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Preface

The 61st SIMS conference on Simulation and Modelling (SIMS 2020) was organized as a virtual conference.
Originally, this conference was planned to be the first SIMS EUROSIM conference and organized in Oulu,
Finland. The COVID-19 pandemic presented tremendous challenges for the global research community and
for the entire world. The organizers were first postponing the deadlines and keeping the plan of organizing
the conference in person. Since the pandemic was continuing strongly, the plans were changed: the SIMS
2020 was decided to organize as a virtual conference in September 2020 and the first SIMS EUROSIM
conference in September 2021.

The Scandinavian Simulation Society consists of members from five Nordic countries: Denmark, Finland,
Norway, Sweden, and Iceland. The goal of SIMS is to further develop the science and practice of modelling
and simulation in all application areas and to be a forum for information interchange between professionals
and non-professionals in the Nordic countries. SIMS is a member society of The Federation of European
Simulation Societies (EUROSIM) was set up in 1989. The purpose of EUROSIM is to provide a European
forum for regional and national simulation societies to promote the advancement of modelling and
simulation in industry, research and development. EUROSIM consists of 17 European Simulation Societies.
The Scandinavian simulation society (SIMS) had Board and Annual Meetings during the conference.

The conference program consisted of four keynote presentations, a SIMS history review, 70 regular
presentations and a panel discussion. The proceedings include 68 full papers. The keynotes and the history
review are included as abstracts. The call for papers resulted in 81 submissions prepared by 181 authors from
eleven countries. The reviews of all submissions were done by four chairs, eleven IPC members and 37
international reviewers. Full papers were selected on the grounds of academic merit and relevance to the
conference theme. Each submission had 2-4 reviews and the acceptance rate was 84% for the full papers
published in the proceedings.

The SIMS 61 conference covered broad aspects of simulation, modeling and optimization in engineering
applications, including many papers on energy, industry, circular economy, automation and methodologies.
Energy papers focus on buildings, district heating, hydro power and heat production. Industry includes
papers on steel industry, material processing, granulation, oil and gas industry and transportation. Chircular
economy related papers study anaerobic digestion, pyrolysis, condensation and microbial electrosynthesis.
The part of CO2 capture and use include CO2 injection, heat exchangers in CO2 capture and CO2
absorption. Automation related papers focus on monitoring and control. Digital twins are studied in
industrial processes, fault detection and ERP and MES. Fluid dynamic part include CFD and CPFD models,
computational studies of fluidized beds, a gasification reactor and subcooled boiling heat transfer. Statistical
and intelligent methodologies papers use the Bayesian approach, partial least squares, intelligent
methodologies and agent-based simulations.

Panel discussions were organised on future challenges and possibilities for simulation. The discussion
focused on five areas: simulation, energy systems, big data, environment and simulation toolboxes. The
virtual conference did not include technical tours. Industrial and environmental applications, development of
modelling and simulation tools and strong support for PhD students continue for stimulating process
development model-based automation.

We would like to express our sincere thanks to the keynote speakers, authors, session chairs, members of the
program committee and additional reviewers who made this conference such an outstanding success. Finally,
we hope that you will find the proceedings to be a valuable resource in your professional, research, and
educational activities whether you are a student, academic, researcher, or a practicing professional.

Esko Juuso, Bernt Lie, Erik Dahlquist, and Jari Ruuska

DOI; 10.3384/ecp20176 Proceedings of SIMS 2020
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Conferences location
The conference was organized as a virtual event.
Opening, 22 September 2020

Opening of the 60th International Conference of Scandinavian Simulation Society (SIMS): SIMS 60 years

- SIMS President, Prof. Bernt Lie, University of South-Eastern Norway, Norway
- Adj. prof. Esko Juuso, Conference Chair, University of Oulu, Finland

Keynote presentations

Overview and Outlook for the OpenModelica Environment and its Use for Cyber-physical System
Development
Peter Fritzson, Department of Computer and Information Science, Linkoping University, Sweden

Real-time optimization and control with inaccurate model
Prof. Sebastian Engell, Process Dynamics and Operations Group, Biochemical and Chemical
Engineering Department TU Dortmund, Germany

Digital Twins utilization throughout the Life Cycle of Industrial Processes
Dr. Tuula Ruokonen, Digital Services Solutions in Valmet Technologies Oy, Finland

SIMS 60+

Scandinavian Simulation Society 60+ ready for future challenges
Esko Juuso, University of Oulu, Finland,

Conference topics

The Proceedings includes 68 articles in five tracks including 15 topics:

Tracks Topics Pages
Energy Energy in buildings 1-38
District heating 39-84
Heat energy 85-115
Hydro power 116 - 138
Industry Steel industry and material processing 139 - 164
Granulation process 165 -194
Process development 195 - 228
Oil and gas industry 229 - 256
Transportation 257 - 286
Circular economy  Separation and synthesis 287 -310
CO; capture and use 311-337
Automation Monitoring and control 338 -364
Digital twins 365 -384
Methodologies Fluid dynamics 385 -442
Statistical and intelligent methodologies 443 - 485
DOI: 10.3384/ecp20176 Proceedings of SIMS 2020
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Panel discussion on Future challenges and possibilities for simulation, 24 September 2020
Chair: Adj. prof. Jari Ruuska, University of Oulu, Finland

Panelists:
Prof. Peter Fritzson, Linkoping University, Sweden
Prof. Sebastian Engell, TU Dortmund, Germany
Dr. Tuula Ruokonen, Valmet Technologies Oy, Finland
Prof. Bernt Lie, University of South-Eastern Norway, Norway
Senior prof. Erik Dahlquist, Mdlardalen University, Sweden
Adj. prof. Esko Juuso, University of Oulu, Finland

Conference program

Each conference day started with a keynote and continued with 2 — 3 parallel sessions. The Annual
SIMS meeting was in the end of the second day. The third day ended with the SIMS 60+ presentation
and the panel discussion. More information is available at SIMS website (https://www.scansims.org/).

Conference General Chair

Adjuct prof. Esko Juuso, University of Oulu, Finland

International Program Committee

Prof. Bernt Lie, University of South-Eastern Norway, Prof. Kauko Leiviska, University of Oulu, Finland

Norway, Chair Prof. Miguel Mujica-Mota, Amsterdam University of
Adj. prof. Esko Juuso, University of Oulu, Finland, Applied Sciences, The Netherlands

Co-Chair Adj. prof. Esa Muurinen, University of Oulu, Finland
Prof. %rélfgﬁar}quUISt’ Malardalen University, Sweden, Dr. Markku Ohenoja, University of Oulu, Finland

Adj. prof. Jari Ruuska, University of Oulu, Finland, o' Kim Sorensen, Alborg University, Denmark

Co-Chair Dr. Satu Tamminen, University of Oulu, Finland

Dr. Andreas Kérner, Vienna University of Adj. prof. Kai Zenger, Aalto University, Finland

Technology, Austria Prof. Borut Zupanci¢, University of Ljubljana,

Prof. Juan Ignacio Latorre-Biel, Public University of Slovenia

Navarre, Spain Prof. Lars Erik @i, University of South-Eastern

Norway, Norway

National Organizing Committee

Adj. prof. Jari Ruuska, University of Oulu, Finland, Chair

Adj. prof. Esko Juuso, University of Oulu, Finland, Co-Chair

Ms. Anu Randén-Siippainen, Finnish Automation Society, Finland
Mr. Marko Vuorio, Finnish Automation Society, Finland

DOI: 10.3384/ecp20176 Proceedings of SIMS 2020 v
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Overview and Outlook for the OpenModelica Environment
and its Use for Cyber-physical System Development

Peter Fritzson

Department of Computer and Information Science
Linkoping University, Linkoping, Sweden

Abstract

The industry is currently seeing a rapid development of cyber-physical system products containing integrated
software, hardware, and communication components. The increasing system complexity in the automotive and
acrospace industries are some examples. The systems, that are developed, have increasing demands of
dependability and usability. Moreover, lead time and cost efficiency continue to be essential for industry
competitiveness. The extensive use of modeling and simulation - Model-Based Systems Engineering tools -
throughout the value chain and system life-cycle is one of the most important ways to effectively target these
challenges. Simultaneously there is an increased interest in open source tools that allow more control of tool
features and support, and increased cooperation and shared access to knowledge and innovations between
organizations.

Modelica is a modern, strongly typed, declarative, equation-based, and object-oriented (EOO) language for
model-based systems engineering including modeling and simulation of complex cyber-physical systems
Major features are: ease of use, visual design of models with a combination of lego-like predefined model
building blocks, ability to define model libraries with reusable components, support for modeling and
simulation of complex applications involving parts from several application domains, and many more useful
facilities. The Modelica language is ideally suited for cyber-physical modeling tasks since it allows integrated
modelling of discrete-time (embedded control software) and continuous-time (process dynamics, often for
physical hardware). Modelica 3.3 extended the language with clocked synchronous constructs, which are
especially well suited to model and integrate physical and digital hardware with model-based software.

This talk gives an overview and outlook of the OpenModelica environment — the most complete Modelica
open-source tool for modeling, engineering, simulation, and development of systems applications
(www.openmodelica.org), and its usage for cyber-physical system development. Special features are
MetaModeling for efficient model transformations, debugging support for equation-based models, support (via
OMSimulator) for the Functional Mockup Interface for general tool integration and model export/import
between tools, model-based optimization, as well as generation of parallel code for multi-core architectures.

Moreover, also mentioned is recent work to make an OpenModelica based tool chain for developing digital
controller software for embedded systems, and in generating embedded controller code for very small target
platforms like Arduino Boards with down to 2 kbyte memory. This work is extended in the ongoing
EMPHYSIS project where the FMI standard is extended into the eFMI standard for embedded systems.

DOI: 10.3384/ecp20176 Proceedings of SIMS 2020
Virtual, Finland, 22-24 September 2020
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Figure 1. OpenModelica simulation of the V6Engine model with 11000 equations. Plotting simulation results
using OMEdit. Left: Model browser. Right: Plot variable browser. Bottom: message browser window.

OMNotebook
Interactive
Notebooks

ModelicaML
UMLModelica
and requirement

verification

OMEdy Graplue

and Texmal
Model Editor

MDT
Eclipse Plugin

OMWebbook
Interactive
Notebooks

OMC
Interactive Compiler
Server

¥
Sumlation

Debugger

: OMPython OMJulia I OMMatlab
. Pythen Julia Matlab
Serphing Scripting Sernipting
OMShell
Modelica
Seriphing
OMOptum Dyvnanuc
Optiization Optinuzation

Execution EAD]
Visualization

OMSens
sensiiivity
analysis

OMSiulator
FMT Smmlation

v

| OMSysident |

Figure 2. The architecture of the OpenModelica environment. Arrows denote data and control flow.
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Biography

Peter Fritzson is the professor and research director of the Programming Environment Laboratory, at Link6ping
University (LiU). He is also the vice director of the Open Source Modelica Consortium, the vice director of
the MODPROD center for model-based product development, (previously the director of both) organizations
he took initiative to establish. During 1999-2007, he served as chairman of the Scandinavian Simulation
Society, and secretary of the European simulation organization, EuroSim. During 2000-2020, he was vice
Chairman of the Modelica Association. Prof. Fritzson's current research interests are in software technology,
especially programming languages, tools and environments; parallel and multi-core computing; compilers and
compiler generators, high level specification and modeling languages with special emphasis on tools for object-
oriented modeling and simulation where he is one of the main contributors and founders of the Modelica
language.

He received PhD degree in Computer Science at LiU in 1984. The thesis title was “Towards a Distributed
Programming Environment Based on Incremental Compilation”. In 1985-86, he was the project leader of the
subproject on incremental compilation at Sun MicroSystems, Mountain View, California. In 1989, he became
associate professor and director of the Programming Environment Laboratory (PELAB) in Department of
Computer and Information Science at LiU. In 1992, he qualified as docent at LiU. From 1995 to 2019 he has
been a full professor at LiU and continued from 2020 as a full professor emeritus at LiU. The research director
position of PELAB he has had since 1995. Prof. Fritzson has many positions in scientific organizations: the
vice chairman of the Modelica Association since 1999, the director of the Open Source Modelica Consortium
since 2007, and the research leader at RISE, SICS East, St Anna Research Institute since 2007.

Professor Fritzson has authored or co-authored 319 technical publications, including 21 books/proceedings, 1
book draft, 45 journal papers, and 251 papers in conference proceedings or external book chapters, of which
249 are refereed, 5 are invited, and 2 are nonrefereed. Google scholar link:
https://scholar.google.com/citations?authuser=1&user=K X UHII4AAAAJ

Selected books:

Peter Fritzson. Principles of Object Oriented Modeling and Simulation with Modelica 2.1. 940 pp, Wiley-IEEE
Press, 2004.

Peter Fritzson. Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica. 232
pages, ISBN: 978-1-1180-1068-6, Wiley-IEEE Press, September, 2011

Peter Fritzson. Principles of Object Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical
Approach. 1250 pages. ISBN 9781-118-859124, Wiley IEEE Press, 2014.
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Real-time optimization and control with inaccurate models

Prof. Sebastian Engell

Lehrstuhl fiir Systemdynamik und Prozessfiihrung / Process Dynamics and Operations Group
Fakultdit Bio- und Chemieingenieurwesen / Biochemical and Chemical Engineering Department
TU Dortmund, Dortmund, Germany
Abstract

Modelling for simulation, modelling for optimization, and modelling for control follow the same principles,
but have to meet different requirements. Simulation models should represent the behavior of the system under
consideration for a predefined set of test cases faithfully, with the accuracy usually being measured in the time
domain, i.e. by looking at the differences of the stationary values or trajectories of some key variables.
Modelling for optimization is different in that the goal is that the computed optimum of the model and the
optimum of the real system should match, and the model should support efficient global numerical
optimization. This implies that the model must be accurate around the global optimum, but over the full range
of the variables, medium accuracy is sufficient. The problem for modelling of course is that without the
knowledge of the region of the global optimum, it is not possible to build such a model, and hence modelling
and optimization should be interleaved.

When using models for control, the relationship between model accuracy and control performance is even
more intricate than for optimization. One can control a plant satisfactorily using a coarse model (in the simplest
case, the sign of the gain is sufficient), while model errors can also lead to poor performance and instability.
For linear time-invariant control loops, the classical robust control theory from the 1980s tells us that a good
model for control is a model that describes the dynamic behavior accurately near the gain-crossover frequency,
and qualitatively correctly for lower frequencies. So what a good model is for the purpose of control depends
on how fast we want to control the system.

For high-performance control, techniques based on online optimization, i.e. model-predictive control (MPC)
have become the dominant technology in the last decades, due to their ability to handle constraints, nonlinear
systems, and economically motivated cost functions (Engell, 2007). In contrast to the classical theory of robust
control, robustness to model errors for such control strategies is difficult to analyze and, similar to stability, is
usually handled using a constructive approach, i.e. by building controllers that have certain robustness
properties for a given description of the uncertainty of the model. Min-max robust MPC, in which the
performance is optimized for the worst case model, is the best known representative of this approach. This
however comes at the price of a high conservatism.

To build good models is a costly endeavor. Therefore, both in modelling for optimization and in modelling
for control, one is interested in techniques that provide good performance without huge modelling efforts. In
the presentation, we discuss two recent approaches to reducing the negative effects of model errors in
optimization and control. For real-time optimization, we outline the so-called modifier adaptation approach,
which adds a data-based local model to a global model and updates it iteratively to ensure convergence to the
true optimum of the real plant (Gao and Engell 2005, Gao, Wenzel, and Engell, 2016). For control, the multi-
stage MPC approach is discussed in which the future information on the realization of the model uncertainty
is included in the optimization that is performed at the current time step to reduce the conservatism of the
controller (Lucia, Finkler, and Engell, 2013).

References
S. Engell. Feedback control for optimal process operation. Journal of Process Control 17(3):203-219, 2007.
doi: 10.1016/j.jprocont.2006.10.011.

W. Gao and S. Engell. Iterative set-point optimization of batch chromatography. Computers and Chemical
Engineering, 29:1401-1409, 2005.
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W. Gao, S. Wenzel, and S. Engell. A reliable modifier-adaptation strategy for real-time optimization.
Computers and Chemical Engineering, 91:318-328, 2016. doi: 10.1016/j.compchemeng.2016.03.019.

S. Lucia, T. Finkler, ans S. Engell. Multi-stage nonlinear model predictive control applied to a semi-batch
polymerization reactor under uncertainty. Journal of Process Control, 23:1306-1319, 2013. doi:
10.1016/j.jprocont.2013.08.008.

Biography

Prof. Engell received a Dipl.-Ing degree in Electrical Engineering from Ruhr-Universitit Bochum, Germany
in 1978 and the Dr.-Ing. Degree and the venia legendi in Automatic Control from Universitdt Duisburg in 1981
and 1987. 1984/1985 he spent a year as a PostDoc at McGill University, Montréal, Canada. 1986-1990 he was
the head of an R&D group at the Fraunhofer Institut IITB in Karlsruhe, Germany. 1990 he was appointed to
his present position as a Full Professor of Process Dynamics and Operations at the Department of Chemical
Engineering at TU Dortmund. 2008 he was a Distinguished Visiting Professor at Carnegie Mellon University,
Pittsburgh, USA. He was Department Chairman 1996-1999 and 2012-2014 and Vice-Rector for Research of
TU Dortmund 2002-2006. He is currently a member of the Research Council of the Alliance of the Universities
in the Ruhr Region, UA Ruhr.

Prof. Engell received an IFAC Journal of Process Control Best Paper Award, and is a co-author of the 2014
and 2016 Best Papers in Computers and Chemical Engineering. He received the Best Paper Award of the IEEE
Congress on Evolutionary Computation 2010 with Thomas Tometzki on risk-conscious planning and the PSE
Model-based Innovation Prize with Ala Eldin Bouaswaig. He gave the Bayer Lecture in Process Systems
Engineering at Carnegie Mellon University in 2008 and the Roger Sargent Lecture at Imperial College,
London, in 2012. He has published more than 120 Papers in scientific journals, more than 40 papers in edited
volumes and more than 300 conference papers with peer review and full papers in proceedings. His Scopus
paper count is 530 with 4900 citations. He graduated more than 70 PhD students at TU Dortmund. In 2012, he
was awarded a European Advanced Investigator Grant for the Project MOBOCON — Model-based Optimizing
Control — From a Vision to Industrial Reality.

Prof. Engell is a Fellow of IFAC, the International Federation of Automatic Control since 2006 and has led
the IFAC Fellow Selection Committee 2012-2014 He served as President of EUCA, the European Control
Association and is a member of the selection committee for the European Control Award.

Prof. Engell has led several European Projects in the FP6, FP7 and Horizon 2020 Frameworks: Multiform
(ICT), DYMASOS (ICT), CPSoS (Support Action, ICT), MORE (NMP) and CoPro (SPIRE, ongoing). The
CPSoS project developed a roadmap for Cyber-physical Systems of Systems in Europe. He was involved in
the Marie Curie Reseach Training Networks oCPS and PRONTO and currently is a partner in the EU-India
project LOTUS on monitoring water quality and managing water systems.

His research areas are in the domains of model-based optimizing control, real-time optimization, and
scheduling. In his research, the aspect of uncertainty about the behavior of the system that is controlled or
optimized has always been in the focus.
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Digital Twins utilization throughout the Life Cycle of
Industrial Processes

Tuula Ruokonen, Ph.D (Eng), MBA

Director, Digital Services Solutions, in Valmet Technologies Oy,
Board Member in Automation Foundation in Finland sr.

Abstract

In this presentation, Digital Twins for industrial processes are considered from their historical and future point
of view. What is actually a Digital Twin — is their only one or several for different purposes? What enables the
development of Digital Twins just now? Which benefits and challenges are there in their development and
implementation?

There are many definitions for Digital Twins. Most state that a Digital Twin is a virtual representation of a
physical product or process, used to understand and predict the physical counterpart’s performance
characteristics. Digital Twins are used throughout the product life cycle to simulate, predict, and optimize the
product and production system before investing in physical prototypes and assets.

Already 30 years ago, such systems and simulators were developed and utilized which for sure would
nowadays be called Digital Twins, concrete examples including Computer Aided Design, Process Modelling
and Dynamic Simulators, Advanced Process Control, Condition Monitoring, Expert and Knowledge-Based
Systems, and even Remote Expert Services.

Digital Twins are presently at the top in their hype curve, and their enabling technologies develop strongly
and rapidly. We are facing partly evolution, partly revolution in their development. For example increased
computing power enables real time analytics, cloud-based computing enables flexible calculation capacity,
mobile technology enables mobile and remote applications, wireless sensors enable additional measurements,
and Artificial Intelligence and Machine Learning tools enable advance analytics. Furthermore important is the
connection to Internet of Things and Industrial Internet applications development.

Potential to utilize Digital Twins in industrial processes and equipment is wide, them forming ideally a
digital thread throughout the whole life cycle. The goal is efficient information management, its utilization and
updating in all phases of the life cycle: product development, production planning, sales, project
implementation, operations optimization, personnel training, process operation and maintenance.

Why is the utilization of Digital Twins still so difficult or even impossible? Challenges are created by
separate functional processes and IT systems, and especially by organizational silos and suboptimization of
goals, in different phases of the life cycle. Open questions exist still related to common data models and
standards, and model updates. Own challenges come from the data ownership and principles of sharing data
between related actors, equipment manufacturers, end users and service providers, related to design data and
operation-time data management.

Looking forward that these challenges and open questions will be solved and the vision of up-to-date Digital
Twins, utilized in the whole life-cycle, comes true and enables the performance optimization of processes and
equipment in the future autonomous mills and plants.

DOI: 10.3384/ecp20176 Proceedings of SIMS 2020
Virtual, Finland, 22-24 September 2020
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Dr. Tuula Ruokonen is responsible of development of new value adding applications and service solutions in
Valmet, based on remote services, industrial internet and advanced analytics. She is inspired by new business
opportunities and applying new technological potentials. Special focus is in testing and taking into use new
technologies, such as virtual and augmented reality, and applying Al and machine learning methods.
Applications are developed in tight customer co-operation based on design thinking and the Lean Start-up
method.

Dr. Ruokonen has more than 25 years of practical business management experience, from technology and
product development to line management responsibilities. Especially she has wide experience in industrial
service and outsourcing business and its development. She has a Ph.D. degree in Electrical Engineering
(Control Engineering), Florida Atlantic University, USA, 1989. Thesis was on "Nonlinear Filtering for Failure
Detection in Dynamic Systems”. She has M.Sc, and Lic.Tech. degrees in Electrical Engineering (Control
Engineering) from the Helsinki University of Technology. The Lic.Tech. thesis (1987) was on "Model-Based
Failure Diagnosis - Structure of the System and Methods Based on Characteristic Curves". M.Sc. in Electrical
Engineering (major in Control Engineering and Automation, minor in Measurements and Information
Technology) was received from the Helsinki University of Technology in 1985. The M.Sc. thesis (1985) was
on "Failure Diagnosis and Condition Monitoring in Power Plants. Methods and Applications, a Peat Fuelled
Plant as an Example". In 1993, she received MBA degree from the Helsinki University of Technology (Aalto
University).

Dr. Ruokonen has received Finnish Society of Automation bronze medal of merit 1996 and silver medal of
merit 2000. She is active in automation societies, including Automation Foundation, a board member 1996-
98, 2019-, Automaatioviyld magazine, a board member 1991-92, and Finnish Society of Automation, a board
member 1990-92. She has been active in The Association of Electrical Engineers in Finland, a board member
1987, 1994-96, and Sahkoklubi, a board member 1984, 1989-91, 2017-2019. Already during her post graduate,
she was active in the IEEE student branch in Florida Atlantic University, a board member 1987-88.

Valmet is the leading global developer and supplier of technologies, automation and services for the pulp,
paper and energy industries, having strong growth strategy and the aim to utilize efficiently new digitalization
enablers for customer value-add and internal efficiency. Valmet’s net sales in 2019 were approximately EUR
3.5 billion and it employed about 13.600 professionals around the world.
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Scandinavian Simulation Society 60+
ready for future challenges

Adj. prof. Esko K. Juuso

Control Engineering, Environmental and Chemical Engineering
Faculty of Technology
University of Oulu, Finland

Abstract

Scandinavian Simulation Society (SIMS) started over 60 years ago as a society for the analog simulation:
Scandinaviska Analogmaskinsillskabet (SAMS) was founded in 1959 in Vésteras. The current name was taken
in 1968 when SIMS moved successfully to the digital simulation. SIMS is currently a society of societies
which operates in five countries Denmark, Finland, Iceland, Norway and Sweden. SAMS started in Sweden,
Denmark and Norway. Finland joined in the 60s and in 1972 SIMS conference was organized the first time in
Finland. In 2012, the SIMS conference went to Iceland. SIMS is the eldest active simulation society in the
world. After 60 annual conferences, the 61st conference is the first virtual conference.

Applications have continuously been important parts of the conferences. Steel industry, flight simulators
and atomic energy were active already in the beginning. Industry, Energy and Environment are important areas
of SIMS. Applications in the energy field have extended from power plants to sustainable energy: solar, wind
and geothermal, especially in Iceland. Processes, including the forest, steel and chemical industry, as well as
oil & gas production have kept an important role. Increasing interests have been seen in water and wastewater
treatment, biogas production and bioprocesses. The annual conferences circulate sequentially in the SIMS
countries and the topics adapt in the local interests. SIMS has stimulated automation in these versatile fields,
also through representative organizations like Finnish Automation, Automation region in Sweden and
Norwegian Automation.

Numerical methods and combined differential and algebraic equations have formed the basis for process
models first in Fortran, then Matlab and Simulink. Computational intelligence, Al and various model builders,
e.g. gPROMS, became active in the 90s. The full range from PCs to supercomputers is used. The developments
of new simulation tools have been important during the years: Apros was introduced in 1986 and Modelica in
1996. As a spinoff, we have the active Modelica Association. Graphics becomes more advanced, open source
codes are coming more popular and the integration of methodologies and tools developed for different
applications areas extend the application areas.

SIMS provides strong support for PhD students by bringing together different methodologies, applications,
software tools and people. Efficient simulation tools help in bringing different ideas within the education.

International cooperation has been essential throughout the years. An agreement with International
Association for Mathematics and Computers in Simulation (IMACS) dates back 1976 resulting the IMACS
World Congress in Oslo 1985. The European Simulation Multiconference was organized in 1991 in
Copenhagen. SIMS is an active member society in the Federation of the European Simulation Societies
(EUROSIM) founded in 1992. The EUROSIM congress has been organized twice by SIMS: 1998 Helsinki
and 2016 Oulu. The SIMS EUROSIM 2021 is starting a new EUROSIM conference series to be held every
third year.

The future can be based on the stimulated use of new simulation tools, a wide scale of applications in
industry, energy and environment, all stimulated by the automation and young generation of researchers. This
combination, which has kept SIMS going for decades, needs to be adapted in the future challenges.

The circular economy aims to close the loop to make economy more sustainable and competitive. We have
a broad range of technologies related to recycling, renewable energy, information technology, green
transportation, electric motors, green chemistry, lighting, grey water, and more. The environment is restored
with pollution removal and avoidance. What can we do in practice? Air has been a focus area in industry,
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energy and traffic. Water treatment has been developed to remove undesirable chemicals, biological
contaminants, suspended solids and gases from contaminated water. In industrial processes, closed water
circulation is a goal which is beneficial for the environment. Wastewater treatment is needed for purifying
contaminated water before returning it to the nature. Is climate change discussion sufficient? Should we take
a wide view on the ecosystem?

The energy sector has new challenges and possibilities. Thermal power plants are by far, the most
conventional method of generating electric power with reasonably high efficiency. Bioenergy takes an
increasing portion of the production? Oil and gas hold a strong position in overall energy usage. Biofuels
provide new competing alternatives and the CO, capture has taken a high role in research. Are we going to
bioeconomy? Is the thermal power a necessity in our energy balance? Sustainable or renewable energy is
considered as a future source of energy: water power is well integrated in the energy system; solar and wind
are getting more popular; geothermal, wave and tide energy can be locally very important. Electricity is
increasingly popular both in solar and wind power. To what level is this sufficient? Where do we use energy?
Industry needs high reliable levels. Is the nuclear power a solution? Adaptation is easier in domestic use, but
how to do it? Heating and cooling take the highest part. Solar energy can help but needs storage. Geothermal
can be used as storage. What is the potential of buildings as storages? Do we need small scale CHP? District
heating systems are good solutions to bring the thermal energy to buildings.

In the industry, intelligent systems have been developed for integrating data and expertise to develop smart
adaptive applications. Recently, big data, cloud computing and data analysis has been presented as a solution
for all kinds of problems. Can we take this as a general solution for automation? Wireless solutions are
improving fast: 3G, 4G, 5G. But can we transfer signals to clouds and store the data? Is this too much? Where
is the expertise? Obviously, local calculations are needed. Are they based on intelligent systems? Transport
systems are analyzed as discrete event systems to find bottlenecks and avoid risks. Urban traffic is becoming
an important area. Autonomous driving is a hot topic. What is needed to embed this in the urban traffic? Are
there analogies with industrial systems? What are the main differences between industrial systems and
transport systems? Can we use similar control solutions? What can we learn from other areas? Can we find
analogies? What is common? Where do we have differences? What kind of models do we need?

Highly complicated systems with various interactions are at hand. What researchers within SIMS
community can do? Do we have tools and methodologies to help in solving these problems? The modelling
and simulation is coming increasingly important in various fields.
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Senior Research Fellow Esko Juuso has D.Sc. (Tech.) on Control and Systems Engineering from the
Department of Process and Environmental Engineering at the University of Oulu. He is an adjunct professor
in Computational Intelligence at the University of Oulu. He also has a M.Sc. (Tech.) degree in Technical
Physics (Material Physics) from the University of Oulu. He worked earlier several years as a research engineer
and process computer analyst in the metal industry. He has been a team leader and a project manager of several
research projects on intelligent systems applications. Adjunct professor Juuso is the Fellow of International
Society of Condition Monitoring (ISCM), a member of ISCM Management Committee and the Chair of the
ISCM Publication Committee. In the Scandinavian Simulation Society (SIMS), he has been a member of the
Board of SIMS since 1996 and the President of SIMS 2007-2013. He is a founding member of the Finnish
Simulation Forum (FinSim), 2006, and the International Society for Condition Monitoring (ISCM), 2010. He
is the chair of SIMS 2020 and he has chaired SIMS conferences in 2002, 2006 and 2010. Since 2006, he has
been the SIMS representative in the Board of the Federation of European Simulation Societies (Eurosim), the
secretary of Eurosim 2007-2010 and the President of Eurosim 2013-2016.
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Panel discussion:
Future challenges and possibilities for simulation

Chair: Adj. prof. Jari Ruuska, University of Oulu, Finland

Panelists:

Prof. Peter Fritzson, Linkoping University, Sweden

Prof. Sebastian Engell, TU Dortmund, Germany

Dr. Tuula Ruokonen, Valmet Technologies Oy, Finland

Prof. Bernt Lie, University of South-Eastern Norway, Norway
Senior prof. Erik Dahlquist, Mdlardalen University, Sweden
Adj. prof. Esko Juuso, University of Oulu, Finland

The panel discussion was the last part the
conference. The panelist were the keynote
presenters, the current and two past presidents of
SIMS, including the chair of the conference. The
chair of the national organizing committee was the
chair of the panel. The discussion focused on five
questions: simulation, energy systems, big data,
environment and simulation toolboxes. The
questions were presented by the panel chair.

1 How would you define term simulation?

Peter: Simulation answers the questions about the
model.

Sebastian: nothing to add.

Tuula: There are often several interpretations about
the terms. Simulation is often understood only as
process simulation but there are also reliability
models considering e.g. maintenance,
management, and also business-related models.

Bernt: Experiments with models are used to find
out answers — model is a wide concept not only
including mathematical models but also pilot plants
in principle or economic models

Erik: Model building means including new
information in the simulation model to see what
would happen. It can also be a non-mathematical
tool.

Esko: Tool for comparing alternatives — application
related in that sense. We can use it to find best
alternatives to use. It is different when you are
controlling something, designing something, or
finding an optimal control point or balance. One
should consider “how detailed simulation you need
for your job?”
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2 Energy systems are needed everywhere but
demand of energy changes a lot between
seasons and time of the day — How to use
simulations to aid in this subject and
predict changes?

Peter: You can include all the energy sources in
your simulation including the consumers to create
a comprehensive model. Historical data about the
location’s energy usage in conjunction with real-
time weather data can be used to generate good
predictions.

Sebastian: You have individual systems that are
coupled. It is quite a big task for modeling,
simulation, and optimization to co-ordinate such
individual systems. German airports have saved
lots of CO, by optimizing airplane approaches to
the airport. Philosophically it is more beneficial to
have a good aggregate model that you can use for
decision making between the models than a huge,
detailed model about everything. How to do this in
an optimal way is very interesting research
question.

Tuula: Distributed energy production and usage;
Low level decision making for individual needs.
IoT with plenty of measurements — energy usage of
all the members and their effect on costs. Big
savings are potential in total optimization.

Bernt: Future energy is related to United Nations’
goals to provide energy for everybody. A combined
system where all the energy sources work better
together. Circular economy where energy streams
are more integrated: one operator’s waste is a raw
material for another. This needs simulation tools —
short & long -term simulations
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Erik: Energy technologies develop in long time
perspective, so it is important to consider these
long-term changes. Biofuels and batteries will
replace oil in transportation systems in future.
Great opportunity to use simulation tools here.
Boundary determination is more important than
very detailed models. Simulation tools can help
politicians and decision makers to make right
decisions.

Esko: Energy 1is challenging for control and
optimization. Sources that work depending on
weather conditions and ones that are not connected
to the weather form a diverse system that is
combined and have different requirements. Many
energy sources that have different fluctuations
must be optimized and controlled to work as a
complete system. District heating networks are
good for balancing different energy sources.

3 Big Data and cloud computing have been
presented as a solution for everything. Can
we use this as a general solution for
automation? - Can we use these solutions
reliably considering data security and how
to use simulations to aid this?

Peter: Mathematical model equations describing
the physical world have developed a lot. Combine
these mathematical models to make approximate
models for machine learning to get a bigger picture.

Sebastian: Industrial perspective is always
skeptical to transfer its data into cloud. There has
been work done for MPC over unreliable networks.
If there is a problem in considering missing
information, it is better to invest in a working
network than in sophisticated control solution.
There are not many successful online applications
of machine learning. Difficult to have sophisticated
control that can handle all operating states — you
could have good combinations of fundamentals.
Models calculating phase equilibrium can take too
long to be used in process optimization and control.
Approximations using machine learning could be
embedded in an overall rigorous model.

Tuula: A great number of applications are already
existing for cloud-based solutions. Cyber security
is one major risk, a lot of work to be done to cover
this topic. Possibility to utilize data from a fleet of
the processes can help us understand what the
normal operating points is. Training simulators can
help to utilize this understanding about the
operating points. The future will be more and more
in the cloud or on the edge - not only on-site. Big
operators like Amazon web services must do their
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share in web security.

Bernt: Big data and data driven models are very
modern. Physics based models can be built without
a real system before building the system to give
reasonably accurate prediction. Mechanistic
models are typically better outside the operating
points than data driven models. Both models have
their unique advantages. Combining physical and
data driven models — physics-based models for the
phenomena you know well and data driven models
for the ones you do not know so well.

Erik: We have a project (Future direction of
process optimization) focusing on learning
systems. There we use infrared measurement for
the wood chips lignin content and physics-based
model for residual alkali, i.e. how much lignin is
there still in fiber. The residual alkali measurement
is needed for tuning the model for lignin properties
and content. Internal cloud behind the firewalls
could be the solution when operators do not trust
the providers.

Esko: We need expertise, models, and data driven
models for the practical applications. Theoretical
models alone are too complex — parameters can be
learned from the data. A dangerous thing is to use
unbalanced data that gives you a completely wrong
answer. Simulation is a good tool when you
understand what you are doing. Do not use Al to
find answers to questions that experts already
know. Finding suitable system size for application
is important.

4 Environmental friendliness and
sustainability are important but how to use
simulation to promote this?

Esko: Simulation can have a big role in this.
Combine different ideas and compare different
things to select the best solutions — not like now
that there are things you should not use and things
you should.

Erik: Generate scenarios that give good data for the
decision makers.

Bernt: Sufficient energy generation in the world in
future needs all energy sources — fossil fuels need
to be reduced in future, but it is still needed for
now. Complicated systems where we need e.g. to
store solar and wind energy needs simulations to
see all the consequences.

Tuula: Industrial optimization is important.
Optimizing processes is connected with
sustainability — stability and energy efficiency.
This is cost efficient for the companies and gives
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them an advantage, so it is win-win for everyone.

Sebastian: More complex problem that needs to
consider the whole life cycle from the raw
materials to end of product life which is very
problematic. What kind of materials are used for
water bottle, how many times this bottle will be
used — lots of variables and it is hard to simulate
everything.

Peter: Technical simulation gives accurate
predictions, but we also need more general
simulations. Decision makers (politicians) make
lots of decision based on low quality information
and intuition — simple, not too detailed models
could give more information before making
decisions. Not only energy but also materials are
important: how can we use alternative materials
and lower the material usage.

5 Are there some basic principles that needs
to be added into our simulation toolboxes?

Esko: CSC supercomputers can help in
calculations, but we need to understand all the parts
of the system. We need to do intelligent
calculations and understand what we are doing.

Erik: A good formulation of the problem enables
e.g. the use of CFD for online applications.

Bernt: A better use of parallelization is needed for
networks and graphical processing. Simple
automatic way to use this is needed because it is
hard if you need to first do everything manually.

Tuula: Calculation tools for online-measurements.
Hybrid models are needed for combining data
driven models with physical models. Help us in
industry to understand what methods to use and
where we do not do wrong things.

Sebastian: Quantification  of  calculation
uncertainty is important, and it should be connected
to the results.

Peter: Multiparameter sensitivity simulation in
Modelica - build uncertainty into tools.

Esko: Uncertainty is unavoidable, therefore it is
better to be approximately correct than exactly
wrong.

6 Conclusions

The discussion covered well the future challenges and
possibilities of simulation. The panel was a highly
valuable conclusion for the conference in linking the
keynotes and topics of the regular papers with the
history and the future of the simulation.
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Abstract

The increasing amount of variable electricity generation
has brought world to investigate various flexibility sources
to provide power network balancing through demand side
management. Therefore, it is important to create new,
more thorough models that allow using smart functions to
control the various electricity loads. In this paper a model
to simulate a fully mixed domestic hot water tank’s be-
havior in 60, 30 and 15 min time resolution, and its control
mechanisms were created. The model will be integrated to
another smart house model to enable studying more com-
bined smart controls and functions. Additionally, the flex-
ibility of the hot water storage tank was investigated with
the help of 4 different heating scenarios, showing its suit-
ability for Demand Side Management, and the operation
of the model was confirmed with lower time resolutions.
Keywords: domestic hot water, demand side management,
smart building, exploratory scenario

1 Introduction

The increasing electricity generation from variable renew-
able energy sources creates new requirements for balanc-
ing the demand and supply of electricity. To prevent im-
balance issues on the network, new kinds of balancing
mechanisms are being studied, one of which is to utilize
the flexible loads on the demand side to shift electricity
consumption according to its supply status. In residen-
tial buildings deferrable and thermal loads, like domes-
tic hot water (DHW) storages, are generally considered as
good sources for providing flexibility to the network (Lu,
2012). These loads can be used to participate in Demand
Side Management (DSM) programs where electricity con-
sumers adjust their electricity consumption to match the
status of power network either through price-signals, like
Time-of-Use (ToU) or Real-time price (RTP), or by re-
ceiving an incentive payment when reacting to a request
to reduce electricity consumption (US Department of En-
ergy, 2006). Additionally, combining local electricity gen-
eration from e.g. Photovoltaic-panels with flexible elec-
tricity loads can help in increasing self-consumption from
local electricity generation and provide monetary benefits
(Salpakari and Lund, 2016). Therefore, there is a need
to identify and study the flexibility in buildings to deter-
mine suitable sources and their potentials in participating

DOI: 10.3384/ecp201761

in DSM programs, through programs like IEA EBC An-
nex 67 Energy Flexible Buildings (Jensen et al., 2017).

1.1 Domestic Hot Water

Domestic hot water (DHW) is an important part of having
a good living quality and technology to produce and store
it are essential in today’s world. Hot water is commonly
mixed with colder tab water to create thermally comfort-
able water to be used in shower or as tab water to wash
hands. As the consumption of DHW is not constant, it is
important to study both their load profiles and the behavior
and sizing of DHW storage systems (Ahmed et al., 2016)
considering that it needs to be available for use when re-
quested. Fuentes et al. (2018) highlighted the importance
of having relevant information about DHW withdrawal
profiles and to consider them as a foundation on designing
novel control strategies for DHW storage tanks. In addi-
tion to having representative load profiles, it is also impor-
tant to model the thermal behavior of DHW tanks, so that
it is possible to simulate these new control strategies, espe-
cially on different temporal resolutions. Currently there is
an abundance in created DHW models, e.g. (Paull et al.,
2010; Baeten et al., 2016; Jack et al., 2018) with differ-
ent levels of detail (e.g. is stratification taken into ac-
count) (Jack et al., 2018). Additionally, there are also lot
of different control strategies already created for utilizing
DHW in DSM programs (Atikol, 2013; Jack et al., 2018;
Paull et al., 2010). As there starts be more interest to-
wards smart houses and full building control on smaller
time resolutions, it is important to develop DHW mod-
els that can be integrated with other building-level models
to ensure the potential for developing full building level
control schemes and enable better participation to DSM
programs.

1.2 Aims and objectives

The aim of the work is to create a DHW model with elec-
tric heating to be integrated into an existing Markov-Chain
smart house model' (Louis et al., 2016) and study the
impacts of various DSM programs to the electricity load
profile of the heating of DHW tank. Therefore, the inter-
operability of the created DHW and existing smart house
models need to be kept in mind during the creation of the
model. Also, load shifting and other DSM tools are tested

I(https://github.com/jeanlouisnico/SBuM)
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Figure 1. Basic description of the DHW model

to investigate the flexibility of electrically heated hot wa-
ter storage tank. Finally, the results from the smart house
model (Louis et al., 2016) and the created DHW model are
investigated and compared on their load profiles as well as
the potential to integrate the models.

2 Methodology

The created DHW model includes three separate parts:
draw-off profile of hot water from the storage tank, tem-
perature of hot water in the tank and heating schedules
of the DHW. These parts allow modeling the behavior
of the DHW tank to determine the electricity load pro-
file and apply the control methods for various DSM pro-
grams. The model is created to be integrated in an existing
smart house model (Louis et al., 2016) to study the elec-
tricity load management and potential DSM methods on
building-level. Moreover it should provide more informa-
tion about the building’s thermal behavior and append the
model’s thermal part (Pulkkinen et al., 2019), while even-
tually enabling a more thorough control of electric heating
in the building. There is also an on-going work to develop
the smart house model to operate on a temporal resolution
of 30, 15, 1 minute and even in 10 s timesteps. There-
fore, it is important to follow this development to ensure
the interoperability of these models.

The basic principle of the DHW model is presented in
Figure 1. Basically, the model includes information on
hot water demand, storage characteristics, price informa-
tion and heating controls as separate inputs, while contain-
ing information about the previous simulation step (DHW
temperature, heating load, etc.) for the use of the model.
This provides the wanted outputs on the hot water with-
drawal, temperature of the hot water and electricity load
profile.
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Figure 2. Mean hourly draw-off profiles of the created 3 dif-
ferent 60 min load profiles (Default, 4 Categories option from
Jordan and Vajen (2001) and load profile created from standard
EN 12831-3).

2.1 Hot Water Demand Profile

The hot water demand profiles for the model were cre-
ated with using DHWcalc program, which creates realis-
tic DHW load profiles using statistical methods on various
temporal resolutions (Jordan and Vajen, 2001). Therefore,
it was selected as a suitable tool for testing the created
DHW model and its capability in running simulation on
the created 60, 30 and 15 min timesteps. To ensure the
capabilities of the DHW model, 3 different load profiles
were created for each timestep, all for the length of one
year. The first profile is the default profile created with
default values from the program, while the second profile
is created by inserting the hourly test profile for single-
family houses from standard EN 12831-3 (2017) as step-
function to the program. The third profile is created with
the values from the 4 different categories option from the
software, presenting default distribution per IEA-Task 26.
The average daily DHW draw-off is 200 litres in each sce-
nario and the mean hourly draw-offs for the created 60
min profiles are presented on Figure 2. The created pro-
files seem to have different characteristics as the Default
load profile varies more on hourly basis and creates higher
peaks than the other 2. Conversely, the load profile by
the values from the standard has more balanced consump-
tion during the day and has lower peaks. Additionally, the
average 30 and 15 min draw-off profiles are presented in
Figure 3, showing their different characteristics, and im-
portance in simulating different time resolutions. In all
cases, there were high morning peaks and 2 lower demand
peaks, one around midday and the second in the evening.

2.2 Hot Water Tank

The model for DHW tank is created based on standards
EN 15316-5 (2017) and EN 12831-3 (2017), and it is
used to calculate the temperature of the hot water in the
tank, stand-by heat losses and energy demand by utiliz-
ing energy balance method. The simplified calculation
procedure with single volume and constant temperature
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Figure 3. Mean draw-off profiles of the created 3 different 30
and 15 min load profiles

throughout the tank was selected as the tank is assumed
to be constantly mixed having therefore a uniform tem-
perature profile throughout the tank.

The average temperature of the water Tpyw in the
DHW tank is calculated with Equation 1:

Pprw X tei — Opaw,0ut — Osto is
pw X Cp;w X me;tot

ey

Tpaw = Tpaw,o +

where Tpuw o is the water temperature from last simula-
tion step [°Cl, Ppyw is the heating power [W], t; is the
calculation interval [h], Opaw o is the energy amount
withdrawn from the tank [Wh], Qg s is the stand-by heat
loss from the tank [Wh], p,, is the density of water [klfg],

Cp.v is the specific heat capacity of water [ k?/xhc] and
Vitot0r 1 the total volume of the DHW storage tank [/]
(EN 15316-5, 2017). Heating power for the DHW tank
is determined according to the DHW heating part of the
model, while energy withdrawn Qppw i from the DHW
tank is calculated with Equation 2 and the stand-by energy

loss Qg5 1s calculated with Equation 3:

QDHWput = Vd,t X Cp;w X Pw X (TDHW,ref - Tm) X 1ei

2)

Qston = fbac,acc X fdis,ls X Hston X (TDHW - Tamb) X 1ci

3)

where V;; is the volume of the draw-off at time ¢ [/],
Tpuw res is the reference hot water temperature needed to
create correct tab water temperature [°C] T, is the tem-
perature of the inlet water to the tank [°C], fpuc qcc i the
weighting factor for control and size of the tank [-], fzis s
is weighting factor to correct the additional heat losses
due to thermal bridges from the connecting pipes [-] and
Tump s the ambient temperature [°C] (modified from EN
15316-5 (2017) and EN 12831-3 (2017)).

2.3 Heating Demand

The basic principle for calculating the heating demand of
the DHW tank and the resulting hot water temperature is
presented in Figure 4. The model starts with calculating
the temperature of the hot water in the tank if no heating
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Figure 4. The calculation procedure for the created DHW model

would be used. That information, among with the other
inputs, is then delivered to the control part of the model
to determine the heating profile of the tank. After that,
the temperature of the hot water in the tank is calculated
according to the heating power assigned to the tank from
the previous step.

2.4 Heating Control

The heating of the DHW tank is determined in a separate
part of the model according to the rules of the selected
heating scenario. There are currently 4 different heating
scenarios available on the model, which each has their
own control mechanism and rules. The available scenar-
ios are Constant Temperature Set-point, On-Off Control,
Time-of-Use Control and Linear Optimization, of which
the control rules of the first three are presented in Figure 5.
All the scenarios take into account upper and lower tem-
perature limits (7;,;, and T,,,) as well as maximum heat-
ing power (Py,y) as constrains in determining the heating
profile. The lower temperature limit 7,,;, is considered to
be the minimum healthy temperature of water to prevent
the growth of Legionella bacteria. All these variables can
be determined by the user allowing the possibility to study
the impact of them to the heating profile.

2.4.1 Constant Temperature Set-point

The first studied heating scenario is Constant Temperature
Set-point, which control options aim in keeping a steady
temperature inside the DHW tank. The rules for the con-
troller are explained in Figure 5a) where the temperature
set-point is called 7,,;, and the maximum heating capacity
P,..x 1s considered as the second constrain.

2.4.2 On-Off Controller

The second heating scenario is On-Off Controller, which
represents a control relay with 2 temperature set-points.
The control rules for this scenario are presented in Fig-
ure 5b) and it operates only with full heating power un-
til the upper temperature set-point 7,,,, is reached, after
which the heating only turns on after the hot water temper-
ature drops under the lower temperature set-point 7,,;,. In
case the temperature set-points are reached in the on-going
simulation time-frame, the power needed to meet them is
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Figure 5. Presentation of the used rules in Constant (a), On-Off
(b) and ToU (c) scenarios

calculated by solving Ppgw from equation 1 when Tppw
i8S Tpaw min OF Tpaw max depending on the heating period,
and the resulting power Ppyw is considered as the heating
power for the time-step. This is a simplified representa-
tion of the real world On-Off controller as here the tem-
perature set-points are always reached in the simulation
time-steps (e.g. full hour) whereas in real-world the tem-
perature could have already dropped under or increased
over the temperature set-points when the measurement for
the time-step is conducted. Therefore, this type of On-Off
controller would be required to have an embedded smart-
ness in it that would make the system meet the temperature
set-point exactly at the simulation time period.

2.4.3 Time-of-Use Heating

The third heating scenario is Time-of-Use Heating, which
participates in DSM by optimizing heating with a ToU
price signal and using water as an energy storage medium.
Generally, ToU represents a scenario where electricity
price is divided to high and low price periods according
to the times of high and low electricity demand periods,
guiding electricity users to consume electricity during the
lower price times. This is also the used rule in the heat-
ing scenario presented in Figure 5c). The main idea is that
hot water is heated to and kept on the upper temperature
set-point on the time of the lower electricity price, and not
heated during the higher price period unless the hot water
temperature drops under the lower temperature set-point,
after which it is only heated up to keep the hot water tem-
perature at the lower temperature set-point.
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24.4 Linear Optimization

The fourth studied heating scenario is Linear Optimiza-
tion of the electrically heated hot water tank according to
hourly RTP signal and heat demand. This is another type
of DSM action where the electricity load profile is varied
according to the real time situation of the electricity net-
work while maintaining an acceptable hot water tempera-
ture in the storage tank to ensure comfort and health of the
user. The optimization goal is to minimize the electricity
cost (Equation 4) with the constrains from Equation 5.

minZCostl,n = Epuw,1—n X Price;_, (4)
Constrains : Tpin < Tpaw < Tnax; 0 < Poaw < Ppax (5)

where Cost;_, is the cost from electricity usage from
timesteps I-n [€], Eppyw,-, is the energy used in
timesteps /-n [MWh] and Price;_,, is the real time price
of electricity during the same timesteps [€/MWh]. The
Tppw is calculated with Equation 1, to which also fore-
casted hot water demand is added. The optimization pe-
riod n can be determined by the user, but values of over
4 timesteps start to become slow computing-wise. For in-
stance, linear optimization simulation with optimization
period of 4 timesteps takes 495s for hourly values for a
year (8760 simulation steps), whereas optimization peri-
ods of 3 and 5 timesteps take 377s and 663s respectively
for the same input data. This would still allow optimizing
the system on real-time with the optimization period of 4
or 5 timesteps, but the difficulty in applying it to practice
comes from the uncertainty in determining the draw off
profile from the DHW tank as estimating the energy draw
off correctly is vital to the correct optimization.

2.5 Inputs

The inputs values for testing the DHW behavior and DSM
potential are defined on Table 1 underneath from the De-
cree 1010/2018 2, and the international standards EN
15316-5 (2017). Some input values vary depending on
the heating scenario, while others stay the same during all
the simulations.

The minimum requirement for the DHW in EN 15316-
5 (2017) is considered as 55 °C, which is also the lower
temperature setpoint used in the simulation, except for the
Constant Temperature Set-point scenario where a temper-
ature set-point of 60 °C was used to balance the other-
wise occurring lower average temperature. The hourly
Elspot price for Finnish transmission area in 2016 (Nord
Pool, 2018) was selected as the price signal and the fore-
casted Hot Water Demand was created based on the test
profile for single-family houses from EN 12831-3 (2017).
The stand-by heat losses were calculated according to EN
15316-5 (2017), EN 60379 (2004) and EN 50440 (2015)
by assuming a vertically adjusted and electrically heated
DHW tank.

2Ympiristoministerion asetus uuden rakennuksen energiatehokku-
udesta 1010/2018, Decree of the Ministry of the Environment on the
energy efficiency of new building 1010/2018
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Table 1. Input values for the simulation (EN 15316-5, Decree
1010/2018)

Variable Value
Hot Water Tank Volume 3001
Max Power 3kW
Inhabitants 4
Average DHW demand 50 ﬁ
Inlet Water Temperature 10 °C
Ambient air temperature 16 °C
Default Tpyw and T;, difference 45 °C
Tonin for Constant Temp Set 60 °C
Tonin for On-Off, ToU and Optimization 55°C
Tnax for On-Off 65 °C
Tnax for ToU and Optimization 85°C
ToU heating hours 22-6

LP optimization period (timesteps ahead) 4

3 Results

The results firstly investigate the suitability of integrat-
ing the created model to the existing Markov-Chain smart
house model by presenting the capability of operating in
similar time resolutions and providing useful and robust
results. Secondly, the behaviour of the DHW heating con-
trols are examined in the 4 hourly heating scenarios. After
that, the flexibility of DHW heating is investigated and the
effectiveness of various control and DSM mechanisms are
presented. The final part shows the combined effect of the
two models in order to present the importance in integrat-
ing the smart house and DHW models.

3.1 Robustness of the results

The robustness of the results is looked into by investigat-
ing similar thermal behaviors of the DHW tank and by
comparing annual results to each other when using Con-
stant Temperature Set-point scenario. The annual results
from the simulations are available at Table 2.

The results from Table 2 indicate that there are very lit-
tle differences on annual level on the results with DHW

Table 2. Results from the Constant temperature heating scenario

Total Average Total

Heating Temperature Costs

(MWh] [°C] [€]
Default 60min 7.19 59.74 251.44
Default 30min 7.20 59.75 251.28
Default 15min 7.19 59.73 251.25
Cat 60min 7.20 59.78 245.42
Cat 30min 7.19 59.66 244.98
Cat 15min 7.18 59.60 244.84
Standard 60min 722 60.00 245.08
Standard 30min 721 60.00 244.78
Standard 15min 721 59.97 244.48
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60, 30 and 15 min withdrawal profiles. As the DHWcalc
uses statistical methods in withdrawal profile creation, it
is understandable that there are small differences on the
results, but this could be considered as noise in the simu-
lation as well.

3.2 Behaviour of DHW heating controls

This sections investigates the behaviour of the created
DHW heating controls by looking into the DHW heat-
ing power frequency and cumulative frequency distribu-
tions on hourly heating scenarios. These results are pre-
sented in Figure 6 showing firstly the similarities between
Constant Temperature Set-point and Linear Optimization
scenarios, which rarely use maximum heating power and
have more lower power consumption hours. This resem-
blance comes from the short optimization time in Linear
optimization scenario, which makes both of them aim for
lower water temperature in the DHW tank. Secondly,
Figure 6 shows similarities of On-Off and ToU scenar-
ios, which are more prone to have more maximum and
minimum power periods and less intermediate power con-
sumption. This relates to their control rules, as they both
utilize maximum power until they reach the upper temper-
ature limit, after which they do not use heating until they
have reached the lower temperature set-point. The differ-
ence between these 2 control strategies lie in the maximum
heating time-periods. On-Off scenario starts the maxi-
mum heating immediately once it has reached the lower
temperature limit while ToU control keeps the DHW tank
at the lower temperature point until the start of the cheaper
night-time heating period. This is also the reason of their
variations in 0-0.5 kW and 0.5-1.0 kW power consump-
tion.

3.3 Flexibility of DHW

This section investigates the flexibility of DHW and the vi-
ability of few control mechanisms to provide DSM. First,
the reference values for the flexibility are visible on Ta-
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Figure 6. Frequency (bar) and cumulative frequency distribu-
tions (line) of the DHW heating scenarios in hourly time-scale
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Table 3. Annual results from On-Off, Time of Use and Linear optimization scenarios

On-Off Time of Linear
Control Use Optimization
Total Average Total Total Average Total Total Average Total
Heating Temperature Costs  Heating Temperature Costs  Heating Temperature Costs
[MWh]  [°C] [€] [MWh]  [°C] (€] [MWh] [°C] [€]
Default 60min ~ 7.27 60.70 255.22 7.88 68.44 222.89 6.87 55.52 230.55
Default 30min ~ 7.23 60.22 253.84 7.81 67.53 219.60 6.83 55.07 234.04
Default 15min ~ 7.22 60.03 254.29 7.80 67.50 219.26 6.82 54.97 236.58
Cat 60min 7.27 60.62 249.50 7.96 69.53 219.70 6.87 55.53 224.47
Cat 30min 7.23 60.11 248.58 7.88 68.44 216.28 6.83 55.01 227.77
Cat 15min 7.21 59.89 248.80 7.87 68.35 215.78 6.82 54.93 230.37
Standard 60min  7.28 60.87 248.44 7.94 69.23 218.87 6.88 55.74 223.93
Standard 30min  7.25 60.41 246.88 7.90 68.73 216.80 6.84 55.17 226.84
Standard 15min  7.23 60.21 24585 7.90 68.72 21642 6.83 55.08 229.25
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— o ToU
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B8 30min
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Figure 7. Comparison of the electricity load profiles of different heating scenarios with 60, 30 and 15 min time resolution.

ble 2. The annual values for the other heating scenarios
are available on Table 3 and the average hourly power for
the DHW tank in Figure 7. The results from Table 3 in-
dicate that changes between the time resolutions are gen-
erally small generating difference of less than 2% in heat
demand or average hot water temperature, while the dif-
ference between cost can be slightly higher varying from
-1.8 t0 2.6%.

Comparing different scenarios to each other, reveals the
flexibility of the DHW source and the potential to partic-
ipate in DSM programs. On annual level, the cheapest
option seems to be night time charging with ToU sce-
nario, which is 13.5-16% cheaper than On-Off Control
scenario and 2.1-7.3% cheaper than linear optimization
scenario, while having 7.4-15.9% higher electricity con-
sumption and 10.8-24.8% higher average hot water tem-
perature. This reveals the potential of storing energy to
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DHW tank during the night-time. The higher hot water
temperature is also beneficial in terms of comfort as ToU
scenario was the only one where the temperature of DHW
tank was always over the lower temperature set-point, be-
ing able to provide enough hot water to use.

Looking into the average hourly heating loads from Fig-
ure 7 the night time charging of the DHW tank is clearly
visible as it has higher electricity consumption during
night hours and low consumption during the day. Simi-
larly, the morning peak in the draw-off of hot water cre-
ates a heating peak in all scenarios, but 7oU. Otherwise,
Constant temperature set-point and Linear optimization
scenarios had pretty similar load profiles, only difference
being the occurring peaks with Linear optimization sce-
nario in shorter time resolutions. These peaks will occur
as the electricity price will remain the same for the whole
hour, so the controller aims at increasing the temperature
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Figure 8. Comparison of various building loads

of the hot water on the earliest available time slot. On-Off
control then had a delay on the heating compared to Con-
stant and Linear optimization scenarios, as with On-Off
controller the temperature of the water needs to drop un-
der the lower temperature set-point before it applying the
maximum heating power.

3.4 Load profiles

This part investigates the importance of integrating DHW
model into the existing smart house model (Louis et al.,
2016), with which it is possible to simulate appliance’s
load profiles, thermal behavior of the building and elec-
tric space and ventilation heaters. An example simula-
tion was conducted with the smart house model and the
achieved load profiles were compared to the load profile
of the DHW heater (hourly constant temperature scenario)
in Figure 8 and annual values in Table 4. The simulated
building was a detached house, with building character-
istics similar to 2018 building type from (Pulkkinen et

al., 2019) with randomly generated appliances.

Results from Table 4 show that the DHW heating has
the highest electricity consumption in the example build-
ing, and from Figure 8 it becomes evident that DHW has

Table 4. Annual results from the example simulation

Annual Energy
Consumption [MWh]
Appliances 291
Electric space heating 7.08
Electric ventilation heating 1.50
Electric DHW heating 7.19

DOI: 10.3384/ecp201761

highly varying, but seasonally rather constant load profile,
similarly to appliances. Conversely, space and ventilation
heating loads tend to require a lot of power during win-
ter, but have low power demand in summer. This means
that all these loads have their different characteristics and
load profiles which while accumulated would have mul-
tiple impacting sources to the building’s energy manage-
ment.

4 Conclusions

The aim of this work was to create a functional, fully
mixed DHW tank model to be integrated in an existing
Markov-Chain smart house model and to investigate the
flexibility of DHW load on 60, 30 and 15 min time reso-
lutions and with 4 different heating controls. The behav-
ior of the model was tested with using DHW withdrawal
profiles created with DHWcalc program. The results in-
dicate that the model was able to behave robustly with a
Constant Temperature Set-point scenario in all tested time
resolutions, showing little difference between their simu-
lation results.

Comparing the results of different heating control sce-
narios from Table 3 the flexibility of the electricity con-
sumption with DHW tank is visible in the ToU scenario
results as it has the lowest costs and highest total heat-
ing energy consumption of the studied scenarios. There-
fore, with ToU scenario it is possible to use DHW tank
as an energy storage and charge it during the lower night
time electricity prices. Yet, this behavior is contradic-
tory as it reduces the efficiency of the system from elec-
tricity consumption point-of-view. The low performance
from the Linear optimization scenario compared to ToU
was likely related to the short optimization time and mis-
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matches between the forecasted and actual energy with-
drawals. These did not allow the optimized heater to uti-
lize the thermal inertia of the DHW tank and lower elec-
tricity prices during the night as it did not expect a with-
drawal from the tank early enough. Similarly, the diffi-
culty in knowing the correct withdrawal of energy reduced
the accuracy of the optimization. The final result showed
the importance in integrating the DHW model with smart
house model for allowing testing of new control mecha-
nisms and different aggregated load profiles. Furthermore,
in an integrated model all the separate electricity loads can
be controlled together.

The future direction of the work is to finalize the in-
tegration of the smart house and DHW models, and start
developing combined control mechanisms for them. Also
the current DHW model should be developed to operate in
lower time resolutions to allow also short-term power net-
work testing, as well as expanded to include temperature
stratification for increased accuracy and different DHW
tank options. Consideration of improving the optimiza-
tion with aggregated load profiles should be investigated
as well. Also renewable energy generation and control
mechanisms related to it should be added to the model.
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Abstract

Energy management of small-scale renewable energy
systems (microgrid) requires control of the energy
consumption. Commercial buildings are sized using
energy consumption criteria from the building
standards. The energy consumption of a building
depends on a number of dynamic factors, including
thermal loss, building climate control, and building
utilization. This paper presents a simple model for
predicting the thermal loss of a building. The basic
simulation module is a single room model where the
outer walls and windows are exposed to the ambient
conditions without sun influx. We model the thermal
loss based on building design data and validate the
model using operational data for an actual low-energy
building. The model prediction accuracy is within +/-
1°C for up to 7 days when predicting thermal losses in
the building construction.

Keywords: energy management, powerhouse, thermal
loss prediction, Matlab

1 Introduction

A powerhouse is a building that produces more electric
power than it consumes during the building lifecycle,
including construction and decommissioning/disposal.
Sustainability conscious real estate asset owners are
interested in the concept and Norway has seen a rise in
the construction of powerhouses in the past 4-5 years.

Powerhouses have large solar PV systems installed at
the roof. At its maximum, the solar PV systems generate
significantly more energy than consumed by the
building at any time. In addition, the maximum power
production occurs in the summer season when the
heating demand is at its yearly minimum. Heating is the
main energy consumer of commercial buildings.
Thermal losses drive the heating demand. In our
research, we explore models for predicting thermal
losses in a low-energy building. The model will be used
as part of a digital twin of the building’s energy system.
Our overall goal is to develop practices for energy
management of powerhouses.

The digital twin is a dynamic virtual model of a
system that incorporates business, contextual, and
sensor data from physical systems into the virtual
system model (Madni et al., 2019). A true digital twin is
different from other models because it includes the
specific instance(s) that reflects the characteristics of the
physical twin, in real time. Madni et al. (2019) sees the
digital twin as promising technology, particularly in the
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building and real estate industries, because of real time
access to system data that are essential for energy
management (Madni et al., 2019).

Research papers suggest different approaches for
assessing thermal performance of buildings.
(Kildsgaard et al., 2013; Makaka, 2015; Rohdin et al.,
2014) are relevant examples for low-energy buildings
and passive houses. Both physical models and machine
learning models are available in literature. Mendes et al.
(2001) give a first principle (physical model) of the
thermal loss. In the digital twin, we need a model that
integrates the virtual and physical world. We need to
base our model on simple approaches because
calculation speed will be an issue due to the large
amount of data in the system and the need for real time
monitoring and prediction.

Lie (2019) defines the hybrid model as a combination
model. A hybrid, data driven model improves the fit
between an imperfect physics-based model and
(inherently limited) experimental data. The hybrid
model is particularly interesting for digital twin
applications. To ensure fast response of the digital twin,
it is essential that the model is as simple as possible.

This paper outlines a simple, first principle based
model for calculating the thermal losses of a low-energy
building. The model predicts the energy losses from the
building when exposed to varying ambient conditions.
We base our model on the design assumptions of the
building and we validate the model using operational
data from the building. We ask in our research how well
a simple energy balance model can predict the thermal
losses of a real building if we base the model on the
design parameters of the building.

2 Vestsiden Middle School Case

We use Vestsiden middle school in Kongsberg as our
case. Kongsberg Kommunale Eiendom (KKE)
completed the building construction in August 2019.
The school is a low-energy house. Power and heat is
supplied through geothermal heat and solar power
systems. The national electric grid connects to the
building. Solar power is produced by 1054 solar PV
panels installed at the roof. Excess energy is stored in a
battery and consumed at night. KKE plans to install an
electrolyzer and hydrogen storage system for seasonal
storage. A fuel cell will generate electric power from the
hydrogen during winter. There are currently no
guidelines for dimensioning and operation of a
hydrogen loop in a hybrid renewable energy system for
buildings (Bredesen, 2019).
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2.1 Construction Standards

The design of commercial buildings in Norway comply
with NS-EN ISO 52000 (energy performance standard)
and NS3701 (passive house standard). The standards
allow for assessment of the power demand of a building.
The designers use the standards to assess if the building
design complies with the regulations. The standards
provide a specification basis for the products and
construction elements.

Special purpose simulation programs assist the
building designers in the calculation of energy
consumption of the building at various ambient
conditions throughout a typical year (SIMIEN, 2020).

The construction company adjusts the heat loops and
ventilation flow rate so that the as-built building
complies with the design intent. The building
constructor sets the water valves and ventilation
dampers during commissioning.

2.2 Real Time Measurements

The Supervisory Control and Data Acquisition
System (SCADA) monitors and controls the building in
multiple zones. More than one thousand instruments are
installed in the building. The data sample rate depends
on the PLC, and is typically 1 minute. At a minimum,
the controller measures air temperature, carbon dioxide
level, and ventilation flow rate in each zone. The
SCADA system sends the data to a database located at
USN Campus Kongsberg.

We measured the actual air temperature in the room
and the ambient temperature during the months of
March and April 2020. The four weeks from 18" of
March to 16" of April 2020 are particularly interesting.
Due to the 2020 pandemic, the school was in lockdown
and there were no people in the building during this
time.

3 Design Basis and Assumptions

To predict the thermal losses and verify with actual
room temperature measurements, we need to understand
the energy balance of the building. The outside air
temperature and the radiation from the sun affect the
building, Figure 1. The basic simulation module is a
single room model where the outer walls and windows
are exposed to the ambient conditions.

We do not consider the effect of solar energy influx
in this work. The room used for model verification is
facing North-West with the horizon at 315 degrees.

Multiple effects influence the energy balance at a

3.1 Walls, Windows, and Roof

The energy performance standard governs the building
design. We use the same approach in our model and we
use the overall heat transfer coefficient, U-factor, and
heat storage capacities applied in the building design.
The data are available from the building owner. With
this approach, we do not need the building construction
details like the composite wall design or insulation
material. Using the design basis allows us a direct
comparison with the design basis.

- solar energy

\

Y

4

?heat loss

s _rndintor |10y

Figure 1. Thermal loss model of building

thermal

eondiction ventilation

thermal
conduction

E_room

P_radiator

E_furniture

Figure 2. Energy sources and thermal losses in the room

The outer wall of the room is 22m? of which 55% is
window surface. The floor and roof surface is 63 m?. We
assume zero heat transfer across the inner walls of the
building. There are no doors exposed to ambient air.

In our work, we use the following building design
parameters:

Heat transfer coefficient (U-factor)

given time. Figure 2 shows a sketch of the contributors e Outer wall: 0.17 Wm’K
to the energy balance of a room. We combine the most e Roof 0.13 W/m2K
relevant thermodynamic processes in our model: a) e Windows: 0.85 W/m2K
thermal losses of walls, windows and roof, b) thermal

mass of furniture, and c) heat flow contributed through

air ventilation, floor-heating, radiator heating, and

people (users).
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Heat capacity (h):
e  Outer wall: 12 Wh/m?K
e  Roof: 10 Wh/m?K
e Window: 3 Wh/m?K

3.2 Furniture

Changes in the air temperature will change the furniture
temperature. Depending on the furniture mass, this can
cause a shift in the modeled air temperature compared
with measurement.

For design basis, we assume 30kg of furniture per
student (900 kg total for the room in this work). We
assume a specific heat capacity of 1000J/kgK for the
furniture.

3.3 Ventilation

The ventilation provides a flow of fresh air to the room.
The airflow rate (mass based) at inlet to the room is the
same as the airflow rate leaving the room (per mass).
The control system measures the volumetric airflow
rate. This is a rudimentary measurement based on the
valve position. During normal use, the valve position is
adjusted automatically based on the actual demand
regulated by the temperature setting of the room and the
air quality (local measurements of carbon dioxide).

The flow rate to the room is zero when the ventilation
system is shut down and 1300 m’/hr at full flow. During
normal operation, the control system schedule sets
ventilation flow rate.

We assume air as an ideal gas with constant specific
heat capacity (isochoric) of 717.3 J/kgK and a density of
1.2 kg/m? for the air.

3.4 Floor-heating

The building floor-heating is installed in the basement,
shared rooms, library and the main hall. Water circulates
in piping embedded in the floor. A geothermal heat
pump heats the water. Electric heaters allow for higher
temperatures during the cold season. The water flow rate
is per design and not adjusted after commissioning

There is no floor-heating in the room used in our
model and the flow rate is therefore set to zero in this
work.

3.5 Radiator

Most rooms have one radiator. Water circulates through
the radiator and the heat is released through natural
convection to the air. Each radiator can provide up to
1400W heat to the room. The actual heat release
depends on the valve setting in the water loop. The water
flow rate is not measured.

The energy balance calculated at the start condition
of the simulation determines the heat input to the room.
We use a constant radiator heat input of 290 W in this
work, which is the initial state equilibrium of the room
for the measurements used in here.
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3.6 People

People using the room will release heat to the
surroundings. The energy performance standard
recommends a heat release of 12 W/m2 per person for
design of school buildings. The effect of people is not
included in this paper because we collected the building
data for a time where there were no people in the
building.

4 Thermal Model

We use MALAB Simulink, v.10.0 (R2019b) for the
simulations. Our system is an open system with
conservation of mass (air). From the first law of
thermodynamics, assuming zero work, we find that the
change in internal energy from the initial state 0 to the
final state is equal to the change in heat (Q) in the
system:
Eair — Eqiro = fQ dt (1)
where E,;,- is the energy of the air in the room and 0
indicates the initial state.
The net heat transfer to the room is the sum of heat
flowing into or out of the system.
The air temperature at the initial state is calculated
from the internal energy:
Eqir
Troom - CVair*Pair*Vroom (2)
Where cv,;; is the isochoric specific heat capacity of the
air; pgr is the density of air, assumed constant; V,.,,m
is volume of the room), Figure 3.

-C-

inital energy

E_combined

T_room

K-

E-->T_room

Figure 3. Room temperature calculation in MATLAB

4.1 Wall, Window and Roof

The wall is modelled by the thermal resistance, eq.3,
Figure 4:

Ewan = [ Quan dt + Eyyo 3)
We base the wall model on Fourier’s law of heat

conduction where the heat transfer through a material is
proportional to the (negative) gradient in the
temperature and to the area perpendicular to that
gradient. The U-factor determines the heat transfer.
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qconduction = (Twall - Toutside) * Uwall * Awall (4)

This heat flow does not directly interact with the
room but reduces the temperature of the wall that again
increases the heat flow through the convection model.

We include the heat (storage) capacity of the material
in our model to allow for a delay in the development of
the air temperature inside the room:

dwatt = (Troom — Twair) * hwau * Awau (5)
where , A,,41; 18 the surface area of the outer wall.

This is as well the interface for this sub model to the
central room model, as it transfers heat between the air
in the room and the thermal mass of the wall.

q_to_walls
»( 1)
» initial energ
T 5 1 o E_walls
e q_walls
i i E->T walls
heat_cap_wall T walls
*area_wall  delta_T = K-
+
T| room
q walls 4 n
e T_room K _
heat conduction
delta_T +:
q_conduction _|g T-outside
T_outside

Figure 4. Wall model in MATLAB

The windows and roof models are analogous to the
wall model with different properties as listed in Section
3.1.

We use room air temperature to connect the sub-
models as seen in Figure 5. The air temperature
calculation converges to steady state at each time step.

4.2 Furniture

The furniture model uses the thermal mass model
since there is no sufficient data for a convection-based
model and no heat conduction is taking place. See
Figure 5.

4.3 Ventilation

The ventilation model uses volumetric flowrate V, o,
and initial air temperature T,qp; to determine the heat
flow of the incoming air to the room:

qvent_in = Iyent * Cair * Pair * Vvent (6)

Figure 6 shows the model of the ventilation at the
inlet to the room, the heating and the heat input from
people.

Because air pressure inside the room is constant, the
air mass flow from the room is the same as at the inlet.
The heat flow of the outgoing air from the room
becomes (air density assumed constant):

qvent_out = Troom * Cair * Pair * Vvent (7)
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where the temperature of the outgoing air is the
temperature of the bulk air temperature in the room. The
model is shown in Figure 5 (purple box).

q_pent_out K T_room
| K-

vy

c_air'p

X outgoing air

q_vent_out

T_room
heat capacity furniture

+ q_to_furniture T_room_K

walls

T_room_K

+ (o walls T_outside

windows

T_outside
[C]

T_room_K

+ q_to_windows

T_outside

roof
T_room_K

¥ 9_to_roof T_outside

g i

— Sub-models

Figure 5. Thermal models connected by air temperature

Energy input

U_air_in
At Pk
ventilation
airflow | Q_radiator + Q_floor_heating |—> +
- ; E_combined
q_people

Figure 6. Ventilation flow model in MATLAB

4.4 Floor-heating

The floor-heating model is based on the difference in
water temperature as measured at the inlet and outlet of
each building zone. The water flow rate is constant.

q/‘loor = Cwater * Pwater * Vwater * (Tin - Tout) (8)

Floor-heating is set to zero in this paper.

4.5 Radiator

We use a constant heat input of 290W from the radiator
to the air; see Figure 6 and Section 3.5.

4.6 People

The heat released by the users is not included in this
work; see Section 3.6.

12
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5 Model Validation

We validate the model using actual data measurements
from a room in the school building. We use two different
data series:

1. Ventilation system fully closed (due to pandemic
lockdown),

2. Ventilation system operated according to the standard
building control scheme (with low flow during night).

The SCADA samples ambient temperature, room air
temperature, and ventilation airflow rate at 1-minute
intervals for both data series.

We use the measured ambient temperature and the
ventilation airflow rate as input to the model and
simulate the room air temperature. In the final digital
twin, we will use a temperature forecast. The results
presented in this paper are therefore assuming a perfect
forecast.

Finally we compare the simulated air temperature to
the measured air temperature, see Figure 7 for model.

1€ —»{u27318 T sk -
- T_room °C mezasured>
73 ]
T_room T_room °C g
Kt G simulated | |

Temperature

[A] >—
airflow [m*3/s] measured

Figure 7. Room Temperature Validation

6 Results and Discussion

Figure 8 shows the simulated and measured room
temperature for the case of the shutdown ventilation
system. The ventilation airflow rate was zero during the
time and the ambient temperature varies from -3°C to
+14°C in diurnal cycles (14 days).

The thermal loss model predicts the response of room
air temperature to the variation in ambient temperature.
Figure 8 shows fair prediction accuracy with a
maximum deviation of +/-1°C between the simulated
and the measured room temperature. After 7 days, the
simulation starts to deviate from the measured data and
the prediction is less reliable.

The prediction accuracy remains high despite the
coarse resolution in the ambient air temperature
measurement used as input to the model. The ambient
temperature instrumentation installed in the building is
accurate. The reduced resolution and observed data
discretization is due to data truncation in the

DOI: 10.3384/ecp201769
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measurement system. We recommend improving this

for the future.

30 T T T
- T outside °C
—T _room *C measured
===T room °C simulated

wn
T
I

Temperature (°C)
=
T
e —
——

=1
1
—=n
—7

*S 1 Il
0 1.728 3.456 5.184 6.912 8.64 10.368 12.096
Time (seconds) %10°

Figure 8. Room temp prediction with closed ventilation

Figure 9 shows the simulated and measured room
temperature for the case with the ventilation system in
normal operation. The ambient temperature varies from
-3°C to +28°C in diurnal cycles (14 days). The
ventilation airflow (Figure 10) is operating during
daytime on the weekdays and fully closed during the
weekend. The ventilation air temperature is constant for
the full simulation.

The prediction accuracy of Figure 9 is reduced
significantly compared to Figure 8. The model is not
able to predict the behavior for more than 2 to 3 days.
The simulation assumes a constant ventilation air
temperature. In reality, the air temperature changes
within the limits set in the building control system. This
effect is not included in the simulation.

30 T T T T T T

Temperature (°C)

‘ | — T outside °C |
——T room °C measured
=T room °C simulated

0 1.728 3456  5.184 6912 8.64 10,368 12.09
Time (seconds) % 10°

Figure 9. Room temp prediction, ventilation running in
normal operation
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Figure 10. Ventilation air flow rate applicable to Fig 9

7 Conclusions and Further work

Low-energy buildings have significant heat loss to the
surroundings. This causes diurnal temperature variation
inside the building and drives the energy consumption.
We search for a simple model to predict the thermal
losses of a low-energy building. We will use the model
to predict the energy consumption of the building for
short time periods (up to 7 days).

Our model is based on a simple method of energy
balance combined with heat conduction. The model data
are based on the building design data. The model is
validated using real data from the same building.

We tested the model based on real conditions over a
14-day period with and without ventilation air entering
the building. The model is accurate within +/-1°C for 7
days prediction for cases where the ventilation system is
off.

For simulation with the ventilation system in normal
operation, the model predicts the change in room
temperature within an accuracy of +/-1°C for 2 days.
Additional accuracy for longer periods may require
input of the ventilation air temperature. This should be
checked in future work.

Future work should provide qualitative measures for
the error between the measured and the predicted room
temperature. This will help our understanding of the
prediction accuracy.

We will extend the model to predict the effect of solar
influx. Solar radiation is likely to affect the temperature
of the walls and may result in a different thermal loss
from the building.

Future models should verify the dynamic behavior of
the building. The simplistic approach taken in this work
is a possible oversimplification, and can lead to serious
errors if not closely monitored.
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Abstract

The paper extends a previous model of a heated water sys-
tem with stratification, with an external floor heating cir-
culation loop and a detailed model of heat transfer from
water pipe to heated room. A minor error in the previous
stratification model is corrected. The floor heating loop is
posed as a cross-current heat exchanger, and a simple ap-
proximation of time delay for heat advection is suggested.
For heat flow to the room, infinitely fast heating of an
aluminum plate is suggested, with slower heat transfer to
chip-board, through fiberboard and parquet to the room.
The room is heated by a combination of convection and
radiation. The results show that the inclusion of the heat
circulation loop shows that this has an important effect on
the dynamics of the system, and that this loop should be
taken into account if parameters are tuned to fit the model
to experimental data.

Keywords: floor heating, energy in buildings, energy
storage, hot water tank model, water distribution system,
stratified flow model

1 Introduction

Floor heating has been used for thousands of years, and
essentially consists of a heat generation system and a heat
distribution system with heat transfer through the floor.
Modern studies of low energy buildings focus on taking
advantage of water with low thermal value (lukewarm,
30-35°C), which necessitates reducing heat transfer co-
efficients in the system. Modern control systems allow for
reducing the temperature when (part of) the building is un-
used, but require heating system with low heat capacity to
be efficient. This implies using above-floor systems, i.e.,
inserting pipes in the underlayment between the subfloor
(e.g., chipboard) and the floor covering (parquet, etc.).
(Lie et al., 2014) discussed the use of solar heating as-
sisted by electric heating for floor heating, and studied the
use of Model Predictive Control (MPC), and (Lie, 2015)
discussed a minor improvement of the heater model. In
(Johansen et al., 2019), an improved model of an elec-
tric heater was considered, and compared with experi-
mental data. Specifically, a model of stratification due to
(Viskanta et al., 1977) was used, see also (Xu et al., 2014).
(Lago et al., 2019) discusses a similar model, and a pos-
sible smooth description of the buoyancy conductivity. A
more complex model of stratification is given in (Vrettos,
2016), with a two stage diffusion predictor and buoyancy
corrector step. A system with some details of floor heating

— —
—>
Electric = Heated room
heating l_ E
Heated T Water loop
water
tank T
< D

Floor heating

Figure 1. Floor heating system.

is discussed in (Ho et al., 1995).

In this paper, the heated water tank model as in (Jo-
hansen et al., 2019) is corrected for missing constants, and
is extended with a water distribution system for floor heat-
ing. The system is extended to include a circulation loop
for floor heating — with more details about the floor lay-
ers than in (Lie et al., 2014), while excluding the solar
heating. The effect of the circulation loop is examined;
this circulation loop was not included in the model fitting
of (Johansen et al., 2019). The paper is organized as fol-
lows. In Section 2, an overview is given of the system. In
Section 3, the dynamic model of the system with heater,
water circulation, and floor layers + room is developed. In
Section 4, some simulations results are given, while con-
clusions are drawn in Section 5.

2 System overview

2.1 Floor heating

Consider a floor heating system for a building, Fig. 1.

The system consists of an electrically heated, stratified
water tank which supplies heated water to a water loop
passing through water pipes embedded in the floor. The
heated floor then provides heating to the room above to
compensate for heat loss to the surroundings. Both floor
temperature and air temperature in the heated room is of
importance for inhabitant comfort. Typically, a floor tem-
perature of ca. 22°C and an air temperature of ca. 20°C
is deemed optimal when in use.

The heated water tank is influenced by external signals
in the form of the loop volumetric water flow rate V;, the
split range valve signal u, which determines how much
water goes through the heated tank, the ambient tempera-
ture of the heated tank, Tat, and the fraction of full electric
power up that is used to heat the tank. In the model of (Jo-
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hansen et al., 2019), the inlet temperature 7; at the bottom
of the tank was also an external signal; in this work, 7j is
a signal that comes from the heated floor subsystem, and
is thus not a free, external input.

The water from the heated tank flows into the water
loop at temperature Tig (the temperature after the split
range valve of the heated tank), and passes through a
lengthy pipe embedded in the floor. The floor pipe is es-
sentially a heat exchanger for transfer of heat to the floor.
From the floor, heat is transferred to the room by convec-
tion and radiation. Finally, the room experiences a heat
loss to the surroundings which is at external ambient tem-
perature 7.

2.2 Heated water tank: modification

The stratified heated water tank with discretization is
given in detail in Johansen et al. (2019). In (Johansen
et al., 2019), buoyant turbulent mixing flux ng was cor-
rectly given by

o0, J*T
9z 072"

Here, z is vertical position, & is a buoyancy conductivity,
and T is the temperature distribution over z . However,
here we correct the expression for ky,, which should be

A2 2 or|  or
kb_{pcp-xd\/gocpbz, gL <0

aT
07 0z Z 07

= —kb

where p is density, ¢, is specific heat capacity, K is the von
Kérmén constant, d is the tank diameter, g is acceleration
of gravity, and «,, is the thermal expansion coefficient at
constant pressure.

The essential difference is that in the previous publica-
tion, p¢, was replaced by an ad hoc tuning parameter c,
which was suggested to have a value near unity.

2.3 Transport of water in pipes

If we assume that the pipes transporting water to and from
the heated floor are perfectly insulated, the temperature for
these stretches are given by the advection equation:

or  dT
9 ox
where )
Y
-

with V, the volumetric flow rate in the water loop through
the floor heating system, and A, the cross sectional area of
the pipe. The advection model has the well known solu-
tion

T(t,x:L):T(ZL,x:O)

1%

where L is the length of the pipe. The Laplace transform
of this solution is

T (s,x = L) = exp <—Ls> T (s,x=0).

Vv
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Floor above ground

- Parquet, 14 mm

Felt paper

Aluminum, 0.5 mm
Porous fiberboard, 36 mm
Plastic film, 0.20 mm
Chipboard, 22 mm

150-200 mm

- Mineral wool, 198 mm

-~ Air, 23 mm
- Ceiling panel, 14 mm

Figure 2. Structure of floor heating (not to scale), freely
after  https://www.uponor.no/vvs/produkter/gulvvarme/calma-
trinnlydplater. Water flows in water pipes, which typically are
separated by 150-200 mm.

This time delay can be expressed directly in some model-
ing languages. In Modelica, the syntax would be':

TxL = delay (Tx0, L/v)

Other languages, such as Julia, have special solvers for
delay differential equations.

Introducing 7 = % as the time delay, we can approxi-
mate the solution by N compartments. With partial delay
T; such that ):{.V:l T; = T, a possible Padé approximation is

N Nfll_ﬁs

Sep(39) ;
1:[1 exp (%s) 1—|—’L'NSH 14 3s

T(s;x=L) 1
exp (Tns) ; 1

T (s;x=0)

with realization

dx; 1
- = 7}: —
dr Tl( 0 XI)
Ay dvn, 2
dr + &t n» (1 = x2)
dxy—1 %:i(x —xy)
dr gy NN

where T,—; = xy. An advection model/time delay has

non-minimum phase characteristics (Astrgm and Murray,

i

3585
#— ensures that the non-
73‘

2008), and the all-pass terms o

minimum phase characteristic is retained. At the same
time, the lag term %TNY ensures that the time derivative
of the input signal T,—( can be avoided. This advection
model approximation constitutes a DAE, which can eas-
ily be changed into an ODE. However, the resulting ODE
becomes more complicated, and if we use a DAE solver,

such a reformulation is not needed.
2.4 Heat transfer from water to floor

2.4.1 Structure of heated floor

The structure of the floor layers is depicted in Fig. 2.
Water pipes of PEX (cross-linked polyethylene) are

put in grooves in the underlayment, typically in flexible,

porous fiberboard which also serves to dampen the sound

Thttps://www.openmodelica.org/forum/default-topic/1907-how-to-
make-a-time-delay,-w-t-r
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of steps. To secure good heat transfer to the floor finish
(e.g., parquet), the pipes are put in thermal contact with an
aluminum plate which has high thermal conductivity, and
thus spreads the heat evenly in the aluminum plate. The
water pipes are either surrounded (50-75%) by Q-plates or
clips, or they are surrounded by a plaster with good ther-
mal conductivity such as anhydrite — this is to secure the
best possible heat transfer area to the aluminum plate.

To achieve even temperature in the aluminum plate and
thus in the floor finish (e.g., parquet), pipes of outer di-
ameter 12-20mm and 2mm wall thickness of PEX are
typically put at a distance of 15-20cm along the entire
floor. Between the floor finish and the aluminum plate is
felt paper, or similar, to enable some sliding between the
floor finish and the underlayment and thus reduce sounds
of movement.

The floor layer structure in Fig. 2 is common when there
is a room below the floor. We will neglect heat transfer
resistance in the very thin plastic film and felt paper. For
simplicity, we will also assume that the insulation (mineral
wool) is perfect, and that there is no heat leakage to the
room below.

2.4.2 Heat transfer from water to aluminum

To simplify the model, we assume a fast heat transfer be-
tween water and aluminum, and due to aluminum’s high
heat conduction, the aluminum temperature is taken to be
homogeneous. Heat transfer can then be modeled as in a
steady state cross current heat exchanger. The water tem-
perature is at the tube side (pipe), with temperature 7} (x)
varying along the pipe length, while aluminum is the shell
side with temperature 7, being independent of position.

Introducing the tube side water pipe dimensionless
Stanton number Ngt,

with heat transfer coefficient %, contact surface Ay in
heat exchanger, tube side (water) mass flow rate 71,, and
tube side heat capacity ¢, v, and assuming N, is indepen-
dent of position x, we find the heat transfer from tube side
water pipe to shell side aluminum QpZal to be

Qp2a1 = TpCp,w [1 —EXp (_Ngt)] (Tip - Tal) .

Here, Tip is the water pipe inlet temperature to the “heat
exchanger”, while 7 is the exit temperature of the shell
side = aluminum temperature.

The aluminum (shell side) temperature is given by the
energy balance for the shell side (aluminum). Since the
heat conduction in aluminum is fast, we will assume
steady state for aluminum, i.e.,

dUal
O =
dt

where Ual. is the internal energy of the shell side (alu-
minum), Qaox is the combined heat flow to the ﬁberbpard
and the parquet. We will return to an expression for Q.

= Qp2al — Qaix;
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We also need the effluent water (tube side) temperature
TP, which is the temperature of the water returning to the
heated tank:

TP =Ty +exp(—N§) (TP —Ty) . (1)

In the expression for the Stanton number,

mp:Vé‘Pw
d, 2
U hy kp

where hy, is the heat transfer coefficient for water to solid
in the pipe, d, is the inner diameter of the pipe, & is the
thickness of the plastic water pipe wall, and k; is ther-
mal conductivity of the pipe material (plastic) (Lydersen,
1979).

Likewise, the contact area Ay is, say, 75% of the plastic
pipe surface, i.e.,

Ay =0.75-7t (dp +28;) L

where d,, is the inner diameter of the pipe, while Ly is the
length of the pipe in contact with the shell side (aluminum)
in the floor.

2.4.3 Heat transfer to plates

Steady energy balance for the aluminum plate leads to
QpZal = Qax = Qalqu + Qaitp

where Qalqu is the heat transfer from aluminum at temper-
ature Ty to parquet, while Qg is the heat transfer from
aluminum to fiberboard. In addition to this, we will also
need the heat transfer Qe from fiberboard to chipboard.

The dynamics of parquet, fiberboard, and chipboard
will be considerably slower than that of aluminum, so we
include a dynamic model of these plates. In a simplified
description, we assume a thin boundary layer near alu-
minum for parquet and fiberboard, and a thin boundary
layer near fiberboard for chipboard — for the rest of the
board volumes, we assume homogeneous temperature 7.
This leads to a simplified model

. AT k .
pACPSE :Ag (TO—T) — Qx:5'

Applying this model to all three boards, we associate
quantities as in Table 1. In Table 1, qu2r is the heat flow
from the parquet to the room — which consists of convec-
tive heat flow and radiative heat flow. Qg is the heat
flow from the fiberboard to the chipboard. Finally, the
heat flow out of the chipboard is zero, because we have
assumed that the insulation material below the chipboard
(“mineral wool”) is perfect.
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Table 1. Quantities and flow rates for boards.

Quantity Parquet Fiberboard Chipboard

T qu Th, T

) Opq St S

To Ta Ta Tty
Oi=s Opq2r Ofb2cb 0

2.5 Heat transfer related to room

The heat transferred into the room from the parquet floor,

X " X »
Opq2r» consists of heat convection from the floor, qu2r’

4 Heat convection is given by floor

N/
area Apq and heat flux qu2r’

and net radiation, Q;

/N
quczr = YUpqr (qu - Tr) :

The net radiation consists of radiation out due to parquet
floor temperature, and return radiation due to radiation
from the ceiling. Assuming that the ceiling has the same
temperature as the room air 7, it can be shown that

. 1
nro 4 4
O = T 179 (T =T

€pq &

where o is Stefan-Boltzmann’s constant, and €,q and &;
are the emissivities from the parquet floor and the room
(ceiling), respectively. In this radiation expression, abso-
lute temperature must be used. The expression is based on
radiation between two parallel planes. In summary,

: N/Ae N/AY
quZr = APq (quZr + quZr) :

There is also a convective heat loss to the surroundings,
0., given by
Qr2a = Angza

where A; is the net surface between the room and the am-
bient of the room, while

Q;/Za = %221(]}_7;)'

3 Dynamic model

Since the density of water and air will be assumed con-
stant, we essentially need the energy balance. The model
can be summarized as follows.

3.1 Heated tank

The model from (Johansen et al., 2019) has been corrected
in a project in a course at USN?, as described in Sec-
tion 2.2. For model details, see (Johansen et al., 2019).

2University of South-Eastern Norway: Course FM1015 Modelling
of Dynamic Systems, group project Fall of 2019.
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3.2 Floor heating/heat exchanger

If we neglect the time delay from the heated tank to the in-
let to the floor coil pipes, we have T;° (1) = T,* (¢). If we in-
stead include the time delay, we have 7" (1) = T}’ (t — )
where the time delay from the heater to the floor is Tr =
% = % with length Ly of the water pipe from the
heated tank to the floor coil inlet, volumetric flow rate V,
in the floor heating pipes, and cross sectional area Aj, of
the pipe, i.e., Ay = rg = md; /4.

With aluminum plate temperature Ty, the effluent tem-
perature 7¢ of the water after the floor has been heated is
then

7::p =Ty +exp (_Ngt) (Tlp - Tal) ,

where the tube (pipe) side dimensionless Stanfon number
Ngt is
NP — (aZ/A)x
SUT gl
pCpw

with overall heat transfer coefficient %, contact surface
Ay in heat exchanger, water mass flow rate in the pipes
1, and water heat capacity ¢, v, and assuming Ngt is in-
dependent of position x. Here, the overall heat transfer
coefficient is given by

d 2

7:E+ kp

where hy, is the heat transfer coefficient from water to pipe
wall, kj, is the conductivity of the pipe wall (plastic), dj, is
the inner pipe diameter, while J, is the pipe thickness. The
contact surface Ay is assumed to be 75% of the external
surface of the pipes, i.e.,

Ay =0.757 (dp +284) L.

The heat transferred from water pipe (tube side) to alu-
minum (shell side) is then Q5 given by

QpZal = mpép,w [1 —CXp (_Ngt)] (Tlp - Tal) .

Here, Tip is the water pipe inlet temperature to the “heat
exchanger”, while T is the exit temperature of the shell
side; since the shell side is assumed to have homogeneous,
T, is the aluminum temperature.

The water temperature that enters the return loop to
the heated tank is T¢ (¢) if we neglect time delay, and
TP (t — 1¢) if we include the time delay of the water flow-
ing through the floor coils, 7r = % = ﬁ (assuming the
same pipe cross sectional area everywherep).

Assuming steady energy balance for the aluminum
plate gives

0= Qp2al — Qanx,

where Oy, is given above, while Qypy is given by

Qa2x = Qaizpq + Cai2fo
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with .

Qalqu = Arﬁ (Tal - qu)
and .

Qoo = Araﬂ: (T — )

with A, being the area of the room floor.
For the heat flow from fiberboard to chipboard, we have

. k
Ofvach = Araib (i — T -
'cb

The effluent water from floor heating at temperature 7"
is returned to the heated tank through a pipe of length Lyy;.
If the time delay is neglected, we have T; (t) = T (¢). If we
include the time delay, the relation is T; () = 79’ (t — szp)

_ In
where T, = Wj}’
3.3 Board models

The models for the parquet, the fiberboard and the chip-
board can be summarized as follows:

. dTyq . .
PpgArCppq 5pq? = Qaizpq — Opqar

o dTh .
beAGC,fbabe = Qanfb — Otach
ATy,
PebArlp.cb 5ch; = Ofvach-

Here,

quZr = QICJqu + Q;qu
;qu = Ar%qur (qu - Tr)
Q;qu:ATL%_ 1 IG(qu_Tr)'

€pq &

3.4 Room model

With a simplistic room model, we only consider air mass
m, with no ventilation. Then

av; . .

? - qu2r Qr2a

where U, is the internal energy of the room air, for simplic-
ity, dU; = m¢, ,dT;, where &, = Cp 0 — M% is the specific
heat capacity of air at constant volume, ¢, , is the specific
heat capacity at constant pressure, with gas constant R and

molar mass of air M,. Here,
Qr2a = A?% (Tr - Tar)

where A} is the surface area of the room against the am-
bient temperature 7, %; is the overall heat transfer coef-
ficient from room air temperature 7; to ambient tempera-
ture.

In a more realistic room model, we would also take
into account stored energy in furniture, walls, etc., multi-
ple rooms with transport between the rooms, and radiation
from the sun into the room.
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3.5 Model parameters

Model parameters for the heated tank are given in (Jo-
hansen et al., 2019), while model parameters for the
floor/heated room are given in Table 2.

Let us briefly discuss the time delays of water flow in
the system. With V; € [1,13]L/min and A, = nd§/4 we
find time delays:

12:102)°
L 20- 10‘n7( 2.26
Tor= oo = 22 [0.17,2.3]min
Vi/Ap Vi Ve
Le 250
= = —+ =[2.2,28.3] min
Vi/Ap me'lf )
Tth—-ﬂ—Tth
Ve/Ap

This means that for low flow rates, the time delay main be
up to 30min through the floor pipe. The time delay in the
transport pipes is small, though. The characteristic time
constants of the system are in the same order of magni-
tude, (Johansen et al., 2019). Thus, the time delay should
be considered. For simplicity, a simple approximation of
the time delay is to put it between the outlet of the floor
pipe and the heated tank. We use the approximate descrip-
tion

dx;p 1
— (TP _
dx;  dx;

@t T

doy _ 2

dxy—1 (x )
= —(xN-—1—2xN
dr dr ™N
. Log-+Le+Ley)A .
with T, =xy and T =YY | 5, = W/%‘)P For sim-
plicity, we set ; = .

4 Simulation results

The model of the heated tank with 20 slices and speci-
fied input temperature 7; is simulated, and compared to a
model of the combined heated tank and floor heating with
circulating water providing 7;, using the model parameters
in (Johansen et al., 2019) and those in Table 2, with N = 3
“volumes” in the time delay approximation.

Key inputs to the systems are given in Fig. 3. Observe
that inlet temperature to the heated tank, 7;, is only used
when the heated tank is simulated as an independent sys-
tem. It has been assumed that the ambient temperature
to the heated tank is 7' = 15°C, while that the outdoor
temperature is 7, = 5°C; both are assumed to be constant
over time.Initial values of all states (temperatures) are set
to 25°C.

Figure 4 compares the temperature distribution in the
heated tank for the cases (a) that the heated tank is an in-
dependent system with specified 7;, and (b) that the heated
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Table 2. Model parameters for room with floor heating.

Parameter Value Comment
dp 12mm Inner diameter of floor pipe
Op 2mm Thickness of floor pipe wall
kp 0.5W/mK Thermal conductivity of floor pipe material (PEX)
L 250m Length of pipe in floor heat exchanger
L 20m Length of pipe from tank to floor coils
Ly 20m Length of return pipe from floor coils to tank
Ax 0.75m (dp + 25p) L Heat transfer area from water to aluminum plate
hy 6500W/ m?K Heat transfer from water to pipe wall
dp 28y
Uy 1/ (hlw + W) Overall heat transfer coefficient, water to aluminum
A; 50m? Area of floor with floor heating
hy 25m Height of room
Vi hA; Volume of room
Pa 1.225kg/m? Density of air
Cpa 1kJ/kgK Specific heat capacity at constant pressure, air
R 8.31kJ/kmol K Gas constant
M, 28.97kg/kmol Molar mass of air
Cra Cpa— M% Specific heat capacity at constant volume, air
my PaVr Mass of air in room
Opq 14mm Thickness of parquet
S 36mm Thickness of fiberboard
Ocb 22mm Thickness of chipboard
Ppq 750kg/m? Density of parquet material
Pto 230kg/m?3 Density of fibreboard material
Pecb 700kg/ m3 Density of chipboard material
Cppq 2kJ/kgK Specific heat capacity of parquet material
Cp.fo 1.4kJ/kgK Specific heat capacity of fibreboard material
Cpcb 1.8kJ/kgK Specific heat capacity of chipboard matierial
kpq 0.17W/mK Thermal conductivity of parquet material
kb 0.049W/mK Thermal conductivity of fibreboard material
keb 0.15W/mK Thermal conductivity of chipboard material
o 5.6494-1078 K}Yn 5 Stefan-Boltmann’s constant
& 09— Emissivity of parquet
& 0.96— Emissivity of ceiling (room)
A} Ar+4h/A, Surface area of room
% 0.15W/m’K Heat transfer coefficient through wall
U, 1/ <h171 + & + h%) Overall heat transfer coefficient, room to ambient

T
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Control inputs
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Figure 3. Control inputs up (power fraction to heated tank),
uy (water flow valve opening), and V; (volumetric flow rate in

heating loop).
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Figure 4. Temperature distribution (7¢: effluent temperture from
heated tank; 7 (zp): temperature at heating element; 7;: influent
temperature to heated tank; T; temperature at heated tank sen-
sors; Tiz inlet temperature to floor heating loop) in heated tank
for cases (a) the heated tank is an independent system with spec-
ified tank inlet temperature 7j, and (b) the heated tank and the
floor heating system are connected via a water loop where 7; is
the return water temperature from the floor heating.

tank and the floor heating system are connected such that
T; is caused by a return of water from the floor.

Figure 5 shows the temperatures in the floor heating
part: Ty, Tpg, Tts Tro, Tob-

Using a DAE solver (OpenModelica), we immediately
also find other quantities such as heat flows. As an ex-
ample, Fig. 6 shows the heat flow from water pipe to alu-
minum, Qalzp, as well as heat flow out of the aluminum
plate, Q... Furthermore, the figure shows the separate
heat flow from aluminqm to parquet, Qalzpq, and from alu-
minum to fiberboard, Q..

Because steady state is assumed for the aluminum plate,
Qaizx = QOp2al- Furthermore, Qapx = Qaizpq + Qaiztp. Ob-
serve that with the given initial temperatures of the fiber-
board, Q.pf, < 0 in these operating conditions.

Figure 7 shows the total heat flow from the parquet to
the room, and the heat flow due to convection vs. radia-

tion.
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Figure 5. Temperature evolution in various compartments in
the floor heating system (7: temperature in compartment j —
al: aluminum plate, pq: parquet, r: room, fb: fiber board, cb:
chip board). Observe that all compartments start at 25 °C.

Heat flow: water pipe via Al to parquet and fibreboard

Qw]

time [h]

Figure 6. Heat flows from floor water pipe through aluminum to
parquet and fiberboard (Qjp ;- heat flow rate from compartment
i to j, where i, j are p: water pipe, al: aluminum plate, pq: par-
quet, fb: fiber board). Observe that for the case studied here, the
flow from the aluminum plate to the fibreboard is negative.

Heat flow, parquet to room: convection vs. radiation
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Figure 7. Heat flows from parquet to room (Q'f?2 ;- heat flow rate
from compartment i to compartment j, where pq: parquet, r:
room, and k indicates heat flow type, c: convection, r: radiation).
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An interesting observation is that heat flow by radiation
dominates over heat flow by convection. Often, the ra-
diation flow term is linearized and converted into a quasi
convection term, with modification of the total heat trans-
fer coefficient.

5 Conclusions

A previous model of a stratified heated water tank has been
improved, and extended with a water circulation loop for
heating of the floor in a room. A simple approximation of
an advection model has been used in the water loop, and
the heat transfer to the floor layers has been described as
a cross-current heat exchanger to an aluminum plate with
infinitely fast dynamics. The heat is then transported from
the aluminum plate to a chip-board below the aluminum
plate, and through a fiberboard plate through the parquet,
and then via convection and radiation to the room. In the
floor layers, the effects of a thin plastic film and a thin felt
paper have been neglected, and perfect insulation has been
assumed below the chipboard. The room model is overly
simple in that only air has been included; in reality, air
heats furniture, walls, etc., which will add to the thermal
mass of the room. Still, the extension in the paper are
believed to give a realistic description of the transfer of
heat from a heated tank to the floor of a building.

An important result is that the water circulation loop has
a considerable effect on the dynamics of the water tank
temperatures. A previous paper discussed tuning of pa-
rameters for model fitting. The effect of the circulation
loop indicates that the circulation loop should be taken
into consideration when tuning model parameters.

The model contains a large number of parameters; (Jo-
hansen et al., 2019) and Table 2. Most of these parame-
ters are available from the literature/experimental work at
building institutes. Because of the physical nature of the
model, such literature values will not be too far off from
their real values. However, some of the parameters are
uncertain. This is especially true with some heat trans-
fer coefficients. Thus, in practice, it will be necessary
to tune some of the parameter values based on available
experimental data. Because of the physical nature of the
model, the model can be expected to generalize better to
other buildings than a purely empirical/data-driven model
would have.

Future work will include a more detailed room/apart-
ment model, and better scaling of the heater power com-
pared to the heat loss in the system. It is also of interest
to include more formal description of water physics and
heat transfer. Model fitting will be an important part of an
improved model. Finally, it is of interest to look more into
how such a model can be used in a control system.
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Analysis of model for control of thermal energy in buildings
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Abstract

The paper considers a model for floor heating in build-
ings, with an electrically heated, stratified water tank, a
circulation loop, a detailed description of heat transport
through the floor, and a simplistic room model. The model
structure is suitable for control of room temperature, and
the paper discusses the use of modern simulation tools
for control-relevant analysis of such models. The stratifi-
cation description contains a non-differentiable buoyancy
term, and two approximations are studied which circum-
vent this problem. The results indicate that a boundary
layer approach is superior to a log-sum-exp approxima-
tion. Important basic control-relevant analysis ideas in-
clude step response (time constants), sensitivity analysis
(parameter identifiability), the system zeros location (at-
tainable performance), and Bode plots (control synthesis).
The paper illustrates how such an analysis can be carried
out using tools such as OpenModelica in combination with
scripting language Julia.

Keywords: thermal building model, heated water tank,
floor heating, model analysis, sensitivity analysis, lin-
earization, control architecture

1 Introduction

Modern floor heating systems utilize “low quality” ther-
mal energy in lukewarm water (30-35°C). To reduce the
overall energy consumption, it is necessary to allow for
rapid temperature changes when occupants leave or ar-
rive, hence a low heat capacity in the distribution system
is desirable. Maximizing the temperature in the buildings
requires low heat transfer coefficients. Building energy
management systems (BEMS) are used to handle the heat-
ing and water distribution.

(Lie et al., 2014) discussed the use of solar heating as-
sisted by electric heating for floor heating, and studied
the use of Model Predictive Control (MPC). In (Johansen
et al., 2019), an improved model of an electric heater was
considered, and compared with experimental data. Specif-
ically, a model of stratification due to (Viskanta et al.,
1977) was introduced, see also (Xu et al., 2014). A more
complex model of stratification is given in (Vrettos, 2016),
with a two stage diffusion predictor and buoyancy correc-
tor step. In (Bhattarai et al., 2020), a minor correction of
the buoyancy term is introduced in reference to (Johansen
et al., 2019), and the system is extended to include a cir-
culation loop for floor heating — with more details about
the floor layers than in (Lie et al., 2014), while excluding
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the solar heating.

Traditional heating systems for buildings often use sim-
ple temperature controllers such as thermostats. It is of in-
terest to also consider and analyze building models from a
more classical control theoretical point of view. Open loop
studies typically include step response tests. Interesting
questions arise related to identifiability of model parame-
ters, where parameter sensitivity plays a key role, (Varma
et al., 1999), (Jayakumar et al., 2011), (Sarmiento Fer-
rero et al., 2006). Model structure and input-output rela-
tions may put restrictions on attainable performance in dy-
namic systems. Essentially, unstable zero dynamics limits
how fast feedback control loops can be made while re-
taining robustness. For linear models, the modes of the
zero dynamics equal the system zeros, (Kwakernaak and
Sivan, 1972), (Lie, 1995), and the performance limiting
zeros are the right-half-plane zeros. Classical linear con-
trol design is often based on linearized approximations
of models, and the Bode plot is a simple presentation of
some dynamic properties for importance in control design,
(Astr@m and Murray, 2008).

The emphasis of this paper is on how to use modern
computer languages to analyze the model, with the ul-
timate purpose of control design. We consider the lan-
guages Julia (Rackauckas and Nie, 2017) and Modelica
(Fritzson, 2015), specifically OpenModelica operated via
the OMJulia API (Lie et al., 2019). The focus is not
on control design, but on analysis tools. The floor heat-
ing model in (Bhattarai et al., 2020) is used in the study.
This model contains a max () function in the description
of stratification, which is unfortunate when linear approx-
imations are sought. Thus, two approximations to the max
function are considered. Basic step responses are used to
find the open loop response. Next, computation of out-
put sensitivity to model parameters is illustrated, together
with model linearization with location of poles and zeros
as well as Bode plots. The paper is organized as follows.
In Section 2, the system under study is presented, and two
approaches to model approximation are presented. In Sec-
tion 3, the original stratification model is compared to the
two approximations. In Section 4, computer tools are used
for model analysis. In Section 5, some conclusions are
drawn.

2 System overview

2.1 Floor heating

Consider a floor heating system for a building, Fig. 1.

23

Virtual, Finland, 22-24 September 2020



SIMS 61

— e
—t
Electric _~ Heated room
i > | ==
heating *__|
Heated T Water loop
water
tank T
< <

Floor heating

Figure 1. Floor heating system.

The system consists of an electrically heated, stratified
water tank which supplies heated water to a water loop
passing through water pipes embedded in the floor. The
heated floor then provides heating to the room above to
compensate for heat loss to the surroundings. Both floor
temperature and air temperature in the heated room is of
importance for inhabitant comfort. Typically, a floor tem-
perature of ca. 22°C and an air temperature of ca. 20°C
is deemed optimal when in use.

Modern buildings are not in use all the time, and it is
of interest to save energy by reducing temperatures when
a building is empty. To allow for quick reduction and
increase in temperatures, the heat capacity of the floor
should be low. On the other hand, low heat capacity leads
to problems in case of power failure.

The heated water tank is influenced by external signals
in the form of the loop volumetric water flow rate V, the
split range valve signal u, which determines how much
water goes through the heated tank, the ambient tempera-
ture of the heated tank, 7}, and the fraction of full electric
power up that is used to heat the tank. In the model of (Jo-
hansen et al., 2019), the inlet temperature 7; at the bottom
of the tank was also an external signal; in this work, 7; is
a signal that comes from the heated floor subsystem, and
is thus not a free, external input.

The water from the heated tank flows into the water
loop at temperature Tig (the temperature after the split
range valve of the heated tank), and passes through a
lengthy pipe embedded in the floor. The floor pipe is es-
sentially a heat exchanger for transfer of heat to the floor.
From the floor, heat is transferred to the room by convec-
tion and radiation. Finally, the room experiences a heat
loss to the surroundings which is at external ambient tem-
perature 7.

2.2 Buoyancy conductivity approximations
2.2.1 Original stratification expression

The buoyancy conductivity expression ky, is

kyy o< |/ max <—Z,0>,

oY)

or alternatively

aT aT
kpoe V00 0 <0 @
0 2T >
) az_ .

For implementation in Modelica, the formulation in Eq. 1
works fine, while the formulation in Eq. 2 leads to chatter-
ing between the two function branches when the gradient
fluctuates around 0.

If we want to linearize the model in Modelica, things
get even more complex: Modelica does not handle auto-
matic linearization of either the expression in Eq. 2 or that
in Eq. 1. Thus, for analysis purposes, it is of interest to
seek approximations to the above buoyancy conductivity
expressions which allow for linearizing the model by au-
tomatic linearization.

2.2.2 Log-sum-exp approximation

For simplicity, we first consider function

—x, x<0

max (—x,0) = {O R

A common approximation of this max function is the so-
called “log-sum-exp” function, (Lago et al., 2019), which
in a simple version can be posed as

1
max (—x,0) & log (exp (~ ) + exp(4-0))

1
= ﬁlog(l +exp(—ux)).

With increasing U, this approximation becomes better and
better, while still being differentiable. Thus, we can use
the following approximation of the buoyancy conductiv-

1ty:
ky, o< \/:Llog <1—|—exp <_“Z>>’

where L is tuned to give as good approximation as possi-
ble.

There is a potential problem with this approximation for
our use: ﬁlog (1 +exp(—ux)) > 0 for x > 0. Thus, when

%—f — x, we will get a “buoyancy” effect when %—g >0—

when there really is no buoyancy.

3)

2.2.3 Boundary layer approximation

An alternative approach to approximation is to establish a
boundary layer for x € [—3§,0], and use a polynomial tran-
sition from y(—4) to y(0) which simultaneously is dif-
ferentiable at x = —& and x = 0. For simplicity, we ap-

proximate y/max (—x,0) instead of max (—x,0). It can be
found that the following composed function is suitable:

V—x, x< =48

V/max (—x,0) ~ @.(g(g)ug(gf), x€[-5,0]
0, x> 0.

)
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Figure 2. Left panel: comparison of f(x) = y/max(—x,0)
(green line) with log-sum-exp approximation fig (x) =

oell2eXpit) i Fq. 3 (blue, solid: p = 5, dotted: p = 20),
vs. boundary layer approximation fy (x) in Eq. 4 (red, solid:

6 = 0.3, dotted: & = 0.07). Right panel: comparison of deriva-
tives.

2.2.4 Comparison of approximations

Figure 2 illustrates the approximation of \/max (—x,0)
with these two approaches.

Figure 2 illustrates a potential problem with the log-
sum-exp approximation in Eq. 3 in that this approximation
will give a buoyancy effect when %—f > 0 (function fis (x),
blue curve in the left panel Fig. 2 is positive for x > 0),
which is unphysical. The boundary layer approximation
in Eq. 4 (function f) (x), red curve in the left panel) is,
however, zero for x > 0, which is physically correct.

It should be observed that the log-sum-exp approxima-
tion gives a better approximation with tt > 5, but Open-
Modelica fails to linearize the model when p 2 5.

2.3 Transport delay in heating loop

The advection term related to flow of water in the loop of
the heater and the floor, has been approximated by a Padé
approximation as in (Bhattarai et al., 2020):

T(sx=L) 1 NMlexp(—7s)
T(s:x=0) exp(tys) i} exp(s)
1+ Tys =l 1+%S

The advantage of including the lag term +er < is that

this removes the need to differentiate the input signal
T(t;x=0).

3 Simulation with buoyancy approxi-
mations

The heated tank model from (Johansen et al., 2019) has
been corrected as discussed (Bhattarai et al., 2020). Here,
we study the accuracy of the log-sum-exp approximation
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Figure 3. Control inputs up (power fraction to heated tank),
uy (water flow valve opening), and V; (volumetric flow rate in
heating loop).
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Figure 4. Disturbance temperature inputs 7; (influent to heated
tank) and 7' (ambient to tank).

and the boundary layer approximation introduced in Sec-
tion 2.2, when applied to the heated tank. Next, we study
the effect of the approximations on a combined heater and
floor heating loop, as discussed in (Bhattarai et al., 2020).
In all cases, stratification models with 20 discretization
layers are used in the heated tank models.

3.1 Heated tank

The following input signals are used for the heated tank:
Fig. 3 depicts the power input up, the valve input u,, and
the volumetric loop flow rate V.

Figure 4 shows the input temperature 7; to the heated
tank, and the ambient temperature surrounding the heater,
T\

The temperature distribution in the heated tank using
the corrected expression for buoyancy conduction com-
pared to (Johansen et al., 2019), with approximations, is
shown in Fig. 5 when using OpenModelica with solver
DASSL. In Fig. 5, observe in particular that the log-sum-
exp approximation gives a different solution for some in-
ternal heated tank locations, see ellipses I and II in the
figure.
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Figure 6. Temperature distribution in tank with corrected buoy-
ancy conduction + approximations. Model implemented in
Julia, solved via package DifferentialEquations with
solver CVODE_Adams from the Sundials package.

The similar simulations in Julia are depicted in Fig. 6.
It turns out that most Julia DifferentialEquations
solvers struggled with solving the log-sum-exp approxi-
mation, reporting that the system is unstable. The CVODE
solvers of the sundials package handles the problem,

Figure 5. Temperature distribution (7¢: effluent temperture from
heated tank; 7 (zp): temperature at heating element; 7;: influent
temperature to heated tank; 77 temperature at heated tank sen-

sors; Tf inlet temperature to floor heating loop) in tank with cor-
rected buoyancy conduction + approximations. Model imple-
mented in Modelica, solved via OMIJulia using OpenModelica
with default solver DASSL.

though, and the CVODE_Adams solver appears to give the
solution closest to the original formulation with the max
function. Observe that the log-sum-exp approximation in
Julia avoids the problem associated with ellipse I of Fig. 5,
but retains the problem of ellipse II of the OpenModelica

solution. However, for Julia, the expression log (1+x)
can be replaced by an improved function 1loglp (x) when
x is small. When doing so, the problem of ellipse II is
also removed, and the log-sum-exp approximation can be
made virtually indistinguishable from the solution of the
max function in Julia. Still, both the original max formula-
tion and boundary layer approximation allows for the use
of standard solvers, while the log-exp-sum approximation
requires Sundials solvers to find the solution.

Both when using the OpenModelica solver and the Julia
solver, the boundary layer approximation works without
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: Loop Heater temperatures
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Figure 7. Temperature distribution in tank with floor loop and
with corrected buoyancy conduction + approximations. Model
implemented in Modelica, solved via OMJulia using OpenMod-
elica with default solver DASSL.

problems, and gives a solution very similar to the original
solution. In summary, the results indicate that the log-
sum-exp approximation is numerically challenging, even
when using such a “poor” value of t as L =5, see Fig. 2.

3.2 Heated tank + floor heating loop

Next, we consider the combined heated tank and floor
heating loop. The inputs are as in Figs. 3—4, except that
the input temperature 7; (Fig. 4) to the heated tank now is
a state, and is computed from the model.

The temperature distribution in the heated tank with
floor loop using the corrected expression for buoyancy
conduction compared to (Johansen et al., 2019) as well
as approximations, are shown in Fig. 7.

Again, Fig. 7 indicates some numeric problem with the
log-sum-exp approximation, see ellipses I and II.

It is also of interest to see whether there are differences
in the floor-room temperatures. The temperatures in the
floor layers and room of the tank with floor loop (origi-
nal buoyancy expression and approximations) are shown
in Fig. 8.
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Figure 8. Temperature distribution in floor layers and room of
heated tank with floor loop (7}: temperature in compartment j
— al: aluminum plate, pq: parquet, r: room, fb: fiber board,
cb: chip board). Model implemented in Modelica, solved via
OMlJulia using OpenModelica with default solver DASSL.
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Step responses
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Figure 9. Step responses in 7}‘ (upper panel) and 7; (lower
panel) to changes in inputs (up: power fraction in heater, u,:
heater bypass fraction, V;: loop volumetric flow rate, T': am-
bient temperature for heated tank, 7,: ambient temperature for
room, i.e., outdoor temperature), starting at steady state.

As seen from Fig. 8, the temperatures in the floor layers
and the room are practically the same, independently of
the buoyancy approximation.

4 Model analysis
4.1 Step response

The response in an output to a step change in an input,
starting from steady state, gives a good idea of time con-
stants in the system. Figure 9 shows the responses in tem-
peratures Tif and T; to step changes in inputs.

As seen Fig. 9, a step change in the heater by-pass frac-
tion (uy) gives an inverse response in both the loop inlet
temperature (Tie) and the room temperature (7;). Inverse
response is intimately related to right half plate (RHP) ze-
ros, and indicate a limitation in how fast the system can
be controlled using this control signal. A similar inverse
response may be seen in the response to V;, while the re-
sponse to up does not have inverse response. Based on
these observations, up is probably the best choice of con-
trol signal.

Step changes in disturbances 7)) and 7 are related to
similar limitations in observers/state estimators, but in that
case, the assessment is more complicated.

4.2 Parameter sensitivity

Sensitivity in output y to a parameter 0 is defined as
g—g, and is informative as to what degree an infinitesimal
change in 6 will change the output y. If % = (, this im-
plies that changing parameter 6 will not change the model
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Figure 10. Sensitivities in floor-room temperatures to infinitesi-
mal changes in parquet conductivity kyq and height of room, A;.

output y at all, hence parameter 6 can not be used for im-
proving the model fit. On the other hand, if % # 0, this
indicates that changing 6 will change the output y and al-
low for improved model fit. The transient change of g—g is
also informative wrt. what parts of the model parameter
0 can be used to improve, e.g., steady state value, time
constants, etc.

Both OMJulia-OpenModelica and the DifferentialE-
quation package for Julia support sensitivity compu-
tations. Here, we illustrate the results of sensitiv-
ity computations in OMJulia-OpenModelica for y =
(T, Tpq: T, Ty, Tev) and 0 = (kpg,h). In the sensitivity
computations, we need to specify inputs. We start with in-
puts u = ( ' T Vi up uy ) given by nominal val-
ues

u*=(5°C 15°C 5L/min 125-107% 1)

at t = 0 and corresponding steady states, and inject a step
change in uy from uy = uj =1touy, = 0.8 attimer = 1 h.
Sensitivities of model £hm are computed numerically via
OMJulia command
julia> sn,sv = sensitivity (fhm, ["kpg", "hr"], [
"Tal", "Tpg", "Tr", "Tfb", "Tcb"])

The results are displayed in Fig. 10.

To properly assess parameter identifiability, one needs
to consider the rank of the sensitivity matrix, see, e.g.,
(Sarmiento Ferrero et al., 20006).

4.3 Poles and zeros

OMJulia, the Julia API to OpenModelica, allows for auto-
matic differentiation for linearization of models. The al-
gorithm does not handle the original buoyancy conduction
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Figure 11. Poles marked with X (red: log-sum-exp approxi-
mation, blue: boundary layer approximation), and transmission
zeros marked with o.

expression due to the non-differentiability of &y, at %—f =0,

but works with the two approximate conductivity expres-
sions. In this section, we consider inputs « and outputs y
defined as:

u= (TS T} Vi up uy )
y=(F T' T T )

with nominal input values
w*=(5°C 15°C 5L/min 125-107% 1).

Linearization of model fhlse is carried out and piped
(1> ) into a Julia state space object sys_1se via OMJu-
lia+Julia ControlSystems command

1 julia> sys_lse = linearize(fhlse) [> x —-> ss/(

Xew.)

When starting the model at steady state for the nominal in-
puts u*, the combined heater + floor heating system gives
a linear approximation with poles and transmission zeros
as in Fig. 11.

As seen, there is some difference in both poles and
transmission zeros of the two approximations. The right
panel of Fig. 11 clearly indicates that both buoyancy ap-
proximations exhibit right-half-plane zeros in the complex
plane, which indicates limitations on how fast the system
can be controlled. These right-half-plane zeros are due to
advection in the floor heating loop, and the Padé approx-
imation that has been applied. It is difficult to see from
Fig. 11 whether all poles of the system lie in the left-half-
plane of the complex plane, but the simulations show that
the system in fact is stable.

The precise location of transmission zeros gives ad-
ditional information related to that of a possible inverse
response found through step responses, see, e.g., (Lie,
1995). Observe that the two buoyancy conductivity ap-
proximations give different results wrt. poles and zeros. It
is believed that the boundary layer approach is more accu-
rate than that of the log-sum-exp approach.
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Figure 12. Bode plot of transfer function from outdoor temper-
ature 7 to room temperature T;.
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Figure 13. Bode plot of transfer function from heater split range
valve signal uy to parquet temperature Tpq.

4.4 Bode plots

It is of interest to also compare the Bode plots from u to y
of the linear approximations of the two buoyancy conduc-
tion approximations. In this case, we consider the follow-
ing inputs u and outputs y:

u=(TF Vo uy)

y:(TiZ Toq Tr)

The reason why we do not consider input up is that it turns
out that the outputs are insensitive to up. The following
selected Bode plots are representative of the similarity of
the two approximations. Transfer function T% (s), Fig. 12.

Observe that the two approximations are overlapping.

Transfer function % (s), Fig. 13.

Bode plots are standard tools for tuning SISO PID con-
trollers. The two plots in Figs. 12-13 are representative
of the variation in similarity between Bode plots from the
boyancy conductivity approximations; for a real control
design, the Bode plot from up to 7; would be more rel-
evant, but controller design is not the main focus of this
paper; rather the focus is on tools to analyze models.
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5 Conclusions

A model for floor heating of buildings is studied wrt. con-
trol relevant properties. The main emphasis is not on the
analysis itself, but rather on the use of modern simulation
tools to carry out such analysis. For a more realistic anal-
ysis, a better balanced system should be considered (size
of heater vs. heat loss in room) with improved descrip-
tion of the living space (e.g., more rooms, thermal mass of
furniture, ventilation, etc.).

The results indicate the importance of a suitable model
description which is differentiable (stratification): this is
important both for linearized analysis and controller de-
sign, but a proper choice of approximation will also al-
low for more flexibility in choice of differential equation
solvers. The log-sum-exp approximation is locally un-
physical, which probably also is the reason why this ap-
proximation requires very good solvers.

The results also indicate the ease at which control anal-
ysis can be carried out. Step responses are important for
assessing overall open loop time constants, as well as indi-
cating the presence of inverse response/“‘unstable” system
zeros. Sensitivity analysis is important for assessing pa-
rameter identifiability. The location of open loop poles
is related to open loop time constants, while system ze-
ros give crucial information about how fast a closed loops
system can be made. Finally, a Bode plot is often used for
simple design of linear controllers.

In reality, temperature control in buildings is often done
using thermostats and other nonlinear controllers. Still, it
is of interest to consider how a more advanced controller
— even a linear one — can be utilized for improved use of
energy in building temperature control. The methods dis-
cussed in this paper constitute a first step in such a control
design.
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Abstract

This study reports a numerical analysis of the performance
of green facades in different geographical locations and
seasonal conditions. A mathematical model from a previ-
ous study is implemented and combined with the modified
convective heat transfer coefficients from a recent study of
the literature to simulate the transient heat transfer through
bare walls and green facades with climbing vegetation. An
implicit Finite Difference Method (FDM) based solver is
used to perform the numerical simulations. Climate data
are taken from relevant weather stations in Oslo and Rome
and typical meteorological year (TMY) values are used
for this purpose together with variable thermo-physical
properties of air. An energy budget analysis reveals that
the short-wave radiation term and convective heat transfer
term are predominating compared to the other terms in-
volved in the energy balance equation for summer time.
The results show that the green walls are most effective
in summer seasons with high levels of solar radiation, as
most of the cooling effect is credited to the vegetation
blocking the solar radiation. In cooler seasons, the benefit
is less prominent. Furthermore, an analysis of the effects
of the different models of convective heat transfer coeffi-
cients is presented.

Keywords: green buildings, green vertical systems,
green facades, passive design, sustainability

1 Introduction

Recent studies show a drastic increase of global energy
use over the last four decades. Based on the United Na-
tions report and as mentioned by several authors, it is esti-
mated that the population in cities will increase up-to 68%
by 2050 (UN, 2018; Vo et al., 2019; Seyam, 2019; Besir
and Cuce, 2018) with urban dwellers reaching ~ 6.7 bil-
lion. In this regard, the building sector accounts for a large
portion of the total energy usage, as well as 36% of the to-
tal greenhouse gas emissions is attributed to the building
sectors (Vo et al., 2019; Seyam, 2019). For this, the United
Nations Environment Program (UNEP) proposes several
measures like increasing the energy efficiency of build-
ings, appliances, reduction of emission, approach towards
energy usage and promoting technologies with renewable
energies rather than fossil fuels.

Integrating plants into the building envelope addresses
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both aesthetic and energy concerns. Utilizing different
types of greenery systems, microclimatic conditions of
buildings can be more cost-effective and eco-friendlier
(Seyam, 2019; Koc et al., 2018; Besir and Cuce, 2018).
Green buildings with green infrastructures like green
horizontal systems and green vertical systems are sus-
tainable, efficient and passive design solutions for ef-
fects associated with rapid urbanization, addressing issues
with a high carbon footprint, high greenhouse gas emis-
sion, urban heat island effects etc. (Susca et al., 2011;
Safikhani et al., 2014; Manso and Castro-Gomes, 2015;
Charoenkit and Yiemwattana, 2016; Koc et al., 2018).
Green roofs (GR) and vertical greenery systems like green
facades(GF)/living walls differ fundamentally due to the
structure of the assembly and differences in the involved
heat transfer processes (Susorova et al., 2013; Pérez et al.,
2014; Bustami et al., 2018). A detailed classification of
green walls based on the construction characteristics is
presented by (Manso and Castro-Gomes, 2015). Scientific
studies established the energy saving benefits of green in-
frastructures in building sectors (Feng and Hewage, 2014;
Raji et al., 2015). It is also a proven fact that the presence
of green systems has an important psychological impact
on urban dwellers. Thermal insulation, shading effects,
evapotranspiration and wind effects are the key features
towards the energy saving impacts of greenery systems.
Several parameters like substrate thickness, soil moisture,
solar radiation inception, density of foliage and the cov-
erage, ventilation blind effects, thickness of the foliage,
air layer, orientation, wind barrier/blockage etc. are to be
accounted for in mathematical modeling of such systems.
Plant characteristics, weather conditions, climate zones,
wall assembly types, facade orientations etc. are to be
considered in modeling and analysis of thermal benefits.

In this regard, Alexandri and Jones developed a dy-
namic one dimensional model for green roof account-
ing the fundamental heat and mass transfer mechanisms
(Alexandri and Jones, 2007) involved in the energy dy-
namics. On the other hand, a quasi steady state approach
was adopted by (Tabares-Velasco and Srebric, 2012) in
their green roof model. Further developments on the green
roof model are reported in (Heidarinejad and Esmaili,
2015; He et al., 2017). For vertical greenery systems, a
mathematical model of building exterior wall with climb-
ing vegetation is presented in (Susorova et al., 2013). Sev-
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eral other authors considered the heat balance of the fo-
liage and heat transfer through the substrate layer of the
vertical greenery system and integrated models in build-
ing simulation programs like TRNSYS and EnergyPlus
(Djedjig et al., 2015, 2017; Dahanayake and Chow, 2017).
A multilayered model approach for vegetated vertical sys-
tems is presented in (Convertino et al., 2019a). Neverthe-
less, studies on the modeling aspects of green roof/green
facades are still an active field of research and develop-
ment.

In this work, we have revisited the model proposed in
(Susorova et al., 2013). We aim to implement this green
facade model combining the effects of the modified con-
vective heat transfer coefficients presented in the recent
work of (Convertino et al., 2019b). The main objective of
this work is to investigate the applicability of the afore-
mentioned model and to analyze the performance of the
green wall envelope of buildings, for different climate data
revealing the possible benefit of employing green facades
in buildings. The paper is organized as follows. In section
2, we present the governing equations and the numerical
methodology of the study together with the problem setup.
The detailed analysis of the results is given in section 3.
Finally, the conclusions are drawn in section 4.

2 Method

2.1 Governing equation

The green facade model of Susorova et al. accounts the
various heat transfer mechanisms for a vegetated wall (Su-
sorova et al., 2013), and the energy balance is defined as:

SRy + LRy, +XR+Cyy = Oy + Sy (H

Where SR,,, is the incident shortwave radiation, LR,,, is
the net long-wave radiation, XR is the radiative exchange
between the leaves and wall surface, C,,, is the convective
heat flux, Q,,, is the conduction heat flux and the heat stor-
age in the fagade material is S,,, = pC,L (dT,,,/dt), with
density of the wall material p, specific heat of the wall C,,
wall thickness L, ¢ is the time and 7, is the wall temper-
ature. A schematic of the energy balance and a very brief
description of the terms of the Equation 1 are given in Ap-
pendix A for the sake of completeness and to facilitate the
understanding of the overview of the mathematical model.
Details of the model can be found in (Susorova et al.,
2013). Note that essentially, the wall temperature Ty, (f)
is linked with the air temperature T,;.(¢), the sky temper-
ature Ty, (¢), the ground temperature Ty, (¢), the indoor air
temperature T;,(¢) and the leaf temperature Tj,,¢(¢). The
energy balance equation of bare wall is similar to equa-
tion 1, without the XR term and the unknown bare wall
temperature denoted as 7j,,. The energy balance equation
is therefore expressed as:

Swa + Lwa + wa = wa + Sbw (2)

The governing ordinary differential equations (ODEs)
can be expressed in the following form:

dT,,

dt :avw(t)+va(t)va+CVW(t)7:iu 3)
dTy,,

dl; = dpy (l) + bbw(t)wa + Cpw (Z)Tbﬁv “)

Where, the time varying coefficients (@, Dyw, Cows Ay,
by, and cp,,) are functions of the other associated temper-
atures and the relevant thermo-physical properties.

2.2 Numerical procedure

The implicit form of the discretized equations for the
ODE:s can be given by,

Tn+1_Tn +1 +1 +1 +1 +1\4
ww ww n n n n n
At = aVW/' + bVW TVW + CV\/V (TVW ) (5)
n+1 n
1, —T,, — gttt n+1(Tn+1)4 (6)
= dpy bw “bw Chw bw

At

Where, At is the time step and the superscripts #n and n+1
denotes the time levels of the discretization.

The implicit FDM based solver is developed using Mat-
lab programming language to compute the transient tem-
perature of the wall with a time step of one minute.

2.3 Problem setup

Simulations are performed in which the temperature of
the facade is computed over a 24-hour period. To per-
form these computations, hourly weather data is gathered
through the EU’s photovoltaic geographical information
system and a local weather station in the relevant cities
(Norsk klimaservicesenter, 2020; The European Commis-
sion’s science and knowledge service, 2019; YAGA AS,
2020). A suitable interpolation procedure is adopted to
produce weather data for a time resolution in minutes. The
green facade is assumed to be consisted of a brick wall
covered with Boston Ivy and the corresponding relevant
material properties are used. Among the necessary pa-
rameters, p, Cp,, L and T;, are assumed to be 672kg/ m3,
4687 /kgK, 0.2m and 295K respectively. The choice of
T;, is based on the recommended operating temperature
mentioned in Norwegian standard (TEK17, 2017). All
other parameters used in the simulations are summarized
in Appendix A. Two seasons (summer and winter) are con-
sidered for the performance behavior of the mathematical
model in the geographical location of the cities Rome and
Oslo. Note that an initial temperature of the wall is re-
quired to achieve the time marching solutions. To avoid
this initial data affecting the results, simulations are per-
formed over a 48 hour period, of which the last 24 hours
are extracted as the result. In the next section, we present
the results of the simulations for different scenarios.

3 Results and Discussions

In this section, we first illustrate the relative importance of
the individual terms of the energy balance equation. This
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is followed by the comparison of the performance of the
green facades in different scenarios. Finally, the analysis
of the impact of the convective heat transfer coefficient
with various empirical models is presented at the end.

3.1 Energy budget

The budget of the terms of the energy equation for bare
walls and green walls are calculated after finding the wall
temperatures. For this analysis, a typical summer day sit-
uation in Oslo region is considered. The contributions of
each term in the energy equation are shown in Figure 1
and Figure 2 for a bare wall and green wall, respectively.
It is clear from these figures that the contributions from the
convection term and the solar short-wave radiation term
are dominant from 09:00 hrs to 19:00 hrs for both the
walls. For example, at 14:00 hrs the contribution of the
short-wave radiation term SR,,,, and convection term C,,,
for the green wall are ~ 49% and ~ 40% respectively. On
the other hand, for bare wall the contribution of SR;,, and
Cp,» are found to be ~ 50% and ~ 37%. It can be noticed
that the values of all budget terms are significantly reduced
in the green wall essentially due to the blockage of the ra-
diation and associated lower temperature differences. The
contribution of the radiative exchange term XR, for the
green wall is found to be relatively less compared to the
other terms.

600.0
400.0

200.0

Heat flux (W/m?)

-200.0
-400.0

-600.0

0:00 6:00 12:00 18:00 0:00

Time (hours)

Shortwave radiation ====- Longwave radiation == . - Convection

......... Conduction = = —Heat storage

Figure 1. Energy budget bare wall.

3.2 Performance of green facades in different
climates and seasons

Here we present the results of the performance of the bare
wall and the green wall in two different locations in Eu-
rope namely Rome and Oslo using the weather data for
the month of July and February 2019.

Figure 3 shows the comparison between the bare wall
and green wall temperature in summer situation for both
cities. Evidently, green wall reduces the wall temperature
and thereby is capable of reducing the cooling demand in
peak hours in daytime (6:00 hrs to 18:00 hrs for Rome
and 7:00 hrs to 22 hrs in Oslo). This clearly depicts the
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Figure 2. Energy budget green wall.

wall temperature (K)
~
,
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----- Oslo bare wall = - - Oslo green wall Rome bare wall Rome green wall

Figure 3. Wall temperature of bare- and green walls over a sum-
mer day in Rome and Oslo.

effectiveness of the green vegetation countering with the
dominant incident radiation component.

It can be realized that a temperature drop of about
6 — 7K (see Figure 4) is achievable with the application of
green vegetation in the summer daytime. Also, the cooling
effect lasts relatively longer in Oslo (= 3 hrs more) than
Rome. This is directly linked with relatively longer day-
time in Oslo than Rome in the month of July. Note that, an
estimate of the reduction of cooling demand can be made
from the conductive heat flux term of the energy balance
equation. This cooling demand reduction on an average is
found to be ~ 10W /m? for Rome and ~ 9W /m? for Oslo.
In nighttime, the green wall temperatures are found to be
marginally higher than the bare walls in both the cities and
the green layer reduces the heat loss due to long-wave ra-
diation.

The results of the simulations in winter scenarios for
Rome and Oslo are shown in Figure 5 in terms of wall
temperature for both the bare wall and the green wall. In
Rome during the daytime, 8:00 hrs to 15:00 hrs a maxi-
mum drop of about 2 — 3K (see the temperature difference
between the bare wall and the green wall Figure 6) is ob-
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Figure 4. Temperature difference between bare- and green walls
over a summer day in Rome and Oslo.
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Figure 5. Wall temperature of bare- and green walls in Rome
and Oslo, Winter.

served. This leads a marginal increase in heating load dur-
ing this time. The rest of the day and nighttime the wall
temperature remains about 1K higher for the green wall.
However, in Oslo climate, the winter is much more severe
compared to Rome. The green wall temperature remains
~ 1K higher most of the time, except a very short period
of the daytime. This provides very marginal benefits on
heating demand in places having colder climate.

3.3 Impact of convective heat transfer coeffi-
cient

The analysis presented in the previous sections 3.1 and
3.2, are completely based on the mathematical model of
Susorova et al. (Susorova et al., 2013). The energy budget
analysis in section 3.1 reveals that the convective heat flux
term is one of the important contributors in the energy bal-
ance equation. The convective heat transfer coefficient for
green wall in the energy balance model (Susorova et al.,
2013) is approximated with the same correlation as for
bare wall case (h,,, =~ hp, = 10.79 +4.192V, where V is
the air speed at the bare facade). In this work, we intend to
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Figure 6. Temperature difference between bare- and green walls
over a summer day in Rome and Oslo.

explore the other relevant correlations (Deardorff, 1978;
Stanghellini, 1987; Morrison Jr and Barfield, 1981; Ay-
ata et al., 2011; Campbell and Norman, 2012; ASHRAE,
2020) as mentioned in the recent work of Convertino et al.
(Convertino et al., 2019b). The expressions of convective
heat transfer coefficients are summarized in Appendix B.

A typical summer scenario in the Oslo climate region is
considered for this analysis. Figure 7 shows the wall tem-
perature of the green wall for various h,,, values as men-
tioned before. Based on the input weather data, thermo-
physical properties and plant characteristics we found that
the Richardson number Ri < 102 throughout the day.
This implies that the convection type can be considered as
forced convection. The application of mixed regime Nus-
selt number Nu, following (Stanghellini, 1987) is there-
fore omitted for comparison in this analysis. Note that,
increase in h,,, leads to decrease in wall temperature com-
paratively.

315.0

3100

305.0

300.0

295.0

Wall temperature

290.0

6:00

12:00
Time (hours)

18:00 0:00

~~~~~~~~~ Susorova Ayata Morrison & Barfield

= + = Campbell & Norman = = =ASHRAE =~ ====- Bare wall

Figure 7. Calculated wall temperature with different approaches
of finding the heat transfer coefficient.

It can be seen from Figure 7 that (Campbell and Nor-

man, 2012) approach yields lower wall temperature than
that of (Susorova et al., 2013). On the other hand, higher
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wall temperatures are obtained by (Ayata et al., 2011;
ASHRAE, 2020; Morrison Jr and Barfield, 1981) meth-
ods. Among these, (Ayata et al., 2011; ASHRAE, 2020)
methods yield almost identical result as they are both
based on McAdams’ equation . On the other hand, (Morri-
son Jr and Barfield, 1981) approach gives far lower values
for the convection coefficient and therefore much higher
wall temperature (even higher than the bare wall) is es-
timated. It is clear that, there is a wide variation in the
prediction of green wall temperature when applying the
different methods of calculating the convective heat trans-
fer coefficient compared to Susorova’s model. As men-
tioned in (Susorova et al., 2013), some studies showed a
decrease in values of convective heat transfer coefficients
for a wide range of vegetated facade types, the present
findings through the (Ayata et al., 2011; ASHRAE, 2020)
methods are in accordance with this trend. It is known that
the building geometry, surroundings and wind directions
have a significant effect on the magnitude of the convec-
tive heat transfer coefficient (Defraeye et al., 2011; Iousef
et al., 2019). Several correlations are based on the results
of flat plate experiments in wind tunnels (Jayamaha et al.,
1996) and may not fully capture the local variations of ge-
ometry and wind directions around the building facades.

4 Conclusions

Modeling aspects of green roof/green fagcades require to
deal with complex interactions associated with plants,
soils, building materials, surrounding atmosphere and so-
lar radiation. This fundamentally involves transient cou-
pled heat and mass transfer mechanisms. In this work, we
have revisited the mathematical model of building exterior
wall with climbing vegetation as presented in (Susorova
et al., 2013). An implicit FDM based solver is developed
to perform simulations for two different seasons in Oslo
and Rome and typical meteorological year (TMY) values
are used together with variable thermo-physical properties
of air.

An energy budget analysis reveals that the short-wave
radiation term and convective heat transfer term are pre-
dominating compared to other terms involved in the en-
ergy balance equation for summer time. The performance
of green wall showed capability of decreasing the cooling
demand in summer time quite significantly for both Rome
and Oslo. With recent trends in climate change, the cool-
ing need in the Oslo area will most likely increase in the
next few years. During the winter, however, the decrease
in heating demand is not as significant as the reduced cool-
ing demand noticed in summer time. Nevertheless, espe-
cially in relatively cold winter regions like Oslo, the green
wall still helps to increase the wall temperature compared
to the bare wall. Furthermore, we have analyzed several
different methods for the estimation of the convective heat
transfer coefficient as the convective term in the energy
balance equation plays an important role opposing the so-
lar radiation gain. The prediction of the behavior of the

wall temperatures for green wall with methods in previous
literatures are in accordance with the expected trend. Nev-
ertheless, further detailed studies with supporting experi-
mental data, the limitations of this simplified green facade
model can be improved. The detailed analysis of the long-
wave radiation term, radiative exchange term between the
leaves and the wall surface will be undertaken in our future
work.

Appendix A

In this section, we present a brief description of the math-
ematical model (see details in (Susorova et al., 2013)) and
the input parameters used in the simulations. Figure 8 il-
lustrates the schematic view of the green wall setup and
associated energy transfer processes.

LR sky
v
S XR | Tw | Tin
C
+“—> 'S _
LR - Long wave radiation
Tleaf SR -Short wave radiation
E Q XR - Plant-wall radiative exchange
¢ e E - Evapotranspiration
C - Convection
SR
-0 > S S - Heat storage
«--" - Q - Conduction
LR ground

Figure 8. Schematic of the energy balance of the green wall
(Susorova et al., 2013; Vo et al., 2019).

The terms of the equation 1 for green wall are given by,

SR, La,t
LR,, €8y O Fyty (Tt — Tony) + TEwEr O Fge (T — T,
Ewélea f o 4 4
XR = (1—-7 T, —1T,
( ) €+ Sleaf —&, Eleaf( yw leaf )
va hvw(Tair - va)
va = (va - T;'n)/wa
Svw pCpL(dT,,/dr)
On the other hand, the terms of the equation 2 for bare

wall are given by,

SRpy = ILion,

LRy, = gweskyGEvk)’(T;}cy —Tp) + £W8ngF8r(Tgi )
Cow = hbw(Tair - wa)
Opw = (Tow—Tin)/Row
Spw = pCpL(dTbW/dl)

Where I, is the total solar radiation incident on
the wall, o, is the wall absorptivity, 7 is the plant
layer transmissivity of radiation, &,, &gy, &, and
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€eqyr are the emissivities of the wall, sky, ground and
plant layer, respectively. The values are assumed as
o, =0.7,&, =0.9,63, = 1,&, = 0.9,€,, = 0.96. The
plant layer transmissivity, T = exp(—«LAI). Here, the
radiation attenuation coefficient k (taken as 0.4W /mK),
and the leaf area index LAl (assumed as 1.8). o is the
Stefan-Boltzmann constant. Fy, and Fg, are the view
factors between the wall, sky and ground, T, is the
temperature of the sky, 7, is the temperature of the
vegetated wall, T, is the temperature of the bare wall,
Ty, is the temperature of the ground (assumed equal to
Tuir)s Tieqr is the leaf temperature, hy,, and hy, are the
convection heat transfer coefficient of the vegetated and
bare wall (see Appendix B).

Ty is calculated as a function of the air temperature
and dewpoint temperature as:

Ty — 273\ 025
250

The view factors are calculated as a function of the tilt
angle 0

Tvky = Tuir <08 +

For =0.5(1 —cos0)
Fyy = 0.5(1+cos0)

For the vertical greenery systems the tilt angle is equal
to 90°, resulting in both view factors equal to 0.5.

The equation for calculating 7}, can be found in (Su-
sorova et al., 2013). The necessary parameters are the
thermodynamic phsycrometer constant ¥ (0.000666°C~1),
radiative conductance through air g, (obtained through
table A3 in (Campbell and Norman, 2012)), the leaf
characteristic dimension D (0.12m), typical stomatal con-
ductance of lower and upper leaf surface gy; and ggy
(0.2mol /mzs), leaf absorptivity Oeqr (0.5), relative hu-
midity of the air RH, specific heat of the air Cpy,
(29.3J /molK), air pressure P;,.

Appendix B

The various models for convective heat transfer coeffi-
cients used in the simulations and mentioned in section
3.3 are presented below.

Susorova uses the following equation:

By = a+bV +cV? (B1)

Where V is the wind speed and a,b and c¢ are co-
efficients based on the material roughness. The wall
surface is assumed to be of medium roughness, with the
coefficients equal to 10.79, 4.192 and 0, respectively.

Morrison & Barfield and Stanghellini calculate A,,,

based on the Nusselt number, which is given in equations
B3 and B4 respectively.
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Nul
By = ) (B2)
Nu = 0.328Pr"3Re%? (B3)
Nu = 0.37(Gr+ 6.92Re") (B4)

DV
Where Nu is the Nusselt number, Re = e is the

3
Gr= gﬁTZD(Tair - Tleaf) is
Grashof number. A is the air thermal conductivity, Pr
is the Prandtl number, g is the gravitational acceleration
constant (9.81m/52), B is the thermal expansion coeffi-
cient of air (0.0034K "), and v is the kinematic viscosity
of air.

Reynolds number, the

The Ayata and ASHRAE models calculate 4,,, on the
basis of McAdams’ equation and are presented in equa-
tions B5 and B6, respectively.

S511+294
=59+41V——— B
Ry =594+ V511+Tair (B5)

hyy =5.64-4V (B6)

Equations B5 and B6 are applicable for V < 5m/s, oth-
erwise h,,, is calculated from:

hyyy = 7.2V078 (B7)

Lastly, for Campbell & Norman model, A,,, utilizes the
boundary layer conductance for heat transfer as:

hvw = gbhcpair (BS)

%
gon = 1.4-0.1354/ 5
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Abstract

This paper aims to describe the steady-state and
dynamic heat pump models developed to study their
abilities in ancillary services as well as the inter-
connection between these, electrical boilers and thermal
storage with the aim to balance power and heat
production for a given case.

An hourly steady-state system model was developed to
understand the overall operational characteristics of the
system for a given heat demand case in the area Kolt-
Hasselager-Ormslev near Aarhus in Denmark. The
model showed an annual average COP above 3,5 for a
serial connected heat pump system.

Detailed thermal and dynamical models of the heat
pump system were developed. The models show that it
will be possible to use heat pumps successfully in
ancillary services. The turn-up is unproblematic but the
turn down of the heat pump will be limited in a non-
liquid overfed system due to risk of liquid formation in
the evaporator, requiring additional heating.

Keywords: heat pumps, dynamic modeling, district
heating, thermal properties, ancillary services.

1 Introduction

The Danish heating sector has successfully evolved over
the past 50 years. Today, more than 60 % of the
domestic heating in Denmark is supplied by district
heating. Numerous developments like urbanization, city
densification, reduction in heating consumption through
better insulation standards etc. challenges the efficient
operation of the district heating systems.

Simultaneously, the development of wind farms has
created a surplus of electricity in Denmark requiring
power balancing. Heat pumps coupled with electrical
boilers and heat storage could provide such balancing
maintaining an efficient heat supply system. For
automatic frequency response reserve actions the
response time and operation of the heat pump should
meet certain standards (max. 150 s up-/down regulation
for Frequency Containment Services) depending on the
way the heat pump acts as backup for power and net
frequency fluctuations. The downward and upward
regulation compensation could potentially greatly
benefit the economy of heat pump systems if the
dynamic response is fast (Energidataservice, 2020).

The “Local Heating Concepts” ForskEL project funded
by the Danish Government has through detailed inputs
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from several asset owners investigated the possibilities
of integrating localized heat pumps in district heating
and power grids. Through laboratory emulations at
Aalborg University, Department of Energy Technology,
the models will later be coupled with real power system
components enabling a realistic dynamic emulation.

There are not many works published on the operation of
large-scale heat pumps for ancillary services in
Denmark. However, recently, (Meesenburg et al., 2020)
published a paper on the optimization of heat pumps for
this purpose.

Detailed heat pump models designed for both parallel
and serial coupling have been developed and
simulations have been carried out. As a case, the district
heating grid at Kolt-Hasselager-Ormslev near Aarhus
has been chosen. The system operation and some system
configurations have been investigated.

Figure 1. Kolt-Hasselager Ormslev district heating grid.

Currently, the district heating area is supplied by a large-
scale plate heat exchanger linked to the central CHP-
plant in Aarhus and industrial heat suppliers (A) and
three oil-fired backup boilers (B). In the coming years
the district heating demand will increase significantly
requiring additional capacity. The supplier would also
like to replace the oil-fired boilers with heat pumps.

2 Traditional operational modeling

Degree day corrected heat demand data for 2017 in the
area is shown in Figure 2 along with the heat rate
demand curve. The heat demand has furthermore been
corrected to reflect the expected future heat demand as
predicted by the heat supplier AVA (AffaldVarme
Aarhus). The area around Ormslev shown in the upper
left corner of Figure 1 is expected to be expanded
significantly with several new areas with family
dwellings thus requiring a total of around 5-10 MW
additional heat.
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Figure 2. Corrected demand and duration curve.

The annual average forward and return temperatures of
the district heating water are also shown in Figure 2. The
forward temperature typically varies in the interval from
65-75 °C (in rare cases up to 80 °C) and the return
temperature varies from 36-45 °C.

Based on the local conditions in the area, it was decided
that a 12-16 MWhjear maximum heat output heat pump
consisting of six to eight 2 MWjyeq heat pumps coupled
in series and a 3-5 MW electrical boiler along with a 200
MWh heat storage would be suitable to cover the load
of the area. The supply system will also in the future be
coupled to the centralized district-heating grid in
Aarhus, which covers the peak demands.

For comparison, a conventional logical operational
scheme disregarding ancillary service operation was
found by establishing optimum threshold max and min
limiting costs for the heat pump operation. This was
established solving an MILP-problem minimizing the
annual cost of system operation subject to constraining
the heat demand and capacities of the individual units.
The logical operational scheme is show in Figure 3.

[ start |
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< Price>sMax _m—No —p=_

No

Max>Price>Min ">

Yes
l Yes

Storage>0

T _
Ves [
. Neo

Use Heat Pump
and Storage

—’ Storage>Demand B = —No — Add to Storage

L .

Use storage only

Figure 3. Logical conventional operational scheme.
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Modeling a year on an hourly basis results in the
following operation of the different assets shown in the
following figures. Figure 4 shows the operation of the
heat pumps. Each heat pump is in the modeling
considered to operate by on/off control.

Npp [-]

0 2000 4000 6000 8000
Hours per year (starting January) [-]

Figure 4. No. of heat pumps on/off each hour for a year.

Figure 5 shows the operation of the electrical boiler.
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Figure 5. Operation of the electrical boiler.

It is clear the electrical boiler with 2017-prices mainly
operates during the cold months in case of peak
demands. The current taxation on electricity in Denmark
will however in near future be changed, where the tax
on using electricity for heating purposes will be lowered
from 155 kr./MWh to 4 kr./MWh. This will strongly
further favor the operation of electrical heating and heat
pumps in the future.

Figure 6 illustrates the operation of the storage. A 200
MWh stratified hot water storage @90 °C corresponds
to about 3000 m> of water, which is not a very huge
thermal storage considering the system size. The reason
for this is the lack of space in the district heating area.
There are only very few available locations for a large
storage tank.
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Figure 6. Operation of the storage tank.

Heat is, using the current operational scheme, typically
accumulated during the Summer period. This
operational pattern will clearly change significantly in
case of ancillary service operations where the pattern is
expected to be much more dynamic over the year. It was
assumed that the storage stratification is kept at all times
in this overall model. In the more dynamic case this is
likely not to be true in some situations and thus a
detailed model of the stratification will be implemented
in the dynamic modeling. The average annual heat pump
system COP was 3,52 and the overall annual cost of
supplying heat for the area is 12,8 million Danish kr.

3 Mathematical modeling

An ammonia-based system with flooded evaporator and
two-stage screw compression was used as base case for
the heat pump modeling. The process is illustrated in the
Pl-diagram in Figure 7 and the log(p),h-diagram in

Figure 8:
| ‘ Compressor2
s [N
Condenser 1
6
X Intercooler |
19
Flash tank 4 5 |
e Compressor1
1 3
Evaporator
Flash pump

Cold storage/heat source

Figure 7. Pl-diagram of a single heat pump.

The system can optionally be coupled with either a heat
source or a “cold” thermal storage in the source-side.
This storage could also receive low grade heat if other
sources are available. On the sink side, normally the heat
pump is coupled to a thermal storage (hot storage).
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Figure 8. Log(p),h-diagram of the heat pump process.

The steady-state models have been developed in EES
(Engineering Equation Solver) which is an advanced
numerical non-linear equation solver with built-in
thermal property functions and the dynamic heat pump
modeling was conducted using MATLAB. The steady-
state models are based on the solution of non-linear
equation sets coupled with thermal property models.
The dynamic MATLAB model is based on the solution
of a set of differential algebraic equations (DAE’s). The
thermal storage has been modeled one-dimensionally to
account for basic stratification constraints. A discretized
DAE-model was used to enable a stabile model in both
filling and storage mode — see (Bitzer et al., 2008).

3.1 Thermal /calorimetric property routine

A simple routine using the Peng-Robinson cubic
equation of state to determine thermal and calorimetric
properties for the model was developed to have a fast
property library for real-time emulation. The model
must clearly be able to simulate faster than real time.
The overall solution principle is shown in Figure 9.

Fix reference temperature and
\_ pressure and input parameters. /

\
Initialize critical properties, acentric

factor and ideal gas heat capacities.
L 4

Calculate fugacities #(T,p) using Eq. 3
4

Solve the Peng-Robinson equation of state,
Eq. 1 for stable roots by finding the roots with
minimum fugacity.

v

Calculate entalpies and entropies of
departure using Eq. 4 and Eq. 5

v
Calculate absolute properties cp(T,p), h(T,p),
u(T,p) and s(T,p) by adding ideal gas properties
using Eq. 8and Eq. 9 - In case of two real roots,
determine saturation properties.

¥

Iterate to find reverse properties - for instance
T(p,h) based on good starting guesses,

Figure 9. Use of the Peng-Robinson cubic equation of
state to estimate thermal and calorimetric properties.
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Due to large inaccuracies in the liquid region for the polar
fluids water and ammonia, simple regressions based on
property data from EES were used in these cases. The
methodology was compared to accurate data from EES
based on the reduced Helmholtz equation of state for water
and ammonia and for the relevant temperatures and
pressures for heat pump operation, the maximum
deviations was found to be less than 7 % (worst case) and
generally significantly lower (typically 2-3 %). This is
considered acceptable for the fast dynamic model.

The generalized cubic equation of state in terms of the
compressibility factor, Z /-], to be solved for its roots
can be written as (Matsoukas, 2012)

Z3—(B'+1)22+AZ—-AB' =0 (1)
where the coefficients B’ /-] and 4’ /-] defined as

aP

_ _P g = PRI gy 1R
= Gre &b =

A &B'=— w.a= 2
RT 64 P 8 P,
where P [Pa] is the total pressure, R [J/(mol*K)] is the
universal gas constant, 7 /K] is the temperature, 7. /K]
is the critical temperature and P, [Pa] is the critical
pressure. The constants a [J*m’/mol’] and b [m*/mol]
are the constants of the state equation. The fugacity

coefficient ¢ /-] was found as:

A zZ+(1+V2)B'
2v2B" z+(1-v2)B’ (3)

(z-1-In(z-8"")

p=e

The molar specific departure enthalpies 4 [J/mol] and
entropies s” [J/mol] were found analytically for the
Peng-Robinson equation using eq. 4-7

da

(ﬁ)—a (1+v2)B'+z
o Mgz Y
da

(E) (1-v2)B'+z

2v2b In (1+v2)B'+z ®)

b _ B T
h? =RT(Z-1) +

sP =RIn(Z-B") +

where the derivative Z—; [J*m’/(mol’ *K)] is found as:

da_ o 4572407 (00 T)0
ar P\T;

(6)
and Q is

Q =0,37464 + 1,54226w — 0,26992w?  (7)
where o [-] is the acentric factor.
Some corrections has been proposed to particularly (7)
to obtain more accurate results. For instance (Strykjek

and Vera, 1986). However, the found accuracy is
acceptable for this study and the corrections would
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lower calculation speed which is not desirable in this
application.

Specific enthalpies and entropies in [J/kg] are then
found using the reference values, the departure
enthalpies and the ideal gas enthalpies as:

2 _hreference+hidealgas

h = 8
Mfuia ®)
SD_Sreference+Sidealgas
s = 9
Mgiyia

Miia [kg/mol] is the molar mass of the given fluid. The
ideal gas enthalpies were found based on analytical
integration of polynomials of the ideal gas specific heat
capacities.

The Matlab-function fzero was used to find reverse
properties using appropriate starting guesses and a
minimization algorithm. Guesses were defined so that
the algorithm converged in all cases.

3.2 Steady-state model of the heat pump

A steady-state model based on power and mass flow
balances was setup for the system in EES. The following
operational assumptions were used in the modeling of
the two stage liquid overfeed ammonia based heat pump
cycle:

e The district heating water was assumed to have
a forward absolute pressure of 3 bar and a
return pressure of 2 bar.

e Volumetric and isentropic efficiencies were
variable and found using the SABROE COMP1
compressor data tool (Sabroe, 2020). For the
2MW system nominal value are approximately
Nns=0,8 and 1,=0,9. The flash tank pump was
assumed having an isentropic efficiency of
1,=0,8.

e Condenser and evaporator minimum approach
temperatures were fixed to 3 K.

e Pressure drops in both the condenser and
evaporator were assumed to be 3 kPa.

e In the cycle superheating was assumed to be 1
K and sub-cooling was 5 K.

e The compressor displacement was 0,4428 m%/s.

e The intermediate pressure between the
compression stages was found optimizing the
COP.

e The quality at which refrigerant leaves the
liquid overfeed evaporator was fixed to x=0,7

The model was developed using EES’s “MODULE”
functionality making it easy to couple heat pumps in
series and parallel on both the source and the sink side
of the heat pumps. An example of serial coupling 2 heat
pumps on the source and sink side, shown in Figure 10.
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Figure 10. Serial coupled heat pump on sink/source side.

As an example, a system with 5 similar serially coupled
heat pumps in terms of both condenser and evaporator
having evaporation temperatures of 3; 7; 11; 15 and 19
°C and condensing temperatures of 48; 54; 60; 66 and
72 °C would lead to an overall system COP of 4,46
where a single stage reference system with the same
minimum and maximum temperatures would only have
a COP of 3,53. The investment cost in the more complex
system would of course be significantly higher, so the
choice of system topology is to a large extent a choice
based on the operational characteristics and
possibilities. A multi-stage system would have the
advantage, that the heat pumps can rapidly be decoupled
which would give a rapid down-regulation response.

The heat exchangers were modeled using a basic
LMTD-algoritm. A function was used to avoid
numerical problems with the LMTD-formula during
iterations in EES as follows (Herold et al., 2016). The
returned value LMTD 1is the logarithmic mean
temperature difference, which is a function of the four
terminal temperatures T1 to T4.

FUNCTION LMTD(T1;T2;T3;T4)
dTa=T1-T2
dTb=T3-T4
IF (dTa=dTb) THEN
LMTD=dTa {Test for singularity in LN function}
ELSE
IF (dTa < 0) or (dTb < 0) THEN {Test for impossible
intermediate heat exchanger solution and force LMTD to nearly
zero if so}
LMTD=1e-9
ELSE
LMTD=(dTa-dTb)/LN(dTa/dTb)
ENDIF
ENDIF
END

The steady-state model was used to provide inputs to the
dynamic model. Thus, a number of multi-dimensional
regressions were made using the generalized least
squares algorithm in EES to the cycle temperatures and
flows as function of the sink and source temperatures.
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The regressions were compared with the rigorous model

to evaluate their accuracy as shown in Figure 11.
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Figure 11. Example on regression comparison.

3.3 Dynamic heat pump modeling

The dynamic heat pump model is fundamentally based
on power and mass flow balances using the dynamic
forms of the first law of thermodynamics and the
continuity equation. The general thermal properties are
determined using the previously described steady-state
model assuming relatively fast dynamics in terms of
changing pressure in the system. The evaporator and
condenser are considered as the primary dynamic
elements, these were divided into sub-heatexchangers to
model the phase change the e-NTU method was used to
model each of the sub-heatexchangers - see Figure 12.

iMpyhy Ty, Mpghiny Mpghy
(T P T e (T e Te
UAI$ UA2$ UA, UAN$ EDH water in
Tt T o Tz o L T
NH, in I\:VﬁNH3hm+1 iy, ez i Ainas My, Ay
De-superheating Condensing Sub-cooling

Figure 12. Discretization of latent heat exchangers.

Where N [-] is the number of discretized nodes in the
heat exchanger. A grid independency study showed that
a value of N=50 (i.e. 25 points on each side of the heat
exchanger) would be reasonable for the real-time model.
As illustrated, the latent heat exchangers are further
divided into respectively de-superheating, evaporation
and sub-cooling for the condenser and in evaporation
and superheating for the evaporator.

The overall governing equations are in their discretized
form in the flow direction (x) are formulated for the
condenser for respectively the district heating water side
(DH) (10) and the refrigerant side (11)

du;
Voupi d—i = pApyVi(hisr — hy) + UA;(Tiomeq — T;)  (10)

AUiymsr _
VNH,Pi+m+1 a Pi+m+1ANH3Ui+m+1(hi+m —Riyme1) +

UA(T; = Tiymsr) (11)
Here V [m’] is the volume of each element, 4 /m’] is the
cross sectional area at the element, v [m/s] is the fluid
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velocity, h [J/kg] is the specific enthalpy, UA [W/K] is
the total heat transmission coefficient multiplied by the
element heat transfer area and 7 /K] is the temperature.
The energy balance is formulated in terms of internal
energy so the equations are valid for all three heat
exchanger sections. The mass balance becomes:

am

P p(x, t)mv(xr t)inA - p(X, t)outv(xl t)outA (12)
Energy and mass balances for the evaporator were
formulated almost exactly identically as shown in (10)-

(12).

In each element of the discretized heat exchangers, the
total heat transmission coefficient was calculated. The
Dobson and Chato relation for flow condensation, as
described in (Nellis and Klein, 2009) for condensation
over horizontal tubes was used to estimate the
convective heat transmission coefficient for the
ammonia in the condensing part. For the evaporator the
Shah correlations for flow boiling were used as
described in (Nellis and Klein, 2009). For the remaining
single-phase pipe flow regular correlations for friction
factors and Nusselt numbers for developing flow in
pipes considering whether the flow is laminar or
turbulent was used as described in section 5.2.3. and
5.2.4 of (Nellis and Klein, 2009). It was assumed that all
heat exchangers were of the shell and tube type and the
heat exchanger dimensions were defined following the
procedure described in (Stephan et al. 2010). The design
was done considering heat exchanger pressure losses.

3.4 Solution of governing DAE set

The thermal relations and the sets of ordinary
differential equations from the discretized heat
exchangers forms a differential algebraic equation set
(DAE). All algebraic equations in the DAE set are time-
independent, thus the system is of index 1. The ODE15s
solver in Matlab was used to solve the system of
equations. Using this solver, all algebraic equations
must be rewritten on the form of pseudo differential
equations and a mass matrix M is defined with binary
values of either 1 for differential equations and 0 for
algebraic equations in the equation set. The mass matrix
is practically implemented by multiplying it to the
differentials as shown in (13).

M(t,y) 5 = f(ty) (13)

The solver convergence criterions was set so the relative
tolerance was 107 and the absolute tolerance 107,

4 Results

Results of the retrofitting of the system topology and
operational optimization of the system considering
steady-state operation have been investigated.
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Furthermore, the dynamic capabilities and thermal and
practical response time limitations in the heat
exchangers of the heat pump was investigated
considering both ramp-up-, ramp-down- and the
response in terms of power and heat. A theoretical start-
up where the heating capacity is given in terms of the
relative district heating water temperature is given in
Figure 13 (72 °C DH water@100 %):
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Figure 13. Typical cold-start response of the heat pump.

Nominal load refers to a heat output of 2 MW from the
condenser. Max. load is the start-up capacity but at
temperatures unusable for district heating. It can be seen
that the start-up response in terms of heating is
significantly longer than the requirements for frequency
services on the power grid. Thus, operation of the heat
pumps in a partial load-condition or a forecast-based
scheduling would be required to meet the heat demand.
In reality, the heat pumps are never operated from a cold
conditions. There are typically oil separators and heat
tracers installed on the compressor suction line
[Johnson, 2020]. The ramping up and down of the
compressor power can be significantly faster if the
systems remains pre-heated or in a partial-load, so the
requirements in terms of power uptake/outage can be
fulfilled before steady-state is reached. The measured
load-torque versus the induction motor drive torque is
seen for a start-up of a screw compressor based 500 kW
heat pump cycle in Figure 14 [Johnson, 2015].

L ~ Tmotor
1075 —10ad (resistance for cold start heatpump)

J=2.5 kg*m?

0 200 400 600 800 1000 1200 1400 1600 1800 2000
RPM

Figure 14. Load & induction motor torque during startup.
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Solving the initial value problem shown in (14), the
compressor approach to steady-state relative to the
compressor RPM can be found as shown in Figure 15.
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Figure 15. Approach to steady-state compressor RPM.

It can be concluded from the plot that the compressor
/compressors even in worst-case does not pose a major
limitation to the transient operation of a heat pump.

However, ramping down, the evaporator and condenser
conditions will restrict the operation. Typical
temperature curves in the condenser at steady-state are
shown in Figure 16:
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Figure 16. Condenser temperature curves.

Currently, the model has no active control scheme built-
in. Thus the model is only controlled based on the initial
conditions for each modeling run. Thus parameters like
superheating and sub-cooling are difficult to control
accurately. In future versions, control of the compressor,
the pump and the valve should be implemented to
address this.

The progression of the district temperature over time
going from a stand-by heated condition to nearly full
load (i.e. the zone dominated by the heat exchanger
dynamics) is seen in Figure 17. As mentioned, the
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lubrication and cooling system is preheated at all times.
A real cold start thus never really exist however, the heat
exchangers could be cooled significantly if the system
is left out of operation for longer periods during winter.

The modeling run corresponding to Figure 17 was using
the following initial system conditions:

e Initial mass flow of refrigerant: 0 kg/s.

e Mass flow of liquid heat source: 90 kg/s.

e Mass flow of the district heating water: 15 kg/s.

e Initial district heating water temperature: 40 °C.

e Temperature of the heat source (from a cold
storage tank): 15°C.

e Initial refrigerant temperature in the cycle: 8°C.

e Initial refrigerant pressure in cycle: 1100 kPa.

e Initial temperature of hot source in: 15 °C.

Tdistrict heating water, out [K]

0 100 200 300 400 500 600 700 800
Time [s]
Figure 17. Dynamic response of district heating water
temperature going from a “cold” condition.

It can be seen in Figure 17, that response has some dead-
time in the beginning. When designing actual
controllers, it is important to compensate for this.
Solving the model, it was found that it in most cases
solve significantly faster than real time on an ordinary
Surface 6 Pro laptop computer. In rare cases, the model
was slightly slower than real time but it is expected that
the multicore PC’s attached to the real-time emulation
system at Aalborg University, Department of Energy
Technology will be able to simulate significantly faster.
Coupling the model with the stratified heat storage
model however currently still give some challenges. The
simulation times in this case increase significantly. A
preliminary model simulating 48 hours of system
operation including the storage has proven to be less
than half as fast as real time. The models have to be
optimized to address these challenges.

4.1 Discussion of liquid overfed operation

The liquid overfed system is often an economic tradeoff
between a better heat transfer per unit volume
evaporator and the cost of additional pump, piping and
the flash tank. When operating the heat pump for
ancillary services, there are however clear advantages of
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the liquid overfed system. When ramping down, it is
important to avoid condensing of the refrigerant in the
evaporator in case the system is not operated as liquid
overfed. This will limit the time required to go to a
partial load or stand-by situation of the heat pump.
Introducing a simple energy balance for the pipe-
material as shown in (15), we can assume that the
saturation temperature will change rapidly with the
thermal conditions of the refrigerant during ramping of
the mass flow from 100 % to 50 % load. The
temperature of the refrigerant in the evaporator will
change almost instantly with the mass flow.

ﬂ _ m(hi_hi+1)+quctionpipe (15)

dt PpipelVpipe

The suction pipe thickness was assumed to be 6 mm
thick, it is assumed adiabatic and have a specific heat
capacity similar to that of stainless steel since this will
be a likely material working with ammonia as
refrigerant. In this calculation, it is assumed that the
refrigerant leaves the evaporator with a certain degree of
superheating to avoid liquid in the compressor. Figure
18 shows the results on the suction pipe temperature
when ramping the heat pump linearly from 100 % to
50% mass flow over the required 150 s for Frequency

Containment Processes (FCR).
8

—Tsat _
——=Tpipe (ATsuperheat=2K) -
——=Tpipe (ATsuperheat=3K) - _—

Temperature of pipe/refrigerant [°C]

0 25 50 75 100 125 150

Time [s]
Figure 18. Ramping from 100-50% mass flow in 150 s.

Two temperature trajectories are shown. One with a
superheating of 2 K and one with 3 K. These can be
compared to the thick black line showing the saturation
temperature of the refrigerant. The larger the superheating,
the lower the cycle COP will be.

Many commercial systems are constructed with insulated
suction pipes and superheating, so this could be a challenge
in these cases. The problem can be resolved in multiple
ways; either by increasing superheating (i.e. accepting
lower COP), implementing electrical heating or
constructing/ramping the system in a different manner
avoiding condensation.

5 Conclusion

A fast numerical model of a large-scale heat pump
system, which can simulate faster than real time so it can
be included in the Smart Energy real-time emulation lab
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at Aalborg University has been developed. Different
heat pump topologies have been considered in the paper
and a rigorous, scalable and modularized thermal model
was developed. A fundamental dynamic heat pump
model has been successfully developed with focus on
the detailed modeling of the latent heat exchangers.
However, the model is yet to be integrated with the
thermal storage model and other heat producing assets
and heat distribution networks in the system and
implemented in the real-time lab. Here more work still
remains to have a useful modeling framework capably
of solving in real time. The economic aspects of
coupling heat pumps in series must also be addressed.
The same goes for the considerations on a liquid overfed
system. The system offer many advantages but could
have a larger investment cost. Operating without a
flooded evaporator however introduces challenges when
ramping down the heat pump to partial load. Initial
estimates indicate a undesired superheating of nearly 3
K in the first scompression stage suction line is required
to avoid liquid formation in the evaporator in a non-
liquid overfed system. More work looking into possible
solutions and their consequences must be conducted.
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Abstract

The increasing presence of smartness in buildings to in-
crease the energy efficiency of these buildings makes it
difficult to properly anticipate the impact of these tech-
nologies. The development of digital tool for creating res-
idential load profile are prolific but their use, especially
applied to smart buildings being able to combine both
power and thermal energy management, are unavailable.
This research presents a tool developed to integrate power
and heat demand using a flexible topology to define build-
ings energy needs across time resolution. It also integrates
small-scale renewable energies such as wind and solar to
increase the production of local electricity. The entire
model can be parametrised and personalised through its
user interface. The model demonstrated robust simulation
load profiles generation throughout all time resolutions
Keywords: smart buildings, high resolution, heat and
power, demand response, real-time pricing

1 Smart buildings

The use of smart buildings and its role in shaping the new
energy efficiency plans from the EU Green deal is crucial
(EU Commission, 2019). The smart building is becoming
a new standard in both the standardisation body and in the
regulation with the implementation of the Smart Readi-
ness Indicator (SRI) in EU. This comes in combination
with the smart grid standards that are becoming more and
more implemented in real-life microgrids, or in the estab-
lishment of positive energy district such as those built in
frame of the EU lighthouse project Making-City. Interna-
tional research activities has put a strong focus on build-
ing flexibility and their role in integrating more distributed
variable renewable energies onto the distribution network.
Such research are built through the International Energy
Agency (IEA) and its series of annex targeted on Energy
in Buildings and Communities program (IEA-EBC) in its
Annex67 (Jensen et al., 2017) and its future Annex82 on
Energy Flexible Buildings.

Multi-energy vector (Electricity, heat, hydrogen,
etc..(Orecchini and Santiangeli, 2011)) applied to build-
ing simulation and optimisation have been deployed for
at least 20 years with for instance the doctoral thesis of
Stokes (2005) on producing fine-grained load model to
support low voltage power network. These models pro-

duce load profiles for network performance analysis but
are usually not publicly available, nor the code that goes
along with the models. In more recent years, tool for
simulating multi-scale simulation with medium horizons
were developed and integrated Stokes” work into an open-
source Excel VBA tool (McKenna and Thomson, 2016).
Little by little, models are becoming more robust and inte-
grate occupancy from statistics (Wang et al., 2018) or from
appliance usage probability (Yilmaz et al., 2017). There is
however a need for a new tool that combines latest de-
velopment on the field of flexible energy and that is open
source and accessible by all.

The Smart Building Model (SBuM) (Louis et al. 2016)
was originally created to measure the impact of demand
response and occupant behaviour on the building’s energy
performances using different levels of control. Controls
included basic information-based system to raise aware-
ness to full control over the appliances installed in the
building. It has further been developed to integrate the
thermal performance of buildings and integrate electric
heating technologies as a demand response tool for smart
building (Pulkkinen and Louis, 2019).

This work aims at developing an open and user-friendly
tool to setup multi-scale building energy models, inte-
grating variable time dependent demand response pro-
grammes and providing detailed load profiles that are rep-
resentative of input profiles. The model shall be adaptable
for multi-regional study and work under various weather
conditions. The model outputs should cover detailed en-
ergy analysis, monetary impacts of different demand re-
sponse rate, and account for the environmental impact of
the related energy consumption.

2 Heat and power model

The SBuM model is a Markov-chain model developed us-
ing modules that are plugged in into the main model. It
is composed of multiple modules that integrates the fol-
lowing: a small-scale energy production, control options
for appliances and heating systems, and a home appli-
ance model. Other modules are being developed to cover
the full range of demand response possibility for smart
building such as the domestic hot water. Unlike most
mathematical model presented in the literature, the SBuM
model is available open source (https://github.
com/jeanlouisnico/SBuM) and can be run through
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the MatLL.ab™ simulation platform.

Figure 1. Smart Building Model (SBuM) interface seen from
the MatLab™ simulation platform

Interface allows to have flexible and easy-to-use tun-
ing of the building and all the variables considered in the
SBuM tool are tunable. It allows as well to do reporting
and retrieve all building characqteristics that are used as
input variables to the model.

2.1 Input data

A set of input data are required to be able to run the model
and use its possibilities. There are six (6) type of input
data category needed to fill in and are visible on the right-
hand side of Figure 2: the weather files, the household
description from appliances to users, the time resolution
and horizon of the simulation, the optional power pro-
ductions units, the type of electricity contracts used, and
the building characteristics detailing its physical proper-
ties (see section 2.2.2).

Simulation framework

Input data

Output data

Figure 2. SBuM architecture from input data, modelling, and
output variables.

2.1.1 Climatic data

The model is flexible on the type of weather format to be
included and any EPW weather file can be given as an
input to the model (Crawley et al., 2001). EPW files are
available in open access' and may be modified to represent

"http://climate.onebuilding.org
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new weather for extreme conditions or represent future cli-
matic conditions considering the different RCP scenarios
and other General Circulation Model (GCM). Most of the
data are gathered with an hourly time resolution, different
weather data were linearly interpolated to match the sim-
ulation time-frame e.g. outdoor temperature, with some
randomness in the interpolation e.g. solar radiation and
wind speed.

2.1.2 Households characteristics

The SBuM model includes a set of variables that define the
house to be modelled. All appliances that have a power
signature may be included in the model and are char-
acterised by their daily load profile probabilities, usage
duration, weekly maximum usages, nominal power rat-
ings, weekday/weekend distributions and control options
for demand-side management implementation. The ap-
pliances characteristics and usage statistics are calibrated
using the EuP reports, specifically adapted for Finland
and the Finnish national statistics on energy use; they are
however tunable to match any other performances when
needed or reflect updated information compared to the
previous EuP studies. For detailed information on house-
holds’ specifics, refer to Louis et al. (2016). Similarly
to Yilmaz et al. (2017), the occupancy distribution is de-
duced from appliances activities that are set in the begin-
ning of the simulation. Their daily distributions are al-
terable to model any appliance distribution that the model
needs to consider during the simulation.

2.1.3 Small-scale production system

Small-scale production units that can be utilised in the
model include so far only solar photovoltaic panels, but
experimental modules for wind turbines and fuel cells
(Proton Exchange Membrane model) are also available.
These models are somewhat simplified as multiple vari-
ables, such as the terrain and relief of the surroundings
are not used in the model. The PV-model requires a set
of 12 inputs characterising the photovoltaic modules. The
methodology and the used equations are established from
Luque and Hegedus (2010) and thus the made assump-
tions come from the book. The methodology consists cal-
culating the voltage and current of one single cell of a solar
module and then, depending on the solar irradiance, eval-
uating the power output of a series of cells. It is possible
to outline real performance from technology available on
the market.

2.1.4 Simulation time resolution and horizon

The model works for different time scale ranging from 1
minute to 1 hour time step with a time horizon hypothet-
ically open, and is linked to the exogenous information
input into the model - essentially the weather file. Input
data regarding appliance usage is provided on an hourly
basis and therefore down-scaling is necessary. This part is
detailed in section 3.
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2.1.5 Electricity contracts

Demand response programmes including real-time pric-
ing, Time of Use tariffs, direct load control and other as
listed in the literature (Pallonetto et al., 2020) are included
in the model with the defined simulation time resolution.
The dynamic pricing can further be limited upwards and
downwards if necessary.

2.2 Modelling framework

The SBuM model is built into sub-modules that includes
the power production, power consumption, heat demand,
and control systems. The following sections briefly intro-
duce the three main elements of the SBuM.

2.2.1 Power consumption

Power consumption is composed of 4 variables: electric-
ity consumption for appliances, ventilation, heating/cool-
ing elements, and domestic hot water. Power consump-
tion distribution from appliances is described by Louis
et al. (2016) and covers the fields of appliance modelling,
user type considerations, demand response potential for
appliances, and occupancy scenarios. Occupancy is de-
duced from the power consumption profiles from the ap-
pliances and not from occupancy profiles used as input to
the model. This is to ensure that the power consumption
from appliances and the active occupancy scenario are de-
pendent and therefore coherent. Further on, the thermal
needs of buildings were characterised to include a number
of new variables that define the buildings physics and the
ventilation technology used (Pulkkinen and Louis, 2019).
Appliance specifics are given default values taken from the
Remodece project (Almeida and Fonseca, 2006), but in-
cludes also other sources like the monitoring and research
work from Murray et al. (2016, 2017) or Reinhardt et al.
(2012)%. The power module is and the occupancy is fur-
ther used by the thermal demand model.

2.2.2 Thermal demand

The thermal demand of the model includes the thermal
needs of the building and use thermal mass as a thermal
storage to optimise the use of electricity when electric
heating is used. The model is a white-box model, imple-
mented by using the National Building Codes of Finland
and the international standards on thermal behaviour such
as ISO 52016-1, EN 15316-2, and the EN 15251. The
interlink between the power module that covers all appli-
ances and the thermal model is presented in Figure 3.
While the building physics are taken from the interna-
tional standards, some added values are supplemented to
address the issue of the internal gains, including human
metabolism and appliance usage, as well as interconnect-
ing the ventilation with the thermal losses and running of
the heating system. The occupancy scenario, as defined in
section 2.1.2, defines further the level of activities and al-
lows recalculating the metabolism from the inhabitants. In

2http://www.tracebase.org
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Figure 4. The operation of the electrical space heating part of
the thermal model (Pulkkinen and Louis, 2019).

case of different type of space heating, the energy demand
for each time resolution is provided and may potentially
be used to recalculate the indoor temperature and electric
heating power according to the predefined automation and
control strategy. This operation principle is described in
a flow sheet on the operation of the electric space heating
part of the model presented in Figure 4 and in Pulkkinen
and Louis (2019).

On-going work is being set up to include the use of do-
mestic hot water provision from electric water tank .

2.2.3 Optimisations

The SBuM has a sub-block dedicated to the control sys-
tem of the building and can consider multiple data input
to optimise the consumption of the building. So far, two
objectives are set, which are related to costs and environ-
mental footprint of the consumed electricity. Secondly,
the optimiser is only used when a home energy manage-
ment system is setup for the studied house with the degree
of control given to it. This means that the model can pri-
marily be used to generate load profiles at a relatively high
details, and can be consequently used in assessing optimi-
sation control strategy based on dynamic pricing or other
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power network indicators. As the SBuM model is based
on Markov-Chain, it is inherent to model consequential
actions and therefore disrupt the power cycle from appli-
ances or heating units.

Objective functions:

n
min Ptotalt = l<23> +Pheat+PL’entil] X Pt (D
i=1
where p is the energy expenditure from the house [€], and
P is the power consumption from all appliances i, heat-
ing and ventilation [kWh], and for each price at time ¢
[€/kWh].

2.3 Output data

Four main variables are obtained from the model: the total
power consumption from the building that can be disag-
gregated by appliances and heating modes, thermal perfor-
mances of the building including indoor temperature vari-
ation, heat demand, thermal comfort and their associated
variables, the environmental impact, granted that the elec-
tricity mix from the grid is known as a dynamic real-time
environmental impact, and the cost of these implementa-
tions.

3 Down-scaling simulation

Handling multiple time resolution from input to output of
the simulation is a challenge. The time resolution must be
adapted for flexible input data, flexible time optimisation,
and flexible time resolution of the output signal from the
model.

For this reason, the model was made flexible to have
any sort of inputs with a maximum time resolution of
one hour and some pre-defined time resolution for the in-
put database: 30-15-3-1 minutes and 10 seconds. These
resolutions were taken arbitrarily to match the exist-
ing databases of appliance signatures (see section 2.2.1),
weather data resolution, and power status from the trans-
mission network (down to 3 minutes per sample).

3.1 Scaling and multiplying

Down-scaling power and heat demand profiles, can be per-
formed either as disaggregated profile from the modelled
profile or built up from lower timestep resolution and ap-
pliance signatures. Both ways provide output with a high
granularity and can be used further in power system mod-
elling. The advantage of proceeding power disaggrega-
tion is to perform faster simulation with a larger timestep
e.g. 1 hour. The downside is that control cannot be per-
formed at a lower resolution than the model itself and
therefore demand response and control will be performed
using the simulation steps and not the disaggregated gran-
ularity. The other way of implementing a high resolution
model is to increase the simulation step of the simulation
and thus provide better control for demand response ac-
tions based on price or power network status. The SBuM
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model allows carrying out both options with any simula-
tion time. This is done by re-sampling the input dataset
to meet the simulation time resolution and could be done
simply by interpolating values, like in the case of temper-
ature that does not vary very fast, or by performing linear
interpolation and integrate a normally distributed noise to
the dataset.

If a device is used for a very short time (¢¢ye1,n < nin)s
then the studied appliances n could multiply its usage in
order to comply with the average weekly usage of this de-
vice. This action multiplier only applies to new actions
that has been triggered during the current iteration. Only
in this condition the multiplying factor ¢,,,;; can be gener-
ated, otherwise its value is set to 1.

tcycl = Lnulr X Leyel
]
|: 7tL'yL‘l

Ty 1s a dimensionless value multiplying the number
of actions within a time step when needed to reach the
weekly average usage of appliances. The value of T,
is randomly generated and its value is comprised between
a fraction of one cycle in comparison with the time step.
The spread of the 7,,,;;; can be observed in Figure 5.

2

where, t,1; = LR ~U

= Randomized|
—— Maximum

Distribution Ty []

Figure 5. Distribution of t,,,;, at multiple variable time usage
feyer in hourly timestep simulation.

4 Results and discussions

The results of the SBuM model will be reviewed in terms
of model performance in generating load and production
profiles. These profiles are generated at different time
scales through an event distribution throughout a typical
day (Figure 6). This allows comparing the input distribu-
tion profile per appliance with the generated distribution
profile for the same appliances. Generated load profiles
are also looked through the prism of a detailed profile and
comparing generated dataset at different granularity (Fig-
ure 7). Results are compared with models proposed to the
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Figure 6. Cumulative daily distribution throughout the year against the REMODECE distribution used as input distribution in the

SBuM model.

general public but do not allow high resolution modelling
nor control options. For analysing the results, a set of 1-
year simulation was performed for a test reference year,
from January 1 to December 31%, 2012.

4.1 Power demand

The power demand of the buildings generated with the
SBuM model will first be looked into the robustness to
produce results similar to the input profiles given to the
building, and second to the comparability levels of the dif-
ferent time resolution dataset produced while measuring
their homogeneity through e.g. their daily load profiles.

4.1.1 Power profile distribution

Profile distributions for each appliance are taken from
open dataset as described in section 2.2.1. The gener-
ated profiles are therefore easily comparable as their in-
put profile are taken from the literature. A summary of 21
appliances used in the simulation is retrieved in Figure 6.
The distribution profiles are aggregated to a daily load pro-
file considering equally every day of the simulation (366
days).

Multiple statistical test were performed and for all ap-
pliances, the F-test are not statistically different at the 0.05
level, meaning that all distribution profile are statistically
similar to the distribution dataset used for the appliances.
This statistics is valid for all simulation granularity. In
other words, the fit of distribution between the simulation
output power profiles and the measured dataset of appli-
ances measured in real living environment, demonstrate
the robustness of the model and do not create unrealistic
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scenarios where appliances are run randomly.

4.1.2 Dataset comparison

Power demands from the appliances are depicted for dif-
ferent time scale simulations in Figure 7. The power pro-
files are put in perspective with the active occupancy sce-
nario that are drawn from the power consumption profiles.
As the simulations are independently run and rely on nor-
mally distributed random numbers under daily distribution
constraints, the dataset with different granularity does not
run the same scenario. Nevertheless, they do present simi-
larities in their daily routines. The power disaggregatation
of the 15 minutes time resolution into a 10 seconds profile
is also shown on Figure 7.

Although the distribution of the appliances is done with
an hourly distribution, smaller time resolution allows dis-
rupting the hourly distribution profile and insert actions
within these time-frames. The good correlation between
the active occupation and the inactive occupation e.g. sit-
ting, lying or else, is due to the fact that occupation is
deduced from the appliance usage. This is critical for the
good interrelation with the thermal model that calculates
the thermal comfort and the exchange of heat within the
building from human occupation.

The total power consumption for the different runs are
consistent where the 1h time resolution provides a power
demand from appliances and lighting of 5050 kWh/y, the
30 minutes granularity accounts for 5293 kWh/y, and the
15 minutes resolution for 5158 kWh/y. In this particular
case, the consistency is of the annual power demand be-
tween time scales were a critical indicators. The dataset
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Figure 7. Energy service power load profiles and its occupancy
for a typical summer day (1 day).

presents a similar mean value of power consumption for
all time resolution simulations but with the higher granu-
larity the power demand becomes more volatile which can
be observed in the increase in their standard deviations and
their associated coefficients of variation (1.19, 1.25, 1.30
for the 60 minutes, 30 minutes, and 15 minutes resolution
respectively).

The daily load profile, which is intertwinked between
the appliances power demand and their aggregation is de-
picted in Figure 8. The daily load profiles across the time
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Figure 8. Mean daily load profiles generated by the 60/30/15
minutes time resolution simulations - one year simulation.

scales show good similarities that express their uniformity
through the different runs of the model where the means
for the 60 min, 30 min, 15 min are equal to .57 (SD =.17),
.60 (SD = .18), and .59 (SD = .18) kW respectively. Fig-
ure 8 also depicts the daily load profile of the same build-
ing that has a higher simulation time resolution, presenting
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therefore the higher variation. These variations are mainly
due to the cycling of white appliances like the fridge that
has a regular cycling time.

Downscaling the model time step to 10s allows fast con-
trol of some appliances if necessary. However, most of the
benefits from existing demand side management (DSM)
that reacts mainly on real time pricing that has been avail-
able at an hourly level so far. As there is intentions to de-
crease the resolution of day-ahead pricing to 15 minutes, it
thus makes sense to be able to simulate buildings with this
resolution and include their related controls. In any case,
time resolution is always available at a 10 seconds resolu-
tion for the power module while the model may run with
a larger time step, which can be meaningful for all sorts
of engineering work. Furthermore, downscaling must be
justified as it is a time consuming process where the com-
putational time increases exponentially with the following
relationship:

y(x) = ﬁ ‘e(oaﬂ)

where x is the downscaling ratio. A full year simulation at
an hourly time step takes about 6 minutes on a 32Gb RAM
and i7 core, while the same simulation with a time step of
1 minute may take over 80 hours with the same hardware.

4.2 Thermal demand

Thermal load is also detailed at the chosen time resolution
and shows more discrepancies between the model resolu-
tion while staying within the constraints set in the simula-
tion. The thermal performance of the building is analysed
through the total heat demand in a year, the variation of the
operative temperature (weighted average of the indoor and
surface temperatures as defined in the ISO 52016-1), and
the power demand in terms of power variation per degree
change in indoor temperature before heating the building.
The data are represented in Figure 9 for the coldest week
performed in the simulation (from February 3" to Febru-
ary 10 ™). The temperature setting set in the simulation
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Figure 9. Indoor temperature variation and total thermal de-
mand excluding DHW for the coldest week in the modelled year
for three resolutions. Dotted lines represent the PMV variation
for this same week

52

Virtual, Finland, 22-24 September 2020



SIMS 61

is 21°C and as it can be seen in the Figure 9, the oper-
ative temperature is varying below this constraint. The
mean operative temperature of the building is very similar
in all 3 simulations, with a mean operative temperature of
20.4°C (SD = .48), 20.5°C (SD = .52), and 20.6°C (SD =
.7) for the 60/30/15 minutes simulations respectively. The
heat demand for the 60/30/15 minutes simulation are 21.3
MWh/y, 23.4 MWh/y, and 24.4 MWh/y respectively. One
of the reasons for difference of thermal energy consump-
tion between the time resolutions is the shorter response
time for adjusting the temperature within the building and
keeping it to the correct level (adjusting the operative tem-
perature to meet the temperature set for the house and
therefore guaranteeing an indoor temperature of 21°C).

The thermal comfort varies more in the negative val-
ues with an average of -2 (SD = .28), -1.86 (SD = .45),
and -1.82 (SD = .5) for the 60/30/15 minutes simulations
respectively. Although the results indicate a cold feeling
from the tenants (<-1), the main reason resides in a para-
doxical setting for the heating system that is controlled to
keep the indoor temperature at 21°C, and keeping the Pre-
dicted Mean Vote (PMV) level above (>) -.7 in the worst
case. To reach the correct PMV level, a temperature set-
ting of 23°C would be required but that would go against
the Finnish regulation in its building code.

4.3 PV generation

The solar PV panel module presents results also for the
different timestep sets for each simulation. The PV-
module is compared against results from PVGIS EU-
service that provides hourly resolution for different types
of PV systems. The PV model module was tested with
the global irradiation array used in PVGIS with a system
loss factor of 14 %, which includes dirt and performance
decrease over time, which is fixed through the simulation.
The nominal power of the PV-module is 10kW in both
settings. Both results are presented in Figure 10 top left
graph for a typical summer week. While the datasets are
statistically not different at p = .01 during this extracted
period and thus shows the good behaviour of the model
during the summer months, the overall power generation
from PV panels are different at p = .01 for the overall year.
In other words, the behaviour of the PV model is validated
with some small discrepencies in the winter months re-
sulting in different overall yearly energy production. The
overall yearly power produced is however different with
a total of 12.9 MWh/year for the PVGIS model and 14.1
MWh/year for the SBuM model. The main difference re-
sides in the winter month when the production is low, es-
pecially under high latitude where the simulations were
performed (65.05° North).

When running the simulation with more precise dataset
from the Finnish Meteorological Institute (FMI), the
power production has a greater Coefficient of Variation
(CV = 1.52 for PVGIS and CV = 1.84 - 1.9 with FMI
dataset) and this is due to the higher variation in the global
irradiance dataset provided by FMI. The total production
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Figure 10. 7op: Week production from a 10 kW PV system run
with PVGIS online tool and the SBuM model using the PVGIS
solar radiation data. Botfom: The SBuM model output using the
Finnish Meteorological Institute solar radiation data for 3 time
resolution, 1h, 30 minutes, and 15 minutes. *The population mean
is significantly different at p = 0.01, **The population means are not
significantly different at p = 0.01.

from the PV-panels using the FMI dataset is 11.9 MWh/y,
12.1 MWh/y, and 12.2 MWh/y for the 60/30/15 minutes
time resolution respectively. The model output is thus con-
sistent with state of the art global output variables while
providing more detailed information while the simulation
resolution is increasing without altering the global output
of the model, thus guaranteeing its use for automation pur-
pose.

5 Conclusions

This paper presented a multi-scale open source modelling
tool to evaluate the impact of smart control on the power
and heat demand of the building. The SBuM model in-
cludes both the heat and power demand, as well as ther-
mal comfort user satisfaction and willingness to shift load
from appliances in case of energy management system.
The model can be run at different time resolution from 60
minutes down to 10 seconds, therefore, providing a wide
range of possible control strategies for distribution system
operators as well as provide information to homeowners.
As the SBuM model uses a Markov-Chain approach to the
modelling of the buildings, the different energy points can
be managed on the fly but post processing of the results
can be done for further use. The real challenge was to cre-
ate synthetic profiles that are comparable with different
time scale resolutions and flexible in terms of computing,
to be included in market operation as well as automation
solutions.

The SBuM model showed robustness in the creation of
load profiles for both thermal and power demands. The
SBuM model generated profiles and datasets that were
comparable and statistically not different across multiple
time resolutions. However, the smaller the time resolu-
tion, the greater is the computing time of the simulations,
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therefore having a very low granularity in the simulation
as it may take a very long time to compute when the sim-
ulation time horizon is set to a year for instance.

In the future, the SBuM model will integrate a model
for domestic hot water integration with controllability in
case it is electrically heated. It will therefore cover the
whole range of energy consumption in dwellings. Further,
the impact of different market configuration for dynamic
pricing will be investigated to evaluate the impact of and
on buildings. Heating control strategies will need to be
implemented further to pilot electric convectors in a way
that it does not increase the total energy consumption of
the house.
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Abstract

Compressed Air Energy Storage (CAES) is a promising
alternative for energy storage. An Adiabatic
Compressed Air Energy Storage (A-CAES) system has
been analysed in this paper, to store excess energy
production from a wind turbine generator for up to one
week. Compressed air is stored in a cavern of constant
volume. The heat produced by the compression of the
air during the charge process is stored in several packed
beds and used later during discharge to reheat the air
prior to energy production.

This paper presents a preliminary thermodynamic
analysis estimating the size of the system for a given
quantity of energy storage, a dynamic model including
packed beds for additional energy storage, and a
simulation made in MATLAB to analyse the efficiency
of the system. The A-CAES roundtrip efficiency is 53%.
The physical limitations of the actual compressors and
expanders were taken into account when defining the
operational pressures and temperatures in the model. A
preliminary capital cost estimation of the system was
conducted for Norway, resulting in an estimated
investing cost of approximately 2 700 NOK/kWh.

Keywords: compressed air energy storage, adiabatic,
thermal energy storage, packed bed, thermodynamic
analysis

1 Introduction

The use of renewable energy resources has increased in
the past years. In Norway, the energy source that
increases the most is wind energy (Qvrebg, 2020). This
is an intermittent energy source, so efficient energy
storage is needed (Grazzini and Milazzo, 2008).
Compressed Air Energy Storage (CAES) Systems are
promising for storing energy. In a CAES the excess
electrical energy is used to compress air to a high
pressure. Then the air is stored in caverns or tanks.
When the energy is needed, the pressurized air is
released, reheated, and expanded in turbines. The
turbines drive a generator that produces electric energy.
This energy is then returned to the grid (Eckroad, 2003).

CAES systems typically have a storage capacity of
5MWh — 1GWh, with a discharge time from a couple of
hours to days (Moore and Shabani, 2016). In a Diabatic
CAES (D-CAES), the air needs to be reheated to
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produce electric energy. The reheating is done by
burning fossil fuels (Calero et al., 2019). This is not a
desired solution, because these systems are not CO»
neutral, and the fuel brings an increase in the operational
cost. The Adiabatic CAES (A-CAES) system does not
need additional fuel consumption and is the system
studied in this work. In this paper, we provide a
preliminary thermodynamic analysis estimating the size
and cost of an A-CAES for a given quantity of energy
storage and using the physical limitations of actual
compressors and expanders.

1.1 Adiabatic CAES

In an Adiabatic Compressed Air Energy Storage system
(A-CAES), thermal energy storage (TES) replace the
combustor of the D-CAES. Energy is expelled as heat
during the compression stage. This heat is stored in TES
and later used to reheat the air during the expansion
stage. This contributes to both higher efficiency of the
plant, as well as zero CO; emissions from fuel. There
has been a lot of research on this type of system but so
far only to the stage of simulation of models and
theoretical analysis (Yang et al., 2014).

ADELE is a German project where the goal is to
build an A-CAES system with a roundtrip efficiency of
70%. When the air is compressed, the heat is captured
in a heat-storage facility instead of being released to the
surroundings. Later during the discharge, the energy in
the heat-storage is released into the compressed air.
With this solution, no fuel combustion is needed to heat
the air. By avoiding the use of fossil fuel, this
technology provides a CO» neutral delivery of the peak-
load electricity from renewable energy (RWE Power,
2010).

The storage temperature of the plant is one of the
most important parameters in an A-CAES. There are
three main temperature categories: High temperature A-
CAES operates above 400°C, Medium temperature A-
CAES runs between 200°C to 400°C, while Low
temperature A-CAES  operates below 200°C
(Degl’Innocenti, 2018). A-CAES simulations using a
packed bed as the thermal energy storage component,
report an efficiency of 70%, for a temperature range of
30°C to 430°C (Barbour et al., 2015). Wolf and Budt
(2014) report a roundtrip efficiency of 52% to 60% for
low-temperature A-CAES when the system operates at
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temperature from 90°C to 200°C. Sciacovelli et al.
(2017) found the roundtrip efficiency to be in the range
from 60% to 70% when the TES system has an
efficiency of 90% and the system operates at
temperatures ranging from 100°C to 500°C.

2 System Overview

The A-CAES presented in this work is a three-stage
system that includes compressors, packed beds,
turbines, valves, and a cavern, Figure 1.

The cavern is charged by compressed air from the
last stage of three compressors. The compressors are
powered by surplus energy, e.g. from wind turbines. The
hot air out of each compressor enters at the top of the
packed bed and exits at the bottom. The packed beds
have ceramic Raschig rings that cool down the air and
store the thermal energy. The Raschig rings provide a
large heat exchange surface allowing quick exchange of
heat from the air to the packed bed. The temperature
differences across the rings are very low (Heitmann,
2020).

The discharge process is similar, but in reverse order:
when the air is released from the cavern, it re-enters the
last packed bed, now to reheat the air. In this process,
the air enters at the bottom with a lower temperature and
exits at the top with a higher temperature due to release
of the stored heat from the charge process. The heated
air is expanded by a turbine, which drives an AC
generator that generates electric energy. The expansion
process cools the air, so the air enters the next packed

bed to be re-heated. As in the charge process, this
happens in three stages, but now the air is expanded in
three turbines (one at the discharge of each packed bed).
The electric energy generated by the turbines is released
back to the grid.

The minimum operational pressure in the cavern is
40 bar, while the maximum pressure is 70 bar. When the
pressure is below 70 bar, and there is surplus electric
energy, the charge mode is activated. When the pressure
in the cavern reaches 70 bar, the compressors stop. The
discharge mode starts when the energy is needed. This
will go on until there is surplus energy available, or the
pressure in the cavern decreases to 40 bar.

Valves are used to control the flow of air, as shown
in Figure 1. The check valve makes sure the flow of air
only goes in one direction, while the control valves by
the cavern regulate the air pressure during the charge
and discharge modes. The valve at entry to the first
expander keeps the pressure into the expander constant
at 40 bar. For the air to flow to the cavern, each
increment of air must be compressed to a pressure just
above the storage pressure. The valve at the cavern entry
ensures that the pressure upstream is always higher than
the cavern pressure during the charge mode. A more
detailed description of the system can be found in
(Heitmann. 2020).

3 Dynamic Model

To analyse the system behaviour we developed a
dynamic model based on Heitmann (2020, p. 20). The

3 Expander 2nd Expander 1st Expander
qst —> 2nd —> 3rd
Compressor Compressor Compressor
15t Packed 2" Packed 3 Packed
Bed Bed Bed
Cavern
Figure 1. Sketch of the system simulated in this paper
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model is described in this section.

3.1 Adiabatic Compression

For an ideal, reversible adiabatic compressor, and
assuming ideal gas, the final temperature is given by:

R
A
Ty = T (21)7 (1)
Pin

where ¢, is the specific heat capacity for constant
pressure (kJ/kmol K), R is the universal gas constant
(8.314 kJ/kmol K), T is the final temperature (K), T;y,
is the temperature of the air into the compressor (K),
p; is the pressure after compression (kPa), p;;, is the
pressure before the compression (kPa).

The actual work used by the compressor is calculated

by Eq.(2):

. 1
Wer=mey (Ty = Tin) — (2)

Nisen

where 7., 1s the isentropic efficiency of the
COMPIessor.

3.2 Packed Bed

The conservation of energy is used to express the
equations for the temperature of the air and the solid
phase in the packed bed:

AE = iy AH — oy AH—RA(Tr—Ts)  (3)

where AH is the change in enthalpy (kJ/kmol).

On the right-hand side, the first two terms are the net
heat input due to the fluid flow and the last term is the
heat transfer to the solid.

The packed bed is used to cool down the air so the
temperature of the air will be higher at the top of the bed
than the bottom. To make the calculations of the
temperature distribution simpler, the bed is divided into
n sections. When assuming constant mass flow 1i;, =
Moy = 1M, the energy rate for the air in a section is:

dTg dTg
sApacp‘a? Az = —vapaAcp,aEAz - )
hvolAAZ (Ta - Ts )

where, ¢ is the void fraction of the air, A is the area (m?),
p is the density (kg/m?), % is the change of the
temperature of the fluid over time, Az is the height of
the section (m), v is the velocity (m/s), % is the change
of temperature of the fluid over the length (K/m), Ay,
is the volumetric heat transfer coefficient (kJ/m® s K),
and T is the temperature (K). Subscript a stand for air
and s for solid. For the solid the energy rate is:
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(1 —&)AAzpgcy % = —EAAZ(Tf —
d dTs
Ts ) —SAE(ASE)

The last term of Eq. (5) is the heat conduction through
the solids in the packed bed. The contact between the
solids are very small, so this term can be neglected. The
equation becomes:

®)

drT. ~
(1 - g)pscp,sd_ts = _hvol(Tf - Ts ) (6)

To calculate the volumetric heat transfer
coefficient, h,,;, between the packing elements (for this
work Raschig rings were considered) and the air, the
empirical relationship suggested by (Coutier and Farber,
1982) was used:

G 0.76
hye; = 700 (—) (7
dp

where G is the core mass velocity of the air (kg/m?s),
and d, are the average particle diameter (m).

3.3 Flow of Air
The flow of air is calculated by: (Heitmann, 2020, p. 22)

pi—p; (®)

=962 ( —_—
QG V valve SGT

where Q; is the gas flow in standard cubic feet per hour,
Cv vawe 1s the coefficient of flow, p;is the inlet pressure
in psia, p, is the outlet pressure in psia, SG is the specific
gravity of the air at 70°F and 14.7 psia, and T Is the
absolute temperature in °R. None of these are SI units,
so conversion equations are used to get the answer in the
correct unit. These kinds of correlations are common to
calculate air flow through a control valve, where the
value  Cypqpe can be adjusted by modifying the
aperture of the valve to get the required flow.

3.4 Cavern

Since the volume of the cavern is constant, the mass in
the cavern will vary due to the pressure increase and
decrease over time. The mass balance for the cavern are:

AM = 1, At )

where AM is the change in total mass (kg), m;, is the
mass flow of air into the cavern (kg/s), and At is the
change in time (s). Taking the limit when At tends to
zero leads to:
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aM
ac - e (10)

The temperature of the cavern will vary as well as the
total mass and pressure. The energy balance for the
cavern for a small time At , neglecting changes in
kinetic and potential energy of the air, is given by:

AM U) = 1y () Hipn ()AL (11)
Which becomes when At tends to zero:

amo)
—a - M Hin (£) (12)

Where:

dMU) dl7+AdM 3

e dt dt (13)
U is the internal energy of the air already inside the
cavern, and Hj,, is the enthalpy of the air flowing into
the cavern. U can be calculated by

U= Uy+c,(T—Tp) (14)

where ¢, is the specific heat capacity for constant
volume (kJ/kmol K), U, is a reference internal energy
(kJ/kmol) and T, is the reference temperature (K). The
enthalpy can be calculated by:

ﬁin = ﬁ0+cp(Tin_To) (15)
where Hj is a reference enthalpy (kJ/kmol) at Tj.

When inserting eq. (17), eq. (18) and eq. (19) into eq.
(16), it becomes:

dr p A
MC,,E‘+(£]O + ¢y (T = Tp) ) 1ty = (16)
min(HO + Cp (Tin - TO)
Eq. (20) can be simplified to:
dT _ Thm(cme - CvT) (17)

dt M c,

3.5 Adiabatic Expansion

We use the energy balance for the expander to calculate
the temperature of the air after expansion. This is similar
to the energy balance for the compressor but since the
work is extracted from the system, the work is negative.

For the temperature after the expander, the following
equation is used: (Heitmann, 2020, p. 23)
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T, = Ty, (’j—z)g (18)

The work generated by the expander can be calculated
by:

Wg =m cp(T — Tin) Nisen (19)

where 17;sen 1S the isentropic efficiency. Since the
expanders are adiabatic, the ideal process is isentropic
(Saravanamuttoo et al., 2017).

3.6 Efficiency of the System
The efficiency of the system 7 is calculated by:

— Wdischarge (20)
Wcharge

where Wiscnarge 15 the total work produced by the
expanders during discharge and Wi,y is the total
work done by the compressors in the charge part.

4 Cost Estimation

To check whether the A-CAES system is economically
viable, a cost estimation is needed. A perfect estimation
is difficult to accomplish, but a simple estimation for the
system based on data from other systems, the given size
and the material used is shown in this chapter to give an
idea of the magnitude of the cost.

4.1 Compressors and Expanders

We wused the SIEMENS DATUM calculator
(SIEMENS, 2020) to estimate the cost of the
compressors. The DATUM compressors are common in
the oil and gas industry. The tool give an initial cost
estimates sufficient for preliminary analysis. The tool
calculates a three-stage compressor with three impellers
and intercooling. The CAPEX of one compressor are
assumed to be 500 000 $. According to Buffa et al.
(2013) the cost of a Mixed Flow Expander is somewhat
the same as for the compressor.

4.2 The Packed Beds

The cost estimation for the packed beds is based on the
volume of the column and the mass of the solid.

The height and radius of each column are 30m and
5m, respectively. This leads to a volume of 2 355 m’.
The columns are assumed to be inside the mountain, so
the cost of mountain blasting needs to be taking into
account. In Norway, mountain blasting is expensive and
runs at about 200-300 NOK per cubic meter (NOK/m?)
(Byggestart, 2020).

The solid inside the column are Raschig Rings in
ceramic with a void fraction of 74%. The ceramic is
Alumina (A1203), with a density of 3 900 kg/m>. The

Virtual, Finland, 22-24 September 2020

58



SIMS 61

cost of the ceramic is 1.90 $/kg (19.4 NOK/kg)
(Heitmann, 2020).

4.3 The Cavern

The cost of the cavern is the mountain blasting, which is
the same as for the packed beds, i.e. 200-300 NOK per
cubic meter. The volume of the cavern is calculated to
be 41 300 m?.

4.4 Cost of the System

The total cost of the system is based on the calculation
is calculated to be 175 MNOK. With a total capacity of
66400 kWh, the capital cost estimate is 2 700
NOK/kWh.

This cost estimation only includes the main parts of
the system: three compressors, three packed beds, three
expanders and a cavern. The cost is the capital cost of
the system, not including cost of pipes, valves, or
insulation. A substantial amount of money can be saved
if an existing cavern is used, instead of blasting one.

5 Simulation and Efficiency Results

5.1 Total Mass in the Cavern

The variations of the total mass in the cavern during the
charge and discharge processes are shown in Figure 2
and Figure 3. The red line is the increase of mass in the
cavern during the charge process. It starts at an initial
mass of 2.03 x10° kg, which is calculated by assuming
ideal gas at 40 bar and the air cave temperature. After
about 30 hours (~108 000 s) the cavern reaches the
maximum operational pressure (70 bar) and the
maximum mass. When this value is reached the charge
process stops.

The blue line shows the decrease of mass in the
cavern during the discharge process. It starts at the
maximum mass of 3.09 x10° kg, and after about 47
hours (~169 000 s) the cavern reaches the minimum
operational pressure of 40 bar. The x-axis shows the
time in seconds from 0 to 172800 s (48 hours).

5.2 Temperatures over the Packed Beds

The temperature distributions over the packed beds in
the charge process are shown in Figure 4. Five sections
(n=5) are used in the simulations. Originally, when the
system is “loaded” for the first time, all the sections are
at the same temperature. The green line shows the
temperature of the air in the first section of the packed
bed, corresponding to the section where the air enters
the packed bed. The purple line shows the temperature
of the air in the second section of the bed. The red line
shows the temperature of the air in the third section. The
pink one shows the temperature of the air in the fourth
section. Finally, the turquoise line shows the
temperature of the air in the last section of the packed
bed. This turquoise line represents the air temperature

DOI: 10.3384/ecp2017655

entering the next compressor stage or the cavern. The
black dotted lines represent the temperature of the solid
material in the corresponding section, the solid
temperature closely follow the air temperature of all
sections. The simulation covers 48 hours of operation.
The charge process ends after about 30 hours because
the cavern is fully loaded with air at 70 bar. This means
that the flow of air stops and the temperature of the air
and the solid in the packed beds will stop increasing. We
assume well-insulated packed beds where the
temperatures stay constant when there is no air
circulating through the system.

#10° Total mass in the cavern, charge

28

Mass [kg]
n
>

22

2

. . L . )
0 2 4 6 8 10 12 14 16 18
Time [s] #10*

Figure 2. Total mass in the cavern during the charge
process.

#10° Total mass in the cavern, discharge

32

0 2 4 6 8 10 12 14 16 18
Time [s] #10*

Figure 3. Total mass in the cavern during the discharge
process.
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Figure 4. Calculated temperature over the packed beds in
the charge process: a) is the first packed bed, b) is the
second packed bed, and c) is the third packed bed.
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Figure 5. Calculated temperature over the packed beds in
the discharge process: a) is the first packed bed, b) is the
second packed bed, and c) is the third packed bed.
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Figure 5 shows the temperatures over the packed bed
during discharge. The initial values for all the sections
are the end temperatures reached during the charge
process. In the discharge, the first packed bed is the last
one from the charge process. The air from the cavern
enters at a temperature of 50°C at the bottom of the
packed bed and is heated through the bed.

The turquoise line shows the temperature of the air
in the bottom of the bed, which is the first section in the
discharge process. The pink line shows the temperature
of the air in the next section of the bed. The red line
shows the temperature of the air in the middle section of
the bed. The purple line shows the temperature of the air
in the fourth section. Finally, the green line shows the
temperature of the air at the top section of the packed
bed. This is the air temperature leaving the packed bed
and entering the expander. The black dotted lines
represent the temperature of the solid in the
corresponding section. The solid material temperature
closely follows the air temperature in the packed bed.

5.3 System Efficiency

The calculated work done by the three compressors
during the charge process was 2 590 kW.

The work produced by the expanders during
discharge process was 1380 kW. This results in an
efficiency of 53.4 %. This result indicates that more than
half of the electric energy used to compress the air is
regenerated in the form of electric energy, without the
use of additional fuel to reheat the air.

6 Discussion

The model for the charge process works well and
provides realistic results. The air is cooled down to a
temperature acceptable for the next compression. The
packed bed material is heated fast and reaches the
temperature of the compressed air.

The discharge requires operation parameters
adjustments to get realistic practical temperatures for the
discharge air. According to the simulation, the output
temperature for the first expander is between 230 K and
290 K. We consider this temperature range as too low to
provide an efficient output from a real turbo expander.

The size of the packed beds was the same in the
simulation, but it could be interesting to see how the
system would behave if different bed sizes are fitted to
the compressors in each stage. Also, the simulation was
only done for one type of packing material, ceramic
Raschig rings. The system could be tested with other
materials, such as metal Raschig rings or marbles to find
the solution that provides the highest efficiency with the
lowest cost.

In this paper, we have simulated only one cycle (one
charge and one discharge). It would be interesting to see
how the temperatures over the packed develop with
multiple cycles and if the efficiency would be affected.
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Although the physical limitations of the components
were taken into account, the maximum compressor
discharge temperatures are lower than the minimum
inlet temperature allowed in most expanders or turbines.
This can make it difficult to use existing equipment. For
this system to work in reality, special equipment may be
needed.

The reviewed literature for similar systems reports
an efficiency between 60 - 70 %. Even though the results
obtained in our simulations are lower (53.4%), they are
similar to the system efficiency of real existing systems
using additional fuel to reheat the air is on the range of
40% to 54% (Luo and Wang, 2013). Furthermore, our
proposed A-CAES system does not have CO;
emissions.

The system cost is calculated at 2 700 NOK/kWh.
There are not a lot of numbers to compare with.
However, in the A-CAES presented by Mignard (2014)
the cost is estimated at 334 000 USD/MWh, (3 400
NOK/kWh) in a similar but smaller capacity system
using steel as the packing material.

7 Conclusion

We used thermodynamic analysis, modelling, and
simulation to make a preliminary estimate of the size of
a 12 MW A-CASE system with a storage time of 48
hours. The size of the cavern was calculated to be 41 300
m?. This value is calculated for a perfect reversible
process, so this size is expected to be larger for an actual
system.

A dynamic model was created for the system,
including the packed beds, the mass and temperature of
the cavern, and the work consumed and produced. The
model was simulated in MATLAB. We calculated the
work done by the compressors as 2 590 kW and the
work produced by the expanders as 1 380 kW, which
corresponds to a capacity of 66 400 kWh. The system
roundtrip efficiency was calculated at 53.4%. The total
cost is calculated to be 175 MNOK. With a total
capacity of 66 400 kWh, the capital cost estimate is
2 700 NOK/kWh.

We find that the system discharge temperature is too
low for use with existing expander technology. In
addition, we find that the cost of A-CAES is too high for
the system to be economically viable. The cost is site
specific and depends on local conditions of the air
reservoir and the cavern is by far the most expensive
component.
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Abstract

This paper investigates the sensitivity on choice of heat
pump concept to uncertainties and variations in boundary
conditions for large scale heat pumps with a Danish dis-
trict heating system as case example. A performance map-
based heat pump model is used to evaluate performance of
different heat pump concepts. The heat pump concepts
are optimised in terms of concept design and prepared
for evaluation of feedback control parameters and on/off
strategies, which calls for a nonlinear optimiser such as
genetic algorithms. The optimisation considers the op-
erational price of the concept, regarding Coefficient Of
Performance (COP), heating capacity and investment cost
and is followed by investigations of the possibility for pro-
viding ancillary services. A sensitivity analysis is carried
out to investigate whether, which and how variations in
cost function weighting affects the optimisation and con-
sequently the choice of heat pump concept. The results
indicate a very robust optimised concept.

Keywords: heat pump modelling, large scale heat
pumps, optimisation

1 Introduction

By 2050, Denmark should be completely independent of
fossil fuels. One essential field in the solution of this is
the synergy between the power- and heating grid. With
the district heating sector having great potential to be
included in solutions across energy sectors, large scale
heat pumps have recently received increased interest
since it in nature provides a power-to-heat conversion and
since tax-reductions and potential for ancillary services
likewise suggest large scale heat pumps as a favourable
part of the solution (Kortegaard Stgchkel et al., 2017).
However, focusing on the Danish district heating system,
the experience in implementing large scale heat pumps is
very limited.

From (Rambgll et al., 2019) it was found that the
heating capacity of most large scale units currently
in operation in Denmark are in the order of 0.2-10
MW,. As have been presented in the planned projects
in (Fjernvarme Fyn and Odense Kommune, 2020) and
(DIN Forsyning and Rambgll, 2020), heat pump units
of significantly higher capacity (up to 100 MWq) is
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expected to be introduced in the Danish district heating
system. A few examples of heat pump units with this
high capacities can be found in Norway, (Hoffmann
and Forbes Pearson, 2011) and Sweden (Friotherm AG,
2017), and common to these are that the desired capacity
is achieved by a combination of a number of smaller heat
pump units. There is however no unique formula on how
to combine the units. As was stated in (Rambgll, 2019)
and in (Meesenburg et al., 2018), especially when bearing
the potential for ancillary services in mind, the design
of the heat pump concept (i.e. the internal connections
and the size of the individual units), should be considered
carefully, which due to the lack of experience in ancillary
services was found to be challenging.

(Rambgll, 2019) has additionally been conducting some
tests of a 0.25 MW, ammonia heat pump to investigate
the potential for providing ancillary services. With the
requirements for ancillary services valid for the eastern
part of Denmark, it was found that when using the power
consumption from the heat pump as set point for control,
the response time improved significantly indicating
that heat pumps can be applied for providing ancillary
services. The experience is however still very limited,
and a general approach for designing the large scale heat
pump concepts has to the best of the author’s knowledge,
not yet been presented.

This paper presents a general approach for optimisa-
tion of heat pump concepts in future energy systems. The
purpose is to develop and demonstrate a heat pump op-
timisation tool in order to locate the parameters, which
dominates the choice of heat pump concept with regard to
the number of heat pumps, the size of the heat pumps and
the connections between them.

2 Method

To demonstrate the idea of the simulation and optimisation
approach, an ongoing project in Esbjerg, Denmark, is used
as case example. With boundary conditions and heat pump
requirements set by the case, the modelling approach and
the simulation- and optimisation setup was developed in
three steps, which will be presented in the following sec-
tions as:

e A general representation of the heat pump perfor-

mance.
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Table 1. The definition of the seven categories representing an example of the annual operation of the heat pump concept illustrated in Figure 1.
Heat load corresponds to the relative amount of heat delivered in each category (in MWhy) on a yearly basis i.a. category 1 is responsible for 2 %

of the total amount of heat delivered during a year.

Category | Tiea [°C] | Tanout [°C] | Heatload [%] | Ref.load [%] | «; [DKK/year] | B; [DKK/year]

e 210 | G 5 sod | oomrons | 528
S e [ EE R | BE e wem
A IR AT
C7 <2 50-55 9 95.2 4132 657.0 5164 456
e A dynamic model. 2.2 Model

e A suitable heat pump concept optimisation.

2.1 Case study: Esbjerg District Heating

In Esbjerg, Denmark, a 460 MW, coal fired heat- and
power plant is set to close in March 2023. A consider-
able amount of heat pumps are included in the road-map
for installation of the new heating production. A 50 MW
sea water based heat pump unit is among other things
expected to operate along with wood chip boilers, elec-
tric boilers and gas boilers (DIN Forsyning and Rambgll,
2020).

As a part of the initial study of a possible solution, the 50
MW, is delivered from a heat pump concept consisting
of four 12.5 MW, sea water heat pump units connected
internally as seen in Figure 1.

Tan rewrns = 35 °C Tah,outs 50-70 °C
HPI HP2

T retums = 35 °C
HP3 HP4 —

[ |

Figure 1. Reference heat pump concept with four 12.5 MW, heat
pumps with two parallel strings each with two heat pumps in series.

Tiea 0-22°C

The heat pump concept in Figure 1 is referred to as the
reference concept. Data on an example of the expected
operation of this concept is applied for the heat pump con-
cept optimisation. Divided into seven categories, the an-
nual operation can be considered as seen in Table 1. The
categories are chosen instead of the full annual operational
profile to smooth out the build in bias towards the refer-
ence concept to which the operating profile is optimised.
The heat demand presented in Table 1 forms the operat-
ing conditions for the simulations conducted. Notice, that
these categories change, if the heat pumps are combined
with e.g. wind power or combined heat and power plants.
The heat pump system used for simulation is presented in
the following sections.
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The heat pump model and the simulation model is formu-
lated in the multi-domain, object oriented modelling lan-
guage, Modelica (Modelica Association, 2019) and im-
plemented in Dymola (Dassault Systémes, 2019). The
heat pump system makes use of pipe, flow source/sink
and sensor models found in the Buildings library (Wet-
ter et al., 2014). Using the Modelica language implies a
high degree of reusability and flexibility in the modeling
and does further allow for easily exporting the model as a
functional mockup unit (FMI) and further simulating the
model in e.g. Python through the functional mockup in-
terface (FMI) standard.

2.2.1 Heat pump model

As suggested in (Dott et al., 2013) and similarly applied
in the energy simulation software EnergyPlus (Depart-
ment of energy, 2019), a typical approach for performance
evaluation of heat pumps is by a performance map. A
common method for applying the performance map ap-
proach is to use data points either to interpolate between or
by using an equation fit to create a polynomial plane. In-
spired by this, the performance of the heat pump model is
described by two equations developed from data obtained
using the product selection software, GEA RTSelect, pro-
vided by GEA (GEA Group, 2019). The performance map
describes the heat output, O and the Coefficient of Perfor-
mance, COP of a single heat pump unit. The performance
degradation due to part load operation is included in the
performance map by introducing both the desired outlet
temperature of the district heating water, Typ oue [K], the
evaporation temperature, 7.y, [K] and load, L [%] as vari-
ables for the equation fit.

By stepwise including the three variables to the fit of the
performance data, Equation 1 and Equation 2 was created
using R (R Foundation, 2019).

Oh=60+6L+6,L>+ 6:Tp,

(D
+ 94 Tdh,out + 95 L Tdh,out + 96 L Teva

With 6; and ¥; being the regression coefficients found in
Table 2 and Table 3. Applying Equation 1 to test data
showed a maximum deviation of ~ 5 %. A similar test
on the validity of Equation 2 shows a maximum devia-
tion of = 7 %. It should additionally be noticed, that the
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Table 2. Values of the regression coefficients, 6 for the equation fit of the heat output.

) | 6 | 6

o o

| 65 | 6

- 241 000

map (Equation 1 and Equation 2) is only guaranteed valid
within the range of the data. This corresponds to a district
heating outlet temperature between 45 °C and 80 °C and
a sea water temperature between 2 °C and 17 °C.

COP = (Y —v1exp(— % L) + ¥ Teva + W Ta
+ %(1 — N1 exp(—1 L)) Teva + ¥ Tanout + ¥ Tinow (2
+ % (1 — 11exp(—12 L)) Tan.out + ¥ Teva Tah,out

At a constant evaporation temperature of 5 °C, the sur-

face of Equation 2 is seen in Figure 2. Equation 1 and
Equation 2 form the basis of the heat pump model in Dy-
mola.
The heat pump model consists mainly of three compo-
nents: a heat moving component, a pipe representing the
condenser and a pipe representing the evaporator, as seen
in Figure 3.

0
100

335

40
Load [%] 20 350

Tanou [K]

Figure 2. Surface plot of the regression equation for COP, with a evap-
oration temperature of 5 °C.

The heat moving component includes the performance
map described by Equation 1 and Equation 2 and the cor-
relations presented in Equation 3 and Equation 4.

0. = P(COP—1) 3)

P=0h— Q. “4)

The combination of Equation 1 to Equation 4 represents
the amount of heat added to the condenser pipe, the
amount of heat removed from the evaporator pipe and
the electricity consumed by the heat pump unit. The
two pipes are found from the buildings library and allow
for adding/extracting a prescribed heat flow to the fluid
flow in the pipe. Using the buildings library, (Wetter
et al., 2014), additionally provides a simplified medium
model (assuming constant density) which improves the
simulation time.
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The performance map approach and the chosen Mod-
elica formulation do however not include any informa-
tion on the dynamic behaviour of the heat pump unit.
For the compressor, the dynamic effects are accounted for
by limiting the allowable load gradients corresponding to
tmin-max = 120s and fax-min = 60s. Notice that this is not
the actual compressor dynamics, but represents the effect
of the dynamics related to the compressor.

DH_in con Tdh_in1

»r =1 €@

7T DH_out

Load - cop

Heat
Wover

HP_on_off

false

AT Sea_water_in

~ -

10
Sea_water_out eva Tdh_in2

Figure 3. Simplified sketch of the heat pump unit i Dymola. The heat
mover contains the performance map equations.

In (Farouk Fardoun et al., 2011) it was however found
that the dominating dynamic is related to the heat ex-
changers and not the compressor. The dynamic in the heat
exchangers is accounted for by the volume of the pipes
representing the heat exchangers, which is set to ~ 4 m°.

2.2.2 Heat Pump System

The heat pump model described in the previous section
forms the base of the model used for simulation and fol-
lowing optimisation. The general idea of the simulation
model is sketched in Figure 4. Based on the total 50MWg
heat requirement for the case in Esbjerg, a maximum of
nine units is assumed. The nine heat pump units can be
arranged with maximum three parallel strings each with
maximum three heat pumps in series. As appears from
Figure 4, each heat pump unit has its own mass flow
source. However, the flow in each parallel string is iden-
tical, and the individual mass flow sources are introduced
to avoid including dynamic effects of heat pumps, which
are not included in the concept when performing the opti-
misation.
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Table 3. Values of the regression coefficients, y for the equation fit of the COP.

Yo \71 \Yz \}’3 \74 \Ys \Ys \}’7 \78 \7@
-12.52 ‘ 3.076 | -0.074 ‘ 0.710 ‘ 0.001 ‘ 0.030 | -0.474 ‘ 0.001 | -0.024 | -0.002
@ Lot @ Lot @ Lo costs related to COP, the total heating capacity of the con-
L L R L R cept and the total depreciation expenses. Based on the
oo oo oo case in Esbjerg, the expected operation and the expected
j j <_| . performance of the reference concept give rise to some ex-
0 @ @ pected costs. Changing the reference concept in Figure 1
t T z T z T will in most cases also change its performance, and the in-
. P v v P vestment cost. The concept optimisation problem can be
< j < j T <‘| formulated as seen in Equation 5.
D e @ )L minimise  COSTyp
1 N3 u
- - - : ) —
g o P J o subject to  X%(¢) = f(V,u,x(r)), )
j j <_| - Gu>g,
x(0) > xo

Figure 4. Simplified sketch of the heat pump concept simulation model
with nine possible heat pumps with a maximum 3-by-3 configuration.

2.2.3 Control

Depending on whether the heat pump concepts are evalu-
ated according to their COP, heating capacity or dynamic
response, different requirements or approaches exists. For
evaluation of COP and heating capacity, both load control
and temperature control are applied. The temperature
control adjusts the mass flow rate of the district heating
water to achieve the desired outlet temperature. This
control is only applied for the evaluation of COP and
heating capacity.

For the load control, two approaches can be used: heat
output control or power consumption control. The heat
output control is applied for steady state evaluation of the
COP and heating capacity, while the power consumption
control can be applied for evaluation of dynamic perfor-
mance. Last mentioned is especially an advantage when
considering ancillary services, since this was found to al-
low for faster regulation (Rambgll, 2019).

3 Heat Pump Concept Optimisation

From the heat pump simulation model in Section 2, the
optimisation presented in this paper seeks to find the opti-
mum heat pump concept according to its steady state COP,
heat output and the depreciation expense.

3.1 The Concept Optimisation Problem

The vector u contains the optimisation variables.

u= {Qh,n,l I Qh,n,27 sy Qh,n,9}

With Qn,; representing the nominal heating capacity of
a heat pump unit, 0 < Qpn; < 18.5 MW. All units with
Onn,i < 2 are truncated to 0, and is consequently not in-
cluded in the concept. The annual expenses include the
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With COSTyp representing the annual costs for the heat
pump, x € R? being the system state vector and V € R™
the input vector with external boundary conditions. The
nonlinear, dynamic model formulated in Dymola, is repre-
sented by f, and the constraints in the matrix G and vector

g.
3.2 Micro-Genetic Algorithm

Due to the non-linearity of the optimisation problem, there
could be multiple local suprema, and a global optimisa-
tion method must consequently be applied. For this pur-
pose, the tGA proposed in (Krishnakumar, 1990), seen in
Figure 5 is proposed and the specific parameters are based
on suggestions from (Vinther et al., 2017).

Initialisation

Using a population size of Ny =5, individuals are picked
randomly from a normal distribution with center defined
by the best solution so far and with a standard deviation
set to 50 % of the distance between minimum and maxi-
mum bounds of the optimisation variables. Additionally,
the picked parameter is truncated to be within the min/-
max bounds, which means that the odds for picking val-
ues close to the current best solution and at the bounds
increase.

Automatic restart

To avoid getting stuck at a local optimum, an automatic
restart is triggered whenever the individuals are con-
verged. This happens when all pairs in all individuals are
within 5 % of their full range. The automatic restart mean
that new individuals are picked as presented in the previ-
ous section while keeping the best (elite) individual.

Fitness evaluation

The fitness of each individual is calculated using a cost
function.

24 September 2020
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Deterministic Tournament Selection

Two individuals are picked randomly from the population
and the most fit of the picked individuals are chosen as a
parent for crossover.

Crossover - Gaussian Fitness Based

New individuals (children) are produced from the parents.
This is done by randomly picking values from a normal
distribution with center closest to the fittest parent and the
standard deviation set to 50 % of the distance between the
parents.

Initialisation Popula-
tion of N individuals

Have in-
dividuals
con-

Automatic
restart of
population

Combine children and
elite individuals to
form new population

Compute fitness and
constrain violations
of each individual

Output best
solution so far

No

Selection of
two parents
from population

Desired
number
of
children?

Produce two
children with
crossover of parents

Figure 5. Flow chart of the ttGA used for the optimisation of the heat
pump concept.

3.3 Cost Function

To evaluate the fitness of different heat pump concepts
according to their COP, heating capacity and investment
cost, the cost function in Equation 6 is introduced.

COSTyp = COSTcop + COSTHeat + COSTcapex  (6)
The general idea of the cost function in Equation 6 is to
represent the difference in annual cost between the ref-
erence concept in Figure 1 and the concept in question.
Descriptions of each term in Equation 6 (COP, heating ca-
pacity and investment cost) are presented in the following
sections.

3.3.1 Cost: Coefficient of Performance

Increasing the COP compared to the reference concept
leads to an overall reduction in electricity consumption
from the heat pumps and vice versa. The steady state COP
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is evaluated in each of the seven categories presented in
Table 1 as seen in Equation 7.

COP; )

- 7
COPref.i ( )

COSTcop = i (0] <1
i=1

The unit of the coefficients, ¢, is in DKK/year, and repre-
sents the cost penalty or profit achieved from either reduc-
tions or improvements in COP, weighted according to the
energy content in each category as seen in Table 1. This
assures, that the highest profit or penalty is associated with
the category with the highest heating demand.

3.3.2 Cost: Heating Capacity

Combining category 1 and 2, 3 and 4, 5 and 6 and keep-
ing category 7 from Table 1 forms the boundary condi-
tions applied for the evaluation of the heating capacity. In
each of these categories, the reference concept is capable
of delivering 66.7 MW, 55.8 MW, 49.3 MW, and 44.3
MW respectively. These maximum capacities are used as
a benchmark for the evaluation of the heating capacity. If
the capacity of the heat pumps is reduced, other units (gas
boiler, wood chip boiler etc.), must compensate leading to
increased costs. On the other hand, increasing the capacity
is undesirable, meaning that no profit can be achieved by
increasing this. The cost function describing the heating
capacity is seen in Equation 8.

COST}.. — imax 0.8 (1 On, ®)
- s P1 e —
heat i=1 Qh,refii

i=

Similar to Equation 7 for COP, the f; coefficients are
weighted according to the heating load in each category.
The values of o; and B; are found in Table 1.

3.3.3 Cost: Investment and Depreciation Expense

The reference price and the assumed effects of economy of
scale are based on numbers presented by (Danish Energy
Agency and Energinet, 2016). This mean, that the refer-
ence price is based on a 4 MW heat pump with a cost of
4.95 MDKK/MWq. The effect of economy of scale is set
to 0.8. Based on this, the total investment cost is described
by Equation 9

9
COSTiny = Y 66 0p 548 ©)
i=1

Expressing the investment cost relative to the reference
case and in terms of depreciation expense results in
Equation 10. A 20 year annuity with an interest rate of
1.8 % is assumed.

COSTcapex = (0.06 COSTipy — 0.06 COSTipyrer) (10)

4 Results and Discussion

4.1 Optimisation

The optimisation is initially conducted using the cost func-
tion as it is described in the previous section, with a max-
imum allowable heat pump unit size of 18.5 MWj.
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4.1.1 Convergence

One challenge when optimising a non-linear system, is
to ensure that the suggested optimum is a global opti-
mum. The optimisation allows the modeller to provide
some guesses on heat pump concepts for the initial gen-
eration. However, if a global optimum is found, the end
result both with and without a guess on a heat pump con-
cept should be consistent. For a 500 generation run this
was tested and the result is presented in Figure 6.

f
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Figure 6. Convergenve plot showing the cost of the best fit during 500
generation test runs with and without initial guesses.

Figure 6 shows that the end results are consistent when
running 500 generations with and without initial guesses.
This indicates that a global optimum has been reached.
Figure 6 also indicates, that the number of required gener-
ations reduces significantly, when the initial guess is close
to the optimum. However, care must be taken for a low
number of generations as this might lead to a local opti-
mum.

4.1.2 Optimised Heat Pump Concept

A sketch of the optimised heat pump concept is seen in
Figure 7.

—{ 183 | 183 | 18.1 [—

Figure 7. A sketch of the optimised heat pump concept. The numbers
inside the each heat pump box represent the chosen nominal capacity of
the heat pump.

As seen from Figure 7, the optimum heat pump concept
at the given conditions consists of three heat pump units
in series each with a capacity of ~ 18.2 MW,. Notice,
that these heating capacities sum to ~ 54.5 MW, which
is due to the different nominal conditions assumed for the
performance map. The costs for the optimised concept are
allocated as seen in Table 4.

Table 4. Cost allocation for the optimised heat pump concept.

Cost [DKK/year] | Optimised concept
Costcop -1385935
Costpeat 1417
Costyyest - 501 896
Total Cost -1 886 414
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Compared to the reference the results show, that by in-
creasing the number of heat pumps in series to three in-
stead of two, the COP improves. This is consistent with
expectations. At the same time, the cost pr. MW reduces
due to the increased unit size and the reduced number of
units.

4.2 Sensitivity Study

The results of the optimisation provides the best possible
concept in terms of COP, heating capacity and investment
cost. However, from the investors point of view the ro-
bustness of the optimised concept is not insignificant. To
demonstrate the capability of the simulation model- and
optimisation setup, a sensitivity on 3 parameters related to
the cost function will be presented in the following sec-
tions.

4.2.1 Variations in Costs for Electricity

The penalty/profit related to reductions or improvements
in COP is based on the expected costs for electricity. Con-
sequently, changes in the expected cost for electricity nat-
urally leads to changes in the total annual costs for the heat
pump concept. A significant change of + 40 % was con-
sidered initially. The results of the two optimisations are
presented in Figure 8.

—fss {13 —saf{ s 82}

(a) Elspot + 40 % (b) Elspot - 40 %

Figure 8. A sketch of the optimised heat pump concept, when the es-
timations of the expected elspot price is reduced by - 40 % (fig. a) and
increased by + 40 % (fig. b).

The optimum concepts for both an increase and a reduc-
tion in costs for electricity are, as seen in Figure 8, similar
to the concept found from the original optimisation. The
costs are allocated as seen in Table 5.

Table 5. Cost allocation for optimisation with the cost for electricity
increased by 40 % and reduced by 40 %.

Cost [DKK/year] +40 % -40 %
Costcop -1728332 | -1078 343
Costpeat 2 889 1728
Costynyest -503 097 - 502 245
Total Cost -2228542 | -1578 865

Since the concepts are similar to the concept found
from the original optimisation, the costs regarding heat-
ing capacity and investment are similar as well. As ex-
pected, an increase in costs for electricity increases the
profit achieved by improving the COP, whereas reduced
costs for electricity reduces the profit achieved from im-
proving the COP. With three large units, the investment
costs are at a minimum due to the effects of economy of
scale, and since the COP is maximised by connecting the
three large heat pump units in series, the result is consis-
tent with expectations.
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4.2.2 Adjusting the Benchmark for Investment Cost

The investment costs in the initial optimisation is based
on the numbers presented in (Danish Energy Agency and
Energinet, 2016). However, a lower cost estimation and a
higher cost estimation is presented as well. Similar to the
electricity costs, adjusting the benchmark for the invest-
ment costs does not change the design of the optimised
heat pump concept, meaning that the the result of the opti-
misation again suggest three serial coupled heat pumps of
~ 18.2 MW. The costs are allocated as seen in Table 6.

Table 6. Cost allocation for optimisation with the low cost estimation
benchmark and with the high cost estimation benchmark (Danish En-
ergy Agency and Energinet, 2016).

Cost [DKK/year] | Low benchmark | High benchmark
Costcop - 1403 569 - 1409 097
Costpeat 1 306 74 784
Costryest -336 398 - 922706
Total Cost -1738 661 -2257019

Observing the investment costs, the low benchmark
produces a reduction in the effect of investment cost
whereas the high benchmark increases the profit from
choosing the concept with the lowest possible investment
costs. On the other hand, the increased investment ref-
erence price implies that the optimisation reduces the ca-
pacity to a minimum in order to achieve the highest invest-
ment cost profit.

4.2.3 Changes in Effects of Economy of Scale

The assumed economy of scale-effect of 0.8 is as the last
parameter varied. Firstly by increasing the effect to 0.5,
meaning that a doubling of the heat pump capacity only
give rise to a 50 % cost increase. Secondly the effect of
economy of scale was removed completely. The optimum
concepts under these conditions are seen in Figure 9.

—{ o1 o1 H oo |-
—f i3 {ss {1 —for [ oa o |-

(a) EOS =50 % (b) No effects of EOS

Figure 9. A sketch of the optimised heat pump concept, when the ef-
fects of economy of scale are incresed to 50 % (fig. a) or removed
completely (fig. b).

The noticeable result from this optimisation, is that re-
moving the effects of economy of scale, does, contrary to
all other sensitivities conducted, produce a different opti-
mised heat pump concept. The reason for this becomes
more apparent when considering the cost allocations pre-
sented in Table 7.

Table 7. Cost allocation for optimisation with increased effects of econ-
omy of scale (0.5) and with no effects of economy of scale.

Cost [DKK/year] EOS =0.5 EOS =1
Costcop -1403 654 | -1721945
Costpeat 1703 52 540
Costipyest - 777 417 38286
Total Cost -2179368 | -1631119
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By having two parallel strings instead of one as
suggested in the original optimisation, the profit from
COP increases from ~ 1.4 million DKK/year to ~ 1.7
million DKK/year. The reason for this can be found in
the chosen control strategy, which ensures that whenever
more than one string is present in the heat pump concept,
the second string, third string etc. will remain inactivated
until the first parallel string reaches 100 % load. The
apparent consequence of this is that the COP during the
first categories increases due to increased load-levels
caused by the reduced activated capacity, when the
second string has not yet been activated. On the other
hand, removing the effect of EOS makes it impossible to
achieve any profits in terms of investment costs and for
that reason, the total annual savings are slightly less than
for the original optimisation.

One noticeable potential achieved from the combina-
tion of the dynamic model in Dymola and the chosen
optimisation algorithm is that it allows to include a
wide number of parameters in the optimisation. In this
paper, only the steady state COP, heating capacity and
investment costs of the heat pump concept are included.
However, the setup has the potential to include Dynamic
effects as e.g. control parameters and ancillary services
as well. Parameters as maintenance and ensuring redun-
dancy would most likely also affect the final choice of
heat pump concept. Last mentioned is especially interest-
ing regarding the concept suggested by the optimisation,
since it has only a single parallel string. A consequence of
this is that in order to ensure redundancy, extra piping etc.
for bypass would be necessary, which in the end increases
the investment costs. Additionally, requirements and
potential limitations defined by the heat pump suppliers
could furthermore influence the result of the optimisation.
These effects could, similar to dynamic effects and control
strategies be included in the optimisation if it is quantified.

To demonstrate, that other parameters such as the po-
tential for providing ancillary services might affect the op-
timisation results, a small capacity test on the reference
concept and the optimised concept was conducted. As-
suming that during ancillary services, the maximum ca-
pacity provided corresponds to one parallel heat pump
string running at 10 % load. For the reference concept
this corresponds to a maximum regulation capacity of 11.1
MW, while the optimised concept has a maximum of 10.4
MW,. The question is whether this difference in capacity
for bids affects the annual costs for the concept. Assuming
the following availability payments (Energinet, 2019), the
difference in annual profit from availability payments are
found in Figure 10:

e FCR,, = 276 DKK/MW,/h
e FCRgoyn = 26 DKK/MW,/h

e aFRR =150 DKK/MW,/h
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Figure 10. Lost availability payment from ancillary services relative to
reference concept for 500 h/year and 4000 h/year respectively.

Figure 10 illustrates first of all that the difference in potential
availability payment depends on the amount of hours won. Sec-
ondly, it can be seen that if assuming 4000 availability hours per
year, the difference in maximum capacity implies a significant
profit increase for the reference case.

5 Conclusion

A heat pump concept optimisation setup was developed and
demonstrated based on an ongoing project in Esbjerg. The com-
bination of a dynamic model formulated in Dymola and the
micro-genetic algorithm formulated in Python was found to be
a promising tool for heat pump concept optimisation, especially
due to the potential to include everything from the relatively sim-
ple steady state COP evaluations presented in this paper, to more
complex dynamic effects as control parameters and ancillary ser-
vices.

The sensitivity analysis indicated that with the optimisation vari-
ables and cost functions presented in this study, the optimised
heat pump concept is very robust to changes in both costs for
electricity and the basis of the calculation of the investment
costs. Removing the effects of economy of scale does however
change the optimum concept from a single heat pump string with
three large scale heat pump to a concept with two parallel strings
each with three heat pumps in series.
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Abstract

Digitalization has influenced the rapid growth of data
centers around the world. The advancement of IT and
telecommunication also played a vital role in this
expansion of data centers. Data centers facilitate the
storage and access of data when required. Electric power
is the main energy input and heat is the main energy
output from the data center. This work is about the
utilization of the excess heat which is the by-product of
data center operation. Possible ways to utilize waste heat
from data centers have been evaluated. To connect the
heat from data centers to a district heating network, a
heat pump might be necessary to increase the
temperature of the heat. Simulations were performed at
varying conditions in Aspen HYSYS to evaluate the
waste heat utilization. The economic potential for
different conditions and different heat recovery
solutions are also evaluated.

Keywords: data center, district heating, heat recovery,
heat pump, Aspen HYSYS.

1 Introduction

Data centers have become an indispensable part of the
modern digitalized world. Digitalization demands the
storage of constantly and rapidly expanding data around
the globe, for which the number of data centers is ever-
increasing. Apart from digitalization, speedy wireless
networks, growing demand for cloud computing have
added the crying needs of data centers. The U.S.
Environment Protection Agency defines a data center as
(Geng, 2014): “Primarily electronic equipment used for
data processing (servers), data storage (storage
equipment), and communications (network equipment).
Collectively, these equipment processes, stores, and
transmits digital information”.

Data centers are run by electricity and the
functioning of different equipment release heat. So, all
the electricity input is converted to heat. Studies show
that the electricity requirement for data center has
increased from about 1.3% of the world’s total
electricity consumption in 2010 to 2% in 2018 and with
this pace, it will reach up to 13% in 2030 (Oltmanns et
al., 2020).
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However, the energy source which is still dependent
on the fossil fuels are gradually decreasing because of
the ever-growing consumption. So, the dire need for
renewable energy sources is beyond description. The
rejected or output heat from data centers could be a
useful source of renewable energy. So, the waste heat
utilization from data centers has become one of the
prime researches for the scientists and data center
operator to make data centers energy efficient and
economically sound.

Data centers reject a vast amount of heat which is
the conversion of electricity. For the proper and reliable
functioning of the data center cooling down of different
IT equipment is essential. 40% of the total energy
consumption in a DC can be spent in the cooling system
(Capozzoli and Primiceri, 2015). Moreover, excess or
rejected heat from a DC can be regarded as lost energy.
To make data centers more energy-efficient these lost
energies should be utilized. The utilization will be
economically profitable also. Furthermore, the cold
climate of Nordic countries makes it easy for data
centers to provide cooling energy. Besides, the high
demand for heat in these countries makes it more
convenient to utilize the waste heat. Thus, the necessity
of waste heat utilization from data centers arises. The
work will also focus on the possible utilization of waste
heat using a heat pump in the district heating facility.

2 Literature Review

2.1 General literature on energy recovery
from data centers

Ebrahimi et al. (2014) investigated different waste heat
recovery technologies from the data center. They
suggested that district heating is a common low-quality
waste heat recovery technique which is also
economically and ecologically sound. Liquid-cooled
servers are more compatible with the higher waste
recovery temperatures. Liquid-cooled servers can
provide waste heat of up to 50-60°C (Ebrahimi et al.,
2014) that can be applied to district heating over a long
area. This waste heat recovery technique is
economically profitable as it can earn a revenue stream
for data center operators.
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The next option found by Ebrahimi et al. (2014)
was the heating of water in a thermal Rankine cycle. The
waste heat cannot fully replace the boiler but can be used
to preheat boiler feedwater. So, the consumption of
fossil fuel and pollution can be decreased to some
extent. Moreover, they suggested on-chip two-phase
cooled data centers to utilize most of this technology.
The sale of heat to the power plant and carbon offsets
can produce substantial income.

Absorption cooling is another choice for utilizing
data center waste heat as studied by Ebrahimi et al.
(2014) Absorption refrigeration systems can function
with generator temperatures of 70-90°C which could be
supplied by the waste heat from a water-cooled and two-
phase cooled data center. An air-cooled data center is
not viable for the technology. This technique can
minimize the load on data center CRAC (computer room
air conditioning) systems by producing chilled water for
cooling and thus become economically profitable.

Ebrahimi et al. (2014) also proposed that organic
Rankine cycle (ORC), multiple-effect distillation
(MED), direct power generation like piezoelectric and
thermoelectric, biomass co-location are the possible
techniques that can be useful to utilize the low-grade
waste heat from data centers.

Oltmanns et al. (2020) proposed a new cooling
concept which TU Darmstadt will employ in the next
generation of the current air-cooled servers with water-
cooled rear doors. The new data center will use direct
hot-water cooling for the high-performance computer,
providing heat at 45°C. The waste heat will be utilized
for heating the university’s campus Lichtwiese. They
suggested two ideas, either heat integration in the return
line of the district heating network or utilizing it locally
in buildings situated near the data center. The project
showed that 20-50% of the waste heat rejected by the
high-performance computer can be utilized in the
heating sector. A significant reduction of CO; emission
can also be achieved through the project.

Oro et al. (2018) studied a liquid-cooled on-chip
server numerically for a case study of utilizing the waste
heat for an indoor swimming pool heating. For the most
suitable solution, the data center operator decreases its
operational costs and produces surplus income by
selling the excess heat, obtaining a net present value
after 15 years of 330,000 €. Besides the operational cost
of the indoor swimming pool was reduced by 18%. The
case study was implemented for the assessment of
Barcelona’s indoor swimming pools.

2.2 Possible temperatures in cooling
principle in data centers

For the efficient and proper utilization of excess heat
from the data centers determining the temperature of the
cooling system is not only very essential but also very
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sensitive. Depending on the temperature range the
quality of the heat will be evaluated. The investigation
is not a very easy task rather it has been a matter of
argument.

ASHRAE Technical Committee 9.9 has done a
significant job to determine the favorable environment
and temperature range for data centers. This is a
common thermal guideline. ASHRAE (2011)
recommended that the data center’s equipment should
maintain the temperature range between 18°C and 27°C
to fit the manufacturer’s provided criteria. The
Technical Committee also classified the data center
based on their temperature range. For the Al data center,
the temperature range was 15°C to 32°C, for the A2
category the range was set to 10°C to 35°C. For class A3
and A4 data center they increased the temperature range
by 5°C to 40°C and 5°C to 45°C, respectively.

Oltmanns et al. (2020) studied that the high cooling
inlet temperatures of up to 60°C for water-cooled data
center allow the possibilities for better waste heat
utilization.

According to Patel (2003) for an efficient air-
cooling system, the cold air should be supplied at 25°C
and exhaust air should exit the room and come back to
CRAC at 40°C.

Ebrahimi et al. (2014) suggested that the optimum
temperature range to utilize the waste heat in the air-
cooled data center at rack exit is 30-40°C while for the
chiller water return the suitable temperature range is 16-
18°C.

Brunschwiler et al. (2009) found that the inlet water
temperature can be 60°C to keep the junction
temperature under 85°C. For this criterion, the
maximum inlet temperature could be as high as 75°C.

Sharma et al. (2012) depicted that to recover
maximum waste heat the suitable inlet temperature can
be in the range 40-40.7°C. They suggested
microprocessor junction temperature can be a maximum
of 90°C.

3 Process Description

Heat pump technology gives an effective and long-
lasting solution for both heating and cooling
applications. A conventional heat pump is a system
working on the compression refrigeration cycle
powered by either mechanical energy or electricity (@i
and Tirados, 2015). In data center cooling for both air-
cooled and liquid-cooled process heat pump is an
essential part that regulates the cooling medium’s
temperature. Typical refrigerants used in heat pumps are
ammonia and chlorinated or fluorinated hydrocarbons
electricity (@i and Tirados, 2015).

In the refrigeration cycle, the refrigerant
circulates due to temperature and pressure difference
between the components. The four main components of
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a refrigeration cycle are the compressor, condenser,
expansion valve, and evaporator. Figure 1 depicts the
mechanical compression refrigeration cycle of a
traditional heat pump. The red lines represent high
pressure and temperature and the blue line indicates low
pressure and temperature of the refrigerant. The cooling
effect is produced by the cold liquid refrigerant in the
evaporator. A mixture of vapor and liquid phased
refrigerant goes into the evaporator where the
vaporization of liquid provides the cooling effect before
leaving the evaporator. The vapor refrigerant is sucked
by the compressor where it gains high pressure and
becomes superheated. The output from the compressor
then enters the condenser. In the condenser, the vapor
refrigerant is cooled and condensed to a saturated liquid.
Heat is released from the refrigerant to the ambient
(Smith, 2005).

— =

Expansion valve

<=

o |

Compressor

Figure 1. Schematic diagram of a heat pump'’s mechanical
compression cycle (&i and Tirados, 2015).

The liquid refrigerant then enters the expansion
device typically an expansion valve where it is expanded
to lower pressure. The liquid refrigerant is partially
vaporized due to the expansion process giving a cooling
effect in the refrigeration cycle (Smith, 2005).

The efficiency of a heat pump is measured by the
coefficient of performance (COP). It is the ratio of the
heat delivered or supplied at high temperature to the
required power. Equation 1 represents the COP of the
heat pump (@i and Tirados, 2015).

_ 9 @)
COP = W
W= Qc— 0k )

In Equation 2 Qc is the amount of heat output from
the condenser, Qe is the amount of heat input from the
evaporator, and W is the power required in the
compressor. When there is no heat loss the work added
in the refrigeration cycle is equal to the difference
between heat output and heat input (i and Tirados,
2015).
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Typical COP values calculated in the work of i
and Tirados (2015) are between 3 and 10, dependent on
the difference between the delivery and output
temperature.

4 Process Simulation, Results and
Discussion

4.1 Simulation setup in Aspen HYSYS

For calculation and simulation first, the simulation was
set up in the Aspen HYSYS. Version 10 of Aspen
HYSY'S was used for simulation. In the component lists
two pure components described. The components are
pure water and pure Refrig-22(R-22). R-22 was
selected as the refrigerant medium and water which will
be supplied for the cooling process in the data center was
selected. After that, in the fluid packages, Peng-
Robinson (PR) package was selected which is the most
common and efficient package for HYSYS simulation.
The default parameters for the package was used by
Aspen HYSYS. Then the units of the heat pump which
are evaporator, condenser, compressor, and expansion
valve, were defined for the simulation with relevant
streams.

4.2 The energy required calculation from
Aspen HYSYS

One of the important tasks of the work is to perform the
calculation in Aspen HYSYS. Two alternatives were
selected for the simulation in the Aspen HYSYS. The
setup condition for the alternatives are shown in Table 1
and Table 2.

Table 1. Aspen HYSYS input condition for alternative 1

Stream name Water 1 Water 6
Temperature (°C) 65 70
Pressure (kPa) 101 101

Fluid package Peng-Robinson

Table 2. Aspen HYSYS input condition for alternative 2

Stream name Water 1 Water 6
Temperature (°C) 65 80
Pressure (kPa) 101 101

Fluid package Peng-Robinson

An Aspen HYSYS flow-sheet model of the process for
the simulation is presented in Figure 2.
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Figure 2. Model representation of the DC heat recovery
process via heat pump in Aspen HYSYS

Water 1 is the cooling water from the data center and
water 6 is water supplied to the district heating network.
The result of the simulation was obtained in a very short
time as the simulation in Aspen HYSYS is very quick
and efficient. The simulation results for the two
alternatives are presented in Table 3 and Table 4.

Table 3. Results of material and energy balance achieved
from Aspen HYSYS for alternative 1

Wa Fluid | wWat2 Fluid Fluid | Wat5 Wat Fluid
tl 1 2 3 6 4
T (°C) 65 51.24 55 51.24 88.84 40 70 74.25
P 101 2000 101 2000 3280 101 101 3280

(kPa)

Flow 55. 4.369 55.51 4.369 4.369 20.94 20.94 4.369
(kgmo

le/h)

Flow 1000 | 377.8 1000 377.8 377.8 377.1 377.1 377.8
(kg/h)

Lig 1.0 0.308 1.002 0.308 0.308 0.377 0.377 0.308
flow
(m3/h)

Heat 15e | 2131 1.576 2.088 2.082 5.968 5.919 2.131
flow +7 e+06 e+07 e+06 e+06 e+06 e+06 e+06
(kJ/h)

Table 4. Results of material and energy balance achieved
from Aspen HYSYS for alternative 2

Wa Fluid Wate Fluid Fluid Wate Wate Fluid
ter 1 r2 2 3 r5 ré 4
1
T (°C) 65 51.24 55 51.24 104.7 40 80 84.33
P 101 2000 101 2000 4000 101 101 4000
(kPa)
Flow 55. 5.419 55.51 5.419 5.419 17.02 17.02 5.419
(kgmo
le/h)
Mass 1000 | 468.6 1000 468.6 468.6 306.6 306.6 468.6
flow
(kg/h)
Lig 1.0 0.382 1.002 0.382 0.382 0.307 0.307 0.382
flow
(m3/h)
Heat 15e | 2.633 1576 2.590 2.580 4.851 4.798 2.633
flow +7 e+06 e+07 e+06 e+06 e+06 e+06 e+06
(kd/h)

4.3 Calculation of COP for heat pump

For alternative 1

The evaporation temperature from the simulation is
found 51.24°C.

Condensation temperature from the simulation is found
74.25°C.
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From the simulation the amount of heat output from the
condenser, Qc = 48950 kJ/h.

From the simulation power required in the compressor,
W = 5651kJ/h.

48950
cop ==
w 5651

=8.66

For alternative 2

The evaporation temperature from the simulation is
found 51.24°C.

Condensation temperature from the simulation is found
84.33°C.

From the simulation the amount of heat output from the
condenser, Qc = 53130 kJ/h.

From the simulation power required in the compressor,
W =9829 kJ/h.

cop=%=2""=-54
w 9829

So, when the cooling water from the data center
is 65°C and the supply water to district heating is 70°C
the COP is found 8.66. On the other hand, when the
cooling water from the data center is 65°C and the
supply water to district heating is 80°C the COP is found
5.4. The two COP values can be compared to an average
performance COP value of 6.8 from Oltmanns et al.
(2020). In that case the cooling water input was 45 °C
and the return temperature for the heat delivery system
varied between 50 and 70 °C.

4.4 Economic calculation

For the energy cost calculation, simple assumptions are
made. The price of electricity is estimated to be 0.1
EUR/KWh, and the district heat price was specified to
0.05 EUR/kWh.

So, the formula for the estimated economic potential is
presented in equation 3.

Economic potential 3)
= Price - Recovered heat
— (Elc.price
Recovered heat

cop

Oltmanns et al. (2020) have found that in 2018 the Telia
data center in Helsinki, Finland supplied 200GWh/a in
the nearby city of Espoo. So, taking this recovered heat
value as a reference, the economy for a large data center
facility can be calculated.

For alternative 1

Economic potential = 0.05222 . 2006Wh — (0.1ﬂ .
kWh kWh
M) =7.7 MEUR
8.66
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For alternative 2

Economic potential = 0.05222 . 2006Wh — (0.1ﬂ .
GWh kWh kWh
=270 = 6.3 MEUR

For the case of omitting heat pump, all the 200GW
energy can be utilized to district heating network, which
is worth of value 10 MEUR, as per KW district heat price
is 0.05 EUR.

The investment cost is mostly dependent on the
installation cost of the heat pump facility. Other costs
can be negligible for the heat recovery solution. The heat
pump cost is very critical to determine. From the study
of Nishihata et al. (2013) the installed cost for a 2 kW
pump is found to be 552.4 EUR. Thus, for a 24 MW
capacity data center, the cost of the heat pump will be
equal to 6.6 MEUR. Hence for a large amount of heat
recovery from DC, it can be estimated that the
investment of heat pump cost is high enough.

If the project is run for 10 years, the economic value
for all three alternatives to be calculated. The factor for
constant income is given by equation

1-(1+)™ 4)
i

Factor =

For n = 10 years and i = 7%, the factor is 7.02.
The economic result is to be calculated by equation 5

Economic result (5)
= Economic potential
- Factor
— Investment cost

For alternative 1

The economic result = 7.7 -7.02-6.6 = 47.45 MEUR
For alternative 2

The economic result = 6.3 -7.02-6.6 = 37.63 MEUR
For the alternative without a heat pump, there will be no
investment cost. So, the economic result will be 70.2
MEUR.

Comparison of economic result for

3

> different heat recovery solutions.

=

< 100 70,2

2 47,45

§ 50 37,63

§ o

S 8.66 5.4 No pump
i

COP of heat pump

Figure 3. COP of pump versus the economic value of heat
recovery solutions
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The comparison of the economic results for different
heat recovery scenarios is represented in Figure 3.

4.5 Evaluation of uncertainties

The three alternative solutions for heat recovery from a
data center depend on certain things. The most vital
thing is the temperature dependency. The required
cooling temperature specified by data centers and the
required temperature for the district heating network
should be specified by the respective companies. In
future work, it would be interesting to continue this
work based on data from existing data centers. These
two temperatures play a vital role in heat recovery
solutions. If the temperatures change the value of the
economic result will also vary. Besides the prices of
electricity and district heating may vary country wise
which will also affect the result. For the required
calculation, they are assumed. Moreover, pipeline cost
is very difficult to estimate as it depends on the climate,
length of connection, and environmental condition.
However, it can be assumed that the heat pump cost is
relatively larger than the pipeline cost.

5 Conclusion

Simulations and economical optimization at different
conditions in Aspen HYSYS were carried out.
Especially three alternatives were evaluated. The first
is an alternative without a heat pump in which the
cooling water leaves the data center at 80 °C and enters
the district heat network at 70 °C. The second is an
alternative with a slight temperature increase in the heat
pump. The cooling water temperature from the data
center is 65 °C and the temperature to the district heat
system is 70 °C. The third is an alternative with a higher
temperature increase in the heat pump. The cooling
water temperature from the data center is 65 °C and the
temperature to the district heat system is 80 °C. The
COP (Coefficient of Performance) in a heat pump for
these alternatives were calculated using the refrigerant
R-22 in the simulation program Aspen HYSYS. The
estimated economic potential for each alternative was
calculated by estimated values on electricity cost and
district heat price. In one alternative, the electricity cost
was specified to 0.1 EUR/kWHh, and the district heat
price was specified to 0.05 EUR/kWh. For the
alternatives using heat pumps, the capital cost was
estimated assuming that the heat pump investment was
dominating.

The COPs for the two heat pump alternatives were
calculated to be 8.66 and 5.4, respectively. The
economy for a large data center facility with recovered
waste heat of 200 GWh/year was calculated for 10 years.
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For the specified conditions, the net present value was
calculated to be large and positive for all the
alternatives.  As expected, the most economical
alternative was without a heat pump, and the most
economical heat pump was the one with the highest
COP. Pipeline cost is very much dependent on the
length and the local conditions for which it was not
possible to make a reasonable estimation.

The calculations show that there is a large potential
in using waste heat from data centers for district heating.
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Abstract

A dynamic model for lithium-ion battery (LIB) electrode
manufacturing and drying is developed in this paper. The
model is intended for analysis of different drying tech-
nologies, energy requirement calculations, and optimiza-
tion and control of the drying process. The model shows
that the infrared drying is faster than the convective dry-
ing when the heat source temperature is the same. The en-
ergy required to evaporate the solvent can be reduced by
gradually changing the hot air temperature. Drying is the
most energy-intensive process in cell manufacturing, and
the cell manufacturing process is the biggest contributor
to greenhouse gas emissions in the LIB industry. There-
fore, the presented model is useful for accurate estimation
of the environmental impact as well as for identifying the
appropriate measures to reduce energy requirements in the
rapidly growing LIB industry.

Keywords: lithium-ion battery, electric vehicle, electrode
drying, convection, infrared radiation, sustainable energy,
model, control

1 Introduction

Efforts to decarbonize the transport sector are currently
leading to a shift from fossil fuelled vehicles to electric
mobility. Although this development is still at an early
stage, the global market for electric mobility is expected
to grow rapidly in the future. Currently, the largest uptakes
of electric vehicles (EVs) are appearing in China and Eu-
rope. Within Europe, the Nordic countries have a leading
position. Norway has a high share of EVs, where 40%
of all new car sales in 2019 were battery electric vehicles
(BEVs) (International Energy Agency, 2019).

The demand for LIB is expected to increase rapidly
with the emerging technology for electric mobility. En-
suring that this development fulfills its potential for cli-
mate change mitigation is important. In that regard, life
cycle assessment studies provide good insights. They have
shown that the carbon footprint from LIB production may
contribute to a significant part of the overall greenhouse
gas emissions of BEVs (Kurland, 2020; Ellingsen et al.,
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2016). Especially, energy requirements in the cell manu-
facturing process are important drivers for these emissions
(Kurland, 2020).

A thorough understanding of the energy requirements
of the cell manufacturing process is crucial for an ac-
curate assessment of the current practices, the identifi-
cation of appropriate measures to reduce energy require-
ments, and the maximization of the potential for mitigat-
ing climate change. Thus, there is a need for research
driving towards sustainable, low cost, efficient, and high
energy density battery manufacturing practices. Conse-
quently, the use of sustainable materials, the adaption
of less energy-intensive technologies, and energy bench-
marking of process control practices are becoming impor-
tant (Susarla et al., 2018). An in-depth understanding of
the underlying principles of battery manufacturing would
give valuable insight into the fulfillment of these require-
ments.

The LIB consists of electrodes (cathode and an-
ode), separator, electrolyte, and a casing, for more de-
tails see Burheim (2017). Both the cathode and an-
ode are made of active materials, carbon black ad-
ditives, and a polymeric binder. Usually, the active
material for the cathode is lithium metal oxides such
as LiMny0Oy4, Li;NixMnyCo,0,. For either cathode
or anode, carbon black conductive additives are acety-
lene black, or graphite while the polymeric binder is
polyvinylidene difluoride (Kwade et al., 2018). These ma-
terials are dry-mixed together and combined with a sol-
vent to make a slurry. The solvent is either N-Methyl-2-
pyrrolidone (NMP), or water. Once the slurry is made, it
is coated onto a thin aluminium (cathode slurry) or cop-
per (anode slurry) foil, typically of 25-35 um in thick-
ness (Burheim, 2017). These coated thin films are then
dried to remove most of the solvent. The dried films are
then pressed to gain the predefined porosity and thickness,
which is known as calendaring. Then inside a dry room,
the electrodes are cut, stacked, and assembled into the cell,
with the rest of the parts. This cell is then activated by cell
conditioning processes.

Out of these, the most energy-intensive step is the elec-
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trode drying process (Yuan et al., 2017; Dai et al., 2019),
which also highly influences the cell performance by the
drying rate and method (Ahmed et al., 2016). A physics-
based model of this process would not only give a good in-
sight into dynamic drying behavior and energy optimiza-
tion, but also the potential of using new materials, dif-
ferent compositions, and different drying techniques. Al-
though modeling of thin-layer drying is a well-researched
topic in food, paper, paint, and pharmaceutical industries,
there is limited available literature dedicated to LIB manu-
facturing industry. The few existing models (Ahmed et al.,
2016; Susarla et al., 2018) are insufficient to fulfill the
above requirements. Therefore, we develop a dynamic
mathematical model of the electrode drying process. The
presented model is intended for analysis of different dry-
ing technologies, including calculation of energy require-
ment as well as optimization and control of the process.
In addition, a sensitivity analysis of process parameters is
presented to evaluate the model performance.

The paper is organized as follows. The system descrip-
tion including the model derivation, the used numerical
method and its’ stability are presented in Section 2. This
is followed by detailed results and discussions being pre-
sented in Section 3. Finally the conclusions that are drawn
from the study are summarized in Section 4.

2 Model Development

Drying processes are inherently complex due to simulta-
neous mass and heat transfer. The shrinkage of the thin
film further complicates the process due to the formation
of a porous structure as the solvent evaporates. The dry-
ing process has two stages; in the first stage evaporation
is only a surface phenomenon and the thin film shrinks.
In the second stage, the film does not shrink, evaporation
is capillary-driven, hence no longer limited to the surface
(Susarla et al., 2018). Further, during the first phase, the
active material particles and binder are dispersed in the
solvent. However, in the second phase, the particles are
drawn close to each other and the voids created by sol-
vent vaporization get replaced by air. Since the evapora-
tion is governed by different phenomena, the two distinct
stages require different mathematical descriptions. For
this study, the developed model will emphasize only on
the first stage.

2.1

To derive a simple, yet accurate model that describes the
drying process which later can be used in optimization and
control, the problem is simplified by well-established as-
sumptions and simplifications. Prior to the drying pro-
cess, the slurry is assumed to be uniformly mixed and
coated onto the current collectors. Thus, the tempera-
ture and slurry distribution in the x-direction (width of the
film) and in the y-direction (Ilength of the film) are uni-
form within the control volume. The electrode is assumed
to be moving in the y-direction with a constant velocity.
This leaves the control volume to only consider fluxes in

Model Derivation
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the z-direction (height of the film), which results in a one-
dimensional model. For further simplification, the thick-
ness of the film is assumed to be so small that the temper-
ature development in the z-direction is uniform.

The fluxes in the z-direction due to diffusion can be ex-
pressed by the one-dimensional diffusion equation:

ac_ e
ar 972

where, C represents the weight fraction of the solvent,
t is the time and D is the diffusion coefficient. The dif-
fusion coefficient is highly dependent on the temperature
and concentration. Mesbah et al. (2014) expresses the dif-
fusion coefficient as a function of polymer volume fraction
and temperature as follows,

Y
D=Dy- <1_¢p> -exp (_E> .
1+¢p RT

where Dy refers to the mutual diffusion coefficient and

varies with different compositions, ¢ is the polymer vol-

ume fraction, E is the activation energy, R is the universal

gas constant, ¥ is an empirical value and 7 is the film tem-

perature. The liner is assumed to be impenetrable, which

is equivalent to imposing a zero flux boundary condition
at the bottom of the film:

ey

2

ac _
dz
For the boundary at the top of the film, the boundary con-
dition is governed by the evaporation of the solvent. The
shrinkage of the film also has to be taken into considera-

tion. Mesbah et al. (2014) expressed the boundary condi-
tion as:

z=0: 0 3)

z=h(t):

oC _dh knMs (P, P,
D—+C—=— S22 4
8z+ dr psR (T Ta) @

where, & is the varying thickness of the film, k,, is the
mass transfer coefficient, M; is the molecular weight of
the solvent, p, is the density of the solvent, P is the par-
tial pressure of the solvent, P, is the vapor pressure in the
air and 7j, is the temperature of the heated air. The vapor
pressure and temperature of the heated air is considered
to be constant throughout the drying process. The vapor
pressure is approximated using the Antoine equation:

(7.54826— 1979.68 )

P, =¢-133.332:10 mrT-2B15)) (5)

where ¢ represents the relative humidity of the heated
air. In contrast to the vapor pressure, P; varies with both
solvent concentration and temperature. Khansary (2016)
expresses the solvent vapor pressure using Flory Huggin’s
theory for polymeric solutions as follows,

Py =Py -exp ¢§%+1n(¢s)+<l—vs>¢p ;6
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where, Py is the vapor pressure of the pure solvent, 2 is
the Flory Huggins interaction parameter, ¢ represents the
volume fraction of the solvent, and V5, V,, are the volumes
of solvent and solid, respectively.

An expression for the thickness of the film is obtained
by applying mass balance to the system. Since the thick-
ness is solely dependent on the evaporation of the solvent,
it can be described by the following formula:

dh _ kM (PP
d  pR \T T,)’

(7)

where, pr represents the density of the film. The densities
of the combined solids and solvent are assumed to be con-
stant throughout the drying process. However, the density
of the film is expressed as a linear function of the individ-
ual densities and solvent mass fraction:

pr=ps-C+(1-C)-pp, ®)
where, pj, is the bulk density of the solids.

Energy balance is applied to the system with the stated
assumptions. In addition, contributions from surface ten-
sion and shear stress gradients are assumed to be so small
that they can be neglected without affecting the accuracy
significantly. The energy balance for the film is as follows:

a7 dh  knMA (Ps_Pa>+

h— + T — -2
a piCoR \T T,

q'in

—_— 9
e ©

where, A is the latent heat of vaporization of the solvent
and can be approximated by a second degree polynomial
as follows:

A =6.991-T>—6193-T +1.848-10° : NMP (10)
A=-3.345-T>—-259.3-T +2.817-10° : water (11)

G, is the specific heat of the film. The variation of C,
within the temperature range is insignificant. Therefore, it
is set to a constant for simplicity. ¢, represents the heat
transferred into the film. The heat transportation is either
done by forced convection, radiation or a combination of
both depending on the configuration of the drying process.
Heat transportation done by convection is given by:

gin =ke - (T,—T) (12)
where, k. is the heat transfer coefficient. Susarla et al.
(2018) determines the heat transfer coefficient based on
the air velocity as follows:

—0.8
ke = 0.037 08 <“> pr'/3.702 (13)

a

where, v is the air velocity, t is the viscosity of the air,
Pa is the density of the air, Pr is the Prandtl number and
L is the characteristic length. Only the convective heat
transfer is considered during convective drying, and the
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temperature of the hot air is assumed to be unchanged by
the effects of the solvent evaporation.

However, for infrared radiative drying, the radiative
heat transfer from the source to the film, and the convec-
tive heat transfer from the source to the air stream above
the film are considered. This is because the airflow rate is
considered to be at ambient conditions, hence the temper-
ature of the air changes with heat transfer from the source,
and the solvent evaporation. Heat transportation from the
source to the film due to radiation can be written as fol-
lows,

g =ot- (1 -1*),

where, T; is the heat source temperature, o is the Stefan

Boltzman constant and € is the emissivity of the surface
of the film. The energy required for solvent evaporation
throughout the process is given by:

(14)

If

0= A Hileyap - Adt (15)
where, #; is the final time of the drying process and 7itey,p is
the evaporation rate. The total energy requirement for dry-
ing would include the energy needed for the heat source,
in addition to Q.

In addition, the air temperature during the infrared dry-
ing can be calculated by the energy balance to a unit vol-
ume of air stream as follows,

a7, ke(Ti +T —2T,,) + titeyapCp, (T — Ta)
dr PaCo,

;o (316)

where C,; and Cp, are specific heat capacities of the sol-
vent and air, respectively.
To complete the model, the initial conditions at 7(0) are
given by:
C(0,2) =Cy, T(0)=Tp,

h(0)=ho  (17)

2.2 Dimensionless Model

To simplify the numerical approach by immobilizing the
otherwise moving boundary conditions at the surface, di-
mensionless variables are introduced. The variables can
be expressed by the following dimensionless variables.

. t z ~ h

fi=— 7= — h:=— 18
o ¢ h ho (18)

- T ~ C - D

T:=— C:=— =— 19
Ty Co Dy (19)

where, Z, h, T, C, D represent the dimensionless vari-
ables which ranges from O to 1, while 7 =1, by setting 7y to
unity for simplicity. Substituting equations 18 and 19 into
the continuous model yields the following dimensionless

model: B
dh knMsto <PS Pa)

df piRhy \TTy T,

(20)
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a7 kaMsAty (B PR\ T dh
di — pCoRhhy \TT} T.To) h di
fo .
+ ———Gin, 21
ooy Gin 20
dC DDty 9*C
ot (hh0)2 07
with the boundary conditions:
aC
7=0: —=—=0 (23)
9z
_— DDyCy 0C  CCohy dh
Z = — - —_— =
hhg 07 o dr
My (BB (24)
psR TT) Ta
and the initial conditions at £(0):
C0,5)=1, TO)=1, L(0)=1. (25)

2.3 Numerical Approach and Stability

The system is solved in MATLAB® using the finite differ-
ence method (FDM). FDM approximates the derivatives
using the finite part of the Taylor Series expansion (Tan-
nehill et al., 1997). Before applying the FDM, the domain
of the system is discretized into a finite grid of nodes, with
the nodes representing the system properties at a finite
point in both space and time. The forward-time-central-
space (FTCS) differential scheme is used in approximat-
ing the derivatives as follows (Tannehill et al., 1997):

df _fH-AtN_fi

P (26)
O%f  firaz—2fi+ fi-az
FI2 AZ? @7)

Applying the FDM with FTCS-scheme yields the follow-
ing discrete equations:

A kM. P, P iy
RHA = AT [ S 2R ) 4 28
oA ok \ T, "1, )T Y

Ti+At~ ——i kmMsA . Py . P, +
ptCoRAiy \ T'T¢ T.Ty
toAT . Fifi+ar .

PiCphihoTy T r 29
~ionr  DiDotoAT Cla—2G+C LE (30

J - (;liho)z AR J

The upper boundary is found using a ghost cell.

There is a trade-off between the accuracy and the stabil-
ity of the numerical method. The dimensionless diffusion
equation is the limiting term for the stability of this sys-
tem. Thus, the stability criterion for the system can be

expressed by the general stability criterion for FDM (Tan-
nehill et al., 1997) on the diffusion equation as follows:
AF 1

AF? = DDyg
2max Tiho)?

€29

Therefore, the selection of the resolution is done to get a
stable and accurate enough solution.

3 Results and Discussion

The simulations for the composition of a 110 Wh (around
30Ah), NMC811-G battery is carried out for selected pro-
cess parameters. The film thickness, film temperature,
solvent fraction, and the drying rate with time is plotted
together in Figure 1. A hot air stream and a radiating
heat source of the same temperature are used to test both
the convective drying and infrared radiation drying. Only
cathode drying with NMP as solvent is presented here for
brevity, except otherwise stated.

As shown in Figure 1, The temperature of the film
rapidly reaches the hot air temperature during infrared
drying, and within 2 minutes for the convective drying,
while the solvent evaporation is continued for about 90
minutes for both drying processes. The film thickness
reached a constant value at the end of the drying pe-
riod, where approximately 90% and 99% of the solvent is
evaporated during convective and radiative drying, respec-
tively. This is because the radiative drying gives a higher
drying rate and shorter drying time than convective dry-
ing. However, it requires more energy for solvent removal
(Q) than the convective drying.

The general behavior of solvent removal and film thick-
ness reduction as shown in Mesbah et al. (2014), can be
seen here as well. Further, the film temperature transients
and the drying rate are of a similar pattern to the model
results given in Susarla et al. (2018). Moreover, Susarla
et al. (2018) have used the capillary pressure together with
the vapor pressure in the model, which gives high dry-
ing rates and low drying times. However, Ahmed et al.
(2016) suggest that the cathode drying can be limited by
the allowable NMP concentration in the dryer outlet air
(1000-2000 ppm), which means that the cathode drying
rate has an upper limit controlled by the dryer inlet air
conditions and the initial film conditions. Further, Rollag
et al. (2019) observed that increased electrode thickness
and elevated drying temperatures cause crack formation
in aqueous cathodes. These cracks were formed during
the second stage of drying, which is driven by capillary
forces. Therefore, improvements to the model to address
these issues need to be thoroughly investigated in the fu-
ture.

3.1 Effect of Initial and Process Parameters

The initial parameters such as the initial solvent mass frac-
tion Cy and the initial film thickness g are defined by the
type of battery that is being produced. However, the ini-
tial film temperature Ty, and the reference diffusion co-
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Figure 1. Film properties of the cathode during the convection and radiation drying processes.

efficient Dy mainly depend on the indoor environmental
conditions. The process parameters, which are the prop-
erties of the heat source (hot air or infrared heater) can be
changed selectively. For convective drying, these param-
eters are the relative humidity ¢, temperature 7, and the
velocity v of the hot air stream. For radiation, the temper-
ature T and emissivity € of the heater are the parameters
that can be changed.

To evaluate the effect of these parameters on the model
outputs (convective drying model), a sensitivity analysis
is conducted for all the parameters. The full range of in-
put parameter values that is suitable for the selected bat-
tery type is considered. The changes in the model output
values that happen due to the changes in these input pa-
rameter values are calculated, where only one parameter
changes at a time. The sensitivities are determined as a
percentage variation of the output for a percentage change
of each initial or input parameter. Energy required for sol-
vent evaporation (Q calculated by Equation 15) and the
drying rate are selected as outputs. The spider plot for
energy requirement is shown in Figure 2.

The most influential parameter on the energy consump-
tion is the hot air temperature (red dash dotted line) as it
rapidly changes the heat transfer. Having hotter air low-
ers the energy consumption. The energy requirement is
highly sensitive to the initial thickness of the film upon
entering the dryer (purple dash dotted line) along with the
initial solvent concentration of the film (blue dash dotted
line). The relative humidity (water) of the hot air is also
affecting the heat transfer rate due to the direct correlation
of humidity with the vapor pressure. Here, in this model,
the relative humidity of hot air is considered to be less
than 0.5, since it is bounded by the maximum allowable
limit of NMP in the outlet air of the dryer (Ahmed et al.,
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2016). The other parameters have a low impact on energy
consumption.

Further, the effect of the parameters on the rate of evap-
oration per area is calculated. All the parameters except
the initial film temperature are plotted in Figure 3 since
the initial film temperature has an insignificant impact on
the model outputs. Change of the initial solvent concentra-
tion, the initial thickness, and the reference diffusion coef-
ficient do not change the maximum drying rate that can be
achieved. The initial solvent concentration also has little
effect on the drying time. However, the initial thickness
has a significant effect on the drying time, where thicker
electrode coatings take a longer time to dry. Further, the
lowest reference diffusion coefficient tends to have a con-
siderably slower drying rate at the end of drying, which
leads to longer drying time.

On the other hand, change of the hot air temperature,
relative humidity, and air velocity change the maximum
drying rate that can be achieved as well as the drying time.
The direct effect of air temperature on the drying rate can
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Figure 2. Effect of different initial and input parameters on the
energy requirement.
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also be seen here. The higher the hot air temperature, the
higher the heat transfer to the electrode, thus higher the
drying rate and shorter the drying time. On the contrary,
when the relative humidity is increased, the evaporation
of solvent to the air reduces, hence the drying rate is de-
creased which results in longer drying time. Energy de-
mand can be both reduced by increasing the humidity and
increasing the hot air temperature. However, since fast
drying is usually preferable in the industry, low humidity
is needed. The increase of air velocity tends to increase
the heat transfer similar to the behaviour of air tempera-
ture, thus increases the drying rate and reduces the drying
time.

Since the air properties (73, @, v) are controllable pa-
rameters, these can be used to obtain faster drying. How-
ever, these parameters would also directly contribute to
the energy requirements. Therefore, optimum control of
the air properties is needed for the drying process to be
both efficient and less energy-intensive.

3.2 Reduction of Energy Consumption

Generally in convective drying, the use of high-
temperature hot air would provide a high drying rate and
low drying time, which would indicate low energy require-
ment for the solvent evaporation. However, a large amount
of hot air is needed for this, and the heat requirement
for producing this high-temperature hot air is significantly
higher compared to the evaporation energy (Ahmed et al.,
2016). Therefore, a multi-stage drying process is tested
to utilize high-temperature hot air for a shorter time, such
that the heating load would be reduced.

The film properties for a three-stage drying process
where the hot air temperature is gradually increased in 2-

steps are shown in Figure 4. The total drying time is sig-
nificantly reduced compared to the previous results, and
99% of the solvent is removed. The energy required for
the solvent evaporation is lower than the single-stage use
of low-temperature hot air (see Figure 5). However, the
evaporation energy for the 3-stage process is higher than
for the single-stage use of high-temperature air.

The energy consumption for air heating is directly pro-
portional to the inlet and outlet temperature difference of
the air heater. Assuming a constant ambient air tempera-
ture and no re-circulation of hot air, this energy is calcu-
lated for different hot air temperatures. For single-stage
drying with hot air temperatures of 353 K, 368 K, and 388
K, the energy needed for air heating is 392 MJ/ m3, 326
MIJ/m?3, and 276 MJ /m?, respectively. The 3-stage drying
requires 198 MJ/m>, which is significantly less than the
use of single-stage drying.

3.3 Comparison with Reported Literature
Values

Considering the full range of all the parameters used in the
single-stage drying, the distribution of energy requirement
for convective air heating is calculated. Here, the drying of
both the cathode and anode is added together. The results
are compared with the reported values of energy for drying
of industrial LIB plants of different capacities as shown in
Figure 6.

The model values are closer to the values reported by
Pettinger and Dong (2017) and Schiinemann (2015), than
the other values. However, the distribution of the model
results has a high variation which resulted from the uncer-
tainty in the used parameters. The range of the reported
literature values is also high, due to various factors such
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Figure 3. Effect of different initial and input parameters on the drying rate. Cp: initial solvent mass fraction, /g: initial film
thickness, Dy: reference diffusion coefficient, 7,: hot air temperature, ¢: relative humidity of hot air, v: velocity of hot air
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as the annual production capacity of the plant, different
battery types, and various specific energies. Further, some
of the reported values are for the combined process of
both calendaring and drying, as well as 2 step drying pro-
cesses where the remaining solvent is vacuum dried at a
later stage after calendaring. The model results provide a
benchmark, however, the model does not include energy
for the NMP recovery unit. No details are given regarding
the literature values, whether the energy values include a
NMP recovery unit or not. Ahmed et al. (2016) shows
in their model, that the energy loads for solvent recovery
(1969 kW) are significant compared to the energy demand
for air heating (3752 kW) and solvent evaporation (130
kW).

Although the model needs improvements with the in-
clusion of porosity, and capillary-driven drying, the model
has the capability of representing important electrode dry-
ing behaviours. Further, the model shows a good potential
of being used in energy and process optimization, and pro-
cess control design. Moreover, the model can be used to
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Figure 5. Energy required for the solvent evaporation at various
hot air temperatures 7,. The total energy (area of each curve) for
each temperature is also stated.
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compare the energy demand or drying efficiency of differ-
ent drying technologies, battery chemistries, and battery
types. This would further provide the opportunity to mod-
ify the model and use it with life cycle assessment models
to provide updated information on electrode drying. Thus,
different process modifications can be tested and assessed
by the energy requirement as well as the greenhouse gas
emissions and cost. It would also contribute to bench-
marking the energy demand for the LIB industry.

4 Conclusions

A simple, dynamic mathematical model for electrode dry-
ing is developed for the analysis of different drying tech-
nologies and energy requirement calculations. The input
uncertainty through different parameters is decomposed to
determine the most influential parameters on the model
output. The heat source temperature, initial thickness, and
solvent concentration of the electrode are the most sen-
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Figure 6. Comparison of energy consumption from drying
model with reported studies of Schiinemann (2015); Pettinger
and Dong (2017); Yuan et al. (2017); Thomitzek et al. (2019).
The model value is given with +2¢ variation.
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sitive parameters to both the drying rate and the energy
consumption. Although the model is limited by the lack
of porosity and capillary pressure, the results indicate the
model sufficiently illustrates the general traits of an in-
dustrial electrode dryer. The results are compared with
reported literature values.

Further, the use of multi-stage hot air distribution is
shown to be less energy-intensive than the use of high tem-
perature, single-stage hot air drying. The model shows
a good potential of being used in energy optimization,
and control design for drying processes. A further mod-
ified model can be used with life cycle assessment mod-
els. This could provide information on drying that changes
with various drying technologies, energy recovery meth-
ods, and various LIB types in terms of energy requirement
as well as the greenhouse gas emissions and cost.
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Abstract

In Northern Europe there are many CHP plants
operating with biomass and waste as fuel. As more wind
and solar power is introduced the operating hours of
these plants is reduced and thereby also the capital
burden is distributed on fewer annual hours. At the same
time there is a strong request to replace fossil oil by
renewable alternatives for many different purposes.
Here biomass and waste are the major resources
available to produce liquid or gaseous bio-based
products at existing CHP plants. In this study we have
simulated system solutions to identify energy and
material balances as well as rough economic figures.
The products assumed are primarily fuels like diesel,
hydrogen and methane, but also other organic
compounds can be considered. Today PREEM and St1
are planning large scale production of primarily bio-
diesel, or HVO, where liquid products from both pulp
and paper industry and CHP plants will be suitable
feedstock. The study includes a comparison between
hydrogen production in gasifiers to electrolysis, and
even a combination of these as oxygen from the
electrolyser can be used for the gasification, to avoid
ballast of nitrogen in the product gas. The study aims to
identify optimal solution under different conditions with
respect to both electricity and raw material costs, as well
as capital cost and operating hours.

Keywords: CHP, pyrolysis, gasification, HVO, liquid
bio-fuel, hydrogen.

1 Introduction

Pyrolysis has been studied as a method to convert solid
biomass into liquid bio-oil. A certain percentage of the
biomass is converted to bio-oil and gaseous compounds,
while a residue of mainly carbon is also produced. At
Brista (Stockholm Exergi) an interest has been to
produce bio-char primarily (Jonsson, 2016) while the
bio-oil is the primary product in e.g. Joensuu pyrolyser
plant (Joensuu, 2013). This is considered one of the first
large scale pyrolisers for converting biomass to bio-oil.
The production is around 50 000 ton per year. At Setra
in Gavle, Sweden, saw dust will be converted to bio-oil
as well, with a capacity of approximately 30 000 ton per
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year (Setra, 2019). The goal is to have the plant up and
running at the end of 2021. Here PREEM is one of the
part owners. PREEM has a plan to produce 3 million m3
bio-diesel and other bio-fuels per year by 2030 being
this is a driving force for pyrolysis of biomass in
Sweden. Already today PREEM is producing all their
diesel with 30% HVO (hydrogenated vegetable oils)
including one third tall oil and two thirds vegetable oil,
mostly palm oil. At Chalmers University tests have been
performed with pyrolysis (2 MW) in the G-valve of an
8 MW CFB (Circulating Fluidized Bed) boiler.
Approximately 70 % of the biomass has been converted
to gases, while the remaining solid fraction is passing
down into the CFB bed, where the solids are combusted
(Larsson et al, 2013). Most of the gases are condensed
into liquids, which is an energy rich mixture of
hydrocarbons. At Gobi gas a demonstration plant is
operated to convert solid biomass into hydrocarbons
using the FT (Fischer-Tropsch) process (Larsson et al,
2018). The product then can be used to replace fossil
hydrocarbons. In Gussingen a steam-based gasification
has been demonstrated in a CHP plant to produce a
nitrogen free gas with high heating value (12 MJ/Nmd).
This was reported in Rauch et al (2004). An alternative
route can also be to utilize black liquors from pulp and
paper industry, and especially the tall oil. Tall oil has
been refined at Sunpine in Pited followed by
hydrogenation and distilled at PREEM oil refinery in
Gothenburg. Here the oil is reacted with hydrogen to get
a product equal to the fossil oil used to produce diesel
and kerosene. From the previous work it can be
concluded that CHP plants can be used also for
production of liquid bio-fuels. In this system study we
are looking for the possibility to convert solid biomass
to bio-oil by integration to existing CFB-boilers at
Malarenergi AB’s CHP, but principally any FB-boiler
could be converted in a similar way.

2 System Study

The study investigates the integration of a pyrolysis
reactor and a combination with a gasifier, alternative
with an electrolyser to produce Hz, hydrogen, and also
02, oxygen, which can be used as complement to air in
the combustion and gasification in a CFB boiler with the
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capacity of 150 - 180 MW, operating on biomass or
organic waste. We then study complementing this with
only a pyroliser or a combination with also a gasifier.

The sensitivity analysis includes the fluctuations in
electricity price for purchased electric power, the price
for biomass and waste as well as the annuity for the
capital cost. Different operational modes are then
evaluated assuming different demand of heat and
electricity over a year in order to investigate reasonable
operating hours for production of the liquid or gaseous
fuel. Here also different products are assumed like
pyrolysis liquid for HVO production (hydrogenated
vegetable oil), methane and hydrogen. Hydrogen can be
utilized either for refinement of the pyrolysis liquid
directly or extracted and sold as a product for different
applications like fuel to fuel cells or similar.

The system alternatives then become:

1. CFB with pyroliser (pyrolysis liquid as it is to a
refinery).

2. CFB with gasifier (for hydrogen production
primarily).

3. CFB with pyroliser combined with gasifier and gas
upgrading with separation system.

4. CFB with pyroliser combined with electrolyser.

5. CFB with pyroliser combined with gasifier and gas
upgrading with separation system plus electrolyser.

The system design with dimensioning of different
equipment to balance the 180 MW thermal capacity of
the CFB boiler is carried out. Thereafter a rough cost
estimate is made for the investment cost and
maintenance cost for the different solutions. The annual
costs for each system design is estimated. Concerning
dual bed gasifiers Lundberg et al (2018) have presented
conversion measured in a pilot plant and discussed scale
up of this.

The assumptions for some different possible scenarios
are based on heat demand for previous years. Year 2016
when the temperature dropped to —20°C for several
months, 2010 which was a harsh winter generally with
much snow and 2019 when temperature has been quite
high most of the time. On the other end we have summer
2018 when the temperature was 30°C and higher for two
months. For “extreme periods” with very high or low
temperature we look at hourly values, while normally
monthly averages. From this we calculate energy
demand with respect to heat, cooling and electricity and
make a diagram showing the demand as a function of
hours for each year.

We also look for the price of electricity, heat and cooling
over the year for these years but also simulate other
prices that might be expected in the future during
different time periods. Here we look for how much of
the total electricity production that comes from wind and
solar power today and from this try to predict future
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probable price. When there is a lot of wind power we
can expect low electricity price and then electrolyzes
may be the best alternative for hydrogen production, and
summertime solar power will be in surplus

The calculations are plotted in a diagram where we can
compare cost of product as a function of hours per year,
fuel cost and electricity cost. The products assumed are
Hz and HVO.

3 Simulations

The model is primarily energy and mass balances for the
different equipment complemented with chemical
reactions for combustion, gasification and pyrolysis as
well as electrolysis.

ami_ . .

W‘ (min,i - mout,i) (1)
ami _

5 = K(T)*myg, )
Z? m; inXiin = Z{{ M outXiout 3)
0Q; _ /.. . <0m;

o = (ing = Mgye) * Cpy x AT + AH*—= (4)

Here 1h;,, ; is flow in (kg/s) of component i and 7, ; is
flow out. k (T) is a reactivity constant for a given
reaction, @; is the energy in kWh or kJ. C,,; is the heat
capacity and AT is the temperature difference. AH is the
heat released (or taken up) during the reaction.
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Figure 1. System with CFB boiler, pyrolyser, gasifier and
electrolyser.

The fluidization of sand was determined from the
balance between gas flow and buoyancy forces versus
gravity forces. For full combustion this forms only CO2
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and H20. For the gasification we get different
composition depending on the relative oxidation (how
much O2 is added in comparison to what is needed for
100% combustion), capacity (ton DS/m?h) and
temperature. The gas composition for two different
cases are given in Table 4 (Dahlquist et al, 2018). The
energy balance in the CFB boiler is given in Table 1 and
for the pyrolysis in the G-valve in Table 2. The boiler
considered is recycled wood CFB boiler at Malarenergi
with approximately 150 MW fuel feed. Part of this is
used to heat sand which is passing over to the G-valve
to heat fuel injected also there. This heat together with
partial combustion is used as input to pyrolyse bio-mass
and waste.

Table 1. Energy balance for the CFB boiler

Alternative 1
Fuel to CFB boiler

kgTS/s 7.7

MW HHV (21MJ/kg) 161.7

MW LHV (19 MJ/kg) 146.3
Fuel to G-valve- pyrolyzer

kgTS/s 7.3

MW HHV 152.5

MW LHV 138
Air boiler

m3/s 27.3

kg/s (1 m3=1,293 kg) 35.3

MW to heat air to 850 oC 29.3
Air pyrolyzer

m3/s 3

kg/s 3.9

MW to heat air to 450 oC 1.7
Sand to cyclone

kg/s 54.6

temp boiler 850

temp after pyro 450

MW to pyrolyzer from sand 17.9

Table 2. Energy balance for the pyrolyser.
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Pyrolyzer

MW from combustion in pyrolyzer

MW to heat fuel to 450 oC 2.6
Losses

% 11.5
MW (incl drive pyrolyzis) 17.5
MW to drive pyrolyzis 1123 kl/kg 8.2
Pyrolyzate lig

% 64.6
MW 98.5
k/s 4.7
kg/h 16884
Gas from pyrolyzis

% 7.1
MW 10.8
Solid residue to CFB boiler from G-valve

% 16.8
MW 25.6
Sum MW from pyrolyzer to boiler 36.4

3.1 Pyrolyser

Pyrolysis demands 8.2 MW while the heat from sand
from the cyclone is 17.9 MW. Total losses are estimated
to be 17.5 MW, assuming same proportion as in the
small pilot plant. In reality losses can be reduced in a
larger plant. Heat in gas and solids that are fed back to
the CFB boiler are 36.4 MW solid organic residues and
10.8 MW gaseous compounds. The heating value in the
pyrolysis liquid is 98.5 MW which correspond to 16.9
ton/h. Pyrolysis balances have been given in e.g. Neves
et al (2015), where different conditions have been
investigated. In our example we have used the balance
presented by Atsonios et al. (2015) which is quite
typical.

1 kg bio-oil may contain 46.7 mol C, 62 mol H, and 23.6
mol O. To remove 23.6 mol O we then need 23.6 mol
H». 4.69 kg liquid/s means 23.6 mol O/kg*4.69 kg/s =
110.7 moll/s.

3.2 Gasifier

We have used experimental data from our pilot gasifier
using wood pellets with 1.2 ton DS/m?, h at 42 %
relative oxidation (EOR) and steam addition. The
gasification temperature was 670°C. The gas
composition was 8.4% Hy, 10.9 % CO, 2.4% CHg, 17.8
%C03, 14.9 % H,0 and 45.7% Noa. In reality the water
content is quite uncertain as an unknown amount was
condensing in the sampling system. We have made two
assumptions. In the first case we just have used air as
oxidation media and not treated the gas before the
membrane separation. In the second case we have used
oxygen instead of air and first condensed out water to
90% and then removed CO; to 90% using MEA. In the
first case we can assume some H,O and some CO; may
be passed over with the H» through the membrane, while
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in the second case the gas will be almost 100% Ha. In
Table 3 we can see how the gas composition is changing
over the different steps. In column 1 we have the raw
gas after the gasifier. Then we have membrane filtrate
where we have assumed 97% of the H; as clean gas in
column 2 and residual gas going back to the CFB boiler
in column 3. In column 4 we have the “raw gas” after
condensing out water to 90% and removed CO, to 90%
in a MEA scrubber or membrane filter with MEA at the
back side. In column 5 we then have 100% H. and in
column 6 the composition of the residual reject gas.

Table 3. The gas composition from raw gas to clean H;
respectively residual gas for the two alternatives — gas
separation in membrane filter directly respectively after
separation of H,0, CO; and not using air but oxygen from
hydrolyzer.

Membrseparation Mo N2 and remove H20 + CO2 to 90%

Gas from direct 97% Feed gas Membr separatic Raw gas
gasifier  Filtrate  Reject to membr Filtrate  Reject without N

H2% B4 100 0.27 335 10015 205

Co% 10.9 118 436 64.5 26.6

CH4% 24 26 5.6 143 58

Co2% 17.8 193 6.9 10.3 43.4

H20% 149 163 6.4 54 37

N2% 45.6 487 o o o
100 100 100 100 100

Calculations are now made for two different cases. In
the first case it is actual gas composition from our pilot
gasifier where we operated at 670 °C, 42 % relative
oxidation and a capacity of 1.2 ton DS/m?.h. The
moisture content was 30% by addition of steam to wood
pellets (Table 4 case 1). The second case is using a
regression model from many gasification experiments in
the pilot plant and assuming 35% relative oxidation, 2
ton DS/m2.h, 800 °C, 30 % moist (Table 4 case 2).

Table 4. Gas composition and mol/kg DS for the different
components for two different raw gas compositions.

Casel Case 2
Raw gas without N2 ;Raw gas Raw gas without N2 :
water condensed out water condensed ou

% mol/kg DS % % mol/kg DS

H2% 20.5 17.7 20.2 40.7 41.6
CO% 26.6 14.9 12 24.2 18.2
CH4% 5.9 3.3 4.3 8.7 6.5
C02% 43.3 24.4 11.8 23.8 17.8
H20% 3.7 6.4 13.6 2.7 2.8
N2% 0 0 38.1 0 0

tot 100 66.7 100 100 86.9
H2+CO+CH4 39.2 72.8

The balances for the pyrolyser is taken from Atsonios et
al (2015). We have noticed that for 4.67 kg pyrolizate/s
we need to remove 110.7 mol Ofs. For the first gas
composition we produce 17.7 mol Ha/kgDS. (110.7 mol
Ha/s)! (17.7 mol H./kgDS) = 6.25 kg DS/s. If we can
convert CO and CH4 to H2 as well we get 17.7 + 14.9 +
2*3, 3 = 39.2 mol Hy/kg DS. This would mean that 2.8
kg DS/s would be needed to the gasifier to cover the
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reduction of Oxygen in the pyrolisate. For the second
gas composition (case 2) we get 41.6 mol Ho/kg DS
which gives a demand of 110.7/41.6 = 2.7 kg DS/s. If
we convert also CO and CHa to Hy through reaction with
steam, we would get 72.8 mol Hz/kg DS and a demand
of 110.7/72.8 = 1.52 kg DS/s. From this we can see that
how the system is designed and how the gasifier is
operated will have a significant effect on the capacity of
the gasifier. With the second case the size would be 43
% compared to the first case for only H» utilized and 54
% if also CO and CHjs is converted to H..

If we have a HHV of the fuel at 21 MJ/kg we would need
a gasifier with 1.52*21=31.9 MW while in the case 6.25
kg DS/s*21 MJ/kg the capacity would be 131 MW. Cost
estimates for the gasification and enrichment of H; has
been presented in Naqvi et al (2017). We use the figure
70 M€ for a 180 MW gasifier plant and use the scaling
factor 0.8, which gives 23.5 M€ for case 1 and 17.6 M€
for case 2. If we look at alternative 5 where we combine
gasifier with electrolyser we get 13.5 respectively 10.1
M€ for the gasifiers but have to add the cost for
electrolyser as well.

3.3 Electrolyser

Electrolysers use electricity to split water into H, and
O>. If we have a demand of 110.7 mol Ha/s it means that
we also produce 55.4 mol Oz (110.7 mol O). This can be
used in the combustion, but especially in the pyrolyser
and the gasifier if we combine with also this.

For the electrolyser we can assume the price to be some
500 €/kW at large scale up to the double for small scale
electrolysers. Typically, one kg H, demand 58 kWhel
for production, which means 0.017 kg Hz/h with one KW
input electricity. For the demand 0.22 kg Ha/s then
means a capacity of 0.221 kg H./s/(0.0000047 kg Ha/s)=
46 800 KW. For alternative 5 a 23 400 kW electrolyser
is needed. We assume 0.12 as annuity (4%, 10y) and
cost for electricity in the range 1-10 €cent/kWhe. The
prize of electricity will be dominating. When there is a
surplus of electricity production we will be in the lower
range of the span, while when there is a deficiency the
prize will be in the upper range. This makes it more
complicated to decide best technology. It would be good
to have both gasifier and electrolyser and use the bio-
gasifier when electricity prize is high, and electrolyser
when it is low. If we assume a cost of 500 $/kW it means
446 €/kW in investment cost. This would give an
investment cost of 20.9 M€ for the 46 800 kW unit and
10.5 ME for the 23 400 kW unit.

4 Results and discussion

In Tables 5-7 we see the capacities for the different
alternatives. We have assumed a biomass fuel price of
14 €/ MWh, which is average today. For electricity we
have assumed 10 €/ MWh and 35 €/ MWh, as we expect
quite strong variation over the year, depending on the
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balance between production and consumption. We also
have looked at 5000 hours and 7000 hours of operations
per year. All equipment is assumed having 20 years life
time and 5% interest rate, giving annuity 0.081.
Concerning the gasification and electrolyzes the figures
are reasonable, while for the pyrolysis it is more of a
“guestimate”. The cost figures are taken from Naqvi et
al (2017). There already are vessels for pyrolysis at the
CFB boilers, the G-valves, but addition is needed with
fuel feeder, gas outtake and gas condensation. As the
reactor for Hx with pyrolysis liquid is principally same
for all alternatives except for alternative 1, it has not
been included. We have assumed the value of the
pyrolysis liquid to be 70% of the refined (reacted with
H>) for case 1. For case 2 we have just assumed same
value for H; as for pyrolysis liquid. For case 2 and 3 we
have added a cost for membrane separation for H»
enrichment of 10 M€, and for case 5 half of this. These
figures are taken from Nagqvi et al (2017).

Table 5. 5000 hours per year, biofuel cost 14 €/ MWh,
electricity 10 €/ MWh, annuity 0.081.

5000 h/year Case

Total cost incl capital/y 1 2 3 4 5
Capital cost(0.081) M€ 3.2 2.7 6 4.9 5.5
Fuel 5000 h/y 14 €/MWh  13.9 12.3 19.4 17.2 12.3
Cost el 106/MWh 2.3 1.2
Total cost per year 17.1 15 25.4 24.4 18.9
Income pyroliq 17.2 24.6 24.6 24.6 24.6
Gross benefit 0.12 9.7 -0.7 0.2 5.7

Table 6. 7000 hours per year, biofuel cost 14 €/ MWh,
electricity 10 €/ MWh, annuity 0.081.

7000 h/y el 10 €/MWh Case

Total cost incl capital/y 1 2 3 4 5

Capital cost(0.081) M€ 3.2 2.7 6 4.9 5.5
Fuel 7000 h/y 14 €/MWh  19.4 19.4 19.4 19.4 17.2
Cost el 106/MWh 3.3 1.6
Total cost per year 22.6 22.1 25.4 27.6 24.3
Income pyroliq 24.1 34.5 34.5 34.5 34.5
Gross benefit 1.5 12.4 9.1 6.9 10.2

Table 7. 7000 hours per year, biofuel cost 14 €/ MWh,
electricity 35 €/MWh, annuity 0.081

7000 h/y, el 35€/MWh Case

Total cost incl capital/y 1 2 3 4 5

Capital cost(0.081) M€ 3.2 2.7 6 4.9 5.5
Fuel 7000 h/y 14 €/MWh  19.4 19.4 19.4 19.4 17.2
Cost el 35€/MWh 11.6 5.8
Total cost per year 22.6 22.1 25.4 35.9 28.4
Income pyroliq 24.1 345 34.5 34.5 34.5
Gross benefit 1.5 12.4 9.1 -1.4 6.1

Table 8. 7000 hours per year, biofuel cost 14 €/MWh,
electricity 100 €/ MWh, annuity 0.081

7000 h/y, el 100 €/ MWh Case

Total cost incl capital/y 1 2 3 4 5
Capital cost(0.081) M€ 3.2 2.7 6 4.9 5.5
Fuel 7000 h/y 14 €/MWh  19.4 19.4 19.4 19.4 17.2
Cost el 35€/MWh 33 16.5
Total cost per year 22.6 22.1 25.4 57.3 39.1
Income pyroliq 24.1 345 34.5 34.5 34.5
Gross benefit 1.5 12.4 9.1 -22.9 -4.7

From the results we can see that for 5000 hours
operations the alternative with a smaller gasifier and a

DOI: 10.3384/ecp2017685

Proceedings of SIMS 2020

smaller electrolyser looks like a good alternative. The
electrolyser is then used to produce both Hz and O,. The
02 is used in the gasifier, and thereby giving a better gas
from the gasifier, without N> from the air. For 7000
hours most cases are economic at low electricity price,
but especially alternative 4 becomes very unprofitable
with the higher electricity price. As we don’t have very
accurate figures for the value of pyrolysis liquid of
different qualities, and neither for large amounts of Hy,
the results are more giving relative impact of different
alternatives, but clearly show the importance of cost for
both biomass and electricity. If we could use waste
instead of biomass, we would have an income of 12
€/MWh instead of a cost for the better biomass of 14
€/MWh, but instead there would be an issue of what
quality the pyrolysis liquid would have, if there is e.g.
halogens from PVC in the plastic fraction.

From the analysis we can see that the span with respect
to economy is high for the different alternatives. This is
due to high difference in prize for different fuels both
right now, but certainly also in the future. The capital
cost also has gone down a lot last years for electrolysers
and probably will proceed going down if the technology
will be used much more frequently than in the past. We
also can see that the sizing of especially the gasification
plant will depend a lot on how much oxygen there will
be in the liquid product after the pyrolysis. From
literature we can see that the amount of oxygen varies
between some 20 to 50 wt. %. If we can utilize both H.
and CO for reduction of O in the liquid product it will
also make a large difference compared to if only Hy is
used. Still, we have reliable figures on many process
parts verified in both own experiments on gasification
of different biomass and black liquors as well as reports
from literature from experiment in pilot and
demonstration plants, showing that each part of the
processes are possible to get to work, although the
complete systems have not been implemented yet.

5 Conclusions

The study shows that different system solutions can be
the most economic depending on the conditions. If the
price for pyrolysis liquid is good even without
hydrogenating it, case 1 may be interesting. If there is a
strong demand for Hz as such, case 2 is feasible. If the
value of the pyrolysis liquid is much higher after
hydrogenation the addition of the gasifier make sense as
in case 3. If the electricity price is low case 4 is good.
If the electricity price is varying case 5 make sense, and
also it is positive that the O, produced in the electrolyser
can be utilized in the gasification. Thereby we get a N2
free gas which is much easier to handle than gas with
high amount of N,. The cost figures are of varying
quality and thus next step will be to do more detailed
cost estimates and more detailed design. Here we will
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utilize the simulation model we have developed to give https://www.setragroup.com/sv/press/pressmeddelanden/2

the possibility to do more sensitivity analysis. 019/setra-och-preem-forst-i-europa-med-fornybara-
drivmedel-fran-sagspan/. 2019.
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Hybrid Model for Fast Solution of Thermal Synchronous
Generator With Heat Exchanger
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Abstract

Overheating of synchronous generators may lead to a
shortened generator lifespan, thus strict constraints are im-
posed on their operation. A common constraint is to re-
strict the power factor of the generator to lie below, say,
0.86 overexcited. In some recent work, a dynamic ther-
mal model of the generator with cooling heat exchanger
has been developed; the idea is that this allows for bet-
ter monitoring of generator temperature, while relaxing
on the power factor constraint. The current model is only
valid for an ideal case of constant heat capacity. In this
work, the generator model is extended to allow for tem-
perature dependence in heat capacity of water and air in
the heat exchanger model. The consequence of this more
realistic model, is that it is no longer possible to find an ex-
plicit, analytic solution of the heat exchanger model, and it
is now necessary to instead solve numerically a two point
boundary value problem for each time step in the differen-
tial equation solver.

It is shown that the effect of temperature dependence in
the heat capacities has a noticeable effect on the solution
of the model. The inclusion of on-line numeric solution of
the heat exchanger model does, however increase the com-
putation time of the thermal generator model by a factor
of several thousand. Here, we instead study the possibil-
ity to solve the numeric heat exchanger model multiple
times off-line, and then fit a regression model that gives a
correction to the analytic solution. Both linear regression
and nonlinear regression (neural network) is considered.
Both types of regression models allow for a speed-up in
the computation time of the thermal generator model of a
factor of around 2000. In the computations, computer lan-
guage Julia was used, with the DifferentialEquations and
the Flux packages.

Keywords: linear regression, nonlinear regression, ther-
mal model, machine learning, surrogate model, hybrid
model.

1 Introduction
1.1 Background

Synchronous generators operated at high power factor
face high currents, and potential overheating. To protect
the generators from overheating, European hydropower
generation limits the power factor to the range [0.85,0.95]
overexcited, while in Norway the power factor should be
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less than or equal to 0.86 (Pandey, 2019). It is of interest
to allow for more flexible constraints on the power factor
to better handle sudden changes in consumption. To do
this, it is necessary with good monitoring and control of
generator temperatures; this possibility was discussed in
(@yvang, 2018).

1.2 Previous work

As a further study of the thermal generator model in (@y-
vang, 2018), Lie' proposed a slightly more formal model,
still assuming constant heat capacity in materials. This

model was further studied in (Pandey, 2019); Pandey
et al., 2019), where temperature dependences in heat ca-
pacities were introduced. Temperature dependence in heat
capacities of air and water invalidates the analytic solution
of the heat exchanger model, requiring the numeric solu-
tion of a static two-point boundary value (TPBV) problem
for every time step in the time integration. The numeric
solution of the TPBV problem is much slower than evalu-
ating the analytic expressions (Lie?), leading to excessive
computation time for model fitting, and on-line uses such
as state estimation and advanced control. It is therefore of
interest to study the development of simplified models/-
surrogate models for the heat exchanger. A standard pro-
cedure would be to solve the TPBV heat exchanger model
multiple times off-line, and then fit a regression model
to the generated data. Data for surrogate models do not
contain measurement noise per se, so an alternative to a
regression model could be table look-up or interpolation.
Still, regression models are often simpler, and there may
be some “noise” due to inaccuracies in numeric computa-
tions. The problem of overfitting the data is relevant for
surrogate models.

1.3 Overview of the paper

Instead of solving the nonlinear TPBV problem of temper-
ature dependent heat capacities within the time integrator
of the thermal synchronous generator model, data-driven
surrogate models were developed for the nonlinear heat
exchanger model as a correction to the analytic solution.
The goal is that this hybrid heat exchanger model consist-
ing in the analytic, ideal solution combined with the ex-

ILie, B.: Solution to Project in course FM1015 Modelling of Dy-
namic Systems at University of South-Eastern Norway, 2018.

2Lie, B.: Lecture Notes in course FM1015 Modelling of Dynamic
Systems at University of South-Eastern Norway, 2019.
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Figure 1. Thermal model of aircooled synchronous generator.

plicit surrogate correction, should give considerably faster
solution time for the thermal generator model. Both lin-
ear regression and nonlinear regression (neural network)
are considered, and validation is used to choose model or-
der/avoid overfitting.

The paper is organized as follows. Section 2 describes
the problem that arise from temperature dependence in the
heat capacities and the impact on simulation time. Section
3 describes linear regression and the idea of validation,
while Section 4 describes nonlinear regression. Results
are discussed in Section 5, and some conclusions are given
in Section 6.

2 Solution of the Counter-Current
Heat Exchanger Model

A thermal model of a counter-current heat exchanger was
developed in Lie?.

The following explicit/analytic expressions were
formed for the effluent temperatures of the tube side (7))
and the shell side (7):

A A AN
_ Ny, T;'exp(—Ng, ) +Ng, T;* (1 —exp(—Ng,))
- A
Ng, — N§ exp(—Ng, )

T

(D

A\ g S AN
_ NSt Tis +N§tTit(1 —exp(—NSt))

TS
AN
Nét - Ngt exp(—NSt)

e

: (2)

Here, T\ and T}* are the influent temperatures of the heat
exchanger. Ny, and Ng, are the Stanton numbers of the

tube side and the shell side, respectively. Also, NSAt is the
difference in Stanton numbers, and is expressed as:
A t

Ng; — Ng;.

Ng, = 3)

In addition, the temperature profile across the heat ex-
changer length can be obtained by substituting the explicit
expression of 7} in the following equations:

3Lie, B.: Lecture Notes in course FM1015 Modelling of Dynamic
Systems at University of South-Eastern Norway, 2019.
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A VAN
(Néte(_NS‘ )x — N3)T! + (N, —Néte(_NSt )X)Tes

Tt(x) = N
NSt

4)

A A
Ti(x) = (N‘Sgte(iNst x— Ng)T;' + (Ng, — Ngte(iNS‘ )x>TeS
S - NA .

St

Q)

The Stanton numbers Ng, and N, for the tube side and
the shell side, respectively, are given as

UA

N§ = —— (6)
Cp,ty
UA

N§ = —, 7
Cp,sTis

where % Ay is the heat transfer coefficient, ¢, and ¢, s
are the specific heat capacities at constant pressure, and
e and rig are mass flow rates.

The previous analytic expressions are only valid for an
ideal heat exchanger model with constant Stanton num-
bers. For a more realistic heat exchanger model, specifi-
cally, a model with temperature dependence in the heat ca-
pacities, a numeric solution is required. In this work, the
two-point boundary value problem of the thermal model is
solved numerically by utilizing the boundary value prob-
lem (BVP) solvers available in the DifferentialEquations
package for Julia (Rackauckas and Nie, 2017).

In the thermal model of Lie*, cold air is blown by a
fan into the gap between the rotor and the stator, which
cools the synchronous generator before returning to the
shell side of the counter-current heat exchanger. There,
the hot air is cooled by cold water passing in the tube side.
In this work, temperature dependence is only considered
in the heat capacities of air and water in the heat exchanger
part of the model.

Temperature dependence in the heat capacities is often
expressed as an empirical power series in 7 or as a polyno-
mial in 7 (Murphy, 2020). In this work, polynomials were
fitted to the experimental data in (Incropera et al., 2013)
and compared with the empirical equations in (McBride
et al., 2002). Figure 2 shows the comparison between the
specific heat capacities of (Incropera et al., 2013) and the
empirical equations of (McBride et al., 2002).

Furthermore, to study the impact of the temperature de-
pendence of the specific heat capacities of air and water on
the solution of the counter-current heat exchanger model,
the following models are considered:

* Model 1: An ideal heat exchanger model, which
is solved using the analytic expressions. The spe-
cific heat capacities of air and water are constant and
equal 1.15kJ/kg/K and 4.2kJ /kg/K, respectively.

4Lie, B.: Solution to Project in course FM1015 Modelling of Dy-
namic Systems at University of South-Eastern Norway, 2018.
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Table 1. Operating conditions of the heat exchanger model.

¢p for water ¢p for air
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7th. order fit 1.030 Sth. order fit
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Figure 2. A comparison between the specific heat capacities of
(Incropera et al., 2013) and the empirical equations of (McBride
et al., 2002).

* Model 2: An ideal heat exchanger model, which is
solved using the BVP solvers. The specific heat ca-
pacities are the same as in Model 1.

* Model 3: A non-ideal heat exchanger model with
¢,(T), which is solved using the BVP solvers. The
specific heat capacities are described by polynomials
constructed from the experimental data in Incropera
et al. (2013).

Figure 3 shows a comparison between the solution of
Model 1 and the solution of Model 3, where the operating
conditions are described in Table 1. Also, Table 2 shows
the benchmark results (simulation time) for the three mod-
els.

Analytic vs. Numeric Solution when €,(T)
40

T

=

33

=

o3

30

T[°C]

10

0.0 0.2 0.4 0.6 0.8 1.0
Relative Position x

Figure 3. Analytic solution (solid lines) vs. numeric solu-
tion (dotted lines) when the specific heat capacities depend on
temperature. For the ideal model, the specific heat capacities
of air and water are constant, and equals 1.15kJ/kg/K and
4.2kJ /kg/K, respectively. For the numeric solution, the specific
heat capacities are described by polynomials constructed from
the experimental data in (Incropera et al., 2013).

Figure 4 shows a comparison between thermal gener-
ators model with heat exchanger Model 1 vs Model 3 at
the operating conditions. Table 3 shows the benchmark
results for the generator model when the three heat ex-
changer sub-models are used.
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Symbol Description Value
Inputs u

T, Cold water temperature 3.8°C

TP Hot air temperature 39.1°C

Hily, Water mass flow rate 53.9kg/s

ity Air mass flow rate 49.2kg/s
Parameters 0

U Ay Heat transfer, air to water 44.46kW /K

Table 2. Benchmark results for the heat exchanger model.
Model 1 has median time 9 s and mean time 10.6 (s on a given
computer; times are scaled to unity at 1% row element.

Model Median time Mean time
Model 1 1 1
Model 2 443 451
Model 3 2120 1940

In this work, the following steps are taken to reduce
the simulation time of Model 3 (the case of temperature
dependence in the heat capacities):

* First, both Model 1 and Model 3 are solved for a va-
riety of conditions (T, Tah, My, and r1,), and the re-
sults are stored in a data matrix.

* Next, a data-driven model is developed by lin-
ear/nonlinear regression. Here, the regression model
is expressed as a correction term to the analytic ex-
pressions.

* Finally, the combination of the regression model and
the analytic expressions forms explicit expressions
that relate the influent temperature of water/air to the
effluent temperature of water/air. Solving explicit
expressions is much faster than solving a nonlinear
two-point boundary value problem numerically.

3 Linear regression

As described in (Gujarati, 2019), given a data set
{»i, x1i, X2i, ..., xx; }_, of n observations, a generic linear
regression model can be expressed as:

yi = Bixti+Boxoi+ ...+ B+ &, i={1,2,3,...,n};

®)
here, y is called the response variable. xi, x,..., x; are
called the regressor variables. f1, 5, ..., B are the regres-

sion coefficients or regression parameters. € is called the
disturbance term. The subscript i refers to the observation
in the data set. Moreover, equation 8 represents a system
of equations that can be stacked together and written in
matrix notation as:

y=XB+e¢, ©)

where y and € are n x 1 column vectors, and 8 is a k x 1
column vector. X is the design matrix of size n x k. In this
work, the possible regressors are:

93
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Analytic vs Numeric Solution of Air-Cooled Synchronous
Generator with Non-ldeal Heat Exchanger Model

100 -

T[°C]

80

Time [min]

Figure 4. Analytic solution (solid lines) vs. numeric solution
(dotted lines) of the thermal generator model when the specific
heat capacities depend on temperature.

Table 3. Benchmark results for the thermal model of an air-
cooled synchronous generator. Model 1 has median time 5.4 ms
and mean time 6.6ms on a given computer; times are scaled to
unity at 1% row element.

Model Median time Mean time
Model 1 1 1
Model 2 451 363
Model 3 1820 1480

1. The hot water temperature of the analytic solution
(Tw™)

2. The cold air temperature of the analytic solution
(%)

3. Water mass flow rate (rity)

4. Air mass flow rate (rit,)

Also, the response variables are the effluent temperatures
(T“},] Noand TSN of the numeric solution when & »(T).
Since the number of response variables m > 1, then equa-
tion 9 is expressed as:

Y =Xp +¢; (10)

here, Y and € are n x m matrices, and 8 is a matrix of size
k x m. X is a design matrix of size n X k. In this work, the
columns of the design matrix are not the regressors them-
selves, but a polynomial of the regressors, which includes
an intercept and cross-product terms. Using the method of
ordinary least squares, an estimate of the regression coef-
ficients can be obtained by:

B =(X"X)"'XTy. (11)
Then, the regression function is expressed as:
§=Xp: (12)

here, § is the predicted value of y for a given design ma-
trix. The regression function predicts the effluent temper-
atures of the non-ideal heat exchanger model given the ef-
fluent temperatures of the ideal model.
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It is of interest to have a measure of goodness-of-fit,
i.e., how well ¥ predicts y. A simple predictor is the mean
¥y =¥, with uncertainty given by the sample variance

2
2 i1 (i —9)

o, ===

: . (13)

y =Y yi/n. With predictor y; = Zl}:l ﬁjxj’i, the vari-
ance is

2= Y (yi— 5 /n

i=1

(14)

with & =y —J;. Two measures of model quality are the
Root Mean Square Error (RMSE)?

RMSE = \/;g =0 = i(yi —3i1)?/n, (15)
i=1

and the Coefficient of Determination R? (Gujarati, 2019)

R*=1-o0;/0;. (16)
For a “perfect” model, R? — 1, while for a “poor” model
(the mean), R? — 0.

The sample variance Gy2 is biased because Eq. 13 uses

estimated mean y; estimate Gy2 has one degree of freedom.

The unbiased sample variance 52

Y 18

—\2
2= i1 yi—7) __n o2.
Y n—1 n—1"7

A7

The prediction error variance uses k estimated parameters
B/, thus has k degrees of freedom, and the corrected esti-
mate s2 is

2 no o

= o;.

Se A
Alternatively to measures RMSE and R?, the Standard Er-
ror of Estimate (SEE) (Smith, 2015)

SEE = \/s2 =s¢ = \/fm —$i)2/(n—k).  (19)
i=1

or the adjusted coefficient of determination R? defined as

(18)

n—1
n—k
are used. RMSE and SEE has the advantage of having the
same unit as y.

When solving Model 1 and Model 3, the following
cases were considered:

R=1-s;/ss=1- (1-R%) (20)

e Case 1: Constant mass flow rates and variable in-
fluent temperatures. In this case, the regressors are
TJJ’A and TaC’A. Also, the models are solved over the
range of (4 —30°C ) for Ty, and over the range of
(40 — 100°C) for Tah, while the mass flow rates are

kept constant at the values of Table 1.

Shttps://en.wikipedia.org/w/index.php?
title=Mean_squared_error&oldid=959959954
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* Case 2: Variable influent temperatures and mass flow
. o h A

rates. In this case, the regressors are rity, iy, Ty,
and TaC’A. Also, the models are solved over the range
of (4 —40°C ) for T, and over the range of (15—
130°C) for T;', and over the range of (15— 130kg/s

) for the mass flow rates.

In Fig. 5 and Fig. 6, R? and SEE were used to find the
order of the polynomial of the design matrix that gives
the best fit. Also, it can be observed in the figures that the
goodness-of-fit deteriorates due to overfitting as the model
order increases beyond a 5th order for case 1, and beyond
a 6th order for case 2.

Moreover, Fig. 7 and Fig. 8 show a comparison be-
tween the regression models and the numerical solution of
the nonlinear two-point boundary value problem for case
1. Also, in Fig. 7, the regression surface and the data
points overlap for the 5th order model, which indicates a
good fit. On the other hand, in Fig. 8, the regression sur-
face of the 12th order model does not match the data for
some parts, which indicates a bad fit.

Similarly, Fig. 9 and Fig. 10 show a comparison be-
tween the regression models and the numerical solution of
the nonlinear two-point boundary value problem for case
2. Also, in Fig. 9, the regression surface and the data
points overlap for the 6th order model, which indicates a
good fit. On the other hand, in Fig. 10, the regression sur-
face of the 12th order model does not match the data for
some parts, which indicates a bad fit.

R2 vs. Model Order SEE vs. Model Order

— T
— T

0.95

L L L L 0.0 L I L L
25 5.0 75 10.0 25 5.0 75 10.0

Model Order Model Order

Figure 5. R? and SEE of case 1. Left panel: The adjusted co-
efficient of determination vs. model order. Right panel: The
standard error of estimate vs. model order.

However, the results so far are based on models that
used the same data set for training and testing purposes,
which is not a good indicator of the models’ predictive
ability. To evaluate a model’s predictive performance and
select the best fit model, validation is required.

In this work, the Holdout method was implemented to
validate the models. The holdout method is one of the
simplest cross-validation methods, where the data is split
randomly into two data sets; a training set to estimate the
model’s parameters, and a test set to assess the perfor-
mance of the model. The training data set is usually larger
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R? vs. Model Order

SEE vs. Model Order

2.‘5 5‘0 7.‘5 16.0 2.‘5 5‘0 7.‘5 16.0
Model Order Model Order
Figure 6. R? and SEE of case 2. Left panel: The adjusted co-

efficient of determination vs. model order. Right panel: The
standard error of estimate vs. model order.

ThR vs. TN (5th Order Model)

TSR vs. TN (5th Order Model) [T

a0 N8 .
TSA[°Cly 25 30

20 % 20

15 15
7 TAra T 20

Figure 7. Case 1: A comparison between the regression model
(the surfaces in the figure) and the numerical solution of the non-
linear two-point boundary value problem (the data points) for a
Sth order regression model.

than the test set. Typically, the holdout method involves
a single run. In this work, the results of multiple runs are
averaged together to avoid misleading results. The vali-
dation results are presented in Table 4 for case 1, and in
Table 5 for case 2.°

Finally, the best fit model of case 1 achieved an aver-
age RMSE of 7-1078°C and 2-1078°C for 7! and T,
respectively. Also, the best fit model of case 2 achieved an
average RMSE of 0.117°C and 0.327°C for T," and T,
respectively.

4 Nonlinear regression

Nonlinear regression of the counter-current heat ex-
changer model is implemented in Julia using the package
Flux (Innes, 2018; Innes et al., 2018). Moreover, the non-
linear mapping between the analytic solution of the ideal
counter-current heat exchanger model and the numeric so-
lution of the non-ideal heat exchanger model (the case of
temperature dependence in the specific heat capacities of
air and water) is achieved using the logistic (also known

%Both SEE and R? are rounded to the 5th digit after the decimal
place.
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ThR vs. ThN (12th Order Model)

TSR vs. T¢'N (12th Order Model)

PG

40
TSR [°Cly 30 3

3
30 25

20 % 20

15 15
10 ThA[eC] 10 ThA[eC]

Figure 8. Case 1: A comparison between the regression model
(the surfaces in the figure) and the numerical solution of the non-
linear two-point boundary value problem (the data points) for a
12th order regression model.

ThRvs. Th'N (6th Order Model)

TSR vs. TSN (6th Order Model)

Figure 9. Case 2: A comparison between the regression model
(the surfaces in the figure) and the numerical solution of the non-
linear two-point boundary value problem (the data points) for a
6th order regression model.

as sigmoid) activation function (o), which is introduced
between two linear layers in the classical Feedforward
Neural Network (FNN). Furthermore, the FNN is imple-
mented using the description in (Lie, 2019) and Flux docu-
mentation. In this work, the nonlinear regression model is
composed of two dense layers with the non-linearity (o)
between them as illustrated in Fig. 11.

In a similar manner to linear regression, the holdout
method was implemented to select the dimension (out) in
Fig. 11 that gives the best fit. The validation results are
presented in Table 6 and Fig. 12, where RMSE was chosen
as an indicator of goodness-of-fit. In Fig. 12, it is appar-
ent that increasing the dimension (out) beyond 80 would
result in a worse fit. Training of neural networks is sen-
sitive to scaling of the data, and it is common practice to
either normalize or standardize the data. Here, data X and
Y have been normalized to X and ¥ in the range [0, 1], e.g.,

X - Xmin

X=—"1 (21)
Xmax - Xmin
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Th-Rvs, Th'N (12th Order Model)

TSR vs. TN (12th Order Model)

o Ti"

0

Figure 10. Case 2: A comparison between the regression model
(the surfaces in the figure) and the numerical solution of the non-
linear two-point boundary value problem (the data points) for a
12th order regression model.

Table 4. Validation results of case 1.

Model Avg. SEE, °C Avg. R?, —
order Th Tf Th TS
1 0.01798 0.01905 0.99938 0.99944
2 0.00858 0.0061 0.99986 0.99994
3 0.00267 0.00149 0.99999 1.0
4 0.00056 0.00028 1.0 1.0
5 7-107°  4-1073 1 1
6 0.0001  0.00012 1 1
7 0.01823 0.02451 0.99947 0.99923
8 0.04843 0.06575 0.99642 0.99474
9 0.09783 0.13253 0.98625 0.97992
10 0.17664 0.27147 0.95805 0.91988
11 0.27841 0.4126 0.90428 0.832
12 0.41207 0.59617 0.81076 0.68251

5 Results and Discussion

In linear/nonlinear regression, the counter-current heat ex-
changer model was solved for a variety of conditions (7,
Tah, Ty, 11y, and thermal dependencies) to generate a data
matrix. Then, validation was used to select the order of
the polynomial and the dimension (out) that gives the best
fit. Both case 2 of linear regression and nonlinear regres-
sion obtained a similar RMSE. Case 1 of linear regression
achieved lower SEE and RMSE compared to case 2. How-
ever, case | is only valid for a constant mass flow rate,
whereas case 2 is valid over a wide range of mass flow
rates. This highlights the importance of selecting the ap-
propriate ranges of TS, T, sy, and iz, when solving the
model. Selecting the appropriate ranges will result in a
lower model order and a better fit.

In this work, the polynomial of the design matrix was
generated using a user made function, which made the ex-
ecution speed of the hybrid solution with linear regression
relatively slower than the execution speed of the hybrid
solution with nonlinear regression. Table 7 compares the
execution speed of both solutions. To present a fair com-
parison between the linear and the nonlinear models, a 2nd
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Table 5. Validation results of case 2.

Model | Avg. SEE, °C Avg. R?, —
order Th TS 7D TS
1 0.0529 0.1059 0.9848 0.9665
2 0.0479 0.0864 0.9876 0.9777
3 0.0456 0.0795 0.9888 0.9812
4 0.0443 0.0771 0.9895 0.9825
5 0.0418 0.0731 0.9908 0.9844
6 0.0415 0.0695 0.991 0.9862
7 0.0686 0.0783 0.976  0.9828
8 0.1246 0.1246 0.9241 0.9582
9 0.1731 0.1774 0.8606 0.9192
10 0.2467 0.2587 0.7357 0.8396
11 0.3229 0.3556 0.5897 0.7253
12 0.4014 0.4455 0.447 0.6229
Lo w, X B, v,
| -
— + =
u . EREREARER ”
\
out X in nxn out x 1 out X n
L,
W, \ ,O-(Yl ) B; Yz
mf ¢ o
m x out out xn mx1 mxn

Figure 11. Feedforward neural network with two dense layers
(L1 and L2) and an activation function (o) in between them.

order linear model was hard-coded in the design matrix,
which also provides a good enough prediction accuracy.

The simulation time of the final hybrid models, the
combination of the correction terms of linear/nonlinear re-
gression with the analytic expressions of equations 1 and
2, is presented in Table 8 for the heat exchanger model,
and in Table 9 for the thermal model of an air-cooled syn-
chronous generator. The hybrid solutions of the heat ex-
changer sub-model achieved similar execution speeds and
are much faster than the numeric solution of the nonlinear
two-point boundary value problem. Similarly, the sim-
ulation time of the thermal model of an air-cooled syn-
chronous generator was significantly reduced by using the
hybrid models.

6 Conclusions

In this paper, the thermal model of the counter-current heat
exchanger that was developed in Lie’, is extended with the
case of temperature dependence in the specific heat ca-

"Lie, B.: Lecture Notes in course FM1015 Modelling of Dynamic
Systems at University of South-Eastern Norway, 2019.
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Output dimension of the first Dense layer in the FNN Output dimension of the first Dense layer in the FNN

Figure 12. Validation results of nonlinear regression of the
counter-current heat exchanger model. The Y-axis is the aver-
age RMSE for three models, each trained on a random sample
for 10000 epoch. The best fit model achieved an average RMSE
of 0.110°C and 0.435°C for T, and T, respectively.

Table 6. Validation results of nonlinear regression.

Model | Avg. RMSE, °C
order D TS
5 0.7297 0.8757
10 0.309 0.648
15 0.2183 0.6179
20 0.2038 0.5679
25 0.1887 0.5774
30 0.1815 0.5336
35 0.1405 0.4758
40 0.141 0.4881
45 0.1387 0.4947
50 0.1263 0.4752
55 0.1474 0.4625
60 0.1168 0.4534
65 0.1326 0.4652
70 0.1237 0.4566
75 0.1104 0.435
80 0.1207 0.4567
85 0.1365 0.4936
90 0.1756  0.5742
95 0.2621 0.6995
100 0.3765 0.8686

pacities of air and water. The benchmark results showed
a very long simulation time when solving the nonlinear
boundary value problem numerically. To speed up the so-
Iution time, explicit data-driven models were developed
using linear and nonlinear regression. Validation was used
to select the order of the polynomial of the design matrix
and the dimension of the layers in the FNN. However, the
order of the polynomial and the dimension of the layers
were not the only factors that impacts the accuracy of the
models. The accuracy of the models was also affected by
the generated data matrix on which the regression models
were fitted. The generated data matrix should only con-
tain informative data that relates to the model’s objective.
Moreover, the regression models were expressed as a cor-
rection term to the explicit/analytic ideal heat exchanger
model. The hybrid heat exchanger model achieved a good
enough accuracy and faster execution speed compared to
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Table 7. The execution speed of the hybrid solution: linear re-
gression vs nonlinear regression. Here, the polynomial of the
design matrix was generated using a user made function, which
made this comparison not fair. Linear-hybrid model has mean
time 36 (s on a given computer; times are scaled to unity at 1%
row element.

Model Mean time
Hybrid solution (Linear Reg.) 1
Hybrid solution (Nonlinear Reg.) 0.042

Table 8. Simulation time for the heat exchanger model. Linear-
hybrid model has mean time 1.5 (s on a given computer; times
are scaled to unity for 1% row element.

Model Mean time
Hybrid solution (Linear Reg.) 1
Hybrid solution (Nonlinear Reg.) 1.002
Numeric solution 14070

the numeric solution.

It should be observed that the hybrid heat exchanger
model introduced here is based upon the assumption that
there are no unknown model parameters in the heat ex-
changer. In other words: if we want to include the hybrid
heat exchanger model in a model fitting procedure for the
thermal generator model, we can not change the heat ex-
changer parameters, e.g., % A in Table 1 — that would
require a re-training of the correction term.

Future work will include a study on how the correction
term to the analytic heat exchanger can be re-formulated
in order to allow for fitting model parameters such as 7% Ax
without having to re-train the correction term. As part of
this, the value of % will vary with flow rates. Next, the
work reported in (Pandey et al., 2019) will be updated with
this new thermal synchronous generator model with the
more accurate heat exchanger model.
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Abstract

In this study, a model of a single shaft gas turbine (GT)
is developed by using artificial intelligence (Al). A
recurrent neural network (RNN) is employed to train the
datasets of the GT variables in Python programming
environment by using Pyrenn Toolbox. The resulting
model is validated against the Test datasets. Thirteen
significant variables of the gas turbine are considered for
the modelling process. The results show that the RNN
model developed in this study is capable of performance
prediction of the system with a high reliability and
accuracy. This methodology provides a simple and
effective approach in dynamic simulation of gas
turbines, especially when real datasets are only available
over a limited operational range and using simulated
datasets for modelling and simulation purposes is
unavoidable.

Keywords: gas turbine, modelling, simulation, artificial
intelligence, recurrent neural network, black-box model

1 Introduction

Todays, Artificial intelligence (Al) plays a key role in
the industrial world and has a meaningful and influential
presence in many aspects of daily life. Al is an area of
computer science that deals with performing human-like
tasks. As one of the most popular applications of Al, one
can refer to Machine learning (ML). ML is a research
area that deals with data analysis, and a variety of
approaches for computers to learn from datasets when
no specific algorithm exits. ML is used in many
industrial systems such as gas turbines for pattern
recognition, system identification, trouble shooting,
sensor validation, condition monitoring, modelling,
simulation, and performance prediction (Liu et al.,
2020; Cisotto and Herzallah, 2018; Kiakojoori and
Khorasani, 2016).

One of the main tools used in machine learning is
artificial neural network (ANN). ANN, as a subset of
artificial intelligence, has been widely used over the past
decades. The main idea for creating an ANN was to
mimic the human brain as a simple model that was
capable of solving complex problems in different
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scientific fields. As a brain-inspired data-driven model,
ANN has shown to be a very good alternative to white-
box approach for modelling and simulation of industrial
systems and processes. It has been very useful for the
researchers whose activities cover a wide range of
system identification and simulation techniques. A
recurrent neural network is a subset of ANN that is used
to setup dynamic models of industrial systems.

Gas turbines are broadly employed, such as airplane
engines. They are also widely used for power
generation, especially in the areas that are far away from
cities; where access to the national electrical grid is
limited. Oil & gas fields, offshore platforms, ships, and
marine infrastructures are examples of such places. The
significant role of GTs in industry has strongly
encouraged and motivated researchers to investigate
new methodologies for modelling these complex
systems. The desired models should be able to capture
the system dynamics as accurately as possible. So far,
many  different experimental and analytical
methodologies have been explored to reach this goal.
The research in this area is included in both stationary
(mainly located in power plants) and aero gas turbine
engines (Asgari et al., 2012, 2013a).

ML-based techniques like ANN have shown the
capability to predict dynamic behavior of GTs without
having access to information about the system physics.
Different ANN-based methodologies have already been
investigated and developed in order to disclose complex
nonlinear behavior of aero gas turbines (Agrawal and
Yunis, 1982; Chiras et al., 2001, 2002; Ruano et al.,
2003; Torella et al., 2003; Sarkar et al., 2012, 2013;
Salehi and Montazeri, 2018; Ibrahem et al. 2019). These
efforts have covered a variety of approaches such as
MLP (multi-layer perceptron), NARMAX (nonlinear
auto-regressive moving average with exogenous
inputs), NARX (nonlinear autoregressive exogenous
model), RBF (radial basis function), BPNN (back
propagation neural networks), and BSNN (B-spline
neural networks).

Besides, many studies have focused on ANN-based
modelling of industrial power plant gas turbines
(IPGT). The results of these studies demonstrated the
capability of ANN in capturing IPGT dynamics
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(Lazzaretto and Toffolo, 2001; Kim et al., 2001, 2002;
Ogaji et al., 2002; Basso et al., 2004; Jurado, 2005;
Simani and Patton, 2008; Fast et al., 2008, 2009; Yoru
etal., 2009; Tavakoli et al., 2009; Fast and Palmé, 2010;
Palmé et al., 2011; Bartolini et al., 2011; Asgari et al.,
2013b, 2014, 2015, 2016). ANN has also been used for
control-oriented modelling of GTs (Asgari et al., 2017).
ANN may be used for fault identification and warning
generation with high reliability. Arriagada et al. (2003),
Elashmawi et al. (2017, 2018), and Rahmoune et al.
(2017) used novel ANN-based models for monitoring
and fault detection of industrial gas turbines.

From the literature survey, many efforts have been
made in the area of black-box modelling of gas turbines,
with their own advantages and limitations. However,
because of complex nonlinear dynamics of GTs, and
their different applications, sizes and capacities, study in
this area is still a challenging issue. Further research still
need to be carried out to develop the GT models, and to
optimize design and performance of these engines. The
work reported in this publication can help to disclose
details of the problems that cause unpredictable
shutdowns, over-heating, and over-speed of GTs on
industrial sites.

In this study, a black-box model of a single shaft gas
turbine is modelled and simulated by using a recurrent
neural network. The RNN is employed to train datasets
of the gas turbine in Python programming environment.
First, the performance of a typical gas turbine is briefly
explained in Section 2. Then, in Section 3, a short
description about recurrent neural networks is
presented. Section 4 describes modelling procedure
including data acquisition, data processing, building
RNN structure, code generation, and training process.
The results are presented in Section 5. Finally, the output
of the research is briefly discussed in Section 6.

2 Gas Turbines

A gas turbine is classified as an internal combustion
engine that converts chemical energy to mechanical
energy. It is widely used for industrial applications. GT
may be connected to a generator, pump or compressor
as the main driver to shape a turbo-generator, a turbo-
pump, or a turbo-compressor respectively. Figure 1
illustrates the main components of a single shaft open-
cycle  constant-pressure  gas  turbine  engine
(Encyclopedia Britannica, Inc., 1999). Both the
compressor and the turbine are installed on the central
shaft and rotate together.

Operation of an industrial gas turbine is shown in
Figure 2. According to this figure, the compressor
receives air at point 1 and delivers hot compressed air to
the combustion chamber (combustor) at point 2. The
mixture of fuel and air is ignited inside the combustion
chamber to form the hot gases at point 3. These hot gases
pass through the turbine and rotate it. The output power
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of the turbine provides the required energy for driving
the compressor part, and the GT mechanical output.

Operation of a gas turbine is based on Brayton cycle.
A temperature-entropy (T-S) framework-based of a
standard Brayton cycle is illustrated in Figure 3 (Arabi
et al., 2019). According to this figure, 1-2-3-4-1 shows
the ideal cycle, while 1-2°-3"-4"-1 indicates the real
cycle. Inthe real cycle, processes in both the compressor
(1-2") and the turbine (3"-4") are non-isentropic and
irreversible. In the ideal cycle, these processes are
assumed isentropic. Processes 2-3 and 4-1 may be
considered isobar, if pressure losses in combustor and
air filters are neglected (Walsh and Fletcher, 1998).

Exhaust

Airlnlet Compressor Blades

Stator Blades

Figure 1. A typical single shaft gas turbine engine
(Encyclopedia Britannica, Inc., 1999).

Fuel Combustion _3
Chamber

Compressor [ .|

Air Gases

Figure 2. A schematic of a typical single shaft gas
turbine.

Ideal Cycle:1234
Real Cycle:12'3'4"

S

Figure 3. Ideal and real Brayton cycles in temperature-
entropy diagram (Arabi et al., 2019).
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3 Recurrent Neural Networks

Simulation of all industrial systems can be carried out
by using white-box or black-box models. When
knowledge and information about the physics involved
in a system are quite enough and dynamic model
equations are available, white-box models can be
employed, and different simulation software such as
MATLAB and APROS may be used for modelling of the
system dynamics. MATLAB is a multi-functional
programming platform designed and developed by
MathWorks for numerical computing in engineering and
scientific applications. APROS is also a multi-functional
software for modelling and dynamic simulation of
industrial processes, such as power plants and other
energy systems (Fortum and VTT, 2020). Dynamic
equations usually need to be simplified (e.g. linearized)
because of their nonlinear and coupled natures.
However, the simplification process may negatively
affect the accuracy of the resulting model.

When the physics of a system is unknown or access
to the relevant knowledge, dynamic equations and
efficient solution techniques is limited, black-box
modelling approach can be a good choice, and
sometimes unavoidable. Black-box models can disclose
the relationships among the system variables by
employing input and output datasets. These datasets can
be simulated or measured (experimental) data.
Simulated data may be used when operational data are
not available.

ANN is a class of black-box models that can be used
for simulation of gas turbines and other industrial
equipment (Tiumentsev and Egorchev, 2019). The
structure of an ANN consists of input, hidden and output
layers. Each ANN may have more than one hidden layer.
The layers may have different number of artificial
neurons. These neurons (units) are internally connected
by transfer functions, which can be linear or nonlinear.
Artificial neural networks are capable of learning the
relationship among inputs and outputs of a system
through an iterative training process. Each input into the
neuron is associated with its own adjustable number,
which is called weight. Weights are determined during
the training process. The complexity of a system
dynamics determines the number of hidden layers and
their associated neurons. Figure 4 illustrates a typical
ANN including three inputs, two outputs and one hidden
layer with four neurons.

Among different ANN algorithms for static and
dynamic modellings, RNN can be employed for the
modelling of dynamic industrial systems. In a recurrent
neural network, each layer has a recurrent connection.
This enables RNN to propagate data forward and
backward, from later processing stages to earlier ones,
allowing the network to have an infinite dynamic
response to the input data. As a universal approximator,
RNN has shown excellent dynamic ability to deal with

various input and output types for modelling and
simulation of industrial systems.

Hidden Layer
Input Layer
Output Layer

B @
Input 2

O[]
Input 3

Figure 4. The structure of a typical artificial neural
network with input, hidden and output layers.

4 Modelling Procedure

To approach an RNN model with a high accuracy for the
gas turbine of this study, a variety of structures was
considered. These structures were set up based on the
data type, training algorithms, types of activation
functions, number of hidden layers, number of neurons,
and values of the weights and biases. The goal was to
attain a structure with the high capability of accurate
prediction of the GT dynamic behavior. Using the most
effective GT variables as inputs and outputs is vital for
building a reliable model. Data availability, system
knowledge, and modelling objectives are fundamental
factors that should be considered for selection of the
RNN inputs and outputs.

4.1 Data Acquisition

The first step in RNN modelling is to obtain enough
reliable datasets. A dynamic model of a low-power gas
turbine, simulated in Simulink/MATLAB environment
was employed for data generation (Asgari et al. 2013b).
The relevant white-box model was already developed
and verified against experimental datasets (Ailer et al.,
2002). Totally, 3000 datasets were generated for 13
different GT variables. In this study, the purpose of a
dataset is a vector with 13 single values, corresponding
to 13 different GT variables. Therefore, 3000 datasets
cover 3000 vectors like that.

The obtained datasets were categorized as inputs and
outputs of the gas turbine engine according to Table 1
and Table 2 respectively. As it can be seen from the
tables, fuel rate, ambient temperature, ambient pressure,
and load were determined as four main gas turbine
inputs, while temperature and pressure at different
operational points (corresponding to the numbers in
Figures 2 and 3), compressor pressure ratio, rotational
speed, and gas turbine efficiency were considered as GT
outputs. To be able to evaluate the model generalization,
and to avoid over-fitting during the training process, the
datasets were alternatively divided into the Train and
Test groups. Half of the datasets (1500 out of 3000) were
employed for training the RNN, and the remaining
datasets were used to test the resulting model.
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Table 1. Gas Turbine Input Parameters.

Variable Symbol | Unit Opg;a:]té%nal
Fuel rate M kg/s | [0.00367; 0.027]
gmgieergiure To | K | [243.15;308.15]
S?Szfgt P | kPa [60: 110]
Load Mioad | N.m [0; 363]

Table 2. Gas Turbine Output Parameters.

Variable Symbol Unit
Temperature at point 2 Toz K
Temperature at point 3 Toz K
Temperature at point 4 Toa K
Pressure at point 2 Po2 kPa
Pressure at point 3 Pos kPa
Pressure at point 4 Pos kPa
Compressor pressure ratio CPR -
z]%t::;)f::a(‘)lfsiie(j utions) N Us
Gas turbine efficiency Eor -

4.2 RNN Structure

Since the gas turbine is a dynamic system, the aim of
this research is to create a recurrent neural network, in
which the output parameters of the current time-step
depends on the output parameters in the previous one. In
this study, an RNN model was designed with four inputs,
one hidden layer, and nine outputs. The network was
named RNN 4-H-9 according to its structure (see Figure
5).

Hidden Layer Qutput Layer

Input Layer

CPR

A
G

S o
>@—_~
‘P
N@— =

Figure 5. The structure of the recurrent neural network
RNN 4-H-9.

4.3 Code Generation & Training Process

To achieve an RNN model with good generalization
characteristic, details of the network structure should be
determined as accurately as possible. For this purpose, a
comprehensive computer code was developed in Python
programming environment. Python is a high level,
interpreted, and object-oriented programming language,
firstly created and used by Guido van Rossum in 1991.
The Pyrenn Toolbox, integrated in Python, was used for
training and testing RNN 4-H-9. Pyrenn allows the
creation of a wide range of RNN configurations. It
employs LM (Levenberg-Marquardt) algorithm for
training the network. LM is a second-order Quasi-
Newton optimization algorithm, which is much faster
than first-order methods such as gradient descent
(Suzuki, 2011). The RNN 4-H-9 model was trained by
following a flexible programming code and assigning a
combination of different values for the number of
neurons in the hidden layer, the maximum number of
iterations, the number of recurrent connections, and
delay in the recurrent connections. The results of the
simulation were figured for all the nine GT output
parameters, and were compared to both the Train and
Test datasets. The goal was to see how accurately the
RNN outputs follow both the Train and Test datasets
trends. According to the results, the optimal RNN model
was achieved after 1200 iterations, with eight neurons in
the hidden layer, a recurrent connection with delay of 1
time-step in the hidden layer, and a recurrent connection
with delay of 1 and 2 time-steps from the output to the
first layer.

The root mean squared relative error (RMSRE) of the
results for the RNN model was calculated according to
Equation (1), where ng is the number of datasets, y is the
available (simulated) data, and yn is the prediction of the
RNN model.
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Tld _ 2
RMSRE (%) = 100 * \/LZ (y ym) )
Nd b j=1 y

5 Results

Figures 6 to 14 compare outputs of the GT with the
outputs of RNN 4-H-9, for both the Train and Test
datasets (targets). Figures 6 to 8 show the comparison
between outputs of the RNN model and the GT Train
and Test data for temperatures at different operational
points of the GT (Toz, Tos, Toa). In Figures 9 to 11, the
results are shown for the pressure variables (po2, pos,
pos). Figures 12, 13, and 14 indicate the same
comparison for the compressor pressure ratio (CPR),
rotational speed (N), and GT efficiency (Ecgr)
respectively. Comparisons between outputs of the GT
and the RNN model for the Train datasets demonstrate
satisfactory results for the training process. The
resulting RNN model was validated against the Test
datasets. According to Figures 6 to 14, the validation
results are also satisfactory for all GT output parameters.
As these figures show, the outputs of RNN 4-H-9 follow
the targets very closely for both the Train and Test
datasets.

Figure 15 shows a comparison between RMSRE (%)
of RNN 4-H-9 outputs for the Train and Test datasets.
According to this figure, the average RMSRE (%) of the
nine output variables (Ave.) for the Train and Test
datasets are about 0.22% and 2.6% respectively. It
demonstrates that the RNN model developed in this
study has a high reliability and accuracy in capturing the
system dynamics.

6 Conclusions

In this study, a recurrent neural network of a single shaft
gas turbine was investigated and developed in Python
programming environment by using Pyrenn Toolbox,
and employing 3000 simulated datasets for thirteen
significant variables of the GT. The resulting model was
validated against the Test datasets. The results
demonstrated that response of the RNN model to
variations in input parameters followed the system
outputs with an acceptable accuracy. It proves that the
RNN model is capable of performance prediction of the
system with a high reliability. The methodology
employed in this study provides a simple and reliable
approach in dynamic modelling and simulation of gas
turbines, especially when access to operational datasets
is limited for any reason.
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Figure 6. A comparison between output of the RNN
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Figure 11. A comparison between output of the RNN
model and the GT Train and Test datasets for Poa.
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Figure 12. A comparison between output of the RNN
model and the GT Train and Test datasets for compressor
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Figure 13. A comparison between output of the RNN
model and the GT Train and Test datasets for rotational
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Figure 15. RMSRE (%) of RNN 4-H-9 outputs for the GT
Train and Test datasets.
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Abstract

Biomass fired boilers usage is increasing due to
supportive policies and economic trends. Fluidized bed
technology is identified as proper solution for lower
quality fuels such as biomass. Moisture and heating
value can vary significantly in biomass fuels. Without
real-time information on their variation, they are a
disturbance to the system. These disturbances affect the
system steady state and decrease operational efficiency.
Proper characterization of the disturbance enables the
use of Feed-Forward control. Feed-Forward makes use
of the knowledge about the updated condition of the fuel
and can act towards reducing the impact of the fuel on
offsetting the system. Feed-Forward Model Predictive
Control is proposed as new control strategy.
Comparison is made between the existing control
strategy and the new proposed solution. Control
performance is evaluated on three process outputs, in
three different scenarios. Adding feed-forward signal
for fuel moisture improves control performance in both
controllers, while ultimately Feed-Forward Model
Predictive Control shows the best performance in most
comparison metrics.

Keywords: biomass fuel, fuel moisture, model
predictive control, feed-forward, plant control

1 Introduction

Biomass usage as a fuel is constantly growing due to
supportive government policies and positive market
trends. The highest share of biomass utilization as fuel
goes in combustion in large scale steam boilers, used in
Combined Heat and Power (CHP) plants (Atsonios et
al., 2020).

Fluidization technology has been implemented
towards creating more favorable combustion conditions
in the furnace (Leckner, 2003). Bubbling Fluidized Bed
(BFB) and Circulating Fluidized Bed (CFB) boilers
operate on this technology. CFB are the newer,
improved version of the two, and therefore are more
applied and more work is done on their analysis.
However, for applications with lower power output,
BFB boilers are still applicable and competitive (Pefia,
2011). The differences between BFB and CFB boilers
are in the power output, geometry of furnace, layout

(configuration of heat exchangers), values of
operational parameters, and there are differences in flow
streams (mostly noted in the recirculation part) (Pefia,
2011). Except for the main operational differences, there
are noted differences in the research work done, such as
analyzing the capability of power output change over
time, temperature profiles in the furnace, and thermal
capacity of the systems (Huttunen et al., 2017; Arena et
al.,1995).

Process modeling is a cost-effective way to analyze
system performance, compared to real tests at operating
large scale facilities. The key requirement before
process modeling is to specify the aim of the modeling
work, since there are plenty of different types of models,
and just the right combination of model and application
can help towards effective process analysis (Atsonios et
al., 2020). Simplified mass and energy balances models,
with O dimensionality (e.g. divided in several control
volumes of interest), are a simple and effective way for
boiler system analysis (Sandberg et al., 2011). Although
they provide less details compared to CFD and other
high dimensional models that include more process
features, their simulation time is shorter than CFD
models and they can capture the process behaviors and
be utilized e.g. for control or optimization purpose.
Models that can be simulated much faster than real-time
can be implemented on-line, as a prediction support for
the controller (Szentannai, 2011; Zimmerman et al.,
2018).

Most of the applied controllers in thermal power plant
are based on Proportional Integral (PI) algorithm
(Szentannai, 2011). This type of control is proven in
operation and reliable. However, with the new demands
for the power plants flexibility due to the rise of use of
intermittent renewable energy sources, the current
control structure efficiency is limited. P1 controllers are
known for their limitations for multi-input multi-output
(MIMO) processes with strong coupling between
variables, such as steam boilers (Szentannai, 2011).

On the other hand, Model Predictive Control (MPC)
is perceived as a good option for replacement of the
current controllers, improving control performance in
strongly coupled systems (Qin and Badgewell, 2013).
They are proven in applications in the chemistry
industry, while their application in power plants is
lagging behind (Szentannai, 2015). One of the main
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identified difficulties towards implementation of MPC
is the deficit of quality dynamic models, on which the
controller is based (Atsonios et al., 2020). In MPC, the
controller relies on the accuracy of the underlying
model. In particular, the performance can degrade in
presence of unmodeled disturbances. Fuel quality
(heating value and moisture) is the strongest disturbance
in biomass combustion systems.

The necessity for increase of research work on
dynamic modeling of biomass energy applications has
been emphasized in a recent review (Atsonios et al.,
2020). The amount of work published on this topic is
scarce compared both to dynamic studies on fossil fuel
systems and steady operation studies on biomass. In
addition to this, many research groups develop separate
models on sub-systems of the boiler, which does not
allow for full system analysis and communication
between different types of models used.

Combustion analysis on BFB boilers with biomass
and waste fuels have been analyzed in (Ravelli et al.,
2008; Galgano et al., 2005; Scala and Chirone, 2004).
These models provide detailed analysis of the
combustion process. However, they are too
computationally demanding for implementation in
control purposes.

Control work focusing on the water/steam side
dynamics has been studied in (Astrém and Bell, 2000). In
this work, the combustion part of the boiler is simplified.

As mentioned above, modeling the disturbance to the
process can enhance the control. The major uncertainty
in the boiler is related to the heat input, which comes
from fuel moisture variations. By having a model that
includes information about the moisture variation in the
incoming fuel, we have additional important parameter
knowledge, which can help toward a better analysis of
the system. The benefits of adding feed-forward signal
to MPC controller are analyzed in (Carrasco and
Goodwin, 2011). Combining the knowledge of the fuel
moisture with advanced control method can help
towards decreasing the effect of fuel variation on the
process outputs.

The aim of this work is therefore to show how MPC
can be applied in biomass-fueled BFB boilers, how it
compares to conventional Pl control, and quantify the
benefit introduced by feed-forward (FF). In the
following sections, the analyzed process and its
characteristics are described, an overview of the
numerical model and the control structures are given,
after which results are presented and discussed.

2 Process description

The analyzed system is a Bubbling Fluidized Bed (BFB)
Boiler fired by mix of woody fuels (bark, chips). It is
used in Eskilstuna Strangnds Energi och Miljo AB
(ESEM), CHP plant, to provide electricity and district
heating for the local municipality.

Its nominal operation parameters are listed in Table
1. Throughout the year the plant operates with change of
the load (boiler power output) based on demand and
plant condition. The boiler layout is presented in Figure
1. The boiler consists of a fluidized bed region,
freeboard, a superheaters section (SH 1,2,3) and an
cconomizer.

Table 1. Boiler nominal parameters

Parameters Value
Boiler power output 110 MW
Final Steam Temperature 540 °C
Fuel Flow 13.7 kg/s
Steam flow 41.1 ka/s
Fuel LHV, wet basis 8500 kJ/kg
Fuel moisture 48%

The fuel is delivered into the fluidized bed region. In
BFB boilers, a staged combustion is applied, where air
is delivered at three different heights — primary,
secondary and tertiary air. In addition, there is
recirculation of flue gasses, which is used for
temperature regulation in the fluidized bed region.
Combustion process is completed along the freeboard,
and after that, the hot flue gasses transfer the heat to the
water/steam side, at the steam superheaters and the
economizer.

1 - fluidized bed

2 — freeboard

3 —superheater (SH) 2
4 —superheater (SH) 3
5 —superheater (SH) 1
6 — economizer

!

Figure 1. Boiler Layout

Water is pumped from the water tank, goes for
preheating in the economizer, evaporates to steam in the
evaporator pipes placed around the furnace and finally
is superheated in 3 superheaters before entering the
steam turbine. There are 2 steam attemperators (water
sprays injected in the steam), to control steam
temperature.

Flue gas

3 Methodology

3.1 Model description

Developing models for big industrial plants, such as
steam boilers is a time demanding task. Given that
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boilers are extensively used for various applications and
the effort to develop models of these plants, it is
important to make sure of the model’s reusability
(Casella et al., 2014). Models developed with acausal
approach allow for reusability with less effort compared
to making a new one from scratch (Casella et al., 2014).

The programming language Modelica and the
software Dymola are used in this work for that aim.
With minor adjustments, the model can be used to
simulate different system types and configurations. In
addition, the model can be exported to various other
software, to develop control or other frameworks. In this
work, the Dymola model is exported to Simulink, where
system identification (SI) and controller design are
performed.

3.2 Boiler equations

Based on the Boiler layout, the system is divided in
control volumes to describe the process characteristics
in a simplified way and to capture all essential aspects
of the process.

[ ]

Furnace SHz SH3 SH1

-

Economizer

Figure 2. Boiler flows logics

The logic of the flows analyzed within the model is
shown in Figure 2. Orange lines represent the path of the
hot side (flue gas) and the blue lines represent the cold
side (water/steam).

AT = (Thl - cz) - (Thz - cl)

=

Thl — Tc2 (1)
In (ThZ - cl)
d_T — Qbalance — Qin - Qout
dt HEcapacity cp*m (2)
_ Qin - Qout [5]
cpx(p*V) s
Q=A*U=AT [MW] 3)

The temperature difference in the heat exchangers
is calculated based on equation (1), where h is used for
the hot fluid (flue gasses) and c for the cold fluid (water
and steam). Subscripts 1 and 2 indicate inlet and outlet
value for the parameter respectively. Q is used for
exchanged heat, A is surface of heat exchanger, U is
overall heat transfer coefficient and T is temperature.
Using equations (1-3), energy balances of all
components of interest are calculated.

The key part of boiler analysis is fuel analysis. This
boiler uses a mix of woody fuels.

In regular operation, moisture is analyzed for all
incoming shipments of wood to the plant by taking
random samples and measuring the moisture content.
With this approach, the plant has documented the yearly
variation of the moisture, on average per month. Yearly
variations of moisture are displayed in Figure 3. Total
heat input in the furnace is obtained as a product of
lower heating value (LHV) of fuel, calculated using the
moisture content reading and the fuel mass flow.

Moisture and heat input variation throught the year

50.0 180.0
45.0
40.0

| I I = - 140.0

&30 1200 g
= 300
g 1000 S
g 20 800 %
2 200 v g
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100 100
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0.0 00
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. Moisture (%) Heat Input from fuel in furnace (MW)

Figure 3. Yearly variation of moisture and heat input

However, this information doesn’t allow for
analysis with 1min sampling time. The moisture content
has the highest variation in woody fuels, while the other
components of elemental analysis (C, H, O, N, S and
ash) have minimal variation.

In this work, results from lab analysis of the fuel
used in the plant, are used for values of elemental
analysis components on dry basis. The moisture content
value can be read from the spectra sensor installed on-
line above the conveyor belt. Using the moisture value
and fuel conversion equations, we obtain values for fuel
composition on wet basis (as received) and use the
values to calculate the fuel heating value, hence
simulating moisture variations in real-time.

The fuel heating values (LHV and HHV) are
calculated by (Saidur et al., 2011):

HHV = 0.3491 * X + 1.1783X
+0.1005Xg — 0.0151 * Xy
—0.1034 * X, — 0.0211 ()

* Aash [M]/kg]

LHV = HHV (1 M/) 2.444 +
= * _—) - 2. * —
100 100

h
~ 2444 « 755+ 8.936 )

w Mj

1——) [—

( 100) e
where: X; is wt.%. content of the fuel elements on dry
basis, w is moisture content, and h is hydrogen content.
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Enthalpies and specific heat capacities of the
streams are calculated using polynomial functions
(Wester, 2015). Other required parameters for the model
are obtained from plant documentation (geometry of
boiler and capacity of heat exchangers) and tuning
parameters are tuned based on historical operational
values. The model operates on simplification for full
conversion of combustible fuel elements to flue gasses.

In order to capture the dynamics of the process and
to have a suitable framework for comparison of the
model, key inputs and outputs are identified. These are
used during model validation, system identification and
control simulations. Key parameters are listed in Table
2. Several key process indicators cannot be obtained
from the plant because there are no present sensors for
them. There is no measurement signal on fuel mass
flow, temperature in the freeboard and mass flow of
water sprays in the steam attemperators. Fuel mass flow
is estimated based on other related parameters in the
energy balance. Due to the lack of measured signals,
some common comparisons for boiler performance,
such as temperature profile in the furnace are not
feasible. Selected outputs for comparison are chosen
based on the available sensors: final steam temperature,
flue gasses temperature (after superheaters stage),
fluidized bed temperature and power output.

Table 2. Key boiler parameters for model

Inputs
Fuel mass flow
Water mass flow
Fuel moisture (%)
Air mass flow

Recirc. Flue gas
flow

Outputs
Power output
Steam final temp.
Fluidized bed temp.
Flue gas temp.

The final steam temperature is a key parameter for
boiler operation. It is predefined from the manufacturer
during construction and it can have small variations
from nominal set-point, to ensure safe and efficient
operation

Since there is no temperature measurement of the
freeboard temperature, the flue gasses temperature after
the superheaters section is the first indicator that can be
used to assess the operation. This parameter combined
with the steam parameters measurements allows to
back-calculate the temperatures of the flue gasses at
various points.

The fluidized bed temperature is the key parameter
that indicates the operation stability for BFB boilers.
This parameter has minimal variation, due to its
characteristics — dense region with very high thermal
capacity.

The power output is key for the control action. Most
of the time, the power output is adjusted to satisfy
supply and demand for electricity and heat, and

controlled change of setpoint is made to achieve it. It is
calculated the balance betweenas the energy contained
in the steam at the final point (after the last superheater,
before turbine inlet) and the starting condition
(feedwater tank).

After developing dynamic model for the analyzed
plant, the model is tuned and adjusted based on the
historical values of the operational parameters. Model
validation is done by running developed model with
operation data for the key inputs and comparing the
output of the model against the operation data. In order
to make use of the developed dynamic model for
control, it needs to be converted in a suitable form, so
that a control structure can work with it. For this work
we use linear MPC, developed in Matlab, based on
identified linear state-space model.

3.3 System identification

State space model is a mathematical form of a system
that contains input, output and state variables. Equation
6 shows the form of Discrete-time identified state-space
model, identified with n4sid function in Matlab:

{J’c=Ax+Bu+Ke 6
y=Cx+Du+te (6)

where: X is state vector, y is output vector, u is input
vector, e is disturbance vector, A, B, C, D, and K are
state-space matrices.

Subspace identification is used to identify linear
state-space, which will be the basis for the MPC design.
Important for the identified model is to have good fit
with the output data and to capture process dynamics.

The inputs for the SI process were constituted by
step changes in the chosen input signals, with increase
and decrease of predefined ratios of 1, 2.5, 5 and 10%.
Step signals are combined in a way to capture the impact
of coupling inputs on the observed outputs. The input
sequence generated for this work contains all
combinations of inputs excitation. Inputs and outputs
are used from Table 2, only fuel moisture is used as
disturbance.

For the defined set of inputs and outputs, a 5th order
state space model is identified with n4sid function in
Matlab, and it represents the internal model for MPC
design and tuning.

3.4 Control structures

Model predictive control (MPC) can be defined as
class of control algorithms that utilizes an explicit
process model to predict the future response of a plant
(Qin and Badgewell, 2013). MPC uses a dynamic model
of the plant to predict future actions of the manipulated
variables on the plant output. MPC is defined with:
process model, set of constraints and objective function.
The function that describes the MPC can be found in
literature under the names of objective, target or cost
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function. This function provides information about the
importance given to control error minimization and
frequency of actuators operation. The process model
should capture the dynamics of inputs, outputs and
disturbances in the controlled process. The drawback is
that MPC is more complex to develop compared to
conventional Pl control, and it requires more time to
develop and tune properly.

Pl (Proportional and Integral) Control is a
commonly applied control structure in industry. It
combines the benefits of proportional and integral
control into one. P1 scheme is presented in Figure 4. The
Pl controller does not receive signal about the

disturbance in the system.
dL

“9— P I — Model —p

Figure 4. PI Control Scheme
A commonly used equation for PI controller is:

t

p) =p+K. (e(t) + lf e(t”) dt*) @)
T Jy

where p(t) is the controller output, K. is the proportional
gain, e(t) is the measured error between output signal
and setpoint, 7, is the integral time.

The three PI controllers were tuned using an internal
model control method and the control parameters were
successively fine-tuned to improve the performance
(Tan et al., 2006). For a full comparison, the Pls were
integrated with feed-forward (FF) for disturbance
rejection for case 2. The FF model was set as a first order
input-output model according to equation 6.

prr = —d - — (8)

Where pgr is added to the Pl output, d is the
disturbance signal, and Gd and Gp are first-order
transfer functions between d and y (process output), and
p and y respectively. FF Pl scheme is presented in
Figure 5. The disturbance signal is added to the PI
controller as FF.

The control parameters used for the PI control in
both configurations is provided in Table 3. This table
also contains information about the connection between

FF

—’Q—b Pl <[ —p

Figure 5. FF PI Control Scheme

The PI structure contains 3 SISO (Single Input
Single Output) control loops, listed in Table 3.

A 4

Table 3. PI controller parameters

Control loop Proportional K. | Integral 7;
Fuel mass flow 0.4(-) 150 (s)
Power Qutput
Water mass flow -0.55(-) 600 (s)
Final Steam temp.
Total air mass flow -0.5(-) 1500 (s)
Fluidized bed temp.

After importing the identified model in the MPC
Toolbox in Matlab, its parameters are defined. Nominal
values for the input and outputs are set, constraints on
the inputs range and rate of change are set. Key MPC
parameters used are provided in Table 4, while the
constraints used for all controllers are listed in Table 5.

Table 4. MPC parameters

MPC Parameter Value
Sampling time 60 (s)

Prediction horizon 10
Control horizon 2

The error between future outputs and target values is
minimized by means of a quadratic objective function,
presented in Equation 9:

J = WS, ()2 + WM Sy (k) ©)
+ VVjAMVSAMV(k)Z

The three terms in the objective function refer to the
output error ey (between controlled variables and
targets), the manipulated variables (MV), and the
change rate of manipulated variables. The weights Wij
penalize each term in a different way.

Table 5. Constraints on manipulated parameters

inputs and outputs in the PI logics i.e. which input is Input Nominalvalue | Control range
manipulated to control a specified output. (kg/s) constraints (kg/s)
Fuel flow 13.7 6-16
Water flow 35 20-40
Air flow 50 40 - 60
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MPC control scheme is presented in Figure 6. The
MPC controller does not receive signal about the
measured disturbance in the system.

'L,

4(r —p| MPC —p| Model —p

Figure 6. MPC Control Scheme

FF MPC control scheme is presented in Figure 7. The
disturbance signal is added to the MPC controller as FF.

d

MPC Model —lp

JI"F

Figure 7. MPC FF Control Scheme

4 Results

After developing the control structures, they are
compared in various scenarios, for their capability to
deal with system disturbances and set points change.
The moisture content (%) in the fuel is the system
disturbance. Four types of controllers are compared —Pl,
FF PI, MPC and FF MPC. A list of scenarios,
description of changes made in each setpoint and
disturbance signal is provided in Table 6.

The controllers are analyzed in these scenarios for
control and statistical metrics. Control metrics are
overshoot, rise and settling times, which are common
indices for evaluating controller performance, while
statistical metrics used are the mean absolute error and
standard deviation. Control metrics are chosen as
standard control performance test, while statistical
metrics can show us how much variation in controlled
outputs we can expect during control scenarios and
control actions. Since in scenario 3 we analyze the
performance of controller to keep constant setpoint
rather than response to step change, in this scenario we
provide only statistical metrics.

The overshoot values for Scenarios 1 and 2 are
displayed in Table 7. The values are expressed in % of
the new set point and represent the height of the first
peak after crossing the new setpoint value.

Rise time is defined as the time required for the
output to change from 10% to 90% from the initial to
the new setpoint.

Settling time is considered as the time required to
reach 2% error between the signal and the new setpoint
value.

Since settling and rise time are related to the change
of setpoint, they are analyzed only for scenarios 1 and 2.
Settling and rise times are shown in Tables 8 and 9
respectively. Due to limited space, statistical indicators
and plots of inputs and outputs are shown only for
Scenario 3. Absolute mean error is shown in Table 10,
while standard deviation is in Table 11. Inputs are
plotted in Figure 8, while outputs are plotted in Figure
9.

The simulations are done towards assessing the
capability of the 4 controllers to deal with different
control scenarios. Results are reported on 60s sampling
time. It can be noted that results differ in the scenarios
and the criteria for evaluation. This shows that we can’t
label one control option as absolutely best rather the best
one for a specific application or in testing scenario.

It has to be noted that no weights are added in MPC
tuning during this work to favorize one input or output
on the expense of the rest. Adding weights on the inputs
and the outputs would cause the controller to put more
effort towards one parameter than the others and would
make the comparison uneven.

Scenario 3 is the closest to real operation control
actions. The disturbances are frequent during operation,
and they come with different magnitudes due to the
random uniform signal block used in Simulink. This
signal is generated with sampling time of 50min. It can
be said that Scenario 3 is solid basis towards more
demanding control actions analysis.

Overshoots analysis shows that the lowest overshoot
for all controllers is in output 3 — fluidized bed
temperature, due to the huge thermal inertia of this
region and slow changes.

On the settling time analysis, it takes the longest time
to settle to the specified new setpoint, which is to be
expected due to the same characteristic that makes the
minimal or no overshoot.

From the results of scenario 3, we can observe that in
statistical parameters, controllers with FF show better
performance compared to the ones without FF — lower
error and deviation. MPC FF has the lowest error and
deviation in this Scenario. In all 3 scenarios, Pl control
has the worst control on output 3 — temperature of
fluidized bed. Except for this parameter, we can see that
for the other parameters the difference between MPC
and PI controllers is not big.
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Table 6. Analyzed Control scenarios

Scenario | Steam temp. Power setpoint Fluid. Bed setpoint | Moisture disturbance
setpoint [C] [MW] [C] [9%6]
Step: 535 -520 constant constant constant
1 constant Step: 110 -100 constant constant
constant constant Step: 910 - 900 constant
Step: 535 -520 constant constant Step: 48 — 53
2 constant Step: 110-100 constant Step: 48 — 53
constant constant Step: 910 - 900 Step: 48 — 53
3 constant constant constant Random uniform input
Table 7. Overshoot (%)
Scenario Scenario 1 Scenario 2
Controller | Steam temp. Power FB. temp. | Steam temp. Power FB. temp.
1. PI 0 0.04 0 3.4 1 0.8
2. FF PI 0 0.04 0 1.1 0.04 0.7
3. MPC 0.17 0.2 0 0.82 2.6 0.4
4. FF MPC 0 0.3 0 0.16 0.67 0.1
Table 8. Settling time (s)
Scenario Scenario 1 Scenario 2
Controller | Steam temp. Power FB. temp. | Steam temp. Power FB. temp.
1. Pl 720 1080 4620 1680 540 8640
2. FF PI 720 1080 4620 2340 840 8340
3. MPC 480 600 1680 3720 1680 4380
4. FF MPC 1320 540 960 1680 1380 3900
Table 9. Rise time (s)
Scenario Scenario 1 Scenario 2
Controller | Steam temp. Power FB. temp. | Steam temp. Power FB. temp.
1. Pl 180 180 2220 120 120 300
2. FF PI 180 180 2160 180 180 360
3. MPC 420 120 180 120 120 120
4. FF MPC 720 240 660 180 180 420
Table 10. Mean absolute error (-) for Scenario 3
Controller Steam temp. Power output Fluidized bed temp.
1. Pl 0.0648 0.0523 0.7130
2. FF PI 0.1601 0.0196 0.6885
3. MPC 0.3566 0.0644 0.2237
4. FF MPC 0.0407 0.0079 0.0513
Table 11. Standard deviation (-) for Scenario 3
Controller Steam temp. Power output Fluidized bed temp.
1. Pl 0.1476 0.1449 0.8622
2. FFPI 0.2322 0.0584 0.8364
3. MPC 0.6253 0.1390 0.2886
4. FF MPC 0.0643 0.0178 0.0618
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5 Conclusions

Four different control strategies were implemented on a
dynamic boiler model and compared, based on control
and statistical metrics. It was shown that adding feed-
forward signal about the fuel moisture, improves the
control parameters for both Pl and MPC control. By
most analyzed parameters FF MPC shows the best
performance.

Pl FF control provide better results than MPC for
the outputs which can be controlled with 1 input
manipulation. For the output that depends on most
inputs (fluidized bed temperature), MPC show better
control results. This shows the limitation of PI control.

FF MPC with accurate characterization of the fuel
moisture can help towards dealing with the disturbances
in the plant caused by fuel characteristics variation.

Future work is aimed towards exploring the
capabilities of MPC with more operation realistic
scenarios. Change of power output based on
documented operational data, introduce performance
deterioration and constraints set based on actuators
properties are some of the planned features to be added.
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Abstract

The regulation of hydro power plants is influenced by
amongst others reservoir capacity and the knowledge
about how it is influenced by changes in in- and outflow.
The hydro power reservoir Aurdalsfjord has a small capac-
ity compared to the inflow, a narrowing between inflow in
the north and outflow in the south and has implemented
strict governmental restriction.

The paper will present a reservoir model that was devel-
oped in order to investigate the water flow and water level
conditions in Aurdalsfjord. The water level in each cell is
described with a mass balance, while the flow between two
cells is described with a momentum balance. The balance
equations are formulated as DAEs. The model is devel-
oped in Modelica which allows it to be used in connection
with models of a wide variety of other components that are
present in a hydro power system. The model will be inte-
grated in the open-source hydro power library OpenHPL
developed at USN.

The Modelica model shows promising results. For Au-
rdalsfjord it needed to be adjusted with non-physical pa-
rameters. The reservoir model should be implemented for
a less complex shaped reservoir in order to see if the chal-
lenges are related to the Modelica implementation or Au-
rdalsfjords shape.

Keywords: modelling, hydro power, reservoir dynamics,
Modelica, OpenHPL

1 Introduction

This paper is based on a Master’s Thesis (Meijer 2020)
from the spring of 2020 at the University of South-Eastern
Norway (USN). A dynamic reservoir model was devel-
oped with Modelica in order to investigate time-constants
between in- and outflow in the hydro power reservoir Au-
rdalsfjord. The paper will present the Modelica model
and use the Aurdalsfjord as an example in order to present
some simulation results.

1.1 Hydro Power

Hydro power represents the main energy source in the
Norwegian electricity supply and is the most important
sustainable energy source worldwide. It transforms the
potential and kinetic energy of flowing or falling water
into electrical energy.
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The regulation of hydro power plants is influenced by
electricity prices, inflow, reservoir capacity and govern-
mental restrictions. The relation between reservoir capac-
ity and inflow decides the flexibility of the power plant.
If the reservoir is small compared to the inflow, the in-
flow is more important and the power plant less flexible.
If the reservoir however is large compared to the inflow,
the amount of stored water is more important.

For some reservoirs these factors prove more challeng-
ing than others due to their capacity, shape or strict gov-
ernmental restrictions. Aurdalsfjord is one example. It is
the intake reservoir to the power plant Bagn, which is op-
erated by the Norwegian hydro power company Skagerak
Kraft AS. Its capacity is small compared to the inflow (re-
ceived from two other power plants), has a narrowing be-
tween inflow in the north and outflow in the south and has
implemented strict governmental restriction.

1.2 Modelica

Modelica is an object-oriented modelling language. It is
designed to implement dynamic models equation systems
as differential and algebraic equations (DAE). In contrast
to most programming languages, Modelica translates the
code to its most optimal state in C-code before simulation.
Hence, the order in which the equations are written is not
relevant. Models from a high variety of engineering fields
can be connected, which makes it possible to develop full
hydro power plants models.

Modelica models can be used with an optimisation and
automation infrastructure using the python application in-
terface OMPython (Open-Source Modelica Consortium
2020a). It is part of the open-source OpenModelica in-
stallation (Open-Source Modelica Consortium 2020b).

1.3 Goal and Scope

The dynamic reservoir model is developed that takes the
in- and outflows as inputs and gives the water levels as out-
put. The models purpose is to investigate water flows and
levels in hydro power reservoirs under different in- and
outflow situations. The model dynamics will be described
by mass and momentum balances as DAEs.

The model will be integrated into the open-source hydro
power library, OpenHPL (TMCC, USN 2020). OpenHPL
is developed by USN for teaching and research purposes.
The model is developed with OpenModelica, simulated
with OMPython and tested with Dymola (Dassault Sys-
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temes 2020).

2 Mathematical Description

The flow in a reservoir can be described with a combina-
tion of mass and momentum balances. The reservoir needs
to be discretised into a grid, where the water level in each
cell is described with a mass balance and the flow between
two cells is described with a momentum balance. Only
horizontal flows are taken into account, vertical flows are
neglected, as it is assumed that horizontal flow is signifi-
cantly larger than vertical flow.

The main purpose of the model is to describe the water
level in each of the cells. The input parameters are the
in- and outflows at the borders. A block diagram for the
general model is shown in Figure 1.

S Vip ——> —> {H;:ie{l,...,n}}

Reservoir

Model

ZVout — > —— {VlZG{l,,TL}}

Figure 1. Block diagram for the model.

A DAE is a set of equations containing both ODEs and
algebraic equations containing both variables and parame-
ters. The ODEs describe the change of a quantity in time,
while the algebraic equations describe the quantities in the
ODEs by other variables and/or parameters. In order to be
solvable, the DAE needs the same number of equations as
variables.

In order to describe the equations, mass balance control
volumes and momentum balance control volumes are in-
troduces. The control volumes contain variable (mass or
momentum) which changes within a limited volume. The
change is caused by forces within the control volume or
flow across the borders. The mass balance control vol-
umes are the same as the reservoir cells, while the mo-
mentum balance control volumes cover half of one cell
and half of the next.

2.1 Mass Balance

The mass balance describes the change of mass in a con-
trol volume over time. The change is equal to the mass
flow into the control volume subtracted by the mass flow
out of the control volume, as shown in the Equation 1. It is
assumed that there is no internal mass conversion, as this
is only relevant for nuclear reactions.

dm .
E = Mijn — Mout (1)

The goal of the mass balance equation is to find the wa-
ter level in the control volume as a function of the volume
flow. Hence, the mass and mass flows need to be described
by the algebraic equations in Equation 2.
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m=p-Ax-Ay-h

Titin = me (2)

Higut = P Vout

In the reservoir model, each control volume has borders
in both x- and y-direction, as shown in Figure 2. Hence,
the mathematical description needs to be modified to fit
two flow directions. The in and out indices are replaced by
using positive and negative flow directions. The complete
mass balance is described with Equation 3.

Figure 2. Mass balance control volume seen from above. The
arrows show positive flow direction.

=i + myl —Hixp — my2

dr
m=p-Ax-Ay-h
i = p - Vil 3)
iy =p -V
riy) = p - Vi
iy = p - Vyo

2.2 Momentum Balance

The momentum balance describes the change in momen-
tum over time in a control volume as a function of mo-
mentum flow in and out of the system in addition to the
sum of all forces acting on the flow, see Equation 4.

dM . .

di = Min _Mout + ZF
t

In order to connect momentum to volume flow, the al-

gebraic equations in Equation 5 are introduced.

“

M=m-v
m:p'-A‘Al )
LV
A
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The momentum flow can be described as a function of
volume flow in and out of the system as shown in Equa-
tion 6.

Minjout = Minfout * Vinfout

Minjout = p- Vinjout (6)
Vinjout = Vinsout
in/out =
Ain/out

The sum of the forces is given by the forces parallel to
the horizontal flow. The only two forces which are taken
into account are the pressure and the friction forces. It can
be shown that they can be given by Equation 7 (pressure
force) (Plumb 2014) and Equation 8 (friction force) (Lie
2017).

h
F, = pgAw———2 @)

Fg = AlpgASs,
¢ (8)

Sty = k2V? e

The friction slope, Sg is introduced as part of the fric-
tion force. The wetting perimeter, ¢, is the total circum-
ference of the cross section that produces friction. Due
to the model containing mainly cells in the centre of the
grid (not without borders), it is assumed that the wetting
perimeter is equal to only the width, Aw.

In contrast to the mass balance, the momentum balance
is only applicable in one flow direction. Hence, Aw and
Al equals Ax and Ay depending on the direction. Fig-
ure 3 shows a control volume for a momentum balance.
The complete momentum balance is described with Equa-
tion 9. In order to take direction into account, all squared
flows are split into a product of the flow times the absolute
value of the flow.

yZ

\

h Vi 1% Vs hs

Al

Figure 3. Momentum balance control value.
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h2_h2
F, = pgAw 12 2

Fr = AlpgASs;
—
S =kVIV|

The two sides of the momentum balance control vol-
ume can contain different depth values and be redrawn as
Figure 4. Due to only horizontal flow being taken into ac-
count, the bottom part does not influence the system. The
heights /1 and A, in the pressure force (Equation 7) need
to have the same reference point. Hence, Figure 3 shows
only the upper part of the control volume.

/
/
/
/

hl h‘Z

Figure 4. Different depth values.

There can occur situations where the level at one side is
lower than the floor on the other side, as shown in Figure 5.
In this case there is only flow from the top side. The ad-
justments in Equation 10 are made in order for Equation 9
to make sense. The reverse can also occur (left side below
right side floor).

My =0
? (10)
hy=0

ha v

Figure 5. Case where water level on one side is below floor on
other side.
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2.3 Connecting Mass and Momentum Balance

In order to describe the complete dynamics in the system
three stacked grids are needed, where the grids contain
control volumes for:

e Mass balance
o Momentum balance in x-direction

e Momentum balance in y-direction

The three grids are connected through the mass bal-
ance control volumes, which receive mass flows described
by both momentum balance grids (x- and y-directions).
The momentum balance control volumes receive water
levels from the mass balance grid. Figure 6 shows a 1-
dimensional version of a stacked grid.

Figure 6. Mass balance (blue) and momentum balance (green)
grids stacked on top of each other.

3 Implementing in Modelica

The goal of the reservoir model is to implement it together
with in- and outflow components. The implementation of

Aurdalsfjord is shown in Figure 7. The in- and outflow
models read data from a csv-file. The data record
(yellow box) contains values for relevant constants (e.g.,
g, Pa) and is a functionality from OpenHPL.

This section will provide a description of how the main
model, Reservoir, is implemented. The description is
focused on the use of the model and the basic ideas behind
the implementation. In addition, it is described how the
model can be used to build more complex models, and
simulation results are shown.

3.1 Reservoir

The reservoir model describes the water levels in the reser-
voir by receiving the in- and outflow as the inputs. Due to
the model being implemented in Modelica as DAEs, all
other values calculated along the way, e.g., volume flows
between cells, are also available outputs.

3.1.1 Parameters

The parameters with explanations are shown in Figure 8.
Some of the parameters are further explained.

depth is an array containing the depth values for the
reservoir cells. The amount of cells is also (indirectly)

DOI: 10.3384/ecp20176116

Proceedings of SIMS 2020

fileSettings

faslefoss
AMQ.—l )
PN L~
( § )
\d -/

VAYAVAV]
=

faslefossDiversion

\
AAAR

aabjoraDiversion

\
ARAR
aabjora

\
ARAR .
PRy burdalsfiofd

~~
AN

bag

n
_I_./AMA
bagnDiversion

AAAN

Figure 7. Aurdalsfjord implemented in Modelica.

data

defined by this parameter. Islands within the grid are pos-
sible and need to be given as zero-cells (0 m depth). Zero-
cells are also possible at the borders, however only if the
border is not connected to an in- or outflow. Due to the lo-
cal inflow being distributed over all borders, it is generally
recommended to not have zero-cells at the borders.

The maximum water level is provided in H_max, which
must not be misconceived as highest regulated water level
(HRWL). The level is given as the maximum water level
that can be simulated. It should be set higher than HRWL,
so the simulation is able to cover situations with too high
water levels.

The parameters £_p and f£_M are factors that influence
the weight of the pressure force and the incoming and out-
going momentum flows on the calculations. This is in-
cluded in order to make the model work better for the Au-
rdalsfjord case, and is explained further in subsection 3.4.
If there is no data to optimise against, the factors should
be setto 1.

H_ O defines the initial water level and applies for the
entire reservoir. This was decided due to the model being
limited to rectangular shapes. Hence, for more complex
reservoirs, several Reservoir need to be connected and
all of them can be contain H_ 0 values.

3.1.2 Basic Principles

The cell structure within the Reservoir-model is based
on the principles of the stacked grids. Models for the
mass balance and for the momentum balance are devel-
oped. The models are based on the mathematical formu-
lations in subsection 2.1 and subsection 2.2. In addition,
a boundary-model is developed to control the in- and
outflow of the reservoir.

A connector is developed to be able to send four val-
ues (water level, volume flow previous and next volume
flows) from model to model. The mass balance model
receives the volume flow and water levels across all four
borders through the connector and calculates the wa-
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ter level. The momentum balance model needs the water
levels of the connected mass balance models and the mo-
mentum flow of the adjacent momentum balance models.
The boundary models decide the flow into the rest of the
reservoir based on the connected in- and outflows.

The mass balance models are connected at all four bor-
ders to momentum balance models, except at the borders
of the reservoir. Here, they are connected to boundary-
models. Each model in the grid structure calculates either
a water level or a volume flow, and is always connected to
a model that calculates the opposite. This principle was
introduced in order for all models being independent on
whether they are connected at a border or in the middle of
the reservoir.

Figure 9 shows the inner workings of the Reservoir
model. The blue circles at the edges are connectors
which are connected to the inflow, outflow and local in-
flow (same as in Figure 7). They only send mass flows and
pressures, which are translated in the boundary-models
into water levels and volume flows.

The local inflow is split into equal parts and connected
to all boundary-models (dark blue lines). If no in- or out-
flow is connected, Modelica views it as O flow. The inflow
and outflow are connected to the parameter defined bound-
aries.

3.2 Connect Multiple Reservoirs

In cases where the reservoir has non-rectangular shapes,
several Reservoir-models need to be connected. The
models are connected at one of the in- or outflow connec-
tors. Due to each Reservoir needing a flow value as the
input, it is not possible to connect Reservoir-models
directly. Another model that calculates the flow between
them is necessary.

A ReservoirConnector model is developed. It is
a simplified version of the momentum balance model. Due
to the only values given through the connector being
mass flow and pressure (can be transformed to volume
flow and level), the incoming and outgoing momentum
flows are unknown and set to zero. The rest of the calcula-
tions are identical to the momentum balance. In addition,
the two connected cells (from each reservoir) need to have
the same depth-value. It is possible to have several parallel
connections between the same reservoirs. Otherwise each
reservoir connection would introduce a bottleneck in he
system. An example of two connected reservoirs is shown
in Figure 10.

For Aurdalsfjord a total of 13 Reservoir-models are
connected. They are shown in Figure 11a. The discretised
grid is shown in Figure 11b.

3.3 Hydro Power Plant Model

The developed models can be included into full hydro
power plant models together with models from OpenHPL.
An example is shown in Figure 12.
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Figure 10. Two connected reservoirs in Modelica.
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Figure 11.
cells.

Aurdalsfjord discretised into sub-reservoirs and

3.4 Simulations with Aurdalsfjord

In the simulation results for Aurdalsfjord, the simulated
and measured values for the two measurement stations
are compared. One measurement station (Sundvoll) is lo-
cated north of the narrowing, while the other is located at
the dam south of the narrowing. All simulations are per-
formed with actual in- and outflow data for winter periods
in order to reduce the uncertainty caused by local inflow.
The simulation step is set to 3600 s and the tolerance to
0.01. The simulation time for 24 hours is approximately
1 hour.

The initial simulations for Aurdalsfjord proved unsuc-
cessful, due to a spike in water level at the dam location
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Figure 12. Reservoir-model integrated in hydro power plant
model with OpenHPL-models.

leading to a simulation breakdown (shown in Figure 13a).
This is solved by adding the additional parameters, fy; and
Jp to the first equation in Equation 9, resulting in Equa-
tion 11.

dM . .
—— = fu (M1 = Ma) + fuF, — Fy

m (1)

With the additional factors, the parameters ks, f, and fu
are estimated to be 0.136, 1.0 and 0.4 respectively. Fig-
ure 13b shows the simulation result for the estimation pe-
riod, while Figure 13c shows the simulation result for a
different period using the same parameter values.

4 Discussion

4.1 Implementation of Model

Making a model as detailed and complex as possible is not
necessarily better than keeping the model simple. More
detailed models include more physical attributes of the
actual system, however it will also increase the simula-
tion time. An example is the choice to solely focus on
horizontal flow. It would also be possible to include equa-
tions that calculate vertical flow in the reservoir, which
would be more accurate to reality. The equation system
becomes significantly more complex, as things like tem-
perature need to be taken into account. However, water
levels are not influenced by vertical flow, and the influ-
ence on the horizontal flow is minimal.
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Figure 13. Simulations showing simulated and measured val-
ues.

In the sum of forces in Equation 6, the pressure and fric-
tion forces are included. The gravity and Coriolis forces
could also have been included. If the reservoir floor is de-
scribed by a slope, the gravity that pushes the water down
also pushes it partly forward (due to the slope). However,
in the developed model, slopes are described as steps. In
this case the gravity force only contains a vertical com-
ponent. The momentum balance control volumes could
also have been described with slopes, it was however de-
cided not to include this, as most of the gravity force still
only provides vertical flow. The gravity is however still
included as part of the pressure force. The Coriolis force
always points to the west due to the rotation of the earth.
If included, the coordinate system in which the grid is
given to the model, would need to be accurate accord-
ing to earths coordinate system. The force would only
be included in the flow in x-direction. The implementa-
tion of the force would not overly complicate the system,
however due to Aurdalsfjord being narrow it was assumed
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that the effect on this exact case was minimal. It could be
an option to include this in the future, especially if larger
(wider) reservoirs are to be implemented.

Several simplifications are made with the implementa-
tion in Modelica, in order to keep the model simple. They
are less significant if the chosen grid contains small cells.
The two most significant are the connection of mass and
momentum grids and the wetting perimeter in the friction
force.

The momentum balance grid is on top of the mass bal-
ance grid, where each momentum control volume covers
half of one mass control volume and half of the next mass
control volume. This means that the mass flows in and out
of the momentum control volume (7, and iy, ) should
be the same as the mass flowing in the middle of the mass
control volumes. In the model, the mass flows in and
out of the momentum balance model are set equal to the
mass flows in and out of the adjacent mass balance mod-
els. Hence, the mass flows are moved by half the length of
one mass control volume.

For open channel flows (1-dimensional), the wetting
perimeter (¢) in the friction force is normally set equal
2h+ Aw. The 2h part represents the friction against the
side walls while the Aw part represents the friction against
the reservoir floor. In the model however, the 2/ part is
dropped, due to it being assumed that most cells are in the
middle of the reservoir without side walls. This neglects
both the cells which are actually at the side of the reservoir
and the fact that the reservoir floor is not at the same level
through the reservoir. In some of the reservoir the water
will flow parallel to a part with less depth and thereby have
friction with a (low) side wall.

Instead of basing the model on the DAEs, the model
could have been based on the Shallow Water Equations
(SWE) (Plumb 2014). The equations are developed from
the mass and momentum balance equations, where the
cells are made infinitesimal small. Despite the SWE being
used in many applications (Behrens 2017) it was chosen to
use the DAE. DAEs are normally faster to solve in numeric
calculations and Modelica is designed for implementation
of DAEs. In addition, it is questionable if using PDEs are
significantly more accurate due to larger reservoirs con-
taining many uncertainties.

In OpenHPL there are models available for reservoir
and open channel modelling (TMCC, USN 2020). The
reservoir was not considered complex enough, due to it
not modelling the dynamics within the reservoir (only the
flow out). The open-channel models is implemented with
the SWE as PDEs for one directional flow. This could
have been extended to two directional flow and used as an
initial building block, instead of the mass and momentum
balances.

4.2 Simulation Results

Figure 13a shows that with both new factors set to 1, the
water level at the dam starts spiking the momentum the
level increases fast and leads to a breakdown of the simu-

lation. The estimated parameters show that the influence
of momentum flow on the momentum balance should be
reduced significantly. Both of these statements indicate
that the reservoir is responsive to large flows. The fact
that only the dam level starts behaving unrealistic also in-
dicates that the narrowing might be part of the problem. A
reason might be that the generic model is designed for a
reservoir where most cells are in the middle of the reser-
voir (without borders), while in the narrowing all cells are
at the borders.

The estimated parameters show that the pressure factor
should stay around 1, while the momentum factor influ-
ences the system more significantly. It could be consid-
ered to remove the pressure factor from the model, which
would force it to 1.

The results in Figure 13b and Figure 13c show that the
model is able to simulate realistic results when the param-
eters are estimated for the same period. However, when
the same parameters are used for a different simulation
period, the results are less accurate. Due to the time spent
on the parameter estimation is limited, it could be possible
to improve them and thereby possibly improve the simu-
lation results.

5 Conclusion

The Modelica model shows promising results. For Au-
rdalsfjord, a reservoir with a narrowing between in- and
outflow, it needed to be adjusted with non-physical param-
eters. They reduce the weight of the pressure force and the
momentum flows in the momentum balance. The reservoir
model should be implemented for a less complex shaped
reservoir in order to see if the challenges are related to the
Modelica implementation or Aurdalsfjords shape.

The new reservoir model presented in this paper will be
part of a future version of OpenHPL.

References

Jorn Behrens. 2017. Surprisingly Rich in Applications:
The Shallow Water Equations and Numerical
Solution Methods. URL: https://sinews.siam.
org/Details-Page/surprisingly-rich-in -
applications —the-shallow-water -
equations - and - numerical - solution -
methods [Accessed 16 January 2020].

Dassault Systemes. Dymola. 2020. URL: https : / /
www . 3ds . com/products—services/catia/
products/dymola/ [Accessed 9 June 2020].

Bernt Lie. Modelling of Dynamic Systems, 2477 pages,
2017.

Willem Meijer. Dynamic Reservoir Model Using
Modelica: Modelling of Water Levels in
Aurdalsfjord. M.Sc.Thesis, University of South-
Eastern Norway, Porsgrunn. 121 pages, 2020.

Open-Source Modelica Consortium. OMPython - A
Python Interface to OpenModelica Communicating

via CORBA or ZeroMQ. 2020a. OpenModelica.

DOI; 10.3384/ecp20176116 Proceedings of SIMS 2020 123

Virtual, Finland, 22-24 September 2020


https://sinews.siam.org/Details-Page/surprisingly-rich-in-applications-the-shallow-water-equations-and-numerical-solution-methods
https://sinews.siam.org/Details-Page/surprisingly-rich-in-applications-the-shallow-water-equations-and-numerical-solution-methods
https://sinews.siam.org/Details-Page/surprisingly-rich-in-applications-the-shallow-water-equations-and-numerical-solution-methods
https://sinews.siam.org/Details-Page/surprisingly-rich-in-applications-the-shallow-water-equations-and-numerical-solution-methods
https://sinews.siam.org/Details-Page/surprisingly-rich-in-applications-the-shallow-water-equations-and-numerical-solution-methods
https://www.3ds.com/products-services/catia/products/dymola/
https://www.3ds.com/products-services/catia/products/dymola/
https://www.3ds.com/products-services/catia/products/dymola/

SIMS 61

URL: https://github.com/OpenModelica/
OMPython [Accessed 24 February 2020].

Open-Source Modelica Consortium. OpenModelica.
(2020b) URL: https://openmodelica.org
[Accessed 24 February 2020].

Alan Plumb. (2014). Dynamics of the Atmosphere -
Lecture Notes. Chapter 2: The Shallow Water
Equations. Massachusetts Institute of Technology.
URL: http://www—aps .mit .edu/ ~rap/
courses /12333 _notes /A2 %20SWeqgs . pdf
[Accessed 15 February 2020].

TMCC, USN. OpenHPL - an Open-Source Hydropower
Library That Consists of Hydropower Unit Models.
2020 URL: https : openhpl . simulati.no
[Accessed 24 February 2020].

DOI; 10.3384/ecp20176116 Proceedings of SIMS 2020
Virtual, Finland, 22-24 September 2020

124


https://github.com/OpenModelica/OMPython
https://github.com/OpenModelica/OMPython
https://openmodelica.org/
http://www-eaps.mit.edu/~rap/courses/12333_notes/A2%20SWeqs.pdf
http://www-eaps.mit.edu/~rap/courses/12333_notes/A2%20SWeqs.pdf
https://openhpl.simulati.no
https://openhpl.simulati.no

SIMS 61

The influence of surge tanks on the water hammer effect at
different hydro power discharge rates

Madhusudhan Pandey, Bernt Lie
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Abstract

This paper provides an overview of different types of surge
tanks used in hydropower systems. The water mass oscil-
lation inside the simple, sharp orifice type, throttle valve,
and air-cushion surge tanks are studied. It is found that
the diameter of the sharp orifice and the throat plays an
important role in obstructing water mass flowing inside
the surge tank which consequences to reduce the effect of
water hammer over times in the pressure tunnels. Sharp
orifice type surge tanks are more efficient to reduce the al-
lowed maximum height of surge tank for avoiding water
spilling out of the surge tank during the total load rejec-
tion from the prime movers. However, throttle valve surge
tanks are more efficient for decaying of pressure surges
sooner. It is also found that the difference-amplitude of
water mass oscillation inside the air-cushion surge tank is
insignificant. Conclusions are drawn based on the case
study of Trollheim and Torpa hydroelectric plants in Nor-
way.

Keywords: water mass oscillation, surge tanks throttling,
sharp orifice type surge tank, air-cushion surge tank,
throttle valve surge tank, water hammer

1 Introduction

1.1 Background

A high-head reaction-turbine hydro power system basi-
cally consists of an intake tunnel via a high-pressure steep
penstock tunnel to the reaction turbines (eg., Francis tur-
bine). A surge tank is usually placed between the intake
pressure tunnel and the penstock. In case of a load rejec-
tion!, the turbine valve is rapidly positioned for a required
volumetric flow (discharge) of water through the turbine.
During rapid closing of the turbine valve, the water masses
flowing in the intake tunnel and in the penstock are sud-
denly decelerated. A high-pressure region is created at the
lower end of the penstock because of the obstructed water-
inertia?> which causes pressure waves to travel in the up-

"Load rejection is simply a phenomenon where load connected to
a prime mover, for eg., Francis turbine, is suddenly disconnected or
decreased. However, in case of a load acceptance, a load is connected
to the prime mover. A load is anything which is operated with the help
of prime mover. For a hydroelectric plant, loads are electrical units
connected through the grid in an interconnected electrical network.

2The obstructed water mass flowing through the pressure tunnel is
generally called as water inertia.

DOI: 10.3384/ecp20176125

Proceedings of SIMS 2020

ward direction®. The magnitude of the travelled pressure
wave after sudden closure of the turbine valve is termed as
a water hammer. The energy of the pressure wave is re-
leased at the nearest low-pressure free water surface, i.e, at
the surge tank placed between the intake tunnel and pen-
stock (Mosonyi, 1991, p. 129).

In this regard, it is of interest to see the effect of the
water hammer at different discharges through the turbine
during the load acceptance or rejection. The water inside
the surge tank oscillates after the energy from the pressure
wave is released at the free water surface inside the surge
tank. The oscillation of water mass lasts until the pres-
sure wave energy is fully dissipated. The design height
and length of the surge tank should thus depend on the
amplitude of the pressure wave, i.e., the water hammer.
The amplitude of water mass oscillation inside the surge
tank can be decreased using water flow-obstruction in the
inlet of the surge tank, eg., in case of throttle valve surge
tank and sharp orifice type surge tank (Aronovich et al.,
1970). Similarly, energy from the pressure wave can be
dissipated using pressurized air inside a closed surge tank,
usually referred to as an air-cushion surge tank (Vereide
et al., 2014). This paper will mainly focus on the sim-
ulated response at different discharge for manifold pres-
sure®, velocity, mass flow rate and water mass oscillation
inside the different kinds of surge tanks.

1.2 Previous studies

A detailed overview of the time evolution of water mass
oscillation inside a surge tank is given in (Guo et al.,
2017) with differential equations governing the oscilla-
tion phenomenon. Similarly, a law governing oscillation
phenomenon inside the simple surge tank is explored in
(Travas, 2014). The water mass oscillation control anal-
ysis using a self-adaptive auxiliary control system in the
surge tank has been done in (Wan et al., 2019). The solu-
tion of water mass oscillation mathematical equations has
been done using the finite element method in (Wan et al.,
2019).

3The pressure wave traveled from higher pressure to lower pressure
region and dissipated near to free water surface.

“It is a bottom pressure point of the surge tank where the outlet of
the intake tunnel and inlet of a steep penstock meet.
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o (d)

Figure 1. Different types of surge tanks. (a) Simple surge tank
without hydraulic resistance. (b) Sharp orifice type surge tank
with hydraulic resistance of horizontal bars forming an orifice
of a diameter D;. (c) Throttle valve surge tank with hydraulic
resistance of diameter D;at the entry of surge tank with square
expansion from diameter D; to diameter D,. The length of the
throat is L. (d) Air-cushion surge tank filled with air at pressure
prand diameter D.

1.3 Outline of the paper

The paper is organized by providing a brief introduction to
different types of surge tanks and their operation in Sec-
tion 2. Section 3 provides the simulated responses for
Trollheim and Torpa hydro power plants with different
types of surge tanks at different discharges. Results and
discussions are provided in Section 4 while conclusions
and future works are explained in Section 5.

2 Surge tanks and their operation

A detailed mechanistic model of simple, sharp orifice
type, throttle valve, and air-cushion surge tank are artic-
ulated in (Pandey and Lie, 2020, Submitted) for a Model-
ica® based hydro power library- OpenHPL®. OpenHPL is
an open-source hydropower library consisting of models
for hydropower components that are developed based on
mass and 1D momentum balance. It consists of mecha-
nistic models for the flow of water in filled pipes (inelastic
and elastic walls, incompressible and compressible water),
a mechanistic model of a Francis turbine (including design
of turbine parameters), friction models, etc.

The different types of surge tanks are shown in Figure
1. For a simple surge tank shown in Figure 1 (a), dur-
ing the load acceptance/rejection, a high-pressure region
is created at the end of the penstock and at the end of the
turbine. The high pressure region thus creates pressure
wave which traveled through the penstock releasing pres-

Shttps://www.modelica.org
Shttps://github.com/simulatino/OpenHPL
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sure wave energy by the means of water mass oscillation
inside the surge tank. The height and length of surge tank
thus depends on the water mass oscillation inside the surge
tank. For a simple surge tank, the maximum height of
surge tank would be sum of piezometric height from surge
tank bottom to resorvoir surface and the highest amplitude
of water mass oscillation during a total load rejection’ .

If the height of surge tank is not practically possible
then other surge tanks with hydraulic resistances like hor-
izontal bars forming a sharp orifice as in sharp orifice type
surge tank or a throat in the entry of surge tank as in
throttle valve surge tank can be used. Figure 1 (b) shows
a sharp orifice type surge tank with orifice diameter D;
which obstructs water mass moving from the base of surge
tank towards the free water surface inside the surge tank.
This will cause the oscillation of water mass to dies out
sooner than in the simple case. Similarly, the highest am-
plitude of water mass oscillation is decreased which de-
creases the practical height of the surge tank. The throat
with diameter D; and length L, in case of the throttle valve
surge tank as shown in Figure 1 (c), has the same opera-
tion as that of sharp orifice type surge tank. Figure 1 (d)
shows air-cushion surge tank.

3 Simulated Responses
3.1 Case study: Trollheim HPP

The case study for the simulated responses for different
types of surge tanks at different discharge rates is studied
for Trollheim and Torpa hydro power plant. The general
layout diagram is shown in Figure 2.

3.1.1 Total Load Rejection (TLR)

First, we consider a case of a simple surge tank for Troll-
heim Hydro Power Plant (HPP) for a layout shown in Fig-
ure 2 (a) Trollheim HPP for a total load rejection. Assum-
ing frictionless intake pressure tunnel and ideal gate valve
for turbine (i.e., time of opening and closure of the gate
valve is zero), the maximum allowable height of a simple
surge tank for restriction of water-spilling from surge tank
is given by the expression as in Eq. 1,

Hgst = Hres + Hin + Ymax, (D
where Ypax 1S the maximum surge or maximum wa-
ter mass oscillation height during total load rejection
(Mosonyi, 1991, p. 162)given as in 2,

Y. o Vn Lin <Ain )
max — o - )
Ain | & \Asr

@)

where Hst, Hi,, and Hgare height difference for surge
tank, intake and resorvoir, respectively. Aj, and L;, are

7 A total load rejection is a phenomenon where a hydroelectric plant
running with full discharge through the turbine is completely shutdown.
The turbine valve signal is instantaneously changed from full opening
to full closed.
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Figure 2. Layout diagram for Trollheim (Vytvytskyi and Lie,
2019) and Torpa Hydro Power Plant (HPP) (Vereide et al.,
2014). Nominal head, nominal discharge, and nominal power
output are 370m, 40m? /s and 130MW for Trollheim HPP, and
445m, 35m> /s and 150 MWfor Torpa HPP. Torpa HPP has two
turbine units each having nominal power output of 75MW.
The air-cushion surge tank for Torpa HPP has air volume of
13,000m?3 initially pressurized at 4.1 Mpa. For Trollheim HPP,
the diameter for both of the penstock and the surge tank is 4m
while for both of the headrace and the tailrace tunnel is 6m.
Similarly, for Torpa HPP, the diameter of both of the headrace
and the tailrace tunnel is 7m.

cross-sectional area and length of intake pressure tunnel,
respectively. V,, is the nominal discharge with g as the
acceleration due to gravity. From Figure 2 (a) Trollheim
HPP we have Hes = 50m, Hj, = 20m and Yy, is calcu-
lated using expression Eq. 2 as 45m. Thus, the height
of surge tank for avoiding water spilling out for a simple
surge tank for Trollheim HPP during total load rejection is
115m.

Figure 3 shows the turbine valve signal creating a total
load rejection at 1500s and plots of water mass oscillation
for simple, sharp orifice type and throttle valve surge tank.
It shows that hydraulic resistances in case of sharp orifice
type and throttle valve surge tank dampens out the mass
oscillation sooner than that of the simple surge tank and
the maximum allowed height of surge tank Hst for avoid-
ing water spilling out of surge tank is less for sharp orifice
type surge tank during TLR.

3.1.2 Effect of diameter of orifice and throat for TLR

The maximum allowed height of sharp orifice type and
throttle valve surge tank for avoiding water spilling
through the surge tank can be decreased based on decreas-
ing diameter of orifice and throat as shown in Figure 4.

3.1.3 Total Load Acceptance (TLA)

A case of a total load acceptance is created using turbine
0.01 O<t§2005at
1 t>200s

time 200s for Trollheim HPP. The simulated response for
water mass oscillation for simple, sharp orifice and throttle

guide valve control signal u, =
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Turbine valve signal uy
for Total Load Rejection

100

TR

L s
0 1000 2000

Water mass oscillation inside the surge tank
125

3000

—— hsr-Simple
— hs1-SO
— hs-TV

115m —

hst [m]
3

L L
0 1000 2000

time [s]

3000

Figure 3. Water mass oscillation inside the surge tank for Troll-
heim HPP. A total load rejection is created using control signal
1 0 <t <1500s
0.01 +>1500s
repesents total load rejection, SO and TV depicts sharp orifice
type and throttle valve surge tank. The maximum amplitude of
water mass oscillation hgt is 115m at around 1500s for simple
surge tank. While for sharp orifice type and throttle valve surge
tank it is 80m and 87 m, respectively. The diameter of orifice
for sharp orifice type surge tank Dy, and that of throat for throt-
tle valve surge tank Dy are both 1 m. The length of throat for
throttle valve surge tank is 20m.

at time 1500s. In the figure, TLR

Uy

Maximum allowed height of surge tank for TLR

2
D, or D [m]

Figure 4. Maximum allowed height of surge tank for differ-
ent diameter of sharp orifice (SO) type and throttle valve (TV)
surge tank. hgf* represent the maximum amplitude of water
mass oscillation during TLR. As the diameter of hydraulic re-
sistances like sharp orifice or throat at the entry of the surge tank
is decreased the maximum height of water mass oscillation de-
creased. For example when D; and Dy, both are 1m, hgE* for
sharp orifice type surge tank is 80m and for throttle valve surge
tank is 87 m.
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Turbine valve signal uy
for Total Load Acceptance
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Water mass oscillation inside the surge tank
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Figure 5. Water mass oscillation inside the surge tanks for TLA.
The oscillation dies out soon in case of both sharp orifice and
throttle valve surge tank.

valve surge tank is shown in Figure 5.
3.1.4 Partial Load Rejection (PLR)

Partial load rejections and acceptances can be created by
changing the turbine’s gate signal.

For a 25 % load rejections while the hydropower plant
is running at total load the turbine gate signal is generated

as,
1
u =
Y 0.75

where the plant is running at total load up to 200 s and
with partial load (75 % ) after 200 s.

Similarly, for a 50% load rejection the turbine’s gate
signal is generated as,

1
Uy, =
Y710.50

and for for a 75 % load rejection,

1
Uy =
0.25

Figure 6 shows water mass oscillation inside the simple,
sharp orifice and throttle valve surge tank during the par-
tial load rejections.

3.1.5 Partial Load Acceptance (PLA)

For a 25% load acceptance while the hydropower plant
is running at no load condition, the turbine gate signal is

generated as,
0
Uu =
Y025
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Partial Load Rejections
Turbine valve signal uy

200 400 600 800 1000

Water mass oscillation inside the
simple surge tank

time [s]

Water mass oscillation inside the
sharp orifice type surge tank, Dso =1 m

hst [m]

time [s]

Water mass oscillation inside the
throttle valve surge tank, D=1 m and Ly=20 m

200 400 600 800 1000
time [s]

Figure 6. Water mass oscillation inside the surge tanks for PLR.
In the figure, u, — 25% represents the gate signal for a partial
load rejection of 25% of the total load capacity of the plant.
Similarly, hst —25% represents water mass oscillation for a load
rejection of 25%.

where as for a 50 % load acceptance,

Lo
Y 710.50

and for a 75 % load acceptance,

0
Uy =
0.75

Figure 7 shows water mass oscillation inside the simple,
sharp orifice and throttle valve surge tank during the par-
tial load rejections.

3.2 Case study: Torpa HPP

The water mass oscillation and the air pressure inside the
air-cushion surge tank during load rejections and accep-
tance for Torpa HPP is shown in Figure 8 and 9, respec-
tively.

0<t<200s
t>200s ’

0<r<200s
t>200s

4 Results, and Discussions

For Trollheim HPP, from Figure 3 in case of a TLR, the
maximum allowed height of the surge tank for restriction
of water spilling out of a simple surge tank is 115m. Sim-
ilarly, for sharp orifice type surge tank it is 80mand for
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Partial Load Acceptance
Turbine valve signal uy
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Water mass oscillation inside the
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Water mass oscillation inside the
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Figure 7. Water mass oscillation inside the surge tanks for PLA.
In the figure, uy, —25% represents the gate signal for a partial
load acceptance of 25% of the total load capacity of the plant.
Similarly, AsT —25% represents water mass oscillation for a load
acceptance of 25% from a no load condition.

throttle valve surge tank it is 87m. From Figure 4 it can
be seen that the maximum allowed height of surge tank in
case of a total load rejection is decreased as the diameter of
sharp orifice and diameter of the throat is decreased. For a
surge tank of diameter 4 m, in case of Trollheim HPP, the
maximum allowed height of the simple surge tank, hgi*
during TLR is same for sharp orifice type surge tank w1th
Dy, € [3,4], however, hf* decreases as Dy, € [0.5,3).
Similarly, in case of throttle valve surge tank Agy* is same
for Dy € [2,4] and simple surge tank, however hg de-
creases as Dy € [0.1,2).

For Torpa HPP, from Figure 8 and 9 in case of load
rejections and acceptance, respectively, manifold pressure
inside the surge tank does not vary much in case of load
acceptance than in case of rejections.

5 Conclusions

The maximum allowed height of a simple surge tank, con-
sidering the TLR operation of the plant, can be decreased
using a suitable diameter of the sharp orifice in case of a
sharp orifice type surge tank and with a throttle valve surge
tank with suitable diameter of the throat. The maximum
allowed height of the surge tank is lowest in case of sharp
orifice type surge tank, however, the mass oscillation dies
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Figure 8. Water mass oscillation and air pressure inside the air
cushion surge tank for load rejections. In figure, TLR represents
a total load rejection.

out soon in case of throttle valve surge tank with an infer-
ence that impact of water hammer in the pressure tunnel is
less in case of throttle valve surge tank.

In the case of a sharp orifice type surge tank, the maxi-
mum allowed height of the surge tank in comparison with
a simple surge tank decreases exponentially for Ds, <
0.5-D where D and Dy, are the diameter of the simple
surge tank and the diameter of the sharp orifice. Similarly,
for throttle valve surge tank D¢ < 0.375- D where D; is the
diameter of the throat. Both for load rejections and accep-
tance, mass oscillation inside the surge tank dies sooner in
case of a throttle valve surge tank. The frequency of water
mass oscillation in the case of a simple surge tank is the
same for both load rejections and acceptance.

For the air-cushion surge tank, water mass oscillation
inside the surge tank is insignificant for both load accep-
tance and rejections. The varying of air pressure inside the
surge tank for partial load rejections is greater than that for
the partial load acceptance.
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Mechanistic modeling of different types of surge tanks and draft
tubes for hydropower plants

Madhusudhan Pandey, Bernt Lie
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Abstract

OpenHPL is an open-source hydropower library consist-
ing of models for hydropower components that are devel-
oped based on mass and 1D momentum balance. It con-
sists of mechanistic models for the flow of water in filled
pipes (inelastic and elastic walls, incompressible and com-
pressible water), a mechanistic model of a Francis turbine
(including design of turbine parameters), friction mod-
els, etc. This paper includes an extension of OpenHPL
with mechanistic models of different types of surge tanks
(sharp orifice type, throttle valve surge tank, air-cushion
surge tank) and draft tubes (conical diffusers and Moody
spreading pipes). The simulated response of the models is
presented using a case study of real hydro power plants.
Keywords: surge tanks, draft tubes, air-cushion surge
tank, throttle valve surge tank, conical diffuser, Moody
spreading pipes

1 Introduction
1.1 Background

The electricity generation from renewables has increased
because of the rise in coal prices, oil insecurity, climatic
concern (Brown, 2012), and the nuclear power debate
(Wikipedia, 2019). There is a demand for renewable-
sources economy over the coal-fired economy (Brown,
2012). The renewable energy sources are a combination
of intermittent and dispatchable energy sources. Intermit-
tent sources like solar, wind, and tidal power plants exhibit
fluctuating power production that creates an imbalance be-
tween generation and load. In this regard, renewable dis-
patchable sources like hydro power plants play a signifi-
cant role in balancing out the variability caused by inter-
mittent sources. Current hydropower modeling, design,
and analysis tools are limited and available commercially.
Freely available tools include CASiMiR-Hydropower!,
LVTransz, and OpenHPL3, while commercial tools in-
clude Alab* and Modelon Hydro Power Library (HPL).
In this regards, it drives motivation for open-source hy-
dro power library development for modeling, design, and

Uhttp://www.casimir-software.de/save_download.php?language=2
Zhttp://svingentech.no/about%20lvtrans.html
3https://github.com/simulatino/OpenHPL
“http://www.alab.no/Alab-Hydropower-Software/Functionality-
Alab-Hydropower-Software/Operation-simulation-with-waterway
Shttps://www.modelon.com/library/hydro-power-library/
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analysis.

1.2 Previous studies

A mechanistic model of hydropower systems has been de-
veloped in (Splavska et al., 2017) using mass and 1D lin-
ear momentum balance which leads to a Modelica® based
open-source hydropower library OpenHPL, and was initi-
ated in a PhD study (Vytvytskyi, 2019). OpenHPL is un-
der development at the University of South-Eastern Nor-
way. Currently, OpenHPL has units for flow of water in
filled pipes (inelastic and elastic walls, incompressible and
compressible water) (Vytvytsky and Lie, 2017), a mech-
anistic model of a Francis turbine (including design of
turbine parameters), friction models, etc (Vytvytskyi and
Lie, 2018). The library also has draft models for a Pel-
ton turbine, Francis turbine friction model, surge shaft,
open channel flow, and a hydrology model. In addition,
some accompanying work on analysis tools has been de-
veloped in scripting languages (Python, Julia) related to
state estimation, structural analysis, etc (Vytvytskyi and
Lie, 2019b). The library has been tested on real power
plant data (Vytvytskyi and Lie, 2019a). The library is
designed to interface to other Modelica libraries, e.g., li-
braries with generator models, electric grid, etc., for ex-
ample, OpenHPL can be integrated with PVSystems’ for
photovoltaics as in (Pandey and Lie, 2020).

In this regard it is of interest to further develop units for
OpenHPL. This paper primarily focuses on mechanistic
models of surge tanks and draft tubes. The simple surge
tank mechanistic model developed in (Splavska et al.,
2017) is further enhanced by a sharp orifice type surge
tank and a throttle valve surge tank considering hydraulic
resistance in the inlet to the surge tank. The surge tank
model is also further enhanced using air-cushion surge
tank as a closed surge tank mechanistic model. A further
extension to the library includes mechanistic models of
draft tubes: conical diffuser and moody spreading pipes.

1.3 Outline of the paper

The paper is organized as follows. Model developments
for surge tanks and draft tubes are provided in Section
2. The simulated response for the developed mechanis-
tic model for surge tanks and draft tubes are presented in
Section 3. Conclusions and future work are sketched in

Shttps://www.modelica.org/
7https://github.com/raulrpearson/PV Systems
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Figure 1. Simple surge tank with geometrical dimensions of
height H, length L, and diameter D. The height of liquid level
inside the surge tank is z with slanted length to be ¢. The volu-
metric flow rate inside the surge tank is V with F; as fluid fric-
tion. Fy is the gravitational force due to fluid mass m inside the
surge tank. py, is the bottom pressure and p; is the top pressure
equivalent to atmospheric pressure p, for a free-fluid surface.
For a hydropower system, we considered fluid inside the surge
tank to be water with color as blue.

Section 4.

2 Model Developement

Two main assumptions were made while developing mod-
els for hydro power units. First, we consider incompress-
ible water flow inside the units. Second, we consider the
inelastic pipe for modeling all types of surge tanks and
draft tubes.

2.1 Surge tanks

A surge tank is usually placed between an intake and a
penstock pipe in a hydro power system. The prime benefit
of a surge tank is to provide a low-pressure region to dissi-
pates pressure energy released during the sudden opening
and closing of the turbine valve. Depending on the loca-
tion and head, the surge tank can be of open type (water
surface at atmospheric pressure) or closed type (water sur-
face in contact with pressurized gas/air).

2.1.1 Simple surge tank

A simple surge tank is shown in Fig. 1.
The mass and momentum balance for a dynamical sys-
tem can be expressed as in (Lie, 2017a, p. 87-88, 226-227)

>

dm ) )
e
/A , .
—— =M — M+ F,
dt et

where subscript i and e refers to influent and effluent prop-
erties, respectively. m, .#and F represents mass, linear
momentum and force acted-upon in a dynamical system.
If 7iz and ./ are mass flow rate and momentum flow rate
for a system with single entry and single exit, it is com-
monly written as i — rite = riv and M; — Mo = M .
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m
Di Po

Figure 2. A hydropower unit, for example a simple rigid pipe,
with ideal fluid (water) flow from a inlet pressure point p; to
outlet pressure p, with 71 as a flow variable. The pressure point
inside the pipe is considered to be a across variable.

For surge tanks, if 7z and ./ represents water mass flow
rate and momentum flow rate of water inside the surge
tank, respectively, then,

dm )
a " &
/A .

The modeling of hydropower units in OpenHPL is con-
sidered using m as a flow variable and pressure p at any
point in a unit as a across variable®.

Figure 2 shows a connector for a hydropower unit cre-
ated for OpenHPL. While developing a unit, for exam-
ple a surge tank in our case, mathematical terms in mass
and momentum balances as expressed in Eq. 1 and Eq. 2
should be reduced using algebraic variables to 71, py, and
pt. For the surge tank we have p; = py, and p, = p; for
a volumetric flow V sign convention to be positive in the
upward direction as in Fig. 1.

The mass balance equation represented in Eq. 1 can be
represented by series of algebraic equations. The mass of
water inside the surge tank leads to,

m= pAl (3
h
{= 4
cos 6 “)
nD?
A= — 5
i 5)
and the mass flow rate leads to,
=pV, ©6)

where A and 6 represents cross-sectional area and slant
angle of a cylindrical surge tank with diameter D. p repre-
sents density of the fluid.  and V are differential variable
with initial height of water level inside the surge tank as #,
and initial discharge to the surge tank as V,, . Similarly, the
momentum balance equation in Eq. 2 can be represented
by a series of algebraic equations as,

M = mv 7
=" ®)
M =1y 9)
F=F,—F—F, (10)

8The across and flow variables are used for creating a con-
nectors in Modelica language. For more details, please see
https://mbe.modelica.university/components/connectors/ .
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where v is the velocity of water inside the surge tank in
the direction of V and F is the total force acting inside the
surge tank in the direction of v. F;, is the force exerted due
to pressure difference py, — py. Ft is the fluid friction acting
opposite in the direction of v, and Fy is directed downward
due to gravity.

The pressure force exerted in the normal direction of A
is given by,

Fp:(Pb*Pt)A- (11)
Furthermore, the fluid friction F; is calculated as,
K///A
Fr= waD (12)
Ay = tD/ (13)
m pV | V |
K = 14
e (14)

where K is the kinetic energy of the fluid per volume
which is proportional to the quadratic variation of V and
v. The expression for K" is 22 VM . The absolute value for v
and V allow for reversing dlrectlon of water flow. Ay, rep-
resent the wetted area due to water flow inside the surge
tank given by an expression Ay, = tD{. In Eq. 12, fp
represents Darcy’s friction factor given by an implicit ex-
pression in the Colebrook—White equation (Colebrook and
White, 1937; Colebrook et al., 1939) for transient full-
fluid flow in the conduit. There exists several explicit
approximation for fp that requires less computation as
listed in (Lie, 2017a, p. 239). For OpenHPL, we are using
the explicit approximation of Colebrook—White equation
from (Swanee and Jain, 1976),

L <8/D+5'7>
th 210 3.7 Ngég )

for Nge = (2300—10%) and &/D = (107> —0.005),

where € is a conduit roughness height and Ngre is the
p\vID

(15)

Reynolds number expressed by Nre =

resents kinematic viscosity of the fluid.
For laminar flow, fp = % with Nge < 2100. The re-

gion for the fluid with 2100 < Ng. < 2300 is a transition

flow interpolated with a 4™ order polynomial equation.
The expression for force due to gravity is given as,

. Here, u rep-

Fy =mgcos6. (16)

Equation 1 to 16 represents Differential Algebraic
Equations (DAESs) for the mechanistic modeling of simple
surge tank represented in Fig. 1 and can be solved using
equation based modeling language like Modelica.

2.1.2 Sharp orifice type surge tank

The model of the simple surge tank can be further modi-
fied using a sharp orifice hydraulic obstruction inside the
surge tank as represented in Fig. 3.

To model the sharp orifice type surge tank we employ
the generalized friction factor for sharp orifice fitting as
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Figure 3. Sharp orifice type surge tank with a sharp orifice of
diameter Djas shown by horizontal perturbation bars inside the
surge tank. The sharp orifice acts as a hydraulic obstruction for
water flowing inside the surge tank.

given in (Lie, 2017a, p. 246). The expression for fluid fric-
tion force represented by Eq. 12 needs a correction term
due to the sharp orifice. The frictional force exerted due
to sharp orifice can be calculated using an expression for a
pressure drop expression as given in (Lie, 2017a, p. 244).
The overall frictional force for the sharp orifice type surge
tank is now calculated by the expression as,

K"A K Awfp
Ff u + pv‘v|A¢507

1 A7)

where A is the cross-sectional area of the sharp orifice type
surge tank with diameter D, which is equivalent to the
simple surge tank with diameter noted with symbol D, and
050 1s a generalized friction factor. ¢s, depends on Nge,
and the diameter of the surge tank and the orifice.

For Nge < 2500 :
)] : ¢s00

2 (2 (20
Do NRe

For Nge > 2500 :
D;\?
2.72 — ] -
* (DO)

(PSO -

4000
N Re

0

¢so =

where,

00 |1 Dy 2 D 4_1
D, D, '
Equation 1 to 11, Eq.17, and Eq.13 to 16 represent

DAEs for the mechanistic model of the sharp orifice type
surge tank.

2.1.3 Throttle valve surge tank

To model a throttle valve surge tank we employ a similar
method for correction of fluid frictional force as in the case
of a sharp orifice type surge tank. A schematic diagram for
throttle valve surge tank is given in Fig. 4.
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Figure 4. Throttle valve surge tank with the diameter and the
length of throat as D; and L, respectively. The throat in the
figure acts as a hydraulic obstruction for the water flow inside
the surge tank.

The water mass, velocity, momentum, and the fluid fric-
tion force for a throttle valve surge tank varies depending
upon the water level inside the surge tank as above or be-
low the throat.

1. For ¢ < L;: When the water level is at the throat or
below the throat, we have,

m= pAd (18)
Fp = %7 (19)

where A; is the area of throat, Ay is wetted area for the
throat given by expression Ay, = TD{. The average ve-

locity for this case is calculated using v = %{ and K" is

given by expression K = % pv v

2. For ¢ > L;: When water level inside the surge tank is
above the throat of the surge tank, the frictional factor due
to the throat should be considered.

The mass of the water inside the surge tank in this case is
given as,

m=p(ALi+A(l—L)), (20

2
where A = nf" . Similarly, the average velocity, water mo-

mentum, and pressure force are given as,

Vil 1
V:2<A+A)
M =pVYi
Fy=(po— (pi+pg(t—Ly)))Ac+pg (£ — L) A.

Observe that while considering the frictional force cor-
rection factor for ¢ > L; the velocity direction is important.
a). For v > 0 : The friction factor is calculated consider-
ing a square expansion type pipe fitting and the general-
ized friction factor is given as (Lie, 2017a, p. 245)

For Nge < 4000 :

Do \*
¢“:2P‘<D)

For Nre > 4000 :

Bue = (1+0.8fp) ll - (D">2

D;

2

This gives the total frictional force for this case,

K///A
Ff _ 4Wf D

where @ represents the generalized friction factor for the
square expansion type fitting. The entrance velocity for

1
+ Epve | Ve |AI¢S67 21

square expansion type fitting is expressed as v, = %t and
the entrance area is A;. The wetted area is calculated us-
ing Ay, = D ({ —L;).

b). For v < 0: The flow of water in this case is considered
to be from the top of the surge tank to the bottom direc-
tion. The friction factor is calculated considering square
reduction type pipe fitting and the generalized friction fac-

tor is given as,
(o) -
— | =1
D,

for Nge < 2500 :
(Li )2 - 1] .
D,

160
o= |12+ —
b= (12450
and for Nge > 2500 :

This gives the total frictional force for this case to be,
_ K///AWfD

4

where @, represents the generalized friction factor for the
square reduction type fitting. The entrance velocity is ex-

N2
05 = (0.6+0.481p) (3)

1
Fr + Epve | Ve |A¢’sr> (22)

pressed as ve = % and the entrance area is A.
2.1.4 Air-cushion surge tank

The general schematic of air-cushion surge tank is shown
in Fig. 5. The free water surface inside the surge tank is
filled with pressurized air making it as a closed type surge
tank.

The pressure wave during a load rejection traveled from
high pressure region (at the end of penstock) to the low
pressure region (near free water surface, i.e., through the
surge tank in hydro power systems). During this period,
water mass inside the surge tank oscillates, dissipating
pressure. The more the amplitude of water mass oscilla-
tion the higher should be the physical height of the surge
tank. For reducing the amplitude of water oscillation in-
side the surge tank, pressurized air is placed inside the
surge tank making a closed surge tank. This will cause the
air to compress and expand adiabatically (Vereide et al.,
2016; Zhang et al., 2009), and the energy due to high pres-
sure is realeased as a form of work done for compression
and rarefaction. For a adiabatic process we have,

pV? = constant, (23)
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Figure 5. Air-cushion surge tank with initial air pressure of p;
which is normally tens of atmospheric pressure.

where p, V, and 7 is the pressure, volume, and ratio of
specific heats at constant pressure and at constant volume,
respetively, for air. The mechanistic model of air cushion
surge tank is similar to that of simple surge tank, however
with correction term for m and p; for a simple surge tank.

The mass of water and air inside surge tank is given as,

m= pAL+my,, (24)

and the air pressure inside the surge tank is given by,
B L—10,\"
Pt = Pc IL— g ’

where m, is the mass of air inside the surge tank given by
expression,

(25)

_ pA(L—1Ly)M,

= (26)

In Eq. 25, p. is the initial air cushion pressure when initial
slant height of liquid level inside the surge tank is £,. The
expression shown in Eq. 25 is derive from Eq. 23 equal-
izing the initial and final expression. In Eq. 26, M, rep-
resents molar mass of air, R is the universal gas constant,
and 7° is the temperature of air inside the surge tank.

2.2 Draft tube

A draft tube is a hydraulic device used in reaction turbines
in a hydro power systems for utilizing the available ki-
netic energy at the exit of the runner of the turbine. One of
the prime benefits of a draft tube is to increase the turbine
pressure head by decreasing the exit velocity out of the
runner which will improves the overall efficiency of hy-
dropower systems. And the other benefit is that the back
flow of water from a tailrace to the turbine is restricted
due to higher pressure region at the turbine’s outlet due to
draft tube (Gubin, 1973). There are various types of draft
tubes; the most common type is a conical diffuser and oth-
ers are variants of the conical diffuser (Arasu, 2008). In

Figure 6. Conical diffuser inclined at angle 6 with input diam-
eter D; and output diameter D,. p; and p, are input and output
pressure of the conical diffuser with p; > p,.

2.2.1 Conical diffuser

A general schematic of the conical diffuser is shown in
Fig. 6.

The influent and effluent mass flow of water through the
conical diffuser is same. This gives ‘% =0 from Eq. 1.
Thus, the mechanistic model is derived from the momen-
tum balance given by Eq. 2 with series of DAEs. First, we
consider the model of the conical diffuser considering it
be a cylinder of average diameter D = %. Second, we
will add a frictional force correction factor for the conical
diffuser expanded from D; to D, (with a diffusion angle
normally in the range of (5° —20°)).

da# .
7 M+F 27)
M =mv (28)

|4
v=o (29)
M = 1y (30)
F=F—-F—F, @31

nD? 7D?

D2
where Fy = pidi — podo, Ai = 3+, Ao = T8, A= T,
and Fy = mgcos 0. The mass of water inside the diffuser
is given by,

m=pV,

where V is the volume of water. The expression for V can
be calculated as®,
TH
V=15 (D} + D3+ DiDy) .
The overall frictional force is calculated using expres-
sion

K///A 1
this paper, we will derive a mechanistic model for a coni- = TWfD + 5 pv|v|Aidg, 32)
cal diffuser and a hydraucone or a Moody spreading pipes
(White, 1921). “https://mathworld.wolfram.com/Conical Frustum.html
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Ly,

Dni O Do

Figure 7. Moody spreading pipes with length of main part Ly,
with both the branch length of Ly,. v and vy, are velocity through
the main part and the branch part, respectively. The continu-
ity equation for the pipe branching is Ajv = Agvp +Aovp. The
pipe contracts from the point of branching to the outlet of the
branch in the real case of hydraucone as explain in (White, 1921,
p- 276). However, we are considering a constant cross-section
throughout the branch pipe. 6 is a branching angle or a bifurca-
tion angle.

Po O i D,

where @q is the generalized friction factor due to the dif-
fusion.

The head loss for a conical diffuser, diffused from D; to
D,, is minimum at a diffusion angle of 8° for a fixed value
of %. For a pair value of diffusion angle and the ratio %,
04 can be calculated from (Munson et al., 2009, p. 4201).
For our case, for a maximum efficiency conical diffuser,
we will conside a diffusion angle of 8° which gives

D 2
¢q~0.23 <1—D‘> .

(o]

(33)

The mechanistic model of a conical diffuser can be repre-
sented by using DAEs from Eq. 27 to 33.

2.2.2 Moody spreading pipes

The schematic diagram of a moody spreading pipes or a
hydraucone is shown in Fig. 7.

For Moody spreading pipes, %1 =0, and the mechanis-
tic model is developed from the momemtum balance. We
take the momentum balance considering verticle direction
i.e., y — axis momentum conservation. The series of DAEs
are,

d# .
— = F 34
dt M+ 34
M = MmVm + 2mpvp COS g (35)
M = Tty Vi + 2ty cosg (36)
F=F,—F—F, (37

where my, and my are mass of water in the main part
and the branching part, respectively given by expressions
My = PAiLn and my, = pAyLy. Similarly, vy, and vy are the
velocity in the main and the branching part, respectively.
Vm = %j and vy, are calculated using continuity equation
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Table 1. ¢7 for different value of 6 for Moody spreading pipes
friction factor correction

0 15 30 45 60 190
¢9 [ 0.04 0.16 [ 0.36 [ 0.64 | 1

for branching pipes using expression as,

Aijvim = AoVp +AoVp

Aivm = 2A0Vb
A;
Vp = Vm-
b 2A0 m

Furthermore, expressions for iy, and g, are given as,

Ty, = pV
iy, = pVp
Vo = AoV,

where V;, is the volumetric flow rate in the brach.
The components in Eq. 37 are expressed as,

0
Fy, = piA; — 2poA, cos ) 38)

0
Fy = mpg +2mpg cos 7 (39)
The fluid frictional force Fs is calculated considering fluid
friction in the main and the brach pipe with addition of a
generalized frictional force correction factor for branch-
ing. The overall frictional force is then,

0 1
Fy = Fym + 2F;p cos 5 +2- 7PV | vim | Ai¢a,  (40)

where ¢@q is the generalized friction factor for a single
branch in case of branching and taken from (Idelcik, 1966,
p- 281, 301), given as,

2 2
0a=1+ (”’) 2 cosf — ¢S <V"> . @D
Vm Vm Vm
where ¢7 depends on 6 and calculated from Table 1.

Ft m and Fty, are fluid frictional force, calculated using
Eq. 12, for main and the branch pipe for Moody spreading
pipes.

Equation 34 to 41 represent DAEs for mechanistic mod-
eling of Moody spreading pipes or Hydraucone.

3 Simulated Responses and Results

For the simulated responses from the mechanistic models
of surge tank and draft tubes we take a case study from
a real hydropower plant. For simulating open surge tanks
and draft tubes we are using the layout of the Trollheim
hydro power plant and for simulating air-cushion surge
tank we are using the layout of the Torpa hydropower
plant.

The layout diagram of Trollheim and Torpa hydro
power plants are shown in Fig. 8.
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Figure 8. Layout diagram for the Trollheim (Vytvytskyi and
Lie, 2019a) and the Torpa Hydro Power Plant (HPP) (Vereide
et al., 2016). Nominal head, nominal discharge, and nominal
power output are 370m, 40m> /s and 130MW for the Trollheim
HPP, and 445m, 35m3/s and 150MWfor Torpa HPP. Torpa
HPP has two turbine units each having nominal power output
of 75SMW. The air-cushion surge tank for the Torpa HPP has air
volume of 13,000m? initially pressurized at 4.1 Mpa. For the
Trollheim HPP, the diameter for both of the penstock and the
surge tank is 4m while for both of the headrace and the tailrace
tunnel is 6 m. Similarly, for the Torpa HPP, the diameter of both
of the headrace and the tailrace tunnel is 7 m.

3.1 Responses for surge tanks

Figure 9 shows the simulated response for different surge
tanks for the Trollheim HPP and the Torpa HPP.

In case of the Trollheim HPP, the manifold pressure
surge during load acceptance'® in case of a simple surge
tank has higher amplitude than that for sharp orifice and
throttle valve surge tank. Furthermore, the pressure surge
dies out soon in case of both sharp orifice and throttle
valve surge tank. Also, the diameter of sharp orifice and
throttle valve affects the manifold pressure surge oscilla-
tion. For example, when D; = 1 m for a throttle valve surge
tank the manifold pressure py settles after 20s while for
sharp orifice type with Ds, = 1 m, py settles around 300s.

In case of the Torpa HPP, the dynamics of both mani-
fold pressure and air-cushion pressure is the same with a
difference of almost 2 bars.

3.2 Responses for draft tubes

Figure 9 shows the simulated response for a conical dif-
fuser and Moody spreading pipes for the the Trollheim
HPP.

For a Moody spreading pipes draft tube, the inlet pres-
sure p; decreases as the branching angle decreases.

101t i5 the condition when the load at prime mover is added suddenly.
For instance, in case of turbine running an electrical generator the sud-
den industrial operation like electrical motors, etc., can be considered as
a load acceptance.
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Lo Turbine valve signal uy for both Torpa and Trollheim HPP
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Figure 9. Simulated response for different surge tanks with step
change of 0.45 to turbine’s valve signal. The turbine’s valve
signal starts at t = —500s to show that simulation is performed
in steady-state for —500s and at r = O's the valve signal is change
from 0.5 to 0.95 to see the dynamics of other variables.

4 Conclusions and Future Work

This paper consists of mechanistic models for different
types of surge tanks and draft tubes. Result shows that the
pressure surge during load acceptance dies out soon for
the throttle valve surge tank when the diameter of throat is
decreased succesively. Similar operations can be obtained
for a sharp orifice type surge tank, however, pressure surge
amplitude decays soon in case of a throttle valve surge
tank. For an air-cushion surge tank, the dynamics of both
manifold pressure and air-cushion pressure are the same.
For a Moody spreading pipes, the inlet pressure decreases
when the braching angle is decreased.

Future work includes testing of the surge tank and draft
tube mechanistic models with experimental data. The dy-
namics of sharp orifice type surge tank and throttle valve
surge tank can be validated with simulated results from
(Bhattarai et al., 2019). The air-cushion surge tank model
can be validated with experimental results obtained from
(Vereide et al., 2016). Similarly, model validation for the
conical diffusers can be done with experimental data from
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Draft tube inlet pressure p; for Trollheim HPP

—— Conical

—— Moody (6=15")
W — Moody (6=30°)
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Q 310
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3.00 . . . . .
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Figure 10. Simulated response for conical diffuser and Moody
spreading pipes for different branching angle. D; = 4m for both
types of draft tubes. D, = 4.978 m for conical diffuser with dif-
fusion angle of 8° and D, = 3.5m for Moody spreading pipes.
Ly =4m and L, = 3m for Moody spreading pipes. Moody
sprading pipes draft tube is simulated for different branching an-
gle of 15°, 30°, and 45°.

(Vytvytskyi and Lie, 2019a). For Moody spreading pipes,
prior model judgement is required from experts.
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Abstract

The thermo-mechanical processing history together
with the steel composition defines the final
microstructure, which in turn produces the
macroscopic mechanical properties of the final
product. In many industrial processes it is therefore of
paramount importance to find the optimal thermal path
that produces the desired microstructure. In the current
study an optimization method has been developed to
calculate the optimal thermal path for producing
desired amounts of microstructural constituents (ferrite,
bainite, martensite) of a medium carbon, low-alloy
steel, and a low carbon microalloyed steel. The
optimization is performed for two separate industrial
processes: induction hardening of a pipeline steel and a
water cooling of hot rolled steel strip. The optimization
workflow consists of first setting the desired amounts
of microstructural constituents, and subsequent
optimization of the thermal path, which produces these
desired amounts. For the water cooling of a steel strip
we additionally employed previously developed tool to
calculate the cooling water fluxes that are needed to
realize the optimized cooling path in water cooling line
after hot rolling. To demonstrate the applicability of
the method, we present results that were obtained for
different case studies related to the industrial processes.

Keywords: constrained optimization, nonlinear
optimization, steel, processing

1 Introduction

1.1 Background

The thermo-mechanical processing history together
with the steel composition defines the final
microstructure, which in turn produces the
macroscopic mechanical properties of the final
product. In many industrial processes, it is therefore of
paramount importance to find the optimal thermal path
that produces the desired microstructure.

In the case of pipe induction hardening, the gradient
of material properties (microstructure, hardness and
hardening depth) through the pipe body can be
optimized by designing the thermal cycle i.e. rates of
heating and cooling along with the peak temperature
and soaking time. In the induction hardening

DOI: 10.3384/ecp20176139

processing, the thermal cycle is very easy and precise
to apply and control. As regards, an optimization is
required to reach the desired material properties
through the final microstructure characteristics in an
efficient way.

Higher heating rate is beneficial in many ways.
However to some extent it can cause inhomogeneity
and abnormal grain structure (Javaheri et al., 2019a) in
the steel. The heating rate can also change the critical
phase transformation temperature, which cause
difficulties  for  selecting the  austenitization
temperature. The minimum possible peak temperature
can result in the finest prior austenite grain structure,
which leads to formation of very fine final
microstructure and consequently will improve the
strength and toughness at the same time. Increasing
the cooling rate in the industrial scale may affect the
production cost. However producing hard and strong
microstructure such as martensite or lower bainite
would not be possible if the cooling rate is smaller than
a certain level. All in all, an optimization should be
performed to find the best and most efficient
combination of above mentioned parameters.

In industrial practice of hot rolling of steel, steel
manufacturers are forced to employ the most advanced
processing routes in their production lines. The control
of reheating, rolling and accelerated cooling forms the
basis of producing new types of high-performance
steels. The capability to accurately predict and control
plate or strip temperature behavior and microstructure
evolution during thermomechanical processing is of
fundamental importance in commercial production. In
the water cooling line, it is possible, within certain
limits, control the resulting microstructure for a given
steel composition. Since the line layout and other
processing parameters limit the available cooling paths,
the optimization script needs to take these effects in to
account conveniently.

Optimization of thermal processing is a common
task arising in metal processing (Jung et al., 2018;
Tavakoli, 2018). In current study we employ the
optimization tools in Matlab programming language.

1.2 Aims

In the current study an optimization tool has been
developed to calculate the optimal thermal path for
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producing desired amounts of microstructural
constituents (e.g. ferrite, bainite, martensite). Since in
the current implementation, the minimization algorithm
applies an initial guess, we call this implementation as
“semi-automatic”, although for the water cooling of
steel strip the choice of the initial guess was performed
by automatically testing different cooling paths, as
explained later.

The optimization is performed for two separate
industrial processes: induction hardening of a medium
carbon, low-alloy pipe steel (Javaheri et al., 2019b)
and a water cooling of a hot rolled low carbon steel
strip (Pohjonen et al., 2018a). The optimization
workflow consists of first setting the desired amounts
of microstructural constituents, and subsequent
optimization of the thermal path, which produces these
desired amounts applying the phase transformation
model described in (Pohjonen et al., 2018a; Pohjonen
et al., 2018b; Javaheri et al., 2019b). For the water
cooling of a steel strip, we additionally employed
previously developed tool (Paananen, 2015; Pohjonen
et al., 2016) to calculate the cooling water fluxes that
are needed to realize the optimized cooling path in
water cooling line after hot rolling.

To optimize the induction hardening process for
achieving desired gradient of microstructure and
mechanical properties, initially, the heating cycle
(austenitization) has been optimized regarding the rate
of heating and peak temperature assuming a dwell time
of 2.5 s aiming for the finest prior austenite structure.
Then, three different scenarios for the cooling path
have been considered to achieve three thoroughly
different microstructures of 1) fully martensitic
structure (100%), ii) fully bainitic microstructure, equal
amount of upper and lower bainite (50% each) and iii)
mixture of martensite and bainite (30% martensite,
40% upper bainite, and 30% lower bainite).

To test the optimization tool in the context of water
cooling of hot rolled steel strip, we set the desired
fractions of bainite and martensite, and perform
optimization to achieve these fractions within the water
cooling line. In the case of water cooling, the line
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layout and rolling process set some limits for the
possible cooling rates. Maximum overall cooling rate
at the strip centerline ranges typically from 150 °C/s to
30 °C/s while minimum cooling rate due to radiation
and convection ranges from 10 °C/s to 2 °C/s for the
thin and thick plates, respectively.

2 Calculations

In the current study, an optimized piecewise linear
cooling path was sought. The optimization of the path
was realized with the Matlab Optimization Toolbox
(Mathworks, 2020) using the fmincon function. The
interior point minimization algorithm with nonlinear
constraints (Byrd et al., 2000) was chosen for the
optimization. Since the heating and cooling rates are
limited in practice, the constraints for these rates are
defined for the optimization. Also, the maximum
temperature changes and time intervals of the path can
be limited to desired values. By setting the exact time
intervals for the path, the optimization tool can be
adjusted to given water cooling line layout, when the
speed of the strip is known.

The workflow for the cooling path optimization is
depicted in Fig. 1. The applied optimization method
requires an initial guess for the optimized parameters,
which is used as a starting point for the optimization.
Here we wuse the starting temperature T,, the
temperature changes AT; and time intervals At; for
each segment i of the piecewise linear temperature
path as the optimization parameters, so that the
parameters describe the thermal path. The thermal path
optimizer applies the fmincon function, which runs a
script that calculates the phase fractions that result
from the thermal path. After the calculation, the
optimizer script receives the final phase fractions, and
calculates the difference to the desired phase fractions,

i Xides — X; - Based on the optimization algorithm
(Byrd et al., 2000; Mathworks, 2020) the thermal path
is changed and the optimization proceeds to minimize
the difference to the desired phase fractions.
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Figure 1. Optimization flowchart

choose suitable initial guess, so that the algorithm can

Upper and lower bounds were set within the find a good minimum. For the test cases related to
fmincon function call. From the application point of optimization of the cooling path of water cooled steel
view, it is important to define the minimum and strips, we applied a script to automatically test nine
maximum cooling and heating rates, since even different initial guesses for the cooling paths and then
without additional cooling, the object cools by itself select the one that produced the best solution. The
due to radiation and convection. Also, depending on cooling paths described by the initial guesses are
the size and geometry and the applied forced cooling, shown in Fig. 2.
there is maximum cooling rate that can be achieved. 1
Too high or low heating rates can adversely affect the
resulting microstructure. For this reason, the non-linear
constraints for heating and cooling rates dT /dt were a8
set using crcon function (Mathworks, 2020) related to 5
the fmincon minimization algorithm, to control the éo.e
maximum cooling rate for each segment in the S

. . . . AT AT; _ AT 04l
piecewise linear cooling path: — < —<— | ol

Atmin At 4 max I

The phase transformation module has been described P 02
in detail generally in (Pohjonen et al., 2018b), in ’
context of induction hardening of medium carbon steel
(Javaheri et al., 2019b) and in the context of water 00 0.2 0.4 0.6 0.8 1
cooling of hot rolled low carbon steel in (Pohjonen et Time / max time
al., 2018a), where (Javaheri er al., 2019b) and Figure 2. Thermal paths used as initial guesses for
(Pohjonen et al, 2018a) also include the the optimization of the temperature path for water
transformation model parameters fitted for the steels cooling of hot rolled steel strip.
that were used in these examples.

Since the minimization script finds a local
minimum near to the initial guess, it is required to
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After the thermal path to produce desired
microstructure in the strip cooling line is optimized,
another optimization script is used for calculating the
required water fluxes. The water flux calculation is
done by an approximate model presented elsewhere
(Paananen, 2015; Pohjonen et al., 2016). This model
calculates the average temperature at the mid-depth of
the steel strip. Approximate model was fitted using a
more detailed but computationally heavier model
(Pyykkonen et al., 2012) so that the effect of strip
temperature and water flux was studied with wide
variety of parameters in detailed model. These results
were used to form tables for mean cooling rate, £,
under one cooling unit as a function of temperature and
water flux. Later, the mean cooling rate for arbitrary
temperature or water flux is calculated by using these
tables and linear interpolation.

Azl
Tl+1 a Tl + UstripVstrip k(T' 9) (1)
where T is temperature, Az is thickness, / is the length
between two modelling points, v is velocity, k is
average cooling rate and 6 is the water flux. Subscript
denotes a modelling point.

For the induction hardening cases, the optimization
time interval was longer, hence it was more suitable to
find the initial cooling path by testing few different
paths that already produce some amount of the desired
phase fractions, so that the optimization script then is
capable of finding how the changes of the path affect
the resulting phase fractions. While the optimization
for the steel strip was fully automated, the semi-
automatic optimization was chosen for the induction
hardening cases.

3 Results and discussion

3.1 Water cooling of hot rolled steel strip

In the case of steel strip cooling, the chemical
composition and rolling procedure limit the possible
phase fractions that can be obtained during water
cooling. However, in some cases, even small changes
to the final phase fractions may lead to desired change
in the final properties of steel. Two different cases are
presented where the fractions of bainite and martensite
are 20 % bainite - 80% martensite for case 1) and 40 %
bainite - 60 % martensite for case ii). In these cases,
five (time, temperature) points were chosen, at which
the temperature is optimized. In reality, there could be
even more fitting points, but this would make it more
difficult to know what the constraints for different
zones would be.

First, optimal cooling path to produce desired
amounts of bainite and martensite is found through
optimization presented in this work, then the water
fluxes that produce this cooling path in the cooling line
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are calculated with an approximate model (Paananen,
2015). Finally, the cooling path that can be achieved in
the cooling line (continuous line in Figures 4 and 6)
was used as an input to phase transformation model, to
check that even though there are some small
differences in the thermal path of Figs 3 and 4, the
desired phase fractions are still obtained.

3.1.1 Water cooling of steel strip case i), 20 %
bainite, 80 % martensite

The optimized thermal path and phase fractions for
water cooled steel strip test case 1) are shown in Fig. 3.
The path started from fully austenitic structure. The
path was optimized to produce 20 % bainite and 80 %
martensite. The optimized normalized water fluxes are
shown in Fig. 4.

: Mostonia. o Marisnsit |
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Figure 3. The optimized thermal path for strip cooling
process test case 1) (20 % bainite, 80 % martensite) and
the fraction of phases formed as function of time.
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Figure 4. The optimized normalized water fluxes.
Target temperatures refer to temperatures that would
be optimal to obtain the desired phase fractions the

black line shows the thermal path estimated as result
from these water fluxes.
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3.1.2 Water cooling of steel strip case ii), 40 %
bainite, 60 % martensite

The optimized thermal path and phase fractions for
water cooled steel strip test case ii) are shown in Fig. 5.
The path started from fully austenitic structure and it
was optimized to produce 40% bainite and 60 %
martensite. The optimized normalized water fluxes are
shown in Fig. 6.

—Temperature —==Bainite
-Austenite === Martensite

1

0.8} 08 g
3 £
(0]
<06 106G
S G
£ £
~ L C
=04 04 §
5 3
F o2t 02w

0 : 0
0 0.2 0.4 06 08 1

Time / max. time
Figure 5. The optimized thermal path for strip cooling
process test case ii) (40 % bainite, 60 % martensite)
and the fraction of phases formed as function of time.

1 1
—— Path with optimized water fluxes

(0] ® Optimized temperatures
5 + Normalized water flux X
+ —
© =
= —
(]
& g
s °
© ()
w N
N . =
= o E
© B

‘ —_
£ 5
=} =2
=

0 0

Normalized Time

Figure 6. The optimized normalized water fluxes.
Target temperatures refer to temperatures that would
be optimal to obtain the desired phase fractions the
black line shows the thermal path estimated as result
from the optimized water fluxes.

3.2 Induction hardening

Typically, in the induction hardening process, in order
to avoid a significant grain growth, the time when the
material stays in highest temperature (the peak
temperature) is few seconds. This time is called dwell
time. In this study, a dwell time of 2.5 s was considered
for all the calculations. Moreover, to achieve the finest
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possible grain structure, it is desirable to maintain the
peak temperature as low as possible, while still
achieving full austenitization.

For the optimization of the austenitization, we
defined the objective function f,,;, which is
minimized. The function f;;; = | Xy — )(y_des| +Ty,/a,
where ¥y 4es = 1.0 is the desired austenite fraction
(full austenitization). T, is the peak temperature and a
is a penalty parameter which affects how much the
peak temperature contributes to the objective function.
The parameter a was optimized so that the final value
was the minimum that produced more than 99.5 %
austenite during the heating and holding in the peak
temperature. The physical austenitization parameters
were the peak temperature and the heating rate, which
was constrained between 50 °C/s and 100° C/s.

The minimum peak temperature satisfying this
condition was found to be 795 °C with the minimum
heating rate 50 °C/s. The found peak temperature,
heating rate, and the chosen 2.5 s dwell time were used
in the austenitization schedules for all of the induction
hardening cases examined in this study.

3.2.1 Induction hardening case i), fully martensitic
structure

The optimized thermal path for the induction hardening
test case ii) is shown in Fig. 7. The path was optimized
for full austenization at minimum temperature, 2.5 s
dwell time, with 50-100 °C/s heating rate. Upon
cooling the path was optimized to produce fully
martensitic structure. For further experimental and
applied studies, as well as serving as a suitable initial
guess for other desired phase amounts close to this
result, the actual values and cooling rates are presented
in Table 1.
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Figure 7. The optimized thermal path for induction
hardening process test case 1) (fully martensitic
structure) and the fraction of phases calculated to form
as function of time.
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Table 1. The values of the time-temperature path of
induction hardening test case i) shown in Fig. 7, as well
as the corresponding heating (HR,+) and cooling rates
(CR,-).

Table 2. The values of the time-temperature path of
induction hardening test case ii) shown in Fig. 8, as
well as the corresponding heating (HR,+) and cooling
rates (CR,-).

Time (s) Temperature [°C] HR+/CR- [°C/s] Time [s] Temperature [°C] HR+/CR- [°C/s]

0,0 21,0 50,0 0,0 21,0 50,0
15,5 795,2 0,0 15,5 795,2 0,0

18,0 795,2 -92,2 18,0 795,2 -62,5
21,2 497,6 -47,3 20,3 650,3 -2,3

25,5 295,9 -3,8 60,9 555,9 -0,2

65,3 145,8 -1,9 99,4 548,0 -3,0

105,1 70,8 -0,5 149,2 399,0 -7,4

200,0 21,0 - 200,0 21,0 -

3.2.2 Induction hardening case ii), equal amount of
upper and lower bainite (50% each)

The optimized thermal path for the induction hardening
test case ii) is shown in Fig. 8. The path was optimized
for full austenization at minimum temperature, 2.5 s
dwell time, with 50-100 °C/s heating rate. Upon
cooling the path was optimized to produce 50% upper
bainite (which forms above 550 °C), 50 % lower
bainite (which forms below 550 °C). For further
experimental and applied studies, as well as serving as
a suitable initial guess for other desired phase amounts
close to this result, the actual values and cooling rates
are presented in Table 2. Despite the minimization
procedure, abount 10 % of the austenite transformed to
martensite during cooling. A longer total time would
be required to produce the desired fully bainitic
microstructure.
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Figure 8. The optimized thermal path for induction
hardening process test case ii) (50 % upper and 50 %
lower bainite) and the fraction of phases calculated to
form as function of time.
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3.2.3 Induction hardening case iii), 30% martensite,
40% upper bainite, and 30% lower bainite

The optimized thermal path for the induction hardening
test case iii) is shown in Fig. 9. The path was optimized
for full austenization at minimum temperature, 2.5 s
dwell time, with 50-100 °C/s heating rate. Upon
cooling the path was optimized to produce 40% upper
bainite (which forms above 550 °C), 30 % lower
bainite (which forms below 550 °C) and 30 %
martensite. For further experimental and applied
studies, as well as serving as a suitable initial guess for
other desired phase amounts close to this result, the

actual values and cooling rates are presented in Table
3.
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Figure 9. The optimized thermal path for induction
hardening process test case iii) (30 % martensite, 40 %
upper bainite, 30 % lower bainite) and the fraction of
phases formed as function of time.
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Table 3. The values of the time-temperature path of
induction hardening test case iii) shown in Fig. 9, as
well as the corresponding heating (HR,+) and cooling
rates (CR,-).

Time [s] Temperature [°C] HR+/CR- [°C/s]

0,0 21,0 50,0
15,5 795,2 0,0

18,0 795,2 -84,4
20,1 614,5 -1,4
69,8 547,2 -5,5
96,5 401,1 -12,1

113,1 201,4 -2,1

200,0 21,0 -

4 Conclusions

Using the Matlab programming language (Mathworks,
2020), based on the algorithm described in (Byrd et
al., 2000) an optimization script was created for finding
the cooling path that produces the desired
microstructural constituents (ferrite, upper and lower
bainite, martensite) as well as finding suitable heating
path for desired austenitization. The script was
succesfully applied for several test cases related to
water cooling of hot rolled steel strip and induction
hardening. For the water cooling case, the script was
fully automated by running a series of initial guesses
for the thermal path and choosing the best result, while
for the induction hardening cases, a user defined initial
guess was used. For water cooling we additionally
optimized the required cooling water fluxes needed to
realize the optimized cooling path based on the earlier
work (Paananen, 2015; Pohjonen er al, 2016).
Although the results of the presented test cases are not
directly applied in the industrial practice as such, they
are reasonably close to the actual production to
demonstrate the practical applicability of the method.
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