-
ance laws are treated; the principle is identical to what is
used in chemical engineering and other process engineer-
ing fields. A deterministic model is the starting point, and
it is discussed how the assumption of Poisson distribution
in the reactions events leads to either a stochastic differ-
ential equation or the first reaction time model/Gillespie
formulation. These ideas of Poisson distribution carries
over to chemical reactions in general.

Based on the published measles infection data,
a susceptible-infected-recovered (SIR) epidemiological
model is fitted to data using a Markov Chain Monte Carlos
approach (MCMC), and appears to be adequate. It is also
possible to fit an extended model with an exposed class
(SEIR) to the measles data, but this gives much wider un-
certainty in model parameters, with resulting large uncer-
tainty in model predictions.

In an analysis part, several ways of finding an expres-
sion for the reproduction number R are discussed; R is
used to describe the stability of an infection. The Next-
Generation Approach is probably the method that is sim-
plest to use for complex models.

This paper lays out the fundamental ideas behind epi-
demiology models, as used, e.g., in COVID-19 studies.
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COVID-19 Models and Model Fitting

Bernt Lie

University of South-Eastern Norway, Porsgrunn, Norway, Bernt.Lie@usn.no

Abstract
The paper discusses how to use cumulative confirmed in-
fected numbers to find basic infection parameters. Next,
an extension of the SEIR model, the SEICUR model from
the literature (a renaming of the SEIRU model) is intro-
duced, with details of how to compute the full set of model
parameters, as well as the reproduction number R. A dis-
cussion is given of how the infection rate parameter re-
lates to mitigation policy and various natural variations.
Based on a simple mitigation model, an equivalent miti-
gation policy is found for Italy, Spain, and Norway. An
indication of how to use feedback control theory to de-
velop mitigation policy planning is given.
Keywords: COVID-19 models, deterministic models,
model fitting, control relevance

1 Introduction
1.1 Background
The COVID-191 pandemic spread in 2020 initially caused
fear, irrational hoarding of consumer goods, uncertainty
about future food supply, and economic depression, but
also spawned a renewed interest in epidemiology to un-
derstand how infections spread, and a massive effort in
development of virus medicine and vaccines. Policy mak-
ing and society saw challenges hardly faced before on how
to adapt to the development in real time.

Data for the number of COVID-19 infected and deaths
related to this, started to appear in January-February 2020.
Initially, the number of infected and deaths were highly
uncertain and underreported due to lack of reliable test
procedures. Due to many asymptomatically infected, the
true number of infected is still uncertain, while the num-
ber of deaths is more certain. Still, there is a discussion
on whether people die of COVID-19 or with COVID-19.
Relatively reliable sources suggest around 600 thousand
deaths in USA as of this writing2, while some report more
than 900 thousand deaths in USA based on some estimate
of underreporting3.

A number of COVID-19 models have been developed
since March 2020; many of them are vague on how to in-

1COVID-19 is the COrona VIrus Disease originating in 2019. The
World Health Organization and Wikipedia.com both appear to write
COVID-19 in all caps.

2https://www.worldometers.info/coronavirus/,
https://coronavirus.jhu.edu/

3https://covid19.healthdata.org/united-states-of-
america?view=cumulative-deaths&tab=trend

tegrate data with the models, few discuss mitigation pol-
icy (hand cleaning, social distancing, etc.), how to design
such policy under model uncertainty, and the effects of
virus mutation and vaccination.

1.2 Previous work
Classical epidemiology models were developed in the
decade following the “Spanish Flu”. A renewed public in-
terest in epidemic models started with the AIDS/HIV epi-
demic some decades ago; these models have been used to
study other infectious diseases, e.g., (Brauer et al., 2019).
(Lie, 2021) gives a brief overview of such general models
from a process engineering point of view.

(Zlojutro et al., 2019) give a general framework, pre
COVID-19, for border control to mitigate global out-
breaks, and include stochastic models per country, with
transport between countries by airlines. The IHME
COVID-19 Forecasting Team4 give a general overview of
their model in (Reiner et al., 2021)5. An early study by
Imperial College London6 convinced the government in
USA to take the epidemic more seriously. Many models
have been provided on-line in web pages. A review of
COVID-19 models is given by (Rahimi et al., 2021).

It is difficult to find models that are described com-
pletely, with model parameters. One such model is that
of (López and Rodó, 2020), giving parameters for var-
ious regions in Spain. The SEIRU and SIRU models,
(Liu et al., 2020b,a,c), are relatively; symbol R denotes
reported cases instead of the conventional use of R as re-
covered. These SEIRU class models are macro models
for each country, and have the important advantage over
other models that the “reported” class equals the number
of reported infected. Yet another model is that used by the
Public Health Institute in Norway, (Øyvann, 2020), and
probably several other centers for disease control (CDC)
in Europe. In Norway, this model is posed for each mu-
nicipality (possibly also for certain suburbs), and includes
migration between each compartment — estimated from
anonymized mobile phone locations.

A key parameter in all models is the infection rate. The
infection rate is a problematic quantity which varies with
natural phenomena and season, as well as mitigation pol-

4The Institute for Health Metrics and Evaluation (IHME) is an inde-
pendent global health research center at the University of Washington

5https://covid19.healthdata.org/united-states-of-
america?view=cumulative-deaths&tab=trend

6https://www.imperial.ac.uk/mrc-global-infectious-disease-
analysis/covid-19/covid-19-planning-tools/
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Figure 1. Cumulative number of confirmed infected in Italy vs.
time (darkseagreen; left ordinate axis), and cumulative number
of dead (grey; right ordinate axis).

icy and occurrence of mutations.

1.3 Scope

In Section 2, some available data are discussed, and basic
model parameters are found. The SEICUR model is intro-
duced (recasting of the SEIRU model), with procedures
for finding model parameters. This model is constrasted
to the Public Health Institute (PHI) of Norway. The in-
fection rate parameter is related to mitigation policy, and
expressions for reproduction number is given. In Section
3, the SEICUR model is fitted to data for Italy, Spain, and
Norway. In Section 4, the results are discussed, and some
conclusions are drawn.

All computations in the paper are car-
ried out using language Julia, with packages
DifferentialEquations.jl, (Rackauckas and
Nie, 2017a), (Rackauckas and Nie, 2017b), (Rackauckas
and Nie, 2018), LsqFit.jl for initial curve fitting,
BlackBoxOptim.jl for equivalent mitigation policy
fitting, and Plots.jl for plotting results.

2 Materials and Methods

2.1 COVID-19 data

Web page https://github.com/octonion
/COVID-19, at folder csse_covid_19_data,
subfolder csse_covid_19_time_series, file
time_series_covid19_confirmed_global.csv
provides daily updates of globally confirmed infected.
Pre-treatment is required: some countries give regional
data; others total data for the country. Here, we will
focus on models for Norway, Italy, and Spain. Figure 1
shows cumulative number of infected and dead in Italy.
Although it is possible to also model the rate of deaths,
this is not done in this paper.

2.2 Initial evolution of C
Form of initial evolution Let C denote the number of
cumulative confirmed infected, which can be expressed as

dC
dt

= ϕ (1)

where ϕ is the rate at which people are confirmed in-
fected. The actual expression for ϕ depends on the in-
fection model. In the initial phase of an epidemic starting
from the disease-free case, the rate at which people be-
come confirmed infected increases exponentially

ϕ (t) = ϕ0 exp(λ · (t− t0)) ,

with λ > 0. Let ∆t , t− t0, ∆C(∆t) , C(t)−C(t0), and
χ0 ,

ϕ0
λ

, it follows that

∆C(∆t) = χ0 (exp(λ ·∆t)−1) . (2)

Parameters λ and ϕ0 from time series of C Assuming
that time series data for ∆C(∆t) are known, we can tune
χ0 and λ to fit ∆C(∆t) to a function

∆C(∆t) = χ0 (exp(λ ·∆t)−1)

where we need to choose t0, store the corresponding
C(t0) = C0. Finally, we find ϕ0 from ϕ0 = λ ·χ0.

Parameters λ and ϕ0 from C in two data points If C
is known in two time instances t0 and t1, the slope of C is
known at t0, ∆t = t1− t0, and the cumulative number of
confirmed infected is growing,

α ,
∆C/∆t
dC/dt|0

> 1,

it can be shown that λ is given by

λ =−
1
α
+W−1

(
− 1

α
exp
(
− 1

α

))
∆t

, (3)

where W−1 (·) is the lower branch of the Lambert W func-
tion.

With λ computed from Eq. 3, we find ϕ0 as

ϕ0 = λ ·χ0 =
dC
dt

∣∣∣∣
0
. (4)

The accuracy of this method of computing ϕ0 and λ

from two data points depends on how accuratly dC
dt

∣∣
0 can

be found.

Parameters and initial values for Italy Data for Italy
for the 9d period February 23 – March 3, 2020 indicates
relatively exponential growth for ϕ , leading to a good fit
for C(t), Figure 2.

The following procedures are used to estimate λ and
ϕ0:
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Figure 2. Fit of C for Italy in the period February 23 – March 3,
2020.

Method 1 Fitting ∆C(∆t) = χ0 (exp(λ ·∆t)−1) to the
data C. Computing ϕ0 from ϕ0 = λ ·χ0.

Method 2 Using the Lambert W approach, Eq. 3, to
find λ , and next finding dC

dt

∣∣
0 found from fitting

∆C(∆t) = χ0 (exp(λ ·∆t)−1), and computing ϕ0
according to Eq. 4 as ϕ0 =

dC
dt

∣∣
0.

Method 3 Using the Lambert W approach to find λ with
dC
dt

∣∣
0 ≈

C(t1)−C(t0)
t1−t0

where t1 = t0 +1 and t0 is Febru-
ary 23, 2020; ϕ0 =

dC
dt

∣∣
0.

Method 4 Using the Lambert W approach to find λ with
dC
dt

∣∣
0 found by fitting a 3rd order polynomial to C and

computing the initial derivative of C; ϕ0 =
dC
dt

∣∣
0.

Method 5 Using the Lambert W approach to find λ with
dC
dt

∣∣
0 found by fitting a 2nd order polynomial to logC

and computing the initial derivative of C; ϕ0 =
dC
dt

∣∣
0.

The results show that Methods 1, 2, 3, and 5 give relatively
similar results, while Method 4 gives a rather different re-
sult. The reason is that polynomial fit to C gives a poor
estimate of the initial derivative. Also for other countries,
Method 1 appears to give the most reliable results, fol-
lowed by Method 2. Here, we report the parameters from
Method 1.

Summary parameters and initial values Table 1 gives
a summary of fitted parameters t0, t1, C0, ϕ0, and λ for
Italy, Spain, and Norway, based on Method 1.

2.3 SEICUR model
2.3.1 Reaction mechanism
An SEIR model with the infected I population extended
to (I,C,U) was proposed for COVID-19 in (Liu et al.,
2020b)7, Figure 3.

The proposed mechanism implies that susceptibles

7The reference uses symbols (I,R,U); here, R (“registered”) has
been changed to C (“confirmed”) to observe the classic meaning of R as
“recovered”)

Figure 3. Flow of SEICUR reactions.

S are infected by some “pre-infected” I and the non-
quarantined unconfirmed U leading to the exposed phase
E, which is infected but not yet infectious. These exposed
E then are converted to the “pre-infected” I class, which
then either become more serious cases and are confirmed
infected C, or stay as unconfirmed U. Finally, the con-
firmed infected and the unconfirmed end up in the recov-
ered population R (which includes those who die). We
will refer to this model as the SEICUR model.

The following mechanism describes the reactions:

Ei :S I+U→
ki

E, ri = ki
(
Ǐ +Ǔ

)
Š

Ee :E→ke I, re = keĚ

Ec :I→kc C, rc = kcǏ

Eu :I→ku U, ru = kuǏ

Ecr :C→kr R, rcr = krČ

Eur :U→kr R, rur = krǓ .

We introduce

kcu = kc + ku

kc = ηkcu.

Thus, specifying kcu and η , we can find

kc = ηkcu

ku = (1−η)kcu.

The model assumes that the total population is fixed,
and that a preliminary fitting to find φ0 and λ has been
carried out, Table 1. In the model fitting, the cumulative
number of confirmed infected are used as observation y,
i.e.,

y(t) = C(t)

where
dC
dt

= kcI

with C(t0) assumed known. Thus, ϕ = kcI in Eq. 1.
In the initial phase of infection spread before confirmed

cases, it can be questioned whether members of the C class
quarantine. Thus, one could consider that also members
of compartment C participate in the infection. We will
neglect this possibility here.
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Table 1. Values for t0, t1, C0, ϕ0 and λ for some countries. Parenthesis after dates t0 and t1 indicates the element number in the
times series for the data. Population size N taken from https://www.worldometers.info/coronavirus/ ca. April
2020.

Country t0 t1 C0 ϕ0 λ N
Italy 2020-02-23 (33) 2020-03-14 (52) 155 112 0.178 60443857
Spain 2020-02-24 (34) 2020-03-13 (51) 2 6.09 0.281 46758424
Norway 2020-02-27 (37) 2020-03-14 (52) 1 2.73 0.318 5429635

2.3.2 Approximate initial response
With the initial number of susceptibles S (t0) having a
value close to the total population N, S (t0)≈ N, and S (t0)
being more or less constant in the first phase of the epi-
demic, the dynamic model can be approximated with a
linear model with X = (S,E, I,C,U,R) for “small” (t− t0)
,

dX
dt
≈MX .

Matrix M has two zero columns, thus has two eigenvalues
in the origin; these reflect the approximate pure integrator
of S and the true pure integrator for R. It thus suffices
to consider subsystem X ′ = (E, I,C,U) when considering
infection growth:

dX ′

dt
=


−ke ki 0 ki
ke −kcu 0 0
0 kc −kr 0
0 ku 0 −kr


︸ ︷︷ ︸

M′

X ′. (5)

The structure of the system causes the single, posi-
tive eigenvalue λ of M′ to dominate the dynamics during
growth, with solutions X ′i (t) for the elements of X ′:

X ′i (t) = exp(λ (t− t0))X ′i,0. (6)

2.3.3 Parameters and initial states
Parameters ϕ and λ are as found in Section 2.2, where
ϕ = kcI for the SEICUR model.

Assuming that kcu, η , ke, and kr are known, and

kc = ηkcu (7)
ku = kcu− kc, (8)

I0 can be found from kcI0 = ϕ0 and known kc,

I0 =
ϕ0

kc
. (9)

Inserting the assumed solutions of Eq. 6 into the linearized
differential equation Eq. 5 while cancelling the common
term exp(λ (t− t0)), this leads to:

λE0 ≈ ki (I0 +U0)− keE0 (10)
λ I0 ≈ keE0− kcuI0 (11)

λC0 ≈ kcI0− krC0 (12)
λU0 ≈ kuI0− krU0. (13)

The three last of these, Eqs. 11–13 can be solved wrt. E0,
C0, and U0 to give

E0 =
λ + kcu

ke
I0 (14)

C0 =
kcI0

λ + kr
(15)

U0 =
kuI0

λ + kr
. (16)

The first one, Eq. 10, can be solved wrt. ki to give

ki =
(λ + ke)E0

I0 +U0
. (17)

By assuming zero recovered, R0 = 0, and known popula-
tion N, we can compute the initial value of S:

S0 = N−E0− I0−C0−U0−R0. (18)

2.3.4 Reproduction number

Using the Next-Generation Approach, (Lie, 2021), write
M′ = F−V . Making V lower triangular,

M′ =


0 ki 0 ki
0 0 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

=F

−


ke 0 0 0
−ke kcu 0 0

0 −kc kr 0
0 −ku 0 kr


︸ ︷︷ ︸

=V

,

(19)
this gives the simplest Next-Generation Matrix; here, both
F and V−1 are positive matrices. The Next-Generation
Matrix N is

N = FV−1

⇓

N =


ki

kcu

(
1+ ku

kr

)
ki

kcu

(
1+ ku

kr

)
0 ki

kr

0 0 0 0
0 0 0 0
0 0 0 0

 .

N has 3 eigenvalues in the origin, and one positive eigen-
value, which is the spectral radius:

ρ (N) =
ki

kcu

(
1+

ku

kr

)
=

ki

kr

(
1−η +

kr

kcu

)
.
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Figure 4. Flow of SEPIAR reactions.

We choose the following expression for R:

R,
ki

kr

(
1−η +

kr

kcu

)
, (20)

which is the same as proposed in (Liu et al., 2020a).
(Sanche et al., 2020) cite initial estimates of R0 for

COVID-19 to be in the range [2.2,2.7].This number varies
with location and time (mutations). The Delta mutant re-
portedly has R0=6,8 or perhaps even up to 8.

2.4 The Norwegian PHI model
The Publich Health Institute of Norway operates with
what can be termed the SEPIAR model, Figure 4.

Here, P is a pre-symptomatic infectious stage, I is the
symptomatic, infectious stage, and A is an asymptomatic
yet slightly infectious stage. This is essentially a slightly
extended SEIR model where I is (P, I, A). Numbers are
provided for the various reaction constants.

The key difficulty with this model is that it does not
directly correlate confirmed cases C to the states; in Fig-
ure 4, it is indicated that dC

dt = ckpP, but constant c is un-
known.

2.5 Variation in infection rate
The infection rate ki is uncertain, and will also vary due
to:

1. Mitigation effects: (a) Hygiene, (b) Social distanc-
ing, (c) Use of face mask, (d) Quarantining, (e) Clos-
ing spaces with loud talk = reducing spreading by
saliva/aerosols.

2. Meteorological effects: (a) Increased humidity
causes aeorosols/saliva droplets to travel shorter, (b)
Stronger solar irradiation/higher temperature kills
virus faster; (Wu et al., 2020).

3. Health + sociology: (a) Age/co-morbidity: old peo-
ple/with co-morbidity are more affected by COVID-
19, (b) Genetic effects: blood type, etc. may influ-
ence infection rate, (c) Immune system status, (d)
Life/behavioral patterns.

4. Mutations.
8Dr. Tim Spector: https://youtu.be/OHBua3aXQ7c

Figure 5. Social distancing (teal color, left ordinate)
and mask (gold color, right ordinate) use in Italy, accord-
ing to model of https://covid19.healthdata.org
/global?view=total-deaths&tab=trend. Screen
capture data converted to time series using WebPlotDigitizer,
https://automeris.io/WebPlotDigitizer/.

Ideally, vaccination does not change the infection rate.9

Instead, vaccination reduces the number of people suscep-
tible to infection, see expression for infection rate ri in
Section 2.3.1.

2.6 Mitigation
Mitigation policies utilize effects that reduce infection
rate. Typical examples are hygiene, social distancing, face
mask use, quarantining, etc. The mitigation policy con-
sists of recommendations or enforcing of law from the
government, denoted u(t), and this leads to a response
from the public, denoted x(t). For a better description,
we might also include seasonal quantities (humidity, etc.),
virus mutation, etc., as a disturbance w(t) to a description.

Figure 5 proposes response in social diatancing and
face mask use in Italy in the first 6 months of the COVID-
19 pandemic. It is not clear whether these response data
are based on actual observations, or based on some vague
estimates.

A more formal description of how the mitigation policy
u and disturbance variable w with response x transforms
itself into an infection rate ki, would be

dx
dt

= f (x,u,w) (21)

ki = g(x,u) . (22)

Here, x is some state which describes the dynamics of the
change of ki, and may include people’s inertia towards
taking measures into use, and the tendency that people
get tired of the measures and want to get back to normal
life. The model with f (x,u,w) and g(x,u) could be found
through some system identification technique when u, to
some degree w, and ki are known.

9...assuming that vaccinated are immune — experience has shown
some cases of breahthrough infection of vaccinated.
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In principle, we could add outputs in addition to ki, such
as social distancing and mask use as in Figure 5, or other
quantities such as humidity, etc.: this would help to give a
more accurate mitigation model.

As an alternative to using system identification to fit
a model from known mitigation policy u and disturbance
w to known outputs, we could find some equivalent mit-
igation policy ufm by postulating a fixed model structure,
e.g.,

dx
dt

=
1

Tm
(ufm− x) (23)

ki = k0
i x, (24)

and compute which input sequence ufm gives a good
model fit to confirmed cases. Here, Tm is the mitigation
time constant, typically chosen to be 7–10d. It follows
that such an equivalent mitigation policy ufm will include
seasonal variations in infection rate, as well as the effect
of virus mutation, etc. In other words, by comparing an
equivalent mitigation policy ufm from two different time
instances, or in two different countries, we can not directly
related ufm to a specific level of social distancing, mask
use, etc.: a value of ufm = 0.5 in June 2020 could imply a
different level of social activity than a level of ufm = 0.5
in February 2021.

In the normal, pre COVID-19 situation with ufm = 1, x
will asymptotically approach x = 1, and ki → k0

i . As ufm
becomes smaller and smaller due to a low social contact
mitigation policy, x will asymptotically approach a smaller
and smaller value until it reaches value x = 0 for zero so-
cial contact. For that case, ki → 0, which means that the
reaction rate ∝ ki approaches zero. In the work of (Liu
et al., 2020c), etc., the assumption of x→ 0 is assumed,
which is unrealistic. In a realistic mitigation effect, we
need to take into account a time varying mitigation policy
ufm.

3 Model Fitting
3.1 Initial evolution
Simulation of the initial (unmitigated) case of Italy using
the SEICUR model is depicted in Figure 6.

As Figure 6 shows, the initial model reponse in C fits the
data Cd quite well, which should be expected: the model
parameters were found by fitting the model to the initial
data.

Based on the initial fitting, this gives a basic reproduc-
tion number of R0 = 3.2 for Italy. Similar numbers for
Spain and Norway are found to be R0 = 4.7 and R0 = 5.4,
respectively.

3.2 Fitted mitigation policy
3.2.1 Case Norway

It is possible to propose a “fitted” mitigation policy ufm
such that good correspondence model and confirmed in-

Figure 6. Initial (unmitigated) evolution according to the SEI-
CUR model for Italy.

Figure 7. Fitted mitigation policy tuned to SEICUR model for
Norway.

fection cases is achieved. The fitted policy is depicted in
Figure 7.

The resulting SEICUR model simulation with compar-
ison to cumulative confirmed infections is shown in Fig-
ure 8. It may also be instructive to compare the smoothed
7-day avareage dC

dt

∣∣
smooth with kcI, Figure 9. As seen, this

gives very good model fit in C, and decent fit in dC
dt

∣∣
smooth.

An important comment is that vaccination started in
Norway (and in Europe) in early 2021. In the above fitting,
vaccination has not been taken into account, and thus the
equivalent mitigation policy of Figure 7 and subsequent
figures for Italy and Spain includes the effect of vaccina-
tion. If vaccination has had an important role for avoid-
ing infection spread, including vaccination in the model
should have lead to a more relaxed mitigation policy.

3.2.2 Case: Italy

The fitted policy is depicted in Figure 10.
The resulting SEICUR model simulation with compar-

ison to cumulative confirmed infections is shown in Fig-
ure 11.
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Figure 8. SEICUR model simulation with fitted mitigation pol-
icy as in Figure 7.

Figure 9. SEICUR model simulation with fitted mitigation pol-
icy as in Figure 7.

Figure 10. Fitted mitigation policy tuned to SEICUR model for
Italy.

Figure 11. SEICUR model simulation with fitted mitigation pol-
icy as in Figure 10.

Figure 12. Fitted mitigation policy tuned to SEICUR model for
Spain.

3.2.3 Case: Spain

The fitted policy is depicted in Figure 12.
The resulting SEICUR model simulation with compar-

ison to cumulative confirmed infections is shown in Fig-
ure 13.

4 Discussion and conclusions
An overview has been given of a specific COVID-19
model of (Liu et al., 2020a), here denoted the SEICUR
model. The minor advantage of this model over the Nor-
wegian Public Health Institute model is related to the lat-
ter’s lack of specifying how states related to confirmed
cases. A number of methods to fit basic parameters ϕ0
and λ to cumulative confirmed cases is given. Next, with
a given model structure and some predetermined param-
eters from clinical data, a discussion on how to find the
remaining model parameters is given, including k0

i , from
ϕ0 and λ . Simulation of the model in an initial phase con-
firms that the model fit is adequate. An original contribu-
tion of the paper is the generalization of the initial model
fit Eq. 2 to be independent of the model. Another contri-
bution is the use of the Lambert W approach to estimate
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Figure 13. SEICUR model simulation with fitted mitigation pol-
icy as in Figure 12.

parameters λ and ϕ0. These initial data have been fitted
for Norway, and re-fitted for Italy and Spain. Also, the
procedure of finding model-dependent parameters (ki) and
initial states (I0, E0, C0, E0) has been streamlined com-
pared to the original papers. A detailed derivation of the
reproduction model is given.

For extended periods of time after the initial phase,
mitigation policy, seasonal changes, and virus mutation
makes it necessary to add some modification to the infec-
tion rate constant ki. Here, infection rate constant modi-
fication is done via an equivalent mitigation policy which
is found by fitting the model to data for cumulative con-
firmed cases. The result is a very good fit. The results also
indicate that the fit to the (averaged) daily new confirmed
cases is less good, which should be expected: using cu-
mulative data always smooths the information.

The formulation of the effect of a fitted mitigation pol-
icy on the infection rate constant is new, and the actual fit-
ting of this policy for countries Norway, Italy, and Spain is
new. The fitted mitigation policy at the current time could
be used in conjunction with model prediction over a fu-
ture horizon to design a feedback controller which could
compute an advice on future mitigation policy, e.g., using
Model Predictive Control. Because of the uncertainty in
the computed equivalent mitigation policy u due to sea-
sonal variations, etc., such a controller will be prone to a
certain level of uncertainty.
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Abstract
The paper discusses how to extend the SEICUR model
with a description of migration. Next, the SEICUR model
is extended with a description of age distribution, for the
case that infection and serious illness depends on age. Fi-
nally, the SEICUR model is extended with models of vac-
cination. Simulation of the SEICUR model for Italy and
Spain indicated that the number of migrants per day be-
tween the two countries need to be relatively large before
a significant change in infection is noticed. However, this
was based on the assumption of average spreaders among
the migrants. The age distribution model is mainly of use
when considering serious illness and death, and was not
pursued further. Vaccination data for Italy, Spain, and
Norway, shows that for countries with a low fraction of in-
fected (e.g., Norway), vaccination allows for a noticeable
relaxation in mitigation, while for countries which already
have a high fraction of infected (e.g., Spain), the effect of
vaccination is relatively smaller due to the larger fraction
of people already recovered. The extended models allow
for a more realistic study of COVID-19 spread, and how
to optimize mitigation policies vs. vaccination.
Keywords: COVID-19 models, deterministic models, com-
plex models, vaccination policy

1 Introduction
1.1 Background

The COVID-191 pandemic spreading in 2020 initially
caused fear, irrational hoarding of consumer goods, uncer-
tainty about future food supply, and economic depression,
but also spawned a renewed interest in epidemiology to
understand how infections spread, and a massive effort in
development of virus medicine and vaccines. Policy mak-
ing and society saw challenges hardly faced before on how
to adapt to the development in real time.

More than one year after the pandemic outbreak in
February/March 2020, fitted epidemic macro models are
becoming more reliable due to large amounts of data, and
vaccination is well underway in some countries. Still, for
accurate mitigation policy, the models have shortcomings.
Current mitigation models have poor description of sea-
sonal variations, genetic/health variations, cultural varia-
tions, and demographic variations. In addition, relations

1COVID-19 is the COrona VIrus Disease originating in 2019. The
World Health Organization and Wikipedia.com both appear to write
COVID-19 in all caps.

between infection, treatment, and death is lacking in un-
derstanding.

Spreading by migration is clearly important, with travel
restrictions and lock-downs being key instruments in tam-
ing infection spread. Data from the past year has shown
that age distribution is an important determining factor for
serious illness/death. Data from Europe and USA indi-
cate that a combination of genetics, nutrition, health care,
culture, and living conditions put some groups more at
risk. But seasonal variation in temperature, solar irradi-
ation, humidity, etc. also plays an important role, whether
this is directly by influencing infection rates, or indirectly
by keeping people more outdoor and therefore reducing
infection rates.

In Europe, the initial spread in the winter/spring of 2020
saw a dramatic reduction starting in late May/June 2020,
and lasting until late September 2020. Most likely, this
was a combination of improved hygiene and some social
distancing. But it is almost certain that there also was a
seasonal element in this reduction. The winter/spring of
2021 has been marked by vigorous vaccination in Europe
and North America, and again: the number of infected is
going down.

Both for COVID-19 and for future epidemics, it is of
interest to study how extended infection models can be
developed.

1.2 Previous work
Classical epidemiology models were developed in the
decade following the “Spanish Flu”. A renewed public in-
terest in epidemic models started with the AIDS/HIV epi-
demic some decades ago; these models have been used to
study other infectious diseases, e.g., (Brauer et al., 2019).
(Lie, 2021a) gives a brief overview of such general models
from a process engineering point of view.

Many COVID-19 models are available on the internet,
e.g., from the IHME COVID-19 Forecasting Team2, see
(Reiner et al., 2021)3. (Zlojutro et al., 2019) give a gen-
eral framework for reducing spread via migration. Early
work at Imperial College London4 was important in stress-
ing the importance of mitigation policy. Some relatively
complete macro models include that of (López and Rodó,

2The Institute for Health Metrics and Evaluation (IHME) is an inde-
pendent global health research center at the University of Washington

3https://covid19.healthdata.org/united-states-of-
america?view=cumulative-deaths&tab=trend

4https://www.imperial.ac.uk/mrc-global-infectious-disease-
analysis/covid-19/covid-19-planning-tools/
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Figure 1. Flow of SEICUR reactions.

2020), (Liu et al., 2020b,a,c), (Øyvann, 2020), and others.
(Lie, 2021b) gives an overview of how to fit the SEIRU
(SEICUR) model to cumulative confirmed infected data,
with applications to Italy, Spain, and Norway.

1.3 Scope
Here, the focus is on extending a model from (Lie, 2021b)
to be (i) more general, and (ii) more useful. Extensions
relate to network models/distributed models, and to age
dependent models. Network models can also be used to
study the effect of migration/tourism. A further exten-
sion is the effect of vaccination. By combining vaccina-
tion rates and mitigation policy, control engineering may
suggest an “optimal” return to normalcy

In Section 2, the SEICUR model is extended with mi-
gration terms, and with age distribution. Some simple
models of vaccination are proposed. In Section 3, the
SEICUR model is studied with migration between some
countries, and with vaccination. In Section 4, the results
are discussed, and some conclusions are drawn.

All computations in the paper are car-
ried out using language Julia, with packages
DifferentialEquations.jl for solving
models, (Rackauckas and Nie, 2017a), (Rackauckas
and Nie, 2017b), (Rackauckas and Nie, 2018),
BlackBoxOptim.jl for fitting mitigation policy,
and Plots.jl for plotting results.

2 Materials and Methods
2.1 Reaction mechanism
A SEIR model with the I population extended to (I,C,U)
was proposed for COVID-19 in (Liu et al., 2020b; Lie,
2021b) Figure 1.

The above, proposed mechanism implies that suscepti-
bles S are infected by some “pre-infected” I and the non-
quarantined unconfirmed U leading to the exposed phase
E, which is infected but not yet infectious. These exposed
E then are converted to the “pre-infected” I class, which
then either become more serious cases and are confirmed
infected C, or stay as unconfirmed U. Finally, the con-
firmed infected and the unconfirmed end up in the recov-
ered population R (which includes those who die). We
will refer to this model as the SEICUR model.

For class X, let X denote the number of people in that

class, and X̌ the number of people per capita. The follow-
ing mechanism describes the reactions; :

Ei :S I+U→
ki

E, ri = ki
(
Ǐ +Ǔ

)
Š

Ee :E→ke I, re = keĚ

Ec :I→kc C, rc = kcǏ

Eu :I→ku U, ru = kuǏ

Ecr :C→kr R, rcr = krČ

Eur :U→kr R, rur = krǓ .

We introduce

kcu = kc + ku

kc = ηkcu.

Thus, specifying kcu and η , we can find

kc = ηkcu

ku = (1−η)kcu.

(Lie, 2021b) details how to fit the model to cumulative
confirmed infection cases, and how to find initial states.

2.2 Migration
We consider the response in infection when compart-
ments open up for migration exchange at rate Ṅ people
per day. With Xi denoting a general population state,
Xi ∈ (S,E, I,C,U,R), the emigration rate of class Xi is

Ẋe
i = ṄX̌i = Ṅ ·Xi/N

where we have assumed homogeneous mixing of the pop-
ulation. The balance equation for class Xi with constant
population N is then

dXi

dt
= Ẋ i

i − Ẋe
i +N

(
ν
Tr
)

i

where ν is the stoichiomatric matrix, (Lie, 2021a), and
r is the vector of rates of reaction for the events, (Lie,
2021a,b). For a constant population N = ∑i Xi, it is re-
quired that ∑i Ẋ i

i = ∑i Xe
i .

Without loss of generality, consider two compartments,
each with constant populations N1 and N2, which have
open borders with migration rate Ṅ between each other
and closed borders to every other compartment. Neglect-
ing the possibility of people staying on the border, it fol-
lows that we must require

Ẋ i
i,1 = Ẋe

i,2;

the number of people per day of class i immigrating to
compartment 1 must equal the number of people per day
of class i emigrating from compartment 2.

If we also include a model for equivalent mitigation pol-
icy as in (Lie, 2021b), the SEICUR model for compart-
ment j ∈ {1,2} is then
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dS j

dt
= Ṅ

(
S j̄

N j̄
−

S j

N j

)
− k0, j

i x j
fm (I j +U j)S j/N j

dE j

dt
= Ṅ

(
E j̄

N j̄
−

E j

N j

)
+ k0, j

i x j
fm (I j +U j)S j/N j− keE j

dI j

dt
= Ṅ

(
I j̄

N j̄
−

I j

N j

)
+ keE j− kcuI j

dC j

dt
= kcI j− krC j

dU j

dt
= Ṅ

(
U j̄

N j̄
−

U j

N j

)
+ kaI j− krU j

dR j

dt
= Ṅ

(
R j̄

N j̄
−

R j

N j

)
+ kr (C j +U j)

dx j
fm

dt
=

1

T j
fm

(
u j

fm− x j
fm

)
Here, j̄ denotes the complement of j, i.e., if j = 1, then j̄ =
2, and vice versa. In the model above, it has been assumed
that the confirmed infected are quarantined, and are not
allowed to travel. Furthermore, it has been assumed that
model parameters ke, kcu, ka, and kr are independent of the
compartment.

2.3 Demographic distribution
Most likely, infection rates, severity of infection, and re-
covery time vary with demographic distribution of the
population. Here, we focus on age distribution. De-
scription of demographic distribution is mainly of inter-
est when the model is extended with a distribution in the
severity of infections, such as a separate class for the num-
ber of deaths.

Without loss of generality, suppose we divide the popu-
lation into a young population of Ny people with SEICUR
members Sy, Ey, Iy, Cy, Uy, and Ry, and an old popula-
tion of No = N−Ny people with members So, Eo, Io, Co,
Uo, Ro. For simplicity, assume both N and Ny = γN are
constant, with γ being the fraction of young.

We assume that young people are infected at equal rate
ky

i when meeting either young or old infected, and that old
people are infected at equal rate ko

i when meeting either
young or old infected. Similarly, we assume that young
and old recover at rates ky

r and ko
r , respectively. Further-

more, we assume that people become confirmed and un-
confirmed infected at rates ky

c , ky
u and ko

c , ko
u, respectively.

Relative to the rates in Section 2.1, for simplicity we
assume that young infected Iy, Uy and old infected Io,
Uo infect the young susceptibles at equal rate. The same
assumption is made for the old susceptibles, but the in-
fection rate constants may differ. Thus, with I = Iy + Io
and U =Uy +Uo, this implies that the infection rates are,
j ∈ {y,o} :

r j
i = k j

i (I +U)S j/N2.

The other rates remain as in Section 2.1. In the rate ex-
pression N · r j

i , we need to use the full population if we
assume that the mixture of young and old population is
perfectly homogeneous.

Finally, we need to take into account that people are
born at a rate Ṅb and die at a rate Ṅd; for a constant pop-
ulation, Ṅd = Ṅb. This means that people are transferred
from young to old at a rate Ṅb. For young people ( j = y),
we have

Ṡb
y = Ṅb;

people are born as young, and all are assumed to be sus-
ceptible at birth. Similarly, the susceptible “die”, or rather
age from young to old, as

Ṡd
y = Ṅb

Sy

Ny
.

Note that we need to use the number of young suscep-
tibles per young population here, i.e., the correct frac-
tion is Sy

Ny
. For all other classes in the SEICUR model,

Ẋb
y ∈

{
Ėb

y , İ
b
y ,Ċ

b
y ,U̇

b
y , Ṙ

b
y
}

, it follows that

Ẋb
y ≡ 0.

Ageing from “dying” young into “born” old implies

Ėd
y = Ṅb

Ey

Ny
= Ėb

o

İd
y = Ṅb

Iy

Ny
= İb

o

Ċd
y = Ṅb

Cy

Ny
= Ċb

o

U̇d
y = Ṅb

Uy

Ny
= U̇b

o

Ṙd
y = Ṅb

Ry

Ny
= Ṙb

o.

Old people die out of their classes at rates due to ageing:

Ṡd
o = Ṅb

So

No

Ėd
o = Ṅb

Eo

No
,

İd
o = Ṅb

Io

No

Ċd
o = Ṅb

Co

No

U̇d
o = Ṅb

Uo

No

Ṙd
o = Ṅb

Ro

No
.

For j ∈ {y,o}, we thus have
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dS j

dt
= Ṡb

j − Ṡd
j − k j

i (I +U)S j/N

dE j

dt
= Ėb

j − Ėd
j + k j

i (I +U)S j/N− k j
eE j

dI j

dt
= İb

j − İd
j + k j

eE j− k j
cuI j

dC j

dt
= Ċb

j −Ċd
j + k j

cI j− k j
rC j

dU j

dt
= U̇b

j −U̇d
j + k j

uI j− k j
rU j

dR j

dt
= Ṙb

j − Ṙd
j + k j

r (C j +U j)

where we have used that N
(

r j
c + r j

u

)
=
(

k j
c + k j

u

)
I j =

k j
cuI j. Here, No = N−Ny = (1− γ)N.

To take advantage of this demographic extension of
the SEICUR model, it is really necessary to extend the
model and split the recovered class into those surviving,
and those dying. This extension is relatively straightfor-
ward, but is not pursued here, since it requires fitting this
extended model to additional data of cumulative deaths.

2.4 Extinction of COVID-19

2.4.1 Herd immunity

So-called herd immunity is reached when there are too
few susceptible left to drive the infection growth. Just be-
fore herd immunity is reached, the infection rate increases
dramatically, before dying out. When herd immunity is
reached, a large fraction of the population will have be-
come recovered; in the SEICUR model, the class of re-
covered includes those who die.

Some researchers and politicians have suggested that
one should let COVID-19 go its natural course, and aim
for herd immunity. The alternative is to impose mitiga-
tion policies to reduce the number of infected at any time,
while waiting for vaccines.

Clearly, aiming for herd immunity with no mitigation
would have put an end to COVID-19 relatively quickly.
However, the number of seriously ill from the infection
would have completely overwhelmed the hospital system,
leading to a high fraction of deaths among the infected.
Aiming for herd immunity has rarely been an explicit pol-
icy, but a few countries have at times lost control of the
infection growth, with near collapse in the health system.
The main idea behind a mitigation policy is to attempt to
keep the number of seriously infected at any time within
the capacity of the health system and thus minimize the
number of deaths.

2.4.2 Vaccination

Let V denote the class of vaccinated, and let V̇ denote the
vaccination rate for a compartment. We will assume that
only susceptible S are vaccinated.

Crude model In a crude vaccination model, we assume
that vaccinated immediately become recovered, with effi-
cacy η . For the SEICUR model, vaccination only changes
the expressions for S and R, which become

dS
dt

=−ηV̇ − ki (I +U)S/N

dR
dt

= ηV̇ + kr (C+U) .

Semi-crude model A slightly less crude model could
utilize that it takes a certain time interval τv before good
vaccine protection is achieved, and then operate with a fil-
tered vaccination rate

dV̇f

dt
=

1
τv

(
V̇ −V̇f

)
with expressions for S and R now becoming

dS
dt

=−ηV̇f− ki (I +U)S/N

dR
dt

= ηV̇f + kr (C+U) .

Mechanistic model In a more realistic mechanistic vac-
cination model, vaccinated are still partially susceptible,
and it takes a certain time τv before full vaccination is
achieved. This transformation of vaccinated into recov-
ered can be described by the reaction

Ev : V→kv R, rv = kvV̌

with kv = 1/τv. The number of recovered is then modified
to

dR
dt

= kvV + kr (C+U) .

The vaccinated population V will still be susceptible,
but with a relatively low average infection rate over the
time constant τv. This implies that there will be an addi-
tional infection reaction

E v
i : V I+U→

kv
i

E, rv
i = kv

i
(
Ǐ +Ǔ

)
V̌

where kv
i is considerably smaller than ki for an efficient

vaccine. The total expression for V is then

dV
dt

= V̇ −N · rv−N · rv
i

⇓
dV
dt

= V̇ − kvV − kv
i (I +U)V/N.

The expressions for the number of exposed E becomes

dE
dt

= ki (I +U)S/N + kv
i (I +U)V/N− keE.

The remainder of the model is as before.
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Figure 2. Cumulative fraction of people that have received at
least one vaccine dose vs. time (IT = Italy, ES = Spain, NO =
Norway; line color refers to a key color in national flags).

The efficacy η is now determined indirectly by kv
i . One

possible definition of the efficacy is unity minus the frac-
tion of the rate at which vaccinated get infected, and the
rate at which susceptible get infected,

η = 1−
kv

i (I +U)V/N
ki (I +U)S/N

= 1−
kv

i V
kiS

.

We assume an efficient vaccine, so that in steady state,∣∣V̇ − kvV
∣∣� kv

i (I +U)V/N, thus dV/dt→ 0 leads to

V =
1
kv

V̇ = τvV̇ .

Then, approximately,

kv
i = (1−η)ki

S
τvV̇

.

This expression is not entirely satisfactory, as kv
i depends

on the remaining number of susceptible S and the vacci-
nation rate V̇ . A simpler expression is

kv
i = (1−η)ki.

Vaccination rate Figure 2 shows the cumulative num-
ber of people having received at least one vaccine dose
(per capita) in Italy, Spain, and Norway. The ripples in the
data are due to slower vaccination in week-ends.

Figure 3 shows the actual cumulative fraction of admin-
istired doses vs. the cumulative fraction of people receiv-
ing at least one vaccine dose, for Italy, Spain, and Norway.

Efficacy varies with vaccine types, where mRNA based
vaccines (e.g., those of Phizer and Moderna) seem to pro-
vide 95+% efficacy, while vector based vaccines (e.g., As-
traZeneca, Sputnik, etc.) seem to provide in the range 50-
85% efficacy. These numbers have been reduced with the
emergence of more aggresive mutations such as the Delta
variant.

Figure 3. Cumulative fraction of doses vs. people that have
received at least one vaccine dose (IT = Italy, ES = Spain, NO =
Norway; line color refers to a key color in national flags).

Typically, full vaccination is assumed 1–3 weeks after
the final dose; for most vaccines, two doses are required.
In Norway, initially, two dose vaccines were given with 3
week intervals. Then this was changed to 4 weeks, then to
6 weeks, then to 12 weeks, then moved back to 9 weeks,
etc. Thus, τV may vary with time to some degree.

2.4.3 Qualitative effect of mitigation + vaccination

Initial requirement for stability for the disease-free case
is that the basic reproduction number is less than unity,
R0 < 1, (Lie, 2021a,b). This requirement is based on the
assumption that the entire population is susceptible, i.e.,
that Š (0) = S (0)/N = 1. If the infection dies out, and then
is in the process of re-starting, the requirement for stabil-
ity is that Š (0)R< 0. Here, it should be noted that R ∝ ki,
the infection rate constant, where ki = k0

i ·ufm in the steady
state of the mitigation policy; k0

i is the infection rate con-
stant without mitigation, and ufm ∈ [0,1] is the equivalent
mitigation policy which depends on seasonal variations,
etc. Thus, R= R0ufm, and the infection is kept under con-
trol when

Š (0)R0
0ufm < 1.

It follows that with Š (0) = 1, the equivalent mitigation
policy ufm must be chosen such that

ufm ≤ 1/R0
0.

Some initial estimates of R0
0 from March 2020 suggested

that R0
0 ∈ [2.2,2.7] or so5. Some of the more recent virus

mutations (British, South-African, Indian) are more infec-
tious, with the Delta mutant having R0 = 6 or even higher.
This could indicate that R0

0 is as a minimum R0
0 = 5 at the

moment, leading to the requirement that ufm ≤ 0.2.
The effect of vaccination, on the other hand, is essen-

tially to reduce Š (0) . It follows that to go back to the nor-
mal, pre-COVID-19 situation with ufm = 1, we need to

5Early estimates from China indicated values up to 4 or 5.
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Figure 4. SEICUR models for Italy (solid) and Spain (dotted)
with fitted mitigation, and with Ṅ = 104 persons/day exchange
rate.

Figure 5. SEICUR models for Italy (solid) and Spain (dotted)
with fitted mitigation, and with Ṅ = 105 persons/day exchange
rate.

reduce Š (0) to Š (0)≤ 0.2, which implies that 80% of the
population must be vaccinated.

Because the most vulnerable, those that have a high risk
of dying, probably are vaccinated early, society may func-
tion more or less as normal with fewer than 80% vacci-
nated — but must then accept that there is a certain num-
ber of infected at any time.

3 Results
3.1 Migration
Figures 4 and 5 display resulting change in infections
caused by migration between Italy and Spain when these
countries are assumed closed for other countries, first
with Ṅ = 104 persons/day, Figure 4, and with Ṅ =
105 persons/day, Figure 5.

The results in Figs. 4, 5 indicate that migration needs
to be considerable to give an effect. The results should
be used with caution, though: (i) data used in equivalent
mitigation policy fitting already has some interaction with

Figure 6. Fitted equivalent mitigation policy uv
fm for Italy based

on SEICUR model extended with semi-crude vaccination model,
compared to fitted equivalent mitigation policy ufm based on the
pure SEICUR model ((Lie, 2021b). Vaccine is administered ac-
cording to Figure 2.

multiple countries, and (ii) “super-spreaders” (in densely
populated bars, discoteques, ...) are perhaps more likely
to migrate than average spreaders.

The idea of interaction between countries as indicated
above, is the basis for network models.

3.2 Herd immunity
Although not shown here, using the fitted mitigation pol-
icy for Italy for the period February 2020 – late Octo-
ber 2020, and making forecasts while keeping the miti-
gation policy at the level of late October 2020 into the
future, those forecasts indicated that Italy would have
reached herd immunity before Christmas 2020. The con-
sequence would have been a health system with con-
siderably higher strain than in April 2020. Italy in-
troduced restrictions/lock-downs ca. October/November
2020 which reduced the infection spread sufficiently to
avoid this situation, see (Lie, 2021b).

3.3 Vaccination
Here, we consider the simplified case of (i) use of the fitted
mitigation policy, (ii) use of the “semi-crude” vaccination
model with ηv = 0.8 and τv = 28d, and (iii) actual vacci-
nation rates.

The resulting equivalent mitigation policy for Italy with
vaccination, uv

fm, vs. without vaccination, ufm, is displayed
in Figure 6. uv

fm is the real equivalent policy, while ufm is
a hypothetical policy when neglecting vaccination.

The resulting equivalent mitigation policy for Spain
with vaccination, uv

fm, vs. without vaccination, ufm, is dis-
played in Figure 8.

The resulting equivalent mitigation policy for Norway
with vaccination, uv

fm, vs. without vaccination, ufm, is dis-
played in Figure 9.

For all countries, the model fit to the cumulative number
of confirmed cases (Lie, 2021b) is just as good whether
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Figure 7. SEICUR model extended with vaccination model,
simulation with fitted mitigation policy uv

fm as in Figure 6. Vac-
cine is administered according to Figure 2.

Figure 8. Fitted equivalent mitigation policy uv
fm for Spain based

on SEICUR model extended with semi-crude vaccination model,
compared to fitted equivalent mitigation policy ufm based on the
pure SEICUR model ((Lie, 2021b). Vaccine is administered ac-
cording to Figure 2.

Figure 9. Fitted equivalent mitigation policy uv
fm for Norway

based on SEICUR model extended with semi-crude vaccination
model, compared to fitted equivalent mitigation policy ufm based
on the pure SEICUR model ((Lie, 2021b). Vaccine is adminis-
tered according to Figure 2.

the SEICUR model is extended with the vaccinatin model
— leading to equivalent mitigation policy uv

fm, or whether
vaccination is baked into ufm.

The number of certified infected per capita (and thus:
recovered) is highest in Spain, a little lower in Italy, e.g.,
Figure 4, and quite low in Norway. It is not clear whether
the various countries choose to vaccinate people who have
recovered. As Figs. 6–9 illustrate, the mitigation policy
with vaccination (uv

fm) is less restrictive for Norway and
(partially for) Italy compared to the case when there is no
vaccination (ufm). For Spain, the situation is less clear. In
conclusion, vaccination allows for relaxing the mitigation
policy.

3.4 Quenching COVID-19: the importance of
vaccination

When a certain fraction of the population has either recov-
ered from COVID-19, or has been vaccinated, herd immu-
nity is reached and infection will die out. An interesting
question is whether the current reduction in infection in
North America, Europe, and a few other countries is due
to rapid vaccination roll-out. This question is not trivial to
assess: there was a similar reduction in infection in May–
June 2020, so it is possible that the reduction in infection
is (partially) due to a seasonal variation in infection rate
constants.

It seems like vaccination has dramatically reduced the
death rates from COVID-19; this will reduce the strain on
the health care system. But it is still possible that there
will be growths in infection during the fall of 2021, both
due to seasonal variations and due to new mutations.

4 Conclusions
In this paper, the SEICUR model discussed in (Lie, 2021b)
has been extended in several directions. First the model is
extended with migration terms. Comparing the effect of
migration solely between Italy and Spain, the model indi-
cates that the number of people per day moving between
the countries must be relatively high before a significant
change in infection is observed. However, this is based
on the assumption that the migrants are “average spread-
ers”. Some tourists engaging in nightlife activities will
most likely be “super spreaders”, so to get a more accurate
description, it would probably be necessary to distinguish
between super spreaders and regular spreaders.

Second, the SEICUR model is extended to handle de-
mographic variations due to age dependence in rate con-
stants. This is particularly important when considering the
risk of serious illness and death. Because this paper has
not considered confirmed death rates, simulations have not
been carried out and the presentation is mainly included
for illustration/future studies.

Thirdly, the SEICUR model is extended with a descrip-
tion of vaccination, with 3 models of the effect of vacci-
nation. The “semi-crude” model has been added to the
SEICUR model, and an equivalent mitigation policy has
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been fitted to the data when the vaccination model is in-
cluded. The results indicate that vaccination has most ef-
fect on the equivalent mitigation policy in countries with a
low level of confirmed infections (e.g., Norway), and less
effect in countries with a higher number of confirmed in-
fected (e.g., Spain). This may be due to vaccinating people
who have already recovered, or to the relative reduction in
the number of susceptibles due to vaccination.

Realistic COVID-19 models need to include migra-
tion/network description between the various compart-
ments, and for the case that demographics influence the
degree of illness, age distribution models and other types
of models distributed in co-morbidity should be used. In
the models studied here, an equivalent mitigation policy
has been assumed. For more realistic models, it is recom-
mended to improve the effect of genetics, seasonal varia-
tions, etc. in the infection rate expression.

The spreading of the Delta mutation in the second and
third quarters of 2021 would probably have necessitated
using different model parameters (frequency factors, etc.),
and would have complicated the total model. Also, hes-
itance against vaccination in various populations would
need to be taken into consideration.

The SEICUR model with the extension of the vaccina-
tion model holds the potential for computing some “opti-
mal” transition between mitigation and vaccination using
feedback control theory (e.g., Model Predictive Control).
Essentially, the “fitted” mitigation policy ufm is the control
variable, and one could specify a cost function for future
infection, and then compute how an “optimal” future mit-
igation policy should be in order to tackle the infection.
Some important caveats are that (i) the current model does
not describe seasonal variations in infection rate constant,
thus relatively short future horizons should be used, (ii)
the “fitted” mitigation policy is not directly related to con-
crete policies (“social distancing”, “mask use”), etc. In
summary, MPC is more useful if the mitigation model is
extended to hold real mitigation policies u instead of “fit-
ted” mitigation policy ufm — it is non-trivial to figure out
quantitative real policies from ufm — beyond “we need a
stricter policy” or “we can relax the policy”.
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Abstract
The coronavirus COVID-19 is affecting around the world
with strong differences between countries and regions.
Extensive datasets are available for visual inspection and
downloading. The material has limitations for phe-
nomenological modelling but data-based methodologies
can be used. This research focuses on intelligent mod-
elling on the basis of these datasets. The methodology
has been tested in the analysis of daily new confirmed
COVID-19 cases and deaths in six countries. The datasets
are studied per million people to get comparable indica-
tors. Nonlinear scaling brings the data of different coun-
tries to the same scale and linear interactions represent the
varying operating conditions well. The same approach op-
erates for both the confirmed cases and deaths and can be
used for any country or group of people. The effects of
the vaccinations were clearly shown at the end of the ana-
lyzed period. During the pandemic, the scaling functions
expanded for the confirmed cases but remained practically
unchanged for the confirmed deaths which is consistent
with increasing testing. Limitations are seen if there are
too many interacting things, e.g. several infection trans-
mission chains which are in different stages. The feasi-
bility analysis needs to be extended to the modelling with
inputs. The presented approach is promising for this wider
analysis.
Keywords: intelligent methods, temporal analysis, dy-
namic modelling, digital twins, COVID-19

1 Introduction
The coronavirus COVID-19 is affecting around the world.
There are strong differences between countries and re-
gions. People of all ages can be infected but older people
and people with pre-existing medical conditions are more
vulnerable to becoming severely ill. The risk is presented
with three parameters:

• Transmission rate evaluated by the number of newly
infected people,

• Case fatality rate (CFR) based on the percent of cases
that result in death,

• Vaccine performance as a prevention measure.

An online interactive dashboard is hosted by the Cen-
ter for Systems Science and Engineering (CSSE) at Johns

Hopkins University for visualising and tracking reported
cases of coronavirus disease 2019 (COVID-19) in real
time (CSSE, 2021; Dong et al., 2020). Transmission dy-
namics is difficult to explain since the characteristics of a
novel disease include many uncertainties. The open ev-
idence review (Jefferson et al., 2021) makes information
about active research on modes of transmission available.

The effective reproduction number (R) of an infectious
disease is used for modelling. The tracking of the parame-
ter is done by assuming a model structure. An example of
this approach is presented in (Arroyo-Marioli et al., 2021)
where the Kalman filter and a SIR model has been used
for tracking R for COVID-19.

The steady-state simulation models are linear multiple
input, multiple output (MIMO) models ~y = F(~x), where
the output vector~y = (y1,y2, . . . ,yn) is calculated by a lin-
ear function F from the input vector ~x = (x1,x2, . . . ,xm).
Statistical modelling in its basic form uses linear regres-
sion for solving the model coefficients. Linear methodolo-
gies are suitable for large multivariable systems and can
be extended with quadratic and interactive terms response
surface methodologies (Box and Wilson, 1951). Princi-
pal components compress the data by reducing the num-
ber of dimensions with a minor loss of information (Jol-
liffe, 2002). Partial least squares regression (PLS) is an
extension of these ideas (Gerlach et al., 1979). Known
semi-physical models of inputs are important in linear
modelling, see (Ljung, 1999). In linear parameter vary-
ing (LPV) models, an exogeneous variable measured dur-
ing the operation, modifies the local linear models (Ljung,
2008).

Dynamic data-driven modelling with parametric mod-
els, also known as identification (Ljung, 1999), is the key
methodology in the dynamic modelling. These models use
the static mapping and NARX/Nonlinear AutoRegressive
with eXogenous structures with a finite number of inputs
and outputs. The dynamic structures are reduced in dy-
namic models based on fuzzy set systems or neural net-
works (Babuška and Verbruggen, 2003).

Generalized norms are used in data analysis to extract
features from waveform signals collected from the statis-
tical databases (Lahdelma and Juuso, 2011). The compu-
tation of the norms can be divided into the computation
of equal sized sub-blocks, i.e. the norm for several sam-
ples can be obtained as the norm for the norms of indi-
vidual samples. This means that norms can be recursively
updated (Juuso, 2011). The same methodologies can be
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used for analysing the data distributions in less frequent
data, e.g. daily COVID-19 data. Distributions of the vari-
ables provide useful information about fluctuations, trends
and models. This has been used in temporal analysis for
all types of measurements, features and indices. Recur-
sive updates of the parameters are needed in prognostics.
(Juuso, 2020)

Dynamic LE models use the static mapping and NARX
input models in the same way as fuzzy set systems and
neural networks. The main difference is that the input
and output variables are processed by a nonlinear scaling
method, which originates from the membership functions
used in fuzzy systems. (Juuso and Leiviskä, 1992; Juuso,
2004) Constraints handling (Juuso, 2009) and data-based
analysis (Juuso and Lahdelma, 2010), improve possibil-
ities to update the scaling functions recursively (Juuso,
2011). Different fuzzy approaches can be efficiently com-
bined with LE models where the interactions between the
scaled variables are linear (Juuso, 2014).

This research aims to develop unified intelligent models
for analyzing the fluctuations, trends and severity of the
corona situations. Parametric systems are used to adapt
the solution for varying operating conditions caused by
local areas and groups of people. Recursive updates are
used in the parametric models.

2 COVID-19 data
This research uses the complete COVID-19 dataset main-
tained by Our World in Data. The collection of the
COVID-19 data is updated daily and includes data on con-
firmed cases, deaths, hospitalizations, and testing. Raw
data on confirmed cases and deaths for all countries is
sourced from the COVID-19 Data Repository by the Cen-
ter for Systems Science and Engineering (CSSE) at Johns
Hopkins University. Data visualizations rely on work
from many people and organizations (Ritchie et al., 2020).

The Our World in Data has created a new description
of all our data sources available at the GitHub repository
where all the data can be downloaded. These datasets were
used as a data source in this research. The collection of
data is presented as tabular data where every column of a
table represents a particular variable, and each row corre-
sponds to a given record of the data set for a specific coun-
try on a certain day. Each record consists of one or more
fields, separated by commas. The data can be visualised
in the COVID-19 DataExplorer for individual countries.
Several countries can be compared by selecting them for
the view. The maps available in DataExplorer help in fo-
cusing on the analysis.

The analysis uses confirmed COVID-19 cases whose
number is lower than the number of actual cases. The
main reason for that is limited testing which also varies
between countries and time. Therefore, the analysis is
done country-wise. The pandemic introduces an increas-
ing number of new COVID-19 cases but countries also
make progress in reducing the speed towards zero new

cases (Figure 1). However, the increase can start again
as can be seen in the data of different countries. The pan-
demic can restart if it is active somewhere. The difficult
periods vary between countries.

A part of the pandemic cases leads to hospitalizations
and deaths. Both increases and reductions can be seen
in the daily new confirmed COVID-19 deaths (Figure 2.
During the outbreak of the pandemic, the calculated case
fatality rate (CFR) was a poor measure of the mortality
risk since it depends on the number of tests and at that time
there were few tests. The true number of cases was much
higher. Later the number of tests has increased strongly,
but not in all countries.

An increasing number of variants and mutations has
effects on the number of cases. Vaccinations were just
started during the studied period. All these have strong ef-
fect on the dynamics of the pandemic. The problems be-
come more case specific but can in the same time activate
in many locations.

The research focused on the temporal analysis is aimed
on finding situations for more detailed modelling and ac-
tion planning.

3 Methodologies
The modelling needs to be adapted in the appropriate sit-
uations. The unified analysis requires that all the features
are in the same scale. In this research, this is done by com-
bining the nonlinear scaling and the intelligent temporal
analysis. This methodology allows recursive updates of
the scaling functions.

3.1 Nonlinear scaling

The nonlinear scaling brings various measurements and
features to the same scale by using monotonously increas-
ing scaling functions x j = f (X j) where x j is the vari-
able and X j the corresponding scaled variable. The func-
tion f () consist of two second order polynomials, one for
the negative values of X j and one for the positive val-
ues, respectively. The corresponding inverse functions
X j = f−1(x j) based on square root functions are used for
scaling to the range [-2, 2], denoted as linguistification.
The monotonous functions allow scaling back to the real
values by using the function f (). (Juuso, 2004)

The parameters of the functions are extracted from mea-
surements by using generalized norms and moments. The
support area is defined by the minimum and maximum
values of the variable, i.e. a specific area for each variable
j, j = 1, . . . ,m. The central tendency value, c j, divides the
support area into two parts, and the core area is defined by
the central tendency values of the lower and the upper part,
(cl) j and (ch) j, correspondingly. This means that the core
area of the variable j defined by [(cl) j,(ch) j] is within the
support area.

The corner points are defined by iterating the orders, p,
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Figure 1. Daily new confirmed COVID-19 cases per million people, rolling 7-day averages collected from (Our, 2021) for selected
countries.

of the corresponding generalised norms

||τ Mp
j ||p = (Mp

j )
1/p = [

1
N

N

∑
i=1

(x j)
p
i ]

1/p, (1)

where p 6= 0, is calculated from N values of a sample, τ is
the sample time. This provides possibilities to recursively
update the scaling functions since the generalized norms
can be recursively updated. The iteration is based on the
generalized skewness (Juuso and Lahdelma, 2010).

The scaled values should preserve the directions of the
temporal changes with time. To achieve this, the scal-
ing functions should be monotonously increasing. This
is achieved by limiting the ratios,

α
−
j =

(cl) j−min(x j)

c j−(cl) j
,

α
+
j =

max(x j)−(ch) j
(ch) j−c j

,
(2)

in the range [ 1
3 , 3]. The corner points are adjusted if these

limitations are not filled. There are several alternatives to
select the points to tune. (Juuso, 2009)

The second order polynomials,

f−j = a−j X2
j +b−j X j + c j, X j ∈ [−2,0),

f+j = a+j X2
j +b+j X j + c j, X j ∈ [0,2],

(3)

are monotonously increasing if the coefficients are defined
as follows:

a−j = 1
2(1−α

−
j ) ∆c−j ,

b−j = 1
2(3−α

−
j ) ∆c−j ,

a+j = 1
2(α

+
j −1) ∆c+j ,

b+j = 1
2(3−α

+
j ) ∆c+j ,

(4)

where ∆c−j = c j− (cl) j and ∆c+j = (ch) j− c j.

3.2 Steady-state LE modelling
The nonlinear scaling transforms the nonlinear problem
~y = F(~x) to a linguistic equation (LE) model represented
by a compact equation

xout(t) = fout

(
− 1

Ai out

m

∑
j=1, j 6=out

Ai j f−1
j (x j(t−n j))

)
,

(5)
where the functions f j and fout are scaling functions. Each
variable j has its own time delay n j compared to the vari-
able with latest time label. In the general case, the the
weight factors

wi j =−
Ai j

Ai out
. (6)

The coefficients Ai j and Ai out can be set to one or to a
chosen value by modifying the scaling functions.

The directions of the interactions analyzed with these
methodologies are aimed to be valid in a wider area than
the scaling functions of the individual model variables.
The quadratic effects are embedded in the scaling ap-
proach and the model can handle various kinds of inter-
actions. Subsets of scaled variables can form linguistic
principal components (LPCs) and PLS regression could be
useful in modelling. The LPV modelling further extends
the feasible areas of the model parameters.

3.3 Dynamic LE modelling
In NARX models, the input and output values are chosen
according to appropriate system orders. In the regressor
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Figure 2. Daily new confirmed COVID-19 deaths per million people, rolling 7-day averages collected from (Our, 2021) for selected
countries.

vector, the number of past inputs and outputs may become
too high if nonlinear effects are needed. The nonlinear
scaling reduces the number of input and output signals
needed for the modelling of nonlinear systems. In the de-
fault dynamic LE model,

Yout(k)+a1Yout(k−1) =
m

∑
j=1, j 6=out

b jU j(k−n j)+ e(t), (7)

where Yout(k), Yout(k− 1) and U j(k− n j) are the scaled
values of the variables and e(t) is a noise term. The scal-
ing function fout is not changing between time steps k−1
and k. The delays n j of the inputs can depend on the oper-
ating conditions and need to be calculated if variable step
numerical integration is used.

A wide variety of situations can be represented with
composite local models which are based on the same
model equations (7) and case specific scaling functions f j
and fout . Overlapping local models can be combined with
fuzzy set systems by using case specific solutions which
are first scaled back to the real values.

4 Epidemiological modelling
Data collection and working practices were under devel-
opment during the first months of the COVID-19 pan-
demic. In this research, the modelling was started with
the variable selection and analysis in the varying operat-
ing conditions.

4.1 Variable selection
New cases. The modelling uses daily new confirmed
COVID-19 cases and deaths as output variables. The
study was done for the same countries as in (Juuso, 2021).
Six countries were Finland, India, Italy, Sweden, United
Kingdom and United States.

The rolling 7-day averages were used for the research
study since they operated smoothly for the confirmed
deaths as well. The cases were analyzed per million peo-
ple to improve the sensitivity of the analysis for small
countries. Situations vary strongly between countries and
periods of time.

Hospital patients, hospital admissions and intensive
care patents could be analyzed with the same methodolo-
gies, but the datasets are much more limited.

The datasets include also test activities, vaccination and
stringency information.

Operating conditions. The number of tests was every-
where very low in the beginning of the pandemic in the
spring of 2020. The confirmed new cases remained low
for the first 240 days (Juuso, 2021) for all the countries
compared in this research (Figure 1). Since similar differ-
ences were not seen in new confirmed deaths (Figure 2),
the severe cases were detected already in the beginning. A
high number of undetected cases is in agreement with the
high values of excess mortality.

COVID-19 was activated country by country. In this
research, a high number of cases per million people ap-
peared in the sequence Italy, the UK, Sweden and the
USA. Finland had a low number of cases and India hardly
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any. During the summer of 2020, both new cases and
deaths went down, although the number of tests was in-
creased. An exception was the USA where both remained
high, which was true situation since the share of positive
tests was high as well. India had all the time very few
cases, but the test activity was very low and the share of
positive tests was high meaning that the situation was sim-
ilar with the spring of 2020 in other countries.

In the autumn of 2020, the number of cases and deaths
started to rise again in the same sequence as previously.
The number cases was rising fast and the number of deaths
only slightly.

Vaccinations started in December 2020 and increased
steadily, fastest in the UK and USA (Table 1) where the
number of new cases dropped fast. The decrease contin-
ued although the number of tests was increased.

Table 1. Cumulative COVID-19 tests and vaccinations per 100
people by April 12, 2021 (Our, 2021).

Tests One dose Two doses
Finland 76.1 20.93 1.79
India 18.5 6.82 0.97
Italy 88.2 15.6 6.65
Sweden 77.2 15.18 6.26
United Kingdom 189.0 47.28 11.22
United States 120.0 39.28 24.89

The society can take actions to prevent the pandemic
to expand. The stringency index presented in (Hale et al.,
2021) is a composite measure based on nine response indi-
cators including school closures, workplace closures, and
travel bans, rescaled to a value from 0 to 100 (100 =
strictest). This index was highest in India and lowest in
Finland.

The reproduction rate represented as the average num-
ber of new infections caused by a single infected individ-
ual. If the rate is greater than 1, the infection is able to
spread in the population. If it is below 1, the number of
cases occurring in the population will gradually decrease
to zero. The estimate rates (Arroyo-Marioli et al., 2021)
were very high in the spring of 2020 since the detected
COVID-19 cases were almost all serious cases.

4.2 Data analysis
The nonlinear scaling approach aims to simplify the mod-
elling work. The normalisation keeps the directions of the
effects but would leave the analysis of nonlinear effects
to the modelling. For all six countries, the data analysis
was taken from the research on temporal analysis (Juuso,
2021). The country specific lines were extracted from the
full dataset with all the countries by using the DataEx-
plorer. Selected time periods were used in the analysis.

Within each country, the risk levels are represented by
using nonlinear scaling. The scaling functions are defined
by five corner points by generalized norms whose orders

Figure 3. Parameters min(x j), (cl) j. c j, (ch) j and max(x j) for
the daily new confirmed cases: first 240 days (left) and all data
(right) , all based on 7-day rolling average of confirmed cases
per million people (Juuso, 2021).

Figure 4. Parameters min(x j), (cl) j. c j, (ch) j and max(x j).
for the daily new confirmed deaths: first 240 days (left)
and all data (right), all based on 7-day rolling average of
confirmed cases per million people (Juuso, 2021).

are obtained from the data. The parameters of the scaling
functions are country and time period specific (Figures 3
and 4). The differences between the early and later stages
of the pandemic are very clear. For the death cases, the
differences are hardly visible.

The confirmed cases and deaths were analysed per mil-
lion people but still the relative values are still much higher
in the UK, the USA and Italy than in Finland.

4.3 Feasibility results
The default dynamic LE model (7) is studied for all the
analyzed data. The cases were the same as in the tem-
poral analysis presented in (Juuso, 2021). The first phase
is the nonlinear scaling of the variables. In this research,
the variables are the daily new confirmed COVID-19 cases
(Figure 1) and deaths (Figure 2).

The input variables could be the vaccination level, strin-
gency index and active level of infections. Vaccinations
were just coming at the end of the studied period. The
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Figure 5. Scaled daily COVID-19 cases and deaths in Finland.

stringency index was not yet on a practical level. There
were not measurements for the active level of infections.

This section is a feasibility study of the linear interac-
tions of the scaled data in different countries having dif-
ferent operating conditions.

Finland. During the first days of the pandemic, the lev-
els of the daily new cases were much lower than in Au-
tumn and Winter. In spite of that, the levels of deaths were
already at the same level as later. For Finland, this is seen
in Figure 5 and 6. The difference in operating conditions
is clear in the parameters of the scaling functions (Figures
3 and 4).

Linear interactions operate well for the changes in the
scaled values. The time delay from the changes of con-
firmed cases to the confirmed deaths is about two weeks.
The steep slope at the beginning of the cases could be
caused by the delayed detection of them. The analysis
reveals details which are hardly visible in Figures 1 and 2,
including a drastic change in deaths seen in Figures 5 and
6). On December 2020, there was a maximum area for
both new cases and deaths. After that, the new infections
were increasing but the new deaths went down (Figure 5).

Italy. Italy was first country in Europe to meet the pan-
demic which may have cased the very slope seen in the
linear model (Figure 7). There was also a very short time
delay between the detected cases and deaths. Later the
time delay went to the same two weeks which was in Fin-
land. For Italy, the scaling functions were much steeper
than for Finland (Figures 3 and 4). There was a maximum
area slightly earlier than in Finland and the infection levels
remained constant. The new deaths went down.

Sweden. Sweden had considerably softer actions for
controlling the pandemic. According to the conformed
deaths, the first period of the pandemic lasted about 50
days longer than in Finland and Italy (Figure 8). There
were also a high level of infections during the whole Sum-
mer. The scaling functions were comparable with the Ital-
ian ones. Time delays between confirmed cases and deaths

Figure 6. Scaled daily COVID-19 cases and deaths in Finland
during the first 240 days.

Figure 7. Scaled daily COVID-19 cases and deaths in Italy.

Figure 8. Scaled daily COVID-19 cases and deaths in Sweden.
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Figure 9. Scaled daily COVID-19 cases and deaths in the United
Kingdom.

Figure 10. Scaled daily COVID-19 cases and deaths in the
United States.

were not easy to find since the level of infections was high
continuously.

United Kingdom. The scaling functions are the steep-
est for the United Kingdom (Figures 3 and 4). The first
period of the pandemic went very closely in the same way
as in Finland and Italy. In the autumn of 2020, a short
maximum area was slightly before the similar period in
Italy. This was followed by a short maximum period and
a very steep decrease for both the new cases and deaths
(Figure 9. The decrease is considerably faster than in the
first pandemic period. This improvement is linked with
the widening vaccination (Table 1).

USA. Scaling functions are quite steep already in the
first period. The first period of the pandemic started in
the same way as in Finland, Italy and the UK (Figure 10).
Summer 2020 was different: the recovery was slow, even
slower than in Sweden. The level of new infections and
deaths were all the time higher than in other countries.
Three peaks were detected in November-December 2020

Figure 11. Scaled daily COVID-19 cases and deaths in India.

could be from different infection transmission chains. Af-
ter them, the level of new infections go down almost as fast
as in the UK. Also, here this improvement is linked with
the widening vaccination (Table 1). The time difference
between the last peaks of the infections and the deaths is
again close to two weeks.

India. India was in the starting phase: the parameters
of the scaling functions have very low values (Figures 3
and 4 and the time difference between the peaks of the
infections and the deaths are small (Figure 11).

5 Discussions
The nonlinear phenomena are well presented with the
combination of the nonlinear scaling and linear interac-
tions for different countries in varying operating condi-
tions. The same approach operates for both the confirmed
cases and deaths. Different countries and specific periods,
including periods where the data quality is not sufficient,
are analyzed in the same scale [−2,2].

The effects of the vaccinations at the end of the ana-
lyzed period are clear, especially the UK and the USA
but also Finland, Italy and Sweden where the vaccinations
were just started.

Limitations are seen if there are too many interacting
things, e.g. several infection transmission chains which
are in different stages. Situations of this kind of are active
in the summer of 2020 in Sweden and the USA. Three in-
fection chains in November-December 2020 are interact-
ing. The actual inputs would be needed in those situations.

6 Conclusions and future studies
The combination of the nonlinear scaling and linear in-
teractions operates well for different countries in varying
operating conditions. This aggregated material was used
for analyzing some countries. The analysis can be done
with this approach for any country which has data in the
overall dataset.
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The analysis can be done in similarly for different sub-
sets. Specific scaling functions can be used in local anal-
ysis and for groups of people to increase the sensitivity
of the temporal analysis. The data material already in-
cludes hospital patients and patients in intensive care. The
progress in people vaccinations provides more material for
comparisons. Also, different variants can be taken in the
analysis.
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