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Preface 
We are very pleased to introduce the proceedings of the 64th International 

Conference of Scandinavian Simulation Society, SIMS2023, held at The Steam 
Hotel in Västerås, Sweden, during the period September 25–28, 2023. 

SIMS2023 is open to scientific contributions from broad aspects of recent 
research and development work in modelling, simulation, and optimisation in 
engineering applications. This includes modelling and simulation for design, 
planning, optimisation, control, and monitoring as well as practical case studies 
of industrial automation. Furthermore, tools and toolboxes for modelling and 
simulation, numerical methods for simulation, novel modelling techniques, and 
visualization of modelling and simulation results are of interest. Typical 
applications include but are not limited to (i) Renewable energy systems 
(bioenergy and biofuels, geothermal, hydro, solar, thermal, wave, tidal, and wind 
energy), (ii) Hydrogen technologies (production, storage and transportation, 
hydrogen value chain), (iii) Energy systems (electric power, energy storage, fuel 
cells, heat pumps, industrial plants, energy use in buildings, power plants), (iv) 
Transportation (automotive, hybrid and electrical vehicles, marine, 
infrastructure), (v) Industrial processes (carbon capture and storage, chemical 
processing, oil and gas, and water treatment, (vi) Cyber-physical systems, and 
(vii) Biosystems and medical systems. 

The scientific program of SIMS2023 was curated by an international 
program committee, consisting of researchers in simulation, artificial intelligence 
and machine learning, energy systems and industrial technology. The main goal 
was to deliver a high-quality program with a wide variety of topics. In the single-
blind review process, at least three reviewers evaluated each submission and gave 
their recommendations.  Ambiguous results were thoroughly discussed among the 
reviewers and the senior members of the program committee, who then made the 
final selection. 

SIMS2023 is the first conference on simulation of its kind in Europe starting 
as early as 1959, and to the best of our knowledge, it is the only conference on 
simulation that covers all aspects related to simulation in a diverse range of 
applications. The program committee welcomed submissions in the following 
formats: regular technical papers up to 8 pages (including references) on 
substantial, original, and unpublished research, including evaluation results, 
where appropriate, and poster submissions on focused contributions from students 
and industries and tutorials. In addition, we were very fortunate to have two high-
profile keynote speakers: Dr. Alf Isaksson (ABB, Sweden), an expert on 
Automation and Industrial Autonomy; and Dr. Jianping Wang (Hitachi Energy 
Research, Sweden), a renowned expert on Power Systems protection. 
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These proceedings include only the regular technical papers that were papers 
accepted by the review committee and were presented during the conference. In 
more detail, the conference received 77 submissions from all over the world, 
including from China, Germany, Finland, Norway, France, Germany, and Italy. 
We were able to accept 52 full papers, 8 posters and 2 tutorials. 51 accepted and 
presented papers are collected in this volume. 

Organizing a conference and a peer-review process always relies on the good 
will and support of many colleagues who take their valuable time and contribute 
to an interesting and fruitful program. Firstly, we would like to thank the members 
of the conference organising committee for putting a great technical program. 

Our special thanks go to all the technical area chairs of the technical program 
committee, Prof. Erik Dahlquist (Mälardalen University), Dr. Valentina Zaccaria 
(Mälardalen University), Dr. Amare Desalegn Fentaye (Mälardalen University), 
Prof. Mirko Morini (University of Parma), Dr. Valentin Scheiff (Mälardalen 
University), Dr. Hao Chen (Mälardalen University)., Prof. Eva Thorin 
(Mälardalen University), Dr. Stavros Vouros (Mälardalen University), Dr. Gaurav 
Mirlekar (University of South-Eastern Norway), Dr. Amir Vadiee (Mälardalen 
University) and Dr. Avinash Renuke (Mälardalen University), for  their 
substantial  support and  for  many constructive online meetings. It was a pleasure 
working with you. I also want to thank our industrial program committee, Dr. 
Lokman Hosain (Hitachi-Energy Research), Dr. Moksadur Rahman (ABB), Dr. 
Esin Iplik (Linde) and Prof. Rebei bel Fdhila (Hitachi-Energy Research), for their 
time, effort, and the arrangement of the great keynote lectures as well as the 
industrial panel session on Simulation and Modelling in Energy Transition and 
Future Directions.  

In addition, I would like to thank all the authors for once again making these 
proceedings interesting, diverse, and impressive. Many thanks go to Prof. Esko 
Juuso (University of Oulu) for managing the conference website. Finally, my 
sincere gratitude goes to the Linköping University Electronic Press for publishing 
these proceedings. 

I wish you all a joyful time while exploring the papers in this volume! 
 
 
Prof Konstantinos G. Kyprianidis 
Chair of SIMS2023 
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About SIMS 
SIMS is the Scandinavian Simulation Society with members from the five Nordic 
countries Denmark, Finland, Norway, Sweden and Iceland. The SIMS history 
dates back to 1959. SIMS practical matters are taken care of by the SIMS board. 
It consists of two representatives from Denmark, Finland, Norway, Sweden, and 
Iceland. The SIMS annual meeting takes place at the annual SIMS conference or 
in connection to international simulation conferences arranged in the Nordic 
countries. 

SIMS webpage: https://scansims.org/  
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Building heat demand characteristics in a planned city district with

low-temperature district heating supply

Israelsson, Karina,* Ahrens Kayayan, Vartanb Johari, Fatemeha Gustafsson, Mattiasb Åberg,

Magnusa

aDivision of Civil Engineering and Built Environment, Uppsala University bFaculty of Engineering and

Sustainable Development, Gävle University
*karin.israelsson123@gmail.comAbstract

Due to desirable emission reductions and population growth, increasing energy demand is identified as a dire issue

for energy systems. The introduction of low-energy building districts enables increased energy system efficiency.

This study’s aim is twofold. Firstly, an extensive urban building energy model is used to simulate the hourly use

and geographic distribution of the heat demand for residential and commercial buildings that are to be supplied by

a low-temperature district heating system. The simulated buildings are a part of a planned city district, located in

Gävle, Sweden. Two building energy performance cases are studied; one where all buildings are assumed to be of

Passive House standard, and one where the building energy performance is in line with conventional new-building

regulations in Sweden. Secondly, one specific building is modeled in detail and simulated in the building energy

simulation software IDA ICE to investigate what building heating system is best suited for low-temperature heat

supply. The temperature demands of floor heating and ventilation with heat recovery are investigated and compared

to conventional water-based radiators. The building’s temperature demand results can be used when designing a low-

tempered district heating system which will provide the supply temperature to identify a compatible heating system

technique. Varying supply temperature demand will enable optimization for choosing building heating systems and

consequently, possible cost reductions. The results could be used as an example for future city district planning as

well as presenting relevant heating systems for low-temperature district heating.

1 Introduction

Energy demand is increasing at a problematic rate for

regional and global systems due to increasing popula-

tion and the desire to reduce greenhouse gas (GHG)

emission (Energimyndigheten, 2022a). The Swedish

housing sector utilized roughly 34% of the total en-

ergy use in Sweden in the year 2022, where the ma-

jority of energy was used for space heating (SH) and

domestic hot water (DHW) (Boverket, 2023). With an

increasing construction rate, the energy systems tend

to be further burdened with higher energy demands

(Naturvårdsverket, 2022). Studies, such as the one

carried out by (Abu Bakar et al., 2015), have found

that it is possible to reduce energy systems by im-

plementing energy-efficient buildings. District heat-

ing (DH) is the most common heat source (>50%) for

residential and commercial buildings in Sweden (En-

ergimyndigheten, 2022b). To comply with the EU’s

climate goal of lowered energy use, studies have been

conducted to explore the possibility of implementing

low-temperature district heating systems, where the

supply and return temperatures are lowered (Lund et

al., 2014). Low-temperature district heating has two

distinct advantages: the ability to incorporate lower

temperature sources that would otherwise be wasted

and the reduction of distribution losses. These in

turn can lead to a reduction in GHG emissions. This

would imply lower energy use as well as distribution

losses and higher demand on the building envelope.

Johari et al. (2023) and Reinhart & Cerezo Davila

(2016), among others, developed and investigated ur-

ban building energy models (UBEMs) in the interest

of facilitating planning of city districts. To enable the

implementation of low-temperature DH, further stud-

ies have been conducted to investigate suitable heat-

ing systems for buildings. Hasan et al. (2009) found

low-temperature water heating systems, radiators, and

floor heating, to be applicable to such a heat source

while maintaining comfortable indoor air temperature.

The work in this paper is part of a larger work where

the aim is to use the 3D plans for a coming city dis-

trict and simulate the energy use on a building level.

Then simulate losses and mass flows in different low-

temperature DH-systems and finally, simulate sup-

ply and return temperatures in a building with differ-

ent heating systems using water as distribution me-

dia. This paper focuses on simulating the heating de-

mand on a building level from 3D plans of an upcom-

ing city district and simulating different heating sys-

tems inside a building connected to a DH system. A

planned city district located in the northern parts of

Gävle, Sweden, will be used as a case study to inves-
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tigate the importance of building energy performance

and heating system temperature demands for applying

low-temperature DH. The first will be investigated by

simulating varying building energy performances to

later be used for planning a DH. The second will sim-

ulate inlet temperatures to space heaters to determine

the best-suited technique for low-temperature DH sup-

ply.

2 Background

The planned city district (Näringen) is located north

of Gävle, Sweden, and will be used as a reference

case for this study. The district intends to be one of

Europe’s most sustainable city districts with roughly

6000 residential apartments and 450000 m2 commer-

cial space (Gävle kommun, 2021). The buildings are

to be supplied with low-temperature DH, further ad-

dressed as 4th generation DH (4GDH), generally de-

fined by supply and return temperatures of 55/30◦C
(Lund et al., 2014). 4GDH has been proposed as a

method to reduce energy losses and incorporate waste

heat to decarbonize heating needs (Connolly et al.,

2014). One advantage is that once established there

is flexibility to incorporate carbon-neutral thermal en-

ergy sources. This paper focuses on the requirements

of the shell and indoor heat delivery, i.e. radiators, re-

quired for 4GDH. District heating is considered a fa-

vorable heat source when an area’s heat density is at

least 40−50 kWh/m2 (Frederiksen &Werner, 2014).

Below this threshold, thermal losses in the pipes lead-

ing to and within the area are too high. Lower energy

demands can also be uneconomic to justify the infras-

tructure investment of district heating. A shell with a

higher U-value leads to lower energy demand but may

push the heat density below the recommended for dis-

trict heating network integration. Both heat density

and heat delivery inside the apartments are identified

as research gaps in the field of 4GDH.

3 Methodology

To investigate the influence of energy performance of

buildings and their space heating systems, in particu-

lar, water radiators, on low-temperature DH, two stud-

ies were made. In the first study, an UBEM method

developed by Johari et al. (2023), was used for simu-

lating the energy performance of buildings based on

the criteria for Passive House standard and the lat-

est Swedish building codes with and without heat re-

covery ventilation system. Second, to find the best-

suited system for low-temperature DH supply, the in-

let water temperature to conventional radiators, low-

temperature radiators, and floor heating was deter-

mined using IDA ICE (AB, 2023).

As plans for the new city district are not yet final, as-

sumptions were made when simulating in IDA ICE

and UBEM. Information regarding the geographical

position, number of floors, and building type was re-

trieved from a project description (Gävle kommun,

2021). Figure 1 shows the planned city district’s

buildings as well as the development phases 1-11.

Figure 1. Geographical positioning of the planned city

district including development phases 1-11.

3.1 Weather data

Due to buildings’ energy use’s dependency on

weather, both models utilize data for a typical me-

teorological year (TMY) for Gävle from the PVGIS

Online Tool (European Commission, n.d.). The mea-

sured ambient temperature for 2022 was used when

simulating the annual heat demand to use data consis-

tent with the current temperature profile instead of the

historical one. The data was collected from Gävle En-

ergi’s database, which is the company responsible for

managing the DH system in Gävle. In IDA ICE, the

wind profile was set to represent urban conditions.

3.2 Estimation of heat demand in the planned city dis-

trict

To estimate the energy use of a large set of build-

ings located in the planned city district, a bottom-

up physics-based UBEM developed in Johari et al.

(2023) was used to estimate space heating (SH) and

domestic hot water (DHW) use. The model was origi-

nally made for residential buildings. However, for the

scope of this study, it was further extended to cover

non-residential buildings, i.e., administrative and of-

fice buildings, as well. The key difference between

residential and non-residential buildings was assumed

to be centered around occupancy and load. There-

fore, a new occupancy profile was attributed to non-

residential buildings. Using the methodology sug-

gested in Sandels et al. (2015), the occupancy profile

for non-residential buildings was developed from a

stochastic model for occupants’ presence, use of elec-

trical appliances, and lighting. As for the use of do-

mestic hot water, it was set to zero (Sveby, 2010).

In this study, two types of building standards were

used for modeling and simulation of buildings. The
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first was the latest Swedish building codes and min-

imum requirements for new constructions (in short,

referred to as BBR) (Boverket, 2020). The second

was the Passive House standard (in short, PH), which

was proven to result in higher building energy perfor-

mance than BBR. In the UBEM, the thermal proper-

ties of these standards were set according to the pre-

sented data in Table 1. In addition, for the case of PH,

a mechanical heat recovery ventilation system with a

minimum effect of 75 % was also considered in the

model(FEBY, 2018). The window-to-wall ratio was

assumed to be 20 % (Cerezo et al., 2017).

Table 1. U-values (W/m2K) for PH and BBR.

Building Uwall U f loor Uroo f Uwindow

PH 0.10 0.09 0.09 0.8

BBR 0.17 0.15 0.12 1.2

3.2.1 UBEM simulation scenarios

The importance of building energy performance when

computing heat demandwas simulated in three scenar-

ios. First, all buildings were simulated based on BBR

without ventilation heat recovery. Second, the energy

performance was increased by implementing ventila-

tion heat recovery. Third, all buildings were simulated

as PH with ventilation heat recovery.

3.3 Estimation of the temperature demand

Urban scale models are rather simplified and therefore

unable to represent a detailed low-temperature system

(Johari et al., 2023). Therefore, it was chosen to use

the building simulation tool IDA ICE to investigate the

best-suited heating system for low-temperature DH

supply. The supply temperature of water-based high-

temperature radiators, low-temperature radiators, and

floor heating were studied respectively. One three-

story residential building with simple geometry was

modeled in detail to represent BBR-building with ven-

tilation heat recovery, ηv = 75%. The floor area

was estimated in the geographic information software

QGIS to be 423.6 m2 with interior and exterior ceil-

ing heights at 2.5 and 3 m, respectively. A study by

(Johari et al., 2022) has shown that simplified one-

building modeling in IDA ICE results in limited er-

rors. Hence, the building was assumed one zone per

floor and evenly distributed windows with a window-

to-wall ratio 20 % (Figure 2).

Figure 2. Building model in IDA ICE.

According to BBR the air change was set to 0.35

L/s·m2 and DHW use 25 kWh/m2 · Atemp · y (Bover-

ket, 2020). The average living space per person is 42

m2/person in Sweden which was used to estimate oc-

cupancy of 10.09 people per floor with absence be-

tween 7 am to 5 pm and 80 W heat emission. This

was further used to estimate heat emission from light-

ing and appliances 932.7 W/floor (Sveby, 2009).

A study by Hasan et al. (2009) was used to simulate

low- and high-temperature profiles of the water supply

(Figure 3). The study used design temperatures 21◦C
and −26◦C for summer and winter, respectively, re-

sembling the Swedish climate.

Figure 3. Water supply low- and high-temperature pro-

files to building heating system.

3.3.1 IDA ICE simulation scenarios

A 100 W/m2 floor heated area radiator was placed un-

der the window on the building’s long side on each

floor, generating a heat emissive area of 11.7 m2. The

design indoor temperature at maximum power was set

to 21◦C and ∆T at 10◦C (Hasan et al., 2009). With the

PI-regulator, IDA ICE estimated the water mass flow

to be 1.0 kg/s. The supply water temperatures were

then varied between high and low to simulate conven-

tional high-temperature radiators and low-temperature

radiators. Neither radiator system is supplemented

with comfort floor heating. The supply temperature is

determined by the outdoor temperature, and the mass

flow varies depending on the heating demand.
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35 circuits/floor at 12 m2, placed 3 cm into the floor

material, was used to simulate floor heating. Each cir-

cuit emitted 50 W/m2 and had a design ∆T at 10◦C as

in Hasan et al. (2009). With temperature control and

PI-regulator, a constant water mass flow of 0.014 kg/s

was estimated in IDA ICE. The floor heating system

was considered a low-temperature profile as in Fig-

ure 3. Three independent scenarios are tested:

• High-temperature radiators only

• Low-temperature radiators only

• Floor heating system only

4 Results

In this section, the results from the implementation of

the methodology are presented in two parts. First, it

is shown that PH has the lowest heat demand but an

effective ventilation heat recovery has a large impact

on the total heat demand. Implementation of varying

building energy performances could be more benefi-

cial to make DH possible, which in turn has a positive

impact on the energy system. Floor heating showed

to need the lowest supply temperatures of the investi-

gated heating systems.

4.1 Area heat demand and heat density

Results show that the total heat demand (DHW and

SH) for the simulated area decreases from 130, 85, and

79 GWh/year with increasing building energy perfor-

mance. Figure 4 shows the annual heat demand for

each building of the district. A minor decrease (ap-

proximately 6%) in heat demand is seen when simu-

lating buildings with PH standard compared to BBR-

building when both include ventilation heat recov-

ery. Heat recovery decreases the heat demand by ap-

proximately 34% when simulated on BBR-buildings.

Thus, effective heat recovery has been shown to have

a larger impact than materials with low U-values on

a city district’s heat demand. Further, Figure 4, also

illustrates the buildings with the highest heat demand.

This is due to its floor area and wall ratio and conse-

quently inadequate solar heating. The building with

the highest yearly heat demand decreases from 2980,

1930 to 1880 MWh for BBR-building without venti-

lation, BBR-building with ventilation, and PH.

Figure 5 shows each development phase’s heat den-

sity. Phase 8 is well above the requirement (40
kWh/m2) for DH for each simulated energy perfor-

mance. Whereas phases 1 and 4 are always below this

value. This result might be used to optimize the dis-

trict for DH use.

(a) BBR without ventilation heat recovery.

(b) PH with ventilation heat recovery.

Figure 4. Distributed total heat demand (MWh) for PH

(with ventilation heat recovery) and BBR (with-

out heat recovery).

(a) BBR-building without ventilation heat recovery.

(b) PH with ventilation heat recovery.

Figure 5. Heat density (kWh/m2) for each development

phase.

Figure 6. Results for the annual energy demand (MWh).
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4.2 Individual building temperature demand

Figure 7 shows the temperature demand of the sim-

ulated space heaters and the hours the heaters are in

use, i.e. the hours with heat demand in descending

energy demand. Inlet and outlet temperature is set to

the indoor temperature (21◦C) when the heater power
is < 1 W . Floor heating is shown to require the low-

est temperatures, maximum inlet/outlet temperature at

27/24◦C. The results showed a small ∆T of 1−3◦C.
This is beneficial for maintaining comfort and even

heat emissions. The two types of radiators require

maximum inlet temperature of 41◦C and 58◦C, low
temperature and conventional, respectively. Almost

identical outlet temperatures were simulated, follow-

ing the indoor temperature, indicating effective heat

emission regardless of the space heater.

Figure 7. In- and outlet temperature to the heating system

in BBR-building for winter.

Figure 7 shows that low-temperature radiators have a

steady temperature curve to maintain the desired in-

door temperature. However, high-temperature radia-

tors enable fluctuations in the outlet temperature mak-

ing it possible to use lower temperatures when pos-

sible as well as raising the heat when needed. Af-

ter roughly 4000 h can the high-temperature radiators

use lower temperatures than low-temperature radia-

tors and still maintain an indoor temperature of 21◦C.
Although counterintuitive, it reflects the assumption

that the low-temperature radiator will require higher

inlet temperatures at outdoor temperatures above 10◦C
which could reflect comfort floor heating in the cited

paper (Hasan et al., 2009). At approximately 4500 h

there is no longer a heat demand and the space heaters

are therefore shut off. The principal results are how-

ever that the system is feasible to provide comfort even

at lower inlet temperatures.

5 Discussion

The results from Figure 4 further the discussion and

cost calculations on ventilation heat recovery versus

low U-value constructions. As the results show heat

recovery has a larger impact on reduction in heat de-

mand of approximately 34% than possibly expensive

PH construction of 6% compared to BBR-building

without heat recovery. These gains need to be com-

pared with the cost for each adjustment. A life cycle

assessment (LCA) should also be conducted to under-

stand the environmental impact. According to the cur-

rent plans, a few residential buildings use a lot of en-

ergy when the majority have equivalent heat demand.

These buildings should be evaluated and redrawn to

e.g., minimize transmission losses through the build-

ing envelope and maximize solar gains.

When planning a city district supplied with DH, Fig-

ure 5 can be used to optimize the heat demand by

varying building energy performance for different ar-

eas aiming at the threshold value at 40 kWh/m2. By

altering building energy performance in the different

phases, the heat density can be made better suited for

DH, allowing higher utilization of waste heat from e.g.

industries. The result may also be used to identify is-

sues in the current development plans such as the num-

ber of stories.

The low level of detail in buildings, both when sim-

ulating in IDA ICE as well as UBEM, results in sim-

plified but sufficient calculations (Johari et al., 2022).

Floor heating is shown to be the space heater best

suited for low-temperature DH with a maximum tem-

perature demand of 27◦C and the lowest return tem-

perature. When other aspects such as the initial in-

stallation cost of the heating system and slower re-

sponse time to indoor or outdoor temperature changes

are taken into account, other technologies can be fa-

vorable. One example can be the low-temperature ra-

diator system that has a maximum supply temperature

demand of 41◦C which is still below the definition for

4GDH (55/30◦C).

6 Conclusion

Improving efficiency can reduce the thermal energy

demand of buildings but for DH systems to remain vi-

able changes to heat delivery need to be made. To

answer the questions of what impact a building’s en-

ergy performance has on a city district’s heat demand

and which type of space heater is best suited for low-

temperature DH, simulations in an UBEM and IDA

ICE were conducted. Results showed PH has the

lowest heat demand of 79 GWh/y compared to the

reference case with BBR-building without ventilation

heat recovery of 130 GWh/y. However, ventilation

heat recovery seems to have a larger impact on a

building’s heat demand ( 34%) than construction with

lower U-values ( 39%) compared to the reference case.

Floor heating is the space heater best suited for low-

temperature DH with a maximum inlet temperature of

27◦C and the lowest return temperature of the investi-
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gated heating systems. Low-temperature radiators are

also a good fit with 4GDH but demand a higher tem-

perature of 41◦C rather than floor heating’s 27◦C.
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Abstract 
 
As cities grow and develop, urban planners face an increasing challenge to create more sustainable and 
environment friendly communities. The Kopparlunden district in Västerås, Sweden, is no exception, with plans 
underway to transition the area to a more sustainable neighborhood. To assist this effort, this paper presents a 
simple grey box modeling approach to predict the heat demand of eight buildings in the area. As the city 
transforms from a historical industrial district to a mixed district with residential buildings, shops, and offices, the 
model will allow urban planners to predict their new heat demand. The model is calibrated using a genetic 
algorithm, then validated using real historical data. The results show a good accuracy of the model and highlight 
the importance of increasing the insulation efficiency of the walls in the modelled buildings. The model can be 
used to predict the heat demand variations, with minimum error of 2.49 kW and up to 16.6 kW for large buildings. 
The model highlights the importance of energy modeling for urban development projects and shows its 
significance as a tool to aid in decision-making towards sustainable and more efficient urban areas. 
 

1. Introduction 
With the increased growth of urban population and 
urban energy use, cities around the world are facing 
an increasing challenge to provide sustainable and 
energy efficient environment for their residents. The 
building sector is one of the major contributors of 
CO2 emissions worldwide, and thus presents a great 
potential to reduce energy use and associated 
emissions. Urban planners and policymakers are to 
plan and implement large scale improvements of 
buildings’ energy performance, which imposes 
significant challenges and issues related to the 
complexity and scale of the urban environment 
(Hong et al., 2020; Keirstead et al., 2012), policy and 
regulatory frameworks essential to adequately 
support and /or incentivize sustainable and energy 
efficient practices (Economidou et al., 2020; 
Strielkowski et al., 2019), funding and securing 
financial resources for projects implementation 
(Alam et al., 2019; Bertoldi et al., 2021; Sebi et al., 
2019), data availability and accessibility for 
informed decision making, and long term planning  
and adaptation with consideration of future needs 
and changing circumstances. In this context, the 
European Commision recently revised the Energy 
Performance of Buildings Directive (EPBD) under 
the ”Fit for 55” package (Wilson, 2022), and 
introduced stricter regulations. The revised EPBD 
aims at accelerating the renovation rates, targets the 
15% of EU buildings that perform the worst, and 
establishes high energy performance standards. 
Notably, every building should achieve at least a 

Class E on the revised A-G energy performance 
scale by 2030.  
 
The Kopparlunden district in Västerås, Sweden, is 
no exception to this global and regional trend. As 
part of a larger effort to foster sustainability, plans 
are underway to transition the district into a more 
sustainable neighborhood. 
 
Building Energy Modelling (BEM) became an 
indispensable tool for building professionals and 
energy policy makers to optimize the design, 
operation, and energy efficiency of buildings (Al-
Homoud, 2001; Reinhart & Cerezo Davila, 2016). 
BEM can be performed at the individual building 
level, up to the urban level (Urban Building Energy 
Modelling – UBEM). Its approaches comprise three 
main categories: white-box models, black-box 
models and grey box models (Foucquier et al., 
2013). The white-box models are based on physical 
equations that describe the underlying mechanisms 
of the building. They offer transparency and 
understanding of the physical phenomena involved, 
allowing for accurate predictions and optimization, 
as well interpretability of the results. However, there 
are drawbacks to consider, such as the complexity of 
dealing with complex systems, and the time-
consuming nature of model development (Harish & 
Kumar, 2016). Black-box models on the other hand, 
are purely data driven models. They use actual data 
and perform statistical analysis to capture the 
correlation between the building energy use and 
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operation data (Li & Wen, 2014). Grey-box models 
represent a hybrid approach that combines physical 
and empirical equations to achieve a close 
approximation of the underlying physical 
representation (Harb et al., 2016). They are utilized 
when there are partial information or incomplete 
data, allowing for flexibility and adaptation in 
handling discrepancies, and providing a more robust 
modeling framework (Zhao & Magoulès, 2012).  
 
Discrepancies between a model’s predictions and 
actual energy use are inevitable. To reduce the 
entailing mismatch, calibration is applied. It is a 
process of changing and fine-tuning the model's 
parameters and input assumptions to guarantee that 
the simulated energy performance matches the 
actual energy use of the building (Chong et al., 
2021). It consists of comparing the model's 
predictions to measured data in the building and 
making modifications to increase the model's 
accuracy and credibility. The calibration of BEM 
can be either manual, where it relies on the modeler 
expertise, or automated, where an objective function 
is set to match the simulation results with the 
measured data (Coakley et al., 2014; Hou et al., 
2021). Among the popular calibration techniques are 
optimization evolutionary algorithms, such as 
genetic algorithms (Lara et al., 2017). 
 
In this paper, we present a study that focuses on the 
simulation of eight buildings in the Kopparlunden 
area of Västerås, Sweden. Our main objective is to 
develop a grey box model capable of predicting the 
hourly heat demand for each building under steady 
state conditions. Despite the simplicity of the model, 
we ensured its accuracy through a careful calibration 
process using a genetic algorithm. By incorporating 
this calibration technique, we fine-tune the model's 
parameters to improve its performance and align it 
with measured data. The resultant model achieves a 
good balance between simplicity and accuracy, 
making it a useful and effective tool for predicting 
heat demand in the investigated buildings. Our 
findings demonstrate the successful use of a basic 
yet calibrated grey box model, emphasizing its 
utility in giving vital insights for energy efficiency 
and decision-making in building energy 
management. 
 

2. Methodology  
2.1. Case study 
Kopparlunden, an industrial area in Västerås dating 
back to 1898, holds historical significance. Situated 
in close proximity to the city center, as depicted in 
Figure 1 on the map, the majority of its buildings still 
retain their original character and were originally 

 
1 https://www.archus.se/kopparlunden-fran-ett-stangt-
industriomrade-till-en-levandestadsdel/ (accessed 26/6/2023) 

utilized for metal industry purposes. However, the 
evolving landscape has seen a shift in usage, with 
the buildings now serving as offices or stores, 
accommodating nearly 200 companies in the 
vicinity. Recognizing the potential for optimizing 
the local area, plans have been set in motion to 
revitalize Kopparlunden into a contemporary 
residential space, integrating modern housing, 
commercial establishments, and workspaces1.  
 
The municipality is dedicated to maximizing the 
energy efficiency of the area and has actively 
collaborated with various partners to oversee the 
implementation of the plan. The transformation of 
Kopparlunden is part of a multi-step strategy that the 
municipality and building companies have 
collectively committed to. While many aspects of 
the project, such as the size and functionality of the 
buildings, have been determined, finer details 
regarding the architectural design and specific shape 
are still under consideration. However, at this stage, 
it is possible to make preliminary assessments of 
certain parameters, such as the current heat demand, 
which is the primary focus of the current study. 

2.2 Data Collection 
The buildings simulated in this study are highlighted 
in Figure 2. Buildings data were obtained from the 
NRGYHUB dataset (Krayem et al., 2021). The data 
included buildings’ perimeters, areas, and heights. 
The real heat demand data was obtained from 
Mälarenergi at hourly level for the year 2019. The 
outside temperature was downloaded from ERA52 

for the same year at the hourly level.  
 

2 https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-
era5-single-levels?tab=form (accessed 26/6/2023) 

 
Figure 1: Kopparlunden district, in close proximity to 
Västerås center. The modelled buildings are shown in 

green. 

https://www.archus.se/kopparlunden-fran-ett-stangt-industriomrade-till-en-levandestadsdel/
https://www.archus.se/kopparlunden-fran-ett-stangt-industriomrade-till-en-levandestadsdel/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
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2.3. Model and assumptions 
It is assumed that the building heat balance is given 
using the following equation: 

𝑃𝑃𝐷𝐷 + 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑃𝑃𝑠𝑠  (1) 
where 𝑃𝑃𝑠𝑠, power loss by transmission; 𝑃𝑃𝐷𝐷,  generated 
heat power (only district heating and generated heat 
from the occupants). To simplify the model, losses 
by ventilation, unintended ventilation and air 
leakage were neglected.  
For each element of the building, the transmission 
loss is calculated by the following equation: 
𝑃𝑃𝑠𝑠 = 𝑈𝑈 .  𝐴𝐴 .  (𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑝𝑝𝑜𝑜𝑜𝑜)  (2) 

where 𝑈𝑈, heat transfer coefficient in W/m2.°C, 𝐴𝐴, 
area in m2, 𝑇𝑇𝑖𝑖𝑖𝑖, indoor temperature in °C, and 𝑇𝑇𝑝𝑝𝑜𝑜𝑜𝑜 , 
outdoor temperature in °C. The total transmission 
loss of the building is the sum of the individual 
transmission loss of each element. 
 
The Uvalue of different elements of old buildings were 
assumed from the literature (Liu et al., 2014). The 
Uvalue of the floor was assumed 0.22W/m2.°C and 
that of windows 1.3 W/m2.°C. The walls assembly, 
with an overall thickness of 0.4m, were considered 
to be a composite structure comprising, in sequence, 
brick, concrete, wood, insulation material, wood, 
and a final concrete layer. The respective 
thicknesses of these materials are 0.09m for 
concrete, 0.06m for timber, and 0.1m for insulation. 
Corresponding thermal conductivity values for these 
materials are delineated in Table 1. The overall 
𝑈𝑈𝑜𝑜𝑝𝑝𝑜𝑜𝑡𝑡𝑝𝑝  of the walls is equal to the reciprocal of its 
total resistance 𝑅𝑅𝑜𝑜𝑝𝑝𝑜𝑜𝑡𝑡𝑝𝑝, which is calculated as 
follows: 

𝑅𝑅𝑜𝑜𝑝𝑝𝑜𝑜𝑡𝑡𝑝𝑝 = �
𝑑𝑑𝑖𝑖
𝑈𝑈𝑖𝑖

 
 (3) 

where 𝑑𝑑𝑖𝑖 represents the thickness of layer i and 𝑈𝑈𝑖𝑖 
its corresponding thermal conductivity. The areas of 
the walls, floors and ceilings were estimated from 
the shapefiles. The area of the windows, which were 
assumed double glazed, was then calculated using 
the window to wall ratio from Table 1.  
For 𝑇𝑇𝑖𝑖𝑖𝑖 , it is assumed to be 21℃ to ensure indoor 
comfort. 
 
The internal generated heat power is considered 
mainly generated from occupancy and is calculated 
using the following equation: 

𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐴𝐴𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 .𝑛𝑛𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑠𝑠.𝑃𝑃𝑝𝑝ℎ . 𝑟𝑟𝑝𝑝 (3) 
where 𝐴𝐴𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓, a building’s floor area, 𝑛𝑛𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓, number 
of floors, 𝑃𝑃𝑝𝑝ℎ, heat generated per person, assumed to 
be 80W/person, and 𝑟𝑟𝑝𝑝, the person ratio in 1/m2 and 
it is assumed to be one person per 35m2. The values 
are based on the Swedish National Board of 
Housing, Building, and Planning (BBR)3. 
 

 
3 Boverkets föreskrifter om ändring av verkets föreskrifter och 
allmänna råd (2016:12) om fastställande av byggnadens 

The walls of all buildings are assumed to be 
composed of double layers of concrete and wood 
with an insulation layer in between. Several key 
inputs related to the materials properties and 
buildings construction (shown in Table 1) remain 
indeterminate due to unavailable or ambiguous data. 
To address these uncertainties and ensure the 
reliability of the model, a calibration process was 
conducted using a genetic algorithm (Martínez et al., 
2020). The objective of the calibration (cost 
function) was to minimize the Root Mean Square 
Error (RMSE) between the simulated heat demand 
and the observed heat demand data. This iterative 
process involved fine-tuning some of the model's 
parameters to achieve a higher level of accuracy in 
predicting the heat demand. During the calibration 
process, multiple design variables were considered, 
as outlined in Table 1. These inputs played a crucial 
role in optimizing the model's performance and 
aligning it with the actual heat demand patterns 
recorded in the Kopparlunden area. Careful 
selection and adjustment of these variables 
contributed to improving the model's capability to 
simulate the complex heat demand patterns observed 
in the buildings. The variations’ range of the 
concrete heat conductivity was obtained from (Misri 
et al., 2018) and for wood from (Pásztory et al., 
2020). 
 
By iteratively adjusting and refining these design 
variables, the aim was to enhance the model's 
accuracy and its ability to capture the variation 
nature and seasonal patterns of the heat demand 
profiles of different buildings.  
 
3. Results 
Among the buildings studied, Building II exhibited 
the highest level of accuracy in terms of heat demand 
prediction, with an RMSE of approximately 2 kW, 
as shown in Table 2. Conversely, the first building 
demonstrated the largest deviation from the actual 
heat demand, resulting in an RMSE of 16 kW. This 
discrepancy can be attributed to several factors,  

energianvändning vid normalt brukande och ett normalår, BFS 
2017:6 

Table 1: Range of values of inputs estimated with the 
genetic algorithm. 

Variables Range of 
variations 

Window to wall ratio 0.1 – 0.65 
Concrete heat conductivity 1.3 – 2  
Wood heat conductivity  0.12 – 0.16 
Insulation heat 
conductivity 

0.06 – 0.1 

Wall resistance indoor 0.1 – 0.16 
Wall resistance outdoor 0.02 – 0.06 

https://rinfo.boverket.se/BFS2016-12/pdf/BFS2017-6.pdf
https://rinfo.boverket.se/BFS2016-12/pdf/BFS2017-6.pdf
https://rinfo.boverket.se/BFS2016-12/pdf/BFS2017-6.pdf
https://rinfo.boverket.se/BFS2016-12/pdf/BFS2017-6.pdf
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including the lack of detailed information regarding 
the construction materials utilized in Building 1. 
Additionally, the accuracy of the geometry data 
employed in the model significantly influences the 
predictive performance.  
Figure 2 (scatter plot) illustrates a comparison 
between the actual heat demand points and the 
corresponding predicted values. The closeness of the 
points to the diagonal red line indicates the degree 
of agreement between the actual and predicted 
values. A strong correlation is observed for most of 
the considered buildings, as signifies the tight 
clustering of points around the diagonal red line, 
while deviations suggest a divergence between the 
actual and predicted values. 
The analysis reveals that buildings 1, 5, and 7 exhibit 
the highest discrepancies between predicted and 
actual values. Remarkably, these buildings are also 
the largest in the study, boasting significant annual 
heat demands of 153.52 MWh, 349.95 MWh, and 
189.84 MWh, respectively. This highlights a notable 
limitation in the model's accuracy when estimating 
heat demand for sizable and complex buildings. 
Achieving more accurate results in these cases 
necessitates a more detailed approach that considers 
additional factors. 
Figure 3 illustrates the distribution of losses among 
the buildings based on the optimal design variables 
obtained from the calibration process. It is evident 
that wall losses contribute the most significant 
proportion of total losses for all buildings, closely 
followed by losses through the ceiling. Conversely, 
losses through the windows are relatively low due to  
the smaller window-to-wall ratio considered and the 
utilization of effective insulation materials. 
 
4. Summary and Discussions 

The utilization of a grey-box model in this study 
provides a straightforward approach to estimate 
building heat demand. However, it is important to 
recognize that higher levels of accuracy may 
necessitate a substantial amount of data. A larger 
and more detailed dataset would have contributed to 
enhancing the precision of the model's predictions. 
While detailed data might be available for specific 
or individual projects, and it is possible to achieve 
detailed data collection, it might not always feasible 
for large scale modeling, such as in Urban Building 
Energy Modeling (Hao & Hong, 2021; Wong et al., 
2021), given the vast heterogeneity in buildings and 
associated operational variables. Different modeling 
approaches are adopted, ranging from physics-based 
to statistical-based methods (Swan & Ugursal, 
2009). Each comes with its own set of advantages 
and limitations, depending on the availability of data 
and the specific objectives of the analysis. 
 The heat losses shown in Figure 3 highlights the 
importance of insulation to reduce the wall heat 
losses for buildings. The findings suggest that 
improving the insulation and thermal characteristics 
of the walls could lead to substantial reductions in 
energy losses. Furthermore, using highly thermal 
resistant materials in the ceiling can also contribute 
to minimizing overall heat losses. 
By focusing on these key areas of concern, such as 
wall and ceiling insulation, building operators and 
policymakers can effectively enhance energy 
efficiency and reduce heating demands. This 
understanding of the relative contributions of 
different building components to heat losses offers 
valuable insights for implementing targeted 
interventions and developing sustainable heating 
practices in the Kopparlunden area. 
 

Table 2: The estimated inputs of the model after calibration using the genetic algorithm. 

Building 
number 

I II III IV V VI VII VIII 

Window to wall 
ratio 

0.10 0.14 0.10 0.10 0.10 0.10 0.10 0.10 

Uvalue of window 0.85 1.28 0.85 0.85 0.92 0.85 0.85 0.85 

Concrete heat 
conductivity 

1.30 1.78 1.30 1.30 1.35 1.30 1.30 1.37 

Wood heat 
conductivity  

0.12 0.14 0.12 0.12 0.13 0.12 0.12 0.14 

Insulation heat 
conductivity 

0.06 0.07 0.06 0.06 0.07 0.06 0.06 0.08 

Wall resistance 
indoor 

0.16 0.16 0.16 0.16 0.12 0.16 0.16 0.15 

Wall resistance 
outdoor 

0.06 0.05 0.06 0.06 0.04 0.06 0.06 0.03 

RMSE [kW] 16.60 2.49 5.62 10.92 14.71 4.93 8.51 4.97 
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While the results obtained from the model offer 
valuable insights into the fluctuations of heat 
demand in the studied buildings, it is crucial to 
realize the inherent limitations associated with this 
approach. Grey-box models may rely on simplified 
assumptions and estimated parameters and may not 
fully capture the intricate complexities of real-world 
systems. Nevertheless, this methodology serves as a 

valuable tool for providing initial estimations of heat 
demand and can serve as a starting point for further 
analysis and refinement.  
By acknowledging both the strengths and limitations 
of the grey-box model and considering the 
availability and quality of data, researchers and 
practitioners can make informed decisions regarding 
energy management and optimization strategies. 
Future actions should concentrate on enhancing the 
model's accuracy through the incorporation of more 
detailed information, improved geometry data, and 
potential exploration of alternative modeling 
techniques to achieve even higher levels of 
predictive performance.  
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Abstract 

 

The increasing CO2 concentration in the atmosphere is the most urgent global challenge. The most mature CO2 

abatement option is post-combustion CO2 capture employing Monoethanolamine (MEA) solvent. One challenge 

of using MEA is its in-service degradation to 2-oxazolidinone (OZD), a heterocyclic five-membered organic ring 

compound. Furthermore, OZD degrades more MEA leading to CO2 capture solvent loss and hence increased 

operational cost. It is therefore of interest to investigate methods to convert OZD back to MEA. This work reports 

the conversion of 2-oxazolidinone to MEA by heat treatment at an alkaline condition. Raman spectroscopy and 

Ion-Exchange chromatography were applied to qualify and quantify the reaction. The optimal reaction parameters 

were identified by an experimental design model using the Response Surface Methodology (RSM). A second-

order model with three variables and five levels of focus was employed, with the OZD conversion percentage as 

the response. This methodology was chosen because such a model could estimate the main effects, interactions 

and quadratic terms by relying on a relatively small number of experiments. 17 experimental runs were designed 

by the software using this method. At a reaction time of 35 minutes, reaction temperature of 100°C, and 2.5 mole 

of hydroxide per mole of OZD resulted in a complete conversion of OZD to MEA. 

 

1. Introduction 

 

Carbon dioxide capture and storage (CCS) is so far 

considered the most promising technology to 

sequestrate CO2 from large emission point sources 

(Rochelle, 2009). Post-combustion carbon capture 

(PCC) gas-liquid chemical adsorption is the 

predominant CCS technology today because of the 

development status (US Department of Energy, 

2017) and that it can be retrofitted to existing CO2 

emitting plants. 

Aqueous 30 wt% Monoethanolamine (MEA) is one 

of the most investigated CO2 absorption solvents 

due to its good operational properties and relatively 

low price (Kohl & Nielsen, 1997; Buvik, 2021). 

Figure 1 shows the typical CO2 absorption-

desorption process scheme. The flue gas enters the 

absorber bottom after pre-treatment and flows 

upwards while the solvent solution e.g., aqueous 30 

wt% MEA moves downwards in counter flow. 

Through a contact of these two streams, the CO2 flue 

gas content is absorbed into the amine solution, 

forming mainly amine carbamate (equation (1)) 

which can release CO2 upon heating to 120-140oC in 

the process stripping section according to equation 

(2) (Eimer, 2014). For simplicity, MEA is expressed 

by R-NH2, where R stands for a -CH2-CH2OH 

group. 

 
2𝑅 −𝑁𝐻2 + 𝐶𝑂2 → 𝑅 −𝑁𝐻3

+ +  𝑅 − 𝑁𝐻 − 𝐶𝑂𝑂− (1) 
 

𝑅 − 𝑁𝐻3
+ +  𝑅 − 𝑁𝐻 − 𝐶𝑂𝑂−

𝐻𝑒𝑎𝑡
→  2𝑅 − 𝑁𝐻2 + 𝐶𝑂2 (2) 

 

However, aqueous MEA solvent has a high energy 

need in the solvent regeneration section and it is 

degrading in service due to contact with air in the 

absorption section and high temperature in the 

stripping section of the process (Fredriksen & Jens, 

2013). These degradation reactions reduce solvent 

absorption capacity. Furthermore, these degradation 

products have to be removed and replaced with fresh 

MEA solvent which adds to operational cost. This 

degradation (reclaimer waste) varies in the range of 

0.1-14.9 kg waste /ton CO2 captured (IEAGHG, 

2014). 

 

 
 

Figure 1: Basic schematic diagram of the chemical 

absorption-desorption CO2 capture process. 
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The first step of thermal MEA degradation is the 

formation of oxazolidone (Davis & Rochelle, 2009; 

Dyen & Swern, 1967; Poldermann et al., 1955) from 

the reaction of MEA with CO2. Several patents 

(Miller, 1985; Pottiez & Verbeest, 1972; Snoble, 

1981; Turoff et al., 2008) claim hydrolytic alkaline 

splitting of the alkanolamine derived oxazolidone 

back to the original alkanolamine and carbonate 

anion as shown in Figure 2. 

 

 
 
Figure 2: Reaction for Splitting of oxazolidone by alkali 

to MEA and a carbonate anion. 

 

It is therefore desirable to understand the optimum 

reaction conditions for splitting of oxazolidone type 

thermal degradation products back to the original 

CO2 capturing alkanolamine. Hence, this work 

determines optimal reaction conditions for splitting 

of oxazolidone by Design of Experiment utilizing 

the Response Surface Methodology (RSM) (Myers 

et al., 2016). Furthermore, a process integration 

concept into a CO2 capture plant is proposed. 

 

 

2. Methodology  

 

2.1 Design of Experiments 

 

A screening design (Eriksson et al., 2008; Esbensen 

& Swarbrick, 2017) was used to identify the most 

important parameters, thus reducing the number of 

experiments needed. For the optimization 

experiments, a Central Composite Design  (Eriksson 

et al., 2008; Esbensen & Swarbrick, 2017)  was used 

to vary the parameters at 5 levels as indicated in 

Figure 3. 

 
Figure 3. Central composite design with three center 

samples resulting in 17 experiments. The 5 different 

levels of the vertical variable are indicated. 

 

The optimal reaction parameters were identified by 

an experimental design model using the RSM 

provided by the JMP software. 

 

2.2 Chemicals  

Chemicals were used as received and are 

summarized in Table 1. All aqueous solutions were 

prepared with Milli-Q® water (18.2 MΩ⋅cm at 

25°C). 

 
Table 1. Chemicals used in the experiments. 

Chemical 

name 

CAS 

number 

Supplier Mole 

Fraction 

purity 

(%) 

Ethanolamine 141-43-5 EMSURE ≥ 99.5 

2-

Oxazolidinone 

497-25-6 Sigma-

Aldrich 

98 

Sodium 

carbonate 

497-19-8 Sigma-

Aldrich 

99.9 

 

2.3. Chemical Analysis 

 

Cation chromatography and Raman spectroscopy 

were used to determine the reference concentrations. 

 

2.3.1 Cation chromatography 

 

The samples were analyzed by a Dionex 5000 

Cation chromatograph controlled by Chromeleon® 

software and equipped with a Dionex IonPac CS16 

2 mm column. The eluent was methanesulfonic acid 

run at a gradient method (Table 2) and a constant 

flow rate of 0.5 mL/min at 60°C temperature. 

Samples were diluted with 0.3 ppm Li+ containing 

Milli-Q water (internal standard) to a factor of 900 

and filtered before injection using a 0.2 mm syringe 

filter. 

 
Table 2. Eluent gradient concentrations 

Time [min] Concentration [mM] 

0 6 

13 8 

25 55 

30 60 

32 60 

34 6 

40 0 

 

2.3.2 Raman spectroscopy. 

 

The spectra were acquired with a RXN2 Raman 

spectrometer fitted with a 785nm laser delivered by 

Kaiser Optical Systems Inc. The samples were 

placed inside a black sample holder covered with an 

aluminium foil to suppress background light and 

were measured using a fiber optic immersion probe. 

The probe was washed with deionized water 
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followed by acetone before each measurement. The 

analysis exposure time was 30 seconds with 6 scans 

for each sample. A blank water sample preceded 

each analysis run. All Raman spectra were baseline 

corrected using the Whittaker filter (Eilers, 2003; 

Whittaker, 1922) (available in PLS toolbox in the 

MATLAB ®software suite) before further 

processing.  

 

2.4 Oxazolidone (or 2-Oxazolidinone) splitting 

experiment. 

 

The experimental set-up is shown in Figure 4. A 

sample of aqueous 3M oxazolidone stock solution 

and NaOH pellets or 0.1M NaOH solution was 

placed in a flask connected to a reflux condenser and 

heated under stirring to a pre-determined 

temperature and time. The pH of the reaction 

mixture was monitored by a pH electrode.  

In a typical experiment, 25g 3M aqueous 

oxazolidone solution was titrated with 0,1 M NaOH 

solution using a Mettler Toledo T50 titrator pH 14 

or a total solution volume of 80 ml whatever happed 

first. The latter produced a pH value of 12.4 at 80 ml 

solution. The solution was heated to 110°C for a few 

minutes, cooled to room temperature and analyzed 

for oxazolidone conversion by Raman spectroscopy. 

An alternative typical experiment of the above 

procedure substituted the 0.1 M NaOH solution by 

anhydrous NaOH pellets followed by water dilution 

to pH14. The aqueous dissolution of NaOH pellets 

is an exothermic process. Hence, the reaction 

solution was cooled to room temperature before 

Raman spectroscopic analysis. 

 

 
 

Figure 4: Experimental set-up 
 

3. Results and Discussions 

 

 3.1. Chemical Calibration for MEA and OZD 

Quantification 

 

Concentrations of OZD were quantified using 

Raman Spectroscopic analysis. The spectral peaks 

of oxazolidone at 928 cm-1 (Figure 5 (a)) (ref: 

McDermott (1986)) and of Na2CO3 at 1066 cm-1 

(Figure 5 (b)) were chosen for subsequent 

qualitative and quantitative analysis. 

 

 
 

 
Figure 5: (a) Raman spectra of oxazolidone (b) sodium 

carbonate at various concentrations 

 

 

Cation chromatography was then used for the 

quantification of MEA. The MEA peak was 

identified in the chromatogram (Figure 6) by spiking 

it with an authentic MEA sample. Quantitative 

analysis was based on a calibration curve in the 

appropriate concentration range. 

 

 

(a) 

(b) 

928 cm-1 

1066 cm
-1
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Figure 6: MEA chromatogram: MEA (3); Na+ (1); NH4+ 

(2); K+ (4). 

 

 

3.2 Optimization of conversion of OZD to MEA 

 

3.2.1 Phase 1 

 

screening investigations. The initial experiments in 

this phase verified oxazolidone splitting to MEA. As 

a preliminary study to verify the conversion of OZD 

to MEA, four tests were carried out using the 

alternative typical experiment procedure with 

solution reflux at 120°C and 2 hour duration (Table 

3).   

 
Table 3: Parameters for the oxzolidone (OZD) splitting 

experiment 

Experiment OZD 

conc. 

[mM] 

OH-

/OZD 

Temp. 

[°C] 

Time 

[min] 

3 200 28 90 100 

4 400 14 140 60 

5 600 12 100 120 

6 80 73 130 30 
 

 

Three parameters were identified based on the initial 

screening experiments. The parameters were varied 

at two levels and three parameters were identified. 

Reaction time, reaction temperature, and the 

relationship between mole of hydroxide per mole of 

OZD were all found as the most significant 

contributors to the conversion of OZD to MEA. 

 

 

3.2.1 Phase 2 

 

Optimization model for OZD conversion 

percentage. In phase 1, 3 three variables were chosen 

for the second phase: temperature (°C), time (min), 

and OH-/OZD molar ratio. The Response Surface 

Methodology was chosen because it can fit a second-

order polynomial model that estimates main effects, 

interactions, and quadratic terms relying on a 

relatively small number of runs. The quadratic terms 

are useful because they can capture a possible 

curvature in the relationship between the response 

and the experimental factors. The three main 

variables are represented by the coefficients A, B, 

and C; the three two-way interactive terms are 

described by AB, AC, and BC; the three quadratic 

terms by A2, B2, and C2.  

With these considerations, the number of central 

points (cp) was set to 3, the number of factorial 

points (Cube) was 8, and the number of axial points 

was 6. Three additional runs (No NaOH (3a), 1a and 

2a) were add to the design resulting in a total of 20 

experimental runs. Experimental plan details and the 

responses (OZD conversion %) are given in Table 4. 

Figure 7 (a) and (b) show the response surface 

contour plots of OZD conversion for 100°C 

(temperature) and 35 min (time), respectively.  

 
Table 4: Optimization model data and results 

Exp. 

No. 

Data Results 

Temp. 

[oC] 

Time 

[min] 

OH-

/OZD 

OZD 

conversion 

[%] 

1 100 38 4 100 

2 118 51 3.2095 99.88 

3 118 24 3.2095 99.94 

4 82 24 3.2095 99.83 

5 82 51 3.2095 99.93 

6 70 38 2.05 89.2 

7 130 38 2.05 99.53 

8 100 38 2.05 98.83 

9 100 60 2.05 99.58 

10 100 38 2.05 98.92 

11 100 15 2.05 94.52 

12 100 38 2.05 98.69 

13 82 51 0.8905 53.34 

14 82 24 0.8905 48.17 

15 118 24 0.8905 59.52 

16 118 51 0.8905 74.63 

17 100 38 0.1 10.48 

1a 130 60 0.8905 72.21 

2a 130 60 0.1 13.54 

3a 130 60 0 0 
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Figure 7: OZD conversion in function of OH-/OZD mole 

ratio (a) and time at 100°C (fixed temperature) (b) and 

temperature at 35 min (fixed time) 

 

The summarizing prediction performance (Table 5) 

and the coefficient values of the optimization model 

(Table 6) indicate it to be satisfactory. 

 
Table 5: Optimization model: prediction performance 

RMSE P-value R2 Adj. R2 

2.1958 <0.0001 0.99727 0.993167 

 

 
Table 6: F-ratios and P-values of coefficients values (A: 

temperature, B: time, C: OH-/OZD) 

Coefficient F-ratio P-value 

A 37.7291 0.00085 

B 12.5534 0.01217 

C 803.7899 0.00000 

AB 2.4178 0.17096 

AC 27.5179 0.00193 

BC 10.5144 0.01763 

A2 3.4492 0.11266 

B2 0.1520 0.71013 

C2 507.2047 0.00000 

 

 

The model shows several sets of possible variable 

combinations (Table 7) depending on desired 

reaction condition application. 

 
Table 7: Model responses for selected variable sets 

OH-

/OZD 

Temp. 

[oC] 

Time 

[min] 

OZD 

conversion 

achieved 

[%] 

1 130 60 83.46 

1.5 130 60 98.59 

1.8 100 60 96.97 

1.8 120 45 99.01 

2 100 47 99.12 

2 110 36 99.11 

2.2 100 24 98.96 

2.5 76 15 98.99 

 

 

Analytic chemical evidence of reaction response 

for selected variable combinations is given in 

Figure 8. 

  

(a) 

(b) 
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Figure 8. Raman spectra of selected experiments: Axial C (high) (a); Axial B (high) (b) and Axial C (low) (d). 

 

3.3 Potential integration of the oxazolidone 

splitting reaction into a carbon dioxide capture 

unit. 

 

The optimal reaction conditions for oxazolidone 

(OZD) splitting (Table 7) depend mostly on the 

OH−/OZD mole ratio. The reaction itself could be 

run in the reboiler of the CO2 stripper or in a separate 

reactor connected to it (Figure 1). This would 

provide a temperature of the reaction vessel in 

excess of 100oC (Poldermann et al., 1955). As 

suggested by a US patent (Turoff et al., 2008), a 

slipstream of the stripper bottoms could be sent to a 

separate reactor where NaOH is added, the reaction 

is conducted and the recovered alkanolamine is 

separated from the caustic by phase splitting. Some 

caustic could be recycled to the reaction vessel while 

the rest is treated as solvent reclaiming waste. The 

US patent (Turoff et al., 2008) teaches this proposal 

for splitting of the oxazolidone 

hydroxypropyloxazolidone (HPOZD) to di-

isopropanolamine (DIPA) and CO2. Our optimal 

reaction conditions for OZD splitting would fit well 

with the above process integration proposal. 

 

4. Conclusion 

  

- Society needs to stabilize and reduce CO2 

emissions. Large-scale post-combustion 

carbon capture is expected to be necessary 

in the near future. Our contribution puts 

focus on the cost reduction of aqueous 

alkanolamine carbon capture solvent.  

- Alkanolamine recovery by splitting of 

oxazolidone (OZD) to the original MEA 

alkanolamine solvent and CO2 can be 

satisfactorily modeled and optimized by 

the RSM method. 

- The model variables are in order of 

importance OH-/OZD ratio, reaction 

temperature and reaction time. 

- A CO2 capture process integration concept 

for splitting of OZD to MEA is proposed. 
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Abstract 
 
Grid-scale energy storage systems are essential to support renewables integration and ensure grid flexibility 
simultaneously. As an alternative to electrochemical batteries, Pumped Thermal Energy Storage is a new storage 
technology suitable for grid-scale applications. This device stores electric energy as thermal exergy, which can 
be discharged directly for thermal uses or converted back into power depending on the necessities of the grid. 
The capability of the proposed energy storage to act as electric and thermal storage fits with the sector coupling 
necessities of multi-energy systems in which electrical and thermal energy carriers are involved. This paper 
investigates the effects on optimal grid management of integrating a Brayton Pumped Thermal Energy Storage 
into a multi-energy system. The case study includes renewable generation from photovoltaic modules and 
residential and industrial users' electrical and thermal load profiles. The system day-ahead optimization, 
performed through a Mixed Integer Linear Programming approach, aims to minimize the operational cost 
computed over a 24-hour horizon. The simulation highlights how the proposed storage technology interacts with 
the users' requirements during different seasons. The final results highlight that using multi-energy storage (i.e., 
providing power, heating, and cooling) brings a 5% reduction in operating costs during the year compared to a 
traditional electric-to-electric storage operation.  

 

1. Introduction 

Massive exploitation of Renewable Energy Sources 
(RES) is essential to fulfil the European Union 
(EU) climate targets for the 2050 net-zero scenario 
[1]. As a result of the EU policies aimed to face the 
climate change of the last two decades, many 
devices for efficiently exploiting RES are 
nowadays available, such as photovoltaic (PV) 
modules and wind turbines. Besides this, properly 
managing and integrating RES into energy systems 
is essential for reducing carbon emissions.  
Strategies for integrating non-dispatchable RES 
have traditionally focused on the electric grid side 
since the introduction of the concept of Smart Grids 
[2]. Despite that, specific operational and planning 
strategies should address all other energy sectors 
and their interactions with the electric grid [3]. In 
this framework, integrated Multi-Energy Systems 
(MES) can improve the economic and 
environmental performance of equivalent 
independent energy systems [4].  

MES can include several energy vectors, such as 
electric, heating, cooling, fuels and transport, who 
can interact with each other at a district level. MES 
usually also involve Energy Storage Systems 
(ESS), essential devices to enhance the system 
flexibility and fulfil the users' needs [5]. Among the 
several ESS solutions, multi-energy storages are 
particularly suitable for MES [6].  
Multi-energy storage can store different energy 
carriers using the same device, thus potentially 
achieving better economic and environmental 
performances than separate devices. Carnot 
Batteries (CBs) are suitable technologies to 
accomplish this goal since they store electric 
energy as thermal exergy, which can be directly 
used or converted back to electricity [7]. CBs are 
emerging as an alternative grid-scale storage 
technology due to their long operational life (20-30 
years), low cost per kWh [8] and independence 
from rare raw materials. Since CBs are gaining 
interest, many technologies have been proposed in 
the scientific literature for MES optimization, 
including Liquid Air Energy Storage (LAES) [9], 
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Compressed Air Energy Storage (CAES) [10], 
Rankine-based Pumped Thermal Energy Storage 
(Ra-PTES) [11], and Brayton-based Pumped 
Thermal Energy Storage (Br-PTES) [12]. 
Despite these positive features, the economic 
advantages of using CBs as a pure electric-to-
electric storage capacity are still not clearly 
assessed [13]. However, using CBs in MES as a 
multi-energy storage capacity could unlock 
additional revenue streams, improving the CB 
economic performance.  
Among all the CBs technologies, this paper focuses 
on Br-PTES, given its high round-trip efficiency 
(50-70%) [14], compared to LAES and Ra-PTES 
(40-60%) [15] [16]. Br-PTES uses electric energy 
to power a Br Heat Pump (HP), which charges a 
High-Temperature Thermal Energy Storage (HT-
TES). The stored thermal exergy can then be used 
directly for heating purposes or as the hot source to 
power a Br discharging cycle [17]. An additional 
thermal reservoir, i.e., a Low-Temperature Thermal 
Energy Storage (LT-TES), can be used to realize a 
closed-loop configuration [13]. The latter is 
particularly interesting for MES applications since 
coupling the electric, heating and cooling networks 
is a typical requirement at the city-district level 
[18].  
Various storage configurations utilizing solid and 
liquid media have been proposed [19]. Liquid 
media, like molten salts (at temperatures between 
500-800 K) and cryogenic hydrocarbons (180-300 
K), show good resistance to thermal cycles and 
effective heat transfer capabilities [20]. On the 
other hand, solid materials such as magnetite, 
hematite, concrete blocks and ceramic balls tend to 
be cheaper and can be used in a broader range of 
operative temperatures [21] when arranged in 
arrayed packed beds [22]. 
Although many Br-PTES configurations have been 

proposed, their integration in MES is barely 
investigated. Authors in [23] proposed the 
modelling and integration of Br-PTES at a 
domestic scale case study which involves different 
energy vectors. However, Br-PTES achieve higher 
efficiency when their size is at the grid-scale level, 
in which they could become cost-effective and 
competitive with the Li-ion batteries. For these 
reasons, this paper proposes a novel investigation at 
a city-district level. Finally, most papers cited in 
the literature survey have focused on Br-PTES 
optimal design. However, since the integration of 
such storage in real systems is recent, the 
investigation of the optimized management 
strategies still lacks proper space in the literature.  
The contribution of this paper, then, is to simulate a 
MES which includes electric, heating and cooling 
loads, RES generation units (PVs), and a Br-PTES 
to optimize the energy dispatchment at the city-
district level. Given this framework, the results 
highlight how the storage interacts with each 
energy vector during the different seasons. As a 
final result, the paper compares the operating costs 
achieved by the traditional electric-to-electric 
operation and the multi-energy operation proposed 
in this study. 
 
2. Methodology 

2.1 System architecture 

The case study simulates a likely multi-energy 
system operating at a city-district level located in 
Sicily, Italy, encompassing different user types, 
including 35 residential buildings (100 m2 each) 
and non-residential buildings, such as 1 
supermarket (5000 m2 of floor area) and 1 
healthcare facility (10000 m2 of floor area). A 
schematic representation of the district is given in 

Figure 1. City district model scheme including users’ demand, RES production, grid supplies and PTES storage capacity. 
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Figure 1. Each user is defined by its electric, 
thermal, and cooling load, with the share of these 
three vectors varying seasonally. In addition to its 
reliance on electric and natural gas grids, the 
system is also equipped with PV modules installed 
on buildings' rooftops. Finally, the installed storage 
capacity of the system is provided by a Br-PTES, 
which can meet the district's electric and 
heating/cooling necessities. 
The electric, heating, and cooling demand profiles 
are simulated through the software nPro [24]. The 
software creates the profiles starting from the 
annual temperature profile (with hourly resolution) 
of the selected location. By doing so, the electric 
and thermal profiles are coherent reciprocally and 
with the outdoor temperature. The latter was 
provided by the METAR database handled by Iowa 
Environmental Mesonet [25]. A synthetic overview 
of the district demands is provided in Table 1. 
Concerning the energy prices, ENTSO database 
[26] and ARERA [27] are used for the cost of 
absorbed electric energy from the grid, 𝑐 ,  
measured in €/MWh, and the cost of the absorbed 
thermal energy from the Natural Gas (NG) grid, 
𝑐 ,  measured in €/Sm3. 
The PV generation data are simulated starting from 
the solar radiation data collected from satellite 
earth observations [28] and processed employing 
the PVlib library for Python [29] to produce the AC 
power output. The total installed power of the PV is 
size 1200 kW, according to the electric and cooling 
requirements of the district. 

Table 1. Electric, heating, and cooling loads of the 
district 

Utility El. (kW) Heat (kW) Cool. (kW) 
Residential 112 544 313 
Hospital 230 1044 950 
Supermarket 69 629 418 

2.2 Br-PTES storage 

The Br-PTES charging and discharging phases are 
realized through inverse and direct Brayton-Joule 
cycles, Brayton Heat Pump (Br-HP) and Brayton 
Heat Engine (Br-HE), respectively, as represented 
in Figure 2. Argon is used as the working fluid 
since it is one of the most common fluids 
investigated in the literature [30], thanks to its 
capability of reaching higher temperatures with the 
same pressure level as other competitive fluids 
(like helium, nitrogen and air), thus increasing the 
round-trip efficiency. The HP and the HE operate 
between a maximum and minimum temperature 
equal to 500 °C and -80 °C, respectively, thanks to 
the HT TES and LT TES that act as thermal 
reservoirs. The storage technology is modelled by 
defining specific charging and discharging 
parameters for the HT and LT TES, 𝛼  and 𝛼 , 
which links the charging and discharging heat flow 

rates of the TES to the electric charging and 
discharging net power of charging and discharging 
phases. Equation (1) and Equation (2) show the 

definition of these coefficients, where �̇� , �̇�  
are the nominal net power, given by the difference 
between the compressor charging input power and 
the turbine discharging output power or vice versa. 

�̇� ,  and �̇� ,  are instead the associated 
nominal thermal power for charging or discharging 
the HT TES.  

𝛼 , =
�̇� ,

�̇�
;   𝛼 , =

�̇� ,

�̇�
(1) 

𝛼 , =
(1 − �̇� , )

�̇�
;  𝛼 , =

(1 − �̇� , )

�̇�
(2) 

These coefficients are determined by modelling the 
charging and discharging thermodynamic cycles by 
assuming the maximum and minimum cycle 
temperatures (Tmax and Tmin), the iso-entropic 
efficiency of the compressor, 𝜂 , , and the turbine 

𝜂 , , and the ratio between the maximum and 
minimum pressure of the cycles, β, as summarised 
in Table 2. 

 
Figure 2. Br-PTES configuration with charge and 

discharge phases realized by the Br HP and the Br HE, 
respectively. 

The storage model can simulate different operative 
conditions. Once the storage is charged through 
electric input by powering the compressor of the 
HP, the discharge phase can indeed release other 
vectors, as follows: 
 Electric-to-electric. The HT and LT tanks act as 

hot and cold reservoirs to operate a direct 
Brayton-Joule thermodynamic cycle, which 
produces electric energy. 

 Electric-to-heating. The exergy stored in the 
HT-TES is directly used to fulfil the heating 
requirements of the district. 

 Electric-to-cooling. The exergy stored in the LT-
TES is directly used to fulfil the cooling 
requirements of the district.  

Table 2. Charging and discharging cycle parameters for 
the determination of 𝛼  and 𝛼  with Argon as working 

fluid. Values based on [30]. 
Parameter Value 
𝑻𝒎𝒂𝒙 500 °C 
𝑻𝒎𝒊𝒏 -80 °C 
β (ch/dis) 4.56/6.54 (-) 
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𝜼𝒊𝒔,𝒄 0.87 (-) 
𝜼𝒊𝒔,𝒕 0.92 (-) 

2.3 Sizing of the components 

Given the case study's electrical demand and RES 

production, the storage nominal power ratings, �̇�  

and �̇� , are calculated by a preliminary analysis 
based on the duration curves of the absolute 
difference between the electric demand and the 

RES generation. Particularly, �̇�  and �̇�  are 
chosen to match the charging/discharging power 
required 80% of the time. The charging and 
discharging durations, 𝜏 , 𝜏  are set equal to 6 
hours and 3 hours, respectively, which are typical 
values for RES integration purposes. From these, 
the nominal HT and LT TES capacities are 
calculated as in Equation (3): 

𝐶̅ = 𝐶̅ = �̇� ∙
1

𝛼
− 1 ∙ 𝜏 (3) 

Concerning the other components of the district, 
the nominal power absorbed from the electric and 
NG grids and by the chiller are equal to the 
maximum of the electric, heating, and cooling 

demand, respectively, as follows: �̇� , =

max (�̇� ), �̇� , = max (�̇� , ) and 

�̇� = max (�̇� , ). 

Table 3. Storage sizing parameters 
Parameter Value 

𝑪𝑯𝑻 1000 kWh 

𝑪𝑳𝑻 1000 kWh 
𝜶𝒅𝒊𝒔(HT/LT) 2.7/1.7 (-) 
𝜶𝒄𝒉(HT/LT) 1.8/0.8 (-) 

�̇�𝒅𝒊𝒔 200 kW 

�̇�𝒄𝒉 200 kW 

𝝉𝒄𝒉 6 h 
𝝉𝒅𝒊𝒔 3 h 

2.4 MILP problem formulation 

The optimization is realized using a Mixed Integer 
Linear Programming (MILP) approach, 
representing state-of-the-art MES optimization 
techniques. MILP guarantees to find the global 
optimum in the feasible region Ω, assuming the 
objective function 𝑓  and the constraints to be 
linear, and the optimization variables 𝒙 to be 
continuous or binary ([0,1] domain). The 
optimization problem aims to minimize the 
Operational Cost (OC) and is solved with an hourly 
timestep t among a 24-hour optimization horizon 
(T). The optimization problem is formulated as in 
Equation. (4), where 𝑓  is given by the sum of the 

economic losses ∑  �̇� , (𝑡) ∙ 𝑐 , (𝑡) +

�̇� , (𝑡) ∙ 𝑐 , (𝑡) ∙ ∆𝑡 minus the economic 

gain ∑ �̇� , (𝑡) ∙ 𝑐 , (𝑡) ∙ ∆𝑡, where 

�̇� ,  and �̇� ,  are the absorbed and 
injected electric power from  the grid, and �̇� ,  
is the heat flow rate absorbed by the NG grid.  

min
𝒙∈Ω∈ℝ𝑛

𝑓 (4) 

The optimization algorithm finds the optimal 
values of the optimization variables 𝒙, among 
which the most important ones are: 

 �̇�  and �̇� : the charging and discharging 
power rate for the Br-PTES 

 �̇� ,  and �̇� , : the electrical and thermal 
heat flow rate provided by the electric and NG 
grids, respectively. 

 The RES curtailment and the PV power input to 
the electric bus: �̇� ,  and �̇� , respectively 

 Integer variable controlling the on-off status of 
the storage 𝑘  (1 is on, 0 is off) 

 Integer variable controlling the charging or 
discharging mode of the PTES, 𝑘  and 𝑘  

 Integer variables controlling the electrical or 
thermal discharging mode of the storage, 𝑘  and 
𝑘  

Regarding the constraints, the energy balances on 
the electric, thermal, cooling and RES busses are 
necessary to guarantee the users' demand 
fulfilment. Beyond those, some specific constraints 
characterize the PTES operation. The following list 
summarizes the most important ones: 

 𝑘 + 𝑘 ≤ 𝑘 , . The charging and 
discharging phases are mutually exclusive (i.e., 
when the charge is on, the discharge is off, and 
vice versa) 

 𝑘 + 𝑘 ≤ 𝑘 . The electrical and thermal 
discharges are mutually exclusive (i.e., when the 
thermal/cooling discharge is on, the electrical 
discharge is off) 

 The State of Charge 𝑆𝑂𝐶  of the k-component 
(i.e., HT and LT TES) is cyclic over the 
optimization horizon T (Equation 6) and is 
limited within a 𝑆𝑂𝐶 ,  and 𝑆𝑂𝐶 ,  
(Equation 5). 

𝑆𝑂𝐶 , ≤ 𝑆𝑂𝐶 (𝑡) ≤ 𝑆𝑂𝐶 , (5) 

𝑆𝑂𝐶 (𝑡 = 0) = 𝑆𝑂𝐶 (𝑇) (6) 

 The charging heat flow rate �̇� ,  that goes in the 
HT and LT TES during the charging phase are 
related to the charging electric heat flow rate, 
�̇� , by specific coefficients 𝛼 , , which are 
constant with the HP load, as expressed in 
Equation (1). The same constraint is valid for the 
discharging heat flow rates as expressed in 
Equation (2). 
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 The SOC of the k-component changes according 
to the incoming and outcoming heat flow rates, as 
in Equation (7) and (8), where 𝐶̅  is the TES 
capacity and �̇� ,  is the thermal discharge 
equal to −�̇� ,  and +�̇� , (𝑡) for the HT 
and LT TES, respectively. 

𝑆𝑂𝐶 = 𝑆𝑂𝐶 (𝑡 − 1) + ∆𝑆𝑂𝐶 (𝑡) (7) 

∆𝑆𝑂𝐶𝑘(𝑡) =
�̇�

𝑐ℎ,𝑘
(𝑡) − �̇�

𝑑𝑖𝑠,𝑘
(𝑡) ± �̇�

𝑑𝑖𝑠,𝑡ℎ
(𝑡)

𝐶𝑘

∙ ∆𝑡 (8) 

 The heat flow rate �̇�  given by the chiller is 
related to the electric power absorbed by the 
electric bus �̇�  by a Energy Efficiency Ratio 
(EER), which is supposed to be constant with the 
load. The EER value is set to 3, which is a typical 
efficiency for chillers for building applications. 

 
3. Results and discussion 
3.1 Simulated operation 
The optimization process yields the optimal 
dispatching of the three energy vectors (i.e., 
electric, thermal, and cooling) the storage delivers. 
Figure 3 and Figure 4 show a summer and winter 
representative period, respectively, in which the 
storage operation faces some typical seasonal 
patterns of the district energy production and 
demand. The interaction with the PV production is 
visible, especially during the summer when the 
surplus caused by the RES integration is generally 
used to charge the storage, which is later 
discharged according to the necessities of the 

district. For the summer scenario, the electrical 
discharges usually happen during the first hours of 
the day, when the air conditioning units of the non-
commercial building (supermarket, hospital) are 
switched on, causing a consumption peak when the 
PV production is not yet significant. Electrical 
discharges also happen in the late afternoon when 
RES production decreases. In that period of the 
day, the cooling discharges also occur to meet the 
cooling demand, which is still high (considering the 
location of the case study). It is worth noting that in 
the summer period, the storage covers part of the 
heating load during the central part of the day 
(required especially in the domestic building for 
domestic hot water). In this case, indeed, the 
cooling load is fulfilled by the electric bus, which 
benefits from the PV production, and the storage 
then fulfils the heating load to lower its State Of 
Charge (SOC) and be able to be charged by the 
surplus in the following timestep. Despite the 
storage covering part of the cooling load as 
described, its contribution to the district cooling 
requirements is limited to a couple of hours in the 
daytime. This behaviour is because the separate 
chiller installed in the district works with a higher 
energy efficiency ratio than the one of the PTES (3 
versus 1.7). For this reason, the optimizer chooses 
to directly exploit the electric grid during the 
daytime when there is a surplus produced by the 
RES because it is more convenient and uses the 
cold stored in the LT TES in the evening hours 
when the RES production is low. 

Figure 3. Summer scenario. First image represents the charge/discharge power rates of the storage; second image the SOC 
of HT and LT storages, third image the electric load fulfillment; forth image the thermal load fulfillment. 
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A different behavior, instead, happens in the winter 
scenario. In this case, the PTES significantly 
contributes to the fulfillment of the heating load, 
exploiting the HT TES for 5-6 hours per day in the 
thermal discharge mode. The HT TES, indeed, 
charges and discharges heat with a higher 
efficiency compared to LT TES (see values for 𝛼  
and 𝛼  in Table 2). Since the LT TES acts as the 
cold reservoir, indeed, has a limited operation 
compared to the HT TES, which is the hot reservoir 
for the involved thermodynamic cycle. This is the 
reason why the LT TES SOC (visible both in 
Figure 3 and Figure 4) is not able to follow the HT 
TES SOC. In other terms, for an equal electrical 
charge/discharge, the SOC slope of the LT TES is 
always smaller than the SOC slope of the HT TES. 
This results in a worse exploitation of the storage 
capacity, i.e., the SOC of the LT TES varies in a 
more limited range compared to the HT TES. As a 
final result, the PTES   contribution for the heating 
is more significant than the one for the cooling. 
Besides the RES production, the thermal and 
electricity prices also affect the storage operation. 
Both summer and winter scenarios show that 
sometimes the storage is charged directly from the 
electric grid during the night-time, buying surplus 
electricity compared to the electric load. This is due 
to the lower energy price, which characterizes the 
night hours. Focusing on the winter scenario, the 
storage is charged during the night and releases 
thermal discharge during the first hours of the 
morning, where the space heating units work with 
maximum power to heat residential and non-
residential buildings. Finally, the electrical 
discharges happen mostly during the late afternoon, 
when an electric consumption peak occurs. 
 

3.2 Impact of multi-energy storage operation 
The previous section provided a qualitative analysis 
of the PTES contribution to the analyzed MES, 
showing a three-day sample period. However, the 
final purpose of the simulation is to estimate the 
benefits of using multi-energy storage for a MES 
application. For this reason, this section provides a 
quantitative yearly comparison between the PTES 
operating as a traditional Electric-to-Electric (E-E) 
storage and the proposed concept of Electric-to-
Electric/Heating (E-E/H) or Electric-to-
Electric/Heating/cooling (E-E/H/C) storage. Figure 
5 compares these three cooperative conditions in 
terms of OC. The results are normalized with the 
operating costs in case of no storage capacity 
installed in the system (OC0). As the plot clearly 
shows, the operational costs are reduced when the 
PTES interacts with the district to provide 
electricity, heating, and cooling. The only E-E 
operative condition provides significant cost 
reduction compared to the no storage case by 
lowering the OC by 5%. Introducing the E-E/H and 
E-E/H/C modalities provides an additional 

Figure 4. Winter scenario. First image represents the charge/discharge power rates of the storage; second image the SOC 
of HT and LT storages, third image the electric load fulfillment; forth image the thermal load fulfillment. 

Figure 5. Yearly operating cost for different Operative 
Costs (OC) of the PTES. Electric-to-Electric (E-E), 

Electric-to-Electric/Heating (E-E/H) and Electric-to-
Electric/Heating/Cooling (E-E/H/C). The subscript 0 

refers to the case of no storage capacity. 
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reduction in the OC, equal to 2% and 1%, 
respectively. It is worth noting that the E-E/H/C 
mode brings to a limited improvement of the 
overall OC, because the PTES works as cold 
storage for a limited number of hours during the 
year. This phenomenon occurs due to the limited 
performance of the LT TES, as discussed in the 
previous section. Anyway, as a final result, the 
PTES working as a multi-energy storage is able to 
reduce the OC of 8% overall.  

4. Conclusions 
The present work aims to simulate the integration 
of Brayton-based PTES storage in a multi-energy 
system at a city-district size, which involves 
electric, heating, and cooling demand. The system 
operation was optimized through a Mixed Integer 
Linear Programming approach to minimize the 
operating costs. The qualitative results of the 
simulation showed that the PTES properly interacts 
with the community by delivering the optimal share 
of electric, heating, and cooling discharges to fulfil 
the demand. Beyond that, the quantitative analysis 
highlighted that using the PTES as a multi-storage 
capacity significantly reduces the operating costs 
compared to only electric-to-electric usage, 
typically proposed for this technology [13]. 
Comparing these results with the literature, it is 
found that similar performances (overall operative 
cost reduction around 10%) were already achieved 
in [11], by adopting a MILP formulation as well 
and using a Ra-PTES storage device. However, the 
cited paper highlights that including the capital 
costs makes the PTES technology less cost-
effective than traditional Li-ion batteries. These 
findings, then, encourage further analysis to 
compare the Br-PTES with the other grid-scale 
technologies, and better define its potential for 
MES applications. Basing on the benefits showed 
in the results section, indeed, the proposed storage 
technology gives support to the idea of enhancing 
energy communities within multi-energy vector 
concept, which has been already supported by the 
new Eu policies. 
It is worth to note that the discussed results are 
related to the single selected case study (i.e., fixed 
RES, load profiles and storage capacity). Further 
sensitivity analysis on the storage size, RES 
penetration and RES profiles (e.g., wind generation 
beyond solar radiation) could help better define the 
most suitable application for Br-PTES at a city 
district level. Finally, from a modelling point of 
view, this study only considers a first law approach 
(i.e., only energy exchanges are included in the 
model). It would then be interesting, as a further 
step, to evaluate the actual performances of the 
system when heat is exchanged under temperature 
differences and assess the potential of Br-PTES 

with different temperature levels on the demand 
side. 
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Acronyms and abbreviations 
Br Brayton-Joule 
CAES Compressed Air Energy Storage 
CB Carnot Battery 
COOL Cooling 
E-E Electric to Electric 
E-E/H Electric to Electric/Heating 
E-E/H/C Electric to Electric/Heating/Cooling 
EER Energy Efficiency Ratio 
ESS Energy Storage System 
EU European Union 
HE Heat Engine 
HEAT Heating 
HP Heat Pump 
HT High Temperature 
LAES Liquid Air Energy Storage 
LT Low Temperature 
MES Multi Energy System 
MILP Mixed Integer Linear Programming 
NG Natural Gas 
OC Operating Cost 
ORC Organic Rankine Cycle 
PTES Pumped Thermal Energy Storage 
PV Photovoltaic 
Ra Rankine 
RES Renewable Energy Sources 
SOC State of Charge 
TES Thermal Energy Storage 
Symbols 
α Electric to heating/cooling power 
β Compression ratio 
c Cost 
𝐶̅ Nominal storage capacity 
∆ Difference 
f Function 
η Efficiency 
k  Binary optimization variable 
Ω Feasible region 
�̇� Thermal power 

�̇� Nominal thermal power 
T Temperature 
T Optimization horizon 
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τ Duration 
t Time 
�̇� Electric power 

�̇� Nominal electric power 
𝑥 Continous optimization variables 
Subscripts 
abs Absorbed 
c Compressor 
ch Charge 
chill Chiller 
curt Curtailment 
dem Demand 
dis Discharge 
el Electric 
inj Injected 
is Iso-entropic 
min Minimum 
max Maximum 
obj Objective 
onoff On-off status 
t Turbine 
th Thermal 
us Users 
0 Base-line scenario 
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Abstract

With the growing demand, electrification, and renewable proliferation, the necessity of being able to forecast future
demand in combination with flexible energy usage is tangible. Distribution network operators often have a power
capacity limit agreed with the regional grid, and economic penalties await if crossed. This paper investigates how
cities could deal with these issues using data-driven approaches. Hierarchical electric load data is analyzed and mod-
eled using Multiple Linear Regression. Key calendar variables holidays, industry vacation, ”Hour of day” and ”Day
of week” are identified alongside the meteorological heating-, and cooling degree hours, global irradiance, and wind
speed. This inexpensive algorithm outperforms the benchmark ”weekly Naïve” with a relative Root Mean Squared
Error of 35% for the year-long rolling origin evaluation. Learnings from the data exploration and modeling are then
used to evaluate the AI-based model Light Gradient Boosting Machine. Using similar explanatory variables for this
expensive algorithm results in a relative error of 45%, although it outperforms the previous one during the summer.
The models have varying strengths and weaknesses and could advantageously be combined into an ensemble model
for improving accuracy. Incorporating detailed knowledge of local renewable electricity production in combination
with hierarchical forecasting could further increase accuracy. With domain knowledge and statistical analysis, it is
possible to create robust load forecasts with acceptable accuracy using easily available machine-learning libraries.
Both models have good potential to be used as input to economic optimization and load shifting.

1 Introduction

A part of the solution to reach the global climate goals
is to use renewable energy sources, which are volatile,
intermittent, and non-dispatchable by nature (Huber et
al., 2014). This poses several questions about con-
tinued grid stability and conventional power plants
need to adapt to this reality by operating more flex-
ibly, ramping up and down at a pace not traditionally
seen (Beiron et al., 2020). Uncertainty and volatility
in electricity production from variable renewable en-
ergy sources could be handled with demand response
(Meliani et al., 2021) and the utilization of energy stor-
age for load shifting (Cebulla et al., 2017).
In Sweden, the electrification of the transport and in-
dustry sector is crucial for carbon emission reduction,
leading to significant growth in electricity demand.
Two outstanding examples of industrial growth are
the HYBRIT green steel project in the northern parts
(Öhman et al., 2022), and the southern Mälardalen re-
gion due to its dense population and the addition of
new electricity intense industries. Electricity has tra-
ditionally been transferred through the national grid
from northern hydropower plants, and more recently
offshore wind turbines, to the energy-intense south-

ern half of the country. However, due to the rapid
growth and end of life for several southern nuclear
power plants there are short-term issues in the trans-
fer capabilities, meaning the southern demand cannot
be sustainably fulfilled with northern electricity. In-
tense reinforcement and expansion of the high-voltage
grid may eventually make it possible to supply the ad-
ditional demand. In the long-term however, the in-
crease in electricity usage in the northern areas could
lead to a shortage of energy to transfer to the south.
Therefore, there is a need for increased local produc-
tion in the energy-intensive southern cities and regions
for a robust and resilient local energy system (Nik et
al., 2021).

In Eskilstuna, a city located in the Mälardalen region,
the dispatchable local electricity production currently
makes up a small portion of the total demand, the rest
is imported. The addition of several megawatt-size
(MW-size) photovoltaic (PV) parks, and a wind tur-
bine park will increase the yearly energy self-usage ra-
tio. However, it does not resolve the issue on an hourly
and seasonal basis, as there is no substantial electricity
generation from PV in the evenings as well as during
winter in Sweden. With the growing demand, electri-
fication, and renewable proliferation, the necessity of
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being able to forecast future demand in combination
with flexible energy usage is tangible. Reliable fore-
casts can enable system operators and utilities to better
manage the demand and supply balance in real-time,
and control energy storage units for shifting load from
high to low production periods, i.e. from day to night,
or summer to winter. Use cases for forecasts range
from long-term world trends and national changes to
medium- and short-term changes on a regional or city-
scale level (Hong et al., 2020). Forecasting is essen-
tial for the energy and power sector and the area has
gotten attention for many decades, but with increas-
ing computational power and new advanced models,
the area is regaining focus. Individual investigations
are necessary as each dataset is unique and more com-
plex models do not equal increased accuracy. Manag-
ing energy assets based on bad forecasts can lead to
higher operating costs and, in a worst-case scenario,
blackouts in the power grid.
Forecasting can be divided into three main parts us-
ing a systems engineering perspective; Input, Model,
and Output (Hong & Fan, 2016). Size of historical
data for training and the selection of both dependent
and independent variables are examples of Input vari-
ables. If the data is disaggregated by geographical
location, then hierarchical forecasting can be chosen
as the Model technique (Hong et al., 2020). Other
Model variants are the selection of e.g. non-linear or
linear, black-box or non-black-box models, and their
respective parameters. The predictions (Output) can
be combined into ensembles, which is usually consid-
ered the best practice (Wang et al., 2018). The appli-
cation of the forecasts matters, peak prediction gener-
ally demands an approach that is different from fore-
casts used for operational optimization of energy units
(Gajowniczek & Ząbkowski, 2017). While numerous
forecasting techniques have been proposed, there is
no one-size-fits-all, a detailed analysis of the specific
case is needed for maximizing the forecast accuracy.
This paper focuses on forecasts and their usage on
the urban and sub-urban electricity demand levels in
a city via a case study of the Eskilstuna Strängnäs
Energi och Miljö (ESEM) electrical grid and energy
system. Short-Term Load Forecasting (STLF) is ap-
plied to the geographically disaggregated hourly av-
erage electric load. The aim of this study is to cre-
ate and explore a framework to analyze and evalu-
ate forecasting models and determine which calendar
and meteorological input variables are best suited for
forecasting the electricity demand in cities similar to
the studied city. Multiple Linear Regression (MLR)
and Light Gradient Boosting Machine (LGBM) are
compared to the benchmark ”weekly Naïve” to deter-
minewhether advancedAI-basedmethods provide ad-
ditional value compared to simpler benchmarks. Im-
plementing these forecasts for control of energy stor-
age units and other flexible assets is discussed, and

possible strengths and weaknesses of the two models
are emphasized.
The rest of the paper is structured as follows: In sec-
tion 2: Methodology, data acquisition, algorithm cre-
ation, and model selection are presented. In section
3: Results and Discussion, the choice of explanatory
variables and model results is presented and criticized.
The study is concluded in section 4: Summary and
Conclusions, where the road ahead is elaborated.

Figure 1. Three central and four outer transformer sta-
tions, together with PV-park of different sizes,
make up the city’s total energy usage.

2 Methodology

2.1 Data acquisition and pre-processing

The dataset used herein comprises hourly average
electrical load in MW from 2020-09-11 to 2022-10-
31 (2 years, 1 month, 20 days) and is collected for
all entry points (transformer stations) between the re-
gional and the local grid. Local electricity production,
e.g. small-scale hydropower generation, has been ac-
counted for according to which transformer station
they are connected to. The summation of the seven
transformer station loads, together with the generation
from all large (63 and 80 Ampere) PV installations,
makes up the total energy usage of the city, denoted as
”total energy usage” in this paper (and ”Tot” in Fig. 1).
The electricity generation from smaller local PV in-
stallations, such as private households, is not included
in the total energy usage. The PV installations are not
separated into individual time series according to their
location; therefore, they must be excluded from the
grouped forecasting part of this study. Instead, each
individual transformer station and the sum are used for
grouped forecasting.
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2.2 Data exploration, correlation, and other statistics

To build an accurate forecast model, several meteo-
rological and calendar explanatory variables are eval-
uated in terms of correlation with total energy usage
and improvement in model accuracy. Some of the me-
teorological variables are reanalysis data of wet and
dry temperature, wind speed, rain, and global irradi-
ance from SMHI (2023). Measured in-situ tempera-
ture from the central power plant is also used, includ-
ing smoothed variants, i.e. moving averages with dif-
ferent window sizes. Cross-effects can be calculated
by multiplying meteorological and calendar variables
(Hong et al., 2010). Degree days and -hours for heat-
ing and cooling, which is the temperature difference
below or above a certain threshold multiplied by time
(Chabouni et al., 2020), are examples of cross effects.
The correlation coefficient between each transformer
station’s load and the reanalysis dry temperature varies
between -0.32 to -0.80 (-0.56 for the total load). Such
a varying correlation with temperature is indicating
the different patterns of usage for different parts of the
city. A closer look reveals that the dry temperature
gives higher accuracy more often than the wet.
By plotting the load versus different categories, e.g.
in a box plot with the hour of the day on the x-axis,
the daily load distribution is shown. The load is sig-
nificantly lower during the night compared to the day.
During autumn, winter, and spring a morning peak at
09:00 ±1h, and an afternoon peak at 17:00 ±1h, is iden-
tified. However, the load pattern during summer is
different, with a single peak at 11:00 ±1h.
Public holidays are considered non-typical days
(Eroshenko et al., 2017) where the load is significantly
lower. Additive decomposition of the trend, sea-
sonal and residual components (Hyndman & Athana-
sopoulos, 2018) is applied using the Python library
Statsmodels (Seabold & Perktold, 2010). Similar to
Işık et al. (2023) theMSTL (Multi Seasonal Trend De-
composition using LOESS (Locally Estimated Scat-
terplot Smoothing)) reveals daily and weekly season-
ality.

2.3 Forecast models and benchmark

The benchmark model is selected as the well-known,
in energy forecasting, ”weekly Naïve” (copy-paste the
previous week’s values as the forecast for the next).
It captures the weekly seasonality in the data and
therefore outperforms the ”daily Naïve” (Kolassa et
al., 2023). A persistence-based benchmark, meaning
finding and copying days that are more similar than
simply the weekly pattern, is used in a recent forecast-
ing competition (Farrokhabadi et al., 2022). It can lead
to a more accurate Naïve benchmark but at a higher
cost of implementation and reduced transferability to
other cases, therefore not selected in this study.

The machine learning algorithm MLR is widely used
for electric load forecasting and produces forecasts at
low computational cost (Kuster et al., 2017). Eq. 1
shows MLR with two independent variables (Hong et
al., 2010) as an example:

Y = β0 +β1X1 +β2X2 + e (1)

whereY is the dependent variable, X1 and X2 are inde-
pendent variables, β s are parameters to estimate, and e
is the error term. See Supapo et al. (2017) for a more
detailed explanation of MLR. Even though it cannot
capture nonlinear relationships by definition, MLR
is used because of its scalability and interpretability,
while also achieving state-of-the-art performance in
many cases. The AI-model LGBM, on the other hand,
was highly represented in a recent energy predictor
competition (Miller et al., 2020). It is recognized as
suitable for electric power modeling, and explained in
more detail in the open literature (Tan et al., 2021).
One obvious benefit of this model is that it can capture
non-linear relationships while still remaining compu-
tationally feasible.
The proven track record and community support
alongside their simplicity (no hyperparameter tuning),
and compatibility (use of the same past and future co-
variates) conclude that MLR and LGBM are suitable
for this comparative study. The models are available
in the Python library Darts, which is used in this study
(Herzen et al., 2022).

2.4 Algorithm creation

The algorithm (referred to as Historical Forecasts in
this study) is depicted in Fig. 2. First, necessary in-
puts are given to the algorithm; forecast horizon, size
of historical load for training, number of lagged (past)
target values to use, how many hours to jump before
making a new prediction, how many predictions to
make before retraining, and when to stop. Future and
past covariates including their lags can also be given
to the model, e.g. temperature and day of the week.
A prediction start date is given for splitting the data,
otherwise, it will start as soon as possible given the
size of the training and available data set. The model
is trained, and predictions are made according to the
inputs, and at some points retrained. Historical Fore-
casts uses a rolling window approach for the rolling
origin evaluation of the forecast (Hewamalage et al.,
2023). Each prediction, error, and error metric are
saved for further analysis.

2.5 Forecast evaluation: the full-year run

A rolling origin evaluation of the model is applied
via the Historical Forecasts algorithm using a fore-
cast horizon of 168h, jumping 17h forward between
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Figure 2. Flowchart of the algorithm Historical Forecasts
created for this study.

each prediction, retraining every 100th prediction and
hence doing a total of 515 predictions. The forecast
horizon is selected to match the horizon of available
weather forecasts, and the jump between predictions
is chosen as a prime number to minimize the chance of
resonance with any of the seasonal patterns. Past lags
for the load and lags for the future- and past covariates
are set to 168h. The evaluated period is approximately
1 year and 1 week, referred to as ”the full-year run”.
Given the size of available data, themaximum training
size is approximately one year, one month, and two
weeks for doing a full-year run. Varying the training
size between lower than a year, one year, one year plus
two weeks, and maximum size, the ”one year plus two
weeks” gave the best accuracy. Including a year of
training data and predicting a week ahead means the
model has seen the predicted week once, but adding
at least one more week to the training data means the
predicted week has been seen twice. Including max-
imum available data showed no significant accuracy
improvement. This study is not aiming to prove the
optimal training size, as there are many other possible
approaches that have not been evaluated. The models
are trained four times over the course of the full-year
run, as the load profile and temperature dependency is
known to be different for the four seasons. During the

analysis where the number of retraining was varied,
it was shown that re-training too often (every day or
week) did not necessarily have a positive effect on ac-
curacy, and certainly not on computational expense.
Not re-training at all gave increasingly diverging er-
rors, therefore the final re-training is set to four times.
For every full-year run, 86 520 errors (multiply fore-
cast horizon by the total number of predictions) are an-
alyzed, together with 515 average errors (one for each
prediction made), and a single average error. Which
error metric to be used for different datasets can be
derived from Hewamalage et al. (2023). Root-Mean-
Square Error (RMSE) and Mean Absolute Percentage
Error (MAPE) are concluded as the two most com-
mon ones used for STLF of electrical load in Nti et
al. (2020), the former used in this study and presented
in MW. The relative RMSE (rRMSE), defined as the
RMSE of MLR and LGBM respectively divided by
RMSE for the ”weekly Naïve”, is used to quantify the
performance against the benchmark.
An extensive analysis is done where the least com-
putationally expensive model MLR is used for run-
ning hundreds of full-year runs, each generating er-
rors that are compared. Periods with the largest er-
rors, such as public holidays, are focused on sepa-
rately, as well as the yearly peak, and the summer
period. One explanatory variable is added after the
other manually, including several combinations, the
model parameters are varied, and the results are eval-
uated. Through combinations of visual inspection of
the animations and plotting the model errors in dif-
ferent graphs, calculating and comparing the error
metrics, the key explanatory variables are concluded.
When no significant improvement is achieved with
this semi-structured scrutiny of the MLR, the analy-
sis is stopped. The same analysis is not done with
the LGBM due to the computational expense, where
only a few selected parameter changes are made to
verify the model behavior, e.g. reducing training size
reduces accuracy.

3 Results and Discussion

3.1 Final set of explanatory variables

By applying the methodology and analyzing the re-
sults, eight explanatory variables are selected, denoted
as ”the final set”, shown in Table 1. The impact of
adding each explanatory variable to the models is an-
alyzed. The first row of the table shows the aver-
age RMSE for the full-year run, including only one
explanatory variable; ”Day of Week”. In the sec-
ond row, the ”Hour of day” is added to the models,
and the resulting full-year run RMSE is presented.
Consequently, the models in the last row contain all
the seven above explanatory variables, including the
eighth, Wind speed.
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Figure 3. Additive load MSTL with seasonality periods of 24 and 168. Temperature is added to the bottom residuals graph.

Table 1. Final set of explanatory variables and the full-
year run average RMSE (MW) for both MLR
and LGBM, consecutively adding the explana-
tory variables in order of appearance

Explanatory variable MLR LGBM

Day of week [0-6] 4.54 4.74
Hour of day [0-23] 4.56 4.72
Holidays [0 OR 1] 4.44 4.53

Industry vacation [0 OR 1] 4.31 4.35
Heating hours [Kh, < 10°C] 2.20 2.89
Global irradiance [W/m2] 2.12 2.68
Cooling hours [Kh, > 20°C] 2.06 2.65

Wind speed [m/s] 2.04 2.71

The choice of the calendar variables ”Day of week”
and ”Hour of day” as explanatory variables are jus-
tified with the load decomposition, as a daily and
weekly seasonal pattern is shown in Fig. 3. Analyzing
the bottom residuals graph shows a negative correla-
tion with temperature for this winter example. When
not explained by temperature, large peaks in the resid-
uals can be explained with knowledge of public hol-
idays (Christmas and New Year). Further, there is a
significant reduction in load due to the common indus-
try practice of closing their operations during the sum-
mer vacation period. A binary variable which is set to
zero for those four weeks is added, further improving
the accuracy shown in Table 1. A variable for cover-
ing the thermal load is needed, as electricity is used
for heating and cooling. Degree hours are part of the
final set, as they give better results than degree days
and temperature. Global irradiance and Wind speed

improve the accuracy, apart from several of the other
meteorological variables, and are therefore included.
For justifying degree hours and the use of Holidays,
MSTL is applied to the entire dataset, and the residu-
als are plotted against outdoor temperature in Fig. 4,
with public holidays plotted separately. A portion of
the residuals are significantly lower than the rest of
the residuals during public holidays. Excluding public
holidays and adding a LOESS line of the best fit gives
a curve explaining how the residuals varywith temper-
ature, depicted as ”Smoothed” in Fig. 4. Residuals are
negatively correlated with temperatures below 10°C
while positively correlated with temperatures above
20°C.

Figure 4. MSTL residuals vs temperature.

3.2 Impact of explanatory variables

Adding certain explanatory variables means only a
slight improvement in the full-year run accuracy, and
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their existence in the final set needs to be questioned.
Adding Wind speed in LGBM reduces large errors for
some hours of the year at a cost of a higher average er-
ror for the full-year run. Quantifying the economic im-
pact of reducing high errors for a few e.g. windy days,
at the cost of a slightly worse overall performance, is
a possible way to solidify the existence, and estimate
the worth, of the explanatory variables.
The addition of the second explanatory variable ”Hour
of day” means that the forecast is performing worse
for the MLR as seen in Table 1. However, ”Hour of
day” is making the LGBM forecast better and there-
fore kept in the final set, also because it shows a cor-
relation with the electrical load in the data exploration.
Discussions with the stakeholders about the future use
of the models can also help in determining whether an
explanatory variable should be included in the model.

Figure 5. RMSE for MLR, LGBM and ”weekly Naïve”.

3.3 Model results comparison

The results in this paper show that there is no one-size
that fits all. When comparing on a single error metric
for the full-year runs, the MLR is concluded as supe-
rior in terms of accuracy over the LGBM. This despite
the fact that a single metric is not giving any detailed
insights into the performance of each model. Compar-
ing the performance over the course of the year gives
different winners for different periods.
The full-year run results for comparing MLR with the
LGBM, including the Naïve benchmark, are shown in
Fig. 5. The best-performing models according to Ta-
ble 1 give an average RMSE of 2.04 (rRMSE of 35%)
for MLR and 2.65 (rRMSE of 45%) for LGBM, com-
pared to 5.86 for ”weekly Naïve” in the full-year run.
MLR is performing better for three of the four seasons
of the year, while LGBM is periodically more accurate
during summer, as Fig. 5 shows. A single noon peak
during summer, andmorning and afternoon dual peaks
for the rest of the year in the dataset could be a reason
why the LGBM outperforms MLR during periods of
the summer and vice versa.

Figure 6. Left) Probability Density Function of the errors.
Right) AutoCorrelation Function of the errors.

Another way of comparing the two best-performing
models is by analyzing the shape of the histogram of
the errors (all 86 520 errors for the full-year run), as
seen to the left in Fig. 6. Both models produce errors
close to a normal distribution centered close to zero
for the full-year run. The centers of the distributions
are slightly tilted towards a negative number forMLR,
and a positive number for LGBM.
The autocorrelation plots, to the right in Fig. 6, are
shown for the same prediction (out of the 515 pre-
dictions made, i.e. the 55th) for both models. First,
they show that most of the past (lagged) errors are
not significantly autocorrelated, except for the first 3–
10 errors. This is concluded as serial autocorrelation,
meaning if the model is wrong in one direction for the
first time step, it will likely bewrong in the same direc-
tion in the next step. Second, seasonal autocorrelation
is also observed, meaning if the prediction is too low
one day, it is likely to be too low on the following day,
in a seasonal pattern. Third, these plots highlight that
both forecast models produce different errors from an
autocorrelation perspective, and are therefore suitable
for combining.

Figure 7. MLR vs LGBM full-year run model errors.
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The errors from the two best-performing models are
plotted against each other in Fig. 7, and they show a
weak correlation. This, together with the distribution
of the errors in Fig. 6, shows good potential for com-
bining into an ensemble model. Accuracy improve-
ments are expected when combining models accord-
ing to the literature (Wang et al., 2018) and forecasting
competitions (Miller et al., 2020) but a deeper analysis
of this specific case study is needed. The MLR is the
winner computationally-wise, it takes about 60 times
more time for the LGBM to finish the full-year run.

3.4 Grouped forecasting

The available data are spatially separated and grouped
forecasting is applied. The same explanatory variables
as the best-performing MLR model and the same set-
tings, e.g. forecast horizon, have been used for the
modeling of each individual transformer station. A
full-year run is made for all seven transformer stations
and the predictions are added together, called Pre-
dict Then Sum (PTS). This is compared to the model
trained on the sum of the individual transformer sta-
tions, called SumThen Predict (STP), which is slightly
different from the total energy usage used in this pa-
per (see Methodology for explanation). The differ-
ence between PTS and STP is larger during the heating
period, shown in Fig. 8. In general, the grouped PTS
forecasting method performs worse, apart from a few
exceptions for the full-year run.

Figure 8. RMSE when forecasting each individual trans-
former station separately versus their sum.

Comparing PTS with STP show that forecasting on
a more aggregated scale is preferred. The correla-
tion between the electrical load and each transformer
station, presented in the Methodology section, varies
between -0.32 and -0.80. This suggests that the im-
portance of temperature (or temperature variants such
as degree hours) when describing the load can vary
considerably. Knowledge of each PV park and cus-
tomized models for each transformer station could im-
prove accuracy further.

3.5 Model dynamics

The algorithm Historical forecasts can produce ani-
mations of the predictions plotted against the actual
load. In Fig. 9, frame 6 out of 25 from an example
prediction, which includes the yearly peak of 2021, is
shown. The best-performing MLR model is used to
produce this frame. The inputs used can be seen at the
top left, and the error metrics calculated for this frame
are at the bottom left. The bottom error graph shows
the difference between the prediction and the actual
load for the 168h forecast horizon framed between the
two vertical dashed lines. Zooming in around the day
of the yearly peak and analyzing the accuracy of the
prediction three days before shows that the model un-
derpredicts with approximately 3 MW and 31 MWh
for the entire day. If the same analysis is done a few
frames later, just 12h before, the numbers change to 1
MW and 10 MWh respectively.
During visual inspection of the predictions, dynamic
behaviors are revealed. In some cases, when the
model underpredicts the load on the next day, it also
underpredicts the day after that, and the following,
meaning the average prediction is too low. Dealing
with seasonal data makes the presence of seasonal au-
tocorrelation expected. Not until the first day of un-
derprediction has passed does this level out and the
model corrects the average level to fit the upcoming
days better. This is a good simulation example of how
the forecast would have reacted in such a case, it does
not know it is underpredicting until the days pass.
Another important performance indicator, which is
not straightforwardly easy to measure, is the trustwor-
thiness and explainability of the models. The LGBM
produces predictions that do not have a smooth pat-
tern, meaning the first derivative of the predictions
during midday alters between positive and negative
values consecutively. MLR on the other hand pro-
duces predictions where the first derivative less often
changes sign and can be seen in Fig. 9. Introducing a
forecast model to decision-makers or operators, which
don’t like or trust it, could affect its usefulness, suc-
cess, and arguably profitability (Kolassa et al., 2023).

4 Summary and Conclusions

In this paper, a framework to analyze and evaluate
forecasting models is explored. The performance
of two models, MLR and LGBM, are evaluated us-
ing a dataset from the local grid operator of Eskil-
stuna. Different sets of explanatory- and model vari-
ables are tested, concluding the calendar variables;
”Day of week”, ”Hour of day”, Holidays and Indus-
try vacation period, and the meteorological variables;
Global irradiance and Wind speed together with the
cross-effect variables; Heating hours below 10°C and
Cooling hours above 20°C as the final set. While
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Figure 9. A frame of the animation produced by the algorithm Historical Forecast.

public holidays and non-typical periods still cause
the largest errors, adding binary explanatory variables
for these significantly improves accuracy. The best-
performing MLR and LGBM models outperform the
”weekly Naïve” benchmark model with rRMSE of
35% and 45% respectively. MLR is producing lower
errors compared to the more computationally expen-
sive LGBM for the heating period, while it is diffi-
cult to unanimously declare a winner for the summer
period. Adding an economical dimension can help in
determining the acceptable level of accuracy, and sug-
gestedmeasures for enhancing themodels is hierarchi-
cal and ensemble forecasting. Adding further models
(e.g. Artificial Neural Networks based), has the po-
tential to improve the accuracy. Techniques for se-
lecting training data, and optimizing re-training inter-
vals can be investigated further. Expanding the study
to include more forecasting models and techniques,
and additional explanatory variables (e.g. the national
forecast of PV production), would be an interesting
path to deepen the knowledge of this specific case.

4.1 The road ahead and future usage

The electrical grid environment is rapidly evolving.
Changes in usage patterns, price volatility, and the
installation of intermittent renewable energy are just
some of the factors that affect the future. In that con-
text, an important aspect when deciding the best model
is the ability to adapt and change to better fit the load
evolution, adaptability was a key concern during the
Covid-19 period (Farrokhabadi et al., 2022). MW-size
PV and wind parks are being commissioned from one
day to the next, making the historical data less relevant
for forecasting. Although important, this study is not
evaluating the model’s adaptability, or robustness.
Before implementing forecasts in real-life applica-
tions, such as planning and controlling electrical en-

ergy storage, an economic dimension should prefer-
ably be added to the analysis. Large economic penal-
ties can be the consequence of underpredicting the
annual peak on the grid. The best-performing MLR
model produced an error in the order of 3 MW for the
yearly peak and 31MWh for that entire day, three days
in advance. Depending on the size and availability of
local storage, this may or may not be acceptable. This
despite the fact that the model accuracy seems to be
in line with, or even better than, the overall Swedish
national load forecast produced by Svenska kraftnät
(Kazmi & Tao, 2022). Forecasting national load is ar-
guably an easier task due to its long history and consid-
erably more in-house knowledge. Internal discussions
with the local grid operator of Eskilstuna suggest that
the errors are not acceptable, considering possible fu-
ture energy storage investments. Consequently, point
load forecasts, produced here, could be used for ev-
eryday short-term management and hourly spot-price
optimization, while other methods should be used for
peak prediction and peak-shaving as shown in the lit-
erature (Gajowniczek & Ząbkowski, 2017).
A future energy storage system will be connected to
one of the seven transformer stations. Depending on
the location, the forecasting method needs to be con-
sidered and customized. This customization, and de-
tailed information about PV parks, can result in high-
accuracy forecasts (Hong et al., 2020). Connecting
these forecasts to an energy storage management- and
sizing problem is the potential next step of this study.
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Abstract 

 

The rapid growth of technology and digitalization lead to an increase in the number of data centers around the 

world. Data centers produce a considerable amount of heat because of their servers and a large number of 

electric components. The heat generated by the data centers can be used as a potential source of heating, but the 

quality (temperature level) of the heat is normally low.  In this work, the temperature of the excess (cooling) 

water from a data center is 45 °C. Generally, there is a possibility to use heat pumps to improve the quality of 

the heat. To obtain a district heating temperature of 60 °C, 70 °C and 80 °C, the coefficient of performance 

(COP) was calculated to 5.5, 4.3 and 3.5, respectively. This work is about utilization of the excess heat from a 

data center with three alternative heat pump solutions with a payback period and economic potential for 10 and 

20 years. The simulation process was done by Aspen HYSYS. It was observed that the payback period as 

expected increases with decreasing COP. The payback period was calculated to values between 2.6 and 5.5 

years, depending on the market situation and the delivery temperature. In this work, it is shown that Aspen 

HYSYS is a reasonable tool to calculate alternatives for heat recovery from data centers based on heat pumps.   

Key words: Data center, heat recovery, district heating, heat pump, Aspen HYSYS  

 

1. Introduction 

 

1.1. Background 

With the development of information in technology 

these days, the need for using DCs1 has steadily 

increased which has led to an increase in the 

electricity consumption. On a global scale, the DC 

electricity demand has risen from about 1.3% of the 

world’s electricity use in 2010 to 2% in 2018 and is 

expected to keep growing to reach up to 13% in 

2030 (Oltmanns et al., 2020). Moreover, the 

demand for data processing will be increased day to 

day which means the consumption of higher energy 

and higher CO2 emission into the environment and 

consequently global warming as well as the 

electricity consumed in a DC almost completely 

converts to heat. All heat generated by the DCs can 

be used as a potential source of heating. the cold 

climate in Nordic countries is extremely suitable 

for DCs, providing much-needed cooling energy 

while there is a high demand for heat in these 

countries. However, the waste heat temperature is 

generally lower than the required heating 

temperature, which is a crucial obstacle for using 

this waste heat.  

 
1 Data centers  
 

The heat pump technology can raise the 

temperature of waste heat to the required heating 

temperature by using high-grade energy like 

electricity and make this approach economically, 

financially, and environmentally profitable. Also, 

there are many options for waste heat recovery 

location in DC, such as the waste heat of return air 

from CRAC2, CRAH3, the waste heat of the 

cooling water from IT room, and the waste heat of 

cooling water from chillers which will make 

different capacity and temperature for waste heat 

recovery. Moreover, required heating temperature 

and different cycle type of heat pumps can lead to 

different thermodynamic and financial evaluation 

(Li et al., 2021). In summary, in this study, 

thermodynamic and economical evaluation is based 

on the required heating temperature and a basic 

cycle of heat pump and then economic 

consideration is investigated. 

 

1.2. Literature review on energy recovery from 

DCs 

There are different techniques for recycling waste 

heat for low temperatures. A simple way to reuse 

 
2 Computer room air conditioner  
 
3 Computer room air handler 
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low-quality energy is in HVAC4 or hot water 

production systems. The temperature of heat waste 

from air-cooled servers is around 35-45℃. This 

range is sufficient for reuse heating needs such as 

domestic heating. By using liquid cooling in DCs it 

is possible to provide a slightly higher quality of 

waste heat up to 50-60℃ and by two-phase cooling 

systems, the temperature is as high as 70-80 which 

is more than sufficient for any heating or hot water 

application which can be used in DH5. Also, this 

heat provides an income for the DC. District 

heating is used in Europe more than in the US, 

particularly in Nordic countries. Moreover, this 

waste heat can be used for preheating domestic hot 

water which can lead to energy savings and 

emission reduction by reducing the use of fossil 

fuels. And if a higher temperature is required for 

DH, there is necessary to use heat pumps due to the 

increase in the temperature of waste heat. The next 

heat recovery technique is the heating of water in 

the thermal Rankine cycle of a power plant. The 

waste heat from the DC is used to preheat boiler 

feed water which can reduce the consumption of 

fossil fuels and pollution. They show that it will be 

more beneficial if a two-phase DC cooling system 

is used because of the high temperature (Ebrahimi 

et al., 2014). 

Electricity can also be generated by DC waste heat 

directly through ORC6 which is investigated by. 

This technology work as the steam Rankine cycle, 

but use an organic fluid with a lower boiling point 

as working fluid. They depict ORC consisting of a 

turbine, condenser, pump evaporator, and 

superheater. The superheater is only necessary 

when the fluid is wet (Chen et al., 2010).   

Waste heat of a DC can be used for preheating the 

water in a coal-fired power plant. One investigation 

shows that by utilization of waste heat the 

efficiency of the power plant is increasing up to 

2.2% under certain optimized conditions and this 

performance can lead to a high saving in fuel cost 

and decrease carbon emission (Marcinichen et al., 

2012).  

Another investigation is the utilization of excess 

heat of a DC in the technical university of 

Darmstadt, Germany (Oltmanns et al., 2020). They 

show that Direct hot-water cooling for the high-

performance computers is provided in the new DC 

at a temperature 45 ℃ instead of the current air-

cooled servers with water-cooled rear doors at 17-

24 ℃ in the old one. The project shows that 

between 20-50% of the waste heat generated by 

 
4 Heating ventilation air condition.  

 
5 District heating.  

 
6 Organic Rankine cycle 
 

high-performance computers can be utilized for 

heating purposes while the remaining heat is 

wasted by free cooling. Also, there is a 4% of CO2 

emission reduction on the campus Lichtwiese.  

The utilization of DC waste heat for an indoor 

swimming pool in Barcelona is studied (Oró et al., 
2018). Results show that liquid-cooled DC can 

reduce energy consumption up to 30% in 

comparison to air-cooled DC.  

Waste heat utilization from both the DC and district 

heating networks in the city Espoo, Finland was 

investigated. The results showed that the operation 

cost saving in the system was 0.6 – 7.3%. Also, it 

was observed that the price of obtained waste heat 

affects the utilization level of waste heat (Wahlroos 

et al., 2017).   

DC energy efficiency and potential of waste heat 

capturing analyses showed that waste heat could be 

captured from 97 % of the total power consumed. 

Also, it was observed that waste heat from a 1 MW 

DC could provide the heat demand for over 30,000 

m2 non-domestic building annually (Lu et al. 

2011).  

 

1.3. Possible temperatures in cooling principle in 

DCs 

Due to proper and efficient utilization of DC waste 

heat, the temperature of the cooling system not 

only is very essential but also very sensitive. The 

quality of heat recovery can be evaluated by the 

temperature range. Thus, there is some guideline 

and investigation about the temperature.    

One of the important references to determine the 

favorable environment and temperature and also 

standard range for DC is provided by the American 

Society of Heating, Refrigerating, and Air 

Conditioning Engineers (ASHRAE, 2015). The 

technical committee recommends that DC 

equipment should be in the temperature range 18-

27℃ to fit the manufacturer’s provided criteria and 

also give some information about the allowable 

range of equipment environmental specifications 

which shows in Fig. 1. In addition to this, the 

guideline classify DC to four classes from A1 to 

A4. Class A1 is a data computer room with tightly 

controlled environmental parameters such as 

temperature, dew point, and relative humidity and 

Class A2/A3/A4 are an information technology 

space with some controlled environmental 

parameters.  
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Figure 1: Ambient temperature classification of IT 

equipment by ASHRAE (Zhang et al. 2023) 

The temperature of captured waste heat depends on 

the location where it is captured and on cooling 

technology. In air-cooled technology, the 

temperature of captured waste heat is between 25-

35 ℃. And by liquid cooling technology waste heat 

can be captured at a higher temperature between 

50-60 ℃ which is better for district heating 

(Wahlroos et al. 2017).  

It was observed that the high cooling inlet 

temperature can be up to 60 ℃ for the water-

cooling DC and it means better waste heat 

utilization (Oltmanns et al. 2020). 

Based on investigation for having an energy-

efficient air cooling (AC) DC, the cold inlet air to 

all the systems should be maintained at typically 25 

℃ and, output hot air is 40 ℃ and fluidic 

separation of cold and hot streams is necessary 

(Patel, 2003).  

The optimum temperature range to utilize the waste 

heat in air cooled DC was shown to be 35-45℃, in 

water-cooled DC systems and the output 

temperature could be higher in the range of 60-70 

℃. Also, by two-phase cooling systems, the 

temperature was as high as 70-80 ℃ (Ebrahimi et 

al. 2014). 

Another investigation showed that the inlet 

temperature of the water could be 60 ℃ to keep 

junction temperature under 85℃. it showed that 

around 85% of board heat is collected. Due to 

providing this criterion, the maximum inlet 

temperature can be increased to 75 ℃ 

(Brunschwiler et al., 2009).  

 

 

2. Methodology  

        

2.1. Process description 

Heat pump technology provides an efficient and 

sustainable solution for utilizing low temperature 

heating sources. A conventional heat pump is 

defined as a compression refrigeration cycle 

powered by either mechanical energy or electricity. 

In most DC which use waste heat, it is necessary to 

use a heat pump for increasing output temperature 

and high quality of waste heat.  Ammonia and 

chlorinated or fluorinated hydrocarbons are usually 

used in heat pumps as refrigerants. Since 

chlorofluorohydrocarbons are ozone depleting 

other refrigerants which are environmentally 

friendly such as pure hydrocarbons are useful.  

The heat pump is made of a number of individual 

components, including a compressor, a condenser 

an evaporator, an expansion valve, and a refrigerant 

circulating from high pressure (red line) to low 

pressure (blue line). Fig. 2 depicts a mechanical 

compression of a conventional heat pump. The 

cooling effect is generated by the cold liquid 

refrigerant in the evaporator and the heating effect 

is generated by the hot refrigerant in the condenser. 

The refrigerant circulates due to the temperature 

and pressure difference between the components so 

that the closed-loop is divided into a high-pressure 

side and a low-pressure side. A two-phased 

refrigerant goes into the evaporator where the 

vaporization of liquid provides the cooling effect 

and then the refrigerant leaves the evaporator and 

goes to the compressor. In the compressor, the 

refrigerant gains high pressure and becomes 

superheated. The output from the compressor 

enters to the condenser where the vapoured 

refrigerant is cooled and condensed to a saturated 

liquid. In the condenser, the heat of the refrigerant 

is released to the ambient. After that, the refrigerant 

enters the expansion valve where it is expanded to 

lower pressure and the liquid refrigerant is 

vaporized because of the expansion valve before 

entering the compressor (Johansson, 2021).   
 

 
Figure 2: Main components of heat pumps (Øi and 

Tirados, 2015) 

The merit of a refrigerator or heat pump is 

measured by a parameter called COP. It is the ratio 

of useful heat given off or taken up by the system 

to net work done on the system in the one cycle. 

The equation 1 and 2 represent how to calculate 

COP of the heat pump (Øi and Tirados, 2015). 

 

𝐶𝑂𝑃 =
𝑄𝐶𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟

𝑊
(1) 

𝑊 = 𝑄𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑜𝑟 − 𝑄𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑜𝑟 (2) 
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In equation 2, QCondenser is the amount of released 

heat from the condenser. QEvaporator is the amount of 

giving off heat to the evaporator, and W is the 

power required in the compressor. If there is no 

heat loss, the difference between input and output 

heat in the refrigeration cycle is equal to net work 

of the system. 
 

2.2. Simulation by Aspen HYSYS 

Due to calculation and simulation of the cooling 

system Aspen HYSYS is used. Two pure 

components, water which is used in the cooling 

process of DC and refrigerant which is refrig-22 

(R-22) are selected in the component list. R-22 is 

selected as a typical refrigerant, but it is however 

gradually phased out in the industry due to the 

ozone depleting effect. After that, Peng-Robinson 

is selected as a thermodynamic package for 

simulation in the Aspen HYSYS since it is relevant 

for these components and applicable for large range 

of temperature and pressure and two phases, also 

has a large binary interaction parameter database. 

The default parameters for the package are used. 

Then the mechanical equipment of the heat pump 

which is evaporator, condenser, compressor, and 

expansion valve is defined with relevant streams.  

Three alternative heat pumps are simulated in the 

Aspen HYSYS. Initial conditions are provided in 

Tab. 1, 2, and 3.   

Table 1: input condition for alternative 1 in Aspen 

HYSYS 

Name 
Water 

 1 

Water 

 6 

Fluid 

 2 

Fluid 

3 

Temperature 

(  ͦC) 

45 60 UN  UN 

Pressure 

(kPa) 

101 101 1300 3000 

 

Table 2: input condition for alternative 2 in Aspen 

HYSYS 

Name 
Water 

 1 

Water 

 6 

Fluid 

 2 

Fluid 

3 

Temperature 

(  ͦC) 

45 70 UN  UN 

Pressure 

(kPa) 

101 101 1300 3500 

 
Table 3: input condition for alternative 3 in Aspen 

HYSYS 

Name 
Water 

 1 

Water 

 6 

Fluid 

 2 

Fluid 

3 

Temperature 

(  ͦC) 

45 80 UN  UN 

Pressure 

(kPa) 

101 101 1300 4000 

 

Modelling of heat pump by Aspen Hysys is 

presented in Fig. 3. 

 

 
Figure 3: Simulation model of heat pump in Aspen 

HYSYS 

Water 1 is output cooling water from the DC and 

water 6 is water supplied to the district heating 

network after using a heat pump. 

 

3. Results 

 

3.1. Simulation results of Aspen HYSYS  

The simulation results for three alternatives are 

shown in Tab. 4, 5 and 6 respectively. As it can be 

seen, thermodynamic properties of components are 

calculated by Aspen Hysys software and the heat 

flow of water and fluid are shown which can be 

easily calculated the compressor work and 

condenser heat transfer to calculate COP of heat 

pumps for three delivery temperatures.  

 
Table 4: Results of material and energy balance achieved 

from Aspen HYSYS for alternative 1. 
 Wat 

1 

Fluid 

 1 

Wat 

 2 

Fluid  

2 

Fluid 

 3 

Wat 

 5 

Wat 

 6 

Fluid 

 4 

V, 

frac 

0 0.32 0 1 1 0 0 0 

Temp 

(℃)  

45 33.3 35 33.3 93.1 45 60 69.8 

Press 

(kPa) 

101 1300 101 1300 3000 101 101 3000 

Mass 

flow 

(kg/h) 

1000 362.3 1000 362.3 362.3 814.9 814.9 362.3 

Heat 

flow 

(kJ/h) 

-1.580 

e7 

-2.151 

e6 

-1.584 

e7 

-2.108 

e6 

-2.098 

e6 

-1.288 

e7 

-1.282 

e7 

-2.151 

e6 

 
Table 5: Results of material and energy balance achieved 

from Aspen HYSYS for alternative 2. 
 Wat  

1 

Fluid 

 1 

Wat 

2 

Fluid 

 2 

Fluid 

 3 

Wat 

 5 

Wat 

 6 

Fluid 

4 

V. 

frac 

0 0.40 0 1 1 0 0 0 

Temp 

(℃)  

45 33.26 35 33.26 104.9 45 70 77.45 

Press 

(kPa) 

101 1300 101 1300 3500 101 101 3500 

Mass 

flow 

(kg/h) 

1000 414.5 1000 414.5 414.5 520.4 520.4 414.5 

Heat 

flow 

(kJ/h) 

-1.580 

e7 

-2.454 

e6 

-1.584 

e7 

-2.411 

e6 

-2.398 

e6 

-8.223 

e6 

-8.166 

e6 

-2.454 

e6 
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Table 6: Results of material and energy balance achieved 

from Aspen HYSYS for alternative 3. 
 Wat 

1 

Fluid 

1 

Wat 

2 

Fluid 

2 

Fluid 

 3 

Wat 

5 

Wat 

6 

Fluid  

4 

V. 

frac 

0 0.4965 0 1 1 0 0 0 

Temp 

(℃)  

45 33.26 35 33.26 115.4 45 80 84.32 

Press 

(kPa) 

101 1300 101 1300 4000 101 101 4000 

Mass 

flow 

(kg/h) 

1000 487.6 1000 487.6 487.6 400.4 400.4 487.6 

Heat 

flow 

(kJ/h) 

-1.58 

e7 

-2.88 

e6 

-1.584 

e7 

-2.836 

e6 

-2.819 

e6 

-6.327 

e6 

-6.266 

e6 

-2.88 

e6 

 

3.2. Calculation of COP for heat pump   

After simulation by Aspen Hysys, the COP of three 

alternative Heat Pumps is calculated.  

For alternative 1:  

 

𝐶𝑂𝑃 =
𝑄𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟

𝑊
=  

52800

9687
= 5.45 

 

For alternative 2:  

 

𝐶𝑂𝑃 =
𝑄𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟

𝑊
=  

56310

13150
= 4.282 

 

For alternative 3:  

𝐶𝑂𝑃 =
𝑄𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟

𝑊
=  

60740

17580
= 3.455 

 

So, when the supplies water to district heating are 

60, 70 and 80 the COP are 5.45, 4.282 and 3.455 

respectively.   

 

3.3. Economic calculation 

To calculate the energy cost, it is used simple 

assumptions. Economic calculation is done for two 

market situations. In the first market situation, 

electricity price is assumed 0.107 EUR/kWh in 

winter and 0.05 EUR/kWh in summer and in the 

second one the electricity price is equivalent 0.107 

EUR/kWh or 1.07 NOK/kWh during the year, and 

the district heating price is obtained from DH 

company which is 0.05 EUR/kWh (Li et al., 2021).  

Calculation of economic potential is presented by 

equation 3.  

 
𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 𝑃𝑟𝑖𝑐𝑒 × 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 ℎ𝑒𝑎𝑡

− (
𝐸𝑙 𝑃𝑟𝑖𝑐𝑒 × 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝐻𝑒𝑎𝑡

𝐶𝑂𝑃
)

 
                     (3)

 

 

One 7 MW DC is investigated, and 100% heat 

recovery is assumed, so the recovered heat is 

calculated to 60 GWh/yr in the DC. The economic 

potential for no heat pump and three alternative 

heat pumps by the first economic market situation 

are calculated below. 

 

𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 ℎ𝑒𝑎𝑡 𝑝𝑢𝑚𝑝
= 𝑃𝑟𝑖𝑐𝑒 × 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 ℎ𝑒𝑎𝑡

= 0.05
EUR

kWh
× 60 

GWh

yr

= 3.00 
MEUR

yr
 

 
𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑤𝑖𝑡ℎ ℎ𝑒𝑎𝑡 𝑝𝑢𝑚𝑝 1 

=  0.05
EUR

kWh
 × 60 

GWh

yr

− (
(
0.107 + 0.05

2
)

EUR
kWh

× 60 
GWh

yr

5.45
)

= 2.136 
MEUR

yr
 

 

 
𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑤𝑖𝑡ℎ ℎ𝑒𝑎𝑡 𝑝𝑢𝑚𝑝 2 

=  0.05
EUR

kWh
 × 60 

GWh

yr

− (
(

0.107 + 0.05
2

)
EUR
kWh

× 60 
GWh

yr

4.282
)

= 1.9 
MEUR

yr
 

 

 
𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑤𝑖𝑡ℎ ℎ𝑒𝑎𝑡 𝑝𝑢𝑚𝑝 3 

=  0.05
EUR

kWh
 × 60 

GWh

yr

− (
(
0.107 + 0.05

2
)

EUR
kWh

× 60 
GWh

yr

3.455
)

= 1.637 
MEUR

yr
 

 

 
For the case of no heat pump, all energy of the DC 

is utilized which is worth 3 MEUR while for three 

alternative heat pumps the economic potential 

decreased.  

Economic potential for heat pumps also are 

calculated by the second market situation and the 

results are 1.82 MEUR/yr, 1.5 MEUR/yr and 1.14 

MEUR/yr, respectively. However, If there is cheap 

surplus renewable energy available in special 

circumstances, it may improve the economy 

compared to the calculation.  
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3.4. Investment cost 

The total investment cost for heat pumps based on 

excess heat as heat source according to all 

categories are shown Tab. 7 (Li et al., 2021).   

 

Table 7: total investment cost for HP project (Li et al., 

2021) 

HP capacity 
Specific cost, 

million €/MW 

0.5 MW< HP capacity<1 MW 1.3 to 0.97 

1 MW< HP capacity<4 MW 0.97 to 0.72 

4 MW< HP capacity<10 MW 0.72 to 0.67 

 

Therefore, the investment cost of a heat pump in 

the 7 MW DC is in the third category, it is between 

the amount of 0.72 to 0.67 M€/MW, and for 

simplicity 0.7 M€/Mw is assumed in the 

investigation. Since the DC is assumed 7 MW the 

total investment cost is 4.9 M€. 

 

3.5. Calculation of the payback period 

The payback period is the time that the initial 

investment is fully recovered. The payback period 

PB is calculated in equation 4 (Li et al., 2021).   

 

𝐵𝑠𝑎𝑣 (
(1 + 𝑖)𝑃𝐵 − 1

𝑖(1 + 𝑖)𝑃𝐵
) − 𝐼𝑛𝑣𝑡

= 𝐵𝑠𝑎𝑣 (
1 − (1 + 𝑖)−𝑃𝐵

𝑖
) − 𝐼𝑛𝑣𝑡

= 0                                               (4) 
 
In the equation, Bsav is the annual energy bill 

saving, Invt is the initial investment. The interest 

rate is i which in this study is 7 %. The payback 

period, PB, indicates the number of years for the 

recovery of the investment.   

The payback period is calculated for three delivery 

temperatures by two market situations and the 

results are shown in Fig. 4 so that when the 

delivery temperature goes down or the COP of heat 

pumps goes up, the payback period reduces.    

 

Figure 4: Comparison of payback period for three 

delivery temperatures by two market situations 

 

3.6. Economic result 

The economic result for all four alternatives is 

calculated when the project are run for 10 and 20 

years. The factor for constant income is given by 

equation 5. 

𝐹𝑎𝑐𝑡𝑜𝑟 = (
1 − (1 + 𝑖)−𝑛

𝑖
) (5) 

 

For n=10 years and i=7% the factor is 7.02, and for 

n=20 years and i=7% the factor is 10.59. Therefore, 

the economic result for the four alternatives is 

calculated by equation 6 (Sharfuddin and Øi, 

2020).  

 

𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝑟𝑒𝑠𝑢𝑙𝑡 = (𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 

× 𝑓𝑎𝑐𝑡𝑜𝑟) − 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 (6)
 

 

It is noticeable that for the case without heat pump, 

there is no investment cost for installing heat pump. 

Therefore, the economic result for 10 years is 21.06 

MEUR and for 20 years is 31.77 MEUR. Also, 

economic result is calculated for three delivery 

temperatures based equation 6. The results of 20 

years investigation are shown in Fig. 5, 6 for all 

alternatives and by the first and second market 

situations respectively, so that there is an increased 

trend of economic potential by increasing COP of 

heat pump or decreasing delivery temperature. 

Also, the same pattern is for 10 years calculation.  

 

 
Figure 5: Comparison of economic result of investigation 

in 20 years by first market situation 

Figure 6: Comparison of economic result of investigation 

in 20 years by second market situation 
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4. Summary and Discussion  

The excess heat of DCs can be utilized as a 

renewable source of energy. Due to having efficient 

utilization of excess heat DC, the excess heat 

should be connected to a district heating network. 

However, the quality of heat from the DC is low 

and needs to be improved. A heat pump can be 

used for the purpose of improving heat quality. 

Aspen HYSYS software is used for simulation and 

economic optimization under different conditions. 

In all cases, water will leave the DC at 45℃, and in 

one case without a heat pump and three alternatives 

with heat pumps entering the district heating 

network at 60℃, 70℃ and 80℃ are simulated. 

After simulation by Aspen Hysys, it is observed 

that the COP of three alternative heat pumps 

decreases by increasing water supply temperature 

(5.5, 4.3, and 3.5 respectively).  

Economic considerations including investment 

cost, payback period, and the economic result for 

10 and 20 years have been done by two market 

situations with specified prices for electricity and 

district heating costs.    

It is observed that the payback period as expected 

increases by decreasing COP and higher supply 

water temperature so that it changes from 2.6, 2.9, 

and 3.5 years to 3.1, 3.8, and 5.3 years for the three 

delivery temperatures with the first and second 

market situations of calculation respectively.   

Moreover, the economic potential for three delivery 

temperatures show that a higher COP will produce 

a higher economic potential and a lower COP will 

give lower economic values. Also, it is shown that 

the first market situation provides higher economic 

potential when the price of electricity cost has been 

calculated in two parts.   

However, it is noticeable that the same price for 

district heating cost is assumed for all alternatives 

while the water supply temperature using a heat 

pump is higher than without a heat pump. That is 

why without heat pump scenario is the most 

economical alternative for two market situations. 

Also, the price of electricity and district heating 

may vary from one place to another which can 

affect the results. Another item that can affect the 

results is pipeline cost for the district heating 

network which has a dependency on climate, length 

of connection, and environmental situation. All in 

all, the calculation and investigation depict that a 

high potential for utilization of waste heat is 

available from DC. 
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Abstract 

The need to improve reliability and support decision-making in manufacturing has drawn attention to the 

application of diagnostic and decision-support tools. Particularly in the investment casting industry, data-

driven methods can be the enabler for process diagnostics and decision support. Images from the microscopic 

examination in the investment casting process are used as data input, to detect defects in produced pieces. 

The microscopic examination usually relies solely upon the ability of the operator to determine whether an 

image from the microscope contains a defect. Therefore, an effective strategy for this decision-making 

process is crucial to improve the reliability of the examination. The use of the machine learning classifier 

Random Forest is introduced to derive predictions on the existence of a defect in the input image.  This work 

focuses on employing machine learning tools for image recognition and the developed approach constitutes 

a decision support model to assist the operator and improve the reliability of their assessment.  

 

1. Introduction 

During the last decade, machine learning (ML) 

techniques have been widely implemented in 

different production processes, aiming to enhance 

the quality of the products, apply process 

diagnostics, or support decision-making 

(Esmaeilian et al., 2016) Utilization of ML 

methods has found application in production 

operational management centers to facilitate 

decision-making processes (González Rodríguez 

et al., 2020), or use predictions to support 

decisions in inventory management (Mohamed & 

Saber, 2023). The need to improve the reliability 

of decision-making for fault detection and 

diagnostic processes represents one of the 

strategic objectives of many industries. In 

manufacturing, reliability refers to machines, 

equipment, and systems being able to perform 

their intended functions with consistency and 

predictability. Providing reliable products is vital 

to the success of the industry, as traditionally 

reliability is evaluated by the final product quality 

(Safhi et al., 2019). Numerous measures can be 

taken to increase manufacturing reliability, such 

as regular maintenance and calibration of 

equipment, as well as diagnosing faults in 

components or systems.  

The microscopic examination mentioned in 

this work is a part of the investment casting 

process, a process aiming to create components 

that can be used in turbomachinery applications, 

characterized by high geometrical complexity, 

and later subjected to demanding performance 

conditions. The production of such parts has 

multiple subprocesses and is a very sophisticated 

procedure with much attention to detail (Warren 

et al., 2021).  

Most current practices in industry involve 

experts inspecting individually each piece 

produced and detecting defects manually 

(Jawahar et al., 2021). Particularly in the 

aerospace manufacturing industry, visual 

inspection still dominates the testing of parts 

including engine blades, accounting for 

approximately 90% of all inspections (Aust et al., 

2021).  With quality assessment being one of the 

essential steps of the process, relying solely on the 

ability of an inspector to detect faults could be of 

high risk (Aust et al., 2021). Studies have shown 

that during the inspection of parts, the judgment 

of professionals can be biased by expectations 

coming from contexts such as prior knowledge or 

experience and inspectors may be unaware when 

their judgments are affected (MacLean & Dror, 

2021). Bias can come from different sources, 

either case-specific, such as data, reference 

materials, and contextual information, depending 

on the environment and experience, or cognitive 

architecture and human nature. Many studies have 

so far been carried out on using ML techniques to 

identify faults and improve the reliability of other 

processes such as fluorescent penetrant inspection 
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(Niccolai et al., 2021) (Shipway et al., 2019), or 

X-ray inspection (Jiang et al., 2021), (García 

Pérez et al., 2022), but little has been done on the 

microscopic examination of the parts, and even 

less on the investment casting products.  

   The microscopic examination process in 

investment casting appears to be an excellent 

opportunity for the application of ML methods 

that could improve the reliability of fault 

diagnosis by assisting in decision-making. This is 

due to the requirement that the inspector 

conducting the examination detects 

discontinuities in materials and decides whether 

they could endanger the structural integrity of the 

produced part and its functionality. The purpose 

of this research work is focused on improving the 

reliability of the decision-making mechanism of 

the inspector’s assessment during the microscopic 

examination, through the application of ML 

techniques. As it is essential to reduce the risk of 

false assessment when diagnosing faults while 

minimizing possible bias and increasing 

objectivity, an assisting ML model for the 

operator is proposed. 

 

2. Methodology  

2.1. Background 

Investment casting is a manufacturing process 

that produces dimensionally accurate components 

and is a more cost-effective alternative to forging 

or machining since waste materials are reduced to 

a very low level (Li & Wang, 2021). During the 

process, molten wax is injected into a metallic 

mold to create a wax pattern with the desired 

component shape. The wax mold is repeatedly 

dipped into a ceramic slurry which then hardens 

to create a ceramic casing around the wax design. 

The wax is then removed from the shell by 

melting, leaving a cavity inside that exactly 

resembles the shape of the component. The 

casting procedure itself is carried out by filling the 

thus-produced ceramic shell with molten alloy 

after hardening the ceramic shell by heating. The 

shell is separated as the molten metal hardens to 

produce the components which will then undergo 

various finishing and inspection processes (Del 

Vecchio et al., 2019). 

As one of the final inspection methods, the 

microscopic examination contains assessments 

whose results determine if a part is ready for 

delivery, based on the requirements of each 

customer. Usual requirements might be the 

maximum allowed percentages of a specific 

defect found on a part, such as porosity. The 

conditions of the casting process in its entirety 

strongly determine the occurrence of defects 

during the observation. The operation of 

microscopic examination within the factory 

typically relies solely upon the ability of the 

operator, without any assisting model. The 

inspection is carried out using portable equipment 

and conventional optical microscopy procedures. 

For the microscopic examination to be successful 

and with accurate results, the operator is required 

to search for and detect irregularities by visually 

examining the cut surface of the material, an 

example of which is shown in Figure 1.  
 

 

Figure 1: The cut up of a piece produced by 

investment casting. 

When inspecting the material in the 

microscope, the operator comes across images 

that are either clean or contain a defect. It is up to 

the operator to decide the status of every image 

(faulty or non-faulty). Faults appearing on the 

image can be: 

• Porosity (often forming as microporosity), 

which appears in the microscope as dark 

repeated streaks with smooth edges. It is 

known to be the most common defect found 

during investment casting and dramatically 

limits the life of aerospace components 

(Torroba et al., 2014). A possible porosity 

cause is shrinkage during solidification, 

where there is a shortage of molten material 

flow in-between the space of connected 

dendrites (Mozammil et al., 2020). 

• Gas pockets, that are observed as dark circular 

shapes during the microscope examination. 

Similar to porosity, factors such as metal 

solidification time and air entrapment are due 

to turbulence during the pouring of the molten 

metal into the shell (Kaiser et al., 2011). 

• Cracks, which are usually caused by internal 

stresses from the solidification of the metal or 

rapid cooling, can be identified as either hot 

tear cracks, appearing as noncontinuous dark 
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lines of variable widths, or cold state, which 

indicates thin continuous lines. They can also 

initiate forming by other defects or 

intermetallics (Dezecot & Brochu, 2015). 

• Chemical reactions that might appear due to 

refractories used during the forming of the 

shell mold (Hao et al., 2020). They can be a 

result of the interaction of the metal used in 

investment casting and the ceramic mold 

where the metal is poured. 

Examples of the above are shown in Figure 4. 

There are also fewer common cases of other 

defects appearing such as missruns, dross, or 

segregation, generated mainly during the 

solidification process. During the microscopic 

assessment, the inspector may come across one of 

the defects or possible combinations of them. 

 

2.1. Approach 
The method proposed in this paper aims to detect 

faults that can occur during the investment casting 

process and support the assessment of defect 

presence. The steps followed in this work to tackle 

the risk of inaccurate assessment and create an 

assisting model for the operator were designed as 

follows: 
 

 
 

Figure 2: The approach to designing the data-driven 

method. 

According to several researchers (Ali et al., 2012; 

Bertovic et al, 2013), the examination of a part 

requires information processing that contains 

signal detection and decision-making. The first 

decision-making at this point is not to identify the 

specific type of defect but to determine whether 

the picture of the cut material contains a defect or 

not. In signal detection, the aim is to recognize a 

signal from a background interference or noise 

(Swets, 1996). Therefore, the operator can give 

two right or wrong answers: to correctly or 

incorrectly accept or reject the presence of a 

defect (Enkvist et al., 1999; Lynn &Barrett,2014). 

The four possible outcomes are illustrated in 

Figure 3. 

 

 
 
 

 Figure 3: The possible outcomes of the assessment 

depend on the true state of the world, according to 

signal detection theory. 

 

2.2. Data Preprocessing 
The input for the model was both images that 

contained defects and images that did not. The 

images in the dataset were taken from a database 

of microscopic examinations and were previously 

used to manually inspect portions of the parts to 

find defects. Initially, 1787 photographs were 

retrieved from the database that had various kinds 

of defects, while 462 images had no signs of any 

defects. Without a form of data augmentation that 

would provide a wider and more balanced training 

dataset, it can be challenging to obtain appropriate 

performance because datasets from real 

applications (such as production) are frequently 

limited (Shorten & Khoshgoftaar, 2019; Xu et al., 

2023).  

For the initial processing of the images, data 

augmentation was applied. A usual form of data 

augmentation technique is altering the 

geometrical characteristics of the initial images. 
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The first step of augmentation consisted of using 

the PIL Python library to alter the dimensions of 

the images. PIL is widely used in Python, as a 

potent tool for processing images. It can alter 

different kinds of image formats, sizes, and 

orientations (Guan et al., 2019). The images were 

cropped to the ratio of 1:1, to facilitate the rotation 

process that took place later. The initial 

dimensions were 722*990 pixels, and the final 

images were 722*722 pixels, cropped regarding 

the defect area. To increase the number of training 

data, the images were flipped and subjected to 

rotation.  

Figure 4 displays the original and altered photos 

as well as instances of the four categories of 

defects that were stated before. 

 
  Figure 4: The original cropped images (left) of and the 

artificially edited ones (right) of four different types of 

defects (from top to bottom): porosity, gas pockets, 

cracks, and chemical reaction. 

 

To enhance the computational performance of 

the classifier, the image pixels were reduced to 

42*42 instead of 722*722.  The classifier was able 

to better predict the existence of a defect on the 

image tested when the pixels were reduced to 42 

per side, as shown in Figure 5, which indicates the 

higher accuracy levels achieved with this 

particular number of pixels. 
 

 

Figure 5: The accuracy score development during the 

repetitions with different numbers of pixels. 

 

2.3. Classification 

Considering the specific dataset's characteristics, 

including its size and the presence of defects, the 

proposed approach employs the ML classifier 

Random Forest (RF) to make predictions 

regarding the presence of defects in the input 

image. In applications with datasets similar to the 

one being utilized in this study (Khatami et al., 

2019; Subudhi et al., 2020), RF shows satisfactory 

performance. This remains accurate for this stage 

of the process and is in line with the requirements 

of image recognition and classification between 

the two classes. Opting for RF over alternative 

methods is supported by its dependable 

performance in effectively tackling the challenges 

presented by dataset size and complexity. 

According to the literature, RF is often used for 

small data sets, similar to those from the medical 

field because it contributes to solving problems in 

industrial applications and has advantages such as 

ease of use, robust generalization ability, greater 

classification accuracy, and high functionality 

(Wang et al., 2023). 

The RF method is considered quite a popular 

ensemble technique for pattern and image 

recognition. As an ensemble learning technique, it 

combines multiple decision trees to increase the 

Porosity 

Gas pockets 

Cracks 

Chemical reaction 
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predictions’ accuracy. The training is 

accomplished for each decision tree, where all 

classifiers generated from different trials are 

collected to construct the final classifier (Azar et 

al., 2014). The algorithm, when used for 

classification, outputs the mode of the classes of 

the individual trees. A subset of training data and 

a subset of features are randomly selected by the 

algorithm to build each decision tree.  

The limitations of an RF classifier would 

depend on the high dimensionality of the data, 

which was tackled by reducing the number of 

pixels during data preprocessing, as mentioned in 

section 2.2. For pixel-based approaches like the 

one in this application, and for this stage and the 

requirements of the process, RF can perform 

satisfactorily. Research on methods for pixel 

analysis of pictures has revealed that RF acts 

similar to Neural Networks (NN) in defining 

linear borders between classes, such as in the 

usage of plantation boundaries (Boston et al., 

2022). When aiming to reduce time consumption 

and computational complexity while dealing with 

a small number of training samples, RF has been 

preferred over NN in situations with diagnostic 

applications comparable to this one (Han et al., 

2018).  

The images obtained from previous 

microscope examinations were pre-processed and 

split into training and testing datasets. One of the 

possible limitations in training the RF classifier 

would be an imbalanced data set, where the 

classifier might favor the minority class. 

Therefore, a balanced data of 3600 images from 

each category (faulty or non-faulty) was used to 

create the training and testing datasets, to better 

assist the training process and reduce 

computational complications. The data set split 

was 80% training and 20% testing images, which 

was 5760 and 1440 images respectively.  

Since the data set was labeled during the 

preprocessing stage, comparable supervised 

machine learning classifiers have been employed 

on this dataset. These included the Decision Tree 

(DT), the Support Vector Machine (SVM), and 

the Gaussian Process (GP) Classifier. The goal of 

the DT classifier is to create a training model that 

can be used to infer learning decision rules from 

training data in order to predict the class or value 

of target variables (Charbuty & Abdulazeez, 

2021). The SVM is a common pattern recognition 

classification technique that aims to find a central 

hyperplane to partition the data points. The 

datasets are therefore divided into different 

classes. Along the hyperplane that separates the 

classes, SVM establishes a concentrated 

separation boundary (Halder et al., 2023). GP 

classifiers offer a probability distribution over all 

conceivable functions that can match a given set 

of training points. The decision boundary then 

corresponds to the midpoint between the two 

classes as a result of the prior distribution's initial 

assignment of equal probability to both classes 

(Basha et al., 2023). On the basis of their accuracy 

score, the three aforementioned techniques were 

compared with the RF classifier. 

 

3. Results and discussion 

The RF classifier underwent testing with different 

numbers of estimators to determine the best 

configuration that would produce the most 

accurate outcomes. It attained an accuracy rate of 

86.5%. This score was found to be higher after 

experimenting with several types of classifiers. 

 

Figure 6: The accuracy score between the different 

classifiers. 
 

     As illustrated in Figure 6, the RF classifier 

outperformed other classifiers used in comparable 

applications, for this particular dataset with 

industrial images. The other types of classifiers 

that were tested and produced accuracy scores 

were the GP (78,6%), the SVM (60,8%), and 

finally the DT classifier (74,8%). 

The number of assigned estimators, which in 

this application was 120 estimators, is typically 

used to describe the Random Forest classifier. 

This was obtained by several iterations of the 

model, each using a different set of estimators. 

After achieving peak accuracy at the 120 

estimators (86.5%), it was seen that the 

computing time increased while the accuracy 

score did not, entering a relatively static period. 
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The development of the accuracy score regarding 

the number of estimators used is illustrated in 

Figure 7. 
 

 
Figure 7: The accuracy score development during the 

repetitions with different estimator numbers. 

 

The model produced a confusion matrix, a 

metric used to evaluate the accuracy of the 

classification. The confusion matrix contrasted 

the amount of accurate and inaccurate 

classifications made. Correct forecasts 

outperformed incorrect ones (false calls or 

misses) by a factor of five in terms of outcomes. 

The color gradient scale of the confusion matrix 

draws attention to the accurate classifications and 

the stark contrast between them and the inaccurate 

ones. The three matrices for the other classifiers 

were produced in addition to the confusion matrix 

from the RF classifier (Figure 8). 

   As observed in the confusion matrices for each 

classifier, the RF classifier demonstrates a more 

even distribution along the diagonal of the color 

scale. It achieves 1240 correct predictions 

(composed of 642 true positives and 548 true 

negatives), as opposed to 200 incorrect 

predictions (comprising 78 false positives and 122 

false negatives). This pattern aligns with the 

accuracy scores, as the other classifiers show a 

decreased frequency of accurate predictions that 

match the true labels. The color-coded cells 

within the matrices distinctly indicate that only 

the SVM classifier surpasses the RF classifier in 

prediction count for a specific class. However, the 

SVM's incorrect predictions outnumber the 

correct ones, resulting in a lower accuracy score 

for this classifier. In essence, the analysis 

underscores that the RF classifier outperforms the 

others by maintaining a more balanced and 

accurate distribution of predictions, making it the 

most reliable choice among the evaluated 

classifiers. 

 

Decision Tree Classifier 

Gaussian Process Classifier 

Support Vector Machine Classifier 

Random Forest Classifier 

Figure 8: The Confusion Matrix for each classifier. 
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4. Conclusions 

The present work demonstrated a data-driven 

approach to the investment casting microscopic 

examination to provide an assisting tool that 

supports decision-making and improves its 

reliability. The RF classifier that was chosen has 

achieved a level of prediction accuracy that is 

adequate given the characteristics of the dataset 

that was collected and preprocessed. It established 

higher efficiency for the selected dataset when 

compared to other classifiers that are employed in 

similar applications. Even though production data 

are seldom balanced, the model may also be used 

to predict unbalanced datasets after it has been 

trained. Therefore, this work contributes to 

developing a framework for integrating machine 

learning into the investment casting process, 

particularly in one of its subprocesses. It 

encourages further use of the ML classification 

algorithms for investment casting defects while 

introducing semi-automation of the investment 

casting microscopic examination. 
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Abstract 

 

A standard process for CO2 capture has been simulated with an equilibrium-based model in Aspen HYSYS.  The 

simulation has been combined with equipment dimensioning and cost calculation in an integrated spreadsheet 

facility. New in this work is that Murphree efficiencies are varied to obtain automatic optimization of absorber 

height and inlet temperature. The optimum process was found as the process with minimum calculated sum of 

capital and operational cost over 25 years.  The cost optimum process parameters for the standard process were 

calculated to 15 m absorber packing height, 13 K minimum approach temperature and 34 °C in inlet gas 

temperature. This study demonstrates that it is possible to calculate the optimum packing height and inlet 

temperature automatically by varying the Murphree efficiency in a case study function. 

  

Keywords: Carbon capture, Aspen HYSYS, simulation, cost estimation, optimization  

 

 

1. Introduction 

 

1.1. Aim  

 

The general aim of this work is to calculate the cost 

optimum absorption column height, minimum 

temperature approach temperature in the main 

amine/amine heat exchanger and optimum inlet 

temperature to the absorber.  A specific  aim is to 

make it possible to calculate these optimums 

automatically by varying the Murphree efficiency.  

 

1.2. Literature 

Much work has been published on cost estimation of 

CO2 capture plants (Rubin et al., 2013; van der Spek 

et al., 2019; Roussanaly et al., 2021). Several papers 

present results from process simulation and cost 

estimation (Mores et al., 2012; Agbonghae et al., 

2014); Manzolini et al., 2015; Luo and Wang, 2016; 

Nwaoha et al., 2018; Eldrup et al., 2019; Hasan et 

al., 2021).  

Some of the previous works at Telemark University 

College and the University of South-Eastern 

Norway (USN) with focus on process simulation, 

equipment dimensioning, cost estimation and 

optimization are Kallevik (2010), Øi (2007), Øi 

(2012), Aromada and Øi (2017) and Øi et al. (2022). 

The cost estimation part has in most of these works 

been based on different detailed factor methods like 

the Enhanced Detailed Factor (EDF) method (Ali et 

al., 2019; Aromada et al., 2021).  In these works, the 

main approach for calculating the optimum has been 

to use case studies in Aspen HYSYS and varying 

only one parameter at a time.  Then the optimum is 

found as the simulation giving the minimum sum of 

capital and operational cost.    

In the recent years, a focus has been on automatic 

process simulation combined with cost estimation in 

Aspen HYSYS (Øi et al., 2021; Øi et al., 2022; 

Shirdel et al., 2022). An Iterative Detailed Factor 

(IDF) scheme was developed (Aromada et al., 

2022a) where an aim was to make the entire process 

simulation, equipment dimensioning and cost 

estimation automatic, without requiring any manual 

input. This was accomplished in the work by Øi et 

al. (2022) by linking Aspen HYSYS simulation 

spreadsheets with Microsoft Excel by a VBA 

(Visual Basic) code. With an automated approach, 

process simulation based CO2 capture, process 

parameter cost optimization studies and sensitivity 

analysis can be conducted quickly and obtain 

reasonably accurate results.   

A limiting factor for automation in the Aspen 

HYSYS tool, has been that for a column, the number 

of equilibrium stages must be changed manually.  To 

overcome this, a possibility is to vary the Murphree 

efficiency on one or a selected number of absorption 

stages. The optimization can then be performed by 

performing a case study in Aspen HYSYS. This 

work is based on the results from the Master thesis 

work of Shirdel (2022), and in addition more 

references are included and discussed. 

mailto:lars.oi@usn.no
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1.3. Process Description  

The use of an amine solvent to remove CO2 is the 

most widely used and well-studied approach for CO2 

removal. Monoethanol amine (MEA) is the solvent 

that has been studied most, and it works well due to 

its quick interaction with CO2. Fig. 1 is a typical 

process flow diagram for an amine-based CO2 

removal facility. Traditional absorption is done in a 

column using plates, random packing or structured 

packing. The CO2-containing gas rises, while the 

absorption liquid falls. The solvent (rich amine) is 

then fed to a desorption column through a heat 

exchanger. In the desorption (stripper) column, the 

CO2 that has been absorbed is regenerated. The 

reboiler is heated, and a condenser provides reflux 

to the column. The regenerated solvent (lean amine) 

is recirculated to the absorption column after the 

desorber and cooled in a heat exchanger and cooler. 

 

 
Figure 1: Process flow diagram of a standard amine-based 

CO2 capture process (Aromada et al., 2020). 

 

2. Specifications and simulations  

2.1. Specifications and simulation of base case CO2 

capture process 

 

In this investigation, Aspen HYSYS version 12 was 

used to model a conventional amine-based CO2 

capture process, and the simulated results were 

utilized to size equipment and estimate costs using 

the same calculation method as in Aromada et al. 

(2021), Øi et al. (2021) and Øi et al. (2022). In all 

simulations, the Acid Gas property package was 

employed, which includes a liquid equilibrium 

model for electrolytes. This package is intended to 

replace the Amine property package, which has been 

widely used when using the Aspen HYSYS tool. 

The electrolyte non-random two-liquid (e-NRTL) 

model for electrolyte thermodynamics and the Peng-

Robinson equation of state for the vapor phase were 

used to create this property package.  

The absorber and desorber were simulated using 

equilibrium stages containing user defined stage 

(Murphree) efficiencies. These Murphree 

efficiencies are defined by dividing the change in 

CO2 mole fraction from one stage to the next by the 

change on the assumption of equilibrium.  

Emission data from previous studies (Aromada and 

Øi, 2017) on a natural gas-based power plant project 

on Mongstad, Norway, were utilized to generate the 

base case for the simulations. The specifications in 

Table 1 correspond to an 85 per cent CO2 removal 

efficiency and a minimum approach temperature of 

10 °C in the lean/rich amine heat exchanger, which 

is considered the base case configuration.  85 % CO2 

removal rate is traditional for capture from power 

plant based on natural gas. The absorber is modelled 

with 15 packing stages, while the desorber has 10. 

Murphree efficiencies of 15% were employed in the 

absorption column and 50% for all stages of the 

desorption column where one stage is expected to be 

approximately 1 meter packing height. In the 

columns, the Modified HYSIM Inside-Out 

numerical solver was adopted since it assists in 

convergence. The adiabatic efficiency of the pump 

and flue gas fan was specified to be 75%. 

To obtain an automated simulation model, robust 

adjustments and recycles are necessary to aid in the 

convergence of the simulations. Traditionally, 

manual adjustments can be performed by trial and 

error when working with a complex simulation 

model. 

The calculation sequence is similar to the 

simulations in Øi et al. (2021) and Øi et al. (2022). 

It starts with the input gas and the lean amine to the 

absorption column (which is first guessed). The rich 

amine pump transports the rich amine from the 

bottom of the absorption column through the 

lean/rich amine heat exchanger. After the heat 

exchanger, the temperature is specified, and the rich 

amine is sent to the desorber. The CO2 product and 

the hot lean amine are calculated in the desorption 

column. The heated lean amine is passed via the 

lean/rich heat exchanger and then pressurized in the 

lean amine pump, before being cooled further in the 

lean cooler.  Water was added to the process (water 

make-up) and the make-up was calculated by a water 

material balance. 

The lean amine is then placed in a recycle block  

(RCY_1). It is determined whether the recycled lean 

amine's flow and condition are sufficiently similar to 

the previously estimated lean amine stream, which 

may be adjusted through iteration. 

In order to create an automated simulation model, 

three adjust operations were added to the flowsheet. 

The removal efficiency can be adjusted based on the 

lean amine flow rate by ADJ-1, the minimum 

approach temperature in the lean/rich heat 

exchanger may be adjusted based on the rich amine 

outlet temperature of the lean/rich heat exchanger by 
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ADJ-2, and for adjusting the flue gas temperature to 

the absorber, ADJ-3 changes the cooling water 

supply in the inlet cooler.  The default tolerances in 

Aspen HYSYS were used in the simulations.  

 

 
  Table 1: Specifications for the base case alternative 

Parameter Value 

Inlet flue gas temperature [oC] 80/40.0 

Inlet flue gas pressure [kPa] 101/115 

Inlet flue gas flow rate [kmol/h] 85000 

CO2 content in inlet gas [mole %] 3.75 

Water content in inlet gas [mole %] 6.71 

Lean amine temperature [oC] 40.0 

Lean amine pressure [kPa] 101.0 

Lean amine rate [kg/h] 103500 

MEA content in lean amine [mass %] 29 

CO2 content in lean amine [mass %] 5.5 

Number of stages in absorber [-] 15 

Murphree efficiency in absorber  0.15 

Rich amine pump pressure [kPa] 200.0 

Rich amine temp. out of HEX [oC] 103.7 

Number of stages in desorber [-] 10 

Murphree efficiency in desorber  0.5 

Reflux ratio in stripper [-] 0.3 

Reboiler temperature [oC] 120.0 

Lean amine pump pressure [kPa] 500.0 

 

2.2. Parameter variation of ΔTmin  

A case study was made to look into the economic 

performance of the lean/rich amine heat exchanger 

when the degree of heat recovery was adjusted.  

More heat recovery will normally increase the 

capital cost and reduce the operating cost. The ΔTmin 

was changed for each simulation case. This was 

performed automatically by changing the target 

temperature from 5 to 20 °C in ADJ-2, whereas the 

ADJ-1 and ADJ-3 will aim to maintain a constant 

CO2 removal efficiency of 85% and a constant 

incoming flue gas temperature of 40 °C, 

respectively. All flue gas and absorption column 

parameters were held constant throughout the case 

for a certain total CO2 removal efficiency, lean 

amine composition and lean amine flow.  

 

2.3. Parameter variation of number of absorption 

stages and absorber height  

A higher absorption column packing is expected to 

increase the capital cost and reduce the operating 

cost. Because each change in the number of stages 

in the Design tab of the absorber requires manual 

input to run the simulation again, the case study 

option cannot be utilized in the sensitivity analysis 

for altering absorber height (stages). In all stages, 

Murphree efficiency has been set to 0.15. For each 

case, the efficiency of new stages, the pressure of 

flue gas into the absorber, and the pressure in the 

absorber's last stage should all be updated. For this 

reason, a new spreadsheet was created, and the 

calculations for changing the number of stages of the 

absorber and fan outlet pressures based on 1 kP for 

each stage (Park and Øi, 2017) were performed.  

In this study, a strategy was employed to define a 

case study by altering the efficiency of one specific 

stage. Changing the efficiency at one stage from 

0.15 to 0.9 for a configuration with 13 stages is 

almost equivalent to increase the number of stages 

from 13 to 18. Throughout the case study, the 

absorber efficiency, lean/rich amine heat exchanger 

minimum temperature approach, all flue gas 

parameters and lean amine content were all kept 

constant. The lean amine feed in ADJ-1, the 

desorber input temperature in ADJ-2, the flow rate 

of inlet cooling water in the inlet heat exchanger in 

ADJ-3 and the mass balance of makeup MEA and 

water in the makeup streams spreadsheet had to be 

adjusted to maintain the specification values.  

 

2.4. Parameter variation of absorber inlet 

temperature  

An analysis was conducted to adjust the flue gas 

inlet temperature to the absorber column. A high 

column temperature will increase the absorption rate 

and reduce the CO2 solubility, so it is expected that 

the inlet temperature has an optimum.   This is done 

in ADJ-3 by altering the cooling water input flow 

rate and as a result also changing the absorber inlet 

temperature. The lean amine composition was kept 

constant (by defining the MakeUp Streams 

spreadsheet), but the lean amine flow rate was 

adjusted in ADJ-1 for each case to obtain the desired 

CO2 removal efficiency. The ADJ-2 operates to keep 

the ΔTmin constant in the lean /rich amine heat 

exchanger. 

It is possible to specify the Murphree efficiency for 

each absorber stage.  The Murphree efficiency must 

be adjusted for each new inlet temperature, which 

makes this calculation complex. The Murphree stage 

efficiency was adjusted to account for the impacts of 

varying temperature profiles in the absorber column 

at various input gas temperatures. Øi (2012) has 

made a computational approach for estimating the 

Murphree stage efficiency as a function of 

temperature for absorber top and bottom conditions. 

Based on this calculation scheme, the Murphree 

efficiencies were computed only for the top-, 

bottom-, and maximum temperature stages, and the 

intermediate stage temperatures have been obtained 
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using a linearization between these temperatures as 

done in Kallevik (2010).  

After calculating the average Murphree efficiency 

for each inlet flue gas temperature, an equation for 

the relationship between the inlet temperature and 

Murphree efficiency was made. Another spreadsheet 

was created to export the calculated stages 

efficiency to the absorber after changing the 

incoming flue gas temperature from 30 to 50 °C in 

the case study.   

 

3. Cost estimation procedures and assumptions 

3.1. Equipment dimensioning and assumptions  

The mass and energy balances from the Aspen 

HYSYS process simulations were used to dimension 

all the equipment as done in previous studies (Øi et 

al., 2022).  

The diameters of the absorption and desorption 

columns were evaluated from the gas stream’s 

volumetric flows. These were based on superficial 

gas velocities of 2.5 m/s and 1 m/s respectively as 

done in earlier studies (Aromada & Øi, 2017). In the 

base case, 15 packing stages were specified for 

absorber, and 10 for the desorber. Each packing 

stage in the absorber and desorber were assumed to 

be 1 m high (Aromada et al., 2020). Structured 

packing was specified for better operational cost due 

to pressure drop (Choi et al., 2005). To estimate the 

tangent-to-tangent height of the absorber, the 

packing, liquid distributors, water wash, demister, 

gas inflow and outflow and sump were all 

considered. The condenser inlet, packing, liquid 

distributor, gas input and sump were taken into 

account in estimation of the desorber tangent-to-

tangent height (Ali, 2019; Øi et al., 2021). The 

packing height was given from a design of a wash 

tower in the catalog (Sulzer Chemtech, 2021). Thus, 

35 m and 25 m were arrived at for the tangent-to-

tangent heights of absorber and desorber 

respectively. 

The separator was sized using Souders Brown’s 

equation with a k-factor of 0.15 m/s and a height to 

diameter ratio of 1. The heat duties obtained from 

the process simulations were used to size the heat 

exchange equipment. The overall heat transfer 

coefficients specified are 1.20 kW/(m²∙K) for the 

reboiler, 0.73 kW/(m²∙K) for the lean/rich heat 

exchanger, 0.80 kW/(m²∙K) for the amine cooler, 

and 1.00 kW/(m²∙K) for the condenser as in 

Aromada et al. (2022b). The pumps, compressor and 

fan were sized based on their duties with efficiency 

75 %. 

 

3.2. Capital cost estimation method 

The Enhanced Detailed Factor (EDF) method (Ali et 

al., 2019; Aromada et al., 2021) was applied for the 

estimation of the CO₂ capture plant’s capital cost. As 

a detailed factor approach, the installed cost of each 

equipment is estimated based on variable installation 

factors that depends on each equipment cost. The 

capital cost of the CO₂ capture plant is then the sum 

of all equipment installed costs. The updated EDF 

factor list is published in (Aromada et al., 2021).  

Each equipment unit delivered cost was obtained 

from Aspen In-plant Cost Estimator (v.12). This is 

based on the capacity or size of each of the 

equipment units as determined from the 

dimensioning process. The cost currency and cost 

year were Euro (€) and 2019. The default location in 

Aspen In-Plant Cost Estimator, Rotterdam, was 

assumed in this work. The equipment units were 

assumed to be constructed from stainless steel 

(SS316). To apply the EDF method, the cost of the 

equipment units must be converted from their costs 

in the original material of construction. The cost 
(𝐸𝐶𝑆𝑆) of an equipment unit in stainless steel (SS) 

needs to be converted to its cost (𝐸𝐶𝐶𝑆) in carbon 

steel (CS). This is implemented by applying a 

material factor (𝑓𝑚𝑎𝑡) where CS is the reference 

material. The cost of each equipment unit 

constructed in welded SS is divided by a material 

factor of 1.75 to convert it to the corresponding cost 

in CS material. While the material factor for units 

manufactured in machined SS, e.g. pumps, is 1.30. 

Then, the total installation factor (𝐹𝑇,𝐶𝑆) and piping 

subfactor (𝑓𝑝𝑝) in CS for each equipment unit are 

obtained from the EDF factor lists (Aromada et al., 

2021). They are then converted to total installation 

factor in SS (𝐹𝑇,𝑆𝑆) as shown in equation (1): 

𝐹𝑇,𝑆𝑆 =  [𝐹𝑇,𝐶𝑆 + {(𝑓𝑚𝑎𝑡 − 1)(𝑓𝑒𝑞 + 𝑓𝑝𝑝)}]       (1) 

Where 𝑓𝑒𝑞= equipment factor = 1.0  

The total equipment installed cost (EIC) is estimated 

as follows: 

𝐸𝐼𝐶𝑆𝑆 =  𝐹𝑇,𝑆𝑆 ∗ 𝐸𝐶𝐶𝑆 ∗ (𝑁𝑜. 𝑜𝑓 𝑢𝑛𝑖𝑡𝑠)         (2) 

Then the total installed cost (CAPEX) with cost year 

of 2019 is: 

𝐶𝐴𝑃𝐸𝑋 = ∑(𝐸𝐼𝐶𝑆𝑆 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡)     (3) 

The capital cost of the CO₂ capture plant is then 

escalated from 2019 to 2021 using a consumer cost 

index from Statistisk Sentralbyrå (SSB). A 

Norwegian cost index is selected because the 

detailed factors were originally based on Norwegian 

currency. 

During optimization or sensitivity analysis, where a 

parameter is varied, the capacities/sizes of some 

equipment will change.  Therefore, there is a need to 

estimate new delivered cost for the equipment units 

due to the resulting changes in size/capacity. This is 

automatically estimated based on the Power law 

using an exponent of typically 0.65, from the 

previous cost obtained from Aspen In-Plant Cost 
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Estimator database as done in (Aromada et al., 

2022a, Aromada et al., 2022b; Øi et al., 2022). 

 

3.3. Operating cost estimation and assumptions 

The annual operating cost in this work is the sum of 

the fixed operating cost and variable operating costs. 

The variable operating cost was estimated from 

equation (4): 

 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑠𝑡 (
€

𝑦𝑟
) = 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (

𝑢𝑛𝑖𝑡

ℎ𝑟
) ×

 
𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠

𝑦𝑒𝑎𝑟
 ×  𝑢𝑛𝑖𝑡 𝑐𝑜𝑠𝑡 (

€

𝑢𝑛𝑖𝑡
)                             (4) 

 

The assumptions used for estimating the annual 

operating cost are presented in Table 2.   The values 

are similar to values used in earlier work like 

Aromada et al. (2021).  The steam cost is set to 25 

% of the electricity cost because steam can be 

converted to electricity with an efficiency of order 

of magnitude 25 %. 

 

 Table 2: Annual operating cost assumptions. 

Item Unit Value 

Operating lifetime [Year] 25[1] 

Annual hours of operation [h/year] 8000 

Electricity cost [€/kWh] 0.06 

Steam cost [€/kWh] 0.015 

Cooling water cost [€/m3] 0.022 

Water process cost [€/m3] 0.203 

MEA cost [€/ton] 1450 

Maintenance cost [€/year] 4% of CAPEX 

Operator cost (6 oper) [€/year] 80414(*6)              

Engineer cost (1 eng) [€/year] 156650            

 [1] 2 years construction + 23 years operation  

 

 

3.4. CO₂ capture annualized cost 

The economic key performance indicator in this 

work is CO2 captured cost. This was estimated as: 

 

 

𝐶𝑂2 𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑 𝑐𝑜𝑠𝑡 =
𝑇𝑜𝑡𝑎𝑙 𝑎𝑛𝑛𝑢𝑎𝑙 𝑐𝑜𝑠𝑡

𝑀𝑠𝑠 𝑜𝑓 𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑑 𝐶𝑂2/𝑦𝑒𝑎𝑟
  (5) 

 

 

𝑇𝑜𝑡𝑎𝑙 𝑎𝑛𝑛𝑢𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝐴𝑃𝐸𝑋 +
𝑌𝑒𝑎𝑟𝑙𝑦 𝑂𝑃𝐸𝑋                                                     (6) 

 

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝐴𝑃𝐸𝑋 =
𝐶𝐴𝑃𝐸𝑋

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟
 

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 =  ∑ [
1

(1+𝑟)𝑛]𝑛
𝑖=1                 (7) 

 

Where n is the plant lifetime, 25 years which 

includes 2 years for the plant’s construction. And r 

is the discount rate and was assumed to be 7.5 %. 

 

 

4. Results and Discussion  

4.1. Base case cost results 

The overall equipment cost was calculated to 110 

MEUR, and the absorber is the costliest equipment, 

accounting for 54% of the total cost.  This is 

traditional in other calculations (Ali 2019; Aromada 

et al., 2021). The structured packing cost accounts 

for 55 percent of the absorber's total cost.   

The total operational expenditure (OPEX) for the 

Base case was calculated to 29 MEUR/yr. Steam is 

the costliest utility for this facility, costing 15 

MEUR each year. The steam usage is calculated to 

3.75 GJ/ton CO2 captured and this is in line with 

values in literature (Choi et al., 2005; Øi, 2012).  

 

4.2. Optimization of minimum ΔT approach 

CO2 captured cost and energy consumption as a 

function of ΔTmin is shown in Fig. 3. It shows a flat 

minimum between 11 and 15, and a minimum at 13 

K. Fig. 3 is based on an automated case study in 

Aspen HYSYS. The simulations were also 

calculated manually, obtaining a smoother curve 

because all the parameters could be adjusted more 

accurately by trial and error. The results were 

similar, but the optimum ΔTmin was calculated 

manually to 12 K. Similar values have been 

calculated in several works (Øi, 2012; Shirdel et al., 

2022). In the case of using plate heat exchangers, the 

optimum ΔTmin will be less than 10 K. 

 

  

 
Figure 3: CO2 captured cost and energy consumption as a 

function of ΔTmin (from Shirdel, 2022).
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Figure 2: Aspen HYSYS flow sheet for the Base case simulation (from Shirdel, 2022). 

 

 

4.3. Optimum absorber height 

CO2 captured cost and energy consumption as a 

function of absorber packing height is shown in Fig. 

4. Results for both manual and automatic calculation 

are shown. Also here, the manual simulations give a 

smoother curve. However, the resulting optimum 

absorption height is 15 meters for both manual and 

automatic optimization.  This is in the order of 

magnitude similar to earlier works where optimum 

packing height have been calculated to 20 meters 

(Mores et al., 2012), 19 meters (Agbonghae et al., 

2014)) 15 meters (Aromada and Øi, 2017) and 19 

meters (Shirdel et al., 2022).  All the heights were 

structured packing except for Mores et al. (2012) 

which was based on random packing.   

 

 
Figure 4: CO2 capture cost as a function of absorber 

packing height (from Shirdel, 2022). 

 

4.4. Optimum inlet gas temperature 

To perform a reasonable optimization of the inlet gas 

temperature, the temperature dependence of the 

absorption efficiency must be included. In Fig. 6, the 

temperature and Murphree efficiency for the 

different absorption stages have been calculated.  

The Murphree efficiencies were calculated by the 

methods specified in Chapter 2, and one iteration 

was performed to include the effect of temperature 

on the calculated Murphree efficiencies from the 

first iteration.    

 

 
Figure 6: Murphree efficiency as a function of absorber 

stage and temperature (from Shirdel, 2022). 

 

For each inlet gas temperature, an average Murphree 

efficiency was calculated by a fitted polynomial. 

 

EM = - 0.00004T2 + 0.0041 T + 0.08              (8) 

A preliminary optimization was performed by 

manual simulations of the CO2 capture cost with 5 K 

steps for 15 and 13 absorption stages.  The lowest 

cost case was found at 13 stages (meter of packing).   

The optimum was then calculated automatically in a 

case study for 13 absorption stages with temperature 

steps of 1 K in Fig. 7. 

Fig. 7 shows that it is possible to calculate the 

optimum inlet gas temperature automatically. The 

curve is not very smooth, and this indicates that there 

are some inaccuracies in the calculations.  To 

improve this, a possibility is to adjust the tolerances 

in the Aspen HYSYS simulation tool.  This was 

evaluated by Øi et al. (2021).  The most optimum 

point at the curve is for an inlet gas temperature of 

34 °C. There are not found many numbers to 

compare with in literature, but Øi (2012) calculated 

an optimum between 33 and 35 °C. 
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Figure 7: Optimization of inlet gas temperature (from 

Shirdel, 2022). 

 

 

4.5. Optimization of other and several parameters 

In this work, emphasis has been on the optimization 

of packing height, minimum temperature approach 

and inlet gas temperature.  Other works have 

emphasized optimization of other parameters as 

absorber gas velocity and pressure drop (Park and 

Øi, 2017), CO2 capture rate (Mores et al., 2012) and 

lean loading (Agbonghae et al., 2014).  Optimization 

of these parameters are most often not independent. 

A high % CO2 capture rate will e.g. give a lower 

optimum CO2 loading. 

Simultaneous optimization of several parameters 

have been evaluated by Mores et al. (2012) and  

Agbonghae et al. (2014).   Mores et al. (2012) used 

a methodology based on Murphree efficiencies, and  

Agbonghae et al. (2014) based the work on rate-

based modelling in Aspen Plus including the Aspen 

Plus Economic Analyser. 

Such simultaneous optimization raises challenges 

for future work in complexity, accuracy, consistency 

and robustness of the calculations.       

 

 

6. Conclusion  

The case study function in Aspen HYSYS can be 

used to perform several simulations by changing one 

parameter at a time. The ΔTMIN was optimum at 13 

K (a flat optimum between 11-15 K) giving 42.8 

EURO/ton CO2. The case study function cannot be 

used to vary the number of stages in a column. 

However, the packing height was varied in an 

automated case study by increasing the Murphree 

efficiency of one stage gradually from 0.15 to 0.9.  

The optimum packing height at 15 meter (15 stages 

with 0.15 stage efficiency) gave 42.6 EURO/ton.  

Inlet temperature was optimized using the case study 

model where the Murphree efficiency was 

calculated as a function of temperature. Optimum 

inlet temperature was obtained at 34 °C, and the cost 

was reduced to 39.6 EURO/ton CO2.  The optimums 

agree well with earlier calculated optimum 

parameter values.  

This study demonstrates that it is possible to 

calculate the optimum packing height and inlet 

temperature automatically by varying the Murphree 

efficiency in a case study function. 
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Abstract 

 

Norway has a wide range of climatic conditions throughout the country. The climate varies from coastal to inland 

areas. Geographic latitude and longitude, as well as the gulf stream oceanic flow, account for this phenomenon. 

Different climate types can certainly affect residential building heating energy demands and make overheating 

more likely. On the other hand, a building's orientation has an impact on its heating energy requirements. A 

building's orientation affects how much solar gain it receives and how much wind it receives over the course of 

the year. Employing DesignBuilder® software, This study examines how different orientations affect the energy 

performance of a pre-designed house with and without solar photovoltaic panels in typical Norwegian climates. 

The results confirm that in different locations, the optimal situation is South-East and the lowest energy 

consumption without and with photovoltaic panels belongs to Bergen with 83305 Wh/m2 and Oslo with 29442 

Wh/m2 respectively. This comparative study will be helpful to stakeholders in the building ecosystem 

(municipalities, engineers, and designers, building companies, suppliers, and residents) in making more informed 

decisions. 

 

1. Introduction 

Norwegian households used 48 TWh of energy, or 

22 percent of the total energy consumed (Statistics 

Norway, 2021). The non-residential sector 

contributes almost 18% of total energy which 

implies that almost 40 percent of the final energy 

consumption in Norway comes from the building 

stock (Sartori et al., 2009). Generally, these statistics 

apply to western countries as well (EU Energy and 

Transport in Figures, 2009). Efforts are being made 

by the Norwegian authorities to reduce the energy 

demand for buildings (Korsnes et al., 2013). Recent 

revisions to the technical building regulations 

(TEK17, 2017) require greater insulation, heat 

recovery, and airtightness than earlier versions.  

In the household as well as in the service sector, 

electricity is the most widely used energy carrier 

(Fig. 1). Electricity has been increasing in the energy 

mix, reaching 83% in 2017 and this confirms the 

importance of the possibility of generating 

electricity from the house itself via solar panels. The 

second largest portion of household energy is 

derived from biofuels. About 5.8 TWh of energy 

was generated by biofuels in 2017. Fuelwood 

constitutes the majority of this energy, but pellets 

and bio-oils are also used by households. (“Energy 

use by sector”) 

Often referred to as prefab or modular homes, 

prefabricated houses are manufactured off-site and 

then transported to the building site for final 

assembly. Assembling prefabricated houses 

involves precutting and prefabricating building 

components, such as walls, roofs, floors, and doors, 

in a controlled environment before they are 

transported to the building site. In general, 

predesigned and prefabricated homes offer several 

advantages, including lower costs, energy 

efficiency, and versatility, making them an 

increasingly popular choice in many countries. Due 

to these factors, Scandinavia and Norway have a 

long history of using prefabricated houses. 

There can be a significant impact on the amount of 

energy required to heat and cool a house based on 

the local climate. In cooler climates, for instance, 

homes require more energy to stay warm in the 

winter, while in warmer climates, homes require 

more energy to stay cool in the summer. On the other 

hand, a house's orientation can also affect its energy 

efficiency. It is possible to reduce the amount of 

energy required for heating a residence with large 

windows facing the south during the winter months 

by utilizing natural solar heat gain. South-facing 

windows, however, can increase heat absorption by 

the home in hotter climates, which increases cooling 

energy requirements. In addition to influencing the 

amount of natural light that enters a home, the 

orientation can also have a significant impact on the 

energy consumption of the home by reducing the 

need for artificial light. 
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Figure 1: Norway's final energy consumption by energy carrier in 2020 (adapted from  (“Energy use by sector”)) 

In the present study, a pre-designed house in five 

different typical Norwegian climates was tested to 

answer the following: 1) In different climates, how 

does a house's orientation affect its energy 

efficiency? 2) What is the optimal orientation for the 

house in the selected location? 3) What is the effect 

of climate on energy consumption? 4) What is the 

effect of solar photovoltaic panels on the energy 

consumption of a house in different climates? A 

bioclimatic paradigm was used to assess the 

operational energy and daylight performance of this 

type of building in various climates. 

 

2. Literature Review  

Nordic countries’ cold climate and abundance of 

natural resources have created unique challenges 

and opportunities in the field of energy efficiency. 

This has resulted in a significant amount of research 

being conducted on the energy performance of these 

countries (Abrahamsen et al., 2023; Carpino et al., 

2020, 2020; Cohen et al., 2007; Liu et al., 2015; 

Mahapatra & Olsson, 2015; Molin et al., 2011; 

Tommerup et al., 2007).  

Many factors can affect the energy efficiency of a 

house, including the climate (Cronin et al., 2018; Li 

et al., 2021) and its orientation (Abanda & Byers, 

2016; Albatayneh et al., 2018; Elghamry & Azmy, 

2017; Lahmar et al., 2022). There have been 

numerous studies that examine the effects of 

climate, building orientation, location, etc. on a 

building's energy performance. In particular, the 

orientation of the façade has a significant impact on 

the performance of building integrated photo voltaic 

(BIPV) on façades (Akbarinejad et al., 2022). As a 

consequence of the relatively symmetrical sun path 

throughout the day, it is difficult to determine the of 

a building located in a warm-humid climate. 

Nicoletti et al. (2022) employed EnergyPlus to 

evaluate the energy and visual performance of a 

building with photochromic glazings in southern 

Italy. By considering five climatic locations in Saudi 

Arabia, Alyami et al. (2022)  examined the effects 

of location and insulation material on the energy 

efficiency of residential buildings. By observing and 

conducting experiments on four existing buildings, 

Khaliq and Mansoor (2022) determined the 

effectiveness of energy consumption, as well as 

developing a model based on different contributing 

parameters, including orientation, construction 

materials, construction type, etc. Morsali et al. 

(2021) investigated the effects of building direction 

and roofs on the energy consumption of residential 

buildings through simulations using Building 

Information Models. Abdul Mujeebu and Ashraf 

(2020) examined the impact of location and range of 

thermostat set points for cooling and heating on nano 

gel glazing energy performance and economics in a 

multistory office building, considering 26 climatic 

regions across Saudi Arabia. Various climate 

regions, Lapsia (2019) investigated the effect of its 

geometric shape and orientation on its energy 

performance. Fela et al. (2019) evaluated the impact 

of climate on daylight performance in a reference 

office in which there is only one glazed opening, and 

on which a range of window-to-wall ratios are 

measured on one of the short façades facing a variety 

of orientations. Tab. 1 summarizes the results from 

the literature review. optimal façade orientation for 

tropical cities in terms of maximum energy yield and 

daylight performance. On tropical building façades, 

Mangkuto et al. (2023)  determined the optimum 

orientation for BIPV.  Karthick et al. (2023) 

examined the effects of building orientation, 

window glazing, and shading techniques on the 

energy efficiency and comfort. 
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Table 1: Summary of literature review 

References Main Parameter Climate Software Location 

(Mangkuto et al., 

2023) 
Building Orientation Tropical  

Indonasia 

(Karthick et al., 2023) 

Building Orientation, 

Window Glazing, and 

Shading Techniques 

Warm-Humid 
DesignBuilder, 

EnergyPlus 

 

(Nicoletti et al., 2022) 
Building Location, Window 

Glazing 
 EnergyPlus 

Southern 

Italy 

(Alyami et al., 2022) 
Building Location and 

Insulation Material 
Hot-Humid IES-VE 

Saudi 

Arabia 

(Khaliq & Mansoor, 

2022) 

Orientation, construction 

materials, type of 

construction 

  

Pakistan 

(Morsali et al., 2021) 
Roof shapes and building 

orientation 
 REVIT 

 

(Abdul Mujeebu & 

Ashraf, 2020) 
Location and deadband Hot-Humid Ecotect 

Saudi 

Arabia 

(Baruah & Sahoo, 

2020) 

Orientations, location types of 

roof surfaces, walls and 

fenestrations 

Sub-tropical 

humid 

climate with dry 

winter conditions 

eQUEST 

Himalayan 

terrain of 

India 

(Lapisa, 2019) 
Different climates, geometric 

shapes, and orientation 
 

TRNSYS, 

CONTAM 

Jakarta, 

Marseille, 

and Poitiers 

(Hammad et al., 2018) 
Location and design of 

windows 
 

Green Building 

Studio 

The middle 

east and 

north africa 

(MENA) 

(Dobosi et al., 2019) Various locations  
EnergyPlus in 

Sketchup 

Romania 

(Fela et al., 2019) 
Orientation, window size, and 

lighting control 
Tropical area 

Radiance and 

Daysim 

Indonesia 

(Košir et al., 2018) Location’s climatic specifics  
EnergyPlus in 

OpenStudio 

 

(Elhadad et al., 2018) Building orientation  IDA ICE 4.7 Egypt 

(Khan & Asif, 2017) 
Green roof and building 

orientation 
Hot-Humid Ecotect 

Saudi 

Arabia 

(Poddar et al., 2017) 
Building orientations and 

seasonal variations 
 

DesignBuilder, 

EnergyPlus 

South 

Korea 

(Diaz & Osmond, 

2017) 
Various locations 

Hot-Humid 

Tropics 
WUFI Plus 

Location 

3. Simulation Setup  

A pre-designed two-story Norwegian house (Fig. 2) 

was designed in accordance with the spaces and 

areas specified in Tab. 2. 

To meet the requirements of the Norwegian 

regulations, the materials used in this house have 

been selected so as to meet the requirements of the 

TEK 17 standard (Byggteknisk Forskrift (TEK17) 

Med Veiledning, 2017), which has been adopted by 

the Norwegian government. A summary of the 

requirements for external walls, roofs, floors, and 

windows prescribed by TEK 17 can be found in Tab. 

3. 
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Figure 2: The overview of the building 

Table 2: Names and areas of the building spaces 

 Name of Areas Area (m2) 

First story  

Living Room 85.825 

Kitchen 10.954 

Toilet-Bathroom 5.995 

Bedroom 1 20.289 

Bedroom 2 17.351 

Hallway 10.144 

Second story 

Living Room 85.825 

Kitchen 10.954 

Toilet-Bathroom 5.995 

Bedroom 1 20.289 

Bedroom 2 17.351 

Hallway 10.144 

 Total Area of Each 

Story 

150.558 

 Total Area of the 

Building 

301.116 

 

Table 3: Comparison of standard requirements and used 

values for the simulations 

Small house (150 m2) 
Requirement 

of TEK 17 
Used 

U-value outer walls 

[W/(m2 K)] 

≤ 0.18 0.176 

U-value roof [W/(m2 K)] ≤ 0.13 0.127 

U-value floors [W/(m2 K)] ≤ 0.10 0.094 

U-value windows and 

doors [W/(m2 K)] 

≤ 0.80 0.78 

Proportion of window and 

door areas of heated gross 

internal area 

≤ 25% ≤ 25% 

The heating system of the house is ground heating 

fed by a hot water boiler which uses electricity from 

the grid to heat the water and has a coefficient of 

performance (CoP) equal to 0.65 (the default CoP 

specified in the software’s library for this system). 

Due to the climate characteristics, no cooling system 

is considered for the house.  

Noteworthy to indicate is that the ventilation rate has 

been set to 0.5 air change per hour (the minimum 

permitted amount) (Dimitroulopoulou, 2012) and 

the air infiltration rate has been set to 0.3 air change 

per hour as it must be under 0.6 (Bunkholt et al., 

2021). 

Moreover, to check the possibility and the amount 

of electricity generation by solar energy in each city, 

the pitched roof of the building is covered with solar 

photovoltaic (PV) panels with characteristics such as 

area of the PV panel equal to 128 m2, efficiency of 

0.15, and fraction of surface with active solar cells 

equal to 0.9. 

Similar to many other studies and simulations, our 

study has also limitations. There are other 

parameters to be set based on the DesignBuilder® 

software requirements which have been set as the 

default value of the software itself. Moreover, as 

mentioned above, there are some critical parameters 

such as CoP, air infiltration and ventilation rates 

which the results are sensitive to them, so they are 

worthy to be studied in the future. 

From another point of view, as seen in the next 

section, only eight main orientations have been 

considered in the simulations. And necessarily the 

optimum orientation is not among these. In addition, 

the shading effect of other buildings has not been 

considered in this study and the slope of the PV cells 

has been set as the slope of the roof which is not 

necessarily optimum. 

4. Results and Discussion 

As a result of setting up all the above parameters in 

the DesighnBuilder® software, five Norwegian 

cities with differing climates were selected as the 

locations for the house, namely Oslo, Trondheim, 

Tromsø, Kristiansand, and Bergen. Throughout each 

city, one simulation has been performed for each 

direction (south, south-east, east, north-east, north, 

north-west, west, south-west). To calculate the 

energy consumption and energy generation of PV 

panels during the year, as well as the percentage of 

energy consumption reduction with generation 

during the year, the house was rotated in the eight 

directions listed above. As a result, the data referred 

to above were exported and are shown in Appendix 

A. 

The simulations show that the lowest energy 

consumption in each city can be reached in the 

facing into the direction of south-east with the 

amount of 87715, 102530, 135250, 87759, 83305 
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[Wh/m2] per year for Oslo, Trondheim, Tromsø, 

Kristiansand, and Bergen respectively (Fig. 3).  

 

Figure 3: The lowest energy consumption in the cities 

among all orientations 

Furthermore and as it could also be expected, 

Tromsø and Trondheim have the highest yearly 

energy consumption, which is the result of their 

geographical location and climate. 

Interestingly, the highest energy generation with the 

PV panels is available in a different facing in 

comparison to the facing with the lowest energy 

consumption in each city. The PV panels are able to 

produce the highest amount of energy in the facing 

into the West with the amount of 58366, 58920, 

49770, 58366, and 49073 [Wh/m2] per year for Oslo, 

Trondheim, Tromsø, Kristiansand, and Bergen 

respectively (Fig. 4). It is expected that the 

performance of the PV panels are highly affected 

negatively in cloudy weathers such as Bergen and 

Tromsø. 

Although it is not surprising that the second lowest 

amount of energy generation by PV panels is in 

Tromsø because of the angle of the sun light due to 

the altitude of the city and because of the long 

periods of darkness, it is absolutely surprising that 

Bergen has the first lowest amount of energy 

generation while it has considerably lower altitude 

and also has shorter periods of darkness comparing 

to Tromsø. 

 

Figure 4: The highest energy generation with the PV 

panels in the cities among all orientations 

By combining the yearly energy consumption with 

and without energy generation by PV panels, it can 

be concluded that by adding PV panels to this 

building, the maximum energy reduction can be 

achieved in the south-east facing by 66.43, 57.42, 

36.7, 66.4, and 58.85 percent for Oslo, Trondheim, 

Tromsø, Kristiansand, and Bergen respectively (Fig. 

5). 

 

Figure 5: The highest energy consumption reduction 

using PV panel (%) in each city among all arientations 

Finally, although the highest energy generation is 

achieved in Trondheim (58920 Wh/m2), the highest 

percentage of energy consumption reduction with 

generation is achieved in Oslo and Kristiansand with 

a negligible difference, 66.43 and 66.4 percent 

respectively (Fig. 6). 

87715

102530

135250

87759
83305

The Lowest Energy Consumption without 

Generation (Wh/m2)
58366 58920

49770

58366

49073

The Highest Energy Generation of PV 

Panel (Wh/m2)

66.43

57.42

36.70

66.40

58.85
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Figure 6: The highest energy generation and energy 

consumption reduction in the cities among all 

orientations 

5. Conclusion 

The findings of the study highlighted the 

significance of considering climate variations and 

building orientation when assessing residential 

building heating energy demands and the likelihood 

of overheating. The geographic latitude and 

longitude, along with the influence of the Gulf 

Stream oceanic flow, were identified as contributing 

factors to the diverse climate types across Norway. 

Through the analysis, it was determined that the 

optimal orientation for energy efficiency differed 

across locations, with the South-East direction 

emerging as the most favorable in the examined 

scenarios. The study also investigated the impact of 

incorporating solar photovoltaic panels into the 

house design, noting that different locations 

demonstrated varying energy consumption levels. 

The city of Bergen showed the lowest energy 

consumption without photovoltaic panels, recording 

83,305 Wh/m2, while Oslo exhibited the lowest 

consumption with photovoltaic panels, at 29,442 

Wh/m2. 

By shedding light on these energy performance 

variations, this study provides valuable guidance for 

stakeholders involved in the design and construction 

of residential buildings in Norway. 

 

 
Appendix A: The extracted data from simulations 

 

City Facing 

Energy 

consumption 

without 

generation 

(Wh/m2) 

Energy 

consumptio

n difference 

according to 

minimum 

amount (%) 

Energy 

generation 

of PV 

(Wh/m2) 

Energy 

consumption 

with generation 

(Wh/m2) 

Energy 

consumption 

reduction with 

generation (%) 

 

 

 

 

Oslo 
 

S 89343 1.86 58221 31122 65.17 

SE 87715 0.00 58273 29442 66.43 

E 88242 0.60 58333 29909 66.11 

NE 92290 5.22 58225 34065 63.09 

N 95970 9.41 58222 37748 60.67 

NW 95260 8.60 58297 36963 61.20 

W 92760 5.75 58366 34394 62.92 

SW 90810 3.53 58248 32562 64.14 

 

 

 

 

Trondheim 
 

S 104210 1.64 58890 45320 56.51 

SE 102530 0.00 58870 43660 57.42 

E 103260 0.71 58880 44380 57.02 

NE 107650 4.99 58850 48800 54.67 

N 111690 8.93 58890 52800 52.73 

NW 111410 8.66 58900 52510 52.87 

W 108570 5.89 58920 49650 54.27 

SW 106100 3.48 58880 47220 55.49 

58366

58920

49770

58366

49073
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Tromsø 
 

S 136980 1.28 49540 87440 36.17 

SE 135250 0.00 49640 85610 36.70 

E 135990 0.55 49740 86250 36.58 

NE 140730 4.05 49600 91130 35.24 

N 144640 6.94 49540 95100 34.25 

NW 144050 6.51 49670 94380 34.48 

W 141160 4.37 49770 91390 35.26 

SW 138890 2.69 49620 89270 35.73 

 

 

 

 

Kristiansand 
 

S 89395 1.86 58221 31174 65.13 

SE 87759 0.00 58273 29486 66.40 

E 88285 0.60 58333 29952 66.07 

NE 92370 5.25 58225 34145 63.03 

N 96030 9.42 58222 37808 60.63 

NW 95320 8.62 58297 37023 61.16 

W 92780 5.72 58366 34414 62.91 

SW 90860 3.53 58248 32612 64.11 

 

 

 

 

Bergen 
 

S 84359 1.27 49040 35319 58.13 

SE 83305 0.00 49023 34282 58.85 

E 83555 0.30 49051 34504 58.71 

NE 86045 3.29 49034 37011 56.99 

N 88497 6.23 49040 39457 55.41 

NW 88300 6.00 49039 39261 55.54 

W 86681 4.05 49073 37608 56.61 

SW 85362 2.47 49049 36313 57.46 
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Abstract

Supported by an identification experiment using random-phase multisines, uncertain parameters in a grey-box model
for a multiple-input multiple-output laboratory-scale heat exchanger are fitted to experimental data. By defining de-
sired trajectories for the controlled system concerning setpoint changes, simulations and a cost function taking control
signal activity into account, we determine both a linear and a nonlinear PI-controller. The resulting control systems
are evaluated through practical experiments and analysis with encouraging results. The approach to modelling and
controller design raises questions about what is needed from an educational point of view, e.g., what skills are needed
for simulation-based control design and analysis?

1 Introduction

The development of increasingly accurate models and
simulations raises questions about whether new ap-
proaches to the design of control systems should be
considered. As an example, models often popularly
referred to as Digital Twins (DTs) (Espinosa-Leal et
al., 2020) that combine sensor information, data-based
black-box models with physical models to develop
a faithful virtual replica of a given system are used
onboard in the electronic control unit for improving
the final tuning phase of the controller for the physi-
cal vehicle in an automobile application (Dettù et al.,
2023). Inspired by similar approaches and the ap-
proach of (nominal) model predictive control (mpc) in
general (Hewing et al., 2020), we explore possibilities
to use simulations directly for controller design. Our
case study considers a laboratory-scale heater and a
heat exchanger. Heat exchangers are vital components
in, among other applications, thermal power stations
and heat pumps. Improved control of heat exchang-
ers based on the creative use of increasingly accurate
models could thus contribute to the much needed in-
creased energy efficiency (IPCC, 2023).
Although it would be appealing to illustrate the ap-
proach on a deterministic, linear model that could be
fully explored analytically, the primary motivation for
using simulations directly is, naturally, for processes
with features not easily captured by linearized mod-
els. Therefore, the approach is illustrated in a non-
linear, multivariable process. In this initial approach,
we, for manageability, focus on the control of one vital
quality variable. Combining first-principles with ex-

periments, a system of coupled nonlinear differential
equations forms the basic model of the heating process
considered. Some uncertain parameters of the model
are fitted based on an identification experiment. A se-
quence of setpoint changes and a control performance
criterion are then defined. Different control strategies
are explored and optimized based on simulations. The
strategies are then implemented in practice, results are
evaluated, and a preliminary analysis of the control
systems is presented.
Reflecting on the approach, what does it imply regard-
ing modelling and model analysis required for teach-
ing control engineering on a general level? If control
design is based on simulations only, does this mean
that the skills needed for analyzing (and linearizing)
differential or difference equations are less critical?
How can traditional requirements on stability analysis,
robustness, control performance and control signal ac-
tivity be explored based on simulations? Connected to
these questions is the opaque nature of general nonlin-
ear black-box models and physical component models
with block diagrams that oftenmake them less suitable
for traditional, linear approaches. The gaining popu-
larity of these modelling alternatives also motivates
the approach presented in this paper.

2 Laboratory-scale heat exchanger

A schematic view of the process is illustrated in the left
panel of Fig. 1. The process has three control signals,
uc controlling the pump on the cold side, uh control-
ling the pump on the hot side, and up controlling the
power to the heater. Given the external disturbances



SIMS 64 Västerås, Sweden, September 26-27, 2023

Tci and Tsurr, i.e., the temperature of the flow on the
cold side into the heat exchanger and the surrounding
temperature, a model should be able to determine the
power to the heater P, the flows on the cold and on the
hot side, V̇c and V̇h, the temperatures entering and ex-
iting on the hot side, Thi and Tho, and the temperature
exiting on the cold side, Tco.

Figure 1. Schematic view of the heating process. Blue de-
notes the cold side of the heat exchanger, and red
denotes the hot side and the heater.

The main objective is to control V̇c as well as Tco. The
temperatures on the hot side are less interesting, but
naturally sufficient heat is necessary to enable control
of Tco.

2.1 A grey-box model

In the approach to the simulation-based design of
controllers, we consider a simplified first-principles
model for the heating process. A net energy balance
can be written

dEtot

dt
= P−V̇cρcp(Tco −Tci)− Q̇loss (1)

where dEtot/dt is the change of net stored energy in
the system and Q̇loss are the heat losses to the environ-
ment. The termEtot cannot easily be used to determine
the temperatures Thi, Tho and Tco. For this reason, the
net balance is split into three equations. A balance
over the heater yields

dEp

dt
= P−V̇hρcp(Thi −Tho)− Q̇loss (2)

where all heat losses from the system are assigned to
the heater. The stored energy is assumed to be char-
acterized by the temperature Thi and given by Ep =
Cp(Thi − Tref) where Cp is the heat capacity for the

heater and Tref is a reference temperature. If Cp is as-
sumed constant, dEp/dt = CpdThi/dt. A similar bal-
ance over the hot side of the heat exchanger yields

dEh

dt
= V̇hρcp(Thi −Tho)− Q̇he (3)

where Q̇he is the power transferred in the heat ex-
changer and dEh/dt is characterized by Tho. If Ch is
the heat capacity for the hot side of the heat exchanger
and assumed constant, dEh/dt =ChdTho/dt. The cor-
responding balance over the cold side of the heat ex-
changer is given by

dEc

dt
= Q̇he −V̇cρcp(Tco −Tci) (4)

where dEc/dt is characterized by the temperature Tco.
IfCc is the heat capacity for the cold side of the heat ex-
changer and assumed constant, dEc/dt =CcdTco/dt.
In addition to these energy balances, equations for
Q̇loss, Q̇he and equations for dependencies between uc
and V̇c, uh and V̇h and up and P are needed.
For a heat exchanger, it is common to use Q̇he =
αA∆Tlm, where α is the heat transfer coefficient, A
is the exchange area and ∆Tlm is the logarithmic mean
temperature difference. In this case, the temperature
differences are Thi −Tco and Tho −Tci. Although ∆Tlm
is motivated by steady-state, we nonetheless use it for
our dynamic model. The heat losses are assumed to be
proportional to Thi −Tsurr, i.e., Q̇loss = k(Thi −Tsurr).
For the pumps and the heater, first-order models were
fitted to step experiments to give the equations,

dV̇c

dt
=

1
Tc
(Kc max(uc −19,0)−V̇c)

dV̇h

dt
=

1
Th

(Kh max(uh −19,0)−V̇h)

dP
dt

=
1
Tp

(Kpup −P)

(5)

withTc = 1.5 s,Kc = 5 (ml/(min)/%), Th = 1 s,Kh = 10
(ml/min)/%), Tp = 1 s and Kp = 0.016 kW/%.
The models include several uncertain parameters in
addition to the pump and power characteristics given
above, mainly α , k, Cc, Ch, and Cp. Constant esti-
mates for these will, for simplicity, be considered. In
addition, delays are determined by visual inspection
of step changes and possible flow-dependent trans-
port delays as well as distribution of temperatures and
flows, ageing and other time-variant characteristics
are neglected. The identification experiment and how
the parameters α , k, Cc, Ch and Cp are fitted is de-
scribed next.

2.2 Identification experiment

Although α and k could be fitted to steady-state data,
estimating heat capacities requires experiments with
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nonzero temperature derivatives. In future work, we
also aim to explore various data-based models for
simulation-based controller design. For this reason, a
6000 seconds identification experiment using random-
phase multisines (Pintelon & Schoukens, 2012) for all
three control signals, uc, uh and up, was conducted.
The main experiment contains two independent sets
of three 1000 seconds long periods each. A short seg-
ment of the experiment illustrating Tco, corresponding
simulations Tco,s and the three control signals are il-
lustrated in Fig. 2.

Figure 2. Upper panel: Simulations of Tco,s (blue) and
measurements Tco (red) for a short segment of
the identification experiment. Lower panel: The
three control signals for the corresponding seg-
ment of the experiment.

As Fig. 2 shows, significant variations in, especially,
uc and uh have been implemented. Consequently,
the experiment should provide valuable data over a
large range. To fit the uncertain parameters to the
data, simulations are compared to measurements and
a quadratic criterion defined by Eq. 6 is introduced.

Vf =
1
m

W T diag(XT X)W (6)

In Eq. 6, m is the number of observations, W is a
weight vector that emphasizes the chosen variables,
and X is a matrix with the simulation errors of interest
as columns. The k-th row in X has the four columns
Tco,s(k) − Tco(k), Thi,s(k) − Thi(k), Tho,s(k) − Tho(k)
and V̇c,s(k)− V̇c(k) and 1 ≤ k ≤ m. Controlling Tco
is the main objective in our application and motivates
our choice of W T =

(√
10 1 1 1

)
.

In addition to the main experiment, experimental step
changes in the control signals were performed to esti-
mate delays. Based on visual inspection, delays from
the control signals were estimated as 2, 2, and 6 sec-
onds respectively. In other words, uc(t −2), uh(t −2)
and up(t − 6) replaces uc, uh and up in the equations
for the grey-box model. It can be noted that these es-
timates are somewhat arbitrary, e.g., is the delay from
uh to Tco, to Thi or to Tho? Maintaining the physical in-
terpretation of the grey-box model, we choose delays
to V̇c, V̇h and P, respectively. Even so, variations be-

tween different step changes can be discerned. More-
over, for data-based models, other delays can be mo-
tivated.
Using constrained optimization, the estimates α =
0.30 kW/(◦Cm2), k = 0.0033 kW/◦C,Cc = 0.17 kJ/◦C,
Ch = 0.13 kJ/◦C and Cp = 5.9 kJ/◦C are obtained.
Simulations of Tco denoted Tco,s for the fitted model
are illustrated along with measurements in Fig. 2.

3 Designing controllers

Traditionally, controller design is based on linearmod-
els of the dynamical systems. Rules-of-thumb ap-
proaches are based on simple models. With more de-
tailed (linear) models, the design typically addresses
one of, e.g., a desired stability margin, control per-
formance as quantified by quadratic costs in control
error and control signal activity, disturbance rejec-
tion, robustness by guaranteeing stable control un-
der uncertainties, etc. Typically, these approaches re-
quire tools for differential and difference equations,
linearizing equations, state-space descriptions and lin-
ear algebra, block diagrams, frequency analysis and
Bode-diagrams, optimal control, etc. Accordingly, ac-
quiring such skills forms a major focus of control en-
gineering courses.
With increasingly accurate models, it appears that ap-
proaches based on linearized models do not take full
advantage of available insights. Furthermore, maybe
nonlinear approaches to control based on local linear-
ity, such as gain scheduling, primarily are the result
of adapting the design of controllers to traditional ap-
proaches?
As an alternative, mpc is not based on designing a
static control law. Instead, control signal sequences
are determined by optimizing simulations of a model
to follow a desired trajectory over a predictive hori-
zon. With new measurements, optimal control sig-
nal sequences are updated based on the available state.
This approach has many attractive features, e.g., non-
linear models and constraints can easily be included.
A disadvantage is that it may be difficult to determine
the required computational complexity a priori, e.g.,
hard nonlinearities, bifurcations, etc., can render op-
timization unfeasible. Thus, simplifications (lineariz-
ing) can be needed to guarantee necessary computa-
tional efficiency.
In this paper, we instead combine the approach of de-
signing a static control law with that of using simula-
tions. With a static control law, the need for computa-
tional power in the real-time implementation is negli-
gible and this is a key motivation behind our approach
and a clear advantage compared to nominal mpc. The
parameters in the controller are determined by opti-
mization, i.e., similarly to mpc we formulate and min-
imize a criterion that quantifies differences in simula-
tions of process values from desired setpoint trajecto-
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ries taking control signal activity into consideration.
The general criterion is similar to Eq. (6) and is given
by

Vc =
1
m
(QT diag(XT

c Xc)Q+RT diag(∆uT ∆u)R (7)

where Xc is given by differences between setpoint (r)
and simulated process value (y) and its k-th row is
given by

Xc(k) =
(
r1(k)− y1(k) r2(k)− y2(k) · · ·

)
(8)

In our quadratic criterion, control signal activity is
quantified by the change in control signal, ∆u = u(k+
1)−u(k), but u can naturally be used directly if more
suitable for the application at hand.
The idea of simulation-based controller design is not
new, e.g., neural network controllers can often be seen
as a version of this approach. But the idea and criterion
has to the best of our knowledge not been as explicitly
discussed as we try in this paper. Furthermore, we also
discuss how to incorporate feedback systems analysis
within our framework.
For our specific case study, the focus of the present
study is to explore possibilities for controlling Tco us-
ing uh. In Eq. (7), Xc = Tco,sp−Tco,s and ∆u = ∆uh ac-
cordingly, and with the heuristic choices of Q = 20

√
2

andR= 1 based on evaluations of simulations. For the
other control variables, the flow on the cold side, V̇c,
with the pump on the cold side, uc, and the tempera-
ture entering the heat exchanger on the hot side, Thi,
with up, we use fixed PI-controllers.
For the PI-controllers, we use the velocity equation

ui(k) = ui(k−1)+Ki

((
1+

Ts

TI,i

)
ei(k)− ei(k−1)

)
(9)

with control signals constrained between 0 and 100%,
ui(k) = min(max(ui(k),0),100). In Eq. (9), K is the
(proportional) gain, TI the integration time, Ts the sam-
pling period (Ts = 1 s in all simulations and experi-
ments) and ei(k) = ri(k)− yi(k) is the control error,
i.e., the difference between setpoint and process value.
The subscript i is either c for the pump on the cold side,
h for the pump on the hot side or p for the command
to the power in the heater. The PI-controller for uc
has Kc = 0.01 %/(ml/min) and TI,c = 0.5 s and up has
Kp = 20 %/◦C and TI,p = 100 s1.
To explore realistic challenges, the setpoint for V̇c
changes from 150 ml/min to 220 ml/min at t = 1000 s
as a ramp stretching over 5 seconds and then to
100 ml/min at t = 2000 s as a ramp stretching over 10
seconds. These setpoint changes can be seen in Fig. 3.
The setpoint for Tco changes from 35 ◦C to 40 ◦C at
t = 500 s, back to 35 ◦C at t = 1500 s and to 40 ◦C at
1These choices are at least not intentionally biased for our study as
they are arbitrarily chosen from submitted student assignments.

t = 2500 s. All changes are ramp-shaped and stretch
over 10 seconds. These setpoint changes can be seen
in Figs. 4 and 6. The setpoint for Thi is kept constant
at 55 ◦C.

3.1 PI control

Minimizing Eq. (7) for the simulated response to the
setpoint changes regardingKh and TI,h gives the results
Kh = 4.7%/◦C and TI,h = 23 s. Corresponding simula-
tions are illustrated in the left panels of Figs. 3–5. For
reference and comparison, the value for our criterion
of Eq. (7) isVc,e = 510. In Figs. 3–5, experimental re-
sults using the same setpoint changes are illustrated in
the right panels. In addition to the presence of mea-
surement noise, some differences can be noted. In the
simulations, Tco does not reach the setpoint after the
change in V̇c at t = 1500 and uh saturates at 100%. In
the experiment, this disturbance in Tco is significantly
smaller and compensated for by the controller with uh
just under 70%. This discrepancy between model and
experiment could be explained by a higher efficiency
of the heat exchanger at higher flows, i.e., α could
better be described as a function of flows and, pos-
sibly, temperatures. For the control, however, it ap-
pears as if the well-known strength of integral action
in the controller is robust against such low-frequency
modelling errors. Perhaps more interesting, the distur-
bance in Tco at t = 2000 due to the change in V̇c causes
slowly converging oscillations, suggesting a bifurca-
tion in the simulated closed-loop system that could
warrant further study. As an advantage in practice,
we note that control of Tco is similar but better in ex-
periments than in simulations.
For the control of Thi much larger high-frequency vari-
ation in both Thi and up can be noted in the experiment
compared to simulations. Although the control on a
general level is similar in simulation and experiment
and works well since high-frequency variations in up
are not a matter of concern, this discrepancy will be
briefly discussed in Section 4.
For the experiment, the value Vc,e = 140 is obtained.
This significantly lower value despite measurement
noise compared to the simulation can partly be ex-
plained by the simulated Tco not reaching the setpoint
for 1500 ≤ t ≤ 2000 as noted before.

3.2 Nonlinear PI control

In addition to enabling the use of detailed and, pos-
sibly, opaque models, one of the points behind us-
ing simulations for controller design is the possibil-
ity for exploring alternative, nonlinear controllers. As
the left panels in Figs. 4–5 clearly reveal, the model
exhibits challenging nonlinear characteristics. An in-
tuitive solution could therefore be to consider a non-
linear PI-controller. Instead of gain-scheduling with



SIMS 64 Västerås, Sweden, September 26-27, 2023

Figure 3. Upper panels: Setpoint changes in of V̇c (blue) and simulated control (red) in the left panel, and the corresponding
experiment to the right. Lower panels: Simulated control signal uc (left)

Figure 4. Upper panels: Setpoint changes in of Tco (blue) and simulated control (red) in the left panel, and the corresponding
experiment to the right. Lower panels: Simulated control signal uh (left) and corresponding experiment (right).

different linear PI-controllers depending on a parame-
ter (typically u, y or r), we explore linear dependen-
cies in the gain and integration time. Specifically,
in place of Kh and, TI,h we use Kh + auh(k − 1) and
TI,h +buh(k−1).

Minimizing Eq. (7) for the simulated response to the
setpoint changes regarding Kh, a, TI,h and b gives the
results Kh = 0.1 %/◦C, a = 46 1/◦C, TI,h = 0.18 s and
b = −0.46 s/%. Compared to the linear PI-controller
of Eq. (9) this corresponds to a range of values for Kh
between 3.5 %/◦C and 18 %/◦C and for TI,h between
0.14 s and 38 s. Simulations yield the valueVc,e = 240,
i.e., a significant improvement over the linear case.

The experiment with the nonlinear PI-controller yields
the valueVc,e = 52. Compared to the experiment with
the linear controller, the performance is numerically
clearly better. Visual inspection of Figs. 6–7 reveal
that setpoint tracking is faster and disturbance rejec-
tion better than in the linear case, at the cost of higher
activity in the control signal uh. In summary, the re-
sults are very encouraging and a significant improve-
ment in control quality can be noted.
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Figure 5. Upper panels: Setpoint for Thi (blue) and simulated control (red) in the left panel, and the corresponding experiment
to the right. Lower panels: Simulated control signal up (left) and corresponding experiment (right).

Figure 6. Same as in Fig. 4 but for the nonlinear PI-controller.

4 Control system analysis

It is commonly known that control design methods
“focus on one or two aspects of the [control] problem,
and the control-system designer then has to check that
the other requirements are also satisfied” (Åström &
Wittenmark, 1997). Using a block diagram and trans-
fer function notation with s as the Laplace variable, a
feedback system following the structure we use is de-
picted in Fig. 8.

Correspondingly,

Y (s) =
GrGp

1+GrGp
R(s)+

Gp

1+GrGp
W1(s)+

1
1+GrGp

W2(s) (10)

and

U(s) =
Gr

1+GrGp
R(s)−

GrGp

1+GrGp
W1(s)−

Gr

1+GrGp
W2(s) (11)
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Figure 7. Same as in Fig. 5 but for the nonlinear PI-controller.
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Figure 8. Block diagram for a process Gp(s) controlled by (negative) feedback. The diagram includes setpoint R(s), control
signal U(s), process disturbance W1(s), measurement noise W2(s), process value Y (s) and controller Gr(s).

As these equations indicate, the control problem can,
in turn, often be analyzed (in the frequency domain)
by addressing the “Gang Of Four” (Åström&Murray,
2021), i.e, the four transfer functions

GrGp

1+GrGp
(12)

known as the complementary sensitivity function,
Gp

1+GrGp
(13)

the load sensitivity function,
1

1+GrGp
(14)

the sensitivity function and
Gr

1+GrGp
(15)

the noise sensitivity function. For linear systems, it
is illustrative to analyze the closed-loop system with

plots of (the gains of) these transfer functions as a
function of frequency. In principle, simulations using
sinusoidal functions of different frequencies for, e.g.,
w2(t) and recording the corresponding amplitudes of
y(t) and u(t) could provide numerical estimates of
these gains. However, nonlinear systems can exhibit,
e.g., frequency spreading, i.e., a single frequency in
w2(t) can result in several frequencies in y(t) and u(t).
This phenomenon can further be amplitude-dependent
and, for multivariable systems, the principle of super-
position is not necessarily applicable. In addition, the
behavior can depend on the region of operation.
In summary, these characteristics render a full explo-
ration of our case study cumbersome at the very least.
We are still grasping at how the abundance of combi-
nations of different variables could be illustrated. As
an initial exploration, and motivated by the challenges
the experiments indicate, we separately explore how
sinusoidal measurement noise in Tco and Thi for dif-
ferent frequencies affect Tco, uh, Thi and up, respec-
tively. Constant setpoints are used, 37.5◦C for Tco and
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160 ml/min for V̇c. The amplitude of the measurement
noise was 1◦C and possible frequency spreading was
neglected, i.e., only amplitudes of corresponding os-
cillations were recorded. The corresponding results
are illustrated in Figs. 9–10.

Figure 9. Amplitude of variations as a function of fre-
quency resulting from a sinusoidal measurement
disturbance on Tco (upper panels) with ampli-
tude 1◦. Left to right, amplitudes of Tco, uc, Thi
and uh. Lower panels: Same as upper panels but
for Thi with amplitude 1◦.

Figure 10. Same as in Fig. 9 but for the nonlinear PI-
controller.

As the figures reveal, similar “sensitivity func-
tions” are obtained for the linear and nonlinear PI-
controllers, indicating a (limited) insensitivity to pro-
cess variations. Based on this limited analysis, the
main source of possible concern is in the “noise sen-
sitivity functions”: variations in Thi can be amplified
to the control signal up by a factor of 25 and to uh by
a factor of 3 using the linear PI-controller and a factor
of 4 using the nonlinear PI. Variations in Tco, in turn,
can be amplified to the control signal uh by a factor of
9 (linear PI) and by 16 (nonlinear PI).
This analysis can explain the control signal activity
observed in uh (lower right panels of both Fig. 5 and
Fig. 7) as well as the difference between control signal
activity observed in up (lower right panels of Fig. 4
and Fig. 6). Most likely, the high gain of 25 is due
to the heuristically designed PI-controller for control-
ling Thi using up and it can be noted that the gain

Kp = 20 %/◦C was used. Still, a comparative study of
different approaches for controller design, possibly in-
cluding simulation-based loop-shaping, could help to
shed light on possible weaknesses in the simulation-
based approach. Moreover, an interesting possibility
could be to include, e.g., the maximum gains of noise
sensitivity functions in the criterion minimized for de-
signing controllers, Eq. (7).

5 Conclusions and future work

In this paper, we explored simulation-based controller
design. Compared to approaches based on linearized
models, this enabled us to explore and tune alterna-
tive nonlinear controllers. Moreover, the approach
does not rely on models that are translucent and easily
linearized. For our challenging case study on a mul-
tivariable, nonlinear heating system, the simulations
were promising and experimental results above ex-
pectations. Further experiments, study, analysis, and
comparisons to other promising frameworks such as
reinforcement learning ormpcwill be pursued in order
to explore the general applicability of the presented
approach.
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Abstract 
 
Multiphase flow metering is a challenging task because of the complexity of multiphase flow. In this paper, non-
intrusive multiphase flow metering techniques, including machine learning (ML) / artificial intelligence models 
for the identification of flow regimes and estimation of flow parameters of a two-phase flow in a horizontal pipe 
are proposed that use data from Electrical Capacitance Tomography (ECT) and conventional measurements such 
as differential pressure in the pipe. The flow regimes are classified into five types, namely plug, slug, annular, 
wavy and stratified. Two-phase air/water flow experimental data from ECT are collected by running extensive 
experiments using the horizontal section of the multiphase flow rig at the University of South-Eastern Norway 
(USN). Exploratory data analysis (EDA) is performed on these data to extract features for use in classification 
and regression algorithms. Time series of normalized capacitance data from ECT sensors are used to classify flow 
regimes and identify flow parameters. ML techniques of Artificial Neural Network, Support Vector Machine 
(SVM), K-Nearest Neighbors (KNN) and Decision Tree (DT) are used to classify flow regimes by using features 
extracted from ECT data. The cross-correlation technique is used to estimate flow velocity using data from a twin-
plane ECT module. ML regression techniques are used to estimate phase fractions. Fusing data from differential 
pressure sensors enhances the flow regime classification. An overall system performance is given with suggestions 
for designing dedicated control algorithms for actuators used in multiphase flow control. 

 

1. Introduction 
In fluid mechanics, multiphase flow is the flow of 
two or more phases of matter in a pipe. Multiphase 
flow is a complex phenomenon. Two-phase flow is 
a flow where two phases out of solid, liquid and gas 
phases are observed simultaneously in a pipeline. 
Gas/Solid is prevalent in pneumatic conveyors, dust 
collectors, fluidized beds, heterogeneous reactors 
and metallized propellant rockets. Gas/liquid flow 
can be seen in atomizers, scrubbers, dryers and 
combustors. Liquid/liquid droplet flow is observed 
in extraction, homogenizing and emulsifying. 
Liquid/solid is present in flotation and sedimentation 
(Soo, 1990).   
The geometric distribution of constituent phases in a 
multiphase flow is known as flow regime or pattern 
(Tan and Dong, 2023). There are various types of 
flow regimes. Slug, plug, stratified, annular, wavy, 
bubble, etc., are common and well-known flow 
regimes observed in multiphase flow (Vohr, 1960). 
Flow regimes depend on the orientation of pipe and 
direction of flow. The density of phases, viscosity of 
phases and mass flow rates of phases also greatly 
affect the creation of flow regimes (Alssayh et al., 
2013). Operating pressure, temperature, valves and 
bends have a direct effect on the flow regimes 

(Hansen et al., 2019). Classification of flow regimes 
in a two-phase flow pipeline is a major challenge in 
the field of flow analysis (Pereyra et al., 2012). Flow 
regimes can be classified subjectively through 
graphics or by employing the probability density 
function of pressure or void fractions signals from 
sensors (Almalki and Ahmed, 2020; Godfrey 
Nnabuife et al., 2021). Flow regimes has direct 
effect on the measurement of flow velocities, phase 
fractions and other parameters (Godfrey Nnabuife et 
al., 2021). Some of the flow regimes observed in 
horizontal gas/liquid multiphase flows are described 
below:  
 Stratified 
When gas and liquid flow rates are low, stratified 
flow is observed. It is applicable in horizontal flow 
direction. There is no mixing of the two phases and 
the liquid phase remains as a film at the lower 
portion of the pipe (Liné and Fabre, 2011).  
 Wavy 
At higher gas flow rates, the stratified flow converts 
to wavy flow in which ripples or waves are observed 
on the top of the liquid layer. It appears like waves 
in a sea. (Jayanti, 2011) 
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 Annular 
At higher gas velocity, wavy flow converts to 
annular flow in which liquid flows at the periphery 
of the pipe while gas flows at the center of the pipe. 
(Zeigarnik, 2011) 
 Plug / Elongated Bubble 
Plug is a kind of flow pattern in which large bubbles 
of gas float on the top surface of the liquid phase 
spanning a large area in the pipe. The gas phase is 
dispersed in the liquid phase. (Vohr, 1960) 
 Slug 
Slug flow is intermittent flow in which slugs of 
liquid with dispersed bubbles flow along with large 
gas pockets. The flow is always unsteady. The 
bubble is in the shape of a bullet. This flow alternates 
between high liquid fraction and high gas fraction. 
(Vohr, 1960) 

(Wang and Zhang, 2009) use an ECT for identifying 
flow regimes by applying Support Vector Machine 
(SVM) to classify flow regimes and Principal 
Component Analysis (PCA) to optimize the inputs 
to the SVM model. (Ameran et al., 2015) discuss 
velocity measurement of two-phase flow through 
ECT using cross-correlation techniques. A study of 
flow velocity and phase concentrations of horizontal 
two-phase flow is presented by (Stavland et al., 
2021), employing a dual-plane ECT with gamma-
ray tomography to measure volumetric flow rates of 
the phases, achieving an accuracy of ±10%. 
The results presented in this paper are developed 
during the master thesis’s work of (Noorain Syed 
Kazmi, 2023). 
 
2. System Description 
A multiphase flow rig is at the University of South-
Eastern Norway (USN), Campus Porsgrunn. This rig 
is equipped with facilities for multiphase flow 
studies using water, air, and mineral oil through a 
horizontal pipe. The pipe can be tilted by ±10⁰ with 
respect to the horizontal surface. The operational 
limit of mass flow rate for air is 5 kg/min, whereas 
for liquid is 150 kg/min. By injecting various 
combinations of air, water and oil mass flow rates, 
different flow regimes can be generated and visually 
inspected through the Plexiglass transparent section, 
as shown in Fig. 1. A simplified piping and 
instrumentation diagram (P&ID) of the flow rig is 
shown in Fig. 2. Some important parameters of the 
rig are given in Tab. 1. 
 

 
Figure 1: The rig setup (partly) at USN, Porsgrunn. 

 
Figure 2: P&ID of the rig at USN, Porsgrunn 

Table 1: Some parameters of the rig at USN, Porsgrunn 

 
As depicted in Fig. 1, a TOMOFLOW TFLR5000 
dual-plane ECT system from Process Tomography 
Limited is equipped on the rig. The ECT system can 
measure the flow parameters of an uneven two-
phase flow when the constituents have dielectric 
properties (Process Tomography Limited, 2011). In 
this rig, air, oil and water permittivities are 1, 2.7 and 
80, respectively (Dupré et al., 2017).  

PDT120 and PDT121 are the differential pressure 
meters mounted on the rig, as shown in Fig. 3. 
PDT120 measures the differential pressure across a 
span of 10.22m in the pipe, and PDT121 captures the 
differential pressure across a shorter distance of 
5.38m within the same pipe. In addition, the inlet air 
flow rate and air  pressure are measured separately 
by a flow transmitter FT131 and a pressure 
transmitter PT131.  

 
Figure 3: Measurement areas of differential pressure 

meters on the flow rig at USN, Porsgrunn (Dupré et al., 
2017) 

3. Electrical Capacitance Tomography 
ECT is a non-invasive, non-radioactive flow sensing 
method that measures the spatial distribution of 
dielectric materials within a pipe using capacitance 
readings from peripheral electrodes (Process 
Tomography Limited, 2011; Saied and Meribout, 
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2016). The capacitances can also be converted into 
images for visual depiction of the flow.  
Generally used in two-phase liquid/gas flow, ECT 
measures permittivity distribution inside a pipe at 
two cross-sections of a pipe that can give the 
velocity profile of flow while also providing volume 
ratio or phase fraction data. ECT is most effective 
when working with fluids that have low electric 
conductivity and variable permittivity (Process 
Tomography Limited, 2011). The working principle 
of an ECT (one plane) is shown in Fig. 4.  
 

 
Figure 4: Principal of ECT with 8-electrodes (Process 

Tomography Limited, 2011) 

An alternating voltage is applied between the source 
and the ground. The source is charged to one 
electrode. Currents, in direct proportion to the 
capacitance, are subsequently measured at all 
remaining electrodes. Within a single measurement 
frame, the currents/ capacitances between each pair 
of electrodes are measured. For an N-electrodes ECT 
plane, there are in total M = N(N-1)/2 unique 
capacitance values per measurement frame (Process 
Tomography Limited, 2011). The measured 
capacitances can be normalized by using Eq. 1. 
 

𝐶 =
𝐶 − 𝐶

𝐶 − 𝐶
 (1)  

 
In Eq. 1, 𝐶  is the inter-electrode raw capacitance. 
𝐶  is the capacitance when the pipe is full with lower 
permittivity material such as air. 𝐶  is the 
capacitance when the pipe is full with higher 
permittivity material such as water. 𝐶  is the 
normalized capacitance. 𝐶  is dimensionless and 
normalized, making it suitable as input for 
mathematical operations and algorithms. 
 
4. Experiments 
Based on the flow conditions outlined in Fig. 5, 45 
of two-phase air and water experiments are carried 
out on the flow rig using the ECT system. 
Conventional measurements such as differential 

pressure, temperature and mass flow rate were also 
recorded during each experiment.  
The flow regimes indicated in Fig. 5 are validated 
via visual inspection throughout the experiments. 
Fig. 6 displays the active experimental area on the 
flow regime map. The lowest flow rates for air and 
water are 0.07 kg/min and 2 kg/min, respectively, 
while the highest flow rates for both mediums reach 
5 kg/min and 77 kg/min. Fig. 7 illustrates the setup 
of the sensor array, comprising of 8 electrodes, 
around the pipe. Tab. 2 provides the parameters 
setup in the ECT system during the experiments. 
 

 
 

Figure 5: Test matrix for two-phase flow with varying 
velocities of water and air (in kg/min) generating 

different flow regimes 

 
Figure 6: Active region (blue area) of experiments on a 

flow regime map, based on Mandani et al.. 
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Figure 7: Setup of ECT electrodes and planes on the pipe 
and their connection to TOMOFLOW TFLR5000 system 

 

Table 2: HW/SW related parameters used in the ECT 
module for the experiments  

Parameter Value 
Frames per second per plane 100 
Sampling interval per plane (ms) 10 
Number of planes 2 
Number of electrodes per plane  8 
Number of capacitances per measured frame 28 
Logging duration per experiment (s) 30 

For each experiment, 3000 frames of ECT data were 
collected. For example, one of the experiments for 
Annular flow regime was conducted by simulating 
an Annular flow in the USN flow pipeline by using 
the matrix of Fig. 5. This experiment generated 3000 
frames of normalized capacitances from the eight 
electrodes. This batch of frames was labeled as 
Annular to be used for supervised machine learning 
algorithms. Each frame consists of 28 capacitance 
values. For 45 experiments, a total of 135000 frames 
of capacitance data are collected. These capacitance 
data were normalized before using them in 
classification and regression algorithms. Each frame 
was flattened to 28 columns of normalized 
capacitances with the observed flow regime in the 
29th column of the flattened file enabling 135000 
rows as inputs to machine learning models.  

 
5. Methods 
This paper defines CXY as the normalized 
capacitance between electrodes X and Y, with C12, 
for instance, denoting the normalized capacitance 
between electrodes 1 and 2. The electrode counts are 
given in Fig.7. The classification and regression 
models are developed in MATLAB R2020b for this 
paper.  
 
5.1 Flow Regime Identification 
Flow regime identification utilizes 28 normalized 
capacitances from one ECT data frame as 

features/inputs. The associated flow regime types 
act as labels/outputs in machine learning (ML) 
classification algorithms, as illustrated in Fig. 8. 
ML algorithms of Decision tree (DT), K-Nearest 
Neighbors (KNN), SVM and Feedforward Neural 
Networks (FNN) are used as flow regime 
classification algorithms. Classification Learner 
App in MATLAB is used to develop the flow regime 
classification algorithms of DT, KNN and SVM. 
The Neural Network Pattern Recognition App in 
MATLAB is used to develop the flow regime 
classification FNN algorithm. 

In pursuit of enhancing model performance, another 
model incorporating both ECT data and differential 
pressure data from sensors PDT120, PDT121, and 
PT131 is also developed by implementing a sensor 
fusion method, as illustrated in Fig. 9  

 

 
 

Figure 8: Model for flow regime classification using 
normalized capacitances as features in ML algorithms 
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Figure 9: Model for flow regime classification using 

sensor fusion concept 

 

5.2 Flow Velocity Estimation 
To estimate the flow velocity, a cross-correlation 
analysis is performed using frames from both planes 
in a dual plane of ECT. The normalized capacitances 
at these two planes are cross-correlated to find the 
peak correlation lag between them. For instance, the 
series of C12 at plane 1 is correlated with the series 
of C12 at plane 2 in the ECT sensor. The peak 
corresponds to the degree of similarity between the 
two capacitances. This model specifically considers 
Annular, Plug, and Slug flow regimes due to their 
dynamic flow characteristics. The distance between 
the two planes mounted on the rig is 0.187 m. The 
flow velocity is calculated by dividing this distance 
by the lag time, where each lag time is 10ms. 
 
5.3 Volume Ratio Estimation 
The volume ratio for each phase is estimated by 
considering two differential pressure data from 
PDT120 and PDT121, and the inlet air flow rate data 
from FT131 as inputs to the regression model. The 
inverse volume ratio data obtained from ECT 
experiments is considered the model training targets, 
as explained in Fig. 10. 
 

 
 

Figure 10: Model for volume ratio estimation with two 
pressures  and flow measurement as inputs.  

 
FNN is used as a volume ratio estimation algorithm. 
The trained FNN model features a single hidden 
layer containing 10 neurons.  
 
6. Results 
6.1 Flow Regime Identification 
Using the model illustrated in Fig. 8, the flow regime 
classification neural network examines a total of 
135000 samples with an evenly distributed array of 
flow regimes. For training and testing of the FNN 
model, these samples are divided into training, 
validation, and testing datasets in a 70:15:15 ratio. 
The hidden layer in the FNN employs a tansig 
activation function. The performance of the neural 
network, as seen in Fig. 11, indicates an overall 
accuracy of 96.5%. 
KNN, SVM and DT algorithms are utilized for 
training flow regime classification models. Half of 
the data is reserved for validation purposes. Tab. 3 
presents the overall validation accuracy achieved by 
these algorithms in classifying flow regimes. 
KNN gives the highest accuracy, while SVM has the 
lowest accuracy among the three. The confusion 
matrix of KNN is shown in Fig. 12. This model will 
perform well when the flow is in the region of the 
training data as per Fig. 5. The data from transition 
zones of the flow regime matrix was not used to train 
this model. 
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Figure 11: Performance of the FNN model for flow 

regime classification with 28 normalized capacitances as 
inputs and flow regime (1-Stratified, 2-Wavy, 3-Annular, 

4-Plug, 5-Slug) as output. 

 
Table 3: Comparison of accuracy from various flow 
regime identification models using 28 normalized 
capacitances as inputs and flow regime as output 

ML algorithms Overall accuracy (%) 
KNN (Fine) 98.7 
DT (Fine) 96.6 

SVM (Linear) 94.7 
 
 

 
Figure 12: Confusion Matrix of KNN (Validation) for 

flow regime identification with 28 normalized 
capacitances as inputs and flow regime as output. The 

corresponding sample amounts are represented by 
percentages and detailed in the parentheses below. 

 

 

In the sensor fusion-based model, illustrated in Fig. 
9, pressure and differential pressure meter signals 
merge with normalized capacitances to serve as 
features/inputs. Training of the models continues to 
use KNN, SVM, and DT algorithms. However, due 
to differing data sampling frequencies (PDT and PT 
sampled at 20 Hz, while ECT at 100 frames per 
second per plane), the total sample count is reduced 
for synchronization. The overall validation accuracy 
from these algorithms to classify flow regimes is 
given in Tab. 4. 
 

Table 4: Comparison of accuracies achieved with  
various algorithms for flow regime identification using 

28 normalized capacitances and the three pressure signals 
as inputs and flow regime as output 

ML algorithms Overall accuracy (%) 
KNN (Fine) 98.6 
DT (Fine) 98.6 

SVM (Linear) 99 
 

SVM gives the highest accuracy. The confusion 
matrix of SVM is shown in Fig. 13. 
 

 
Figure 13: Confusion Matrix of SVM (Validation) for 

flow regime identification with 28 normalized 
capacitances and 3 pressure signals as inputs and flow 

regime as output. The corresponding sample amounts are 
represented by percentages and detailed in the 

parentheses below. 

6.2. Flow Velocity Estimation 
The results of estimating flow velocity are presented 
in the subsequent subsections, featuring two cases 
for each flow regime: annular, plug and slug.  

6.2.1. Annular 
 Case 1: Water - 2 kg/min, Air – 4 kg/min 

Higher lags are disregarded as they likely arise from 
random fluctuations. Thus, from Tab. 5, there are 10 
of found lags that are disregarded as seen marked by 
the orange-colored rectangles. Therefore, the 
domain cross-correlation lags for the remaining 
capacitances are at around -13, ignoring the “0” lags.   
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8 lags are corresponding to approximately 120 to 
130ms time. Therefore, the flow velocity is 
estimated to be 0.187/0.13 = 1.43 m/s for this 
experiment.  

Table 5: Cross-correlation for Water - 2 kg/min, Air – 4 
kg/min (Disregarded lags marked by the orange-colored 

rectangles)

 

 Case 2: Water - 2 kg/min, Air – 5 kg/min 
Higher lags are disregarded as they likely arise from 
random fluctuations. Thus, from Tab. 6, there are 9 
of found lags that are disregarded. Therefore, the 
domain cross-correlation lags for the remaining 
capacitances are at around -10, ignoring the “0,-1” 
lags.   10 lags are corresponding to approximately 60 
to 100ms time. Therefore, the flow velocity is 
estimated to be 0.187/0.09 = 2.07 m/s for this 
experiment. 

Table 6: Cross-correlation for Water - 2 kg/min, Air – 5 
kg/min

 

6.2.2. Plug 
 Case 1: Water - 76 kg/min, Air – 0.11 kg/min 

Tab. 7 suggests the domain cross-correlation lags for 
the capacitances are at around -12. 28 lags are 
corresponding to approximately 100 to 130ms time. 
Hence, this experiment estimates a flow velocity of 
0.187/0.12 = 1.55 m/s for this experiment.  

 

 

 

Table 7: Cross-correlation for Water - 76 kg/min, Air – 
0.11 kg/min 

 

 Case 2: Water - 77 kg/min, Air – 0.07 kg/min 

As seen in Tab. 8, the domain cross-correlation lags 
for the capacitances are at around -13, ignoring the 
“0, -1,-2,-3” lags.   23 lags are corresponding to 
approximately 100 to 150ms time. This yields a 
calculated flow velocity of  0.187/0.13 = 1.43 m/s. 

 
Table 8: Cross-correlation for Water - 77 kg/min, Air – 

0.07 kg/min

 

6.2.3. Slug 
 Case 1: Water - 75 kg/min, Air – 0.3 kg/min 

Tab. 9 suggests the domain cross-correlation lags for 
the capacitances are at around -6. 28 lags are 
corresponding to approximately 50 to 70ms time. 
Therefore, the flow velocity is estimated to be 
0.187/0.06 = 3.11 m/s for this experiment.  

Table 9: Lags based on  peaks of cross-correlation for 
Water - 75 kg/min, Air – 0.3 kg/min
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 Case 2: Water - 77 kg/min, Air – 0.5 kg/min 
 
Tab. 11 suggests the domain cross-correlation lags 
for the capacitances are at around -4. 28 lags are 
corresponding to approximately 30 to 50ms time. 
Hence, this experiment's flow velocity is estimated 
as 0.187/0.04 = 4.67 m/s.  
 
The average flow velocities for three flow regimes 
are shown in Tab. 10. The average flow velocity of 
Slug regime is in the expected region. A pattern can 
be seen with the flow velocity increasing as the flow 
changes from complex flow regimes of Plug to Slug. 
 
Table 10: Average flow velocity from cross-correlation 

technique on dual-plane ECT 
Flow Regime Average Flow Velocity (m/s) 

Annular 1.43 to 1.87 
Plug 1.24 to 1.43 
Slug 2.67 to 3.74 

 
 
6.3 Volume Ratio Estimation 
In the volume ratio estimation FNN model, a total of 
1350 samples are used for training and testing. 
These samples are partitioned into training, 
validation, and testing datasets with a 70:15:15 ratio. 
The activation function in the hidden layer is tansig, 
and in the output layer is linear. The model's 
performance, shown in Fig. 14, achieves an R-value 
of 0.95 for the test dataset, with an overall R-value 
also standing at 0.95. Some of the outputs are far 
from the target since the regression model is not 
perfect and has an R2 value of 0.9. This model can 
be used to estimate the volume ratio in the pipe with 
good confidence. 
 
Table 11: Cross-correlation for Water - 77 kg/min, Air – 

0.5 kg/min 

 
 

 
Figure 14: Performance of volume ratio estimation model 

with PDT120, PDT121 and FT131 as inputs and 
1/Volume Ratio from ECT as output 

 
7. Summary and Discussions 
The data-driven multiphase flow metering models 
developed, capable of classifying flow regimes and 
estimating phase fractions and velocities for two-
phase air/water flow, are developed after collecting 
ECT data from the horizontal flow rig located at 
USN.  
The flow regime classification model, using ECT, 
achieved an accuracy surpassing 94%. Additionally, 
a sensor fusion model integrating ECT and pressure 
sensor data for flow regime classification exceeded 
98% accuracy. For annular, plug and slug regimes, 
flow velocity was estimated using cross-correlation. 
The volume ratio estimation neural network model 
attained an R-value greater than 0.95. 
This paper demonstrates the feasibility of 
multiphase flow metering through the use of ECT 
and pressure sensor data. As depicted in Fig. 15, the 
data acquired from these sensors can be directly 
channelled into dedicated ML algorithms to provide 
insights into multiphase flow in pipeline. This 
approach facilitates the monitoring and control of 
processes involving multiphase flow with real time 
processing of process data on premises or in the 
enterprise cloud. 
 

 
Figure 15: An algorithm for actuator control using a data-

driven ML metering model. 
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Applying ML algorithms to time-series data from 
these sensors eliminates the necessity for complex 
mathematical time-series and image-processing 
methods.  
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Abstract 
Oil recovery can be enhanced by maximizing the well-reservoir contact using long horizontal wells. One of the 
main challenges of using such wells is the early breakthrough of unwanted fluids due to the heel-toe effect and 
heterogeneity along the well. To tackle this problem, advanced wells are widely applied today. The successful 
design of such wells requires an accurate integrated dynamic model of the well and reservoir. This paper aims at 
developing appropriate integrated well-reservoir models for achieving optimal long-term oil recovery from 
advanced well models.  
In this study, OLGA® which is a dynamic multiphase flow simulator is implicitly coupled to ECLIPSETM which 
is a dynamic reservoir simulator for developing accurate models to simulate oil production from advanced wells 
under various production/injection strategies. A realistic heterogeneous light oil reservoir with an advanced 
horizontal well is used as a case study. Flow Control Devices (FCDs) are the key component of advanced wells 
and the functionality of the main types of FCDs in improving the oil production, minimizing the cost and carbon 
footprint is investigated.  
According to the obtained results, by implementation of FCDs the water breakthrough time is delayed by 180 
days and the cumulative water production with ICD, AICD, and AICV completions is reduced by 26.8%, 33.1%, 
and 49.1%, respectively, compared to the open-hole case. Besides, the results show that linking OLGA and 
ECLIPSE is a numerically stable and accurate approach for modeling the interaction between the dynamic 
reservoir and dynamic well behavior for simulation oil recovery from advanced wells.  
Keywords: Advanced well, ICD, AICD, AICV, OLGA-ECLIPSE coupling 
 
1. Introduction 
The DNV Energy Transition Outlook 2022 projects 
that oil, and gas will still fulfill 39% of the world's 
energy needs in 2050 (DNV, 2022). Therefore, in an 
energy transition period, improving the efficiency of 
the oil recovery methods is important for several 
reasons. The improved efficiency of the oil recovery 
methods can lead to cost savings. Moreover, 
enhancing the oil recovery methods is important to 
maximize the amount of oil that can be extracted 
from existing fields so that the resources can be 
utilized as efficiently as possible (Aakre et al., 
2013). 
To maximize the oil production and recovery, it is 
important to obtain maximum reservoir contact and 
to prevent the negative effects of early gas or water 
breakthroughs. Long horizontal wells can be used to 
achieve this goal (Aakre et al., 2013).. However, 
there are some challenges associated with horizontal 
wells, such as early gas/water breakthrough, caused 
by the water coning effect towards the heel due to 
the heel-toe effect and heterogeneity along the 
horizontal well (Moradi et al., 2020). To address this 
issue, inflow control technologies like passive 

inflow control devices (ICDs), autonomous inflow 
control devices (AICDs), and autonomous inflow 
control valves (AICVs) are widely used in oil well 
completion ( Birchenko et al., 2010; Aakre et al., 
2013).  
ICDs can balance the drawdown pressure along the 
horizontal well, thus preventing an early water 
breakthrough, but they cannot choke the water once 
it eventually enters the well. The use of AICDs will 
provide both a delay in the early water breakthrough 
as well as the possibility of partially choking back 
water or gas automatically after the breakthrough. 
AICVs are designed to delay the early breakthrough 
behaving like AICD until the breakthrough and they 
can almost completely choke back water or gas 
autonomously after the breakthrough. 
Consequently, applying inflow control technologies 
in horizontal well completions and using Enhanced 
Oil Recovery (EOR)/Improved Oil Recovery (IOR) 
technologies would have significant potential to 
extract non-recoverable oil resources cost-
effectively (Mathiesen et al., 2011; Moradi et al., 
2020; Moradi et al., 2022; Moradi, Moldestad and 
Kumara, 2023). 

mailto:anuththaragr@gmail.com
mailto:ali.moradi@usn.no
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Before implementing new technologies in an 
existing reservoir, conducting oil production 
simulations is standard practice. OLGA is a dynamic 
multiphase flow simulator for production wells and 
ROCX and ECLIPSE are reservoir simulation tools. 
By coupling OLGA with ROCX or ECLIPSE, multi-
phase flow behavior in the total oil production can 
be simulated (Moradi et al., 2022; Moradi, 
Moldestad and Kumara, 2023). The ROCX software 
is unable to simulate reservoirs with IOR methods 
such as water flooding while ECLIPSE does offer 
this capability. ROCX simulations also tend to have 
relatively longer computation times compared to 
ECLIPSE. Moreover, ROCX can be used to model 
near-wellbore reservoir, but ECLIPSE has the 
facility to model the full reservoir (Schlumberger, 
2020). Many studies have focused on linking ROCX 
to OLGA due to the limited specifications required. 
However, there is a research gap when it comes to 
the coupling of ECLIPSE and OLGA for simulation 
of oil production through advanced wells. This paper 
aims to provide more insight into the simulation of 
oil recovery from advanced wells by developing 
transient fully coupled well-reservoir models using 
OLGA and ECLIPSE. 
 
2. Inflow control technologies 
Horizontal wells often face issues like water and gas 
coning, as well as early water breakthroughs due to 
reservoir heterogeneity and the heel-toe effect. To 
address these challenges, passive and autonomous 
inflow control technologies have been introduced. 
By implementing these technologies in horizontal 
wells, balanced drainage can be achieved, leading to 
increased oil production and improved recovery 
rates.  
 
2.1. Passive inflow control devices (ICD) 
ICD limiting the flow by creating an additional 
pressure drop to achieve an evenly distributed flow 
profile along a horizontal well as shown in Fig. 1. 
This pressure drop is a function of the liquid flow 
rate, the density of the fluid, and the viscosity of the 
fluid, though the viscosity plays a less important 
role.  

 
Figure 1: Orifice(nozzle) type ICD (Birchenko, Muradov 

and Davies, 2010). 
 

As a result of an even production rate along the well, 
water/gas breakthrough could be delayed 
significantly. Specifically, ICDs are designed to 

apply a specific differential pressure at a specified 
flow rate through the device. The main disadvantage 
of passive ICDs is that they cannot choke back the 
water after the breakthrough. In this situation, the 
whole well is choked in order to prevent the increase 
of the water cut, greater than the capacity of the 
separation facilities, which in turn results in a 
reduction in oil production (Moradi and Moldestad, 
2020). This study uses the orifice (nozzle) type 
ICDs. The orifice type ICDs create a resistance 
when the fluid tries to enter the well, by forcing the 
flow through a set of small-diameter nozzles or 
orifices. The governing equation of the nozzle-type 
ICD, derived by Bernoulli's equation, is as follows 
(Moradi and Moldestad, 2020): 

�̇�𝑄 = 𝐶𝐶𝐷𝐷𝐴𝐴�
1

1 − 𝛽𝛽4
∙ �

2∆𝑃𝑃
𝜌𝜌

(1) 

where �̇�𝑄 is the volume flow rate of the fluid passing 
through the ICD, ∆𝑃𝑃 is the pressure drop over the 
ICD and, 𝜌𝜌 is the fluid density and 𝛽𝛽 = 𝑑𝑑/𝐷𝐷 (where 
𝑑𝑑 and 𝐷𝐷 are the diameters of the orifice and 
production tubing respectively). 𝐶𝐶𝐷𝐷 is the discharge 
coefficient and it is calculated as; 𝐶𝐶𝐷𝐷 = 𝐴𝐴𝜈𝜈𝜈𝜈/𝐴𝐴. Here, 
𝐴𝐴𝜈𝜈𝜈𝜈 is the minimum jet area just downstream of the 
orifice called Vena Contracta. 
 
2.2. Autonomous inflow control devices (AICD) 
To address the limitations of ICDs, that cannot 
control the water and gas production after 
breakthrough, AICDs were developed. The AICDs 
can function as an ICD until a breakthrough occurs, 
and then automatically control and reduce the water 
and gas production. The AICD combines passive 
inflow control with an active control element to 
produce a pressure drop to autonomously restrict the 
flow of the unwanted fluid with no need for surface 
control. 

 
Figure 2: Schematic diagram of Statoil's RCP valve 

(Mathiesen, Aakre and Werswick, 2011). 

Among the various designs of AICDs, the most 
widely used type is known as Rate Control 
Production (RCP), developed by Statoil and this 
study used RCP valves as the AICDs. As shown in 
Fig. 2, the RCP valve consists of 3 parts, a free-
floating disc, an inner seat, and an outer seat. When 
the valve is in operation, the force acting on the disc 
is the sum of the pressure forces acting on both sides 
of the disc. The working method is based on 
Bernoulli’s principle. When more viscous fluids 
flow through a valve, friction loss increases and the 
pressure recovery of the dynamic pressure 
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decreases. As a result, the pressure on the outlet side 
of the valve (top side of the disc in Fig. 2), decreases, 
leading to a reduced force on the disc towards the 
inlet. This causes the disc to move away from the 
inlet, thereby increasing the flow area available, and 
boosting the flow rate of the high viscous fluid. This 
works vice versa for low viscous fluids like water 
and gas, resulting in autonomously reduced 
production of unwanted fluids. Statoil developed a 
governing equation for the differential pressure 
across the RCP valve, 𝛿𝛿𝑃𝑃 and it validated with 
experimental data, which is: 

𝛿𝛿𝑃𝑃 = 𝑓𝑓(𝜌𝜌, 𝜇𝜇) ∙ 𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷 ∙ 𝑞𝑞𝑥𝑥 (2) 
Where, 𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷  and 𝑥𝑥 are user input model constants, 
which depend on different RCP designs for different 
oil fields and their fluid properties. The function 
𝑓𝑓(𝜌𝜌, 𝜇𝜇) is an analytic function of the fluid mixture 
density 𝜌𝜌 and viscosity 𝜇𝜇, defined as: 

𝑓𝑓(𝜌𝜌, 𝜇𝜇) = �
𝜌𝜌𝑚𝑚𝑚𝑚𝑥𝑥2

𝜌𝜌𝜈𝜈𝑐𝑐𝑐𝑐
� ∙ �

𝜇𝜇𝜈𝜈𝑐𝑐𝑐𝑐
𝜇𝜇𝑚𝑚𝑚𝑚𝑥𝑥

�
𝑦𝑦

(3) 

Here, 𝑦𝑦 is a user-defined constant, 𝜌𝜌𝜈𝜈𝑐𝑐𝑐𝑐 and 𝜌𝜌𝑚𝑚𝑚𝑚𝑥𝑥 are 
calibration and mixture density and 𝜇𝜇𝜈𝜈𝑐𝑐𝑐𝑐  and 𝜇𝜇𝑚𝑚𝑚𝑚𝑥𝑥 
are calibration and mixture viscosity, and they can 
be defined as follows, while 𝛼𝛼 is the volume fraction 
of each phase: 
𝜌𝜌𝑚𝑚𝑚𝑚𝑥𝑥 = 𝛼𝛼𝑜𝑜𝑚𝑚𝑐𝑐  𝜌𝜌𝑜𝑜𝑚𝑚𝑐𝑐 + 𝛼𝛼𝑤𝑤𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤  𝜌𝜌𝑤𝑤𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤 + 𝛼𝛼𝑔𝑔𝑐𝑐𝑔𝑔 𝜌𝜌𝑔𝑔𝑐𝑐𝑔𝑔 (4) 
𝜇𝜇𝑚𝑚𝑚𝑚𝑥𝑥 = 𝛼𝛼𝑜𝑜𝑚𝑚𝑐𝑐  𝜇𝜇𝑜𝑜𝑚𝑚𝑐𝑐 + 𝛼𝛼𝑤𝑤𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤  𝜇𝜇𝑤𝑤𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤 + 𝛼𝛼𝑔𝑔𝑐𝑐𝑔𝑔 𝜇𝜇𝑔𝑔𝑐𝑐𝑔𝑔 (5) 

 
2.3. Autonomous inflow control valves (AICV) 
AICV is a new type of inflow control device 
developed by InflowControl AS, and it can equalize 
the inflow before the breakthrough like AICD. As 
opposed to AICDs, which can partially close against 
unwanted fluids, AICVs can almost completely 
choke low-viscosity fluid, such as water or gas. 
 

 
Figure 3: Simplified sketch of the flow paths in AICV 
and pressure changes inside for different fluids (Aakre, 

Mathiesen and Moldestad, 2018). 
 
AICVs are fully self-regulating and do not rely on 
any external control systems and are designed to 
achieve the autonomous functionality by 
distinguishing between fluids based on their density 
and viscosity. The fundamental theory behind the 
AICV operation is the difference between the 
pressure drop in a laminar flow restrictor and a 

turbulent flow restrictor shown in Fig. 3. The 
laminar flow restrictor is like a pipe segment, and 
pressure drop across a laminar flow 
restrictor  Δ𝑃𝑃𝐿𝐿𝑐𝑐𝑚𝑚𝑚𝑚𝐿𝐿𝑐𝑐𝑤𝑤  can be expressed, as a relation 
of fluid viscosity 𝜇𝜇, velocity 𝜈𝜈, pipe length 𝐿𝐿 and 
pipe diameter 𝐷𝐷 (Aakre et al., 2013). 

Δ𝑃𝑃𝐿𝐿𝑐𝑐𝑚𝑚𝑚𝑚𝐿𝐿𝑐𝑐𝑤𝑤 =
32 ⋅ 𝜇𝜇 ∙ 𝜌𝜌 ∙ 𝜈𝜈 ∙ 𝐿𝐿

𝐷𝐷2 (6) 

The turbulent flow restrictor can be considered as an 
orifice plate, and the pressure drop across the 
turbulent flow restrictor  Δ𝑃𝑃𝑇𝑇𝑇𝑇𝑤𝑤𝑇𝑇𝑇𝑇𝑐𝑐𝑤𝑤𝐿𝐿𝑤𝑤 can be 
expressed as a relation of fluid density 𝜌𝜌, velocity 𝜈𝜈, 
and geometric contact 𝐾𝐾 (Aakre et al., 2013). 

Δ𝑃𝑃𝑇𝑇𝑇𝑇𝑤𝑤𝑇𝑇𝑇𝑇𝑐𝑐𝑤𝑤𝐿𝐿𝑤𝑤 = 𝐾𝐾 ∙
1
2
∙ 𝜌𝜌 ∙ 𝜈𝜈2 (7) 

According to these relationships, Δ𝑃𝑃𝐿𝐿𝑐𝑐𝑚𝑚𝑚𝑚𝐿𝐿𝑐𝑐𝑤𝑤  depends 
on the viscosity the fluid, while Δ𝑃𝑃𝑇𝑇𝑇𝑇𝑤𝑤𝑇𝑇𝑇𝑇𝑐𝑐𝑤𝑤𝐿𝐿𝑤𝑤  depends 
on the density of the fluid. When a viscous fluid such 
as oil passes through a laminar flow restrictor, it 
experiences a greater pressure drop than fluids with 
a low viscosity such as water and gas. A low-
viscosity fluid, on the other hand, experiences a 
lesser pressure drop across the laminar flow 
restrictor, resulting in a higher pressure in chamber 
'B' (P2) in Fig. 3. Due to the high pressure, a piston 
in chamber 'B' will be actuated, closing the valve. 
AICVs are designed based on these principles to 
remain fully open for oil while almost completely 
closed to prevent the flow of unwanted fluids. 
 
3. Multi-segment well model (MSW) 
The Multi-Segment Well model is a special 
extension available in ECLIPSE that offers 
comprehensive and accurate modeling facilities for 
the fluid behavior in advanced wells. There is a 
complex relationship between pressure gradients 
and changes in fluid composition induced by 
specific components of advanced wells. The MSW 
can be used to model this behavior. This model 
divides the production tubing into several one-
dimensional segments. There is a node and a flow 
path, and each segment contains its own set of 
independent variables to describe the fluid 
conditions in that region. The variables for each 
segment are evaluated by solving material balance 
equations for each phase or component, and using 
the pressure drop equation that incorporates local 
hydrostatic, frictional, and acceleration pressure 
gradients (Schlumberger, 2020; Moradi et al., 2022; 
Moradi, Moldestad and Kumara, 2023). 
 
4. Development of the OLGA/ECLIPSE model 
OLGA serves as a dynamic multiphase flow 
simulator for the production well, while ECLIPSE 
functions as a reservoir simulator that can be 
integrated with OLGA as a plug-in. The 
combination of OLGA and ECLIPSE provides a tool 
for modeling and simulating multiphase flow from 
the reservoir pore to the production pipeline. 
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4. 1. Development of the reservoir model in 
ECLIPSE 
 
4.1.1. Grid 
The dimensions of the synthetically designed 
reservoir using MRST are mentioned in Tab. 1. 
  

Table 1: Dimensions of the reservoir. 
Dimension Value 

Length of the reservoir (x) 1500m 
Width of the reservoir (y) 500m 
Height of the reservoir (z) 50m 

 
The horizontal oil production well is positioned in 
the x-direction of the reservoir (length), 5 m below 
the top of the reservoir. For improved oil recovery, 
a horizontal water injection well with 20 
perforations is used and it is positioned in the x-
direction, 45 m below the top of the reservoir. 
 

Table 2: Number of cells and their sizes in the grid. 

Direction Number of 
cells Size of the cells 

x nx = 30 50 m (constant) 
y ny = 10 50 m (constant) 
z nz = 5 10 m (constant) 

 
Generally, FCDs are installed with a sand screen and 
the length of one production joint is 12.4 m of the 
well. Since the reservoir length (x-direction) is 1500 
m, 120 FCDs can be placed along the well. 
However, it is complex to simulate the real well with 
a huge number of FCDs as it consumes a long 
simulation time. Therefore, one equivalent FCD is 
used to represent 4 real FCDs. Thus, 30 cells are 
considered in x-direction and 30 FCDs are used 
along the well. In y and z-directions, 10 and 5 cells 
are considered respectively. The grid settings in 
ECLIPSE, including the number of cells in each 
direction and their sizes are given in Tab. 2. The 3D 
view of the reservoir and wells completed with 
FCDs is given in Fig. 4. 

 
Figure 4: 3D view of the reservoir with wells. 

 
4.1.2. The fluid and rock properties of the reservoir 
It is assumed that the synthetically designed 
reservoir has conditions similar to the Troll field in 
the North Sea, containing a viscous oil with a 

viscosity of 2.7 cP. Therefore, the reservoir fluid can 
be considered as black oil type (oil viscosity is 2 to 
3 – 100 and up). Reservoir fluid properties and some 
rock properties used for the OLGA/ECLIPSE model 
are listed in Tab. 3. 
 

Table 3: Fluid and rock properties of the reservoir. 
Property Value 

Oil density 950 kg/m3 
Oil viscosity 2.7 cP 

Water density 1100 kg/m3 
Gas density 0.67 kg/m3 

Solution GOR 50 Sm3/Sm3 
Porosity 0.15-0.27 

Initial water saturation 0.12 
Reservoir pressure 130 bara 

Reservoir temperature 68 0C 
 
4.1.3. Relative permeability 
The reservoir is considered as a heterogeneous 
sandstone reservoir. In this study, the log-normal 
absolute permeability of the reservoir is assumed in 
the range 100 - 800 mD s to account for the 
uncertainty in the reservoir. 

 
Figure 5: Generated relative permeability values. 

The generalized Corey model can be used to 
calculate the relative permeabilities of oil and water 
using the ECLIPSE software, and the generated 
relative permeability values are plotted in Fig. 5 
where, krw and kro are the relative permeabilities of 
water and oil respectively.  
 
4.1.3. Initial and boundary conditions 
The reservoir model in ECLIPSE assumes an initial 
oil saturation of 0.88, water saturation of 0.12, and 
no gas saturation. The production well is regulated 
with a constant Bottom Hole Pressure (BHP) of 115 
bar. With a mean porosity of 0.21, the total void 
volume of the reservoir is calculated as 7875000 m3. 
For 1500 days in operation, approximately two-
thirds of the reservoir liquid is expected to be 
produced. Therefore, the required water injection 
flow rate by a single injection well is estimated to be 
3500 m3/day. However, this flow rate cannot be 
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applied due to the industry's maximum allowable 
injection pressure limitation of 180 bar. Therefore, it 
was decided to inject water through 20 similar 
perforations in the horizontal water injection well, 
each one with a water flow rate of 175 m3/day. 
Furthermore, in practical oil and gas production, the 
total liquid production from a well can be limited by 
the maximum capacity of the surface facilities. In 
the study, for the open-hole case model, the 
maximum liquid production rate is set to 2400 
m3/day.  
4.2. Development of well model in OLGA 
In the OLGA model, production well consists of two 
parts: wellbore, and production tubing. It is specified 
as both pipes are made with the same material 
combination, where the internal pipe is made of 9 
mm thickness of API 5L Grade B carbon steel and 
other layers consist of two 2 cm concrete layers as 
shown in Fig. 6.  
 

 
Figure 6: Material structure of wellbore and production 

tubing. 
 

4.2.1. Tables and curves 
By performing non-linear curve fitting for 
experimental data, the relationship of the 
autonomous functions of AICD/AICV with respect 
to the Water Cut (WC) can be determined (Moradi 
et al., 2022; Moradi, Tavakolifaradonbe and 
Moldestad, 2022).  
 

 
Figure 7: AICD and AICV choking valves for oil 

viscosity 2.7 cP for 15 bar pressure drop. 

 
These autonomous functions of FCDs are 
implemented in the OLGA models, based on the 
pressure drawdown, 15 bar in this case, by 
employing a table controller and a transmitter for 
each FCD.  
This table controller gets the measured WC data 
from the transmitter and provides corresponding 
control signals to partially close the FCDs for 
choking the fluid passing through them (Moradi et 
al., 2022). The generated valve opening values of 
AICD and AICV with respect to WC is plotted in 
Fig. 7. 
 
4.2.2. Flow component 
Fig. 8 shows the simplified sketch of one oil 
production zone in OLGA model.  
 

 
Figure 8: Simplified sketch for one oil production zone. 

 
The production zones are separated by packers to 
prevent reservoir fluid from flowing in between 
adjacent zones through annulus. The near-well 
source in the OLGA model is used to connect OLGA 
with ECLIPSE accordingly. Then the fluid enters the 
wellbore through section I after passing through the 
FCD in Fig. 10. The fluid that enters the wellbore 
passes to the production tubing via the leak in 
section II. This setup was proposed by Haarvard 
Aakre in 2012 and this method has been used for 
many research (Moradi and Moldestad, 2020).  
To develop the OLGA model, two flow paths are 
required for the wellbore and the production piping 
with a length of 1500 m for each. As the internals of 
wellbore and production tubing are made out of API 
5L Grade B carbon steel, absolute roughness is 
considered as 4.572 x 10-5 m for both pipes 
(NEELCONSTEEL, 2022). The diameter of the 
production tubing and wellbore are assumed as 
0.1397m and 0.2159m, respectively. It is assumed 
that oil is produced from 30 zones in the well, each 
of which contains two hypothetical sections as 
shown in Fig. 10.  The production well has 30 FCDs. 
Since one valve is equivalent to 4 real valves, the 
diameter of one valve (ICD/AICD/AICV) is 0.0042 
m considering the Discharge Coefficient (CD) as 
0.85. When the valves are not implemented in the 
horizontal well, it is called “open-hole” completion. 
which is in a fully open state. The open-hole 
diameter is set as 0.12 m considering CD as 0.85. 
Under the case conditions, it is set to run the model 
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for 1500 days with a minimum time step of 0.00001 
seconds and a maximum time step of 1000 seconds. 
To solve the mass equations, a first-order 
discretization scheme is selected. 
 
4.2.3. Boundary conditions 
Boundary conditions of the OLGA model are set as 
following Tab. 5. 

Table 5: Boundary conditions of the OLGA model. 
Flow path 

name 
Boundary 

Name 
Boundary Type in 

OLGA 
Wellbore Inlet Closed node 

 Outlet Closed node 
Production 

tubing Inlet Closed node 

 Outlet 
Pressure node, 

Pressure =115 bar, 
Temp. = 68˚C 

 
4. Results and discussion 
 
4.1. Results validation with multi-segment well 
(MSW) model 
Since the OLGA-ECLIPSE combination is a new 
approach, a result validation can be performed to 
prove its accuracy compared to other modeling and 
simulation methods. A case was considered for the 
oil recovery from an advanced horizontal well with 
AICD well completion followed by vertical water 
flooding. As shown in Fig. 9, the results obtained by 
the MSW model and the linked OLGA-ECLIPSE 
model, are overlapping and this implies that the 
effort on coupling OLGA-ECLIPSE has been 
successful. 
 

 
Figure 9: Results validation with MSW model. 

 
4.2. Oil production over water breakthrough 
When the oil is produced from a horizontal well, the 
phenomenon of water coning causes a decrease in 
the production efficiency. Over time, this leads to an 
early water breakthrough and a significant reduction 
in oil production. Typically, the overall oil 
production gradually increases until a breakthrough 
occurs. However, once the breakthrough happens, 
more and more water is pushed toward the well, 
which in turn suppresses and reduces the oil 
production. Separating water from the oil during 

production involves specialized equipment and 
processes, leading to increased costs. Additionally, 
the disposal of produced water poses challenges as 
it often requires treatment to meet environmental 
regulations. Therefore, delaying water 
breakthroughs and minimizing water production are 
crucial to achieve optimal production efficiency and 
cost reduction in the oil extraction process. 
Fig. 10 shows the observed results for the WC over 
time for different well completions. The open-hole 
breakthrough occurs on the 620th day of operation 
while it is on the 800th day for all the other advanced 
well completions. 
 

 
Figure 10: Water cut over the time for different FCD 

completions. 
 

The implementation of FCDs has significantly 
delayed the water breakthrough and significantly 
reduced the total water production over time as 
expected. This is beneficial for oil recovery with a 
minimum cost. Until the breakthrough both AICVs 
and AICDs have behaved like ICDs. After the 
breakthrough, their autonomous function choked the 
water considerably and AICVs show their ability to 
choke more water compared to AICDs. 
 
4.3. Accumulated oil and water production 
The simulation results for the accumulated oil and 
water production are given in Fig. 11. According to 
the results, compared to the open-hole case, the 
cumulative oil productions from ICD, AICD, and 
AICV completions have increased by 2.22%, 1.7%, 
and 0.2%, respectively, at the end of 1500 days of 
operation. Moreover, the cumulative water 
production of ICD, AICD, and AICV is 
considerably reduced by 26.8%, 33.1%, and 49.1%, 
respectively, compared to the open-hole case. This 
indicates that implementation of FCDs in horizontal 
wells has enhanced the oil recovery to some extent, 
in addition to the reduction of water production.  
Interestingly, the AICV completion has reduced 
water production by almost half (49.1%), due to the 
ability of completely choking of low viscous fluids.  
According to Fig.11, at the end of 1500 days of 
operation, the WC for AICD and AICV are 0.65 and 
0.7 respectively. At this time, based on the vale 
opening plot in Fig. 9, the value openings for AICD 
and AICV are 0.95 and 0.65 respectively. This 
implies that, when the WCs increase with time, the 
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more choking effects of AICDs and AICVs can be 
expected.  
Moreover, it can be noted that, according to the 
cumulative oil production, the open-hole case 
initially has a higher oil production compared to the 
other well completions. But, due to the early water 
breakthrough after 620 days (open-hole case), the 
water that enters the wellbore has suppressed the oil 
production, resulting in higher accumulated water 
production and lesser accumulated oil production at 
the end of the operation. 
 

 

 
Figure 11: Accumulated oil and water production for 

open-hole and for different FCD completions. 
 
4.4. Oil and water production rate 
The simulation results observed for oil and water 
production rates are given in Fig. 12. Considering 
the oil production rates, the open-hole completion 
initially has the maximum oil production rate (~2265 
Sm3/d) compared to other advanced wells, and that 
production rate lasts until the water breakthrough 
only. Although the other advanced well completions 

have a 5.61% lower oil production rate at the 
beginning, it lasts for a longer period since the water 
breakthrough is delayed in advanced wells. But at 
the end of 1500 days of operation, the OPENHOLE 
case has achieved the lowest oil production rate as it 
does not have control over the water production after 
the breakthrough. And the open-hole case has also 
the highest water production rate from the 
beginning. It is generally undesirable to have a high 
total liquid flow rate. This is because there is then a 
need for larger surface production facilities to 
handle the increased liquid volume and higher costs 
associated with water separation. Ultimately, this 
situation leads to reduced revenue.  
 

 

 
Figure 12: Volumetric oil production rates for open-hole 

and for different FCD completions. 
 
Considering volumetric flow rates at the end of 1500 
days, the ICD, AICD, and AICV completions have 
achieved 16%, 12.1%, and 1.3% increments in the 
oil production compared to the open-hole case. But 
end water production rates of ICD, AICD, and AICV 
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completions have reduced by 6.2%, 15%, and 39.8% 
compared to the open-hole case. It appears that 
despite advanced well completions having a small 
impact on oil production rates because of the total 
liquid production limit, advanced wells can 
significantly reduce the water production by 
improving the oil production process in a cost-
effective manner. 
 
5. Conclusion 
To achieve cost-effective oil production, it is 
important to address the problem of early water 
breakthrough in horizontal wells. Implementation of 
ICDs, AICDs, and AICVs evens out the inflows 
along the well and delays the water breakthrough. 
The AICDs and AICVs show similar behavior to 
ICDs before the breakthrough. Advanced wells 
equipped with FCD completions result in a 
significant decrease in the production of water after 
the breakthrough and with a little increase of 
accumulative oil production compared to the open-
hole completion, while AICVs show the best 
performance in choking water. 
The autonomous function of AICD and AICV can 
be clearly seen if the WC exceeds around 0.9. But 
the oil production should last longer than 1500 days 
in order to achieve a higher WC. Therefore, it is 
recommended to extend the simulation period to 
observe the true impact of utilizing advanced well 
technologies for achieving more efficient oil 
production processes. Realistic results obtained 
from the simulations in this study indicate that the 
coupling of the well simulator OLGA and reservoir 
simulator has been a successful effort in simulating 
total oil production and this combination can be 
further applied to more advanced scenarios to 
compare its effectiveness with other oil production 
simulators. 
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Abstract 

 
This paper explores the use of 3D simulation software for visualizing industrial production processes and its potential to 

enhance decision-making for improved production efficiency, quality, and profitability. Industrial production processes are 

complex and involve many variables and factors that can interact in unpredictable ways. Visualization helps to simplify these 

complex interactions, identify patterns and relationships, and enable more informed decision-making.  

The research question that guides this paper is: How can the use of 3D simulation software for visualization of industrial 

production processes improve decision-making and optimize production efficiency, quality, and profitability? This paper will 

investigate the benefits and challenges of using 3D simulation software for visualizing industrial production processes, 

including the ability to identify bottlenecks, and optimize the production process. Further, the paper examines the role of 

visualization in enabling more informed decision-making, including the ability to analyze production data and make data-

driven decisions. To illustrate this, an industrial automation case study consisting of a manufacturing industry modelled in a 

3D simulation software has been presented.  

The results of this 3D-simulation model provide insights into the advantages and disadvantages of utilizing 3D simulation 

software to visualize industrial manufacturing processes. The article further presents the significance of these findings for 

production managers, engineers, and decision-makers. Thus, the purpose of this study is to help readers understand how using 

3D simulation software for visualization of industrial production processes can improve decision-making and optimize 

production efficiency, quality, and profitability. 

Keywords: Industrial production processes, 3D simulation software, visualization, decision-making, production efficiency, 

industrial automation, data-driven decisions, manufacturing industry, optimization. 

 

1. Introduction 

 

Industrial production processes are central to the 

production of goods in the manufacturing industry. 

A series of activities involved in converting raw 

materials into finished goods using various 

equipment, tools, and machines are referred to as 

industrial production processes. Material handling, 

assembly, packaging, and quality control are 

examples of these processes. Optimizing industrial 

production processes is critical to achieving better 

production efficiency, quality, and profitability. This 

is because inefficient and suboptimal production 

processes can lead to bottlenecks, delays, and errors, 

which can result in increased costs, decreased 

quality, and reduced competitiveness (Xu et al., 

2021). To overcome these challenges, 

manufacturers are increasingly turning to 

technology to improve their production processes. 

3D simulation software is one such technology that 

has been gaining popularity in recent years, as it 

enables manufacturers to visualize and analyze their 

production processes in a virtual environment before 

implementing changes in the physical world (Abidi 

et al., 2020). 

 

Visualization is the use of graphical or pictorial 

representations to convey complex information in an 

intuitive and easily understandable way. In the 

context of industrial production processes, 

visualization help to simplify complex processes, 

make patterns and relationships more evident, and 

enable more informed decision-making (Wang et al., 

2015). In the context of industrial production 

processes, visualization helps to provide a clear 

understanding of the process flow, identify 

bottlenecks, simulate, and test different scenarios, 

and optimize resource allocation. Additionally, 

visualization can help decision-makers to 

understand the impact of different decisions on 

production processes and outcomes and choose the 

best course of action accordingly (Molenda et al., 

2019). 

 

In industrial production processes, there are often a 

large number of variables and factors to consider, 

such as machine parameters, production rates, and 

quality metrics (Xu et al., 2021). These factors can 

interact in complex ways, making it difficult to 

understand and optimize the production process 

(Molenda et al., 2019). Visualization can help to 

simplify these complex interactions by presenting 

the information in a way that is easier to understand 
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and analyze. Furthermore, visualization is used to 

identify patterns and relationships that may not be 

apparent from raw data. For example, by plotting 

machine performance over time, it may be possible 

to identify recurring issues that are impacting 

machine production efficiency (Atmakuri et al., 

1993). By presenting this information graphically, it 

is easier to identify patterns and make informed 

decisions about how to address the issues. 

 

Through displaying information in a way that is 

clear and accessible, visualization also aids in 

enabling more informed decision-making (Atmakuri 

et al., 1993). This can assist stakeholders in making 

more informed decisions by helping them 

understand the effects of various actions on 

production efficiency, quality, and profitability 

(Yang et al., 2021). Therefore, the topic of 

visualization of industrial production processes 

using 3D simulation software for enhanced decision-

making is important because it enables 

manufacturers to optimize their production 

processes, leading to better production efficiency, 

quality, and profitability. By visualizing production 

processes in 3D simulation software, manufacturers 

can identify bottlenecks, test different scenarios, and 

make data-driven decisions before implementing 

changes in the physical world. This can lead to 

reduced costs, improved quality, and increased 

competitiveness, all of which are critical factors for 

success in the manufacturing industry. Hence, the 

research question has been formulated as follows: 

 

How can the use of 3D simulation software for 

visualization of industrial production processes 

improve decision-making and optimize production 

efficiency? 

 

2. Methodology  

 

The problem addressed in this study is the need for 

enhanced decision-making in industrial production 

processes. Traditional methods of decision-making 

may lack comprehensive insights into the complex 

dynamics of production systems. Therefore, there is 

a growing interest in utilizing 3D simulation 

software to visualize industrial processes and 

improve decision-making capabilities. 

 

The purpose of this study is to explore the potential 

benefits of using 3D simulation software for 

visualizing industrial production processes and 

examine its impact on decision-making. By 

investigating this area, the study aims to provide 

valuable insights and practical recommendations for 

improving decision-making in industrial settings. 

Figure 1 illustrates the research methodology 

involved in the development of the simulation 

model. A comprehensive review of scholarly and 

research articles was conducted to gain insights into 

visualization techniques, simulation software, and 

decision-making methodologies. The review 

included a range of sources including scholarly 

articles, research papers, and industry reports to 

understand the current state of research in the field. 

Data collection for this study involved gathering 

relevant information from various sources. 

Keywords related to industrial production processes, 

visualization, and decision-making were used to 

identify peer-reviewed articles that contributed to 

the research area. These articles were carefully 

selected and analysed to extract valuable insights. 

 
 

Figure 1: Research Method 

 

The software Visual Components® has been utilized 

by the author to develop the 3D simulation model. 

The model represents an industrial production 

process consisting of injection moulding machines, 

series of conveyor belts, robots and a warehouse for 

storage. The model was developed based on the 

specific requirements and specifications of the case 

study and a dynamic representation of components 

flow has been visualized. The experiment design 

phase involved defining the simulation resources 

and parameters. Key variables, such as production 

volumes, cycle times, and system constraints, were 

determined to create a realistic simulation 

environment. The experimental design aimed to 

capture the complexities and dynamics of the 

industrial production process under study. The 

simulation model was executed to replicate the 

production operations. During the simulation run, 

process states, utilization rates, and performance 

metrics were recorded. This data provided valuable 

insights into the functioning of the production 

system and allowed for a detailed analysis of the 

simulation results. 

 

The collected data was analysed to answer the 

research question posed in the study. The analysis 

focused on evaluating the effectiveness of the 

visualization of industrial production processes 

using the 3D simulation software. Performance 

metrics, such as throughput, cycle times, and 

resource utilization, were examined to assess the 

impact of visualization on decision-making. The 

results were interpreted to draw conclusions and 

provide practical recommendations. Based on the 

analysis of the simulation results, conclusions were 

drawn regarding the effectiveness of using 3D 

simulation software for visualizing industrial 
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production processes and enhancing decision-

making. The study provides insights into the benefits 

and limitations of visualization techniques and 

offers recommendations for further improvements in 

decision-making practices within industrial settings. 

 

2.1. Simulation of Industrial Production 

Processes 

Industrial production processes are fundamental in 

the manufacturing industry, encompassing a series 

of stages and steps that convert raw materials or 

components into finished products (Molenda et al., 

2019). These processes involve crucial operations 

such as material handling, assembly, packing, and 

quality control (Chawla & Banerjee, 2001), which 

have been recognized as essential for simulating 

manufacturing processes. However, the complexity 

of these processes, often involving multiple 

interconnected systems and subsystems, presents 

challenges in comprehending and optimizing them 

effectively (Atmakuri et al., 1993). 

 

Optimizing industrial production processes holds 

immense value as it has the potential to improve 

various aspects, including production efficiency, 

product quality, and overall profitability (Yang et 

al., 2021). By identifying and addressing 

bottlenecks, minimizing waste, and maximizing 

throughput, optimization efforts can lead to 

significant cost savings, enhanced customer 

satisfaction, and increased competitiveness in the 

marketplace. However, achieving optimization in 

industrial production processes is not without its 

obstacles. Challenges such as demand variability, 

equipment breakdowns, and workforce availability 

can impede the optimization journey, necessitating 

the adoption of advanced technologies to overcome 

these hurdles (Chawla & Banerjee, 2001; Yang et 

al., 2021). In this context, the utilization of 3D 

simulation software and visualization techniques 

emerges as a powerful solution. These technologies 

enable a deeper understanding and effective 

management of industrial production processes by 

providing insights into complex interactions and 

facilitating informed decision-making. 3D 

simulation software allows for the creation of virtual 

environments where manufacturing procedures can 

be simulated, analyzed, and optimized (Chawla & 

Banerjee, 2001). By replicating real-world 

scenarios, these simulations enable manufacturers to 

test different scenarios, evaluate the impact of 

process changes, and identify potential areas for 

improvement. 

 

Visualization techniques, particularly in 3D, offer a 

more intuitive and comprehensive representation of 

the production processes. They surpass the 

limitations of traditional two-dimensional (2D) 

images by providing a richer visualization of spatial 

information and enabling real-time interaction 

(Molenda et al., 2019). By visualizing the processes 

in a virtual environment, decision-makers can better 

grasp the flow of materials, detect inefficiencies or 

bottlenecks, and make data-driven decisions to 

optimize the system. 

 

2.2. Building 3D Simulation Model 

 

The use of a 3D manufacturing simulation model 

provides a valuable tool for simulating and 

analyzing basic manufacturing procedures within a 

virtual environment. This technology leverages 3D 

visualization, which utilizes computer technology to 

depict real-world objects in a virtual space, 

surpassing the limitations of two-dimensional (2D) 

images in representing complex spatial information 

(Xu et al., 2021). By incorporating real-time 

interaction capabilities, the 3D visualization 

enhances the immersive experience and enables 

users to engage with the simulated environment 

effectively. The implementation and integration of a 

3D simulation model involve several important 

steps. Key considerations during this process 

include defining resource parameters, selecting 

appropriate equipment, establishing fundamental 

simulation logic, and incorporating relevant 

production data (Xu et al., 2021). These elements 

are crucial for creating an accurate and realistic 

representation of the manufacturing system within 

the simulation model. 

The resource parameters encompass various factors 

such as material properties, production capacities, 

and operating constraints. These parameters define 

the characteristics and capabilities of the resources 

involved in the manufacturing process, enabling the 

simulation model to accurately reflect their behavior 

and interactions (Chawla & Banerjee, 2001). The 

selection of equipment involves identifying and 

configuring the machinery, tools, and systems that 

are integral to the manufacturing process. By 

modelling these equipment components within the 

simulation, their functionalities and interactions can 

be evaluated and optimized (Wang et al., 2015). 

Fundamental simulation logic refers to the 

underlying principles and algorithms that govern the 

behavior and dynamics of the simulated 

manufacturing process. 

Creating a 3D simulation of an industrial production 

procedure entails multiple processes (Figure 2). 

First, describe the simulation's scope and objectives, 

outlining the precise goals to be attained. Next, 

collect relevant data about the manufacturing 

process and identify the components and processes 

that must be modelled. Choose a 3D simulation 

program that matches the project's criteria. Create 

the simulation model by combining the acquired 

data and modelling the manufacturing line's 
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components and procedures. This includes 

developing 3D models, setting material flow rules, 

and determining timing and sequencing. Validate 

and improve the simulation model by comparing it 

to real-world data and making necessary 

modifications. Analyze the simulation findings to 

find areas for improvement and to enhance decision-

making.

 
Figure 2: Building a 3D simulation model. 

 

2.3. Visualization Techniques for Simulation 

 

The use of virtual reality (VR), augmented reality 

(AR), and visual simulation technology allows to 

create a simulation model that can replicate real 

production scenarios in a safe environment (Xu et 

al., 2021). By inputting actual production data into 

the model, it is possible mimic on-site production in 

real-time. This technology helps us convert complex 

problems into more understandable ones (Xu et al., 

2021). Furthermore, the simulation model provides 

a visual representation of production or 

manufacturing processes using terminal equipment 

(Abidi et al., 2020). They have further presented 

that by analysing and optimizing data, refining the 

mathematical model; and a closed-loop control and 

monitoring system can be created. This means that it 

enables to continuously monitor and adjust the 

production process based on the information 

provided by the simulation model.  

A new strategy to generalizing the manipulation of 

industrial process simulation is explored (Abidi et 

al., 2020), where it is possible to visualize and 

engage with an industrial simulation model. It also 

enables industrial actors to visualize the operation of 

their factories which is based on virtual reality 

technology and behavioural programming of the 

production flow. 

Xu et al., (2021) in their research describe the 

frame of visualization application, where they show 

the entire process starting from Cyber Physical 

System (CPS) to formulating the visualization 

platform. Within this VR and AR have been utilized 

for visualizing the created simulation model for the 

purpose of scheduling optimization and real-time 

monitoring. This results in a 3D recreation of 

industrial processes that depicts the production 

process that cannot be seen in depth on the 3D 

simulation of the production site (Xu et al., 2021). 

2.4. Decision Making from simulation model. 

 

Effective decision-making is crucial in industrial 

production processes as the decisions made during 

production can significantly impact efficiency, 

quality, and profitability (Yang et al., 2021). It is 

essential to have a clear understanding of the 

production processes and the consequences of 

different decisions on the outcomes. This is where 

the utilization of 3D simulation software and 

visualization techniques proves valuable (Xu et al., 

2021). These tools enable manufacturers to create 

virtual representations of their production systems, 

visualizing the flow of materials, machines, and 

resources. Through simulation and visualization, 

decision-makers can assess different scenarios, 

identify potential issues, and make informed 

decisions before implementing changes in the 

physical world (Yang et al., 2021). 

Figure 3 presents a conceptual model for decision 

making which has been designed to capture an 

expert's knowledge using simple and understandable 

elements, without relying on complex artificial 

intelligence or process representation (Garcia-

Crespo et al., 2010). Instead, real-life situations 

have been focused, which occur during the 

execution of a manufacturing process, which 

consider facts (data), action (resources) and 

verification (checking the results from action are 

valid) through the process of making a decision.  

 

Figure 3: Decision Making Conceptual Model 

(Garcia-Crespo et al., 2010) 

The aspect of decision making becomes important 

once there is an access to the real-time data through 

the created simulation model. Furthermore, Garcia-

Crespo et al., (2010) in their research have 

presented this ontology for describing the 

automation of decision-making processes in the 

manufacturing process setting. In that, they have 

highlighted the importance of having a semantic 

representation of different manufacturing processes 

which further enable data representation strategy 

based on with the process of decision making is 

enabled. 
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3. Case Study 

 

This section presents a 3D simulation model as a 

case study to showcase the application in real-world 

situation. This section further highlights the process 

of decision making and finally presents the results 

from the simulated model. 

3.1. Case Description 

 

Simulation modelling is essential for streamlining 

manufacturing procedures and increasing overall 

productivity in the area of industrial automation. 

Industrial systems can be accurately modelled and 

analysed to find opportunities for improvement 

using cutting-edge 3D simulation software. This 

study presents a simulation model of an industrial 

automation case in a sector of manufacturing with a 

focus on plastic injection-moulded basket 

manufacturing. The purpose of this study is to 

demonstrate how decision-making may be improved 

in the context of industrial production processes by 

using visualization and simulation approaches. The 

simulation model depicts a comprehensive 

representation of the production shopfloor, 

showcasing various interconnected components and 

processes.  

 

 
 

Figure 4: 3D model of the production shopfloor 

 

Figure 4 provides an overview of the shopfloor, 

offering a visual representation of the industrial 

automation case. The simulated model consists of 

two injection moulding machines, which are 

coupled by a conveyor system. This conveyor 

system facilitates the seamless transfer of the 

manufactured items (plastic baskets), between the 

machines. Subsequently, the baskets undergo a 

visual inspection process to identify any poor-

quality elements. The conveyor system also enables 

the transportation of the approved baskets for further 

processing. To streamline the packing process, a 

robot is strategically placed between the two 

conveyor systems. This robot plays a vital role in 

efficiently packing the baskets into boxes. Once the 

baskets are securely placed in the boxes, they are 

seamlessly transferred to the palletization process. 

Here, another robot is responsible for picking up the 

boxes and organizing them on the pallets.  

The palletization process incorporates its own 

conveyor system, ensuring a smooth flow of 

operations. Within the palletization process, the 

plastic wrapping and pallet stacking procedures take 

place, further enhancing the stability and protection 

of the palletized goods. Once the pallets undergo the 

stacking process, a stacker crane is employed to 

hoist them and place them in the designated 

warehouse for storage. This ensures efficient 

utilization of space and ease of access when 

retrieving the pallets for distribution or subsequent 

production stages. Through the integration of 3D 

simulation software, this case study showcases the 

visualization of an industrial automation scenario in 

the manufacturing industry. The subsequent sections 

of this paper will delve into the benefits, challenges, 

and decision-making aspects associated with the 

visualization of this simulation model. 

 

 
 

Figure 5: Different zones in the production 

shopfloor 

 

The production shopfloor in the simulation model 

has been divided into four distinct zones: Zone 1, 

Zone 2, Zone 3, and Zone 4. Each zone encompasses 

specific functional procedures and components that 

contribute to the overall industrial production 

process. Figure 5 provides a visual representation of 

the layout and arrangement of these zones within the 

production shopfloor. The division of the production 

shopfloor into these zones and the incorporation of 

specific components and processes within each zone 

provide a comprehensive representation of the 

industrial production model.  

Zone 1 serves as the initial stage of the production 

line, comprising two injection molding machines, a 

robot positioned overhead between the machines, 

and a conveyor transport system. The robot 

efficiently picks up the moulded baskets from the 

injection molding machines as the machine doors 

open. Subsequently, the robot places the baskets 

onto the conveyor belts, which then undergo a visual 

inspection process. During the visual inspection, any 

poor-quality baskets are identified and removed 
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from the conveyor belt line to ensure product 

quality. Moving on to Zone 2, this area is dedicated 

to the packaging system, which is constructed along 

the conveyor system. The packaging process begins 

with an automated machine that prepares folded 

boxes. These prepared empty boxes are then 

transported on the conveyor belt and stop near the 

robot. With the box in place, the robot organizes the 

baskets by picking and placing them in an organized 

sequential order within the box. Once the box is 

filled, it is transported to another automated 

machine, where it is sealed before being moved to 

the next conveyor belt. 

Zone 3 represents the palletization process which 

involves a conveyor system. In this zone, the boxes 

filled with baskets are placed on pallets with the 

assistance of a robot. Once the pallets are filled with 

the boxes, the conveyor system transports them to an 

automated plastic wrapping station. At this station, 

the pallets undergo a plastic wrapping process, 

ensuring their stability and protection during 

transportation and storage. After the plastic 

wrapping is complete, the pallets are transferred 

through the conveyor line to an automated pallet 

stacking machine. This machine lifts the pallets and 

stacks them on top of one another, optimizing space 

utilization and facilitating efficient storage. Finally, 

Zone 4 is dedicated to the storage of the pallets in 

the warehouse. An automated stacker crane system 

is employed in this zone to hoist the pallets and 

arrange them in an organized manner. The design of 

the stacker crane system ensures that the warehouse 

storage racks are within the crane's reach, enabling 

seamless storage operations. 

As a result, the simulation model described here 

provides a comprehensive picture of an industrial 

automation case in the manufacturing industry. The 

simulation model provides a full portrayal of the 

industrial production processes involved in making 

plastic injection-moulded baskets by dividing the 

production shopfloor into discrete zones and adding 

various components and processes. The 3D 

simulation software's representation of the 

production shopfloor allows for a clear knowledge 

of the interconnection and operation of each zone. 

This visualization helps in the identification of 

potential bottlenecks, areas for improvement, and 

the overall optimization of production efficiency, 

quality, and profitability. The simulation model 

demonstrates the importance of visualization and 

simulation approaches in improving decision-

making in industrial manufacturing processes. 

Decision-makers can analyze the impact of many 

aspects on the production line, such as throughput, 

resource usage, and system performance, by 

modeling the different zones. This enables educated 

decision-making, which leads to better planning, 

optimization, and overall improvement of industrial 

manufacturing processes. 

3.2. Decision Making 

Creating a 3D simulation model for visualizing and 

optimizing industrial production processes 

necessitates a number of crucial decision-making 

elements. The creation of discrete zones on the 

production shopfloor gives an organized structure 

for analysing and improving each phase of the 

production line. The structure and arrangement of 

the production shopfloor is the first key decision-

making component. The shopfloor is divided into 

particular zones, such as Zone 1, Zone 2, Zone 3, and 

Zone 4, allowing for a systematic approach to 

understanding and optimizing the many functional 

procedures involved. Choosing the best combination 

of resources, machinery, and equipment for each 

zone is a critical choice that affects the overall 

efficiency and productivity of the production line. 

Decisions about the arrangement of injection 

moulding machines, the overhead robot, and the 

conveyor transport system were made within Zone 

1. To ensure seamless operation and efficient 

material flow, factors such as machine capacity, 

cycle times, and coordination between machines and 

robots were taken into consideration. Moving on to 

Zone 2, the decision-making process constituted of 

creating an efficient packaging system along the 

conveyor system. Choosing the right automated 

machine for folding boxes, deciding the positioning 

and sequencing of baskets by the robot, and ensuring 

effective box sealing are all important factors that 

affect the overall packing process. Decisions in Zone 

3 revolve around the palletization process. The 

selection and location of the robot for palletizing the 

boxes, optimizing the conveyor system for efficient 

box transfer, and constructing the plastic wrapping 

station to ensure secure and stable pallets for transit 

and storage are all important considerations. Finally, 

in Zone 4, the decision-making process revolves 

around pallet storage in the warehouse. Choosing the 

right automated stacker crane system, customizing 

the crane's reach and movement, and correctly 

organizing the storage racks are all critical decisions 

in order to maximize space utilization and 

streamline storage operations. 

It is essential to examine elements such as system 

throughput, resource usage, material flow 

optimization, and overall production efficiency 

throughout the decision-making process. Simulation 

modelling provides for the testing of numerous 

scenarios, the evaluation of the impact of various 

choice alternatives, and the identification of 

potential bottlenecks or areas for improvement. 
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3.3. Simulation Results 

 

During the simulation, a total run time of 8 hours 

was chosen to align with the duration of a typical 

daily shift in the industrial production environment. 

This time frame allows for a comprehensive 

evaluation of the production processes and the 

performance of the simulation model. In the 

simulation model, three robots were strategically 

positioned at the junctions between the zones to 

facilitate the smooth transfer of baskets and optimize 

the overall material flow.  

The first robot, Robot 1, was placed overhead, 

directly above the two injection-moulding machines 

in Zone 1. This robot plays a crucial role in picking 

up the moulded baskets from the machines and 

transferring them to the conveyor belts. Robot 2 was 

positioned between Zone 1 and Zone 2, acting as a 

key component in the transition from the injection 

moulding process to the packaging system. It assists 

in organizing the baskets and placing them in the 

boxes in a sequential order. Similarly, Robot 3 was 

placed between Zone 2 and Zone 3, facilitating the 

movement of the filled boxes from the packaging 

system to the palletization process. This robot plays 

a vital role in placing the boxes on pallets, ensuring 

efficient palletization. Figure 6 provides valuable 

insights into the utilization of these three robots 

throughout the 8-hour simulation run. The 

utilization is represented as a percentage, indicating 

the proportion of time each robot was actively 

engaged in performing its designated tasks. 

 

Figure 6: Robot percentage utilization 

These presented results allow for a deeper 

understanding of the robots' workload distribution 

and their efficiency in supporting the production 

processes. By evaluating the utilization percentages, 

it becomes possible to identify potential bottlenecks 

or areas of improvement within the production line. 

For instance, if a robot's utilization is consistently 

high, it may indicate a need for additional resources 

or process optimization to alleviate the workload. 

On the other hand, low utilization may suggest 

under-utilized capacity that can be optimized for 

increased productivity. The utilization analysis of 

the robots provides valuable insights into the 

operational efficiency and resource allocation within 

the simulated industrial production system. These 

findings can guide decision-making processes to 

enhance the overall performance and productivity of 

the production processes. 

The simulation model incorporates various process 

nodes that are programmed to operate within 

specific flow groups. In this particular simulation, 

there is a single flow group representing the 

production of a specific product type, which in this 

case is baskets. Each process node within the model 

has the capability to assume different statistical 

process states, including idle, busy, and blocked. 

To establish the interconnection between different 

zones, four process nodes were selected in this 

simulation model. These process nodes serve as the 

critical links between the zones and play a crucial 

role in the overall flow of the production process. 

Figure 7 visually represents the state results obtained 

from these zonal process nodes. The results are 

presented as percentages, reflecting the distribution 

of different process states throughout the entire 

production or simulation run time, which was set to 

8 hours in this case. 

 

Figure 7: Idle, busy, and blocked States 

Starting with the Zone 1 state process node, it 

represents the initial stage where the baskets arriving 

on the conveyor belt are picked up by Robot 2 and 

subsequently placed in the Zone 2 (Packaging) 

process node according to the programmed 

assembly sequence. The Zone 2 (Packed Boxes) 

process node captures the state of the final packed 

boxes. Here, Robot 3 is responsible for lifting the 

packed boxes and placing them onto the pallet, 

which is represented by the Zone 3 (Palletization) 

process node. Robot 3 follows a specific assembly 

sequence while arranging the boxes on the pallet. It 

is noteworthy that each pallet accommodates a total 

of 8 boxes, organized in a 2x2x2 stack configuration. 

By analysing the state results from these zonal 

process nodes, it becomes possible to gain insights 

into the efficiency and performance of the 

production process. The percentages offer a 

quantitative assessment of the process states, 

indicating the proportion of time spent in each state 

throughout the 8-hour simulation run. These results 
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enable the identification of potential bottlenecks, 

areas of improvement, or process optimization 

opportunities within the production flow. 

4. Analysis and Discussion 

 

The simulation model focuses on improving 

decision-making in industrial production processes, 

in the context of plastic injection-moulded basket 

manufacturing. The simulation model provides a 

visual representation of the production shopfloor, 

encompassing various related components and 

processes, using 3D simulation software Visual 

Components®. This was further tested in Virtual 

Reality (VR) environment (Figure 8) to analyse the 

simulation model and to initiate the decision-making 

process within the different zones which are 

representing different stages of the production line. 

The simulation model's decision-making process 

included identifying the structure and layout of the 

production shopfloor, selecting the necessary 

resources and equipment for each zone, and 

optimising aspects such as material flow and system 

throughput. Additional VR analysis enabled the 

process of deciding how much space to be available 

so that operators can use it for maintenance. 

 

 

Figure 8: Simulation model testing in VR 

 

Simulation results show the utilization of robots 

positioned in different zones, allowing for the 

identification of potential areas for improvement. It 

was observed from the robot utilization chart (Figure 

6), that the utilization percentage for Robot 2 was 

less and Robot 3 was much lesser. This tells us that 

there is a possibility for further expanding Zone 1 

with more injection-moulding machines. The 

analysis of process states within the zones provided 

insights into the efficiency and performance of the 

production process. Similarly, it was also observed 

in Zones 1 and 2, the idle time amounted to more 

than 90% of the total simulation run time. Because 

of this, it is possible to advise the business 

management that the current process will be able to 

support any future investments in additional 

injection moulding machines in the case concerning 

increasing the production capacity. 

 

Therefore, to answer the research question, the use 

of 3D simulation software and virtual reality (VR) in 

visualizing industrial production processes provides 

useful insights to decision-makers for optimizing 

production efficiency. It enables informed decision-

making by providing a comprehensive picture of the 

production flow, resource utilization, and system 

performance.  

 

Decision-makers can increase the overall efficiency 

and profitability of manufacturing processes by 

identifying areas for improvement and resolving 

potential bottlenecks. The validation of the 

simulation model was done during the development 

phase through the immediate testing of simulation 

animation results in the 3D world environment 

within the software. This validation was in the form 

of correlating and checking if the flow components 

were in accordance to the set requirements.  

 

5. Conclusion 

 

In conclusion, this study highlighted the significance 

of 3D simulation modelling and visualization 

techniques in improving decision-making and 

optimizing production efficiency in industrial 

manufacturing processes, with a specific focus on 

plastic injection-moulded basket manufacturing. 

The utilization of 3D simulation software, coupled 

with VR testing, allowed for a comprehensive and 

immersive representation of the production 

shopfloor, showcasing interconnected components 

and processes. 

 

Decision-makers can examine and comprehend the 

production flow, resource allocation, and system 

performance with the help of the simulation model. 

Additionally, the developed model is flexible in 

order to accommodate future modifications. By 

examining the utilization of robots in different 

zones, potential areas for improvement can be 

identified, leading to enhanced resource utilization 

and increased production efficiency. The analysis of 

process states within the zones further contributes to 

identifying bottlenecks and optimization 

opportunities within the production process. 

 

By offering visual context, dynamic interaction, and 

the capacity to test possibilities, 3D simulations and 

VR technologies transform shopfloor decision-

making. They uncover complicated relationships, 

possible bottlenecks, and ergonomic difficulties that 

statistics overlook. These systems detect problems 

early, improve communication, and provide a visual 

knowledge of shopfloor processes. They alter 

structure, throughput, and efficiency decisions by 

displaying the shopfloor layout, equipment, and 

processes. Unlike traditional numerical analysis, 3D 
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simulations and VR provide decision-makers with 

immersive insights, allowing them to make educated 

decisions that lead to optimised industrial 

production processes. The findings from the 

simulation model and visualization techniques 

demonstrate the importance of informed decision-

making in industrial manufacturing. Decision-

makers can leverage the insights gained from the 

simulation model to make educated decisions 

regarding the structure and arrangement of the 

production shopfloor, selection of appropriate 

resources and equipment, and optimization of 

material flow and system throughput. 
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Abstract 

 

Buildings are currently non optimally controlled, using a weather compensation controller that depends only on 

external temperature. A rich amount of real-time data is available and can be used for better control. This work is 

focused on developing a general and dynamic model for utilizing the building as an energy storage for a peak-

shaving control strategy. A dynamic grey-box model is developed using industry standard operators data from a 

multifamily building, Building A, located in Västerås, Sweden. The training period is set to 408 hours, and the 

prediction horizon to 48 hours. The model is verified in 4 steps: prediction ability on the historic data, parametric 

verification on the time constant, simulation of heat supply separated from the historic data and model generality 

by implementing the model on a second multifamily building, Building B. The modelling errors over a two-month 

simulated period are 8 % for Building A and 9 % for Building B. To demonstrate the utilization possibilities, an 

optimizer is constructed to evaluate a peak shaving control strategy. Different flexibilities for the indoor 

temperature have been examined with a range yielding heat load peak shaving between 30 to 45%. Flexibility 

paves the way for improvement in pricing models for the heating sector. This work demonstrates the potential of 

utilizing building heat storage capacity to reduce peak consumption and costs. 

 

1. Introduction 

Currently, District Heating (DH) substations operate 

in sub-optimal conditions due to a lack of 

information about the supplied buildings, their 

future demand, and the operating parameters. The 

rich amount of real-time data available from new 

sensors implies saving potential if made available to 

the energy providers and buildings managers. 

Utilizing building thermal inertia as a short-term 

storage is a cheap and viable technology (Kensby et 

al., 2015), the concept consists of overheating or 

underheating the building. When overheating or 

underheating the building a change between the set 

indoor temperature and the actual indoor 

temperature occurs. This results in a divergence 

from the set temperature, and it is that temperature 

difference that functions as the energy storage in the 

building (Ståhl, 2009). By utilizing the internal heat 

transfer in buildings as heat storage the supply need 

can be reduced, assuming that the producers have 

knowledge of the relevant storage data. One of the 

main constraints in utilization lies in the comfort 

requirements of the occupancies (Renström et al., 

2021). This work is focused on developing a general 

and dynamic model for utilizing buildings as energy 

storage for a peak-shaving control strategy. The 

work aims to determine how stored heat in buildings 

can be modelled using industry standard data 

streams. Furthermore, the work investigates the 

potential in controlling a building’s heating system 

with consideration to stored heat and how a flexible 

indoor temperature affects different aspects of 

building thermal control. 

 

2. Methodology  

2.1. Problem setup 

The building used for model development is a 9-

storey multifamily building, called Building A, 

located in Västerås, built in 2017. 

The thermal dynamics of the building consist of 

multiple different heat sources and heat losses from 

building components. The heat sources consist of 

two sources; heat supplied from the DH system, and 

heat delivered from unmeasured sources (passive 

heating). The main sources of heat loss are through 

the building envelope and the ventilation. The input 

data was originally supplied by the local DH 

company Mälarenergi (primary side) and a local 

landlord Mimer (secondary side). The data has a 

time step of one hour and consists of 1501 data 

points between 2019-12-01 and 2020-02-02. The 

temperature has been taken as an average over all the 

individual apartments to give an average 

temperature for the building itself, therefore the 

standard deviation on the indoor temperature is also 

given. The outdoor temperature was measured with 

a sensor installed on the building. Supply 

temperature, water mass flow and return 
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temperature were all measured at the building’s 

main heat exchanger.  

The heat supply (calculated based on the supply-, 

return temperature and the mass flow from the main 

heat exchanger), average indoor temperature, and 

external temperature are used in this work. The data 

is presented in Fig. 1. 

 

 

Figure 1: Historical data for Building A 

 

2.2. Development of Building Model 

The finalized model consists of three models that 

combine the strength of them all. The first is called 

First Order Thermal Model (FOTM) and is based on 

simple 1R1C models as described by Harb et al. 

(2016) or Monghasemi et. al (2022). The second is 

called Degree Day Model (DDM) and is a further 

development of the 1R1C model using the degree 

day method by Tabatabaei et al. (2017). The third is 

called Time Constant Model (TCM) and is based on 

Antonopoulos & Koronaki (2000). The cooperation 

between the different models is illustrated in Fig.2. 

 
Figure 2: Model flow chart 

 

FOTM is developed as an 1R1C model to ensure 

robustness due to the lower complexity. The typical 

1R1C model is described with Eq. 1. 

 

𝐶
𝑑𝑇

𝑑𝑡
= 𝑅(𝑇𝑒𝑥𝑡 − 𝑇𝑖𝑛) + 𝑄𝑠𝑢𝑝𝑝𝑙𝑦 (1) 

 

FOTM includes an additional parameter to act as the 

heat from other sources then the heat delivered from 

the building’s substation, 𝑄𝑝𝑎𝑠𝑠𝑖𝑣𝑒. This simulates 

heat from occupancies, electric appliances, solar 

radiation etc. The FOTM model is described with 

Eq. 2. 

 

𝐶
𝑑𝑇

𝑑𝑡
=  𝑅(𝑇𝑒𝑥𝑡 − 𝑇𝑖𝑛) + 𝑄𝑠𝑢𝑝𝑝𝑙𝑦 + 𝑄𝑝𝑎𝑠𝑠𝑖𝑣𝑒 (2) 

 

The DDM is set up as a function called from the 

FOTM, it utilizes Eq. 2 with 
𝑑𝑇

𝑑𝑡
= 0, resulting in Eq. 

3Error! Reference source not found..  

𝑅(𝑇𝑒𝑥𝑡 − 𝑇𝑖𝑛) − 𝑄𝑝𝑎𝑠𝑠𝑖𝑣𝑒 = 𝑄𝑠𝑢𝑝𝑝𝑙𝑦 (3) 

 

Curve fitting (based on least squares) is then used to 

estimate 𝑅𝑝𝑎𝑠𝑠𝑖𝑣𝑒  and 𝑄𝑝𝑎𝑠𝑠𝑖𝑣𝑒 . The steady state heat 

loss of the building is represented by 𝑅. There are 

always some daily variations in the indoor 

temperature, but the general trend of the indoor 

temperature must be steady for 𝑅 determination. 

𝑄𝑝𝑎𝑠𝑠𝑖𝑣𝑒  is determined as an average of the passive 

heating during the training period and will therefore 

give an imperfect estimation on the hourly passive 

heating in the building.  

TCM is also set up as a function called by FOTM. 

The equation used is Eq. 4 where the parameters 

𝐶𝑒𝑓𝑓  & 𝑈 are determined by optimizing for them 

using least squares from the SciPy optimize library 

with Eq. 5 as the cost function. 

 

𝑇𝑖𝑛(𝑡) = 𝑇𝑒𝑥𝑡 −

− [𝑇𝑒𝑥𝑡 − 𝑇𝑖𝑛(0)  +
𝑄𝑠𝑢𝑝𝑝𝑙𝑦

𝑈
] 𝑒

(−
𝑡𝑈

𝐶𝑒𝑓𝑓
)

+
𝑄𝑠𝑢𝑝𝑝𝑙𝑦

𝑈
  (4)

 

 
𝐹(𝑋) = 𝑇𝑖𝑛,𝑝𝑟𝑒𝑑 − 𝑇𝑖𝑛,𝑟𝑒𝑎𝑙 (5) 

 

Given the resulting 𝐶𝑒𝑓𝑓  and 𝑈 for the training 

period the mean of the values is taken to calculate 

the time constant according to Eq. 6.  

 

𝜏 = 𝐶𝑒𝑓𝑓/𝑈 (6) 

 

The time constant is then used to calculate a C based 

on the R value from DDM. In contrast to DDM, 

TCM requires variance in the indoor temperature to 

determine the effective heat capacity, 𝐶𝑒𝑓𝑓 . 

The model detects the trend of the indoor 

temperature, thereby not capturing daily variations. 

The model is a dynamic model with accuracy 

dependent on the accuracy of the temperature data, 

as the temperature sensor most likely has the highest 

uncertainty. The temperature sensor is unknown; 

however a typical range is ± 1 𝐾 according to 
manufacturer specification data. 

 

2.3. Verification of building model  

The first verification step is to determine the 

prediction ability by implementing the model on the 

entire available data set and observing the model’s 
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ability to predict the indoor temperature for each 

time step over different prediction horizons. The 

model must replicate the trend rather than the actual 

values to avoid overfitting to variance caused by 

measuring the input data in the air.  The next step is 

to verify the parameters. This is done by observing 

the resulting values of the time constant and 

comparing it to expected values from the literature, 

as presented in Tab. 1. 

 
Table 1: Time constants presented by Johra et al. (2019) 

Time constant τ 

[h] 
Light Medium Heavy 

1980’s house 9 49 181 

Passive house 135 169 626 

 

The heat is then simulated using the historical 

outdoor temperature without access to the historical 

heat data. The generality of the model is also verified 

by implementing the model on a different building, 

Building B. The data available for Building B is of a 

similar character to that of Building A. 

 

2.4. Optimizer 

To highlight the utilization possibilities of using the 

building as a heat storage, an optimizer is developed 

to evaluate the future heat supply. It is developed in 

Gekko, which is an optimization library in python 

(Beal et al., 2018).  The optimizer is based on a 

strategy presented by Saletti et al. (2021) that 

focuses on minimizing the variations in heat supply 

by controlling for the derivative of the heat supply. 

To minimize the total variation in the heat supplied 

(𝑄𝑠𝑢𝑝𝑝𝑙𝑦) the derivative squared is minimized to 

ensure that only positive values occur in the 

objective, this will assist the optimizer in flattening 

out the heat demand. The control objective (𝑄𝑠𝑢𝑝𝑝𝑙𝑦) 

is controlled by manipulating the indoor temperature 

(𝑇𝑖𝑛) within a set interval. By setting a fixed interval 

for the indoor temperature within the comfort 

interval, the comfort is still maintained. The 

optimization problem is stated below. 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒: 

 min(∑  𝑑𝑄𝑠𝑢𝑝𝑝𝑙𝑦𝑖

2𝑖=𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡
𝑖=1 )  

 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠:                   𝑇𝑖𝑛𝑚𝑖𝑛
≤ 𝑇𝑖𝑛𝑖

≤ 𝑇𝑖𝑛𝑚𝑎𝑥
 

𝑄𝑠𝑢𝑝𝑝𝑙𝑦𝑚𝑖𝑛

≤ 𝑄𝑠𝑢𝑝𝑝𝑙𝑦𝑖

≤ 𝑄𝑠𝑢𝑝𝑝𝑙𝑦𝑚𝑎𝑥  

𝑄𝑠𝑢𝑝𝑝𝑙𝑦𝑖

= (𝑇𝑖𝑛𝑖+1
− 𝑇𝑖𝑛𝑖)𝐶

− 𝑅(𝑇𝑒𝑥𝑡𝑖
− 𝑇𝑖𝑛𝑖

)

− 𝑄𝑜𝑡ℎ𝑒𝑟 

Before the model can be utilized for peak shaving, 

the training period and the prediction horizon need 

to be determined by parametric analysis to yield the 

most accurate results.    The training period is set to 

408 hours/data points, and the prediction horizon is 

set to 48 hours. Different flexibilities in the indoor 

temperature are examined from 𝑇𝑖𝑛=22°C ± 0.25 to 

𝑇𝑖𝑛=22°C ± 2.00. The baseline temperature is set to 

22 ℃ to ensure that the indoor temperature is always 

within the Swedish health agencies recommended 

comfort interval (Folkhälsomyndigheten, 2014). 

 

2.5. Normalized Economics 

Currently, economically motivated peak shaving for 

customers is not the norm at the local DH company. 

The customers have the option to select a “baseload 

consumption” with a fixed price in SEK⁄kW,year 

and a “peak consumption” with a different fixed 

price in SEK⁄kW,year. But they can also allow the 

company to choose, and then no fixed cost is added 

if the consumption increases above the baseload 

level (Landelius & Åström, 2019). To highlight the 

economic benefits in peak shaving from a customer 

perspective a normalised economic analysis is 

developed. An initial baseload is calculated based on 

the average outdoor temperature for December 2019 

using Eq. 3. The different parameters are estimated 

on an average of the first 408 data points. 

The economic savings are then calculated by 

integrating the curves that exceed the baseload and 

comparing the integrals for the historic case and the 

new peak shaved case, as shown in Fig. 3.  

 

 
Figure 3: Normalized Economic Analysis 

 

The savings are presented as a percentage and are 

calculated according to Eq. 7. 

 

𝑆𝑎𝑣𝑖𝑛𝑔𝑠 = 100 −
∫ 𝑃𝑒𝑎𝑘𝑛𝑒𝑤

∫ 𝑃𝑒𝑎𝑘ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐

100[%] (7) 

 

The baseload is then varied to illustrate the different 

savings achieved depending on the baseload level.   
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3. Results 

3.1. Building model verification 

The mean and max error over the entire prediction 

horizon for each time step when choosing the 

optimal prediction horizon and training set length is 

plotted in Fig. 4. 

 

 
Figure 4: Mean and maximum error for Building A 

 

The maximum error is 0.63K and the mean error of 

about 0.14K for Building A. 

The heat capacity of Building A is 108 [
𝑊ℎ

𝐾𝑚2] 

respectively 124 [
𝑊ℎ

𝐾𝑚2] for Building B. The average 

time constant over the entire data set for Building A 

is 209 hours, and for Building B 120 hours.  

Compared to the values given in Tab. 1., these are 

reasonable. 

As illustrated in Fig. 5. & Fig. 6., the simulated heat 

supply and indoor temperature generated by the 

model are reasonably well correlated to the 

historical data, as shown in Tab. 2. 

 

 

 
Figure 5: Verification of model for Building A 

 

 

 

 
Figure 6: Verification of model for Building B 

 

 

Table 2: Verification results: comparison between 

simulated and historical data for heat supply 

 Building A Building B 

Correlation coefficient 85% 77% 

RRMSE  8% 9% 

 

The fact that the simulated heat supply and the 

historical heat supply do not match each other 

perfectly is not of concern, since it is the trend that 

is of interest. 

 

3.2. Utilization potential 

Fig. 7. shows the cumulative distribution of the heat 

supplied during the simulation period. 

 

 
Figure 7: Load duration curve for peak shaving in 

Building A 

 

 

The frequency describes how often (how many 

hours) the corresponding heat supply is reached for 

each investigated frequency. In general terms, by 

increasing the flexibility of the indoor temperature, 

less variation in the supplied heat and a lower peak 

power is achieved. 

In Tab. 3. the results for different temperature 

flexibilities are presented. It shows that in general 

when implementing the peak shaving control 

strategy there is also an overall reduction in heat 

supply. However, this is mainly due to a reduction 

in the set indoor temperature as the simulated 

historical data has an average indoor temperature of 

22.6 °C. Therefor it can’t be concluded that utilizing 

peak shaving results in energy savings, it can 

however reduce emissions. If utilized by DH 

companies, peak shaving could reduce the need for 

a fossil fuel boiler during peak hours and thereby 

reduce overall emissions and the dependency on 

expensive and harmful fossil fuels. 
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Table 3: Results from peak shaving compared to the 

simulated historical data 

Temperature 

flexibility 

[°C] 

Peak 

power 

decreased  

Energy 

consumption 

decreased 

Average 

indoor 

temperature 

[°C] 

±0.25 30 10 22 

±0.50 35 10 22 

±0.75 35 12 21.9 

±1.00 36 9 22 

±1.25 38 14 21.9 

±1.50 40 7 22.2 

±1.75 42 7 22.3 

±2.00 45 6 22.3 

 

As seen in Tab. 3. a temperature flexibility of ±1.25 

°𝐶 generates the most energy savings, however in a 

survey by Renström et al. (2021) including 88 

respondents it was found that approximately 40 % of 

respondents thought they would not be affected by 

an variable indoor temperature of ±1 °𝐶 whilst 

approximately 60 % thought they would be 

negatively affected by a variable temperature of ±1.5 

°𝐶. This might intel that even though the comfort 

impact will be minimal, it will be difficult to 

convince consumers to use the developed approach 

with higher variability. Renström et al. (2021) even 

found that 20 % of respondents believed they would 

be negatively affected already at ±0.5 °𝐶. 

To determine the appropriate flexibility a 

normalized economics analysis is done, the results 

are presented in Fig. 8. 

 

 
Figure 8: Normalized economics analysis results 

 

As the percentage of the available area is made up of 

the difference between the historical peak and the 

shaved peak, the magnitude of the baseload is 

directly correlated to the possible savings. From the 

combined knowledge presented in Fig. 8.Error! R

eference source not found. A higher baseload 

results in larger savings, this is demonstrated clearly 

in Fig. 9. 

 

 

 

 
Figure 9: A moving baseload’s impact on savings 

 

In Fig. 9., one can determine that choosing an 

appropriate baseload is crucial when it comes to the 

economic benefits of peak shaving. The savings in 

the fixed cost of the peak consumption depends on 

how much of the peaks are above the baseload. 

Therefore, the higher baseload reaches savings of 

100% since the new peak is below the baseload. In 

the lower baseloads, where the new peak never is 

below the baseload, the preferred choice of 

temperature flexibility is ±0.5°𝐶. Due to this a 

temperature flexibility of ±0.5°𝐶 is chosen as the 

preferred interval. Fig. 10. and Fig. 11. shows the 

potential of peak shaving by allowing a flexibility in 

the indoor temperature with ±0.5 °𝐶 for Building A 

and B. 

 

 
Figure 10: Peak shaving, Tin = 22°C ±0.5, prediction 

horizon = 48, Building A 

 

Fig. 10. shows that the highest peak in the heat 

supply during the simulation decreased from 26 𝑘𝑊 

to 16 𝑘𝑊 for Building A, and the total energy 

consumed during the simulation decreased from 12 

100 𝑘𝑊ℎ to 11 000 𝑘𝑊ℎ. 
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Figure 11: Peak shaving, Tin = 22°C ±0.5, prediction 

horizon = 48, Building B 

 

For Building B as shown in Fig. 11. the highest peak 

was decreased from 29 𝑘𝑊 to 22 𝑘𝑊, and the total 

energy consumed was increased from 14 700 𝑘𝑊ℎ 

to 16 000 𝑘𝑊ℎ. 

 

4. Discussion and conclusions 

 

4.1. Discussion 

The FOTM and the constructed optimizer is a 

general model with a low execution time. Since the 

model was developed using the data from Building 

A and then also tested on data from Building B, the 

generality requirement was met. Execution time has 

not been an issue in the tests (448 seconds for a 

simulation period of 1085 hours). However, there 

are some concerns regarding the reliability when 

using online adaptation, since there are certain rules 

that must be considered for parameter estimation, 

which have not been developed. This have mainly 

been the parameter estimation of 𝑅 and 𝑄𝑝𝑎𝑠𝑠𝑖𝑣𝑒. 

When estimating these parameters, the most 

important part is that the indoor temperature is stable 

and does not vary over time. When adapting peak 

shaving it is never stable. Vice versa if the indoor 

temperature is kept steady 𝐶𝑒𝑓𝑓 is hard to estimate 

since it requires change within the indoor 

temperature to be determined. Examining how these 

issues might be solved belongs to the future works. 

For the results presented the parameters 𝑅𝑝𝑎𝑠𝑠𝑖𝑣𝑒  and 

𝐶𝑒𝑓𝑓 has been determined on the training set and the 

assumed constant for the entire simulation period. 

This gives reliable results for the available data as 

shown.  

By utilizing a control strategy similar to the one 

suggested in this work there is a possibility of 

increasing the amount of electricity produced in a 

CHP plant. A reduction in heat demand from the 

consumers yields a larger portion of the produced 

heat at the plant available for electricity production. 

Currently, most renewable sources cannot keep up 

with the higher electricity demand during the winter 

where DH companies normally can’t produce any 

electricity due to the high heat demand. By 

decreasing the heat demand and increasing the 

electricity production the revenue can be greatly 

increased.  

The authors   suggest that a new subscription format 

is produced in which the customers subscribe to a 

certain comfort interval rather than a certain heat 

flux. The authors also believe that customer 

participation and engagement should be an integral 

part of future business models to ensure customer 

satisfaction. The authors also suggest adding a safety 

margin in the subscription range.   

 

4.2. Conclusions 

In this work a data driven physics-based model has 

been produced which directly quantifies the steady 

state heat loss, the heat capacity, the time constant 

and the passive heating. These parameters are 

essential for determining a building’s thermal 

storage ability. The model has a RRMSE of 8% for 

Building A and 9% for Building B. By having access 

to the thermal dynamics of a buildings storage 

potential the buildings heating system can be 

controlled from a peak shaving perspective which 

utilizes over- and underheating to charge and 

discharge the building around peaks in heat demand 

generated by changes in the external temperature. 

Utilizing a peak shaving control strategy has been 

shown to generate savings in energy consumption of 

up to 14 % and 45 % in peak consumption 

(depending on the set indoor temperature and 

allowed flexibility). The authors suggest allowing 

the customers to choose their preferred flexibility to 

ensure their comfort, but also point out that a 

beneficial control can be found at an indoor 

temperature of 22 ±0.5 °C. 

There are four aspects to be considered when 

allowing for a flexible indoor temperature, comfort, 

energy consumption, peak shaving, and economics. 

All aspects are correlated and to find an optimal 

strategy, compromises must be made. The authors 

have shown that economic savings and peak shaving 

can be achieved by allowing for small variations in 

the indoor temperature to the detriment of comfort 

and in some cases energy consumption. 
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Abstract

In recent years, green hydrogen has emerged as an important energy carrier for future sustainable development. Due
to the possibility of not emitting CO2 during its generation and use, hydrogen is considered a perfect substitute for
current fossil fuels. However, a major drawback of hydrogen production bywater electrolysis, supplied by renewable
electricity, is its limited economic competitiveness compared to conventional energy sources. Therefore, this work
focuses on analyzing the sustainability of a green hydrogen production plant, not only considering its environmental
parameters, as well as its economic, energy and efficiency parameters. The polymer electrolyte membrane (PEM) is
selected as the most promising method of green hydrogen production in the medium and long term. Subsequently, a
small-scale production plant is simulated using chemical process simulation software to obtain key data for comput-
ing a set of sustainability indicators. The selected indicators are based on the Gauging Reaction Effectiveness for the
Environmental Sustainability of Chemistries with a Multi-Objective Process Evaluator (GREENSCOPE) methodol-
ogy and are used to compare the sustainability of the simulated PEM plant with alkaline water electrolysis (AWE)
plant. Finally, the process is scaled-up to analyze the feasibility of the simulated PEM system and validated against
data to determine the operation of the electrolyser at a large production scale.

1 Introduction

Green hydrogen is typically obtained via water elec-
trolysis that uses renewable power source to gener-
ate hydrogen from water. This method allows for the
production of hydrogen without any CO2 emissions
(Younas et al., 2022). The key element of water elec-
trolysis is electrolyser, a device where direct electric
current is applied resulting in two chemical reactions:
one at the cathode that produces hydrogen, Equation
(1), and the other at the anode, Equation (2), that gen-
erates oxygen (Noussan et al., 2021). The polymer
membrane-based electrolyser, also known as PEM, is
the most suitable choice for handling power variations
due to its ability to quickly adapt to changes within
seconds, unlike other types of electrolysers based on
alkaline water electrolytes (AWE) that require min-
utes. In addition, PEM can operate at higher pressures
than other electrolysers, reducing the sub-sequence
compression stages (Wang et al., 2022).

Cathode reaction:

2H++ 2e− → H2(g) (1)

Anode reaction:

H2O(l)→ 1
2

O2(g)+2H++2e− (2)

Despite the fact that green hydrogen offers an environ-
mentally cleaner solution to reduce society’s depen-
dence on fossil fuels, the reality remains that most of
the world’s hydrogen production, approximately 96%
in 2021, still comes from methods that emit green-
house gases, commonly known as grey and brown hy-
drogen (IRENA, 2021). The reason for the present
scenario is that current greenmethods, such as PEM or
AWEwater electrolysis supplied by renewable power,
are not economical, which makes them less compet-
itive than those based on fossil fuels (Younas et al.,
2022). This article therefore proposes a method for
quantifying the sustainability assessment of the hy-
drogen production process, creating tools to evaluate
of green hydrogen production methods. In addition,
it is considered important to explore cost reduction
measures during sustainability analysis of the process.
Therefore, the advancement of process simulation is
seen as a viable approach to minimise design costs.
However, a challenge arises due to the limited avail-
ability of larger scale simulation models. To address
this limitation, the simulated process is scaled-up to
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evaluate the performance of the electrolyser in large-
scale production scenarios.

2 Sustainability

By examining existing literature, this analysis assesses
the present state of green hydrogen in terms of its envi-
ronmental impact, efficiency, economic viability, and
energy performance.
Environmental
Green hydrogen is considered as an environmentally
friendly, carbon-neutral energy carrier. The contribu-
tion to climate change is minimal, as only oxygen is
emitted during the production process. However, the
environmental impact of hydrogen is not zero, the type
of renewable energy source used, the origin of the wa-
ter for the electrolysis process and the residues gener-
ated after the usage of the production equipment must
be taken into account (Baykara, 2018).
Efficiency
The efficiency of a PEM electrolyser varies depend-
ing on the quality of the materials used, the design of
the electrolyser, the operating temperature, the pres-
sure, and the concentration of the electrolytes. In gen-
eral, a typical Low Heating Value (LHV) efficiency of
PEM electrolyser can range from 67% to 82%. To im-
prove efficiency, efforts should focus on optimising
the geometry of the electrolytic cell, using more effi-
cient catalysts and optimising the operating conditions
of the electrolyser (Wang et al., 2022).
Economic
The current lack of extensive green hydrogen produc-
tion is mainly due to poor economic competitiveness.
Therefore, most of the hydrogen production is done
using fossil fuels. The major costs of green hydro-
gen production are related with the cost of renewable
electricity, the efficiency of the electrolysis process
and the cost of the electrolysis equipment (Yue et al.,
2021).
Energy
In the case of green hydrogen, it is estimated that the
production of 1 kg requires 50-55 kWh of electricity,
which is considered high energy consumption com-
pared to some fossil fuels (Kurrer, 2020). This con-
sumption depends on the efficiency of the electrolysis
process (Antweiler, 2020).

3 Process simulation

The PEM electrolyser flowsheet considered in this
study is simulated using Aspen HYSYS software. The
PEM model is implemented using Aspen Customer
Module (ACM) software. The schematic used in As-
pen HYSYS for the simulation of the entire system is
shown in Figure 1, clearly depicting the division be-
tween the cathode (C) and anode (A) sides.

3.1 Simulation model

Voltage model
The PEM electrolyser’s voltage model is determined
by Equation (3), which calculates the total voltage re-
quired for a single cell to perform the electrolysis pro-
cess. This model consists of several components, in-
cluding the ideal voltage and the minimum voltage re-
quired, different loses, and factors resulting from the
activation of the reaction incurred throughout the pro-
cess (Colbertaldo et al., 2017; AspenTech, 2021).

Vcell =Vid.+∆Vact.+∆Vohm.+∆Vdiff.+∆Vpar. (3)

The minimum voltage required to initiate an electroly-
sis process in a cell is known as the ideal voltage (Vid.),
as described by Equation (4).

Vid. =
1
nF

(∆G+RTop.ln(
pH2 + p0.5

O2

aH2O
)) (4)

Where n is the number of electrons, F is the Faraday’s
constant, ∆G is the Gibbs free energy value, R is the
gas constant, Top. is the operational temperature in the
cell, p is the partial pressure for both elements H2 and
O2 and aH2O is the water activity value. For reactions
to take place, an activation voltage (ΔVact.), Equa-
tion (5), is required, based on the Tafel equation and
incorporating Butler-Volmer’s simplification (García-
Valverde et al., 2012).

∆V act. = ∆Vact,cat.+∆Vact,an. (5)

Where ∆Vact,cat. is the activation voltage in the cathode
side and ∆Vact,an. is the anode side voltage activation.
These activation voltages have the same equation on
both sides described in Equation (6).

∆V act.,x =
RTop.
αxnF

ln
(

iu
i0,x

)
(6)

Where x represents the anode or the cathode, R is the
gas constant, Top. is the operational temperature in the
cell, αx is the charger transfer coefficient, n is the num-
ber of electrons, F is the Faraday’s constant, iu is the
useful current density and i0,x is the exchange current
density, which depends on the temperature associated
with the Butler-Volmer’s Equation (García-Valverde
et al., 2012). According to Ohm’s law, the electrical
losses (ΔVohm.) occurring in anode, cathode andmem-
brane during the electrolysis process are represented
by Equation (7).

∆VOhm. = (Rcat.+Ran.+Rmem.) iuAcell (7)

Where Rcat. is the cathode side resistance and is cal-
culated using Equation (8), Ran. is the anode side re-
sistance and is calculated using Equation (8), Rmem. is
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Figure 1. Process simulation schematic in Aspen HYSYS.

the membrane resistance and is calculated using Equa-
tion (9), iu is the useful current density and Acell is the
active cell area.

Rx =
txρx

Ax
(8)

Where x represents the anode or the cathode, tx is the
electrode thickness, ρx is the resistivity and Ax is the
active electrode area.

Rmem. =
tmem

σmem.Amem.
(9)

Where tmem. is the membrane thickness, σmem. is the
conductivity based on the Springer model (Springer et
al., 1991) and Amem. is the active membrane area. Dif-
fusion voltage (ΔVdiff.), Equation (10), represents the
diffusion losses that occur when mass transport is hin-
dered by the concentration gradient between the mem-
brane surface and the main stream where the reaction
takes place. These losses are the result of mass trans-
port limitations due to the concentration gradient.

∆V diff.,x =
RTop.
αxnF

ln(
iL

iL − iu
) (10)

Where x represents the anode or the cathode, R is the
gas constant, Top. is the operational temperature in the
cell, αx is the charger transfer coefficient, n is the num-
ber of electrons, F is the Faraday’s constant, iu is the
useful current density and iL is the limiting current
density (assumed as 6 A/cm2 the maximum current
density). Parasitic losses (ΔVpar.), are typically ex-
pressed as a change in current rather than an increase
in voltage. Essentially, the current efficiency is deter-
mined by the ratio of the input current to the useful cur-
rent, Equation (11). This ratio is evaluated using the
Faraday efficiency, which in the case of a PEM sys-
tem, it is common to be close to 100%. Consequently,
the Faraday efficiency used in the simulations is 99%.

ηfar. =
Iu

Istack
(11)

Where Iu is the useful current calculated by multiply-
ing the current density (iu) by the active area of the cell
(Acell) and Istack is the current in the cell.
Mass balance
The material balance evaluation in the electrolysis
process is divided between the anode and cathode
sides, and it is based on the assessment of the various
flows involved. These flows include the water flow
input, hydrogen production as described by Equation
(12), oxygen production, electro-osmotic, diffusivity
losses as described by Equations (13) and (14), re-
spectively, and the pressure flow compensation as de-
scribed by Equation (15).

ṄH2 =
iuAcellNcells

nF
(12)

Where iu is the useful current density, Acell is the ac-
tive cell area, Ncells is the number of cells in the stack,
n is the number of electrons and F is the Faraday’s
constant.

Ṅe−o
H2O =

nd iuAcellNcells
F

(13)

Where nd is the coefficient related with the humidifi-
cation of the membrane extracted from (Colbertaldo
et al., 2017), iu is the useful current density, Acell is
the active cell area, Ncells is the number of cells in the
stack and F is the Faraday’s constant.

ṄDiff.
H2O =

Deff.
H2O∆CAcellNcells

tmem
(14)

Where Deff.
H2O is the diffusivity function based in (As-

pen Technology, 2021), ∆C is the comparison water
composition in the anode and cathode side, Acell is the
active cell area, Ncells is the number of cells in the stack
and tmem. is the membrane thickness.
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Ṅ.
H2O =−

KDarcyAcellρH2O (Pcat.−Pan.)
µH2O

(15)

Where KDarcy is the membrane permeability, Acell is
the active cell area, ρH2O is the water density, Pcat. and
Pan. are the pressure value in the cathode and anode
side respectively and μH2O is the water viscosity.
Energy Balance
The energy balance is determined by comparing the
energy inputs and outputs of the system equal to the
total energy capacity. The inputs include the electrical
power and the energy content of the inlet water flow,
while the outputs encompass the heat losses (as de-
scribed by Equation (16) as well as the outflow energy
from both the anode and cathode sides.

Qloss = hfreeAext
(
Top.−10−Tstd.

)
(16)

Where hfree is the heat transfer coefficient based in
(AspenTech, 2021), Aext. is the exterior area (Aspen-
Tech, 2021), Top. is the operational temperature in the
cell and Tstd. is the standard temperature.

3.2 Process validation

The simulated process is validated using simulated
data, at an operating temperature of 55°C and an oper-
ating pressure of 30 bar, with the model presented in
(Colbertaldo et al., 2017). The chosen operating con-
ditions are based on the literature review performed
during this study. Figure 2 illustrates the polarization
curve demonstrating the relationship between the volt-
age cell and the current density. Furthermore, it pro-
vides insight into how various voltages incorporated in
the model change as the current density increases. The
specific comparison is made at a current density of 1,3
A/cm2, where the voltage value for the simulated plant
in this article is known to be 2,27 V. For the same data
point in the reference article, the voltage is observed
to fall between the values of 2,2 and 2,3 V. For the
rest of the data points, the adjustment between the two
models is carried out in a similar manner. Thus, a cor-
relation can be drawn between the figure presented in
this paper and the one found in the reference paper,
validating the simulated model.

4 Sustainability analysis

The research on the application of the GREENSCOPE
indicators to evaluate a PEM electrolysis process is
scares. Following indicators are used to assess the sus-
tainability of hydrogen production plants that utilize
PEM technology.

4.1 GREENSCOPE methodology

Using the approach of sustainability and aiming to
measure sustainability in any new or existing chemical

Figure 2. Polarization curve.

process throughout its life cycle analysis, the United
States Environmental Protection Agency (US EPA)
created the GREENSCOPE tool (EPA, 2015). The
methodology in this tool is based on a set of metrics,
GREENSCOPE indicators, used to evaluate the envi-
ronmental performance of chemical products and pro-
cesses in four different principal areas: Environmen-
tal, Efficiency, Economic and Energy. For the nor-
malisation of the GREENSCOPE indicators, Equation
(17) is used, which compares the actual process sce-
nario with the best-case scenario of 100% sustainabil-
ity and the worst-case scenario of 0% sustainability.
The GREENSCOPE tables provide a comprehensive
set of indicators and their corresponding parameters
for calculating both the best and worst case scenarios.
This Equation allows the comparison between differ-
ent process (Li et al., 2016; Lima et al., 2016).

IndicatorScore =
Actual −Worst
Best −Worst

x 100 [%] (17)

4.2 GREENSCOPE indicators

To calculate the indicators selected for the PEM elec-
trolyser, the operating point of the simulation is cho-
sen corresponding to an electrical power of 6 kW, a
temperature of 55 °C and a pressure of 30 bar. This
particular operating point is chosen because it is of a
similar magnitude to the operating point used in the
AWE simulation available in literature, a more ma-
ture technology, is selected for the purpose of compar-
ing the sustainability analyses (Sánchez et al., 2020;
Hancke et al., 2022). The indicators selected for
the sustainability analysis comparison of the simu-
lated electrolyser are as follows: Global warming po-
tential (GWP) – Environmental indicator, Mass Loss
Index (MLI) – Efficiency indicator, Fractional Wa-
ter Consumption (FWC) – Efficiency indicator, Spe-
cific Energy Costs (CE,Spec.) – Economic indicator,
Resource Energy Efficiency (ηE ) – Energy indicator
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(Ruiz-Mercado et al., 2014). Table 1 shows the data
for the selected indicators. Note that for the CE,Spec.
the energy and the product cost are calculated by using
the model develop by (Jovan & Dolanc, 2020). This
model requires estimation of the CAPEX of the sim-
ulated plants, that are calculated using the estimation
model develop by (Reksten et al., 2022). For the other
indicators, data is taken directly from the simulations.

Table 1. Data used for the GREENSCOPE indicators.

PEM AWE Indicator

H2 (kg/h) 0,101 0,220 GWP, MLI, FWC, ηE
O2 (kg/h) 0,026 1,355 MLI

CO2 (kg/h) 0,000 0,000 GWP
H2O (kg/h) 0,002 0,002 FWC, ηE

Prod.C($/kg H2) 7,170 6,249 CE,Spec.
En.C($/kg H2) 1,779 1,363 CE,Spec.

5 Process scale-up

The linearisationmethod has been chosen to transform
the data, making it suitable for the computation of re-
gression models. This methodology is introduced to
extrapolate the data, enabling a comparative analysis
with commercially available electrolysers capable of
generating greater quantities of hydrogen. The simu-
lated data pertaining to the operating conditions of 30
bar pressure and 55°C temperature is used for scale-up
purposes.

5.1 Regression and linearization model

The objective of data linearisation is to apply a regres-
sion model that initially do not have a linear depen-
dence (James et al., 2021). In this study, simulated cell
voltage cell (Vcell), specific work (Spc. work) and ef-
ficiency (η) data were taken and scaled-up as a func-
tion of current intensity. These parameters and ratios
are typically the ones present in the reference article
for the comparison of the simulated and scaled data
of electrolysers present in the market (Buttler & Spli-
ethoff, 2018). Table 2 presents the detailed explana-
tion of the relationships of the variables for which re-
gression models have been sought, including the data
transformations performed and the variables to which
it applies. The table also includes the regression mod-
els ultimately used, along with their corresponding R-
squared values determining their suitability for use.
Notably, all R-squared values are close to 1, indicating
the high degree of fit and confirming the suitability of
the generated regression models for the study’s pur-
poses. As an example, Figure 3 shows the application
of a square root transformation to the abscissa results

Table 2. Data linearisation

X Y Reg. model R-sq.

iu Vcell y = 0,39
√

x+1,85 0,96
iu Spc. work y = 0,42 log(x)+5,27 0,94
iu η y =−0,04 log(x)+0,57 0,99

in the linearisation of the data, which is then modelled
using a regression model.

Figure 3. Plot of Vcell and Curr.Den linearisation

6 Results

The results of the Aspen HYSYS simulation, the sus-
tainability analysis and the scaling-up process are pre-
sented below.

6.1 Simulation results

Figure 4 provides the correlation between voltage cell
and current density, as well as the relationship be-
tween current density and efficiency. Where effi-
ciency is defined as the ratio of energy extracted from
the process in the form of hydrogen, using its LHV,
and the amount of electrical energy input to the pro-
cess. Solid lines are used to represent voltage cell,
while dashed lines indicate the evolution of efficiency.
For the various simulated points, the voltage of the
cell is different for the same value of current densities.
This is directly correlated with the amount of hydro-
gen produced. In other words, when less product is ex-
tracted, higher losses occur, resulting in a higher volt-
age for the cell. In terms of efficiency, a higher voltage
increases hydrogen production and increases losses.
Consequently, the simulation results represented by
blue lines, corresponding to the highest pressure, has
the worst performance.
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Figure 4. Plot of voltage cell and Efficiency of PEM elec-
trolyser

6.2 PEM sustainability

The GWP indicator is employed as a precise and visu-
ally effective representation of the complete absence
of gas or pollutant emissions in the production of
green hydrogen when the energy used is from a re-
newable source. The score of this indicator is 100 %
for both production methods, that evidence the zero
emission of CO2 pollutants during the process. The re-
sults of the MLI indicator shows that the PEM process
achieves a normalization value of 99,74 %, whereas
the AWE process yields a value of 93,84 %. This in-
dicates that AWE processes are less efficient in terms
of hydrogen production. In terms of the FWC indi-
cator, the AWE process demonstrates superior effi-
ciency in utilizing the required water resource for its
operation compared to other processes, such as PEM.
While the PEM normalization of the indicator reflects
a level of 84,68 %, the AWE process achieves signif-
icantly higher levels, reaching close to 92,00 %. The
normalized CE,spec. indicator value for the PEM pro-
cess is 40,91 %, while for the AWE process it is 48,04
%, indicating that energy cost has a greater impact on
both processes. It is possible to see how the more ma-
ture AWE technology has a better cost distribution, al-
though the difference is not very large. The ηE indi-
cators for hydrogen production using PEM technology
and AWE are 77,50 % and 79,84 % respectively, in-
dicating that AWE has slightly higher efficiency com-
pared to PEM. Figure 5 displays the normalized values
for all the indicators, along with the comparison be-
tween PEM and AWE technologies, depicted in blue
and orange respectively. The variation in both elec-
trolysers can be justified by method of operation and
technology differences.

Figure 5. Plot of GREENSCOPE indicators for PEM and
AWE

6.3 Scale-up analysis

To verify the suitability of the simulated installation
for large-scale hydrogen production, the benchmark-
ing study conducted by Buttler and Spliethoff is used
as a referenced. This study includes graphical repre-
sentations of the current market’s PEM electrolysers
(Buttler & Spliethoff, 2018). The figure 6 displays
the current density against the voltage, specific work,
and cell efficiency. The polarization line is shown
in blue, while the efficiency using the lower heat-
ing value (LHV) as the reference value is displayed
in grey dashed lines. Furthermore, a second y-axis
is added, representing the specific work values. The
minimum voltage is approximately 1,8 V. In commer-
cial electrolysers, this value consistently remains be-
low 1,75 V and approaches 1,5 V. This discrepancy
arises because the results do not converge at lower
power levels due to small scale nature of the sim-
ulated process. Nevertheless, the results for power
levels of 1 kW and above are satisfactory and facil-
itated a comprehensive analysis. The specific work
values adequately match those shown in the reference
article. Therefore, it can be concluded that this vari-
able can be compared with that of real electrolyz-
ers. Additionally, efficiency values have been ob-
tained that are realistic and, when compared to those
shown in the article, indicate that the scaling of the
simulation is satisfactory for the efficiency parame-
ter. In summary, the initial attempt to scale-up the
process has yielded favorable results. However, it
must be acknowledged that certain challenges, exem-
plified by the encountered setback related to lower
values, have surfaced. To further enhance these en-
deavors aimed at cost-effective design improvements,
consideration should be given to exploring alternative
scalingmethodologies. One potential avenue involves
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the utilization of techniques such as Buckingham’s π
theorem (Polverino et al., 2019) or the incorporation
of Artificial Neural Networks (ANN) strategies (Tian,
2020), both have demonstrated effectiveness in the
context of enlarging hydrogen fuel cells. These ap-
proaches hold promise for facilitating significant ad-
vancements.

Figure 6. Plot of Scaled-up process variables of PEMelec-
trolyser

7 Conclusions

The PEM simulation exhibited satisfactory perfor-
mance when compared to the reference simulation.
Specifically, the operating range of 1-6 kW was sim-
ulated successfully for subsequent analysis. The anal-
ysis shows that the higher temperature and electrical
power levels increased hydrogen production, while
pressure had an inversely proportional effect. This
finding is consistent with observations made in vari-
ous real and simulated PEM electrolysers documented
in the literature. The sustainability analysis performed
consisted of calculating indicator values according to
the GREENSCOPE methodology, which was used for
the first time in this paper to evaluate hydrogen pro-
duction methods. In addition, a sustainability compar-
ison was made between PEM and AWE technologies.
The environmental indicator, GWP, was found to be
100 for both technologies as green hydrogen produc-
tion with renewable energy sources does not gener-
ate CO2 emissions. With regards to the efficiency in-
dicators, the proportion of hydrogen produced, MLI,
was found to be higher for PEM technology than for
AWE, while water consumption, FWC, was better for
AWE technology. These variations can be justified
by technology differences present in both electroly-
sers. In terms of the economic indicator, CE,spec.,
it was observed that the weight of energy costs was
higher in the case of PEM technology. Finally, the ef-
ficiency indicator showed that the energy efficiency,
ηE, was slightly worse for PEM technology. The
scaling-up process employed data linearisation and re-

gression techniques. Through this approach, the sim-
ulation demonstrated satisfactory comparability with
commercially available PEM electrolysers. While
scaling-up processes for hydrogen fuel cells simula-
tions using PEM technology are documented, methods
such as Artificial Neural Networks (ANN) or Buck-
ingham π theorem for electrolysers simulations are yet
to be explored. The application of such methods holds
promise for significant cost reductions in the produc-
tion of commercialised electrolysers, further enhanc-
ing viability.
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Abstract 

 

A CO2 capture process from a natural gas based power plant has been simulated and cost estimated using an equilibrium-

based model in Aspen HYSYS using the amine acid gas package. The aim has been to calculate cost optimum process 

parameters for the standard process and also for a vapor recompression process. After process simulation using Aspen 

HYSYS, the process equipment was dimensioned and cost estimated using Aspen In-plant. The Enhanced Detailed Factor 

(EDF) method was used to select factors to calculate the total investment. Operating cost for heat and electricity was 

calculated from the simulation with estimated cost on consumed heat and electricity.  The cost was calculated to 21.2  EURO 

per ton CO2 removed and a vapor recompression process was calculated to 21.6 EURO per ton.   A recompression case with 

1.2 bar flash pressure was calculated to 21.3 EURO/ton CO2. The ΔTMIN in the amine/amine heat exchanger was varied, and 

the optimum at 15°C was 20.9 EURO per ton CO2. The vapor recompression alternative was in this work slightly more 

expensive than the traditional case.  In earlier works, the vapor recompression process has been claimed to be more 

economical than the standard process. The difference in this work is mainly due to different cost estimates of the compressor 

investment. This work shows that Aspen HYSYS is well suited for optimizing process parameters in a CO2 capture process 

with and without vapor recompression.   

Keywords: Carbon capture, Aspen HYSYS, simulation, cost estimation, optimization 

 

1. Introduction 

CO2 capture based on absorption into an amine followed 

by desorption is an established method to reduce CO2 

emissions. Much work has been performed on 

simulation and cost estimation of CO2 capture 

processes, especially from natural gas based power 

plants.  A traditional tool has been an equilibrium-based 

model in Aspen HYSYS using the amine acid gas 

package. The aim has often been to calculate cost 

optimum process parameters for a standard process.  In 

this work, the main aim has been to calculate cost 

optimum process parameters for a standard CO2 capture 

process.  A special aim has been to compare the standard 

process with a process based on vapor recompression.  

It shows that it is difficult to state whether the vapor 

recompression process is more economical than a 

standard CO2 capture process.    

 

2. Literature, Process Description and Specifications 

2.1 Literature  

There are several papers presenting results from process 

simulation and cost estimation of CO2 capture plants 

(Manzolini et al., 2015; Luo and Wang, 2016; Nwaoha 

et al., 2018; Hasan et al., 2021).  This work is a 

continuation of previous work at the Telemark 

University College and the University of South-Eastern 

Norway (USN). Some references are (Kallevik, 2010; 

Øi, 2012; Aromada and Øi, 2017; Øi et al., 2020; Øi et 

al., 2021; Shirdel et al. (2022).  These projects have 

involved process simulation, dimensioning and cost 

estimation of CO2 capture using the process simulation 

tool Aspen HYSYS.  Capture rate, energy demand and 

capture cost per ton CO2 have been calculated.  Many of 

the projects have optimized parameters by changing one 

process parameter at a time, such as the minimum 

temperature difference in the main heat exchanger. 

In the literature there have been presented many 

suggestions for process improvements using different 

process configurations (Cousins et al., 2011; Moullec et 

al., 2011; Dubois and Thomas, 2017).  A simple 

alternative is vapor recompression where regenerated 

amine is depressurized into a flash tank, and the flash 

gas is recompressed and sent to the bottom of the 

desorber.  Cost optimization of vapor recompression has 
been perfomed by Fernandez et al. (2012), Øi et al. 

(2014), Aromada and Øi (2017), Øi et al. (2017) and Øi 

mailto:Lars.oi@usn.no
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et al. (2021).  This work is based on a Master group 

project  (Kermani et al., 2022).  In addition to the project 

work, simulation and cost estimation of the vapor 

compression process from 1.2 to 2 bar was also 

included.   

2.1. Process description of a standard process  

Fig. 1 shows a typical process for CO2 capture using an 

amine absorbent. In this method, CO2 is absorbed and 

captured in an aqueous amine solution, in which flue gas 

is passed through. The CO2-rich amine is then sent to a 

stripper, is heated with steam, and as a result CO2 is 

released from the solution.  In the figure, a gas cooler 

before the absorber and a water wash are shown, but 

these units are not simulated in this work.   
  

  

 
 

Figure 1: Process flow diagram of a standard amine-based CO2 

capture process (Aromada et al., 2020) 

 

3 Specifications and simulations  

3.1 Specifications and simulation of standard CO2 capture 

process  

The specifications for the base case is given in Table 1.  

The calculation sequence is similar to earlier works 

(Aromada and Øi, 2015; Øi et al., 2020; Øi et al, 2021).   

The absorption column is calculated first based on the 

inlet gas and the estimated lean amine flow (which is 

specified in the first iteration).  The amine from the 

bottom of the absorption column is sent to regeneration 

via the rich/lean heat exchanger.  The amine flow is 

entering the desorption column which separates the feed 

into CO2 product at the top and hot regenerated amine at 

the bottom. The regenerated amine is returned via the 

lean/rich heat exchanger and the lean cooler to the 

recycle block. Due to water loss in the process, water 
must be added to the process. The make-up water was 

adjusted manually.   The specifications in Table 1 aim 

at a 90 % CO2 removal efficiency and gives the result of 

7.7 °C in the lean/rich heat exchanger.  The simulations 

were performed in Aspen Plus V12. 

 

Table 1. Aspen HYSYS model parameters and specifications for 

the base case alternative  

Parameter  

Inlet flue gas temperature [oC] 40.0 

Inlet flue gas pressure [kPa] 110 

Inlet flue gas flow rate [kmol/h] 85000 

CO2 content in inlet gas [mole %] 3.73 

Water content in inlet gas [mole %] 6.71 

Lean amine temperature [oC] 40.0 

Lean amine pressure [kPa] 110.0 

Lean amine rate [kg/h] 110000 

MEA content in lean amine [mol-%] 11.21 

CO2 content in lean amine [mol-%] 2.93 

Number of stages in absorber [-] 10 

Murphree efficiency in absorber [m-1] 0.25 

Rich amine pump pressure [kPa] 200.0 

Rich amine temp. out of HEX [oC] 104.9 

Number of stages in desorber [-] 6 

Murphree efficiency in desorber [m-1] 1 

Reflux ratio in stripper [-] 0.3 

Reboiler temperature [oC] 120.0 

Lean amine pump pressure [kPa] 500.0 

 

 

 
3.2 Specification of vapor recompression process 

 

The Aspen HYSYS flowsheet for the base case is 

presented in Fig. 2. The flowsheet for the vapor 

recompression process is presented in Fig. 3.  After the 

desorber, the amine is pressure reduced through a valve 

to a flash tank.  The gas after the flash tank with 

atmospheric pressure (or higher) is compressed and sent 

back to the desorber.  Except for this, the process is the 

same as in the base case. 

   

3.3 Parameter variations  

 

With a 110000 kg/h amine flowrate, absorption 10 

stages, 90 % removal efficiency and 7.7 °C minimum 

approach temperature were obtained in the base case 

simulation.  The minimum approach temperature was 

varied.  For the vapor recompression case, the flash 

pressure was varied.  In the parameter variation 

simulations, all other specified parameters were kept 

constant. 

A possibility is to make use of the Case study function 

in Aspen HYSYS.  In that case a series of calculations 

can be performed automatically keeping all other 

specified parameters constant. 
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3.4 Simulation and cost estimation procedure 

The objective of this part is the estimation of the plant's 

total cost for the designed CO2 capture process. 

Calculations are based on dimensions obtained from the 

simulation in Aspen HYSYS V12. A short version of the 

cost estimation procedure is as follows, similar to the 

procedure in Øi et al. (2020) and Øi et al. (2021): 

• Calculation of each equipment cost using Aspen In-

Plant Cost Estimator, based on equipment 

dimensioning parameters for the base case. 

• Calculation of the total installation cost by applying 

the Enhanced Detailed Factor (EDF) method. 

• Correction of total installation cost by the cost 

inflation index (conversion by year). 

• Calculation of annualized capital expenditure 

(CAPEX) according to the discount rate and lifetime 

• Calculation of annual operational expenditure (OPEX) 

• Calculation of the total CO2 capture cost based on the 

plant lifetime 

 

3.5 Dimensioning for cost estimation  

The estimation of packing height is based on a constant 

stage (Murphree) efficiency corresponding to 1 meter of 

packing. Murphree efficiencies were specified to 0.25 

for the absorber and 1.0 for the desorber. Structured 

packing was assumed. 

The estimation of absorption column diameter was 

based on a gas velocity of 2.5 m/s and for the desorption 

column a gas velocity of 1 m/s was assumed as in Øi et 

al. (2020) and Øi et al. (2021).  The total height of the 

absorption column and desorption column were 

specified to be 25 m and 16 m respectively. The extra 

height is due to distributors, water wash packing, 

demister, gas inlet, outlet and sump.  The pumps and the 

vapor compressor were specified to have 75 % adiabatic 

efficiency. 

Overall heat transfer coefficient values were specified 

for the lean/rich heat exchanger 500 W/(m2K), lean 

amine cooler 800 W/(m2K), reboiler 1200 W/(m2K) and 

condenser 1000 W/(m2K).  These values are the same as 

in Øi et al. (2021) except for the lean/rich heat 

exchanger number (changed from 550 W/m2K), and 

slightly less than the numbers in Øi et al. (2020). 

 

 

Figure 2. Aspen HYSYS flow-sheet of the base case simulation (from Kermani et al., 2022) 

 

 

Figure 3. Aspen HYSYS flow-sheet of the vapour recompression case simulation (from Kermani et al., 2022) 
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3.6 Capital cost estimation methods  

 

Equipment costs were calculated in Aspen In-plant 

Cost Estimator (version 12), which gives the cost 

in Euro (€) for Year 2016 (1st Quarter). Stainless 

steel (SS316) with a material factor of 1.75 was 

assumed for all equipment units, except for pumps 

and the vapor compressor where a material factor 

of 1.3 was used as in Øi et al. (2020) and Øi et al 

(2021).   

In the EDF detailed factor method, each equipment 

cost in carbon steel was multiplied with an 

installation factor to obtain installed cost. The 

detailed installation factor is a function of the site, 

equipment type, materials, size of equipment and 

includes direct costs for erection, instruments, 

civil, piping, electrical, insulation, steel and 

concrete, engineering cost, administration cost, 

commissioning and contingency. Installation 

factors from  Aromada et al. (2021) were used.   

  

Table 3. Cost calculation specifications  

Parameter  Value 

Plant lifetime 10 and 20 years 

Discount rate  7.5 % 

Maintenance cost 4 % of installed cost 

Electricity price 0.06 EURO/kWh 

Steam price 0.015 EURO/kWh 

Annual operational time 8000 hours 

Location Rotterdam 

3.7 Operating cost calculation  

This project includes OPEX estimations for the use 

of electricity and steam (maintenance cost is not 

included). Operating cost specifications are given 

in Table 3. Electricity cost was specified to be 0.06 

EURO/kWh (approximately 0.6 NOK/kWh). The 

steam cost was specified to be 25 % of the 

electricity cost, 0.015 EURO/kWh.  This is 

reasonable for a case where the heat could be 

converted to electricity with 25 % efficiency.  The 

detailed cost estimation of CAPEX, OPEX and 

NPV (net present value) were calculated in an 

internal spreadsheet in Aspen HYSYS.  

  

4 Results and Discussion 

4.1 Base case cost results  

 

In Fig. 4, the results for the capital cost estimation 

of the base case are shown for all the equipment 

units.  The total cost was calculated to 74.6 mill. 

EURO.  The total cost per ton CO2 removed was 

calculated to 21.2 EURO/ton CO2. The numbers 

are low compared to many other estimations, but 

the values in Øi et al. (2020) are similar.  One 

reason is that some equipment like pre-treatment 

and water wash is not included in these 

calculations.  However, for optimization 

calculations, only the units in the recirculation are 

necessary to obtain a reasonable optimization.         

 
  

 
 

Figure 4: Total CAPEX and the cost of each piece of 

equipment for the base case (Kermani et al., 2022). 

 

The equipment cost shows that the most 

expensive equipment units are the absorber and the 

main heat exchanger.  This is traditional.  Normally 

the absorber is the most expensive unit, so there is 

a possibility that the absorber cost is 

underestimated. The estimated column efficiency 

is 0.25 per meter packing height, which is 

optimistic compared to 0.15 in Øi et al. (2021). A 

water wash is normally a part of the absorber, and 

this cost is neglected in this work.   The total cost 

is probably also underestimated because there are 

probably equipment unit details that are more 

complex than assumed.  The operating cost is 

probably underestimated because the maintenance 

cost is not included.  If both CAPEX and OPEX is 

underestimated to the same degree, the trade-off 

between them will give reasonable cost optimum 

parameters.   
 

4.2 Vapour recompression case 

 

The vapor recompression cost was calculated to 

21.6 EURO/ton CO2 for a flash pressure of 1 bar.   

This is slightly higher than the standard process, 
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and in this work this was not optimum.  The cost 

was also calculated for a flash pressure of 1.2 bar, 

and the result was 21.3 EURO/ton CO2.  This was 

the optimum vapour recompression case, but it was 

still not optimum compared to the base case.   In 

earlier work (Karimi et al., 2011; Øi et al., 2014), 

the vapour recompression case was estimated to be 

the most optimum process.  The difference in this 

work is mainly due to different estimates of the 

compressor investment.  It is possible to reduce the 

cost of the vapor recompression by optimizing the 

flash pressure as in Fernandez et al. (2012). In Øi 

et al. (2021), a flash pressure of 1.5 bar was the 

optimum in the vapour recompression case, but 

was not better economically than the standard 

process.       
 

4.3 Optimum minimum temperature approach 

 
The total cost was calculated for different 

temperature approaches.  The result is shown in 

Fig. 5 with the base case shown for 7.7 K.    The 

absorber packing height was 15 m in these 

optimizations.  The optimum value was found as 

the one with minimum total cost at 15 K with 20.9 

EURO/ton.  Øi et al. (2014) and Aromada and Øi 

(2017) get about the same optimum.  Values for the 

optimum minimum temperature approach in 

literature are often between 10 and 15 K.   

 

 

 

Figure 5. Optimization of minimum approach temperature 

for the base case (Kermani et al., 2022) 

 

4.4 Comparison with earlier studies 

 
The numbers in Table 4 show different literature 

sources with typical or optimized values for CO2 

capture rate, inlet CO2 concentration, ΔTmin, 

absorber packing height and reboiler duty.  The 

table shows that the calculated and estimated 

temperature approach, reboiler duty and absorber 

height are similar to values found in literature. 

  

Table 4. Comparison of this study with previous base case 

scenarios  

 
Some of the numbers are optimized and some of 

them are typical or reasonable values. Most of 

them are for CO2 capture processes for natural gas 

based power plants with about 4 mol-% CO2 in the 

exhaust gas as in this work. The rounded values in 

the values shown in Table 4 indicate that there is 

need for further work to find optimum values for 

these parameters.  

  

5. Conclusion  

   
A CO2 capture process from a natural gas based 

power plant has been simulated and cost estimated 

using an equilibrium-based model in Aspen 

HYSYS using the amine acid gas package. The aim 

has been to calculate cost optimum process 

parameters for the standard process and also for a 

vapor recompression process. 

After process simulation using Aspen HYSYS, the 

process equipment was dimensioned and cost 

estimated using Aspen In-plant. The Enhanced 

Detailed Factor (EDF) method was used to select 

factors to calculate the total investment. Operating 

cost for heat and electricity was calculated from the 

simulation with estimated cost on consumed heat 

and electricity.  The cost was calculated to 21.2  

EURO per ton CO2 removed and a vapor 

recompression process was calculated to 21.6 

EURO per ton. 

The ΔTMIN in the amine/amine heat exchanger was 

varied, and the optimum at 15°C was 20.9 EURO 

per ton CO2. The vapor recompression alternative 

also calculated with 1.2 bar flash pressure, was in 

this work slightly more expensive than the 

traditional case.  In earlier works, the vapor 

recompression process has been claimed to be 

more economical than the standard process. The 

difference in this work is mainly due to different 

cost estimates of the compressor investment. 
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Present work (base case) 90 3.73 7.7 

10 

(25-total 

height) 

3757 

Present work (ΔTmin =10) 90 3.73 10 10 3852 

Aromada et al. [11] 85 3.73 10 10 3600 

Øi et al. [15] 85 3.75 10 10 3650 

Alhajaj et al. [24] 90 5 20 34.3 4484 

Amrollahi et al. [25] 90 3.8 8.5 13 3740 

Sipöcz et al. [26] 90 4.2 10 
26.9  

(Total height) 
3930 

Karimi et al. [9] 
90 11.86 5 7 3545 

90 11.86 10 7 3611 
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This work shows that Aspen HYSYS is well suited 

for optimizing process parameters in a CO2 capture 

process with and without vapor recompression.   
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Abstract 

 

In recent years the demand for cooling in buildings has grown steadily due to factors such as climate change and 

increased use of technology in Sweden. The increase of cooling demand occurs mainly during peak demand periods, 

where there is limited cooling capacity combined with limited distribution capacity in the district cooling network. 

Sweden has experienced considerable growth in the solar energy market in recent years, though its utilization has been 

mostly limited to power generation. To fulfill the cooling demand increase, solar driven cooling is a viable solution 

alternative to traditional cooling methods. The use of solar cooling is still in its early stages in Sweden. The aim of 

this work is to design a simulation model of a solar absorption cooling system for a full-service restaurant prototype 

building.  The system layout consists of photovoltaic/thermal collector, storage tank, single-effect absorption chiller, 

auxiliary heater, and cooling tower. The results revealed the system ability to meet the cooling load while delivering 

sufficient hot water for the establishment. Higher solar fraction confirmed that using photovoltaic/thermal collector is 

more competitive than solar thermal collectors based on restaurant operational activities. A levelized cost of cooling 

of 0.164 € kWh⁄  indicated the system cost-effectiveness in comparison to similar setups in other favorable European 

locations for solar energy utilization. 

Keyword: Solar cooling, Absorption cooling, Photovoltaic/thermal collector, TRNSYS 
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Nomenclature 

Symbol Description Unit 

𝐴 Area m2 

𝐶 Heat capacity kJ kg−1 K−1 

𝑐𝑝 Specific heat 

capacity 
Jkg−1K−1 

𝐶𝑒𝑙𝑒𝑐 Electricity price € kWh−1 

𝐶𝐼 Capital 

investment cost 
€ 

𝐶𝑜𝑚 Operating and 

maintenance cost 
€ 

f Fraction of rated 

capacity 

− 

𝐺 Solar radiation W m−2 

ℎ Specific enthalpy kJ kg−1 

k Thermal 

conductivity 
W m−1 K−1 

L Distance m 

�̇� Mass flow rate kg s−1 

𝑁 Lifespan year 

P Power kW 

Q̇ Heat transfer rate kW 

r Discount rate − 

T Temperature ℃ 

t Time s 

U Heat loss 

coefficient 
W m−2 K 

τ Transmittance − 

Ẇ Work kW 

η Efficiency − 

Subscripts   

aux Auxiliary  

bot bottom  

c Cooling  

chw Chilled water  

cw Cooling water  

el Electrical   

edg edge  

hw Hot water  

j jth node  

out Outlet  

tank Storage tank  

th Thermal  

top top  

t Thermal  

Abbreviations   

ANN Artificial neural 

network 

 

COP Coefficient of 

performance 

 

LCOC Levelized cost of 

cooling 
€ kWh−1 

NPC Net present cost € 

PV/T  Photovoltaic 

thermal 

 

SF Solar fraction  

 

1. Introduction 

The building sector within both the EU and Sweden 

accounts for about 40% of total energy use (Liu, 

Rohdin, & Moshfegh, 2015). Space cooling is the 

fastest-growing use of energy in buildings, both in 

hot and humid emerging economies where incomes 

are rising, and in the advanced industrialized 

economies where consumer expectations of thermal 

comfort are still growing (IEA, 2018). In Sweden, 

about 14% of the service sector buildings apply 

space cooling and about half of these cooling 

demands were met by district cooling deliveries 

(Werner, 2017). There are still several potential 

barriers to installing district cooling in Sweden, such 

as high upfront costs, a lack of awareness about 

district cooling systems, and existing infrastructure 

and property technology limitations. Additionally, 

legal barriers may also pose challenges for 

implementing district cooling on a large scale (Palm 

& Gustafsson, 2018). Cooling demand is expected 

to continue in the foreseeable future, putting 

pressure on the country's energy infrastructure. 

Therefore, finding sustainable and efficient 

alternative cooling solutions for buildings in Sweden 

is of importance. 

Solar cooling systems offer a sustainable and eco-

friendly alternative for air conditioning purposes, as 

they do not rely on electricity generated from fossil 

fuels but rather utilize solar energy (Palomba et al., 

2017). 

A solar absorption cooling system is a type of air 

conditioning system that uses solar energy to power 

its cooling cycle. There are several research efforts 

being conducted on the use of solar absorption 

chiller systems for cooling applications. Lubis et al. 

(2016) evaluated the performance of a single-

double-effect absorption chiller in tropical Asia 

regions. During daytime hours, the energy saving 

could be up to 48% compared with an equivalent 

vapor compression chiller. Abdullah, Saman, 

Whaley, and Belusko (2016) investigated the 

potential of operating a solar-driven absorption 

chiller for a typical Australian home. The modelling 

and dynamic simulation of the integrated system 
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were performed using TRNSYS software and 

GenOpt ("GenOpt," 2009) was used for optimal 

sizing of the components. Although the system 

exhibited a 75% reduction in critical peak power 

demand, the payback period of the investment was 

not justified. 

Integration of solar absorption systems with other 

technologies such as energy storage and heat pumps 

increase the flexibility of the system and making it 

more practical for use in different applications. 

Borhani, Kasaeian, Pourmoghadam, and Omid 

(2023) analyzed the dynamic performance of a 

photovoltaic/thermal (PV/T) system coupled with an 

auxiliary heater and an absorption chiller, enabling 

the generation of electricity, heating, and cooling 

simultaneously. An artificial neural network (ANN) 

forecasting model was also developed to predict the 

system’s performance under various climate 

conditions. Yue et al. (2023) proposed a solar tri-

generation supply system that combines a PV/T 

collector, a heat pump, and an absorption chiller into 

a single integrated unit. The findings indicated that 

the system satisfied the load demand of a building in 

China, achieving an energy efficiency of 32.98% 

and an exergy efficiency of 17.62%. Moreover, the 

payback period was estimated to be 7.77 years, 

which was reasonable in comparison with other 

conventional systems. 

The use of solar absorption cooling in Sweden is 

currently limited. With the anticipation of 

increasingly warmer summers in Sweden, the 

present study aims to assess the feasibility of a solar-

assisted chiller powered by PV/T for the purpose of 

solar cooling. As an added benefit, this system also 

provides hot water delivery. The motivation behind 

this dual-purpose system for the restaurant 

application is threefold. Firstly, it allows the 

establishment to meet its high temperature hot water 

needs for sanitization and dishwashing. While 

district heating is a convenient source of hot water, 

its supply temperatures cannot meet these specific 

requirements. Secondly, by utilizing a PV/T system, 

solar energy is harnessed efficiently for both 

electricity and heat production, enabling the 

restaurant to maximize solar energy utilization. 

Lastly, the system configuration enables heat 

recovery through a heat exchanger that captures 

excess heat from the chiller outlet flow to preheat 

water. Without this heat recovery, the excess heat 

would otherwise be wasted in the cooling tower 

discharge. 

 

2. System overview 

The schematic of the proposed energy system is 

shown in Fig. 1.  The system comprises a PV/T 

collector, heat storage tank, auxiliary fluid heater, 

absorption chiller (AC), and cooling tower, and heat 

exchanger. The heat storage tank is also equipped 

with an auxiliary heater in case the solar hot water 

generation is not sufficient. The AC is a lithium 

bromide/water single effect-absorption chiller. The 

PV/T panels produce heat and electricity 

simultaneously. The thermal storage tank stores hot 

water from the PVT for hot water usage (state 6) 

based on the hot water demand profile. When there 

is a cooling demand, the hot water is transferred to 

the absorption chiller (state 12). The generated 

electricity will first be dedicated to powering the 

chiller and the pumps. The surplus power is then 

either used for charging the storage tank via an 

electric coil or in case the tank demand is fully met, 

it is used in the auxiliary fluid heater to achieve the 

desired hot water inlet temperature for the chiller 

(state 12). The energy system in this setup operates 

without the requirement for battery storage, aiming 

to maximize cost-effectiveness. The panels and 

storage unit are appropriately sized to meet a portion 

of the restaurant’s energy demand independently 

from the heating network and electricity grid. 

However, the building remains connected to the 

electricity grid to ensure a continuous supply of 

energy in case of any shortage. The primary function 

of the diverter is to control the distribution of hot 

water flow, effectively directing it to either the 

storage tank (state 10) or the chiller (state 11). When 

pump 1 is running, the controller prioritizes 

supplying water as heat source for the chiller based 

on the cooling schedule demand. The surplus heat is 

used for charging the storage tank. The tempering 

valve splits the input cold water (state 1) between the 

tee piece 1 and the heat exchanger (state 3). The heat 

exchanger is used to preheat the cold water before it 

enters the storage tank (state 4). The source side 

fluid stream carries the water release from the 

absorption chiller (state 16) acting as the heat source 

for the heat exchanger. After cooling down through 

the heat exchanger (state 17), pump 2 sends the flow 

back to the tee piece 2 in which it is being mixed 

with the chiller cooling water (state 15) before 

delivering it to the cooling tower (state 19). This 

approach is considered as heat recovery, where the 

excess heat from the chiller source side is utilized 

before it is ultimately rejected to the cooling tower. 

The chilled water is pumped from the absorption 

chiller unit into a distribution system (state 13). The 

chilled water carries heat away from the medium and 

delivers it back to the absorption chiller for the cycle 

to repeat (state 14). 
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Figure 1. Schematic diagram of the proposed cooling 

system. 

The simulations are performed using TRNSYS 

software, known for its extensive capabilities in 

transient modeling of renewable energy systems. All 

components adopted in this system were provided 

by the components library. The specification of each 

component is declared in Tab. 1 

Table 1. The components and parameters of the system. 

Parameter Value 

PV/T panel 

Collector area 150 𝑚2 

Collector efficiency 

factor 
0.7 

Collector plate 

absorptance 
0.9 

Collector plate 

emittance 
0.9 

Bottom and edge 

losses coefficient 
20 kJ hm2K⁄  

Collector slope 40° 

Temperature 

coefficient of PV cell 
-0.0003 1 K⁄  

Cell efficiency at 

reference condition 
0.2 

Packing factor 0.5 

Thermal storage tank 

Tank volume 3 m3 

Tank height 1 m 

Top, edge, and bottom 

loss coefficient 
2.5 kJ hm2K⁄  

Absorption chiller 

Rated capacity 80 kW 

Rated Coefficient of 

performance 
0.53 

Auxiliary electrical 

power 
5 kW 

 

In this work the chilled water is circulated within a 

full-service restaurant to absorb heat from its desired 

space. Given the lack of reliable and consistent 

experimental data from a commercial building with 

proposed energy system, the authors made the 

decision to employ a prototype building model as an 

alternative. The building model used in this study is 

based on the full-service restaurant model developed 

by the U.S. Department of Energy (Deru et al., 

2011). The building is divided into three thermal 

zones: kitchen, dining space, and an unconditioned 

attic. Modifications have been made to the model to 

represent the building in Sweden (Boverket, 2019). 

The geometrical and thermal properties of the 

building are presented in Tab. 2 and Tab. 3, 

respectively.  
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Table 2: Geometrical parameters of building.  

Parameter Value Unit 

Area 511 m2 

Floor 
Single floor 

plus attic 
- 

Floor to 

ceiling height 
3.048 m 

South 

window-wall 

ratio 

28 % 

East window-

wall ratio 
20.22 % 

North 

window-wall 

ratio 

0 % 

West window-

wall ratio 
20.22 % 

 
Table 3. Thermal specifications of model. 

Parameter Value Unit 

Exterior wall 0.29 W m2K⁄  

Roof  0.12 W m2K⁄  

Window 2.04 W m2K⁄  

Interior 

partition 
6.3 W m2K⁄  

Internal heat loads consist of plug and process loads 

(157 W m2⁄ ) and lights (20.4 W m2⁄ ). The number 

of people per floor area is 0.8. Fig. 2 shows the 

occupancy hourly schedule for weekdays that is 

used to control the operation of absorption chiller as 

well. 

 
Figure 2. Building occupancy schedules on a weekday. 

Fig. 3 gives information about the hourly hot water 

demand profile of the restaurant based on summer 

design schedule (Fuentes, Arce, & Salom, 2018; 

Murakawa, Nishina, Takata, & Tanaka, 2005). 

 
Figure 3. Building hot water draw-off profile. 

 

The primary purpose of the absorption chiller is to 

meet the cooling requirements of the building. It 

does so by absorbing heat from the building's 

cooling load, transferring it to the refrigerant, and 

ultimately rejecting the heat to the environment 

through the condenser. The restaurant is divided into 

two thermal zones, one is the kitchen and the other 

is the dining area. The cooling setpoint for the dining 

area is 24℃, while it is 26℃ for the kitchen. The 

cooling load of the restaurant model is shown in Fig. 

4. The maximum cooling load is 38.8 kW.  

 

 
Figure 4. Restaurant hourly cooling load. 

3. Modeling 

The thermodynamic modeling of the system is 

divided into multiple subsystems, which include the 

PV/T panels, heat storage tank, absorption chiller, 

and the auxiliary components.  

 

3.1. Thermodynamic analysis 

The energy assessment aims to analyze the energy 

conversion quantities, considering the transient 

behavior of each component. The calculation 

involves determining the mass and energy balance 

equations for each component in the system as 

below (Behzadi & Arabkoohsar, 2020): 

 ∑ �̇�𝑖𝑛 =  ∑ �̇�𝑜𝑢𝑡 (AA1) 

 �̇� − �̇� = ∑ �̇�𝑜𝑢𝑡ℎ𝑜𝑢𝑡 − ∑ �̇�𝑖𝑛ℎ𝑖𝑛 (AA2) 

By applying mass balance and energy balance 

principles to each component, one can assess its 

performance.  

3.1.1. PVT panels 

Th power output from the PV/T panels is directed 

toward different components based on their 

electricity demands. The generated electricity is 

primarily utilized to power the absorption chiller and 

its associated components such as solution and 

refrigerant pumps. The surplus power will be used 

to charge the thermal storage tank via an electrical 

coil and operating the pumps. If the storage tank is 

fully charged, the excess power is then utilized by 

the auxiliary fluid heater. 

The electrical and thermal efficiency of the PV/T are 

as follows: 
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𝜂𝑒𝑙 =

𝑃𝑒𝑙

𝜏𝐺𝐴𝑝
 

(AA3) 

 
𝜂𝑡ℎ =  

𝑄𝑢

𝜏𝐺𝐴𝑝
 

(AA4) 

in which: 

 𝑄𝑢 = �̇�8𝑐𝑝(𝑇9 − 𝑇8) (AA5) 

where ηel is the electrical efficiency, G is total 

incident solar radiation on the collector surface, P is 

electric power output, τ is the glass cover plate 

transmittance, ṁ8 is water mass flow rate to the 

panel at state 8, T9 and T8 are the outlet and inlet 

temperature at states 9 and 8, respectively. 

The total efficiency of the PV/T panels is determined 

by adding the electrical efficiency and thermal 

efficiency as: 

 𝜂𝑃𝑉𝑇 = 𝜂𝑒𝑙 + 𝜂𝑡ℎ (AA6) 

3.1.2. Thermal storage tank 

The component represents a cylindrical constant 

volume liquid storage tank with a vertical 

orientation. It can interact with up to two flow 

streams and incur thermal losses through the top, 

bottom, and edges. The tank is divided into 

temperature nodes to model temperature 

stratification and each node is governed by the tank 

energy balance as a function of time (Khan, Badar, 

Talha, Khan, & Butt, 2018). Through trial-and-error 

testing of models with varying numbers of nodes, 6 

nodes were found to provide the balance between 

accuracy and computational efficiency. Using more 

than 6 nodes provided minimal improvements in 

outlet temperature accuracy while increasing 

simulation runtimes. The differential equation for 

the tank nodes can be written as: 

 𝑑𝑇𝑡𝑎𝑛𝑘,𝑗

𝑑𝑡
=

𝑄𝑖𝑛,𝑡𝑎𝑛𝑘,𝑗 − 𝑄𝑜𝑢𝑡,𝑡𝑎𝑛𝑘,𝑗

𝐶𝑡𝑎𝑛𝑘,𝑗
 

(AA7) 

where Ttank,j is temperature of the tank node j, 

Qin,tank,j and Qout,tank,j is the heat input and output 

for node j and can be expanded as follows: 

 𝑄𝑖𝑛,𝑡𝑎𝑛𝑘,𝑗 =  𝑄𝑎𝑢𝑥,𝑡 + ∑ �̇�𝑖𝑛ℎ𝑖𝑛 (8) 

 𝑄𝑜𝑢𝑡,𝑡𝑎𝑛𝑘,𝑗 = 𝑄𝑙𝑜𝑠𝑠,𝑡𝑜𝑝,𝑗 + 

𝑄𝑙𝑜𝑠𝑠,𝑏𝑜𝑡,𝑗 + 𝑄𝑙𝑜𝑠𝑠,𝑒𝑑𝑔,𝑗 + 

𝑄𝑐𝑜𝑛𝑑,𝑗 + ∑ �̇�𝑜𝑢𝑡ℎ𝑜𝑢𝑡 + 𝑄𝑚𝑖𝑥,𝑗 

(9) 

where the heat loss from the top, edges, and the 

bottom of the storage for tank node j are: 

 𝑄𝑙𝑜𝑠𝑠,𝑡𝑜𝑝,𝑗 = 𝐴𝑡𝑜𝑝,𝑗𝑈𝑡𝑜𝑝(𝑇𝑡𝑎𝑛𝑘,𝑗 −

𝑇𝑒𝑛𝑣,𝑡𝑜𝑝)  

(10) 

 𝑄𝑙𝑜𝑠𝑠,𝑏𝑜𝑡,𝑗 = 𝐴𝑏𝑜𝑡,𝑗𝑈𝑏𝑜𝑡(𝑇𝑡𝑎𝑛𝑘,𝑗 −

𝑇𝑒𝑛𝑣,𝑏𝑜𝑡)  

(11) 

 𝑄𝑙𝑜𝑠𝑠,𝑒𝑑𝑔,𝑗 =  𝐴𝑒𝑑,𝑗𝑈𝑒𝑑𝑔(𝑇𝑡𝑎𝑛𝑘,𝑗 −

𝑇𝑒𝑛𝑣,𝑒𝑑𝑔)  

(12) 

Atop,j represents the tank top surface area for thermal 

losses (attributed to tank node 1), Abot,j denotes the 

tank bottom surface area for thermal losses 

(attributed to tank node N), Aedg,j is the tank edge 

surface area for thermal losses, Utop is the storage 

tank top heat loss coefficient, Ubot is the storage tank 

bottom heat loss coefficient, Uedg represents the 

storage tank edge heat loss coefficient, Ttank,j 

indicates the temperature of individual tank nodes, 

while, Tenv,top, Tenv,bot, and Tenv,edg correspond to 

tank environment temperature for losses through the 

tank's top, bottom, and edges, respectively. 

The nodes in the storage tank can interact thermally 

via conduction between nodes. The formulation of 

the conductivity heat transfer from tank node j is: 

 
𝑄𝑐𝑜𝑛𝑑,𝑗 = 𝑘𝑗𝐴𝑗

𝑇𝑗 − 𝑇𝑗+1

𝐿𝑗
+  

𝑘𝑗−1𝐴𝑗−1

𝑇𝑗 − 𝑇𝑗−1

𝐿𝑗−1
 

(13) 

where Tj represents the temperature of this node, 

𝑇𝑗+1 is the temperature of the node directly below 

the current node, 𝑇𝑗−1 is the temperature of the node 

directly above the current node; 𝑘𝑗 signifies the 

thermal conductivity of the fluid in node j, kj−1 is 

the thermal conductivity of the fluid in the node 

directly above the current node; Aj represents the 

conduction interface area between this node and the 

one below it, and Aj−1 is the conduction interface 

area between this node and the one above it; Lcond,j 

denotes the vertical distance between the centroid of 

this node and the centroid of the node below, while 

Lcond,j−1 represents the vertical distance between the 

centroid of this node and the centroid of the node 

above. 

Qaux,t is the auxiliary heater input for hot water 

preparation. At times, the nodes in the storage tank 

may become thermally unstable (a node has a higher 

temperature than the node above). If this happens, 

the model completely mixes any nodes that are 

unstable at the end of the timestep to avoid 

problems, Qmix,j is added to the energy balance of 

the storage tank to account for mixing effects. 

3.1.3. Absorption chiller 

This component is a single-effect hot-water fired 

absorption chiller. It is operated using hot water to 

regenerate the refrigerant in the generator from the 

refrigerant-absorbent mixture. The component is 

catalog-based, has its own external file and can 

predict the chiller's performance within a specified 

range of input data (Khan et al., 2018). When 

operating at rated capacity, the design energy input 

must be provided to the chiller. When the chiller is 

running at part load, only a fraction of the design 

energy input is required. With this data, the energy 

delivered to the chiller by the hot water stream is 

(Solar Energy Laboratory, 2019): 
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�̇�ℎ𝑤 =

Capacity𝑟𝑎𝑡𝑒𝑑

COP𝑟𝑎𝑡𝑒𝑑
𝑓𝐷𝑒𝑠𝑖𝑔𝑛𝐸𝑛𝑒𝑟𝑔𝑦𝐼𝑛𝑝𝑢𝑡 

(AA14) 

where Capacityrated is chiller rated capacity, 

COPrated is the chiller design coefficient of 

performance,  fDesignEnergyInput is the fraction of 

rated capacity required by the cooling machine. 

The amount of energy that must be removed from 

the chilled water stream to bring it from its entering 

temperature to the setpoint temperature is (Solar 

Energy Laboratory, 2019):  

 �̇�𝑐ℎ𝑤 = �̇�𝑐ℎ𝑤𝐶𝑝𝑐ℎ𝑤(𝑇𝑐ℎ𝑤,𝑖𝑛 −

𝑇𝑐ℎ𝑤,𝑠𝑒𝑡)  

(AA15) 

Where ṁchw and Cpchw are the mass flow rate and 

the specific heat of the chilled water, respectively. 

The total heat removed from the stream dissipated 

into the atmosphere in the cooling tower (Q̇cw) is 

estimated as (Solar Energy Laboratory, 2019): 

 �̇�𝑐𝑤 = �̇�ℎ𝑤 + �̇�𝑐ℎ𝑤 + �̇�𝑝𝑎𝑟 (AA16) 

where Q̇hw is the energy removed from the hot water 

stream, Q̇chw is the energy removed from the chilled 

water stream, and Q̇par represents the energy 

consumed by additional components in the system, 

such as solution pumps, fluid stream pumps, and 

controls. 

It is assumed that the entire energy requirement for 

auxiliary devices is used whenever the chiller is on, 

regardless of operating on full or partial load 

capacity.  

3.1.4. Weather data 

The hourly weather data of Lund is stored in the 

TMY-2 (Typical Meteorological Year 2) standard 

format. Fig. 5 shows the ambient temperature and 

the global solar radiation in cooling season for Lund, 

Sweden. The maximum temperature is 28.5 ℃, and 

the horizontal solar radiation reaches above 800 

W m2⁄  on a summer day. 

 

Figure 5. a) ambient temperature and b) global solar 

radiation on a horizontal plane for Lund in cooling 

season 

3.2. Performance metrics 

The evaluation of the performance and effectiveness 

of an integrated energy system goes beyond solely 

focusing on efficiency measurements. Therefore, to 

ensure a holistic approach, additional metrics are 

analyzed. 

Solar fraction is an index used to evaluate the 

contribution of the solar-driven equipment for 

cooling and hot water preparation relative to the total 

energy required to drive the cooling system (Fong, 

Chow, Lee, Lin, & Chan, 2010). 

The solar fraction (SF) is defined as:  

 
SF =

𝑃𝑒𝑙 + 𝑄𝑢

𝑃𝑒𝑙 + 𝑄𝑢 + 𝑄𝑎𝑢𝑥,𝑡 + 𝑄𝑎𝑢𝑥,𝑐
 

(AA17) 

where Pel is the PV/T power output, Qu is the useful 

energy added by the PV/T to the liquid stream, Qaux,t 

is the auxiliary heater input for hot water 

preparation, and Qaux,c is amount of auxiliary fluid 

heater input as the energy source for chiller 

operation. 

 In addition to the performance metrics, levelized 

cost of cooling (LCOC) is evaluated as an economic 

indicator. It represents the price of cooling 

production and is expressed by (Sajid & Bicer, 

2021): 

 
LCOC =  

NPC

∑ 𝑄𝑐𝑜𝑙𝑑
25
𝑖=1

 
(A18) 

in which Qcold is the amount of heat removal from 

the building, resulting in a decrease in temperature. 
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NPC is the net present cost of the system calculated 

by (Sajid & Bicer, 2021): 

 

NPC = 𝐶𝐼 + ∑
𝑄𝑎𝑢𝑥,𝑐𝐶𝑒𝑙𝑒𝑐 + 𝐶𝑜𝑚

(1 + 𝑟)𝑖

25

𝑖=1

 
(AA19) 

where r is the discount rate, N is the lifespan of the 

system, Qaux,c is the auxiliary chiller fluid heater 

energy consumption, Celec is the unit price of 

electricity, and Com is the operating and 

maintenance cost estimated to be 3% of initial 

investment cost (Sajid & Bicer, 2021).  

The investment cost for each of the components is 

tabulated in Tab. 4. The rest of the key parameters 

are brought in Tab. 5. 

Table 4. Financial specifications of the system 

Component Cost Reference 

Photovoltaic 

thermal solar 

collector 

384€ 𝑚2⁄  
(Gu & Zhang, 

2021) 

Thermal storage 

tank 
608€ 𝑚3⁄  

(Mortadi & El 

Fadar, 2022) 

Cooling tower 67.6€ 𝑘𝑊⁄  
(Mortadi & El 

Fadar, 2022) 

Single-effect 

absorption chiller 
300€ 𝑘𝑊⁄  

(Saastamoinen 

& Paiho, 

2018) 

Inverter 500€ 

(Reddy 

Penaka, 

Kumar Saini, 

Zhang, & 

Amo, 2020) 

Electric boiler 78€ 𝑘𝑊⁄  

(Zhao, Ge, 

Sun, Ding, & 

Yang, 2019) 

 

Table 5. Key input parameters for the simulation. 

Parameter Value Reference 

Electricity 

price 
0.17€ 𝑘𝑊ℎ⁄  

(Gu, Zhang, & 

Application, 

2021) 

Discount rate 8% year⁄  
(Gu et al., 

2021) 

Project 

lifetime 
25 years 

(Bellos & 

Tzivanidis, 

2017) 

 

3. Results 

The solar system is supposed to be used for cooling 

as well as hot water preparation. Hence, the scope of 

simulation is confined from May until the end of 

September. Using Lund, Sweden as the location of 

the case study the hot water supply shall be sufficient 

to satisfy the demands of the establishment. The 

sanitization and dishwashing, requires higher 

temperatures for effective cleaning and sterilization 

so the hot water supply temperature is set to 70℃ 

which is suitable for booster heaters. The tap water 

temperature is 15 ℃. By utilizing the provided 

information and constructing the model, it becomes 

possible to generate outcomes that pertain to the 

performance of the building's energy system 

throughout the cooling season. 

Fig. 6 illustrates the variation of monthly hot water 

generated during the cooling season. As solar 

radiation and ambient temperature increase, the rate 

of energy transfer to the water flowing through the 

PV/T panels also increases, leading to 313.2 m3 total 

produced hot water in June. The monthly produced 

water cooling is lowest in May and September. For 

the other months, the amount of water sent toward 

the chiller is almost constant as the cooling demand 

rarely has sharp variations in this period.  

 

Figure 6. Produced solar hot water volume for each 

month. 

Fig. 7 illustrates the combined heat and electricity 

produced by the PV/T panels from May to 

September. It is revealed that the PV/T is more 

effective at converting solar energy into electricity 

rather than heat in May and September where there 

is lower level of solar irradiance. The share of 

electricity and heat production during the summer 

months is more balanced which highlights that the 

PV/T provides a well-rounded energy solution, 

catering to both electrical and thermal energy needs. 

 

Figure 7. PV/T energy output. 
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Fig. 8 shows total electricity demand for the 

operation of the energy system categorized for each 

component. Among the components, the auxiliary 

fluid heater has the highest electricity consumption. 

Due to the lower solar irradiance even in summer 

months, the thermal energy produced by PVT is 

generally limited to lower-grade heat, such as hot 

water preparation. Since the hot water inlet 

temperature for driving the absorption chiller is 

90℃, the additional necessary power required to 

reach to this setpoint is large relative to other 

components.  

 
Figure 8. Electricity consumption of each equipment. 

A schematic of electricity flows showing possible 

interactions between the electrical power output 

from the PV/T and grid electricity to the system is 

shown in Fig. 9. The total power generated from the 

PV/T collectors is sufficient to cover the chiller 

electricity demand. However, the chiller heater 

relies on grid electricity to meet its power 

requirement for most of its operation period. It is 

noticed that only for 16% of the time the reliance on 

grid is eliminated. 

 
Figure 9.  Schematic of electricity flows from PVT and 

grid to the system. 

The cooling generated by the system meets the load 

requirement, proving the feasibility of the proposed 

system during the whole simulation period. Besides, 

it is designed to deliver hot water at a required 

temperature of 70°C. Fig. 10 shows histograms 

depicting the distribution of hot water outlet 

temperatures from the storage tank for each month 

of the cooling season. The blue bins represent the 

frequency of hours when the outlet temperature was 

below the desired setpoint of 70°C. It can be 

observed that while the average outlet temperature 

remains close to the setpoint during all months, 

deviations below the setpoint occur. The percentage 

of hours below 70°C is higher in the peak summer 

months of June, July, and August at 49%, 47% and 

46% respectively, compared to 23% in May and 

34% in September. This occurs as more hot water is 

diverted to meet the increased cooling demand in 

summer, causing the tank temperature to drop below 

the setpoint more often. This is more frequently 

observed during instances of abrupt changes in 

water demand, such as in the early morning or after 

lunch hours. In these scenarios, the recovery time of 

the auxiliary heater may not be sufficient to keep up 

with the demand. This can cause the temperature to 

drop below the setpoint. 

 

 
Figure 10. Thermal storage tank outlet temperature violin 

distribution  

Fig. 11 shows the energy performance of the 

equipment throughout the cooling season. The PVT 
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has an average thermal efficiency of 28.61% and an 

electrical efficiency of 6.51%. The single-state 

absorption chiller average coefficient of 

performance (COP) is 0.47. From May to August, 

the solar intensity and ambient temperature increase 

resulting in higher energy input to the PV/T system 

and enhanced heat transfer from the PV/T panels and 

consequently higher thermal efficiency. The system 

load increases in the summer months. Hence, the 

absorption chiller may need to operate at higher 

capacities, which can improve its COP. This is the 

main reason for the COP drop from August to 

September.  

 

 

Figure 11. Monthly energy performance of PVT and 

chiller  

Solar-powered integrated energy systems having 

high solar fractions are more economical (Zhai & 

Wang, 2009). This metric can be used for 

comparison between various solar cooling systems. 

Fig. 12 illustrates the monthly variation of solar 

fraction throughout the entire cooling season for 

both the PV/T-based model as well as a model in 

which the PV/T component is substituted with a 

solar collector with identical specifications. Another 

distinction is that the collector-based model is only 

used for cooling, and hot water supply is discarded. 

The variation in solar fraction, characterized by 

higher values in May and September in contrast to 

the summer months, can be attributed to the reduced 

cooling demand experienced during these periods 

for the PV/T-based system. Comparing the annual 

average values, the solar fraction (SF) for the PV/T-

powered system reaches approximately 0.41, which 

is four times higher than that of the solar collector-

based system. Therefore, in solar cooling 

applications, it is best to integrate them with hot-

water supply systems. 

 
Figure 12. Variation of solar fraction against different 

months for PV/T and solar collector 

To investigate the proposed system from an 

economic standpoint, the levelized cost of cooling is 

obtained as 0.164 € kWh⁄ . LCOC provides a 

standardized approach for comparison among solar 

thermal cooling systems with absorption chillers. 

The LCOC values reported by Bellos and Tzivanidis 

(2017) for solar-thermal absorption chillers for other 

cities are also depicted in Fig. 13. Generally, 

locations with higher cooling demand and higher 

solar radiation attain lower LCOC values. Although 

the initial investment cost for the proposed PVT-

based chiller is higher, the produced cost of cooling 

is not much higher in comparison with the other 

cities. It is important to state that the parameter is 

relatively sensitive to the price of electricity which 

caused the installation in Madrid with an electricity 

price of 0.24 € kWh⁄  to be less cost-effective than 

the present study. Additionally, utilizing PV/T 

instead of solar thermal collectors offers an added 

advantage of lowering the levelized cost. This is due 

to the surplus electricity generated to meet the chiller 

electricity demand, despite the higher initial 

investment cost. 

 

 

Figure 13. Levelized cost of cooling and installation 

location for the proposed system and other solar-driven 

chillers in the literature (Bellos & Tzivanidis, 2017). 

4. Summary and Discussions 

The cost of cooling is directly linked to the 

prevailing prices of electricity. Absorption cooling 

can be increased if there are opportunities to exploit 

waste heat or renewable heat sources for the process. 

The feasibility of using a solar-powered absorption 

chiller for a benchmark model of a full-service 
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restaurant was assessed. Instead of using the 

common solar thermal collector, hybrid PV/T 

collectors were opted for as the hot water production 

is crucial for a restaurant operation. The system 

configuration was developed in TRNSYS, and the 

components were sized based on achieving hot 

water temperature of 70℃ as well as fulfilling the 

cooling demand. The proposed system met the 

restaurant’s cooling load requirements. It also 

delivered hot water at the setpoint temperature for 

many operating hours. However, during peak 

cooling months the tank outlet temperature deviated 

below the hot water setpoint more frequently due to 

abrupt draw increases and limitations in the 

auxiliary heater recovery time. The surplus 

electricity generated was found to be sufficient for 

the chiller operation, provided that all the generated 

electricity is directed towards it. The PV/T system 

exhibited an average thermal efficiency of 28.61% 

and an electrical efficiency of 6.51%. The single-

stage absorption chiller achieved an average COP of 

0.47. SF and LCOC values confirmed that solar 

absorption chiller can be a more promising solution 

in conjunction with PV/T rather than a solar thermal 

collector in Sweden. This holds particularly true 

when there is a concurrent demand for electricity 

and hot water, such as in a restaurant. 
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Abstract

This work presents a comprehensive analysis of hybrid electric propulsion systems in commuter aircraft, aimed
at enhancing energy efficiency. The study utilizes an aircraft conceptual design library, OpenConcept, to perform
evaluations of various aircraft components and their interrelationships. The methodology integrates aerodynamics,
propulsion, and mission analysis within a common framework to optimize the aircraft design. The analysis focuses
on a 19-passenger commuter aircraft, employing a series/parallel hybrid-electric architecture. The gradient-based
Sequential Least Squares Programming optimizer is utilized to optimize design variables such as battery weight,
engine power, and the selected power ratios, while adhering to operational constraints. Through a rigorous Design
of Experiments study, the paper highlights that even when considering the current battery technology, hybrid-electric
propulsion yields substantial energy savings for short-haul missions. The fuel and energy consumption reductions
are evident, particularly for shorter ranges. However, for extended missions, the critical role of advanced battery
energy density is emphasized to achieve significant energy efficiency improvements.

1 Introduction

Aerospace sustainability has received considerable fo-
cus over the past years. Aviation’s environmental im-
pact, particularly greenhouse gas emissions and noise
pollution are the main drivers of making aviation
more efficient and, hence, more sustainable. This is
reflected by the sustainability goals (Darecki et al.,
2011; Mangelsdorf, 2012) set by various organiza-
tions across the globe. Despite the operation disrup-
tions due to the pandemic, the sector is gradually re-
turning to normal operations and is expected to exceed
pre-pandemic levels (IATA, 2022). Therefore, there is
a need for more sustainable aircraft in the coming fu-
ture.
Electrified propulsion is a promising technology
which is receiving increasing attention in the last
decades. Due to the current energy storage technology
and inherit additional weight, fully-electric propul-
sion is only feasible for limited range. Hybrid-electric
propulsion systems are considered as the stepping-
stone towards zero-emission aircraft. These aircraft
concepts combine traditional gas turbines with electri-
cal motors and energy storage systems. They present
potential to reduce fuel consumption, emissions and
improve the overall system energy efficiency (Felder,
2016; Pornet & Isikveren, 2015).
The electrification of aircraft industry focuses on dif-
ferent market segments. One of them is the short-

haul segment, where light commuter aircraft appli-
cations are covering distances of maximum 600-800
nautical miles. Such applications use turboprops and
small regional jets with turboprops prioritizing fuel
efficiency while turbofans and turbojets offer higher
cruise speeds.
Several benefit estimations have been presented in the
open literature based on conceptual design of hybrid-
electric aircraft. As it was reported by (Kruger et
al., 2018), different architectures have different op-
timal applications with hybrid-electric being suitable
for intermediate ranges (≤ 800 NM). This work was
extended with the mission analysis of commuter air-
craft (Kruger & Uranga, 2020) and it was presented
that hybrid-electric configuration can lead to a 63%
reduction in energy consumption, with a cost of 52%
increase in the take-off weight. (Zamboni et al., 2019)
analysed different hybrid-electric architectures with
the series/parallel one emerging as the most promis-
ing due to the combination of benefits in both aerody-
namic performance and propulsion system efficiency.
The authors reported a 28% and 14% reduction in fuel
and energy consumption respectively compared to the
baseline aircraft considered. In addition, the ELICA
EU-funded project reported a 56% reduction in total
energy consumed for a series/parallel partial hybrid
commuter aircraft with Entry-Into-Service (EIS) 2025
when compared to a reference aircraft with EIS 2014
(Nicolosi et al., 2022). Finally, (Schäfer et al., 2019)
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estimated that short-haul electrified aircraft has the
potential to replace up to 15% of global revenue pas-
senger kilometers and a substantial number of global
departures.
The addition of extra electrical components can lead
to increased complexity to the system, requiring a
thorough evaluation of its effects. The generation of
thrust relies on two sources: traditional fuel and elec-
trical energy from hybrid systems. Deciding when to
use each energy source involves various factors and
needs in-depth investigation. Many design choices
depend the components’ efficiency, weights, and in-
terrelations (Moore, 2014). Instead of the traditional
approach of designing aircraft, there’s a growing need
to shift towards more comprehensive methodologies.
These combine exploring different design possibili-
ties with optimization techniques while taking into ac-
count a range of aspects from different areas of air-
craft design. This shift is based on the understand-
ing that the connections between these different disci-
plines have considerable effects on the system perfor-
mance (Martins & Lambe, 2013). Therefore, there is a
requirement for flexible and efficient design tools that
can handle various aspects of aircraft design and their
complex relationships. Such tools allow for a holis-
tic approach that not only considers the efficiency of
individual parts but also takes into consideration the
broader effects and interactions within the entire sys-
tem.
This study delves into the advantages presented by
a series/parallel partial hybrid-electric concept de-
signed for a 19-passenger commuter aircraft. The ar-
chitecture incorporates a conventional turboprop en-
gine and a motor-driven e-propeller per wing. In ad-
dition, an on-board battery system is integrated while
the turboprop engines coupled with generators. This
arrangement enables the e-propeller to operate using
either battery or engine-generated energy. To facil-
itate these investigations, a flexible aircraft concep-
tual design tool, built upon the OpenConcept library
(Brelje & Martins, 2018), is developed. Notably, es-
sential adaptations to the computational scheme are
introduced, enabling fast and approximate calcula-
tions crucial for mission performance analysis. By in-
tegrating different disciplines, the study paves the way
for the design and operation of hybrid-electric aircraft,
with a strong focus on advancing fuel and energy ef-
ficiency. By employing a comprehensive design of
experiments (DOE) approach, the research focuses
on two pivotal variables: the mission range (mea-
sured in nautical miles) and the battery energy density
(Wh/kg). These key factors are strategically selected
for their profound influence on the aircraft’s opera-
tional capabilities and overall efficiency. A compre-
hensive understanding of the interplay between these
variables facilitates an assessment of the feasibility to
achieve the desired mission range while optimizing

the battery offering the potential to elevate the air-
craft’s holistic performance.

2 Methodology

2.1 Aircraft conceptual design framework

The present work employs a general purpose air-
craft design toolkit which includes different aircraft
component models to perform individual calculations
while taking into consideration their interrelations.
The framework is based on the OpenConcept devel-
oped by (Brelje & Martins, 2018) which is an open-
source python library. OpenConcept is an adaptable,
low-fidelity aircraft design library and its main pur-
pose is to provide fast mission results for aircraft con-
ceptual design.
The user provides a set of parameters to the li-
brary; aircraft geometry characteristics, typical air-
craft weights such as the maximum take-off weight
(MTOW), propulsion component characteristics and
finally mission profile parameters for all mission
phases. The library uses the set of input parameters
and the pre-defined mission to perform weight esti-
mations, basic aerodynamic calculations and finally
mission performance analysis to compute high-level
variables such as fuel and energy consumed. It em-
ploys a non-linear Newton solver in order to set an ap-
propriate lift coefficient and throttle of different pow-
ertrain components to satisfy the pre-defined mission
requirements.
The OpenConcept library has a variety of different
size aircraft models available as well as series hybrid-
electric and parallel hybrid-electric modelling capa-
bilities (Adler et al., 2022; Fouda et al., 2022). It
is important to note that the weight estimation cal-
culations are based on textbook calculations using
empirical formulas (Raymer, 2018; Roskam, 2019;
Torenbeek, 2013) and different calculations are im-
plemented based on the aircraft class considered. Fur-
thermore, the employed library is built on top of the
OpenMDAO framework and is extensively discussed
in the work of (Gray et al., 2019). Any of the afore-
mentioned input variables can be used as an optimiza-
tion design variable, and, hence, the analysis and op-
timization of the aircraft system is enabled.
Within the present work, a conventional 19-passenger
aircraft model has been developed to enable the inves-
tigation of hybrid-electric commuter aircraft concepts.
The conventional model is based on the Beechcraft
1900D aircraft featuring two turboprop engines. The
main aircraft design parameters, such as the wing
area and Operating empty weight (OEW) are matched
with the publicly available data for the Beechcraft
1900D (Beech Commuter Airliners, 2000). The air-
craft model matches the value of OEW with a very
small deviation of 0.04%. This ensures that the model
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correlations can closely capture the reference aircraft.
Finally, it is important to note that the conventional
Beechcraft 1900D aircraft serves as the reference air-
craft throughout this work.

2.2 Series/parallel partial hybrid-electric architecture

The work focuses on the series/parallel partial hybrid-
electric architecture. The Therefore, a hybrid-electric
aircraft model has been developed for the purposes of
this work using the OpenConcept library. The model
is based on the conventional 19-passenger Beechcraft
1900D model mentioned in the previous subsection.
A schematic of the propulsion model used is presented
in Figure 1. The powertrain architecture includes two
turboprop conventional engines, a battery system, a
Power Management and Distribution (PMAD) system
and two e-propellers driven by electrical motors. The
PMAD system shown in Figure 1 is introduced in the
model to ensure a consistent power supply from dif-
ferent energy sources. The powertrain architecture
has been modified accordingly in the model to include
the required components.

Engine

Generator

Propeller

Engine

Generator

Propeller

Implicit Gap Implicit Gap

PMAD Battery

Motor Motor

Propeller Propeller

Φ

Engine
Throttle

Engine
Throttle

ThrottleThrottle

es es

Electrical

Mechanical

Control parameter

Figure 1. Schematic of a twin-engine series/parallel partial
hybrid electric propulsion model in OpenCon-
cept.

As shown in Figure 1, the computational scheme is
updated as well, as both thermal and electrical com-
ponents can contribute to the thrust generation in this

concept. The turboprop engines can deliver power to
both the propeller (denoted by Pprop) and the gener-
ator (denoted by Phybrid). Therefore an engine power
split is defined within the model as shown here:

eS =
Pprop

Pprop +Phybrid
(1)

The eS is set by the user (or optimizer) and is kept at
the same level for the two engines to achieve thrust
balance. Furthermore, it can take different values for
different mission phases but is selected to remain con-
stant throughout each phase.
In addition, to determine the battery contribution on
the thrust produced by the e-propellers, the supply
power ratio Φ is introduced in the PMAD system, fol-
lowing the definition presented by (Isikveren et al.,
2014; de Vries et al., 2019):

Φ =
Pbat

Pbat +Pgen,1 +Pgen,2
(2)

where, Pbat is the power delivered by the battery and
Pgen is the power delivered by the generator to the
PMAD. To be able to match the power requirement
from the motors, an implicit gap is exposed to the
Newton solver. The engines’ throttle is set by the
solver in order to achieve the PMAD power require-
ment Phybrid , whereas the Φ is set by the user. Finally,
it is important to highlight that the thrust split between
the mechanical and electrical propeller is not set di-
rectly but is a result of the power calculated by the
combination of eS and Φ. The motors’ throttle is set
again by the solver in order to achieve steady flight
conditions as it will be discussed in subsection 2.3.
The main model assumptions for individual power-
train components are summarized in Table 1. The
time-frame under consideration for the entry into ser-
vice (EIS) of the concept is set to 2035. This is
reflected on the assumptions for the electrical com-
ponent efficiencies. For the turboprop engines, the
model performance characteristics are based on the
Pratt & Whitney PT6A-67D unit (Badger et al., 1994).

2.3 Mission analysis

The nominal mission profile selected is presented in
Figure 2. The mission analysis includes a main mis-
sion, where the high-level parameters are extracted
and a diversion mission of 100 nautical miles to con-
sider the scenario in which the aircraft must land in a
different airport. Finally, according to the CS-23 certi-
fication requirements (EASA, 2018) for 19 passenger
commuter aircraft, the aircraft shall be able to fly for
30mins at 1500ft using only one energy source. This
requirement is included in the mission analysis and
aircraft design as a loiter phase.
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Table 1. Powertrain technology assumptions (EIS 2035).

Parameter Value

P&W PT6A-67D 2 × 950 kW
PSFC* 0.074/0.094/0.1∗ g/(kW*s)

(climb/cruise/loiter)
Motor power density 10 kW/kg

Generator power density 10 kW/kg
Motor efficiency 0.95

Generator efficiency 0.96
Battery efficiency 0.97
PMAD efficiency 0.99

* estimation
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Figure 2. Typical mission profile for commuter aircraft.

Each mission phase is split into segments by using in-
termediate points, in which the vertical and horizontal
speed are pre-defined. For each flight segment, the li-
brary calculates the value of the residual Rthrust using
the following equation:

Rthrust = T −D−mgsinγ (3)

where, T is the thrust, D is the drag, m is the current
aircraft weight, g is the gravitational acceleration and
finally γ is the aircraft angle. The OpenMDAO’s New-
ton solver is responsible to estimate the primary thrust
control parameter (engine or motor throttle) in order
to achieve zero horizontal acceleration. Furthermore,
in the climb and descent phases the excess thrust or
drag respectively are achieved in such a way to match
the vertical speed, whereas in the case of cruise and
loiter, the thrust and drag forces should be equal. Fi-
nally, for each segment, the aircraft weight is updated
based on the fuel consumed in the previous segment.
Parameters such as fuel and energy consumed are in-
tegrated with respect to time using the Simpson’s rule.
The diversion mission and loiter phase fuel and energy
are not directly presented in this work, however they
do affect the aircraft design as according to the CS-
23 certification requirements, the maximum MTOW

is 8618 kg. The model calculations are considering
that enough fuel or electrical energy is on board to
satisfy the main mission along with diversion mission
and loiter.
Finally, the top level aircraft requirements (TLARs)
selected for the concept under investigation are sum-
marized in Table 2. The TLARs of the concept are
based on the limitations imposed by the CS-23 cer-
tification. The payload is calculated based on the
numbers of passengers, passenger weight and bag-
gage weight as shown in 2.

Table 2. TLARs for hybrid-electric concept.

Parameter Value

MTOW ≤ 8618 kg
Number of passengers 19

Payload 1881kg
19*(87 + 12)

Nominal Mission 740.8 km (400 NM)
Cruise altitude 3048 m (10000 ft)
Loiter altitude 457.2 m (1500 ft)

Cruise Mach number 0.35
Rate of climb ≥ 6.35 m/s

(MTOW, SL, ISA)
Approach speed ≤ 62 m/s

2.4 Optimization problem

The OpenConcept library is developed to enable
for conceptual design optimizations. In this work,
the hybrid-electric concept is optimized for different
mission ranges and battery technology assumptions.
The Sequential Least Squares Programming approach
(Bonnans et al., 2006) is used to size the propulsion
system components for minimum fuel burn on the se-
lected mission.
The optimization problem is presented in Table 3. The
MTOW, battery weight, supply power ratio Φ and en-
gine power split eS are varied in order to minimize the
block fuel. The block fuel in this study denotes the
main mission fuel. For Φ, only the climb, cruise and
descent phases are considered and therefore number
of design variables for Φ is 3. The diversion mis-
sion and loiter Φ are not considered directly in the
optimization and assumed to be zero. For the diver-
sion mission, this choice is made to ensure that the
fuel consumption and therefore environmental bene-
fit takes place during the main mission, which is the
primary flight scenario in most cases. However, the
diversion mission fuel consumption has an effect on
the optimization results mainly due to the fact that
MTOW contains the total fuel and the MTOW is lim-
ited to 8618kg. For the loiter phase, this choice is
aligned with the certification requirements.
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On the other hand, the eS is selected to be varied by
the optimizer for all mission phases included in the
study. Therefore, the final count of design variables
from eS in the optimization problem is 7. This choice
is made to ensure safe operation for all powertrain
components during the whole mission. Finally, the
rated power for the generator and motor are varied to
size the components based on the maximum power
they can deliver during the mission.

Table 3. Optimization problem definition for hybrid-
electric aircraft.

Variable Quantity

minimize: Block fuel 1
by varying:

MTOW 1
Wbatt 1

P∗
motor (rated) 1
P∗

gen (rated) 1
Φ 3
es 7

subject to:
0 ≤ RMTOW ≤ 5 1

0.2 ≤ SOCbatt,loiter 1
0.1 ≤ throttle ≤ 1 7

0.1 ≤ eng throttle ≤ 1 7

After the weight calculations and mission analysis
take place within the library, the residual MTOW is
calculated as shown here:

RMTOW = (MTOW −OEW −Wf uel

−Wbatt −Wpayload)
(4)

where, MTOW is a design variable, OEW is calcu-
lated, Wf uel is integrated from the fuel flow rate with
respect to time for the whole mission, Wbat is a design
variable and Wpayload is set by the TLARs in Table
2. The optimizer constrains the RMTOW to small val-
ues (between 0 and 5kg). Furthermore, the state of
charge (SOC) of the battery at the loiter phase (end of
mission) shall be greater than 20% in order to make
sure that the battery is not fully discharged at the end
of the mission and ensure its safe operation. Finally,
the motors’ and engines’ throttles are constrained to
ensure their realistic operation within the flight enve-
lope. The component throttles are defined as the ratio
between the power delivered by the component and
the maximum (rated) power of the component.

2.5 Design of Experiments (DOE)

A DOE study is conducted considering two variables,
the main mission range and the battery energy den-
sity. The selection of the main mission range variable

aims to explore various aircraft operations and assess
the potential advantages of introducing commuter air-
craft for short-haul flights. The battery specific energy
density variable is closely tied to the assumptions re-
garding technology. By examining different levels of
energy density, valuable conclusions can be drawn re-
garding the potential of electrified aircraft technology,
particularly for aircraft falling under CS-23 certifica-
tion.
A full factorial design with 20 levels, and, hence 202

samples, is selected for this study. For each combi-
nation of mission range and battery energy density,
an optimization is conducted as presented in Table 3
in order to minimize the block fuel. A uniform dis-
tribution of the examined points in the design space
is selected, with optimizations of different range and
energy density taking place for each sampling point.

3 Results

The results for the MTOW and battery weight ratio
are depicted in Figures 3 and 4 respectively. The re-
sults confirm that electrifying short-haul aircraft leads
to a significant challenge in terms of MTOW. The up-
per limit of 8618 kg on MTOW imposed by the CS-23
certification, is reached for the majority of optimized
designs. Lowering the MTOW values would require
disruptive advancements in battery technology, espe-
cially for longer missions.

Figure 3. Maximum Take-off weight (MTOW).

Figure 4 shows that for shorter missions as the battery
specific energy density increases, the available battery
on board is reduced. This is expected as for higher en-
ergy density, the required energy can be achieved for
lower weight. On the contrary, for the longer mis-
sions, a different trend is observed. As the battery
energy density decreases, the available battery weight
starts decreasing. This is a result of the MTOW upper
limit. For longer missions, the upper limit of MTOW
weight is reached and therefore, it affects the amount
of available battery weight on board.
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Figure 4. Battery weight on board divided by the MTOW.

The energy consumption aspects of the optimized de-
sign are also investigated. The block fuel and total
energy results are normalized against the correspond-
ing values per mission range derived from the conven-
tional aircraft model as discussed in subsection 2.1.
The equation below is used for both quantities of in-
terest:

Qhybrid [%] =
Qhybrid −Qconv

Qconv
∗100% (5)

It is important to note that for the hybrid-electric air-
craft, both electrical and fuel energy are considered
in the total energy consumption whereas for the con-
ventional aircraft the lower heating value of the Jet-A
fuel is used in order to calculate the energy from the
fuel consumed. The lower heating value of the fuel
is assumed to be 42.8 MJ/kg. The relative results are
presented in Figures 5 and 6. It is evident from the
graphs, that the series/parallel hybrid-electric aircraft
can achieve not only lower fuel consumption but also
lower total energy consumption. This improvement is
more substantial for higher battery energy density, as
expected. However, for short mission ranges a consid-
erable improvement is shown, even with the current
battery technology (300 Wh/kg).
Finally, the ratio between the electrical and total en-
ergy is shown in Figure 7. This ratio is the degree of
hybridization (DoH) for hybrid-electric aircraft con-
cepts. It is important to note that when increased elec-
trical energy consumption is enabled, the total energy
consumption is reduced. Therefore, Figures 6 and 7
have opposite trends. This is because of higher effi-
ciencies achieved through the introduction of electri-
cal components. This observation confirms the bene-
fits of high DoH in short-haul aircraft applications.

4 Summary and Discussions

The investigation of the advantages offered by the se-
ries/parallel partial hybrid-electric concept for a 19-

Figure 5. Relative block fuel burn compared to the conven-
tional aircraft.

Figure 6. Relative block total energy compared to the con-
ventional aircraft.

passenger commuter aircraft is the focus of this work.
To achieve this objective, a novel aircraft concep-
tual design framework is developed and thoroughly
presented, leveraging the OpenConcept library. The
presented framework integrates a variety of aircraft
disciplines within the design process. The hybrid-
electric aircraft model, based on the well-established
Beechcraft 1900D aircraft, undergoes tailored compu-
tational developments to consider pivotal control pa-
rameters such as the supply power ratio (Φ) and en-
gine power split (eS). This modification enables the
analysis and optimization of the aircraft’s application.
The central focus of this study lies in mission anal-
ysis and the system performance evaluation, consid-
ering a typical commuter aircraft mission profile. A
comprehensive examination of both main and diver-
sion missions, along with a dedicated 30-minute loiter
phase, sheds light on critical high-level system vari-
ables, including fuel and energy consumption. The
overall optimization objective revolves around opti-
mizing the size of propulsion system components to
minimize fuel consumption during the main mission.
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Figure 7. Electrical block energy consumed.

The findings of this study validate the benefits of the
series/parallel partial hybrid-electric architecture. The
optimized designs present considerable reductions in
fuel burn and energy consumption. Notably, the study
highlights the importance of improved battery tech-
nology in achieving substantial reductions in fuel and
energy consumption for long-range missions, while
also pointing out the advantages of a range of battery
energy densities for shorter missions.
This work fundamentally highlights the significance
of considering interdisciplinary design tools and op-
timization methodologies. As the aviation industry
strives for enhanced sustainability, the integration of
hybrid-electric propulsion systems into short-haul air-
craft emerges as a straightforward way to achieve re-
ductions in both energy and fuel usage.
Future work should include the integration of a de-
tailed engine model for a more realistic estimation
of fuel consumption when the engine is either re-
designed or working in part-load conditions. In ad-
dition, a detailed investigation of the optimized power
management for a range of different battery technol-
ogy projections and mission ranges will provide valu-
able insights into the trade-offs in hybrid-electric air-
craft systems for short-haul operation.
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Abstract 

There is a strong interest in quantifying the amount of gas and its flow rate to facilitate better control of the 

processes involved in many industries. There are usually many sensors monitoring these processes, both intrusive 

and invasive, as well as non-invasive sensors which are usually clamped on to the process pipelines in which the 

multiphase flow occurs. In the multiphase flow rigs at Equinor and the University of South-Eastern Norway, 

experiments have been performed with different combinations and velocities of the phases and multiple sensors 

have been logged. The data from these sensors have been used to estimate volume fractions of the phases as well 

as their flow rates. This paper presents the estimated results of volume fractions and velocities of selected phases, 

obtained by fusing data from multiple sensors that monitor density, differential pressure, temperature, and acoustic 

emission using machine learning (ML) algorithms. These ML algorithms use neural networks with the non-linear 

input-output type with Levenberg-Marquardt training and provide estimates of volume fractions and phase 

velocities with RMSE values in the range of 4.6 to 16 m3/h, with the lowest RMSE for gas and the highest for 

multiphase flow. The total flow rate for the multiphase flow was in the range 30 to 120 m3/h. Results are compared 

with ML models using data from non-invasive sensors. 

1. Introduction 

It is desirable to know how much oil, water, and gas 

each well produces in an oil and gas installation. 

There are many good alternatives to measure single-

phase flow with high accuracy, but measuring 

multiphase flow is more challenging. The sand 

detectors used on Equinor’s oil and gas installations 

use a piezoelectric sensor to measure the acoustic 

emission caused by sand production, first reported in 

a publication of results based on an R&D project  

supported by STATOIL, the forerunner to the 

current Equinor, (Folkestad, Mylvaganam, 1990). A 

multiphase flow does also generate acoustic 

emission. Since sand detectors are both cheap and 

non-intrusive Equinor is interested in using their 

already installed sand detectors to measure acoustic 

emission from the multiphase flow and fuse this data 

possibly with other existing measurements for 

enhancing the process monitoring and control. 

Together with other available sensors,  the process 

industries are investigating the possibilities of 

determining the flow rates of individual phases as 

well the total flow  

Related works addressing flow regimes using the 

multiphase rig have addressed some of the 

possibilities of identifying flow regimes and flow 

velocities, , (addressing tomographic approach by 

Johansen et al, 2018; related to slug modeling and 

control by Pedersen et al, 2017; modeling single and 

two-phase flow at 90o bends in pipelines by Shoux 

et al 2021; and monitoring flow regime transitions 

with acoustic and electrostatic sensors in powder 

flow, Yang et al, 2019). This paper deals with some 

of the findings from the work done in collaboration 

with (Rasmussen, A.L., 2023). Some of the related 

work using the multiphase rig and extensive 

experiments, but with focus on flow regimes, is 

presented in the paper in SIMS 2023, (Syed Kazmi 

et al, 2023).  

 

1.1 System description – Multiphase flow rig with 

relevant measurands 

A dedicated multiphase flow rig has been in use for 

many years in the Equinor facilities. The system 

consists of feed pumps for gas, oil and water with 

the necessary measurements typical for flow related 

large scale experiments. In the current paper, the 

focus is only on a sensor suite consisting of the 

sensors, from which the data used in this study are 

acquired.  

A P&ID of Equinor’s multiphase rig is shown in 

Figure 1. Depending on the phase fractions and flow 

velocities of the different phases, the production 



SIMS 64  Västerås, Sweden, September 26-27, 2023 

process can be monitored and controlled using a 

series of actuators placed near the reservoir 

(downhole) or at the entrance or exit of the 

separators.  

The volume flow of each medium is indicated by QO, 

QW and QG with the following equations for Gas 

Volume Fraction (GVF), Water Liquid Ratio (WLR) 

𝐺𝑉𝐹 =  
𝑄𝑔

𝑄𝑡𝑜𝑡

 

 

𝑊𝐿𝑅 =  
𝑄𝑤

𝑄𝑤 + 𝑄𝑜

 

 

with total flow consisting of all the three phases 

given by  

 

𝑄𝑡𝑜𝑡= 𝑄𝑤 + 𝑄𝑜+𝑄𝑔 

 

These process variables are of interest in the context 

of measurement while drilling as well as in process 

monitoring during the operations of three phase 

flows in experimental work and oil and gas 

distribution. These three parameters quantifying the 

flows and the derived quantities WLR and GVF will 

be studied using AI/ML techniques with 

measurements from various sensors, as shown in 

Figure 1.  This study is based on the experiments 

performed in the Equinor multiphase rig in Herøya, 

Porsgrunn in the municipality of Telemark.

 

Figure 1. Simplified P&ID (Piping and Instrumentation Diagram) of the Equinor multiphase flow rig with the sensor suite 

selected for the current study. PDI – Differential Pressure; XI-1, XI-2, XI-3, and XI-4 – Acoustic Emission Sensors 

(Accelerometers). Inlet can be a single (G, O, W), two-phase (GO, GW, OW), or three-phase flow (O, G, W), with G-Gas, O-

Oil, W-Water, with corresponding volume flow rates QG, QG and QW. These variables have been selected as input data for 

training the artificial neural network models: Density Krohne DI-1, dp 4m straight, Emco Venturi PDI-1, Wika Venturi PDI-

2, Accelerometer i (XI-i) with i =1, ..4, Temperature Difference (TI-1) –(TI-2), Pressure Difference (PDI-1) –(PDI-2).  

 

2. Acoustic emission sensors 

The sand detector uses a piezoelectric element to 

detect the ultrasonic energy from sand particles 

colliding with the pipe wall and convert it into 

electrical energy. The sand production can be 

calculated if the flow velocity is known for the same 

period. The accelerometers used in the experiments 

for this paper operate on the same principles as those 

used in the sand detector. The main difference is 

whether the sensor detects bubbles/droplets or sand 

particles. A wiring diagram for a typical sensing 

system based on acoustic emission is shown in 

Figure 2. 
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Figure 2. The main modules used in the experiment coupled together in a sensing system based on acoustic emission. I.S. 

barrier – Intrinsic Safety barrier, DAQ- Data AcQuisition Unit. The modules in the hazardous area are mounted on the 

pipe wall or in the vicinity of the multiphase rig, shown with the P&ID in Figure 1.

3. Data Analysis from Experiments 

The level of acoustic emission in the multiphase 

flow varies based on process conditions. When the 

flow is annular at the entry of the elbow, gas bubbles 

tend to move to the inner curvature of the bend. 

Also, the GVF (Gas Volume Fraction) in a gas-

liquid flow increases after a restriction in the 

flowline. Examples of flow restrictions are a Venturi 

channel or a choke valve. 

The experimental data are from 20 distinct 

experiments involving diverse flow regimes, phase 

velocities and compositions. In each experiment, the 

flow rate of the phases are kept constant. The 

sampling frequency of the accelerometer is 

51.2 kHz. Figure 3 presents experimental results 

involving combined oil and gas flow. 

 

3.1 Analysis of the Root Mean Square (RMS) 

value of the acoustic emission measurements 

The acoustic emission sensors give a voltage signal 

that can be used for further analysis. The Root Mean 

Square of voltages, VRMS, of the samples is 

calculated using equation (1). 

 𝑉𝑅𝑀𝑆 = √
1

𝑁
∑ |𝑉𝑛|2𝑁

𝑛=1                       (1) 

, where 𝑁 represents the total number of samples in 

each experiment, while 𝑉𝑛 refers to the voltage of 

the 𝑛th sample.  

Figure 3. The letters and numbers in the x-axis contain information about the experiments in dataset 1. The first two letters 

explain that the experiments are done on gas and oil (GO) flow. The numbers refer to the experiment number, e.g., GO01 – 

experiment #01 with Gas and Oil, GOC11 – Experiment #11 with Gas and Oil with Choke etc. Legends inserted in each plot 

indicate the parameters plotted for each experiment. The numbering of the different experiments is the same as in the paper 

SIMS 2023, (Syed Kazmi et al, 2023).
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The VRMS value is based on approximately 2000 

samples from each experiment in dataset 1. Each 

experiment was run under steady-state conditions. 

The hypothesis is that the VRMS value will correlate 

with the acoustic emission from the multiphase flow, 

as was reported in (Folkestad, Mylvaganam, 1990). 

Pure water flow seems to give low acoustic 

emission, while pure gas flow seems to give higher 

acoustic emission. However, pure oil flow seems to 

give much higher acoustic emission. The observed 

variations are possible attributed to the differences 

in the viscosity of the fluids. Significant adjustments 

in the choke position yield peaks in both total 

differential pressure and amplitudes of acoustic 

emission signals. This effect is particularly 

noticeable for the acoustic emission sensor 4, which 

is situated downstream of the choke valve, as 

indicated by the position of the sensor "XI-4" in 

Figure 1. 

Pure water flow Qw seems to generate low acoustic 

emission signals, and pure gas flow generates 

higher acoustic emission signals with gas flow  Qg 

and total flow Qtot.  

 

3.2 Frequency analysis of the acoustic emission 

sensors  

Figure 4 show the dominant frequency components 

when increasing the gas flow when the flow contain 

both gas and oil. Choke valve openings are indicated 

by percentages in Figure 5, which shows the 

dominant frequency components in the lower 

frequency range 3kHz-5 kHz for a completely open 

choke valve. When the choke valve is gradually 

closed, there is considerable reduction in the 

amplitudes of these frequency components. The 

dominant frequency components seem to be in the 

range of 0 – 11 kHz for oil and water flow. 

 

4. Preparing the dataset for the artificial neural 

networks 

In addition to the RMS value from the acoustic 

emission sensors, the selected variables for training 

the dataset are different density, differential 

pressure, and temperature measurements. The 

sampling frequency of the accelerometers is 51.2 

kHz, but the other measurements have a sampling 

frequency of 1 Hz. A code was therefore written to 

calculate one RMS value every second to get the 

same sampling frequency for all measurements. The 

acoustic emission sensors were calibrated for the 

background noise in the test rig before they were 

normalized. 

 

 

Figure 4. Results based on time series logged from 

Sensor 1v in GO -flow, as indicated by the position of 

"XI-1" in Figure 1. Spectrogram and power spectral 

density show incidents of increased flow in the pipe. 

 

Both linear scaling and Z-score normalization 

methods were used, but Z-score gave overall best 

results when testing the models on other datasets. 

The Z-score normalization method assumes no 

extreme outliers is given in equation (2). 

𝑥′ =
(𝑥−𝜇)

𝜎
                            (2) 

, with x representing the sample value, 𝜇 the 

ensemble average and 𝜎 the standard deviation. 
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Figure 5. Results from time series logged in from Sensor 

1, in OW-flow, as indicated by the position of "XI-1" in 

Figure 1. Both power spectral density plot and 

spectrogram show the effects of opening the choke valve 

as indicated by the circle and ellipse shown with the red 

dashed lines. 

 

5. Neural network for multiphase flow 

estimation 

The shallow nonlinear input-output network using 

Z-score normalization gave the best results. An 

example of a nonlinear input-output model is shown 

in Figure 6. The most important results use all four 

acoustic emission sensors "XI" and the differential 

pressure measurement over Venturi 2 "PDI-2" as 

inputs to the network. The sensors are all shown in 

the P&ID in Figure 1. There is one network each for 

gas, oil, water, and total flow rate. The GVF, and 

LWR (Water Liquid Ratio) are calculated from the 

flow rates. 

 

 

6. Results 

To illustrate the performance of the model, one set 

of plots comparing the actual and estimated 

parameters is shown in Figure 7. 

 

 
Figure 6. Nonlinear input-output neural network with one 

hidden layer and one output layer. This network is 

configured with a time delay of 1, 3 neurons in the 

hidden layer and 1 output in the output layer. Inputs, with 

reference to Figure 1: Differential pressures on two 

locations, acoustic emission signals (XI-I, i=1,2,3,4), 

density from DI-1, Difference of Temperatures TI1 and 

TI2. Output: gas flow rate. 

  

7. Discussion 

The frequency analysis indicates that pure oil flow 

gives a higher amount of acoustic emission than pure 

gas flow and that pure water flow gives almost zero 

acoustic emission. It is recommended to investigate 

this finding in future research since there may be a 

relationship between with the viscosity of the fluid, 

or some other variable that can be exploited. It 

seemed like the frequency range between 0 – 11 kHz 

contained the most important information. Since 

there was no clear conclusion in the frequency 

analysis all frequency components were kept 

avoiding the risk of filtering away important 

information. This decision may have been a mistake. 

Further investigation is needed on the frequency 

analysis to find out if some of the frequency 

components are due to noise, but also to research if 

there are some dominant frequency components in 

gas, oil, or water flow. If there is a dominant 

frequency component in, for instance, gas, then the 

amplitude of that frequency component may 

correlate with the gas flow rate. In the frequency 

analysis it was shown that there may be a 

relationship between frequency components around 

1.7 kHz and total and water flow, but this needs to 

be investigated further. 
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The models for gas, oil, water, and total flow were 

trained with shallow neural networks. It is 

recommended to use a deep neural network in future 

studies to improve the results. According to 

MATLAB documentation, the NARX model will 

give more accurate predictions than the nonlinear 

input-output models since it uses the additional 

information from previous values of y(t).

 
Figure 7. Comparison of estimated and actual results for WLR (Water Liquid Ratio) and GVF (Gas Volume Fraction). The 

5-inputs: are: datafrom the four acoustic emission sensors (XI-I, i=1,2,3,4) and differential pressure PDI-2 over Wika 

Venturi meter, based on the P&ID shown in Figure 1.

In this study, it was observed that the NARX models 

gave the best training results, but that after closing 

the loop and simulating the network on the testing 

matrix the results were not as good as expected. The 

Nonlinear Input-Output models gave the best results 

when using the testing matrix. This network does not 

use the previous values of y(t) as feedback as the 

NARX network does. This may indicate that there is 

no relationship between the measured flow rate and 

the previously measured flow rate. The models using 
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7-8 inputs, gave the best results. The models with 

only 5 inputs, were used since they gave similar 

results. The models with 5 inputs are recommended 

since they are a more cost-effective solution with 

respect to execution time and resources.  

There seems to be a direct relationship between the 

acoustic emission generated by the multiphase flow 

and the differential pressure, which again correlates 

with the total flow rate. The Root Mean Square Error 

(RMSE) values in Table 1 reveal that the RMSE for 

oil and water flow rate models are higher than for 

the gas flow rate model, implying less accuracy in 

the oil and water models which will need 

improvement. Since the total flow rate is the sum of 

oil, water, and gas flow rate, its RMSE value is 

higher, but the results are satisfactory. The GVF and 

WLR are calculated from flow rates and are 

therefore dependent on the accuracy of the flow rate 

models.  

 

The location of the acoustic emission sensors may 

be vital for the results. It was shown in other studies 

that the GVF is increased downstream of a flow 

restriction like a Venturi or choke valve. Note that 

this is only true in the pipe just after the flow 

restriction and not for the whole pipe downstream 

the flow restriction. If this is to be interpreted as 

something that can be exploited in future studies or 

if this should be conceived as measurement noise 

should be investigated. If a sand detector is chosen 

as the acoustic emission sensor, then the location 

may not be ideal since it is located to best detect sand 

particles that collide with the outer curvature of the 

pipe wall, while gas bubbles seem to flow closer to 

the inner curvature of a 90-degree bend.     

8. Conclusion 

We implemented shallow nonlinear input-output 

neural networks for gas, oil, water, and total flows. 

Although the inclusion of additional sensors 

marginally improved accuracy, the cost-effective 

solution using only five measurements as input was 

favored due to the insignificant difference. 

Equinor is keen on utilizing already installed huge 

number of sand detectors to measure flow velocities 

based on acoustic emission caused by the multiphase 

flow. This study suggests the potential of combining 

four acoustic emission sensors with differential 

pressure measurements over a Venturi meter to 

estimate multiphase flow velocities.  

Shallow nonlinear input-output neural networks 

were created for gas, oil, water, and total flow. While 

including more sensors did improve the accuracy, 

the difference was not substantial, leading to a 

preference for the more cost-effective solution that 

only required five input measurements. 

In future studies, it is recommended to use a deep 

neural network to improve the results to improve the 

results, and place greater emphasis on frequency 

analysis to identify dominant frequency 

components. The most interesting frequency range 

in this study appeared to be 0 – 11 kHz; however, 

due to the lack of a clear conclusion, all frequency 

components were retained throughout the study.  

 

 

Table 1. An overview of the RMSE, network algorithm and configuration. The models for oil and water flow have room for 

improvement, while the gas and total flow models have both good accuracy and low RMSE. Dataset 1 was only available in, 

but dataset 2 was preferred to be used for training the data. This was due to a higher sampling rate on measurements and 

more available sensors.  

 Network type Training 

algorithm 
Network configuration RMSE 

Gas flow 

model 

Nonlinear 

Input-Output model 

Levenberg-

Marquardt 
1 hidden layer with 2 

neurons 
4.62 

Oil flow 

model 

Nonlinear 

Input-Output model 

Levenberg-

Marquardt 
1 hidden layer with 2 

neurons 
11.40 

Water flow 

model 

Nonlinear 

Input-Output model 

Levenberg-

Marquardt 
1 hidden layer with 2 

neurons 
10.87 

Total flow 

model 

Nonlinear 

Input-Output model 

Levenberg-

Marquardt 
1 hidden layer with 2 

neurons 
16.65 
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Abstract 

CO2 capture from gas turbine exhaust gas using heat from the power generation cycle is a possibility for CO2 

emission reduction from natural gas-based power plants.  A simplified power plant was simulated in Aspen 

HYSYS with a compressor, a combustion chamber, a turbine, a steam circuit with a steam heater, a high-pressure 

steam turbine, a low-pressure steam turbine, a steam condenser, and a circulating pump.  CO2 capture was 

simulated with an absorption column, a rich amine pump, a lean/rich amine heat exchanger, a desorber with a 

reboiler and condenser, a lean pump and an amine cooler.  The equipment cost was obtained from Aspen In-plant 

Cost Estimator, and an enhanced detailed factor method was used to estimate the total investment. A base case 

with combustion at 30 bar, ΔTMIN of 10 °C, and 10 stages (meters of absorber packing) was simulated, 

dimensioned, and cost estimated.  In earlier works, optimum parameters have been found by minimizing the cost 

of CO2 capture. In this work, optimum was defined as the maximum profit for a combined process with 85 % 

capture efficiency. Optimized parameters were calculated to 25 bar for the combustion pressure, 13 °C for the 

minimum temperature approach in the lean/rich amine heat exchanger, and 10-meter packing height in the 

absorption column. These values are comparable to values in literature. 

 

Keywords: Carbon capture, Aspen HYSYS, gas turbine, cost estimation, simulation. 

 

 

1. Introduction 

CO2 capture from fossil fuel-based power plants is 

extensively studied in the literature (Liang et. al, 

2015; Li et al., 2016).  Some papers include power 

production and CO2 capture in their studies (de 

Ruick, 1992; Kvamsdal et al.., 2007; Øi, 2007; 

Mathisen et al., 2011; Schach et al., 2010; Amrollahi, 

2012; Karimi et al., 2012; Hu et al., 2017; Luo et al., 

2015). There is also much literature on the cost 

estimation of CO2 capture (Rao and Rubin, 2002; Ali, 

2019; Shirdel et al., 2022).   

Research work on the combination of simulation, cost 

estimation and cost optimization of CO2 capture has 

been performed by Kallevik (2010), Øi (2012) and 

Shirdel et al. (2022). In a Ph.D. Thesis by Ali (2019), 

the Enhanced Detailed Factor (EDF) method was 

presented.  Øi et al. (2021) evaluated the automated 

calculation of cost optimum process parameters in the 

CO2 capture process. Typical parameters to optimize 

in an amine-based process are the number of stages in 

the absorption column and the minimum temperature 

approach in the heat exchangers.   

Nord et al. (2017), Kazemi et al. (2022) and Øi et al. 

(2022) have evaluated simulation and cost evaluation 

of combined power generation and CO2 capture.  

Nord et al. (2017) and Øi et al (2022) evaluated this 

for an offshore application. 

For a natural gas-based power plant, typically a 

Natural gas combined cycle (NGCC) plant, the tools 

GTPRO, GTMASTER and GateCycle have been 

used for simulation.  For CO2 capture, the programs 

Aspen Plus, Aspen HYSYS and Unisim are standard 

programs.  One paper (He and Ricardez-Sandoval, 

2016) has used Aspen Plus for both an NGCC and a 

CO2 capture process, and one paper (Hu et al., 2017) 

has used Unisim for both parts.  

This study presents findings derived from the 

master’s thesis by Aboukazempour (2023). The focal 

point of this research lies in the simulation and cost 

optimization of a natural gas-based power plant with 

integrated CO2 capture using Aspen HYSYS 

simulation software. A novel aspect of this 

investigation involves the integration of a power plant 

and a carbon capture facility which enable the cost 

optimization of several key parameters, including the 

power plant's inlet pressure, the number of stages in 

the absorption column and the minimum temperature 

difference in the heat exchangers. These optimum 

parameter values were found by optimization of the 

net present value assessment of the entire system. 

mailto:Lars.oi@usn.no
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2. Process Description and Specifications 

2.1. Process Description  

Fig. 1 shows a simplified NGCC process.  Natural gas 

is combined with compressed air in the combustion 

chamber and produces power in the expander part of 

the gas turbine.  The turbine exhaust heats steam in 

the steam generator which produces power in a steam 

turbine before it is pumped back to the steam 

generator. 

 

  

 
Figure 1: Combined cycle power plant (Øi, 2007)  

 

Fig. 2 shows the CO2 capture process.  The flue gas 

is cooled in the Direct Contact Cooler (DCC) before 

the CO2 is absorbed in lean amine in the absorber.  

The rich amine from the bottom is pumped through a 

heat exchanger to the desorber where CO2 is the top 

product and regenerated lean amine from the bottom 

is returned through the heat exchanger and a cooler to 

the absorption column. 

 

 
 

Figure 2: Process flow diagram of a standard amine-based 

CO2 capture process (Aromada et al., 2020) 

 

2.2. Process Specifications and Simulation 

The process specifications used for the base case 

simulation are presented in Tables 1 and 2. The 

process simulation in this work is similar to the work 

of Øi (2007). The simulations were performed in 

Aspen HYSYS Version 12.  The base case was 

simulated to capture 85 % CO2 from exhaust gas from 

the simplified NGCC power plant. The process has a 

10 ℃ temperature difference in the main heat 

exchanger.  

The Aspen HYSYS process flow diagram showing all 

the equipment included in the scope of the study is 

shown in Fig. 3. 

Table 1: Aspen HYSYS specifications for base case power 

plant model 

Parameter Value 

Inlet air temperatures 25 ºC 

Inlet natural gas pressure 30 bar 

Combustion temperature 1500 ºC 

Steam high pressure 120 bar 

Steam medium pressure 3.5 bar 

Steam low pressure 0.07 bar 

Pressure to stack 1.01 bar 

Stack temperature 100 ºC 

 

Table 2: Specifications for the CO2 capture process  

Items Specifications [Unit] Value 

Inlet Flue 

Gas 

Temperature [°C] 40 

Pressure [bar] 1.1 

Molar flow rate [kmol/h] 71345 

CO2 content [mole %] 4.61 

H2O content [mole %] 6.71 

Lean 

MEA 

Temperature [°C] 40 

Pressure [bar] 1.1 

Molar flow rate [kmol/h] 99496 

MEA content [W %] 28.92 

CO2 content [W %] 5.39 

Absorber Number of stages 10 

Murphree efficiency 0.25 

Rich amine pump pressure 

[ bar] 

2 

Rich amine temp. out of 

Lean/Rich amine HEx [°C] 

102.7 

Desorber Number of stages in 

stripper 

6 

Murphree efficiency 1.00 

Reflux ratio in the desorber 0.3 

Reboiler temperature [°C] 120 

Pressure [bar] 2 

Lean amine pump pressure 

[ bar] 

5 
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Figure 3: Combined power plant and CO2 capture process flowsheet in Aspen HYSYS (Aboukazempour, 2023) 
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2.3. Equipment Sizing  

Murphree efficiencies of 0.25 and 1.00 were 

specified for all the absorber and desorber stages, 

respectively. For the absorber and desorber internals, 

structured packing was assumed, and one stage was 

assumed to correspond to 1 meter of packing height. 

The column diameters were calculated based on a gas 

velocity of 2.5 m/s and 1 m/s, respectively, as in Park 

and Øi (2017) and Øi et al. (2021). The total height 

of the absorption column and desorption column 

were specified to be packing height plus 25 m and 15 

m respectively (Kallevik, 2021) due to distributors, 

water wash packing, demister, gas inlet, gas outlet, 

and sump. 75 % adiabatic efficiency was specified in 

the pumps, compressors and expanders. Overall heat 

transfer coefficient values have been specified for the 

lean/rich heat exchanger to 732 W/(m2K). These 

values are close to the same as in Øi (2012) and Park 

and Øi (2017) and slightly less than the numbers in 

Øi et al. (2021) which are regarded as optimistic. 

2.4. Capital and Operating Cost Estimation  

The equipment costs were calculated in Aspen In-

plant Cost Estimator version 12, which gives the cost 

in Euro (€) for the Year 2020. A generic location (e.g. 

Rotterdam) was assumed and stainless steel (SS316) 

with a material factor of 1.3 was assumed for all 

equipment units. In a detailed factor method like the 

EDF method, each equipment cost (in carbon steel) 

was multiplied by an installation factor to get the 

equipment installed cost. The installation factor is a 

function of the site, equipment type, materials, and 

size of the equipment and includes direct costs for 

erection, instruments, civil, piping, electrical, 

insulation, steel and concrete, engineering cost, 

administration cost, commissioning and contingency. 

The updated installation factors for 2020 (Aromada, 

2021) were used.  The specifications for operating 

cost estimation are found in Table 3.   

Table 3: Cost calculation specifications. 

Item Value Unit 

Operating Lifetime 25 [year] 

Construction Lifetime 3 [year] 

Operation Lifetime 22 [year] 

Discount rate 7.5 % - 

Operating Hours 8000 [h/year] 

Electricity Price 0.136 [€/kWh] 

Natural gas Price 1.29 [€/m3] 

Cooling water Price 0.022 [€/m3] 

Water process Price 0.203 [€/m3] 

Solvent MEA Price 1450 [€/ton] 

Maintenance Price 4% of 

CAPEX 

[€/year] 

Operator Price 80414 × (12 

Operators) 

[€/year] 

Engineer Price 156650 × (2 

Engineer) 

[€/year] 

 

2.5. Net Present Value (NPV) and Payback Period  

Cost optimization can be based on the maximization 

of the net present value (NPV) of the project. This 

common measure is defined by Equation (1) for a 

defined process plant and a defined time of operation.   

     𝑁𝑃𝑉 =  𝐶𝐴𝑃𝐸𝑋 + 𝑁𝑃𝑉𝑂𝑃𝐸𝑋                     (1) 

 
Where:  

- NPV= Net present value for the total costs [€]  

- CAPEX = Installation expenses for equipment 

[€]  

- NPVOPEX = The total cost of OPEX for the 

calculation period [€]  

 

In this work, the NPVOPEX cost for the calculation 

period is calculated and added to the CAPEX cost to 

obtain the total NPV. The NPVOPEX cost is obtained 

by Equation 2: 

𝑁𝑃𝑉 𝑂𝑃𝐸𝑋 =  ∑ {(𝑎) ×
1

(1 + 𝑖)𝑁
}

𝐸𝑛𝑑

N=3 

     (2) 

Where:  

- i = annual interest rate  

- a = annual operation cost [€]  

- N = number of years  

The calculated NPV in Equation (1) consider all the 

incomes and costs related to the utilities and the 

CAPEX. The NPV of the early years is negative, but 

it will be positive after this period due to the income 

related to the sale of electricity. A higher NPV 

indicates that the project is more profitable. The cost 

calculation shows a €1570 million net present value 

over a 25-year plant lifetime. 

As seen in Fig. 4, after six years of operation 

after construction (the ninth year in the table), 

the NPV of the project becomes positive, 

which indicates a six-year payback period. 

 

 
Figure 4: Payback time for the base case 

(Aboukazempour, 2023) 
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3. Results and Discussion 

3.1. Simulation Results of the Base Case Model 

The 400 MW net electricity output and 85% CO2 

removal are the main adjusted parameters in this 

Aspen HYSYS simulation. Based on these goals 

these three main parameters inlet pressure into the 

power plant, the number of stages in the absorption 

column, and the minimum temperature approach in 

the lean/rich heat exchanger were optimized based on 

the net present value during the total lifetime project. 

3.2 Optimization of Combustion Pressure 

Fig. 5 shows NPV as a function of inlet pressure and 

combustion pressure with an optimum of 25 bar. 

Earlier suggestions for optimum pressure vary 

between 15 and 35 bar. 18 bar has been suggested as 

an optimum by Horlok (2003), but he claims that 30 

bar is optimum for a gas turbine operating alone. 

Soares (2015) states that a higher combustion 

temperature favors a higher pressure with 12 bar at 

1100 K and higher than 40 bar at 1800 K. Ibrahim et 

al (2011) state that the highest total efficiency of 

combined cycle gas turbines takes place at a high 

compression pressure ratio with low ambient 

temperature as in this work. The gas turbine in this 

work operates at about 1800 K.  In the modern heavy-

duty Siemens gas turbine, the pressure is 24 bar 

which is close to the optimum for this work.   The 

optimization in this work is a simplification but 

shows that a combined model gives reasonable 

results compared to earlier optimization by e.g. 

Horlok (2003) and Ibrahim et al. (2011).  

 
Figure 5: NPV calculation as a function of inlet pressure 

for base case (Aboukazempour, 2023) 

3.3 Optimization of Minimum Temperature Approach 

in lean/rich amine heat exchanger 

Fig. 6 shows NPV as a function of the minimum 

temperature approach in the main lean/rich amine 

heat exchanger. The figure shows a flat optimum 

between 13 and 17 °C with an optimum at 13 °C.  

There are several sources indicating an optimum 

between 10 and 15 °C (Øi, 2012; Øi et al., 2021; 

Aromada et al., 2022; Shirdel et al., 2022; Øi et al., 

2022).  It is well-known that the optimum is quite flat.  

 

 
Figure 6: Manual NPV calculation results as a function of 

the minimum temperature approach  

(Aboukazempour, 2023)  

Fig. 7 shows NPV as a function of the minimum 

temperature approach for both manual and automated 

calculations. The manual calculations give a 

smoother curve.  The reason is that the manual 

calculations (or manual adjustment of the 

convergence) can adjust the convergence more 

accurately. The automated calculations are based on 

a case study, where some of the recycles are not 

adjusted.  The optimum temperature approach is 13 

°C for the manual calculation and 14 °C for the 

automated calculation.  

 

 
Figure 7: Comparison of manual and automatic NPV 

results for the minimum temperature approach.  

(Set Point: ΔTmin = 10 °C), (Aboukazempour, 2023)  

3.4 Optimization of the number of absorption stages 

 

Fig. 8 depicts the relationship between NPV and the 

number of stages in the absorber column, showing an 

optimal configuration at 10 stages (measured in 

meters of packing). In contrast, alternative references 

have computed optimal column heights within the 

higher range of 12 to 18 meters, as in works like  

Amrollahi (2011), Øi (2012), Aromada et al. (2022), 

Shirdel et al. (2022), Øi et al. (2021) and Øi et al. 

(2022). 

The greater number of stages observed in preceding 

absorber studies could be attributed to the pursuit of 

more ambitious CO2 removal efficiency targets. 

Within the scope of this research, achieving an 85% 

CO2 removal rate would likely correspond to a lower 

optimal absorption column height.  
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Figure 8: Manual NPV calculation results for the number 

of stages in the absorber column (Aboukazempour, 2023)  

3.5 Modified Base Case Model 

The initial scenario was modified using the best 

parameters identified in the sensitivity analysis. 

Table 4 displays the optimal process parameters 

employed in this adjusted scenario simulation. 

Table 4: Aspen HYSYS optimum parameters results based 

on the net present value (NPV), (Aboukazempour, 2023) 

Modified parameter Value 

Inlet pressure into the power plant 2500 kPa 

Minimum approach temperature 

(ΔTmin) 

13 °C 

Number of stages in the absorption 

column 

10 

The modified scenario projected a net present value 

of 1900 million Euro compared to 1600 million Euro 

for the initial scenario. The payback duration was 

reduced from 6 years to 5 years. Fig.  9 illustrates the 

payback period of the modified scenario based on the 

net present value of the project. 

 

 
Figure 9: Payback period of the modified base case. 

(Aboukazempour, 2023) 

3.6 Simultaneous parameter optimization 

While the current focus in this paper is on refining 

individual parameters, it is essential to recognize the 

potential benefits of optimizing all relevant factors 

simultaneously. This was performed by Karzemi et 

al. (2022), but this was only energy optimization and 

not economic optimization. Although it is  

concentrated on optimizing combustion pressure, 

absorption column stages and heat exchanger 

temperature in this study, it is worth noting that these 

parameters are interconnected. A comprehensive 

optimization approach may lead to more accurate and 

refined optimum results. 

Although simultaneous optimization of several 

parameters is not calculated in this study, Aspen 

HYSYS provides a platform for such investigations.  

Apart from Aspen HYSYS, other software tools like 

Aspen Plus, Unisim, and GateCycle also offer 

capabilities for simultaneous optimization of several 

parameters. 

   

3.7 Accuracy, uncertainties and limitations 

Uncertainties from process assumptions, cost 

estimation and parameter adjustments significantly 

impact the study's precision. Notably, there are 

substantial uncertainties in estimating process 

equipment costs, especially regarding main 

equipment installation expenses. This concern is 

particularly pronounced for high-cost components 

such as compressors and gas turbines.  The cost of 

natural gas also has a considerable influence on the 

net present value of a power plant with or without 

CO2 capture.  

 

4. Conclusion  

A standard gas-based power plant process including 

CO2 capture based on absorption into 

monoethanolamine (MEA) has been simulated and 

cost estimated with an equilibrium-based model in 

Aspen HYSYS2.0.  The power plant exhaust is the 

input to the CO2 capture simulation, and the steam 

demand for CO2 capture is the input to the power 

plant simulation. 

The power plant was calculated with a compressor, a 

combustion chamber, a turbine, a steam circuit with 

a steam heater, a high-pressure steam turbine, a low-

pressure steam turbine, a steam condenser, and a 

circulating pump.  The CO2 capture plant was 

simulated with an absorption column, a rich amine 

pump, a lean/rich amine heat exchanger, a desorber 

with a reboiler and condenser, a lean pump, and an 

amine cooler.  The equipment cost was obtained from 

Aspen In-plant Cost Estimator V12.0, and an 

enhanced detailed factor (EDF) method was used to 

estimate the total investment. A base case with 

combustion at 30 bar, ΔTMIN of 10 °C and 10 stages 

(meters of packing in the absorber) was simulated, 

dimensioned and cost estimated.   

In earlier works, cost optimum parameters have been 

found by minimizing the cost of CO2 capture. In this 

work, optimum was defined as the maximum profit 

for a combined process with 85 % capture efficiency. 
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Optimized parameters were the minimum 

temperature approach in the lean/rich amine heat 

exchanger, the number of absorption column stages 

and the combustion pressure in the power plant.  The 

optimum values were calculated to 13 °C, 10 stages, 

and 25 bar. These values are comparable to values in 

the literature.   
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Abstract

Optimal operation of petroleum production is important in a transition from energy systems based on fossil fuel to
sustainable systems. One sub-process in petroleum production deals with transport from the (subsea) well-bore to
a topside separator. Here, a simple model in Sharma & Glemmestand (2014) has been streamlined into a dynamic
model suitable for illustration of the dynamics of oil transport, as well for control studies. The advantages of using
dimensionless equipment models are emphasized. The model is then used to compare two popular modeling lan-
guages: Modelica, and ModelingToolkit for Julia. Key advantages and disadvantages of these two languages are
emphasized.

1 Introduction

1.1 Background

Petroleum products have been key energy carriers
for more than a century. Current focus on climate1
implies a change towards sustainable energy carri-
ers. To succeed in this change, a transition period
from the use of fossil fuel is necessary. In the tran-
sition, improved operation of petroleum production
through model based optimal operation will be nec-
essary. Petroleum production entails slow (reser-
voir; months) and fast (reservoir-to-separator; sec-
onds) subsystems; a focus of research project “Digi-
Well”2. Vertical transport of petroleum from oil well
to surface requires sufficient pressure to counteract
gravitational and friction forces. If the oil-well heel
pressure is insufficient for such transport, either (i) gas
is injected in the vertical pipe to “blow” the petroleum
fluids to the surface, or (ii) an electrical submersed
pump [ESP] is installed in the vertical pipe to suffi-
ciently increase the pressure. Here, we study the dy-
namics of transport from the reservoir formation to a
surface manifold via an ESP, and further horizontal
transport from the manifold to a separator.
Industrial simulation tools typically put main empha-
sis on the dynamics of the reservoir (time constant:
months) and use steady state models for the reservoir-
to-surface transport. This emphasis is inadequate for
daily operation and control. Here, a simple dynamic
referencemodel for oil transport from reservoir to sep-
arator is provided. The model provides an understand-
ing of the dynamic behavior of such systems, and is
1https://sdgs.un.org/goals
2See Acknowledgments.

suitable for industrial control design. Emphasis is put
on a simple, yet stringent model development, while
avoiding unit complexities.

1.2 Previous work

Sharma & Glemmestand (2014) (Sharma, 2014) pro-
vide a dynamic model of oil transport from reservoir
to separator suitable for control design; this model is
the focus here. Binder et al. (2015) discuss an older
model; other models typically are CFD models, etc.,
too complex for control design. Sharma’s model con-
siders a case with 4 vertical pipes from oil reservoirs
to a single manifold, with 2 horizontal pipes from
the manifold to a single separator. Each vertical pipe
has an ESP, plus a choke valve at the manifold en-
trance; the pump speeds can be manipulated individ-
ually. The horizontal pipes have booster pumps to
counteract friction losses. The original ESP model in-
cludes inductionmotors, but the dynamics of the pump
actuator is fast, and is neglected in later work. Sharma
& Glemmestand (2014) provide a novel ESP model,
a simple model for a booster pump, and use a valve
model based on on the ANSI/ISA S75.01 standard3.
The model with ESP in Sharma (2014) is mainly rel-
evant for the production of heavy oil. Several papers
use this model in advanced industrial control studies
Krishnamoorthy et al. (2016); Santana et al. (2021).
Mixtures of liquid oil and water form an emulsion
when stirred (e.g., in a multi-stage ESP); for such
emulsions, the viscosity — and hence the friction —
varies dramatically with water content, Justiniano &
Romero (2021). Sharma & Glemmestand (2014) as-

3http://integrated.cc/cse/ISA_750101_SPBd.pdf
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sume an unrealistic linear dependence of water frac-
tion.

1.3 Structure of paper

Section 2 gives an overview of the transport system
from oil reservoir via manifold to a separator, and key
equipment models. Section 3 develops a simplemech-
anistic model of the system. Section 4 contrasts two
modeling languages for simulation: Modelica and Ju-
lia’s ModelingToolkit. Section 5 illustrates model be-
havior and the use of modeling/simulation tools. Fi-
nally, Section 6 provides some conclusions.

2 System description

We consider production of a mixture of water and
crude oil in liquid phase.

2.1 System topology

Oil production systems merge several boreholes from
the same or different reservoirs through vertical pipes
into a manifold. Normally, more than one horizontal
transport pipe are needed from the manifold to a sep-
arator for sufficient transport capacity. Water is com-
monly added to the manifold to reduce friction loss in
the horizontal pipes. Figure 1 shows a system with
nw wells/vertical pipes and nt transportation/horizon-
tal pipes to the separator.
All vertical pipes are assumed connected to the same
manifold pressure pm; hence effluent choke pressure
satisfies pe, j

c = pe
c = pm for all j. Likewise, all trans-

port pipes end up in the same separator: p−, j
s = ps for

all j.

2.2 Fluid properties

The petroleum fluid properties are important. Density
varies with pressure and temperature, ρ (p,T ). Ne-
glecting temperature dependence, and assuming con-
stant isothermal compressibility,

ρ = ρ0 exp(βT (p− p0)) (1)

where (ρ0, p0) is some reference state, and βT is the
(assumed) constant isothermal compressibility.4
Defining water cut χw as χw , V̇w/V̇ : volumetric flow
rate of water divided by total flow rate of the fluid,
total density ρ becomes

ρ = χwρw +(1−χw)ρo; (2)

here, ρw and ρo are constant densities of pure water
and crude oil, respectively.
In reality, water and crude oil have different isother-
mal compressibilities. Here, we simplify and assume
4Isothermal compressibility is the inverse of bulk modulus.

an overall value for βT. Using data in Appendix 1,
density ρ varies ca. 10kg/m3 with pressure variation
in the range 25–225bar; we thus assume constant den-
sity in pipes, but a pressure-dependent density will be
assumed in the manifold.
Sharma & Glemmestand (2014) propose a simple lin-
ear mixing rule for kinematic viscosity ν :

ν = χwνw +(1−χw)νo. (3)

With ν known, dynamic viscosity µ can be computed
(if needed) as

µ = νρ . (4)
This linear interpolation model is used here, even
though it is not physically realistic.

2.3 Well-bore production

Total production from the reservoir (formation pres-
sure pf) relates volumetric petroleum fluid rate V̇h at
the well-bore heel as V̇h ∝ pf − ph, where ph is heel
pressure and the proportionality constant is the pro-
ductivity index, which is unit-dependent. Here, we
propose a dimensionless form instead,

V̇h = V̇pi
pf − ph

pς
pi

(5)

where V̇pi is the productivity capacity in the same unit
as V̇h and a scaling pressure pς

pi which has the same
unit as pf, ph.

2.4 Pump models

Pump models are typically given as

∆pp = ρghp; (6)

pump head hp = hp
(
V̇ , fp

)
with control input fp —

rotational pump frequency Hz, and volumetric flow
rate V̇ .
Sharma&Glemmestand (2014) give a comprehensive
model for the pump head of amulti-stage ESP. To ease
change of units, their model is here rewritten in dimen-
sionless form

hp
(
V̇ , fp

)
hς

p
=

(
fp

fp,0

)2

+a1
fp

fp,0

V̇
V̇ ς

+a2

(
V̇
V̇ ς

)2

+a3
fp,0

fp

(
V̇
V̇ ς

)3

. (7)

In Eq. 7, hς
p is a scaling head, fp is the pump rota-

tional frequency in the same unit as that of the nomi-
nal rotational frequency fp,0, V̇ is the actual volumetric
flow rate out of the pump, V̇ ς a scaling flow rate, and
a1, . . . ,a3 are dimensionless model parameters5.
5Here, a j is dimensionless, while in Sharma (2014) his parameters
a j have dimensions. This implies that the values of a j here are
different from those of a j in Sharma (2014).
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Figure 1. Multiple well system with nw wells — possibly coming from different reservoirs, and nt transport pipes to the sepa-
rator; based on Sharma & Glemmestand (2014).

For the booster pump in the horizontal pipes, a simpler
model is suggested in Sharma&Glemmestand (2014),
here rewritten in dimensionless form as

∆pbp
(

fbp
)

∆pς
bp

=

(
fbp

fbp,0

)2

(8)

Here, ∆pbp
(

fbp
)
is the pressure increase at the given

pump frequency/speed fbp, in the same unit as ∆pς
bp

—which is the pressure increase at the nominal pump
frequency fbp,0.

2.5 Valve models

Sharma & Glemmestand (2014) base their valve mod-
els on the ANSI/ISA S75.01 standard6. Here, we in-
stead propose a dimensionless description with exten-
sion to a control valve as

ṁ = ṁc
v · f (uv)

ρi

ρe

√
(pi − pe)/pς

ρi/ρς (9)

where ṁc
v is the valve mass flow rate capacity, uv ∈

[0,1] is the valve control signal, f : [0,1] → [0,1] is
the valve characteristics, ρi,ρe are influent and efflu-
ent densities, respectively, pi, pe are influent and ef-
fluent pressures, respectively, while ρς , pς are scaling
density and pressure, respectively.
6http://integrated.cc/cse/ISA_750101_SPBd.pdf

2.6 Friction loss

The friction drop along the pipe can be given by the
Darcy-Weisbach equation,

∆pf

ℓ
= fD

ρ
2

v2

D
(10)

where fD is Darcy’s friction factor, given by Cole-
brook’s7 implicit expression. One explicit approxima-
tion to Colebrook’s expression is due to Swamee and
Jain (Brkić, 2011),

1√
fD

=−2 · log10

(
5.74
N0.9

Re
+

ε/D
3.7

)
, (11)

where NRe is the Reynolds number,

NRe =
ρvD

µ
=

vD
ν
, (12)

µ is dynamic viscosity, ν is kinematic viscosity, and ε
is the “roughness height” of the pipe internals. Linear
velocity v is related to volumetric flow rate V̇ by

V̇ = vA (13)

where A is the cross-sectional area of the pipe.
7The Colebrook equation, or sometimes known as the Colebrook-
White equation.
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2.7 Why dimensionless models?

As an example, consider the ESP model in Eq. 7. In
the original formulation in Sharma (2014), the volu-
metric flow-rate is hard-coded to use a given unit for
the flow rate, e.g., m3/day. If the dynamic model re-
quires the flow rate in other units for dimensional con-
sistency, it may take considerable work to re-compute
the polynomial coefficients to achieve this. In sum-
mary: use of dimensionless models simplifies the pro-
cess of changing units, and reduces the chance of in-
troducing errors.

3 Dynamic model

3.1 Balance laws

The model is based on the total mass balance (mani-
fold) and the linear momentum balance (pipes). The
total mass balance is expressed as

dm
dt

= ṁi − ṁe (14)

where m is accumulated mass in the system, t is time,
ṁ is mass flow rate, and indices i,e denote influent and
effluent, respectively.
The linear momentum balance is

dm
dt

= ṁi − ṁe +F, (15)

where m is linear momentum given as m = mv with
linear velocity v, ṁ is momentum flow rate given as
ṁ= ṁv, and F is total force. With constant fluid den-
sity, ṁi = ṁe, and the momentum balance reduces to
Newton’s law, dm

dt = F .

3.2 Vertical pipes with ESP

We assume constant density in the pipes, hence Eq. 15
reduces to Newton’s law. Momentum is given as m=
mv with m = ρV̇ , and v related to V̇ by Eq. 13. The
total force is F = Fp +Fb −Ff −Fg, with

• Pressure forces at inlet and outlet of the pipe,

Fp = phA− pi
cA (16)

• Possible pressure boost due to a pump,

Fb = ∆ppA, (17)

with ∆pp given by Eqs. 6, 7,

• Friction loss,
Ff = ∆pfA, (18)

with ∆pf given by Eqs. 10, 11, 12, 13,

• Flow against gravity, with a lift height h,

Fg = ∆pgA, (19)

with
∆pg = ρvgh.

In addition, we need information about how flow rate
V̇ relates to the bottom hole pressure via the produc-
tivity capacity, Eq. 5.
The most structured formulation would be to pose
the momentum balance (here: Newton’s law) as the
differential equation, and add all necessary algebraic
equations. However, the OpenModelica DAE solver
struggles with such a formulation: the valve equation
Eq. 9 is implicit in pressure difference; in the iteration
to find ∆pv = pi − pe, if ∆pv becomes negative, the
square root gives a complex number, and the simula-
tion crashes. Instead, we have changed the differential
variable to V̇ ; then the valve equation can be inverted
and expressed as ∆pv ∝ V̇ 2.
The following formulation is used in OpenModelica
and ModelingToolkit:

dV̇v

dt
=

ph − pc
i +∆pp −∆pf −∆pg

ρvℓ/Av
(20)

ρ0
β = χwρw +(1−χw)ρo (21)
ν = χwνw +(1−χw)νw (22)
µ = ρ0

β ν (23)

ρv = ρ0
β exp

(
βT

(
pi

c − p0
β

))
(24)

ph = pf − pς
pi

V̇v

V̇pi
(25)

ṁv = ρvV̇v (26)

pc
i = pm + pς

v
ρv

ρς
v

(
ṁv

ṁc
v

)2

(27)

hp = hς
p

((
fp

fp,0

)2

+a1
fp

fp,0

V̇
V̇ ς (28)

+a2

(
V̇
V̇ ς

)2

+a3
fp,0

fp

(
V̇
V̇ ς

)3
)

∆pp = ρvghp (29)

vv =
V̇v

A
(30)

NRe =
ρvvvdv

νv
(31)

f v
D =

1

4
(

log10

(
5.74
N0.9

Re
+ εv/dv

3.7

))2 (32)
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∆pf = ℓ · f v
D

ρv

2
v2

v

dv
(33)

∆pg = ρvgh. (34)

If we only consider the model of a single vertical pipe,
we need to specify (i) initial state (i.e., V̇v), (ii) all “in-
put” variables, i.e., pf, fp, pm, and possibly water cut
χw, and (iii) all parameters, i.e., ρw, ρo, νw, νo, p0

β , ℓ,
A, pς

pi, V̇pi, pς
v , ρς

v , ṁc
v, hς

p , fp,0, V̇ ς , a1,a2, a3, g, dv,
νv, εv, h.

3.3 Manifold

We assume a perfectly mixed manifold. Assuming
constant manifold volume Vm, and adding water at
flow rate V̇w to dilute the fluid to manifold water cut
χm

w , thus reducing friction loss in the pipe towards sep-
arator, V̇w must be approximately

V̇w =
χm

w −χw

1−χm
w

V̇v. (35)

Total mass balance for the manifold can then be ex-
pressed as

dpm

dt
=

1
ρmVmβT

(
ρvV̇v +ρwV̇w −ρmV̇t

)
(36)

ρ0
β = χm

w ρw +(1−χm
w )ρo (37)

ρm = ρ0
β exp

(
βT

(
pm − p0

β

))
(38)

V̇w =
χm

w −χw

1−χm
w

V̇ i
c (39)

In practice, a control system must be used to manipu-
late V̇w instead of using Eq. 35.
For the manifold model, we must know (i) the initial
manifold pressure, (ii) the vertical inflow V̇v and the
horizontal transport flow V̇t from manifold to separa-
tor, as well as manifold water cut χm

w , and (iii) param-
eters.

3.4 Transport pipe with booster pump

The model of the horizontal pipe from manifold to
separator is almost identical to the vertical pipe from
reservoir to manifold. The essential differences are
(i) no gravity pressure drop, (ii) simpler booster pump
model, (iii) neglecting pressure drop from pipe into
separator, (iv) no need for a production capacity

model. The complete model is

dV̇t

dt
=

pm − ps +∆pbp −∆pt
f

ρtℓt/At
(40)

ρ0,t
β = χm

w ρw +(1−χm
w )ρo (41)

νt = χm
w νw +(1−χm

w )νw (42)

µt = ρ0,t
β νt (43)

ρt = ρ0
β exp

(
βT

(
pm − p0

β

))
(44)

∆pbp = ∆pς
bp

(
fbp

fbp,0

)2

(45)

vt =
V̇t

At
(46)

NRe,t =
ρtvtdt

νt
(47)

f t
D =

1

4
(

log10

(
5.74
N0.9

Re,t
+ εt/dt

3.7

))2 (48)

∆pt
f = ℓt · f t

D
ρt

2
v2

t

dt
. (49)

Again, we need to know the initial condition of the
differential variable (V̇t), the inputs (χm

w , fbp, pm, ps),
and the parameters.

3.5 Combined model

For illustration, we use two vertical pipes, one man-
ifold, and one horizontal transport pipe from mani-
fold to separator. Both Modelica and Julia’s Model-
ingToolkit have support for building classes/reusable
models. Because of the similarity between the models
for vertical and horizontal pipes, it would be possi-
ble to collect these in the same class/constructor and
just differentiate between them with a function argu-
ment. The manifold model should be a separate class,
though.
With re-usability of such classes/constructors, model-
ing of the combined system simply consists of (i) in-
stantiating one model per unit (2 vertical pipes, one
horizontal transport pipe, and the manifold), and (ii)
connecting the various instances. Specifically, the
vertical pipes should see the same manifold pressure
pm, the vertical transport pipe should have the same
inlet pressure as the manifold pressure pm, the influ-
ent volumetric flows to themanifold should be the sum
of the flows from the vertical pipes and the viscosity
diluting water feed V̇w now being

V̇w =
∑2

i=1
(
χm

w −χ i
w
)

V̇ i
v

1−χm
w

; (50)

the effluent volumetric flow from the manifold is still
V̇t.
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For a proper re-usable implementation, connections
should be done using connectors (supported by both
Modelica and ModelingToolkit).

4 Simulation tools

The combined model has been solved using the free
languages/tools OpenModelica (Fritzson, 2015; Fritz-
son et al., 2018) andModelingToolkit (Ma et al., 2021)
for Julia; the results are identical plus/minus variations
due to solver accuracies. Results presented in Sec-
tion 5 use the ModelingToolkit/Julia implementation
due to better support in Julia for plotting and random
variables.
Modelica is a mature language dating back to the
1990s; ModelingToolkit is some 2–3 years young and
is still in some flux. ModelingToolkit is evolving
rapidly, is more general than Modelica, and is also
integrated in the larger Eco-system of Julia. Cur-
rently, ModelingToolkit does not support a graphical
flow-sheeting tool, and it is unclear whether Model-
ingToolkit allows for as large models as OpenMod-
elica. Both tools have extensive support for building
libraries.
The default solver in OpenModelica is excellent, al-
though here it struggled with the DAE formulation
with momentum as differential variable. Modeling-
Toolkit can use solvers from the large, high quality
DifferentialEquations.jl package (Rackauckas & Nie,
2017). With ModelingToolkit, choice of solver, accu-
racies, etc., currently requires more thought compared
to OpenModelica. The solutions from Modeling-
Toolkit include interpolation functions, which yields
smooth solutions with fewer data points.
OpenModelica normally works well when providing
initial conditions for differential variables only, while
with ModelingToolkit it is necessary to also specify
initial values for algebraic variables.
OpenModelica’s support for linearization and plot-
ting can be accessed from Julia via the OMJulia API
(B. Lie et al., 2019). ModelingToolkit is integrated in
the Julia Eco-system, with support for linearization,
plotting, control systems analysis, random variables,
etc., and has overall more possibilities that OpenMod-
elica if further analysis is required.
Other commonly used languages for scientific com-
puting are MATLAB (commercial) and Python (free).
Compared to both of these languages, Julia (free) has
a more extensive set of differential equation solvers.
Neither MATLAB nor Python offer equation based
modeling languages with library/re-use support such
as Modelica or ModelingToolkit; MathWorks do offer
Simscape8 (commercial) for such use, though.

8https://se.mathworks.com/products/simscape.html

Figure 2. Pressures in front of choke valve into manifold
for vertical pipes (red, blue) and manifold pres-
sure (green).

Figure 3. Vertical flow rates (red, blue) from bore-well
into manifold, and horizontal flow rate (green)
from manifold to separator, with uncertainty
productivity capacity and isothermal compress-
ibility.

5 Results

Parameters, initial conditions, and system inputs are
given in Appendix A. For vertical pipe #2, scaling
pump head hς

p is set to 80% of the value suggested
in the appendix. Figure 2 shows the pressures in front
of the choke valves for the vertical pipes, as well as
the manifold pressure. The resulting time constants
and overall behavior in Fig. 2 are similar to those in
Sharma (2014).
Figure 3 shows vertical flow rates from reservoir
to manifold in the two pipes, as well as the flow
from manifold to separator (thick, solid lines), and
the effect of uncertain productivity indices in Well
1, V̇ 1

pi ∼ N
(
7 ·10−4,10−4

)
, and uncertain isother-

mal compressibility in the petroleum fluid, βT ∼
U[0.3/1.5·109,3/1.5·109)].
ModelingToolkit has support for efficient Monte Car-
los studies; this is comparatively more complicated
using Modelica + OMJulia.
Both Modelica+OMJulia and ModelingToolkit have
similar possibilities to linearize the models, and Con-
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trolSystems.jl for Julia has similar capabilities as
MATLAB’s Control Toolbox for plotting and analy-
sis/design.

6 Conclusions

This paper presents a simple model of production of
liquid petroleum (oil+water) from reservoir to separa-
tor. The model is essentially a reworking of the model
in Sharma & Glemmestand (2014). Modifications in-
clude: (i) a stricter utilization of the constant density
assumption in pipes9 leading to amore realistic behav-
ior at choke valves, (ii) rephrasing of algebraic equip-
ment models into dimensionless form, which greatly
simplifies unit conversion, (iii) streamlining of the
model presentation to ease the implementation of the
model; in the original formulation, some information
is missing, and information is spread through a long
paper, (iv) scaling down the model from 4 vertical
pipes/2 horizontal pipes to 2 vertical pipes/1 horizon-
tal pipe.
The model is implemented in OpenModelica and in
Julia with ModelingToolkit. These tools have similar
capabilities, although Modelica is more mature, has
perhaps better default solver, and can handle larger
systems at the moment. However, ModelingToolkit is
embedded in the larger Eco-system of Julia, with su-
perior capabilities for plotting, uncertainty analysis10,
simpler linearization, control analysis and design, etc.
Combining OpenModelica with OMJulia, some of the
features of the Julia Eco-system can be utilized (plot-
ting, linearization, etc.). However, with Modeling-
Toolkit, other tools in Julia have access to the sym-
bolic form of the model, and can symbolically com-
pute Jacobians, etc. Both of the free tools OpenMod-
elica and ModelingToolkit are equation based model-
ing languages with solid support for model libraries
and re-use of code.
The presented model was developed for short-term in-
dustrial oil production control design, Sharma (2014).
More comprehensive models typically include a reser-
voir model (time constant: months+) suitable for
long-term simulation studies (K.-A. Lie, 2019), with
a steady state network solver for the transport from
reservoir to separator (time constant: seconds+),
thereby avoiding stiffness issues. These steady state
models are not really suitable for control design for
daily operation, while the model presented here has
been used to assess industrial control policies.
A number of possible extensions for the system in-
clude (a) more realistic properties (density, viscos-
ity), (b) allowing for distributed density along pipes11,

9The original model includes differential equation for the pipemass
balance, although the mass is assumed constant.

10Modelica lacks proper support for random numbers.
11ModelingToolkit for Julia has support for automatic discretiza-
tion of PDEs in the works.

Table 1. Parameters: petroleum liquid.

Parameter
βT = 1

1.5·109 ≈ 6.67 ·10−10 Pa−1

p0 = 1bar
ρo = 900kg/m3

ρw = 1000kg/m3

χw = 0.35
ρ0 = χwρw +(1−χw)ρo
χm

w = 0.5
ρm

0 = χm
w ρw +(1−χm

w )ρo
νo = 100cSt = 100 ·10−6 m2/s
νw = 1cSt = 10−6 m2/s

(c) adding a more realistic system for water dilution
in the manifold, (d) inclusion of valves in manifold–
separator pipes, (e) integration with reservoir models,
(f) use for control design, (g) use for optimization, etc.
Such extensions will give more insight into the indus-
trial usefulness of the model.
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A Parameters and Operating Conditions

Parameters for petroleum fluid, nominal vertical
pipes, and nominal manifold+horizontal pipe are
given in Tables 1–3. Initial states are given in Table 4,
while input functions are given in Table 5.
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Abstract 

 

Heat pumps are an attractive heating system in residential buildings. They operate based on the vapor 

compression cycle used in refrigeration systems. Design questions surrounding heat pumps can be investigated 

and answered using modelling tools that incorporate the necessary thermodynamics, fluid mechanics, and 

machinery component efficiency. Several modelling tools are available, however there is a need for more open-

source, script-based programs that are competitive to those already available. This work presents a Python-based 

code for modeling the thermodynamics of the vapor compression cycle (VCC) in typical heat pumps. The main 

contribution of this work is an openly available online code, complete with a few examples to show its 

functionality, that provides the basic thermodynamic model of a heat pump for researchers or development 

engineers to use, modify, and extend. Its current features include choice of refrigerant, heat exchanger size and 

characteristics, compressor, and other design parameters such as heating load, and fluid temperatures in and out 

of the heat exchangers. Simulation outputs include the P-h and T-s diagrams and coefficient of performance 

(COP). The code is flexible and suggestions for future code development are given. 

 

1. Introduction 

 

Residential heat pumps are an attractive alternative 

to electrical space heating because more units of 

heat energy can be transferred while consuming the 

same amount of electrical power. Indeed, heat 

pump technology is not new: decades worth of 

research efforts have been done by, for example, 

the International Energy Agency (IEA) Heat 

Pumping Technologies (HPT). Since the heat pump 

cycle and refrigeration cycle are essentially the 

same cycle (just with different objective: one for 

heating, the other for cooling), it is more concise to 

use the term vapor-compression cycle, or VCC. 

The VCC is comprised of 4 main thermodynamic 

processes, and the central part is to transfer heat 

energy from a low-temperature reservoir to a high-

temperature reservoir. An excellent sketch of the 

components is presented in Figure 2 of Jensen et al. 

(2018). Heat is “pumped” by first compressing a 

working fluid (also called refrigerant) in its vapor 

phase which increases its pressure and temperature, 

and then exchanging heat energy to another fluid in 

a secondary loop via both temperature drop and 

phase change through a condenser. The refrigerant, 

in its liquid phase, is then throttled, which means it 

passes through a throttle valve (also known as 

expansion valve), reducing its pressure and 

temperature until it becomes a saturated mixture. 

The mixture then passes through an evaporator 

where it absorbs heat energy from another 

secondary fluid loop and comes out in its initial 

vapor phase state. 

 

The thermodynamics are well-understood in the 

VCC, however there is a need for flexible tools that 

can model these thermodynamic processes with the 

purpose of answering research questions such as 

optimal cycle “position” and “lift” given certain 

operating conditions. Other programs and codes 

have been developed and are available (Aulicino 

and Bakrania, 2022; Bell et al., 2014; Vering et al., 

2022). However there is a need for more models 

that are open-source, script-based (for example, 

JavaScript or Python) with a framework that allows 

for application to one’s own engineering design 

problem in addition to extendibility. The 

programming tools cannot be like a “black-box”. 

And good documentation of code, and guidance on 

how to extend or modify the code ought to be 

available.  

 

The objective of this work is to start an open-

source repository for VCC modelling using Python 

scripting language. There is a great deal of 

potential when coding in Python, given its wide 

online community, wealth of libraries and modules 

or packages such as optimization and machine 

learning ones, and the fact that some engineering 
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companies choose to develop heat pump 

dimensioning tools using Python. 

 

The rest of this paper is organized as follows: the 

methodology section presents the typical modelling 

equations used to simulate the refrigeration cycle 

and a description of how the model is implemented 

in Python, the results section presents three 

examples to demonstrate the use of the code and 

gives suggestions for how it can be extended, and 

the summary section offers ways this code could be 

developed further and applied to research on heat 

pump modelling. 

 

 

2. Methodology  

 

This work includes three examples that illustrate 

how a user could run the code with different 

objectives. Example 1 is based on the assumption 

that condenser temperature (Tcond), evaporation 

temperature (Tevap), degree of superheating (SH), 

degree of subcooling (SC), refrigerant (fluid), and 

compressor efficiency (ncomp) are known input 

values. From these 6 parameters, the state points in 

the vapor compression cycle is solved directly by 

the VCC-calculator. Example 2 is similar except 

that compressor efficiency is not assumed to be 

known but rather more realistically depends on the 

pressure ratio between the 2 state points partially 

defined by Tcond and Tevap. Example 3 is 

different from the first two examples in that it 

shows how the VCC-calculator can be used in a 

conditional while-loop that repeatedly gets called 

until the energy transfer from a source fluid, energy 

transfer across the heat pump, and energy transfer 

to a sink fluid all converge in the sense that the 

cycle yields a desired heat transfer �̇�𝑠𝑖𝑛𝑘 while 

satisfying all thermodynamic modelling equations 

within some set tolerance. 

 

Programming of the VCC-calculator is based on a 

set of assumptions which are typically used in 

literature (for example, Ouadha et al., 2008, 

Camdali 2015, Madessa et al., 2017, Jensen et al., 

2018, Wang et al., 2022) when modelling the 

thermodynamics of a refrigeration cycle, either in 

heating or cooling mode. These assumptions are: 

• A steady-state, closed system with only energy 

(heat, work) transfer 

• No heat losses between system and 

surroundings 

• Isobaric heat exchange in the condenser and 

evaporator 

• Perfect heat transfer between the refrigerant in 

the primary loop and the fluids in the 

secondary loops 

• Isenthalpic process through the expansion (or 

throttle) valve 

• An irreversible process through the 

compressor, quantified in terms of an 

isentropic efficiency value, ns 

 

The steady-state assumption implies that the mass 

flow rate of the refrigerant, �̇�, is constant at any 

point in the system. This is why the subscripts for 

this variables is dropped since it does not differ 

across the cycle’s state points. No heat losses 

between the system and the surroundings imply 

that: 

 

�̇�𝑐𝑜𝑛𝑑 = �̇�𝑐𝑜𝑚𝑝 + �̇�𝑒𝑣𝑎𝑝 (1) 

 

according to the first law of thermodynamics. The 

isobaric assumption means that heat transfer across 

the heat exchangers is given by: 

 

�̇�𝑐𝑜𝑛𝑑 = �̇�∆ℎ𝑐𝑜𝑛𝑑 = �̇�(ℎ2 − ℎ3) (2) 

 

and 

 

�̇�𝑒𝑣𝑎𝑝 = �̇�∆ℎ𝑒𝑣𝑎𝑝 = �̇�(ℎ1 − ℎ4) (3) 

 

Perfect heat transfer between the refrigerant and the 

secondary fluids (air, water, or brine) implies that  

�̇�𝑒𝑣𝑎𝑝 = �̇�𝑠𝑜𝑢𝑟𝑐𝑒 and �̇�𝑐𝑜𝑛𝑑 = �̇�𝑠𝑜𝑢𝑟𝑐𝑒, where the 

source and sink fluids release and absorb the heat 

according to: 

 

�̇�𝑠𝑜𝑢𝑟𝑐𝑒 = �̇�𝑠𝑜𝑢𝑟𝑐𝑒𝑐𝑝∆𝑇 (4) 

 

and 

 

�̇�𝑠𝑖𝑛𝑘 = �̇�𝑠𝑖𝑛𝑘𝑐𝑝∆𝑇 (5) 

 

Since the process through the expansion (or 

throttle) valve is assumed to be isenthalpic, the 

enthalpies at the state points before and after the 

expansion valve are equal, i.e., 

 

ℎ4 = ℎ3 (1) 

 

The degree of irreversibility of the process through 

the compressor is directly related to the compressor 

efficiency. According to the second-law of 

thermodynamics, an irreversible process is one in 

which the entropy difference between the initial 

and final state is greater and zero. That is, 

∆𝑠𝑐𝑜𝑚𝑝 > 0. The specific enthalpy of the fluid that 

comes out from the compressor (labelled as state 

point 2) is thus calculated by: 

 

ℎ2 = ℎ1 −  
ℎ2𝑠 − ℎ1

𝑛𝑠
 (6) 

 

which comes from the definition of isentropic 

efficiency, 𝑛𝑠, and where ℎ2𝑠 is the specific 
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enthalpy at state point 2 as if the process was 

reversible (i.e., 𝑠1 = 𝑠2). In this work, the 

mechanical and electrical efficiencies of the 

compressor are both assumed to be 1, thus the 

overall work of the compressor is �̇�𝑐𝑜𝑚𝑝 =

�̇�∆ℎ𝑐𝑜𝑚𝑝. However, if one wanted to include 

mechanical and electrical efficiencies, 𝑛𝑚 and 𝑛𝑒, 

respectively, they can implement �̇�𝑐𝑜𝑚𝑝 =

�̇�∆ℎ𝑐𝑜𝑚𝑝/(𝑛𝑚𝑛𝑒) in the code. 

 

Figure 1 shows the myVCCmodel definition. This is 

the central part of this work’s VCC-repository. 

That is, the main state points of the VCC is 

obtained by this definition based on values for 

Tcond, Tevap, SH, SC, compressor efficiency, and 

fluid, which are passed in as known input 

parameters. This definition is based on 

thermodynamic principals, assumptions about the 

VCC already listed, and state point properties 

obtained using the CoolProp thermophysical 

property library (Bell et al., 2014). Since the 

CoolProp library is used in this work’s code, users 

must first download and install CoolProp before 

running any example that uses the myVCCmodel 

definition. Download and installation instructions 

can be found online at coolprop.org. 

 

The values returned by myVCCmodel are pressure, 

specific enthalpy, temperature, and specific 

entropy. These values can be used to visualize the 

thermodynamic cycle in a pressure versus specific 

enthalpy (hereafter called P-h) plot and a 

temperature versus specific entropy (hereafter 

called T-s) plot. The code developed in this work to 

create these plots make use of CoolProp’s Plots 

module and its PropertyPlot definition in order to 

add the thermophysical properties of the refrigerant 

to the plot. The definitions myPhPlot and myTsPlot 

developed in this current work are not shown here 

for brevity, however they can be found in the 

online repository in the utilities folder. 

 

It is interesting to visualize the cycle in the P-h and 

T-s diagrams, particularly in terms of the cycle’s 

position (or proximity to the critical point at the top 

of the saturation envelope), the degree of 

temperature lift between the process lines through 

the evaporator and condenser, and the degree of 

entropy change in the process line through the 

compressor (i.e., the slope). Besides these notable 

cycle characteristics, it is important to quantify the 

performance of the cycle according to the COP 

(coefficient of performance). The COP is defined 

as the ratio between useful and spent energy, or 

�̇�ℎ/�̇�𝑐𝑜𝑚𝑝 in the case of heating mode, which is 

reduced to a formula based on only specific 

enthalpy differences: 

 

 
Figure 1: Entire code used in the myVCCmodel 

definition. 

 

𝐶𝑂𝑃 =  
∆ℎ𝑐𝑜𝑛𝑑

∆ℎ𝑐𝑜𝑚𝑝
=

ℎ2 −  ℎ3

ℎ2 −  ℎ1
 (7) 

 

This is because �̇�𝑐𝑜𝑛𝑑 = �̇�∆ℎ𝑐𝑜𝑛𝑑 and �̇�𝑐𝑜𝑚𝑝 =

�̇�∆ℎ𝑐𝑜𝑚𝑝 as previously presented. 

 

The amount of heat transfer from the hot-fluid 

stream (i.e., the fluid releasing heat energy) to the 

cold-fluid stream (i.e., the fluid receiving heat 

energy) can be expressed according to the log-

mean temperature difference (LMTD) across the 

inlets and outlets of the heat exchanger: 

 

�̇�𝑐𝑜𝑛𝑑 = 𝑈𝑐𝑜𝑛𝑑𝐴𝑐𝑜𝑛𝑑𝐿𝑀𝑇𝐷𝑐𝑜𝑛𝑑 (8) 

 

and 
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�̇�𝑒𝑣𝑎𝑝 = 𝑈𝑒𝑣𝑎𝑝𝐴𝑒𝑣𝑎𝑝𝐿𝑀𝑇𝐷𝑒𝑣𝑎𝑝 (9) 

 

where 𝑈 and 𝐴 are the overall convective heat 

transfer coefficient and the surface area between 

fluids, respectively. When calculating the LMTD, a 

double-pipe heat exchanger is assumed. As such, 

the equation implemented in the getMyLMTD 

definition is: 

 

𝐿𝑀𝑇𝐷 =
∆𝑇1 −  ∆𝑇2

𝑙𝑛 (∆𝑇1/∆𝑇2)
(10) 

 

where ∆𝑇1 and ∆𝑇2 are the differences between the 

hot and cold fluid streams between the inlet and 

outlet of the heat exchanger, depending on whether 

the fluid streams are parallel or counter-flow. The 

results in Example 3 are based on a counter-flow 

configuration, but the code is set up to handle 

parallel-flow as well. While a double-pipe heat 

exchanger is assumed in this work, there is of 

course a possibility to extend the code to include 

other heat exchanger configurations. For example, 

a shell-and-tube or a plate heat exchanger can be 

implemented, as was done and presented in 

Svortevik (2023). 

 

The myVCCmodel requires a value for compressor 

efficiency. In Example 1, the value for ncomp is 

assumed. However, in Example 2, the value for  

ncomp is calculated in the compressor model based 

on the pressure ratio between the condenser and 

evaporator. The compressor model used comes 

from Corberan et al., (2000) and was also used in 

Ouadha et al., (2008). It is based on empirical data 

specific to a compressor type, and takes the 

polynomial form of: 

 

𝑛𝑐𝑜𝑚𝑝(𝑃𝑅) =  𝐴 +  𝐵 ∗ 𝑃𝑅 +  𝐶 ∗ 𝑃𝑅2 (11) 

 

where the coefficients 𝐴, 𝐵, and 𝐶 are 0.66768, 

0.0025, and -0.00303, respectively. While this 

particular compressor model is used here, other 

compressor models could be easily implemented in 

this work’s online repository as explained in 

Example 2 in the Results section. 

 

Example 3 was inspired by Camdali et al., (2015) 

where the cycle is found iteratively such that it 

yields a predefined heating capacity, �̇�𝑐𝑜𝑛𝑑, while 

fitting into predefined operating conditions given 

by Tcond,in, Tcond,out, Tevap,in, and Tevap,out. 

Similar work was presented in Svortevik (2023), 

and results presented here in this work is based on 

the online version of the code. The iterative 

approach taken in Camdali et al., (2015) and 

implemented in here in this work could be viewed 

as a brute-force optimization approach, and that 

other optimization methods could be applied to 

solve for the cycle that meets the required heating 

capacity while minimizing discrepancies between 

the modelling equations. 

 

 

3. Results 

 

3.1. Example 1 

 

In the first example, values for Tcond, Tevap, and 

compressor efficiency are considered to be known 

input parameters, as well as refrigerant name, 

amount of super-heating, and amount of sub-

cooling; see Table 1. The VCC-calculator (named 

myVCCmodel in Figure 2, code line 17) uses these 

input values to get P, h, T, and s at the 7 main state 

points. The cycle is then drawn in a P-h and T-s 

diagram (see code lines 18 and 19 which call 

myPhPlot and myTsPlot respectively). Figure 4 

shows the P-h and T-s diagrams for the cases 

considered in this example. Cycle performance can 

be quantified by the COP, calculated via Eqn. 7 

which is based solely on the specific enthalpies 

across the condenser and compressor, however is 

not presented here since this example is meant to 

be illustratively rather than for design or operation 

purposes. Mass flow rate cannot be calculated until 

either �̇�𝑐𝑜𝑛𝑑, �̇�𝑒𝑣𝑎𝑝, or �̇�𝑐𝑜𝑚𝑝 are specified, and is 

thus not presented here.  

 
Table 1: Case numbers and their input values considered 

in Example 1. 

Case 
Tevap 

(K) 

Tcond 

(K) 
𝑛𝑐𝑜𝑚𝑝 

SH 

(K) 

SC 

(K) 
fluid 

1-1 270 300 1 0 0 R134a 

1-2 270 300 0.6 5 5 R134a 

1-3 265 325 0.6 5 5 R134a 

 
 

 
Figure 2: Snippet of Python code used to run Example 1. 
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Figure 3: Flowchart of algorithm used in Example 1. 

 

 
Figure 4: Cycle results for Example 1 obtained using this 

work’s VCC-calculator, illustrated in P-h (top) and T-s 

(bottom) diagrams. 

3.2. Example 2 

 

The second example builds off the first in that 

Tcond and Tevap are considered to be known (as 

well as SH, SC, and fluid), however compressor 

efficiency is given as a function of the pressure 

ratio. This is more realistic than treating 

compressor efficiency as a fixed value. Figure 5 

shows the code for this example, where code line 

22 calls myCompressor1 which is a definition 

contained in the myCompressorModels module. 

The compressor efficiency model used here comes 

from Ouadha et al., (2008), however other 

compressor models could be easily implemented in 

the online repository by first creating a copy of 

myCompressor1 definition, renaming it 

myCompressor2 or something else suitable, and 

updating the empirically-based expressions for 

n_vol and n_comp. Table 2 summarizes the cases 

studied for Example 2. Table 3 presents the 

pressure ratios that correspond to the Tcond and 

Tevap input values, and then the compressor 

efficiency values. Once the compressor efficiency 

is determined, all of the 7 state points are 

determined by the VCC-calculator (code line 23 in 

Figure 5), and P-h and T-s diagrams of the cycle 

can be made (code lines 24 and 25, respectively). 

Again, mass flow rate is undefined until �̇�𝑐𝑜𝑛𝑑, 

�̇�𝑒𝑣𝑎𝑝, or �̇�𝑐𝑜𝑚𝑝 are specified. Cycle results are 

shown in Figure 8, and once again the focus is 

illustratively rather than conclusive. 

 

 
Figure 5: Snippet of Python code used to run Example 2. 

 

 
Figure 6: Python-definition of myCompressor1 used to 

calculate compressor efficiency in Example 2. 
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Figure 7: Flowchart of algorithm used in Example 2. 

Table 2: Case numbers and their input values considered 
in Example 2. 

Case 
Tevap 

(K) 

Tcond 

(K) 

SH 

(K) 

SC 

(K) 
fluid 

2-1 270 300 0 0 R134a 

2-2 270 300 5 5 R134a 

2-3 265 325 5 5 R134a 

 
Table 3: Corresponding pressure ratios and calculated 

compressor efficiencies. 

Case 
Pcond 

(kPa) 

Pevap 

(kPa) 
PR 𝑛𝑐𝑜𝑚𝑝 

2-1 702.8 260.8 2.69 0.6524 

2-2 702.8 260.8 2.69 0.6524 

2-3 1380.3 215.7 6.40 0.5596 

 

 

 
Figure 8: Cycle results for example 2 obtained using this 

work’s VCC-calculator, illustrated in P-h (top) and T-s 

(bottom) diagrams. 

 

3.3. Example 3 

 

The last example aims to be a bit more practical 

than Examples 1 and 2. That is, it is unlikely that 

Tcond and Tevap are known, but rather, an amount 

of heat output from the heat pump cycle, �̇�𝑐𝑜𝑛𝑑, is 

more likely to be specified, along with values for 

Tcond,in, Tcond,out, Tevap,in, and Tevap,out. The 

required �̇�𝑐𝑜𝑛𝑑 can be used in combination with 

Tcond,in and Tcond,out values to calculate a Tcond 

value. But the rest of the cycle must be such that it 

agrees with this Tcond. In other words, the question 

is what values do Tcond and Tevap take on such 

that the cycle yields the required until �̇�𝑐𝑜𝑛𝑑? This 

question can be answered using an iterative 

approach that is similar to what was presented in 

Camdali et al., 2015. 

 

Cases are presented in Table 4, where SH, SC, and 

fluid are 5, 5, and R134a, respectively, and 

compressor efficiency is given as a function of 

pressure ratio by Eqn. 11. Also, 𝑈 and 𝐴 values for 

both the condenser and evaporator are set to 1000 

W/m2K and 2 m2, respectively. Results are shown 

in Table 5 and Figure 11. This time, mass flow rate 

of the refrigerant can be determined since �̇�𝑐𝑜𝑛𝑑 is 

specified. Figure 12 shows the convergence 

behavior of two main quantities or residuals, 

namely how close the cycle’s Qcond value (black 

x’s) is from the wanted heat capacity (red dashes), 
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and how close Qevap1 and Qevap2 are from each 

other (blue dots) since their difference should be as 

close to zero as possible. The cycle was found after 

about 2300 iterations. Other methods could be used 

to obtain this cycle solution faster, for example, 

using an optimization method where the objective 

is to minimize the residuals. 

 
Table 4: Case numbers and their input values considered 

in Example 3. 

Case 

Capacity 

�̇�𝑐𝑜𝑛𝑑 

(kW) 

Tcond,in / 

Tcond,out 

(°C) 

Tevap,in / 

Tevap,out 

(°C) 

3-1 30 30/40 8/0 

 
Table 5: Results for cases considered in Example 3. 

Case 
#its. 

needed 
Tcond Tevap 𝑛𝑐𝑜𝑚𝑝 

3-1 2349 323.55 255.50 0.4411 

 

 

 
Figure 9: First half of flowchart for Example 3. 

 

 

 
Figure 10: Second half of flowchart for Example 3. 

 

 
Figure 11: Cycle results for example 3 obtained using 

this work’s VCC-calculator, illustrated in P-h (top) and 

T-s (bottom) diagrams. 
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Figure 12: Convergence of solution towards a cycle that 

yields the wanted heat capacity with a minimal 

discrepancy between Qevap1 and Qevap2. 

 

4. Summary 

 

This work has presented the typically used 

modelling equations to simulate the 

thermodynamics of the vapor compression cycle. 

Three examples were presented to demonstrate the 

structure and capability of the code. A main 

contribution is the ability to implement various 

compressor models that can come from empirically 

derived expressions. Another contribution is the 

implementation of a similar iteration scheme 

presented by Camdali et al., 2015, however in 

Python versus MATLAB, which means the code 

can be assessed by more researchers, engineers, or 

others in the heat pump community. The method 

taken in Example 3 is similar to a brute-force 

optimization approach and other optimization 

methods could be implemented instead to reduce 

computational intensity. 

 

The purpose of the three examples was illustrative 

in nature rather than to produce values that 

represent an engineering design or operation point 

of a heat pump. Indeed, this work marks the start of 

a developing online code that has the potential for 

modification and extension, and thus the focus here 

was to show basic structure of the VCC-calculator 

and how it can be used. As such, this paper did not 

focus too much on interpreting results, as they are 

intended to be illustrative only. 

 

Source code used in this work can be found online: 

https://github.com/AllenGitCode/VCCmodelling. 

 

 

References 
 

Aulicino, C., and S. Bakrania, S., (2022) ‘A Python-based lab 

module to conduct thermodynamic cycle analysis,’ IEEE 

Frontiers in Education Conference (FIE), Uppsala, Sweden, 

2022, pp. 1–6, doi: 10.1109/FIE56618.2022.9962388 

 

Bell, I.H., Wronski, J., Quoilin, S., and Lemort, V. (2014) ‘Pure 

and Pseudo-pure Fluid Thermophysical Property Evaluation 

and the Open-Source Thermophysical Property Library 

CoolProp,’ Industrial and Engineering Chemistry Research, 53, 

pp. 2498–2508. doi: 10.1021/ie4033999 

 

Camdali, U., Bulut, M., and Sozbir, N., (2015) ‘Numerical 

modeling of a ground source heat pump: The Bolu 

case,’ Renewable Energy, Elsevier, 83(C), pp. 352–361. doi: 

10.1016/j.renene.2015.04.030 

 

Corberan, J.M., Urchueguia, J., Gonzalves, J. and Calas, A. 

(2000) ‘Performance of a reciprocating hermetic refrigerant 

compressor using propane as working fluid’, Proceeding of the 

4th IIR-Gustav Lorentzen Conference on Natural Working 

Fluids at Purdue, IIF-IIR Commission B1, B2, E1, E2, pp.225–

232. 

 

IEA HPT. ‘HTP – Heat Pumping Technologies’. 

https://heatpumpingtechnologies.org/ Accessed on Aug 17, 

2023. 

 

Jensen, J. K., Ommen, T., Reinholdt, L., Markussen, W. B., & 

Elmegaard, B. (2018) ‘Heat Pump COP, part 2: Generalized 

COP estimation of heat pump processes.’ In Proceedings of the 

13th IIR-Gustav Larentzen Conference on Natural Refrigerants 

(Vol 2, pp. 1136-1145). International Institute of Refrigeration. 

https://doi.org/10.18462/iir.gl.2018.1386 

 

Madessa, H. B., Torger, B., Bye, P. F., Erlend, A., (2017) 

‘Parametric study of a vertically configured ground source heat 

pump system.’ Energy Procedia, 111, pp. 1040-1049. doi: 

10.1016/j.egypro.2017.03.267 

 

Ouadha, A., En nacer, M., and Imine, O., (2008) 

‘Thermodynamic modelling of a water-to-water heat pump 

using propane as refrigerant,’ International Journal of Exergy, 

5(4), pp. 451–469. doi: 10.1504/IJEX.2008.019115 

 

Svortevik, E., (2023) ‘Python-based modeling of the vapor 

compression cycle focusing on heat exchangers and user-

friendliness with web page,’ Master's thesis, Oslo Metropolitan 

University. 

 

Vering, C., Engelpracht, M., Göbel, S., Hoseinpoori, 

S., Wüllhorst, F., Schwenzer, C., Rademacher, M., Hinrichs, 

S., Chandra, F., Mehrfeld, P., and Müller, D., (2022) ‘Open-

Source vapor compression library (VCLib): Heat pump 

modeling for education and research,’ Comput. Appl. Eng. 

Educ. 30, pp. 1498–1509. doi: 10.1002/cae.22540 

 

Wang, J., Qv, D., Ni, L., Fan, J., Kong, W., (2022) ‘Matching-

design for inverster air-source heat pump system based on 

heating load characteristics of civil buildings,’ Energy and 

Buildings, 260(111952). doi: 10.1016/j.enbuild.2022.111952 

 

 

https://github.com/AllenGitCode/VCCmodelling
https://ideas.repec.org/a/eee/renene/v83y2015icp352-361.html
https://ideas.repec.org/a/eee/renene/v83y2015icp352-361.html
https://ideas.repec.org/a/eee/renene/v83y2015icp352-361.html
https://ideas.repec.org/s/eee/renene.html
http://dx.doi.org/10.1016/j.egypro.2017.03.267


SIMS 64 Västerås, Sweden, September 26-27, 2023

Implementation of a bolted joint model in Modelica

Nils Dresslera,b,* Lars Erikssonb

aAtlas Copco Industrial Technique AB, Sweden bVehicular Systems , ISY - Linköping University, Sweden
*nils.dressler@atalscopco.com

Abstract

The basic mechanics of a bolted joint are well-known and have been studied for a long time. The dominating prin-
ciple is to represent the parts in a joint as a series connection of linear compression and tension springs. However,
traditional models often neglect the tightening dynamics and their interrelation with, for instance the friction or em-
bedment. To study these phenomena further and determine their impact on the tightening process and dynamics, and
for developing new tightening control strategies, it is necessary to model a threaded fastener and implement it in a
suitable simulation environment.
Existing models and experimental data have been studied to find equations that fit the observed behavior. Novel
models were combined with standard Modelica components to form a threaded fastener model. The simulation
results were compared with tightening data from experiments. This work proposes new models for the first three
tightening phases, embedment, and threaded fastener friction. These models are implemented in the modeling lan-
guage Modelica. The results show that it is possible to resemble a typical threaded fastener tightening with power
tools. The friction and tightening phases show the expected behavior, while the embedment model needs further
experimental verification. During modeling, the model is susceptible to the chosen parameters. Parameters for the
joint stiffness, obtained via the VDI guidelines, needed to be reduced by 30% to resemble the joint in a dynamic
simulation.

1 Introduction

Threaded fasteners are often referred to as the most
common machine element, and therefore, the impor-
tance of threaded fastener joint reliability is apparent.
The generated clamp force is difficult to measure but
of great importance for the functionality. Therefore, it
is of great interest to study the behavior of threaded
fasteners under dynamic tightening conditions, and
the approach of modeling the fastener is a first step
for validating theories, e.g., the impact of friction be-
havior.

2 System Overview

A threaded fastener joins or holds together two or
more components or materials. This is done via the
clamp force.
A threaded fastener assembly typically involves an op-
erator, a power tool, and a threaded fastener. This
work focuses on threaded fastener behavior.
In its simplest form, a joint is composed of a bolt, a
nut, and at least two clamped parts. Additional parts
like washers or gaskets are common. In a tightened
joint, the bolt is under tension between the bolt head
and the engaged thread, while the clamped parts are
under compression. Friction occurs during tightening
under the fastener head and the adjacent surface and
between the bolt threads and the nut. Usually, up to

90% of the applied torque in a tightening goes to over-
coming the friction. This highlights the importance of
understanding friction during tightening. A difference
from many other systems subjected to friction is that
the normal load and friction torque are constantly in-
creasing. This leads to very high friction torques and
explains the large share of friction losses on the total
energy put in the system.
Power tools used for tightening are typically com-
posed of an electrical or pneumatic motor, gears, drive
shafts, and housing.

2.1 Tightening Mechanics

The tightening mechanics can be separated into two
domains: the rotational domain with driving and load
torques and the translational domain with the preload
and clamp force.

2.1.1 Rotational Domain

The Kellerman-Klein equation adapted by (VDI -
Verein Deutscher Ingenieure, 2015) and originating
from (Kellermann & Klein, 1956) describes the rota-
tional domain (see Equation 1). The formula is de-
rived from a special case of Newton’s second law
where the angular acceleration is zero. Mt is the driv-
ing torque, andFc is the clamp force. The origin of that
equation can better be understood by studying the free



SIMS 64 Västerås, Sweden, September 26-27, 2023

body diagram of the bolt thread; this can be found in
the chapter Torque and Tension in Fasteners in (Oberg
et al., 2004).

Mt = Fc

(
P

2π
+0.58d2µth +

Db

2
µh

)
(1)

The under-head friction torque is the product of the
under-head friction radius Db

2 , the clamp force, and the
underhead friction coefficient µh. The pitch torque is
the product of the clamp force and the thread pitch P.
The thread friction torque is the product of the thread
mean radius d2

2 , the thread friction coefficient µth, and
lumped geometric parameters.
A model for that domain is found in (Japing et al.,
2015).
The transformation from pitch torque into a linear
force is done via the thread.

2.1.2 Translational Domain

In the translational domain, two forces act: the preload
and the clamp force. The force balance is often visual-
ized with joint diagrams. Such a joint diagram can be
seen in more detail in (Shoberg, 2000). The bolt elon-
gation is usually larger than the joint compression, but
due to different resilience, the forces are equal. A typi-
cally used analogy for the interaction between the bolt
and the clamped parts is a two-spring model where a
tension and a compression force are coupled in series.
During tightening, the fastener constantly rotates rela-
tive to the nut. Every angular change ∆φ causes the
nut to move upwards on the bolt thread, called ∆s.
Equation 2 describes the upward movement.

∆s = ∆φ ·P (2)

The resulting force increment is described via Equa-
tion 3, where s is the length and c is the stiffness. As
seen, the total force equals the force in the bolt and
joint.

∆Fc = ∆s · ctot = ∆sbolt · cbolt = ∆sjoint · cjoint (3)
Themechanics inmore detail can be found in literature
(Toth, 2006).

2.2 Tightening Phases

A threaded fastener tightening is usually divided into
four different tightening phases. Run Down, Align-
ment, Linear Elastic Clamping, and Yield. The classi-
fication is done via torque traces in the angle or time
domain, as in Figure 1
The phases are characterized by the following.
Run Down: The nut is not yet in touch with the
clamped parts during run down. The resistance to
overcome is friction in the thread due to interference
and the acceleration of the rotatingmasses. The torque

Figure 1. Torque evolution during the tightening phases of
a constant speed tightening

during run-down is assumed to be constant. The run-
down ends when the torque increases from that con-
stant level. The clamp force is zero during run down.
Alignment: The alignment phase begins when the nut
and clamped parts come into contact. The tightening
torque increases at a larger non-constant rate. Reasons
for the non-linearity, material imperfections, and the
initial alignment of the joint components. Alignment
ends at snug when the torque increment transitions to
a constant rate. The clamp force build-up rate is not
constant in this phase.
Linear elastic clamping: In the linear elastic clamp-
ing phase, the torque and preload increase happen at
a constant rate. Many standard tightening methods,
based on torque or angle measurements, end the tight-
ening in that phase.
Yield: Yield is the last phase of the tightening. It
starts when the material behavior of the fastener shaft
changes from linear elastic to plastic deformation. In
the yield phase of a tightening, a linear relationship
between the tightening torque and the tightening an-
gle ends.

2.3 Embedment

Embedment during and after tightening leads to a
clamp force loss over time. Most prominent is the
clamp force loss due to embedment that can be ob-
served after a finished tightening or at short resting
times or pauses during tightening. Embedment occurs
due to high local stresses on rough surfaces. These
high stresses lead to local plastic deformation in the
contact regions. As a result, the total length of a com-
ponent is shortened, which leads to a clamp force loss.
Experimental data shows that the clamp force loss rate
decays over time. To account for the clamp force loss,
fixed losses are assumed based on the surface rough-
ness of the joint components. The exact dynamics of
embedment are not analytically described. It can be
concluded that a longer tightening duration results in
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less post-target embedment. Another insight is that
more embedment happens at higher loads.

3 Modelica Implementation

The previously described system is the basic structure
combining a rotational oscillator and a translational
oscillator. The connection between these two oscil-
lators is via the kinematics in the thread, which con-
verts between the rotational and translational domains.
This system is driven by an input torque and is over-
damped due to friction. Implementing such a complex
system with a component-based modeling language
like Modelica allows rapid model development and
offers a convenient way of evaluating different sub-
models.
The entire model is built mainly with components
from theModelica standard library. Components from
the mechanics rotational and translational libraries are
used. The components developed explicitly for the
threaded fastener model are: HeadFriction, Thread-
Friction, IdealThread, ThreePhaseBolt, and Embed-
ment.
The composed model can be seen in Figure 2.
The order of the models in the rotational domain is the
following from left to right: Control block, Torque,
TorqueSensor, BearingFriction, Inertia, Spring and
Damper, HeadFriction, Inertia, Spring and Damper,
ThreadFriction, BearingFriction, Inertia.
Connected via the IdealThread follows the transla-
tional domain, themodels are from right to left: Force-
Sensor, ThreePhaseBolt, Mass, Embedment, Spring-
Damper, Fixed.
The translational domain has one difference between
the theoretical model and the implementation. The
joint and the bolt are modeled as compression springs,
contrasting the tension and compression spring serial
connection found in the literature.

3.1 Friction Models

The implementations of the friction models can be
seen in Appendix A.1 for the head friction model.
Apart from the two parameters, the thread friction
model is identical and therefore not shown. Both are
based on the rotational Brake model from the Model-
ica standard library.
The friction implementation is a state machine with
the states: backward, forward, free, or stuck. The
transition to the stuck state is made when the veloc-
ity is zero. The acceleration of the component is set
to zero in the stuck state. The condition for a forward
and backward movement is that the sum of the exter-
nal torques is larger than the defined friction torque
at zero velocity, multiplied by the given peak factor.
This behavior is essential for the friction component
to behave like friction in threaded fasteners. Other-

wise, the fastener would unwind after the input torque
is removed.
The implementation is coulomb friction combined
with speed-dependent dynamic friction. For the fas-
tener model, a friction coefficient that increases with
speed is essential to avoid oscillations of the inertia
and masses.
The remaining adaptations are to align the parameters
with the friction radii as in Equation 1. For the thread
friction model, d2 is directly given as a parameter. For
the head friction model, the friction radius Db

2 is calcu-
lated from the plane head bearing diameter of the bolt
dW and the plane head bearing areas inside diameter
Dki.

3.2 Embedment Model

The embedment model is based on the rod model from
the Modelica standard library. The difference is that
the component has a variable length that becomes neg-
ative under pressure. The model can be found in Ap-
pendix A.2.
The length change is described by Equation 4. The au-
thors invented this equation to model the clamp force
loss due to embedment.

L̇ =−1
τ

(
L−Lmax

(
f

fmax

))
(4)

Here, L is the length of the embedment surface, Lmax
the maximum possible embedment, f the force ap-
plied, fmax themaximumpossible force, and τ the time
constant defining how fast the process happens.

3.3 Thread Model

The thread model is based on the IdealGearR2T
model from the Modelica standard library. The func-
tionality is identical, and only the input parameters
have been changed to align with the terminology from
threaded fasteners. The model can be seen in Ap-
pendix A.3.
The model parameter is the pitch per revolution P in-
stead. The torque (τ) and force ( f ) relationship is
given by Equation 5. The rotation (φ) displacement
(s) relationship is given by Equation 6.

φ
P

2π
= s (5)

τ = f
P

2π
(6)

3.4 Tightening Phases

The first three tightening phases are distinguished by
what happens with the joint and bolt.
During run down, the nut and the joint are not yet in
contact, so neither the bolt is stretched nor the joint
compressed. Since the rotation is applied to the bolt,
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Figure 2. Threaded fastener model, implemented with Open Modelica

the bolt can be seen as a rotating inertia at a free end.
During the alignment phase, when the nut and the joint
come in contact, the bolt is stretched while the joint is
compressed. The displacement force relationship, and
thereby even the displacement-torque relationship, is
not linear. The rotation of the bolt is opposed by a
resistance that is ultimately caused by the bolt stretch
and joint compression. Therefore, the rotating bolt can
no longer be considered inertia on a free end.
In the linear-elastic clamping phase, the displacement-
force relationship changes from non-linear to linear.
These effects are lumped into one component. The
choice was made to lump the free-end and non-linear
behavior into the bolt model, creating the three-phase
bolt. Further experiments would be needed to identify
what component contributes how much to the nonlin-
earities, and due to the lack of insight, these effects are
combined into the bolt with the reasoning that the bolt
is earlier in the drive line and that this arrangement
will minimize the risk for unintended oscillations.

The model for the three-phase bolt is based on the
ElastoGap component from the Modelica standard li-
brary. The spring force for the three-phase bolt is
modeled according to Equation 7.

fc =


0 if srel < srel0
cquad|srel− srel0|2 if srel0 ≥ srel < srel2
clin|srel− srel1| else

(7)
For such a model, clin, srel0 srelp2 are the model param-
eters for the linear spring constant, the rundown dis-
placement, and the relative displacement for the sec-
ond phase, namely the alignment. The remaining pa-
rameters cquad, srel1 are the quadratic spring constant
and the hypothetical crossing of the linear spring phase
with the zero force line.

The parameters cquad, srel1 can then be derived through
the fact that there is a smooth transition between the
phases, which means that the derivative is equal in the
transition points. That yields Equations 8, 9, and 10

for the parameters.

srel1 = srel2 −
srel2 − srel0

2
(8)

srel2 = srel0 + srelp2 (9)

cquad =
clin

2(srel2 − srel0)
(10)

The model for the implementation is given in Ap-
pendix A.4

4 Verification

The objective of the fastener model is to approximate
a real tightening trace from tightening experiments.
For that, the two-step tightening from (Persson et al.,
2021) is taken as a reference. The speed profile, the
clamp force trace, and the torque trace can be seen in
Figures 3, 4, and 5, respectively. Here, the data from
the experiments is marked as recorded data in blue.
The joint is an M10×70 hexagonal flange head fas-
tener type of strength class 8.8 with Zn-Fe coating +
wax. The clamp length of the joint is 56 mm, and the
coefficient of friction has been determined to be 0.147
± 0.016 (±3σ) according to ISO16047 at a tightening
speed of 20 rpm. The set target torque was 43 Nm.
An initial guess for the simulation parameters is made
with the given data. They are based on the VDI guide-
lines ((VDI - Verein Deutscher Ingenieure, 2015)),
taken from data sheets of the used equipment, read
from the given plots, or are empirical values based on
modeling experience.
From the initial guess to the tuned parameters, the Bolt
and Joint Stiffness were reduced by 30%. The initial
guess has a rundown and alignment angle of 70° and
52°. The remaining parameters remained unchanged.
The tightening parameters are set to 100 rpm until 21
Nm are reached. The pause step is 50ms, and the final
step is 20 rpm until 43 Nm are reached.
The tuned parameters can be seen in Table 1. The
change in % refers to how much the parameter was
altered from the initial calculation to the final param-
eter. Further geometric parameters are d2 7.19 mm ,
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Figure 3. The speed over time trace of the recorded tightening, simulated tightening with initial guess parameters, and the
simulated tightening with tuned parameters
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the simulated tightening with tuned parameters
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simulated tightening with tuned parameters
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Table 1. Tuned parameters used for the simulation

Parameter Tuned Value Change in %
Bolt and Joint Mass (kg) 0.3356 0
Bolt Stiffness (N/m) 1.5758 ·108 30
Bolt Damping (Ns/m) 2.4106 ·102 0
Shaft Stiffness (Nm/rad) 1.3685 ·103 0
Shaft Inertia (kgm2) 2.8846 ·10−7 0
Shaft Damping (Ns/m) 2.4106 ·102 0
Thread Inertia (kgm2) 1.7572 ·10−7 0
Joint Stiffness ((N/m) 8.6478 ·108 30
Joint Damping (Ns/m) 1.5279 ·103 0
Driveline Inertia (kgm2) 3.45 ·10−6 0
Driveline Stiffness (Nm/rad) 265.74 0
Driveline Damping (Nms/rad) 1.63 ·10−6 0
CoF Thread 0/20 rpm (-) 0.145 / 0.147 -20.8 / 0
CoF Bolt Head 0/20 rpm (-) 0.145 / 0.147 -20.8 / 0
Prevailing Torque(Nm) 0/100 rpm 0.7 / 1.3 0 / 0
Driveline Torque(Nm) 0/100 rpm 0.2 / 0.7 0 / 0
Rundown / AlignmentAngle (°) 60 / 70 -20 / -66
Embedment total (m) 8 ·10−8 0
Embedment time constant (s) 0.5 0
Preload at yield (N) 32000 0

DKi 9mm , P 1.5mm, and dW 11.63mm. The ratio be-
tween static and dynamic friction is 1.5 for all friction
components. The control parameters are kp = 100,
Ti = 0.005, maximum Torque yMax = 50 Nm, run-
down speed = 100 rpm, final speed = 20 rpm, rundown
torque = 20.5 Nm, final torque = 43.5 Nm, break =
0.05 s.
As a result of the tuning, a reduction of the bolt and
joint stiffness by 30% was made. The length of the
alignment angle was increased by 8 degrees, while the
rundown angle was shortened by 10 degrees.
The speed profile of the recorded data is only followed
to a certain degree, as seen in Figure 3. In the model
case, an optimal torque source with no delays. More-
over, a relatively fast controller is used. Due to that
follows the modeled result the reference value better.
It can nevertheless be seen that the duration of differ-
ent speeds deviate from the reference.
Overall, the model resembles the tightening data well,
even if there is no exact match between the recorded
data and the modeled tightening. A better fit can be
obtained with further tuning or optimization of the pa-
rameters. Regardless of that, it can be seen that the
characteristic elements of the tightening are accurately
represented with the simulation model.

5 Results and Discussion

5.1 Modelling Process

The modeling process was iterative. The involved
components were tested in isolation, in combination
with other components, and how different parame-
ter ranges affect the behavior of the components in
composed systems. When working with OpenMod-
elica, comparing the simulated results with variations
of models and parameter combinations could be more
convenient. Tracking and relating the tested parame-

ters to simulation results gets more complicated with
a growing system complexity.
A suitable method for that modeling work has been to
do the modeling work and system composition within
OMEdit and experiment with initial parameters in fast
iterations. Then, the model can be loaded into an OM-
Notebook. There, it is of greater convenience to study
how different parameters impact the modeling result
while at the same time keeping track of the parameter
changes. That is of increased importance for threaded
faster modeling due to the interrelation of the param-
eters, which often prohibits the change of just a sin-
gle parameter. An example of coupled parameters is
the dependency of the mass, stiffness, and damping on
the geometry of the component, so a change in length
would impact all of them, while a change of one of the
mentioned parameters would require the others to be
changed to be consistent.

5.2 Model Alignment

The initial parameters obtained via analytical calcula-
tions following the VDI2230 guidelines showed dis-
crepancies between the recorded data and the model.
This was expected since the calculations are simplifi-
cations based on the static case. It can be seen in Fig-
ure 4 that the clamp force increases too much with ad-
vancement in angle. Similarly, the initial torque trace
is rising too fast, as seen in Figure 5. A more simi-
lar torque rate was achieved by reducing the bolt and
joint stiffness by 30%. The exact reasons for the dis-
crepancy are not further studied but are left for future
work. Still, it can be taken as a result that the analyti-
cal stiffness for threaded fastener joints overestimates
the clamp force rate if applied to the given model.
As seen in Figures 3, 4, and 5, the initial agreement
could bemore optimal. Themodel fit can be improved
with parameter tuning. Beyond the first shown at-
tempt, this is left to future work.
Overall, the system has a good agreement with the
recorded data. Several experiments have been done
to verify the model, but only the data from one exper-
iment has been used for tuning. Therefore, the data
from further experiments is not included in the results.
Non-optimized model parameters can explain the dis-
crepancies and can be minimized further. Hence, the
model agrees well with a real threaded fastener joint.
One important conclusion is that the data obtained in
alignment with the VDI guidelines is either unsuitable
for dynamic modeling in general or for the specific
implementation of the model.

5.3 Model Components

The modeling work resulted in three new component
models and is otherwise composed of standard compo-
nents from the Modelica library. The models fulfilled
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the purpose in the systemmodel and contributed to the
overall model agreement with the recorded data.

5.3.1 Friction Components

The purpose of the modified friction components is
to resemble the friction under the fastener head and
in the thread, respectively. This behavior was already
implemented via the brake component from the Mod-
elica standard library. These models are simplified so
that most of the effects, such as lubrication and surface
profiles, are described through the coefficient of fric-
tion. All that was necessary was a redefinition of the
model parameters to match bolt nomenclature. Both
components work well in the complete system, which
can be observed while studying the brake modes. The
brake modes indicate in which state the friction com-
ponent is, which could be either moving backward or
forward, stuck or free. The behavior for transitioning
from stuck to any other state is essential for the model
to resemble the behavior of an actual fastener. This is
implemented via the peak ratio. Without that behav-
ior, a threaded fastener would unwind again once the
applied torque is taken away or set to zero.
During the development of the model, the friction be-
havior caused the biggest challenges. It could be ob-
served that the friction components did not transition
to a locked state, even though, based on empirical ex-
perience from threaded fasteners, they should have.
From a simulation perspective, that occurred since the
condition to transition to a locked state - a relative ve-
locity of 0 - was never met. That happened especially
when the adjacent components had relatively small
masses or inertias. One observation is that this be-
havior does not occur in the overall system with the
given parameters. Further studies must be done to de-
termine if a particular parameter combination is caus-
ing that behavior. For now, it can only be concluded
that in terms of stability, it is more beneficial to han-
dle the entire system than extra single components and
test them in separate test scenarios.

5.3.2 Three-phase bolt

The three-phase bolt is a key component in resembling
the different tightening phases. As seen in the shown
results, the chosen approach works, and the threaded
fastener behaves accordingly in the different stages,
which are determined via the tightening angle. The
difference, especially during the early phases of the
tightening, is instead a debate about the presence of a
run-down in the recorded data. It can be addressed by
shortening the rundown phase and extending the align-
ment phase in exchange. That could come at the cost
of a worse fit and lead to the conclusion that a second-
degree polynomial function for the spring force is un-
suitable. Further studies have to be done to determine

that.
The transition between alignment and the linear elas-
tic phase is smooth and working as in the recorded
data; therefore, is the chosen approach sufficient for
the modeling purpose.
The recorded data has a relatively short run-down but
a much longer alignment phase, as seen in Figure 4.
Further studies are needed to confirm that a second-
degree polynomial function for the spring force dur-
ing alignment is a good fit for the case of such a long
alignment phase.

5.3.3 Embeddment

The effects of the embedded can be read from the
model where a clamp force loss due to a shortened
spring length can be detected. In the tightening trace,
that can not be detected or distinguished from a tight-
ening with a different spring stiffness. The embed-
ment effect is only vaguely present in the recorded
data. A more suitable tightening scenario must be
chosen to further investigate the embedment model’s
alignment. This could be a joint with rougher sur-
faces to increase the embedment effects and a shorter
tightening duration by higher tightening speeds to re-
locate more of the embedment effect after the final
shutdown. For the current model, it can hence only be
concluded that it is possible to model embedment in
the proposed way, that the effects are present, and that
an embedment component in the spring chain does not
negatively impact the other components, such as the
friction components, as long as the entire threaded fas-
tener model is kept as whole. In test scenarios where
the embedment component was tested with only one
friction component, one spring, and one inertia, it kept
the friction component from locking until the maxi-
mum embedment was reached.
Embedment is not very distinct in the recorded data.
Therefore, no quantitative comparison is possible. It
can be concluded that the chosen embedment model
works in principle but that the effects must be studied
further.

6 Conclusions

It can be concluded that the proposed model does re-
semble a threaded fastener during tightening and a
simplified driveline. Some differences could be ob-
served. Most of the differences were due to differ-
ences in the control input for the system. The remain-
ing deviations can be minimized or reduced by tun-
ing model parameters. Hence, the overall model is a
valid representation of a threaded fastener. The main
insights generated by the modeling work are:

• The model is very sensitive in terms of parameter
combinations
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• The parameters obtained by the VDI guidelines
overestimate the spring systems stiffness

The combination of these factors impedes the devel-
opment of fastener models, while the actual param-
eters are difficult to obtain. At the same time, the
model does not work accurately if the wrong model
parameters are chosen. Therefore, a good test case
with well-known parameters is beneficial when devel-
oping models of that type. A comparison with param-
eters obtained by commercial FEM software and to
what model fit they lead could indicate if more suit-
able stiffness parameters could be obtained for future
model development.
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A Appendix

A.1 Head Friction Model

model HeadFriction
extends

PartialEl..TwoFlangesAndSupport2;
parameter Real mu_pos[:, 2]=[0, 0.5];
parameter Real peak(final min=1) = 1;
parameter Real dW(final min=0);
parameter Real Dki(final min=0);
parameter SI.Force fn_max(final min

=0, start=1);
extends

Rot.Interfaces.PartialFriction;
protected

parameter Real frad(final min=0) = (
dW+Dki)/4;

equation
mu0 = interpolate(mu_pos[:,1], mu_pos

[:,2], 0, 1);
w_event = w_relfric > 0;
phi = flange_a.phi - phi_support;
flange_b.phi = flange_a.phi;
w = der(phi);
a = der(w);
w_relfric = w;
a_relfric = a;
flange_a.tau+flange_b.tau-tau = 0;
fn = fn_max*f_normalized;
tau0 = mu0*frad*fn;
tau0_max = peak*tau0;
free = fn <= 0;
tau = if locked then sa*unitTorque

else if free then 0 else frad*fn*(
if startForward then

interpolate(mu_pos[:,1], mu_pos
[:,2], w, 1)

else if startBackward then
(-interpolate(mu_pos[:,1], mu_pos

[:,2], -w, 1))
else if pre(mode) == Forward then

interpolate(mu_pos[:,1], mu_pos
[:,2], w, 1)

else (-interpolate(mu_pos[:,1],
mu_pos[:,2], -w, 1)));

end HeadFriction

A.2 Embedment Model

model Embedment
...
parameter SI.Distance L_max = 0.01;
parameter SI.Time tauT = 0.5;
parameter SI.Force fmax = 10;
parameter SI.Force fmin = 10;

equation
flange_a.s = s - L / 2;

https://doi.org/10.4271/2021-01-5073
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flange_b.s = s + L / 2;
0 = flange_a.f + flange_b.f;
der(L) = if flange_b.f < -fmin then

-1 / tauT * (L - L_max * (
flange_b.f / fmax)) else 0;

end Embedment;

A.3 Thread Model

model IdealThread
extends PartialElementaryRotational..
ToTranslational;
parameter Real pitch(final unit="m",

start=1);
equation

(flangeR.phi - internalSupportR.phi)*
pitch/(2*pi) = (flangeT.s -
internalSupportT.s);

0=flangeR.tau+flangeT.f*pitch/(2*pi);
end IdealThread;

A.4 Three Phase Bolt

model ThreePhaseBolt
extends ..Interfaces..
PartialCompliantWithRelativeStates;
parameter

SI.TranslationalSpringConstant
c_lin(final min = 0, start = 1);

parameter
SI.TranslationalDampingConstant d(
final min = 0, start = 1);

parameter SI.Position s_rel0 = 0;
parameter SI.Position s_rel_phase2;
...

algorithm
s_rel2:= s_rel0 - s_rel_phase2;
c_qua:= c_lin/(2*(s_rel0-s_rel2));
s_rel1:= s_rel2-((s_rel2-s_rel0)/2);

equation
contact =s_rel < s_rel0;
linear =s_rel < s_rel2;
f_c_lin =-c_lin*abs(s_rel - s_rel1);
f_c_qua =-c_qua*abs(s_rel-s_rel0)^2;
f_c =smooth(1, noEvent(if contact

then f_c2 else 0));
f_c2 =smooth(1, noEvent(if linear

then f_c_lin else f_c_qua));
f_d2 =if contact then d*v_rel else 0;
f_d =smooth(0, noEvent(if contact

then (if f_d2 < f_c then f_c else
if f_d2 > -f_c then -f_c else f_d2
) else 0));

f =f_c + f_d;
lossPower = f_d*v_rel;

end ThreePhaseBolt;
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Abstract 

 

With a significant impact on turbomachinery blade performance, surface curvature distribution becomes one of 

the essential factors in the design of high-efficiency blades. This study focuses on applying computational fluid 

dynamics (CFD) to evaluate turbine rotor blade performance. The main aim is to analyze the influence of 

incidence and geometry shape on the performance of a gas-turbine blade in two dimensions. To achieve this, an 

investigation was conducted to identify a suitable turbulence model for this case, with two turbulence models 

combined with two different solvers explored in ANSYS Fluent: Realizable k-ε model in pressure and density 

based solver; k-ω shear stress transport (SST) model in pressure and density based solver. The blade total pressure 

loss across different blade exit Mach numbers is the comparison factor, with validation against experimental data. 

Subsequently, the chosen pressure-based k-ω SST model mode is used to study the performance of various air 

inflow incidence angles and compare two different blade geometries. In this paper, two geometries, Geometry 1 

and Geometry 2, were designed by setting two different exit blade angles, β2=79.5° and β2=70° respectively, while 

the inlet blade angles have the same value, β1=48.8°. Furthermore, the effect of varying air inflow incidence angles 

between -48.8° and 10° on the blade performance distribution is also investigated. Within the studied range, the 

inflow incidence angle of 10° is found to have the best performance in terms of turbine work output. On the other 

hand, the blade performance of Geometry 2 appears superior to Geometry 1. 

 

1. Introduction 

The blade geometric profile is designed to determine 

the efficient aerodynamic performance. Some 

principal aerodynamic objectives of a turbine blade 

design are: the blade angles at the inlet and exit must 

be correctly matched to the fluid flow angles; the 

throat area determines the flow capacity and must be 

sized correctly. Besides, Blade surfaces curvature 

and changes in curvature should be limited, 

consistent with the necessary turning of the flow in 

blade passage. So the blade design plays an essential 

role in the full design process. In turbomachinery, 

quality blade design is an integral element to 

efficient aerodynamics (Lebele-Alawa et al., 2008), 

which can affect the entire blade row's performance, 

affecting the overall machine efficiency (Fast M et 

al., 2009). In particular, blade curvature distribution 

has been shown to influence boundary-layer 

characteristics, determining blade losses and 

efficiency (Korakianitis et al., 1993).Even though 

the field of blade curvature is relatively mature, the 

potential benefits of sizeable industrial cost-savings 

and environmental impact from even a tiny 

efficiency improvement have been sustaining the 

keen interest in work in this area. 

The turbine portion in gas turbine systems extracts 

work from the combusted gases to power the 

compressor stages and drive other loads. As such, 

considerable effort has been poured into turbine 

blade research to attain maximum extraction of the 

valuable work output. Additionally, to further push 

the upper bound of turbine efficiency, much research 

has been done on limiting flow separation that 

contributes to decreases in work output 
(Korakianitis T P. et al., 1989) Unsurprisingly, the 

surface curvature of the blade determines its loading 

distribution, forming a crucial factor in controlling 

flow separation (Nemnem et al., 2014). In further 

detail, a smooth curvature distribution at the blade 

leading edge has been found to prevent the 

formation of separation bubbles, thus suppressing 

the flow separation (Song Y et al., 2014). 

This paper considers how blade parameterization 

affects profile losses and loading diagrams in a 

numerical approach, including blade angles, 

incidence, etc. It is worth highlighting that one main 

objective of the paper is to explore and compare 

different numerical models against a set of 

experimental data to identify a suitable model for 

this application. Designing a turbine blade geometry 

typically starts from a one-dimensional approach 

before moving on to two-dimensional (2D) and 

eventually developing into 3D in the final phase. 

This paper involves the 2D round, which is practical 
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regarding the scope and computational cost. 

Coupled with the computationally economical 

RANS models, the approach reflects a common 

means adopted in industries to offer a quick blade 

diagnostic tool for trend studies. The selected RANS 

model is subsequently applied to the turbine blade 

design to relate the modified parameters to the 

selected blade performance indicators.  

In addition, this paper also seeks to demonstrate the 

key role of CFD in both industry and academic 

research for turbine blade design. CFD today is an 

indispensable part of blade design as it provides a 

performance evaluation for a particular geometry. It 

can also be used to pick out the blade locations 

requiring modifications, forming an iterative part of 

the design process to optimize surface geometry and 

loadings. 
2. Numerical Simulation  

For this research, the fluid flow parameters, e.g., 

velocity magnitude, pressure, temperature, and 

Mach number, around the turbine blade will be 

simulated using numerical methods. Two turbine 

blade geometries with different exit blade angles 

were generated to examine the influence of blade 

geometry. The ANSYS ICEM CFD was used to 

mesh the geometry. The commercial CFD software, 

ANSYS Fluent, is used for solving and post-

processing. 

 

2.1. Turbine Blade Geometries 

This paper aims to find the influence of different 

solvers, incidence angle, and shape of turbine 

blades. For simplification of simulation cost, 2D 

geometries are selected for this study. Figure 1(a) 

shows the schematic diagram of blade section 

parameters. AxCent of Concepts NREC design tools 

software provides a good way to generate the 

geometries by determining the blade section 

parameters (such as inlet/exit blade angles, stagger 

angles, gauge angles, wedge angles, chords, and 

pitch).  

 

 
(a) Schematic diagram of blade section parameters 

 
(b) Schematic of blade sections for two geometries. 

Figure 1: Schematic of the 2D blade. 

In this research, two blades were designed by setting 

two different β2: exit blade angle, β2=79.5°, and 

β2=70° respectively, while the β1: inlet blade angle 

have the same value, β1=48.8°. The two blade 

geometries are shown in Figure 1(b). Geometry 1 is 

a reference blade profile of Atlas (Mee D J et al., 

1992). Since Geometry 1 has experimental results, 

most of the simulations in this paper are based on 

Geometry 1. In order to study the influence of blade 

geometric parameters on blade performance, based 

on Geometry 1, modifications are done to the exit 

blade angle to obtain Geometry 2. The remaining 

important blade parameter values of Geometry 1 and 

Geometry 2 are shown in Table 1. 

Table 1: Blade parameters. 

Parameters Geometry 1  Geometry 2 

Chord (m) 0.0474 0.0474 

Stagger Angle(°) -37.8 -29.8 

Pitch/Chord 0.7593 0.7597 

Axial Chord (m) 0.03745 0.0411 

The Normalized curvature distribution of the two 

geometries generated in AxCent showing in Figure 

2, which shows that, in the two cases, the blade 

curvature is continuous and smooth. The blade 

curvature distribution of the pressure side for the two 

geometries differs, while the blade curvature 

distribution on the suction side coincides. 

 
(a) Pressure Side 
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(b) Suction Side 

Figure 2: Curvature distribution of the 2D blade sections 

for two geometries. 

2.2. Mesh Generation and Boundary Conditions 

The computational domain of fluid is divided into 

three parts: the upstream and downstream domains 

and the blade domain. The computation domain is 

extended upstream and downstream to achieve a 

fully developed flow. The inlet of the numerical 

domain is extended 0.8 times axial chord of the 

blade upstream of the blade leading edge, and the 

exit is extended 1.25 times the axial chord 

downstream of the blade trailing edge. Four types of 

boundary conditions are presented to solve a blade 

cascade: wall, periodic, inlet, and outlet (Moshizi S 

A et al., 2014). Using the periodic boundaries for the 

blade cascade is common in CFD to reduce the 

computational domain size and thus decrease the 

time and memory cost for processing (M. Mahmoudi 

et al., 2005), so just one blade passage simulated in 

all simulations. For the inlet and out boundary 

conditions, pressure-inlet and pressure-outlet are 

adopted, respectively. No-slip condition is used for 

the blade wall. The values of the boundary 

conditions applied to the cases are presented in 

Table 2. 

 
Table 2: Boundary conditions. 

Parameter Value 

Inlet/Outlet Total Temperature 1046(K) 

Inlet Absolute Total Pressure 211325(Pa) 

Outlet Absolute Static Pressure 126325(Pa) 

Outlet Mach Number 0.7-1.1 

With good quality of the structured mesh, using a 

higher-order discretization scheme, the solver 

solution would have a higher convergence rate and 

precision. Therefore, the software ICEM CFD was 

used to generate the structured grids for calculation 

domains around the blade surface. Figure 3 shows 

the meshes of Geometry 1 employed in the 

computational domain. The whole grid was 

structured with an O-H type of mesh, using the O-

type mesh around the blade and H-type everywhere 

else. The meshes are refined for the near-wall 

treatment and are expected better to handle the 

complex turbulent flow around these areas and 

enhance computational accuracy. The first layer grid 

near-wall is 0.002 mm, and the y+ value is around 1. 

 
Figure 3: Numerical domain and mesh for the analysis of 

the geometry 1. 

2.3. Grid Independence Study 

A mesh independence analysis was done using 

various mesh densities to study the effect of grid 

resolution on the accuracy of numerical results. For 

this purpose, the grid resolution was increased until 

the blade total pressure loss had no significant 

variations.  

This paper uses the total pressure loss coefficient to 

characterize the blade total profile loss. The 

definition of the total pressure loss coefficient: 

 

𝑌𝑝 =
𝑝01,𝑖𝑛 − 𝑝02,𝑜𝑢𝑡

𝑝01,𝑖𝑛 − 𝑝1𝑠,𝑖𝑛

(1) 

Where 𝑝01,𝑖𝑛  represents the blade inlet total 

pressure, 𝑝02,𝑜𝑢𝑡  is the mass-weighted average total 

pressure at the blade section where extended 0.8 

times the axial chord downstream of the blade 

trailing edge. 

Nine grid sizes in the range of 5000 to 134 000 

structured cells are evaluated. Figure 4 illustrates the 

variations of blade total pressure loss for the 

different grids. Due to the importance of 

computational efficiency, the mesh with 114 400 

structured cells was chosen for Geometry 1; 

Geometry 2 has meshed with the same method, and 

the number of grids is comparable at 118 650 

structured cells. 

 
Figure 4: Mesh independence study of Geometry 1 
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2.4. Solver Settings 

The governing equations for viscous compressible 

fluid are the continuity, Navier-Stokes momentum, 

and state equations. The equations are discretized 

with the finite volume method. Firstly, four different 

RANS models in Fluent - namely the Pressure-based 

k-epsilon method, Pressure-based SST k-ω method, 

Density-based Realizable k-ε method, Density-

based SST k-ω method were used to solve the 

discretized equations. For the spatial discretization 

of pressure-based solver cases, the second-order 

scheme is used for pressure, and the second-order 

upwind scheme is used for momentum and turbulent 

kinetic energy terms. For the spatial discretization of 

density-based solver cases, the second-order upwind 

scheme is used for flow and turbulent kinetic energy 

terms. Besides, ideal gas model has been chosen 

because the physical fluid is a compressible fluid. 

Turbulence is chosen to be modeled using the 

Realizable k-ε and SST k-ω models due to the 

corresponding theoretical strengths in providing 

realistic results and superior performance for 

complex flows (like adverse pressure gradient and 

separated flows), respectively. The convergence of 

the solution is monitored by checking the residuals 

of the numerically solved governing equations, 

which use the absolute scale of residuals to converge 

until 1E-6.  

In Fluent, the pressure-based solver is developed 

from the original separate solver, which solves the 

momentum, pressure correction, energy, and other 

scalar equations in sequence, such as the turbulence 

equation. Unlike before, the pressure-based solver 

also adds a coupling algorithm, which can be freely 

switched between the separation and coupling 

solutions. The coupling solution is to solve the 

aforementioned momentum and pressure correction 

simultaneously and then solve energy, component 

equations, and other scalar equations, such as 

Turbulence equations, etc., which have fast 

convergence speed but require more memory and 

calculation. 

The difference between Pressure-based and Density-

based: First, the pressure-based solver was mainly 

used for the solution of low-speed incompressible 

flow, while the density-based method was mainly 

designed for high-speed compressible flow, but now 

both ways have been extended to solve a large flow 

velocity range method. Second, the density-based 

solver was developed from the originally coupled 

solver. It simultaneously solves the continuity, 

momentum, energy, and component equation, then 

solves the turbulence and scalar equations. As a 

result, the density-based solver has a fast 

convergence speed and requires more memory and 

calculation time than the pressure-based solver! 

As a result, the density-based solver is expected to 

take longer computational time per iteration. 

According to observation, for the studied Geometry 

1, the density-based simulations took significantly 

longer to run and converge. The coupled algorithm 

is used for the pressure-based solver because of its 

higher accuracy. As the simulation is 2D and the grid 

resolution is not large, the trade-off in computational 

time is insignificant. 

 

2.5. Model Validation 

The experimental results of Atlas, involving the 

same blade design as Geometry 1, were used to 

validate the numerical solutions. The blade profile 

loss against different Mach numbers was profiled in 

the actual experiment. The inlet airflow direction 

specification method was set to be normal to the 

boundary, corresponding to an incidence angle of -

48.8°. Additionally, the specification method for 

both inlet and outlet boundary conditions was based 

on turbulence intensity and turbulence viscosity 

ratios of 5% and 10, respectively. Different exit 

Mach numbers were obtained by adjusting the outlet 

pressure value.  

Figure 5 shows the numerical blade losses across 

various exit Mach numbers found via the four 

model-solving cases close to experimental data. The 

models are pressure-based SST k-ω, density-based 

SST k-ω, pressure-based Realizable k-ε, and 

density-based Realizable k-ε. Although the 

numerical data do not overlap entirely with the 

experimental ones, the differences are within a 

reasonable range. The changing trend of the 

experimental and simulated structures is basically 

the same and have some slight difference. The 

plotted loss coefficients are for exit Mach numbers 

between 0.7 to 1.1. It is seen from the plot that, up 

to a specific exit Mach number (Ma=0.9), the total 

pressure losses are low. However, after Ma=0.9, the 

total pressure loss increases rapidly. The sudden 

increase is due to the appearance of shocks inside the 

blade channel. As the exit Mach number continues 

to grow to about 1.05, the simulation results show 

that the total pressure loss increases slowly with the 

exit Mach number, while the experimental results 

still increase significantly with the increase of the 

exit Mach number. 

 
Figure 5: Comparison between numerical and 

experimental blade profile loss for Geometry 1. 
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The differences may have come from the following 

reasons. Firstly, the compressibility of air and the 

capture of shock waves in the simulation 

calculations may still differ from the actual problem; 

some factors, like the turbulent vortex in 3D space 

and dissipation in the third direction, cannot be 

captured by the 2D simulations in this research. 

Secondly, applying constant static pressure at the 

outlet affects the total pressure loss values. Besides, 

the empirical data measurement position and 

statistical approach may differ from the data 

collection of our numerical approach. Finally, this 

study is mainly on a transonic turbine blade, with 

exit Mach number ranging from about 0.7 to 1.1, for 

which it is notoriously difficult to get a precise 

solution with RANS models. 

Similarly, the differences between the four cases are 

also slight. The data sets for density-based and 

pressure-based SST k-ω models are close to each 

other, while the density-based and pressure-based 

Realizable k-ε models also have a similar 

phenomenon. According to the literature (Corriveau 

D et al., 2007), the profile loss will vary slowly for 

high Mach numbers, which also can be observed in 

our current numerical results. When the Mach 

number is above almost 1.05, the density-based and 

pressure-based Realizable k-ε model has less 

variation than the SST k-ω models. So in terms of 

growth trend, the SST k-ω model is closer to the 

experimental growth trend than the Realizable k-ε 

model. 

 

3. Results and Discussions 

3.1. Comparison across Models 

Before further research on this turbine blade, some 

variables, like Mach number, pressure, obtained in 

the model validation section were identified as key 

parameters. In addition, comparing the differences 

caused by different model-solver cases is also 

critical. Using geometry 1, we have done some 

simulations to explore the influence of model and 

solver selection. This study analyzes the conditions 

of different outlet Mach numbers 0.76 and 1.1, as 

shown in Figures 6-11. The most apparent difference 

between these two cases is the observation of shock 

waves. When the outlet Mach number is 1.1, the 

shock wave is obvious in all four models, as seen in 

Figure 6 and 7, while the flow field of four models 

is subsonic when the outlet Mach number is 0.76, as 

shown in Figures 9 and 10. 

Figure 6 shows the contour of the exit Mach number 

of 1.1 under the same turbulence models with 

different solvers. Specifically, the density-based and 

pressure-based Realizable k-ε models have similar 

Mach number distributions, including the value 

range and position of the shock wave, while the 

density-based and pressure-based SST k-ω models 

capture a more severe shock. As it is seen from 

zoom-in figures, near the suction side of the outlet 

blade wall under the same solver, the SST k-ω model 

shows a better distribution of the reflected oblique 

shocks and expansion waves near the blade wall. 

Theoretically, the Realizable k-ε model might face 

inaccuracies for complex wall-bounded flows, such 

as predicting the early onset of flow separation or the 

inability to accurately capture turbulent shock wave-

boundary layer interaction. Thus SST k-ω might be 

more reliable in this respect. The Mach number 

around the trailing edge of the turbine blade is small, 

which means the velocity is small, resulting from 

some adverse flow decrease in kinetic energy. 

 
Figure 6: The Contour of Mach number of four models 

with exit Mach number 1.1. 

 

Figure 7 and 8 show the contour of static 

temperature and total pressure of four models, 

respectively. Besides, in both figures, the ‘inclined 

strip’ near the outlet part is caused by the blade 

wakes, and the ‘strips’ are caused by other turbine 

blades present with the periodic boundary condition 

selection. 

 
Figure 7: The static temperature of four models with exit 

Mach number 1.1. 

 

 
Figure 8: The Total Pressure of four models with exit 

Mach number 1.1. 
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As the outlet Mach number was decreased to 0.76, 

the entire flow field becomes subsonic, as shown in 

Figures 9. The maximum Mach number changed 

from about 1.31 to 0.85. Besides, the Mach number 

in the blade's trailing edge is more uniform, and 

there is no shock wave in the field.  

 
Figure 9: The Contour of Mach number of four models 

with exit Mach number 0.76. 

 

A low Mach number means the kinetic energy loss 

is slight. Therefore, the static temperature in the 

trailing edge of the blade increased in a smaller area, 

and the distribution near the outlet is more even, as 

shown in Figure 10. The average temperature is 

higher than the case with a high Mach number. This 

is because the two cases with the same inlet 

temperature have higher Mach number with shock 

waves increasing more loss so that the temperature 

will be higher. 

 
Figure 10: The static temperature of four models with 

exit Mach number 0.76. 

 

 
Figure 11: The Total Pressure of four models with exit 

Mach number 0.76. 

 

The temperature data (Figures 7, 10) also offers 

information pertinent to the design of turbine blades. 

In a gas turbine, the turbines would endure some of 

the harshest operating temperatures. On top of 

revealing the temperatures the blades will be subject 

to, the temperature distribution around the blade can 

potentially allow the designer to measure how 

design changes might lead to temperature changes in 

the flow field and uneven distributions, if any. 

Furthermore, additional design measures such as 

cooling channels and thermal barrier coating can be 

incorporated to target the areas with peak 

temperatures. 

Figure 11 shows the total pressure of four models 

when the outlet Mach number is 0.76. It can be seen 

that the total pressure drop in Figure 11 is 

significantly smaller than that in Figure 8. 

Therefore, the shock wave is one of the significant 

sources of loss. From this, it can be concluded that 

the blade curvature distribution should be in a way 

to minimize the effect of losses with having oblique 

and expansion waves in the flow. 

So far, the results of the density-based and the 

pressure-based are not much different, and the 

pressure-based costs less computational time. 

Besides, turbulence models, SST k-ω model 

compared to Realizable k-ε model has more ability 

to accurately capture turbulent shock wave-

boundary layer interaction. Therefore, the pressure-

based SST k-ω model is thought to be more realistic 

for this study. Therefore, the computations 

performed and the results presented below are 

performed entirely with pressure based SST k-ω 

model. 

 

3.2. Influence of Incidence 

To study the influence of incidence on the flow 

around the turbine blade, different incidence angles 

are applied at the inlet with the same geometry 1, 

setting the same inlet and outlet pressure, which exit 

Mach number is almost 0.88, and the maximum 

Mach number is around 1, as shown in Figure 12. 

Increasing the incidence angle will bring about the 

translation of the low-speed stagnation regions from 

the blade leading edge to the pressure side and 

increase in inlet Mach numbers.  

 
Figure 12: Contour of influence of incidence on Mach 

number in Geometry 1 

 



SIMS 64  Västerås, Sweden, September 26-27, 2023 

 
(a) Contours of velocity vectors 

 
(b) Zoom-in Figures of two incidence angle 

Figure 13: Contours of velocity vectors showing effect of 

incidence angle on the Geometry 1. 

 

Figure 13 shows the contour of the velocity vector 

and zoom-in figures. Figure 13(a) compares the 

contour of different incidence angles on Mach 

number in Geometry 1. From the zoom-in figure (b), 

showing some specific details, there is a backflow 

and vortex near the pressure side boundary region 

when the incidence angle is -48.8º, which may cause 

more losses. However, as the incidence angle 

change to 10º, there is no reverse flow and vortex. 

Isentropic Mach number and static pressure values 

along the blade surface normalized with total inlet 

pressure p_s⁄p_(0,in)   are plotted against the axial 

distance from the leading edge of the blades 

(x⁄C_axial ), where C_axial is the blade axial chord, 

is adopted to better evaluate performance due to the 

small numerical differences for blade profile losses, 

which shows in Figure 14. The small 'loop' in Figure 

14 (a) when the incidence is -48º indicates negative 

work done by the blade from the flow before the 

position of 0.25. The net area enclosed by the curve 

can be related to the work output by the blade so that 

a larger one will indicate better work output. 

Besides, we can also know that over-expansion 

between the throat and trailing edge exits some 

diffusion, with an increase in loss. Figure 14 (b) 

compares the influence of different incidences on 

isentropic Mach number distribution. It can be seen 

from the Figure 14 (b) that the maximum isentropic 

Mach number of the four cases does not exceed 1. 

The blade's performance depends largely on the 

amount of diffusion and diffusion rate, which is also 

important when we further optimize the blade 

performance in the future. 

 
(a) Normalized Static Pressure 

 
(b) Isentropic Mach Number 

Figure 14: Influence of incidence on blade loading along 

the surface of the blade in Geometry 1. 

 

Identifiable from Figure 14, the incidence of 10º 

gives the largest work output (within the studied 

range). This information could be incorporated 

either into the design of the trailing edge blade angle 

of the stator stage upstream of the concerned rotors 

or the orientation of the rotor blades to obtain the 

desired incidence angle.  

On the other hand, gas turbines frequently operate at 

off-design conditions. The airflow entering each 

turbine stage can be far from the designed incidences 

at off-design conditions. A transonic or low 

supersonic flow coupled with a large incidence, 

possibly leading to a significant flow separation on 

the turbine blade, would pose a real challenge for 

turbine designers. The data obtained from incidence 

angle simulations can be useful for performance 

analysis of off-design operating conditions. 

 

3.3. Effects of Exit Blade Angle and Incidence 

Figure 15 shows the Mach number distribution of 

the blades in Geometries 1 and 2.  

The performances of Geometry 1 and Geometry 2 

with the incidence of 10º and -10º were compared to 

observe the influence of the modified exit blade 

angle on the blade performance. The results are 

shown in Figures 16.  
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Figure 15: The Mach number distribution of the blades in 

Geometries 1 and 2. 

 

 
(a) Normalized Static Pressure 

 
(b) Isentropic Mach Number 

Figure 16: Influence of incidence on blade loading along 

the surface of the blade in Geometry 1 and 2. 

 

Figure 16(a) shows the normalized static pressure 

distribution along the blade surface. The enclosed 

curve area of Geometry 2 for all studied incidence 

angles is bigger than those of Geometry 1. 

From Figure 16(b), Geometry 2 has a smaller 

maximum isentropic Mach number for the same 

incidence angle than Geometry 1. Besides, the 

position of peak velocity on the suction side is 

earlier, so the diffusion rate is less, with a decrease 

in loss.  

By this measurement, the performance of Geometry 

2 is better than Geometry 1, which indicates that 

decreasing the exit blade angle has led to improving 

the performance of the current turbine blade. 

 

4. Conclusion 

This paper mainly focuses on applying CFD with a 

suitable turbulence model to evaluate turbine rotor 

blade performance. The results have shown the 

adequacy of the four RANS models – pressure and 

density-based Realizable k-ε and SST k-ω, in 

simulating the flow field trends for the Geometry 

blade design to a reasonable accuracy. The pressure-

based SST k-ω model has been eventually picked as 

the model of choice due to the slightly better 

matching of the experimental data trends, capability 

to capture shock waves in the performed simulations 

more accurately, lower computational cost of the 

pressure-based solver, as well as SST k-ω model’s 

theoretical superior ability to handle complex flows 

including those around turbine blades. So this paper 

finds a cost-effective CFD model that can predict 

performance trends with reasonable accuracy. It 

provides a more convenient and reliable method for 

performance evaluation of 2D turbine blade 

geometries. 

Besides, different incidence angles are studied to see 

the influence on the blade performance. Within the 

study range, the inflow incidence angle of 10° is 

found to have the best performance in terms of 

turbine work output. Two geometries were designed 

by setting two different exit blade angles to observe 

the influence of the modified exit blade angle on the 

blade performance. The blade performance of 

Geometry 2 appears superior to Geometry 1. 

Finally, Geometry 2 with an exit blade angle of 70º, 

coupled with the incidence angle of 10º (among the 

cases of incidence studied), has been shown to give 

the largest work output and fewer losses. 
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Abstract

The reforming of light hydrocarbons to produce synthesis gas, H2 and CO, is an important intermediate for manufacturing
valuable basic chemicals and synthesis fuels. In order to understand these reforming processes better, elementary step reaction
mechanisms are developed. In the available literature, the surface reaction mechanisms are usually achieved with the help of
reaction kinetic parameters without using the thermochemistry of the species referred to kinetic models due to the unavailability
of the thermochemistry of the intermediate species involved in the multi-step reaction mechanism. In this work, investigations
are made to obtain the thermochemistry of the intermediate species to establish thermodynamic equilibrium in order to develop
a thermodynamic model for steam reforming of methane over nickel. The thermochemistry of the surface bound species is
taken from different sources available in the literature and after that a detailed sensitivity analysis is performed to match
the results with experiments. The simulation set up is adapted from the literature experiments given in [1]. The results
produced with the one-dimensional tool using the thermodynamic model developed in the present investigation consisting of
21 reversible reactions are compared with the kinetic scheme with 42 irreversible reactions from reference simulation along
with their experimental results. Both the models show some major differences in the reaction pathways which provides a useful
insight into the key rate determining steps and needs further investigations.

Keywords: Nickel-based catalyst; One-dimensional modeling; Thermodynamic model; Steam reforming;

1. Introduction
A crucial chemical process providing synthesis gas (H2

and CO) is steam reforming of hydrocarbons [2, 3]. The
reforming of steam plays an important role as a feedstock
in many catalytic processes [1], such as, synthesis of
methanol, oxo-synthesis, and Fischer-Tropsch synthesis.
The methane or gas (natural) reforming is the most
prominent and widely used industrial steam reforming
process [1, 3, 4].
There are several kinetic models available in literature to
study reforming processes. Quiceno et al. [5] described
the steam reforming of methane accompanied by water-
gas shift reactions on a Ni/MgAl2O4 catalyst by intrinsic
rate equations derived from a Langmuir-Hinshelwood
mechanism. A catalytic sequence for reactions of CH4

with CO2 and H2O on Ni/MgO catalysts is considered
by Wei et al. [6]. A microkinetic model for steam
reforming reactions over a Ni/MgAl2O4 catalyst is
investigated by Aparicio et al. [7] by reactions for
CO2 reforming of methane and deactivation by carbon
formation.
Other investigations focusing on reduction of the cost of
synthesis gas production are partial oxidation over noble
metal catalysts [8–11] as well as CO2 reforming [12–
14] of natural gas to synthesis gas. Several investigations
considered the sequence and interaction of the reaction
routes to understand the reaction mechanism of synthesis
gas formation from methane. A direct catalytic partial

oxidation route has been studies by Hickman et al. [11]
and the indirect route in [8–10, 15]. The steps for
steam reforming for the catalytic partial oxidation of
methane over platinum and rhodium are published in
[11, 15–17]. In [18, 19], the reaction kinetics of methane
steam reforming over nickel catalyst has been extensively
investigated experimentally and theoretically.
All the investigations in literature consider a kinetic model
with all the direct/irreversible reactions. The detailed
surface reaction mechanism in these models requires
specification of Arrhenius parameters for all the forward
reactions involved in the mechanism. In these models,
even the reverse rates are calculated with the help of
kinetic parameters without using the thermochemistry
of the intermediate species involved in the mechanism.
Hence the equilibrium can be achieved by modifying the
Arrhenius parameters. The prime reason to follow this
approach is because of the unavailability of the thermodata
of the surface species.
However, the optimum approach to establish
thermodynamic equilibrium would be to use the
thermodata of the surface species to calculate the
reverse rate expressions. The Arrhenius parameters
are more accurate to define the speed of the reactions
whereas the thermochemistry is more important to
achieve the equilibrium. This motivated us to develop a
thermodynamic model where the kinetic parameters are
given only for the forward reactions and then the rate
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Figure 1: Schematic illustration of the one-dimensional modeling approach

expressions for the reverse reactions can be calculated by
using the thermodata of the intermediate species.
The thermochemistry of the intermediate species available
from this study can be further directly used in other
reforming processes, for instance, dry reforming or
oxidative reforming of methane over a nickel catalyst
in order to understand and mitigate the coke formation
problems encountered in these reforming processes at
different conditions.

2. Simulation Set-up
The simulation set-up is taken from Maier at al. [1].
This allows us to re-calculate the results for the kinetic
model with the LOGEcat for validation of the model as
well as the surface reaction mechanism and later checking
the predictive capability for the thermodynamic model.
As done in the reference paper [1], the simulations are
performed for different reactor conditions in terms of
parameter as temperature while keeping the fuel ratio, flow
rate and pressure same as [1]. The simulations are carried
out at four temperatures, i.e., 920, 1020, 1120, and 1220
K.
The one-dimensional model, LOGEcat [20] is used for
the simulations and the model is based on the single-
channel 1D catalyst model applicable to the simulations
of all standard after-treatment catalytic processes of
combustion exhaust gas, for example, three-way catalyst
(TWC), diesel oxidation catalysts (DOC), NOx storage
and reduction (NSR) catalysts and selective catalytic
reduction (SCR) catalysts.
The single channel divided into a finite number of cells
with ∆x as their length is shown in Figure 1. As shown in
the figure, each cell is treated as a perfectly stirred reactor
(PSR). The pressure gradient along with inhomogeneity
of the mixture can be neglected because the diameter of
the catalytic channel is small. The external diffusion is
modeled by a thin layer represented by a separate pore
gas zone close to the wall. This pore layer is depicted
by the area between the bulk gas and the washcoat as
shown in Figure 1. For more details about conservation
equations used in the model and the derivations of these
equations, we refer the reader to [20, 21] and to understand
the modeling approach, to our previous work [22–25].
A single channel being 1.0 × 10−2 m in length with a
catalyst radius of 7.5×10−3 m which is uniformly divided

into 25 cells is considered for the simulations with one
layer of washcoat. The overall heat transfer efficiency
factor, mass transfer efficiency factor and the efficiency
factors for the surface chemistry are taken as one. The
surface site density for nickel is 2.6 × 10−5 mol/m2 [3].
The surface area per catalyst length is selected 6.9 ×
10−3 m2/m by performing the sensitivity analysis to get
the results comparable to the reference simulations and
experiments. Argon dilution is used similar to [1].
The reaction mechanism for the simulations is taken from
Maier et al. [1] which contains 6 gas-phase and 13
surface species in total along with 42 forward reactions
referred as kinetic model. After validating the results
produces with the LOGEcat using the kinetic model, a
thermodynamic model is developed. In this model, only
21 forward reactions are used with the kinetic parameters
taken from Maier et al. [1]. The kinetic expressions for
the remaining 21 backward reactions are then calculated
with the help of the thermochemistry for the intermediate
species involved in the surface reaction mechanism. Since
the thermochemistry of the surface bound species is not
easily available, we have taken the thermodata from
different sources [1, 26]. The thermodata from Maier et
al. [1] is referred as DETCHEM and from Liu et al. [26]
as RMG in upcoming sections.
The heat capacity, entropy and enthalpy for all the
intermediate species involved in the surface mechanism
have been summarised in [22] in Table 1 for both the
sources, DETCHEM as well as RMG. We note that the
enthalpy of formation of species vary in a wide range for
the two sources, specially for the species, C(s), CH3(s),
CH(s), and CH4(s). This hints towards the requirement
of a further investigation to find the sensitive limits for
thermochemistry of all the species. Nevertheless, the most
sensitive reactions for dry reforming of methane using a
kinetic model and the thermodynamic model have been
given in [25], Table 3.

3. Results
The above mentioned 1D model is used to perform
the simulations for various temperatures for the steam
reforming of methane over a nickel catalyst. The kinetic
parameters for the considered 21 forward reactions and the
thermochemistry of the 13 surface species are taken from
[1].
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Figure 2: Methane and water conversion as a function of temperature along with the reference data. The 1D simulation results are shown for
thermodynamic data from DETCHEM by replacing the species CO(s) from RMG data.

Figure 3: Methane and water conversion as a function of temperature along with the reference data. The 1D simulation results are shown for
thermodynamic data from DETCHEM by replacing the species CO2(s) from RMG data.

As an initial check, we used the thermodata only from
DETCHEM and check the methane and water conversion
in the considered temperature range. The species
concentration showed deviations (under predicted) and
this motivated us to take the thermodata from RMG for
all the intermediate species where the deviation in the
conversion profile was noted more than the previous data
set (still under predicted). So, in order to understand
the impact of thermodata of the individual species, we
next considered the thermodata for all the 13 species from
DETCHEM and then replaced the thermodata of species
one by one with RMG.

We note that the target for the thermodynamic model,
presented in this paper, is to perform close to the reference
experiments. However, there are several assumptions to
develop the reference kinetic model [1] which is used as
the base to develop the thermodynamic model. So, the

results for our model are expected to remain close to the
reference simulations.

3.1. Influence of CO(s)
The influence of only some of the site species are
shown and discussed in this paper. Figure 2 shows the
methane and water conversion as a function of temperature
using the thermodynamic model along with the reference
experiments and simulations with kinetic model from [1].
The thermodynamic model used the thermodynamic data
for all the species from DETCHEM [1] and only for
the species CO(s), the thermodynamic data is used from
RMG [26]. The conversion for both the reactants is over
predicted at all the temperatures.
For methane conversion in the range 900-1100 K, the over
prediction is significant whereas, for higher temperature
(1200 K) thermodynamic equilibrium is achieved. In case
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Figure 4: Methane and water conversion as a function of temperature along with the reference data. The 1D simulation results are shown for
thermodynamic data from DETCHEM by replacing the species CO(s) and CO2(s) from RMG data.

Figure 5: Methane and water conversion as a function of temperature along with the reference data with the kinetic model. All other parameters
are kept fixed. 1D simulation results produced with the kinetic model (42 reactions) as well as thermodynamic model (21 reactions) are shown.

of water, the conversion is deviating from the reference
simulations at low temperatures and shows agreement
at temperatures above 1000 K. The water conversion
computed with the 1D model as well as for reference
simulations is away from reference experiments, specially
at high temperatures.

3.2. Influence of CO2(s)
The influence of the species CO2(s) shown in Figure 3 is
completely different as compared with the CO(s) species.
For both the species, methane conversion is in equilibrium
at higher temperatures. The conversion of both the
reactant species is under predicted at low temperatures
by utilizing the thermodata for all the species from
DETCHEM [1] and for CO2(s) species from RMG [26].
However, if the thermodata for both the species, CO(s)
and CO2(s), is taken from RMG [26], shown in

Figure 4, while all other species thermodata is taken from
DETCHEM [1], then the species conversion is similar to
the one explained above in Figure 2.

Such investigation was further performed for all the 13
surface species and we found that out of all the involved
site species, CO(s) and CH4(s) are the most sensitive and
play an important role to achieve conversion of the species
comparable to the reference experiments. However, a
direct replacement of the RMG species with DETCHEM
could not compute the conversion correctly. This lead
us to perform the enthalpy sensitivity analysis of the
most sensitive species. The enthalpy of formation of the
species CO(s) (thermodata for this species is taken from
RMG) was further increased from 1 to 100 kJ to achieve
the reactant conversion comparable with the reference
experiments and simulations.
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Figure 6: CO selectivity as a function of temperature along with the reference data. The reference data is using the kinetic model while the 1D
simulation results are shown for both, the kinetic model and the thermodynamic model.

3.3. Comparison between kinetic and thermodynamic
model
Further, the simulations are performed using LOGEcat
with the kinetic model taken from Maier at al. [1]
and with the thermodynamic model developed in the
considered temperature range. Methane and water
conversion as a function of temperature along with the
reference experiments and simulations with the kinetic
model is shown in Figure 5 keeping all other parameters
fixed. In this figure, the LOGEcat results are shown
for kinetic model using 42 reaction as well as for
thermodynamic model using 21 reactions. 1D simulation
results produced with the kinetic model (42 reactions)
as well as thermodynamic model (21 reactions) are in
good agreement with the reference simulations as well as
with each other illustrating the the thermochemistry of the
surface species is robust and can be used in future for
similar investigations where thermodata is an important
parameter.
The CO selectivity variation with temperature in methane
steam reforming for fixed fuel ratio shown in Figure 6
shows deviations with thermodynamic model calculations.
The calculations with LOGEcat using the kinetic model
are in good agreement with the reference simulations
and experimental data. Various reactions pathways and
reaction sensitivity analysis needs to be performed in
future to understand the difference in the calculations
using the thermodynamic model.
To summarize, the 1D model, LOGEcat, is used to
perform the simulations by utilizing already existing
kinetic model with 42 irreversible reactions and with
the help of new thermodynamic model consisting of 21
reversible reactions. In thermodynamic model, the reverse
rates are calculated using the thermochemistry of the
intermediate species. The thermochemistry of all the
species is taken from [1] except for CO(s), which is
taken from RMG [26] and adopted for our model by
increasing the enthalpy of formation by 40 kJ to get
a better agreement with the reference experiments and

simulations.

4. Conclusions
The kinetic models are used to investigate the steam
reforming of methane over a nickel catalyst. These
models comprise of all the direct or irreversible reactions
in the detailed surface reaction mechanism due to the
unavailability of the thermochemistry of the intermediate
species. For example, in Maier et al. [1], the reforming
is studies by using 42 forward reactions. However, in the
present work we focus on utilizing the thermochemistry
of the surface bound species from different sources to
develop a thermodynamic model.
Therefore, only 21 forward reactions are considered in the
surface reaction mechanism and the backward reactions
are omitted. The rate for backwards reactions are
accounted by the thermochemistry of the intermediate
species. In our model, the thermochemistry for the species
CO(s) is taken from RMG [26] with a increased formation
of enthalpy by 40 kJ and for all other species, the
thermochemistry is utilized from [1]. A one-dimensional
model, LOGEcat is used to perform the simulations. First,
the kinetic model with 42 reactions from literature is used
to carry out the simulations and then the thermodynamic
model with 21 reactions. The results from both the models
are compared with literature [1] for different temperatures.
The thermochemistry from different sources shows
differences in the conversion of methane and water. The
sensitivity analysis on the thermochemistry lead us to
find the most sensitive species which can be modified
to get the conversion of reactant comparable with the
reference experiments and simulations performed with the
kinetic model. A further investigation can be performed
to find the sensitive limits for the formation of enthalpy
of all the species considered to understand the role of
thermochemistry in details. The most sensitive reactions
can also be figured out by performing the flow analysis in
future.
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Abstract 

 

Building energy models are developed to describe energy performance. The energy performance of buildings is 

influenced by physical and human influenced factors. Therefore, to improve energy efficiency and renewable 

energy implementation in buildings on large scale, there is a need to analyze buildings on a large scale. In this 

study, URBANopt, a multi-building energy evaluation tool, was used to develop an accurate Multi building 

scale energy model for a university campus. This model will be useful in the future work to evaluate various 

available and emerging building-level and district-level technologies and retrofitting options to improve energy 

performance. URBANopt is a unique tool that leverages high-fidelity simulations of buildings, community-scale 

systems, distributed energy resources, and the associated interactions with local distribution electric 

infrastructure. A university campus in Norway was chosen as a case study. Results obtained from URBANopt 

were compared with a typical building energy simulation model in IDA-ICE for a representative building. This 

representative building was developed based on building characteristics, functionality, and geographic location, 

including indoor and outdoor climate conditions. Both models were validated by using measurement data. The 

results showed better simulation accuracy of the multi-building method of URBANopt with the measurement 

data, mainly due to the averaging of the characteristics of all buildings in the development of the representative 

building. Furthermore, the URBANopt allowed assigning a different scenario of technologies and retrofit 

options to each building in the evaluation process, which is impossible in the typical model due to its nature. 

However, it should be pointed out that the computational time of the model developed in URBANopt was 

higher and will increase more with the increased number of buildings. 

 

1. Introduction 

The rapid urbanization has led to an increasing 

demand for energy in urban areas. The building 

sector consumes a significant portion of the energy 

used in urban areas, accounting for 30-40% of 

global energy use (Li, Zhou et al. 2017). As a 

result, modeling building energy use at an urban 

scale has become a crucial task in achieving energy 

efficiency in urban areas. Urban building energy 

modeling (UBEM) refers to the process of 

predicting urban building energy use using 

computer simulations. UBEM is an essential tool 

for predicting energy use and evaluating energy 

efficiency strategies in urban policy (Wang, 

Ferrando et al. 2022). 

In order to create a reliable building energy model 

of a new or existing neighborhood, the task can be 

broken into the following subtasks: simulation 

input organization (data input), thermal model 

generation and execution (thermal modeling) as 

well as result validation (validation) (Reinhart and 

Cerezo Davila 2016). The simulation input 

organization is concerned with the collection and 

integration of data from various sources, such as 

weather data, building design data, and energy use 

data, to create a comprehensive and accurate input 

dataset for the model (Wang, Ferrando et al. 2022). 

Once the input data has been collected and 

integrated, the thermal model generation and 

execution stage involves creating a mathematical 

model of the energy use of the buildings in the 

urban area, which can then be simulated and tested 

under various conditions (Wang, Ferrando et al. 

2022). 

Several different types of energy models have been 

proposed for modeling urban building energy use 

over the past few decades, each with their own 

strengths and weaknesses (Li, Zhou et al. 2017). 

Physics-based, bottom-up models are one of the 

most common types of models used for this 

purpose. These models rely on detailed physical 

data, such as the building's geometry, construction 

materials, and HVAC system, to generate a 

comprehensive model of the energy use of the 

building. These models are typically accurate but 

can be time-consuming to develop and require a lot 

of detailed data (Li, Zhou et al. 2017). 
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Another approach to modeling urban building 

energy use involves coupling bottom-up physics 

models with geographic information systems (GIS) 

techniques. This approach involves using GIS to 

integrate the physical data of the building with the 

spatial data of the urban area to create a more 

comprehensive model. One study that used this 

approach modeled urban building energy use and 

CO2 emissions for Indianapolis-Marion County, IN 

by integrating their energy use model, eQUEST, 

with GIS techniques (Li, Zhou et al. 2017). 

In addition to physics-based models, statistical 

models have also been used for modeling urban 

building energy use. These models rely on 

statistical analysis of data to generate a model of 

the energy use of the buildings in the urban area. 

While these models are typically faster and require 

less detailed data than physics-based models, they 

are also generally less accurate (Li, Zhou et al. 

2017). 

One important aspect of modeling building energy 

use at an urban scale is the development of 

archetype libraries. Archetype libraries are 

collections of building models that have been 

grouped into homogenous groups based on their 

characteristics, such as building type, size, and 

construction materials. These libraries can be used 

to streamline the modeling process by providing 

pre-existing models that can be easily adapted to 

new urban areas (Mohammadiziazi, Copeland et al. 

2021). 

The benefits of modeling building energy use at an 

urban scale are numerous. By accurately modeling 

the energy use of buildings in an urban area, 

policymakers and energy planners can identify 

areas of high energy use and develop targeted 

strategies for improving energy efficiency. This can 

lead to reduced energy use, lower energy costs, and 

reduced greenhouse gas emissions. In addition, 

modeling building energy use at an urban scale can 

also help to identify areas of the urban environment 

that are particularly vulnerable to heat waves and 

other extreme weather events and validate the 

performance of UBEMs. These validation 

techniques can range from comparing the simulated 

energy use with measured energy use data, to 

comparing the simulated thermal loads with real 

weather data (Li, Zhou et al. 2017). 

One interesting application of UBEMs is the study 

of waste heat from buildings and its contribution to 

urban heat islands. A study conducted by the US 

Department of Energy found that during heat 

waves, waste heat from air conditioning can 

increase the amount of heat being dispersed from 

buildings to the urban environment by up to 20% 

(Luo, Vahmani et al. 2020). UBEMs can be used to 

simulate the impact of waste heat on urban 

temperatures, which can help policymakers develop 

strategies to reduce urban heat island effects. 

Detailed building energy data and existing 

buildings that match prototypical building energy 

models (BEMs) are essential factors for the current 

UBEM development. There are several instances 

where building energy data are unavailable due to 

privacy concerns, lack of civic energy disclosure 

requirements, or properties that do not meet 

reporting threshold requirements. As highlighted by 

different studies (Holloway and Bunker 2006, 

Abrahamse and Steg 2009, Chen, Xu et al. 2017, 

Chen, Feng et al. 2022), establishing a correlation 

between energy usage and factors like 

socioeconomic status, climate, and building 

characteristics has been challenging. This may 

result in significant differences between a model 

based solely on prototype BEMs and a real 

community. This paper investigated the situation 

where energy data is only available at the aggregate 

district level, and current prototype BEMs do not 

account for actual energy usage in the community. 

This work aimed to establish a pathway for precise 

district-level building energy model creation with 

limited data. 

Based on literature, UBEM, while valuable, has 

several limitations, three important ones are: 

Data Availability: Gathering comprehensive and 

up-to-date data for large-scale urban models can be 

challenging. Limited data can lead to less accurate 

simulations.  

Complexity: Urban environments are complex and 

dynamic, making it difficult to capture all factors 

affecting energy use accurately. This complexity 

can lead to simplified models that may not 

represent reality well.  

Computational Intensity: Simulating energy use in 

large urban areas requires substantial 

computational resources, and it can be time-

consuming. This limits the ability to perform real-

time simulations or analyze numerous scenarios 

quickly. 

The existing literature may be enriched by the 

present work, which illustrates how to create a 

reliable multi-building-scale energy model 

(MBSEM) for an untypical district when detailed 

energy data are unavailable. By highlighting 

essential datasets, tools, and partnerships, this 

addition establishes a roadmap for developing a 

model on a district scale. This contribution is 

accomplished through a university campus case 

study in Trondheim, Norway. The Urban scale 

energy simulation tool URBANopt (Polly, Chuck 

Kutscher et al. 2016, Kontar, Ben Polly et al. 2020) 

was used. The current effort is focused on 

describing the model development process. 

 

2. Methodology  

This section describes the case study, the 

URBANopt tool, and the MBSEM development. 
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2.1. Gløshaugen campus 

The case study case in this paper is a university 

campus located in Trondheim, Norway. In the 

Gløshaugen campus, the system supplies heat to a 

total building area of 300,000 m², and the main 

functions of these buildings are education, offices, 

laboratories, and sports. The campus district 

heating (DH) system is connected to the city DH 

system by the main substation (MS). Apart from 

the heat supply from the city DH system, part of 

the annual heat supply comes from waste heat 

recovered from the university's data center (DC) 

(Li, Hou et al. 2021). According to the 

measurements from June 2017 to May 2018, the 

total heat supply for the campus DH system was 

32.8 GWh. About 80% of the heat supply came 

from the central DH system through the MS. The 

other 20% came from the waste heat recovery from 

the DC (Li 2022). Map of the Gløshaugen campus 

is shown in Figure 2. 

 

2.2. URBANopt tool 

URBANopt is a physics-based energy modeling 

platform for districts and communities (Polly, 

Chuck Kutscher et al. 2016, Kontar, Ben Polly et 

al. 2020). URBANopt is a modular, open-source 

SDK, built on DOE tools such as EnergyPlus, 

OpenStudio, and Spawn of EnergyPlus. 

URBANopt includes capabilities and workflows 

that enable multi-building analysis at a 

neighborhood, district, or campus scale (generally 

10 s to 100 s of buildings) and connections to other 

tools and engines that allow for the analysis of 

shared energy systems, distributed energy resources 

(DER), and the electric distribution systems, 

including interactions and impacts with building 

efficiency and demand flexibility strategies 

(Laboratory, 2022). Figure 1 (Fallahi, Sammy 

Houssainy et al. 2022) shows the structure of 

different tools in URBANOpt SDK. 

 

 
Figure 1. URBANopt SDK Gem structure 

URBANopt helps manage geospatial information 

for modeling a community and automates the 

creation of detailed physics-based models for 

baseline scenarios (e.g., existing conditions) and 

advanced performance scenarios (e.g., retrofit 

upgrades). It exchanges data with other tools, 

manages simulations, and evaluates and compares 

scenarios. In this study one GeoJSON file describes 

Gløshaugen campus buildings, energy systems, and 

end uses, one CSV file tunes and implements 

scenarios, and another CSV file links building 

models to scenarios. URBANopt workflows for 

generating commercial building models were 

described in (Kontar, Ben Polly et al. 2020, Charan, 

Mackey et al. 2021). 

 

 
Figure 2. Aerial image and building cluster for the 

Gløshaugen campus.  

 

2.3. Multi-building scale energy model 

development 

This section describes the process of developing 

the Gløshaugen campus MBSEM, emphasizing 

critical datasets and resources. The objective of 

model development is to generate a precise and 

physics-based representation of energy use in the 

district. The first critical dataset is actual utility 

usage data for the district. There is a dataset for the 

campus DH demand for 2017, as shown in Figure 

3.  

 

 
Figure 3. Hourly buildings heat demand for the year 

2017 
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The assembly of the MBSEM was carried out in six 

steps. First, GeoJSON format was used to define 

building geometry, construction sets, and energy 

systems, which were then used for the URBANopt 

modeling platform. Second, OpenStudio measures 

were utilized to define building energy systems. 

Examples of these included HVAC, hydronic 

heating system types, and component efficiencies. 

Third step was the development of baseline 

predictions for building heat demand. In the fourth 

step, heat demands were adjusted for BEM end-

users developed in step 3. The fifth step looked at 

BEM heat demands and compared to DH data 

shown in Figure 3. Finally, errors were found and 

the MBSEM was modified in the sixth step. This 

workflow is presented graphically in Figure 4, 

showing data sources and inputs. The different data 

used to develop the tuned MBSEM presented in 

this work can be broken down into three categories:  

1. Building structure: Geometry (location, area, 

no. of stories etc.) and materials used in 

walls, windows, and building exterior. 

2. Building energy systems: The performance 

characteristics of end use energy systems for 

heating, such as HVAC, domestic hot water 

(DHW), and all other 

devices/systems/appliances powered by 

district heating. 

3. Aggregated building heat demand: Patterns 

that define how and when heat is needed on 

campus. 

 

2.3.1. Building structure 

Building geometries were developed using aerial 

images, Mazemap1, and site visits. This information 

along with some building regulations, were used as 

input to develop the GeoJSON file as the first step 

of model development (Figure 4). The GeoJSON 

format was used to describe geometries. Building 

stories were determined using Mazemap and site 

visits. The campus buildings arrangement is 

displayed in Figure 5, modeled in GeoJSON 

format. The two assumptions were made for 

geometry development in buildings with mixed-use 

and asymmetric floor areas in some multi-story 

buildings. First, the current building workflow did 

not account for mixed-use buildings. In these 

instances, new uses were added to the library of the 

tool. For buildings with asymmetric floor areas by 

story, these buildings were split and modeled as 

separate buildings with symmetric floor areas. 

 

 
Figure 5. Gløshaugen campus (GeoJSON format)  

 
1 MazeMap Indoor Navigation App. MazeMap Indoor 

Navigation. (n.d.). https://link.mazemap.com/fSPmwDL1 

Figure 4. Summary of model development and tuning process, including data sources 

used to develop simulation result targets. 

https://link.mazemap.com/fSPmwDL1
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2.3.2. Building energy systems 

Building energy systems address the properties of 

space conditioning and domestic hot water (DHW) 

systems. Trondheim, where the case study is 

located, has a Nordic climate, meaning space 

heating accounts for the majority of energy usage 

in these buildings. Therefore, the focus of this 

study was on heating demand and energy systems 

associated with it. Energy systems data, weather 

data, and other building information were used as 

inputs to create the baseline model of the campus 

from the pre-developed GeoJSON file, as shown in 

Figure 4.  

 

2.3.3. Aggregated building heat demand 

The entire campus's aggregated heat demand was 

utilized as input for model tuning and validation. 

Hourly space heating demand and DHW usage 

over one year make up this data. 

 

2.3.4. Baseline load  

Collected data on building structures and energy 

systems described in Sections 2.3.1 and 2.3.2 were 

converted to a GeoJSON format used by 

URBANopt to create a base model. Some key 

parameters defined in (Nord, Sandberg et al. 2019) 

were used for creating the base model. These input 

parameters included characterization of the 

building envelope, occupancy behavior, and 

building functionality. This initial model was used 

to create a baseline heat demand of the campus as 

an input in the tuning process of the model (3rd step 

in Figure 4). 

 

2.3.5. Baseline tuning 

OpenStudio measures were applied to tune 

URBANopt simulation results to match the 

baseline load described in Section 2.3.4 with 

aggregate heat demand described in Section 2.3.3. 

TMY3 weather data files for Trondheim, Norway, 

were used in this work. 

Tuning occurred in two steps (model tuning part in 

Figure 4). First, total conditioned floor area was 

tuned to match heat demand values. After area 

tuning, the complete district-scale energy model 

was benchmarked against the measured data shown 

in Figure 3 by adjusting the model thermostat 

values. 

For example, in one part of the tuning process, the 

initial thermostat set point for the model was a 

variable set point. 21°C for working hours and 

15°C for non-working hours. The initial results 

showed a large difference between the simulation 

output and the measured data, especially in non-

working hours. For this reason, each time, by 

increasing the temperature of the thermostat during 

non-working hours in the model with a step of one 

degree, the output of the model and the measured 

data were compared. Finally, the set point 

temperature of 19°C for non-working hours 

achieved the best adaptation in the results. 

 

3. MBSEM simulation results 

Results from the MBSEM are presented in two 

sections. In the first section, the accuracy of the 

simulation is measured by comparing the results 

with the actual heat demand data shown in Figure 

3. The second section compares the heat demand 

produced in the MBSEM simulation against a 

typical building energy simulation model in the 

IDA-ICE tool, developed as a representative 

building for Gløshaugen campus (Nord, Sandberg 

et al. 2019). This representative building was 

developed based on building characteristics, 

functionality, and geographic location, including 

indoor and outdoor climate conditions. 

 

3.1. Simulation accuracy 

The evaluation of building energy models' accuracy 

is a necessary task, as it allows for the 

implementation and investigation of energy-saving 

strategies while maintaining human comfort. 

ASHRAE Guideline 14-2014, the International 

Performance Measurement and Verification 

Protocol (IPMVP), and the Federal Energy 

Management Program (FEMP) are the most widely 

recognized methodologies for evaluating the 

accuracy of these models (Ruiz and Bandera 2017). 

Normalized Mean Bias Error (NMBE), Coefficient 

of Variation of the Root Mean Square Error 

(CV(RMSE)), and coefficient of determination (R²) 

are the principal accuracy indices used in these 

standards. This study used NMBE and CV(RMSE) 

as error indicators for our simulation results.  

Table 1 shows the total annual heat demand based 

on measured data and simulation outputs. There is 

a 4 GWh underestimation in simulation results for 

the total heat demand on campus. Table 2 shows 

the accuracy indicators on an hourly and monthly 

basis. According to ASHRAE Guideline 14, the 

acceptance criteria for these indicators are +5% 

NMBE and 15% CV(RMSE) for hourly data and 

+10% NMBE and 30% CV(RMSE) for monthly 

data. Therefore, the simulation results could be 

acceptable, considering that the output is heat 

demand for a MBSEM instead of an individual 

BEM. 
Table 1. Annual heat demand 

 Heat Demand 

Actual 32.8 GWh 

Simulation 28.8 GWh 

 

Table 2. Simulation error 

Data type MBE  CV (RMSE)  

Hourly 8% 35% 

Monthly 8% 12% 
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Figure 6 shows actual and simulation heat demand 

for a typical winter week starting from Saturday. 

The simulation provided an accurate forecast of 

hourly heat demand for both weekdays and 

weekends. The model's heat demand was at a 

minimum value during the night on working days, 

resulting in a significant difference. This also led to 

high peaks at the start of the working hours. Tuning 

process can reduce the difference by adjusting the 

thermostat of each building.   

 

 
Figure 6. Heat demand for a typical winter week (starting 

from Saturday) 

Figure 7 shows the monthly heat demand for both 

measured and simulation data. According to this, 

the underestimation in heat demand can also be 

seen in monthly data. The underestimation was 

more common in the cold season, when the demand 

for heat came mainly from space heating. However, 

during summer, when heat demand is solely for 

DHW, the developed model showed better 

prediction.as a result, an alternative approach may 

be necessary for adjusting thermostats despite 

sufficient input data for building energy systems. 

 

 
Figure 7. A comparison of actual monthly heat demand 

versus simulated data 

3.2. MBSEM and IDA ICE typical building 

comparison 

Using typical/reference buildings is another 

approach to deal with district-level building energy 

analysis. The most frequent building design in the 

examined area forms the foundation of the district's 

reference model. For the Gløshaugen campus, 

based on the average geometry, building envelope 

parameters, occupancy behavior, etc., a reference 

model was built in IDA-ICE simulation software 

(Nord, Sandberg et al. 2019).  

To create the IDA-ICe model, information about 

the distribution of areas and rooms was provided by 

the Technical Management Section at NTNU.. It 

was found that the total area was divided by 140 

rooms and 18 zones. Eventually, all zones have 

been combined to form the nine most 

representative: office, reading hall, lecture hall, 

laboratory, traffic area, technical room, workshop, 

cleaning and sanitary room and other. some zones 

with similar functionality were combined for 

creating the model and finally, the geometry and 

size have been selected for reference building. 

Table 3 summarizes key information of the 

Reference model building areas. The simulation 

model and the floor area distribution are shown in 

Figure 8. 

 
Table 3. Reference model building areas 

Building 

geometry 
Parameter 

Reference 

model 

General Total area [m²] 7220.00 

Heated are gross [m²] 7159.20 

Floor area [m²] 1805.00 

Number of floors 4 

Total 

zone area/  

per floor 

area 

Office [m²] 
1967.60 / 

491.90 

Library [m²] 
545.20 / 

136.30 

Educational facilities 

[m²] 

282.00 / 

70.50 

Special room [m²] 
2321.20 / 

580.30 

Traffic area [m²] 
2043.20 / 

510.80 
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Figure 8. Simulation model developed in IDA-ICE 

Based on the geometry and building envelope 

parameters, the model was built in IDA-ICE 

simulation software. Building envelope parameters 

and other important values were defined as 

weighted averages and shown in Table 4. 

 

Table 4. building envelope parameters for IDA-ICE 

model 

Category Parameter Reference 

model 

U-value 

 

 

 

 

 

 

External wall 

[W/m2K] 

0.57 

Internal wall [W/m2K] 0.62 

External floor 

[W/m2K] 

0.19 

Internal floor 

[W/m2K] 

2.39 

Windows [W/m2K] 2.19 

Doors [W/m2K] 1.09 

Roof [W/m2K] 0.48 

General 

for façade  

 

 

Normalized thermal 

bridge value [W/m2K] 

0.10 

Infiltration [l/h]  3.07 

Total windows area 

[%] 

13.16 

 

Since the conditioned floor area of this building is 

about 7 200 m², an area adjustment took place to 

calculate the total heat demand of the campus, 

based on this model. After this adjustment, the total 

annual heat demand of the Gløshaugen campus was 

25.5 GWh (7.2 GWh less than the measured data). 

The monthly heat demand of the campus, based on 

IDA ICE, MBSEM, and measured data, is shown in 

Figure 9.  

 

 
Figure 9. A comparison of actual monthly heat demand 

versus simulated data and IDA ICE results 

Despite the MBSEM, the IDA ICE model 

overestimated the heat demand during the summer. 

During the cold season, especially in December, 

February, and March, there was a significant 

difference between IDA ICE results and measured 

data. The reason for this could be less heat loss 

through building envelope by aggregating all 

buildings in one typical building. This is something 

that should be considered in developing 

representative buildings. 

This work aimed to demonstrate a replicable and 

scalable method for simulating multi-building scale 

energy models with minimum data available. 

Results from the URBANopt simulation tool 

showed good accuracy with measured heat 

demand. In general, the developed model 

underestimated the heat demand for campus (could 

be obtained from Table 1 and Figure 7). Adding 

more details of buildings' structure and energy 

systems and better adjustment in the tunning 

process could result in better accuracy of developed 

MBSEM. Furthermore, results obtained from the 

typical model showed even more underestimation 

of the heat demand of the Gløshaugen campus. 

This was mainly due to neglecting some properties 

of buildings in averaging process. However, it 

should be pointed out that the computational time 

of the model developed in URBANopt was higher 

and will increase more with the increased number 

of buildings, especially in the first stage, which is 

generating building energy models. 
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5. Summary and conclusions 

This paper presents a process for developing a 

MBSEM for a university campus in Trondheim, 

Norway. The modeled district includes 24 

educational, office, and laboratory buildings. The 

district-scale energy model includes individual 

BEM for all buildings. MBSEM tuning is 

accomplished through the matching heat demand 

values using local datasets. The developed model 

had acceptable accuracy on both monthly and 

hourly basis. MBSEM compared with a typical 

BEM developed for the same case study. The 

results showed better simulation accuracy of the 

MBSEM compared to typical BEM, mainly due to 

the averaging of the characteristics of all buildings 

in the development of this model. The approach 

facilitates detailed load construction to prepare for 

analyzing energy efficiency measures, 

electrification, onsite renewable energy conversion, 

and storage technologies. 
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Abstract

Wastewater treatment sector uses about 1 percent of total energy consumption in EuropeanUnion, hence development
of energy-efficient digital technologies is an urgent challenge. The aim of this article is to develop energy-efficient
control strategies for biogas production from sewage sludge at water resource recovery facilities (WRRF). The case
study is developed in collaboration Veas WRRF, Norway. The Veas biogas plant is operated semi-continuously in
mesophilic conditions. The process includes inlet sludge pumps, four anaerobic digesters, heat exchangers for sludge
heating, pumps for sludge recirculation and a compressor for gas recirculation. The process has two controlled
variables, biogas flowrate and digester temperature, the main disturbance is the inlet substrate composition. The
manipulated variables are flowrates of the inlet sludge, heating medium, and sludge recirculation. The real semi-
continuous operation approximated as continuous operation with two hour moving averaging. Transfer functions
were identified from the pre-processed data. The accuracy of the models was sufficient 14− 60%. The transfer
functions were used to design control strategies with PID-controllers and model predictive controller (MPC). The
results show that both control strategies can increase biogas production and decrease variability in controlled and
manipulated variables compared to the plant operation. MPC gave the best results, increasing biogas production up
to 10 % and decreasing variability in controlled variables by 50−80% and by 92−99% in manipulated variables.
These results indicate that implementation of advanced control technologies can improve the energy efficiency of
biogas production.

1 Introduction

Wastewater treatment sector uses about 1 percent
of total energy consumption in European Union,
generating a high energy bill covered by the taxpayers
(EuropeanCommission, 2022). The EU has set a
goal for energy-neutrality in the wastewater sector
by 2040 with renewable energy production, carbon
neutrality and a resource-efficient bioeconomy (Eu-
ropeanCommission, 2021b) (EuropeanCommission,
2021a). Norwegian wastewater industries have
ambitious targets to reduce the environmental impact
(NorskVann, 2017), therefore, investment in energy-
efficient biogas production is essential. Biogas can
replace diesel and other fossil energy carriers in
transport industry increasing the income for WRRFs
and reducing the environmental impacts associated
with biogas production and use. In our previous
work we have reviewed digital technologies that can
improve energy-efficiency in water industry to meet
these demands (Komulainen & Johansen, 2021).
Several complex models have been suggested and
applied for biogas production from sewage sludge.
Veas WRRF biogas production has previously been
modeled with the anaerobic digestion model nr 1,
ADM1, with complex influent characterization by

(Bergland & Bakke, 2016). (Attar & Haugen, 2019)
have continued the work adapting to a simpler AM2
model with two substrate types. The simplest first
principles modeling approach is continuous stirred
tank reactor, a chemostat, with only one substrate
type (Seborg et al., 2017). In recent master thesis
work in collaboration with Veas, Mukhtar (2023) used
the AM2 model to identify transfer function models
for the biogas production, and plant data to identify
models of the heat exchanger and pumps. Using these
transfer function models, Mukhtar (2023) developed
PID and MPC control algorithms for the Veas biogas
process.
As VEAS biogas process has only one online process
measurements related to the substrate, total suspended
solids, in this article, we continue Mukhtar’s work by
identifying transfer function models of the anaerobic
digestion process directly from plant data. Further,
we use the new transfer function models to develop
and test energy-efficient control strategies. Our
research question is ”Which control algorithms can
optimize energy consumption and maximize biogas
production?”
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Figure 1. Simplified Veas biogas process with instrumen-
tation

2 Materials and Methods

2.1 Software

Matlab software package version R2023a was used
for the control experiments and System Identifica-
tion Toolbox for estimation of the model parameters.
Simulink solver algorithm was ode23s with automatic
settings for the time step and error tolerance.

2.2 Biogas plant and instrumentation

A simplified illustration of the biogas plant and instru-
mentation is given in Figure 1. The Veas biogas plant
has sequential operation with four bioreactors. The
sequence for one bioreactor includes filling 5/6 of the
tank with fresh sludge, heating the sludge until biore-
actor temperature T reaches 37oC. The anaerobic di-
gestion process in mesophilic conditions is operated
for about three weeks. The bioreactor is constantly fed
with fresh sludge, flowrate Fin in and out of the biore-
actor are the same, i.e. the bioreactor tank has constant
hold-up. The sludge and biogas are semi-continuously
recirculated in the bioreactor to avoid sedimentation.
Measurements of all unit operations, except biogas re-
circulation rate are available, listed in Table 1.

2.3 Data collection and pre-processing

The online data set and laboratory data sets were col-
lected for a period of one month 30.6.2022-30.7.2022.
ABB Edge Insight was used to collect the online data
from the SCADA system in .csv format. The labora-
tory data set was in .xlsx format.
The outliers in the online data set were first removed.
Then, the missing values in the online data sets were
filled.

2.4 Modeling

Transfer functions can be used for simplified model-
ing and control strategy design. These linear models
can be developed following system identification pro-
cedure by (Ljung, 1999). The relationship between

Table 1. Online measurements

Symbol Description Unit

Fin Flowrate sludge inlet m3/h
T SSin Total suspended solids

in sludge at inlet g/m3

RPMin Pump speed inlet rpm
Tin Temperature sludge inlet oC

THX Temperature sludge after HX oC
T Temperature bioreactor oC

FHW Flowrate hot water in m3/h
THW1 Temperature hot water in oC
THW2 Temperature hot water out oC

R Flowrate sludge recirculation m3/h
FHX Flowrate sludge via

heat exchanger m3/h
RPMR Recycle pump speed rpm
FCH4 Biogas out m3/h

input variables Ui(t) and output variable Y (t) are as-
sumed to be first order models with gain (Kp), time
constant (Tp) and delay (Td), presented in Equation 1:

T F(s) =
Y (s)
Ui(s)

=
Kp

(Tps+1)
e−Tds (1)

2.5 Control methods

The transfer functionmodels identified fromVeas data
were used for parametrization and tuning of the PID
controllers and the MPC controllers. Tuning rules
were adapted from (Skogestad, 2003) and (Seborg et
al., 2017).

2.6 Error indices

The data-driven models are compared with each other
using the fitness index (FIT) and integral of ab-
solute error (IAE) between the real measurements
yi,measurement and the model calculated output yi,model
over N samples. The fitness index is calculated with
Equation 2, where norm is the Euclidean norm.

FIT = (1−
norm(yi,meas − yi,model)

norm(yi,meas − yi,mean)
)100 (2)

IAE =
∫ N

0
|yi,meas(t)− yi,model(t)|dt (3)

The control results are evaluated using the integral
of absolute error between the setpoint and measured
value

IAE =
∫ N

0
|ysp(t)− y(t)|dt (4)

and integral of absolute movement in manipulated
variables:

IAMV =
∫ N

0
|ui(t)−ui(t −1)|dt (5)
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Table 2. Mean, standard deviation and applied scaling of
process variables.

Variable Mean St.Dev Scaling
FIN 7.049 0.8763 120 min MA
FHX 42.2324 0.0541 120 min MA
TIN 21.4041 0.8398 120 min MA
THX 38.3261 0.5049 120 min MA

T SSIN 6.7175 0.7719 120 min MA
FHW 12.2306 7.7764 120 min MA
THW 52.9991 0.8505 120 min MA
FCH4 123.9211 13.7746 120 min MA

T 37.0662 0.0424 120 min MA

3 Results

3.1 Data description

For the modeling, online data from Veas WRRF were
used for period 30.6.2022-30.7.2022 with 10 minutes
sampling time. First half of the data was used for es-
timation and second half for validation of the transfer
function models. As the size of the data set is limited,
the same data set was used for the control experiments.
The process variables with mean and standard devia-
tion are presented in Table 2.

3.2 Data pre-processing

The outliers in the data set were identified based on
the three standard deviation rule, and removed. Then,
the missing values in the data sets were filled in using
Matlab knnimpute function based on nearest-neighbor
imputation method. The inlet temperature sensor TIN
is placed into a joint pipeline between inlet sludge and
recirculated sludge, where recirculation is on 30 min-
utes and off 30 minutes. Hence, for TIN before the
moving averaging, the inlet temperature values over
20 oC were removed and replaced with previous tem-
perature value under 20 oC.
Due to the sequential operation of the Veas biogas
plant, all the variables exhibit high variation. The
sampling interval is 10 minutes. Different moving av-
erage window sizes were tested, but considering the
process time constants of 300-2800 minutes, 120 min-
utes (12 samples) window was chosen as a window of
60minutes did not decrease significantly the high vari-
ation in the raw data.
A moving average of 120 minutes was applied to all
input and output data. Without the moving average,
the system identification did not work properly. Then,
the mean values, given in Table 2, were removed.

3.3 Modeling

For control purposes, the process was to be modeled
using transfer functions identified from plant data. To
allow control strategy design, the process was divided
into three subprocesses with one output variable each.
The controlled variables are (1) biogas flowrate FCH4
out of the bioreactor, (2) temperature T in bioreactor
and (3) recycled sludge outlet temperature THX after
a heat exchanger. Different combinations of input
variables were tested for the subprocesses. Some
of the input variables were omitted if the parameter
uncertainty got very high (thousand times larger than
the parameter value) or if the time constant was very
high (many thousands of minutes). For example,
recycle rate R, is dependent on heated sludge flow
rate FHX , and omitting R improved the modeling
results.

The biogas production FCH4 in the bioreactor is depen-
dent on inlet sludge flowrate F , inlet suspended solids
percentage T SSin, inlet temperature Tin and recircu-
lated and heated sludge flow rate FHX and temperature
THX . Surprisingly, inlet temperature Tin gave negative
relationship to biogas production and was omitted as
input variable. The model parameters and model fit-
ness are given in Table 3. The model prediction and
the measured value are illustrated in Figure 2. The
model prediction is following the main trends of the
biogas production. As an unmeasured part of the bio-
gas is recirculated back to the digesters, the measured
value has a rapid variation that the model cannot cap-
ture.

FCH4(s) = T F11(s)F(s)+T F12(s)T SSin(s)
+T F13(s)Tin(s)+T F14(s)FHX (s)+T F15(s)THX (s)

(6)

Temperature in the bioreactor T is dependent on the
same input variables, except inlet suspended solids
percentage T SSin. The model parameters and model
fitness are given in Table 4. The model prediction and
the measured value are illustrated in Figure 3. The
model prediction follows the main trends in the mea-
surement, but the rapid variation in the data was not
captured.

T (s) = T F21(s)F(s)+T F22(s)T SSin(s)
+T F23(s)Tin(s)+T F24(s)FHX (s)+T F25(s)THX (s)

(7)

Further, the heat exchanger was modeled as first or-
der transfer function between the HX outlet tempera-
ture THX and hot water variables FHW and THW1 and
sludge flowrate FHX and temperature T (s). The model
parameters and model fitness are given in Table 5.
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The model prediction and the measured value are il-
lustrated in Figure 4 . The model prediction follows
the main trends in the measurement.

THX (s) = T F31(s)FHW (s)+T F32(s)FHX (s)
+T F33(s)THW1(s)+T F34(s)T(s)

(8)

Table 3. Transfer function parameters for between FCH4
and inputs.

Input Kp Tp1 Td
[-] [min] [min]

Fin 12.76 1350 0
T SSin 11.80 101 167
Tinin 0 0 0
FHX -21.15 29 266
THX 4.77 432 0
Error FITest FITval
index % %

59.57 18.52

Table 4. Transfer function parameters for bioreactor tem-
perature T and inputs.

Input Kp Tp1 Td
[-] [min] [min]

Fin 1.549 ·10−3 0 298
T SSin 0 0 0
Tinin 31.05 ·10−3 853 233
FHX -171.6 ·10−3 20 87
THX 111.9 ·10−3 379 300
Error FITest FITval
index % %

17.00 14.24

Table 5. Transfer function parameters between heat ex-
changer outlet sludge temperature THX and in-
puts.

Input Kp Tp1 Td
[-] [min] [min]

FHX -0.19072 0 0
T 0 0 0

FHW 0.059157 0 0
THW1 0.650889 0 0
Error FITest FITval
index % %

47.04 48.27

Figure 2. Scaled biogas flowrate FCH4 data (black) and
model (blue), time in minutes.

Figure 3. Scaled bioreactor temperature T data (black)
and model (blue), time in minutes.

Figure 4. Scaled recycled sludge temperature out of heat
exchanger THX data (black) and model (ma-
genta), time in minutes.

3.4 Control

The control aim is to maximize biogas production
FCH4 and minimize costs for pumping inlet sludge Fin,
pumping recirculated sludge FHX and heating sludge
THX , while maintaining optimal temperature T in the
bioreactor. Controlled variables are biogas produc-
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tion FCH4, bioreactor temperature T and recirculated
sludge temperature THX . The manipulated variables
are flowrate of sludge in FHX , flowrate of recycled
and heated sludge FHX , and flowrate of hot water
FHW . The disturbance variables of the system are to-
tal suspended solids in T SSin, inlet sludge temperature
Tin and hot water temperature THW1 into the heat ex-
changer Two control strategies were designed based
on the existing control strategy at Veas WRRF and
a recent master thesis work (Mukhtar, 2023). The
first control strategy with three PID controllers is il-
lustrated in Figure 5 and, the second control strategy
with one model predictive controller is presented in
Figure 6.

Figure 5. Suggested PID control strategy.

Figure 6. Suggested MPC strategy.

3.4.1 PID controllers

The PID controllers were parametrized using Skoges-
tad tuning rules for first order system, the parameters
are given in Table 6. The minimum and maximum
limits for the PID controller outputs were minimum
and maximum values from the scaled data of the ma-
nipulated variables.

Table 6. PID parameters.

Controller Kc Ti tauc min max
PID1 0.5289 800 200 -2.03 1.45
PID2 -0.3998 19.7209 200 -0.14 0.19
PID3 0.0845 - 200 -12.00 15.48

3.4.2 Model Predictive Controller

The MPC controller tuning parameters are given in
Table 7. The settling time was calculated as average
between TFa and TFb. The MPC sampling time was
chosen to keep the model horizon N, a ratio between
settling time and sampling time under 120. Control
horizon M was chosen between 1/3 and 1/2 of N.
The prediction horizon was a sum of model horizon
N and control horizon M. The output variables bio-
gas flowrate FCH4 and bioreactor temperature T were
weighed 10:1 (Q) to give more importance for the
biogas production. Saturation limits for manipulated
variables were the same as for PID controllers. Move-
ments in the manipulated variables, Fin, FHX , were re-
stricted with Rd values. Tested Rd values included
1-1, 5-15, 10-60, 35-210, 50-300, 100-500. Through
extensive simulation tests 35-210 gave lowest values
on flowrate of inlet sludge Fin, reduced oscillations in
both flowrates, and avoided flowrates to remain at sat-
uration limits.

Table 7. MPC parameters.

MPC controller
MPC sampling time Ts 10

Model horizon N 22 ·T s
Control horizon M 11 ·T s
Prediction horizon P 33 ·T s

CV weights Q FCH4 T
2 1

MV saturation Fin FHX
limits

min -2.03 -0.14
max 1.45 0.19

MV rate Rd Fin FHX
weights 35 210

3.4.3 Controller testing

The controllers were tested using the transfer func-
tions as process model. The testing was performed us-
ing the plant data as disturbance variables (inlet sludge
temperature TIN , inlet sludge total suspended solids
T SSIN and hot water inlet temperature THW1). Set-
point for bioreactor temperature T and for recycled
and heated sludge THX to follow a 240 sample moving
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mean of the original data. As the aim is to improve
biogas production, setpoint for biogas flowrate FCH4
was created as 240 sample moving mean multiplied
by 1.00, 1.03, 1.05 and 1.10. Multiplication by 1.00
allows fair comparison between the real operation
(orig.) and the proposed control strategies, whereas
the increased biogas flowrate setpoint can show how
much increase production will affect the manipulated
variables. The integral of absolute error was calcu-
lated between setpoint and measurement for the con-
trolled variables biogas flowrate FCH4 and bioreactor
temperature T . Recycled and heated sludge THX is an
intermittent variable between the bioreactor and heat
exchanger, and therefore not added to the results ta-
ble. Integral of absolute movement in the manipulated
variables was calculated for inlet sludge flowrate FIN ,
sludge recirculation rate FHX and hot water flowrate
FHW .
The results for controlled variables in Table 8 show
that biogas production FCH4 can be increased up to
10 % and variability (IAE) in controlled variables de-
creased with both PID and MPC strategies. The re-
sults for manipulated variables in Table 9 show that
the MPC controller gives 92− 99% lower variability
(IAMV) in the manipulated variables than the original
control strategy, where as the PID strategy gives much
higher variablity (IAMV) in the inlet sludge flowrate
but 25 − 76% lower for the other manipulated vari-
ables than the original control strategy. The integral
of the scaled inlet sludge flowrate Fin and hot water
flowrate FHW have lowest values for the MPC con-
troller without setpoint increase. When the biogas
production setpoint is increased, naturally also inlet
sludge flowrate Fin is increased.
Hence, the best control results for both controlled and
manipulated variables are achievedwith theMPC con-
troller. The visual results for the scenario without set-
point increase are shown in Figures 7 - 11 .

Table 8. Control results CV

Control Int IAE IAE IAE
strategy FCH4 FCH4 T THX

·106 ·104 ·102 ·103

Orig. 2.50 6.51 7.06 8.17
PID 2.50 1.85 0.92 1.62

PID 3% 2.57 1.90 0.92 1.62
PID 5% 2.62 1.94 0.92 1.62
PID 10% 2.75 2.04 0.93 1.62
MPC 2.50 1.89 2.86 1.61

MPC 3% 2.58 2.06 3.05 1.61
MPC 5% 2.62 2.21 3.10 1.61
MPC 10% 2.73 3.31 3.71 1.61

Table 9. Control results MV

Control Int Int IAMV IAMV IAMV
strategy FIN FHW FIN FHX FHW

·103 ·103 ·103 ·103 ·103

Orig. -0.018 -0.003 5.85 1.06 185.7
PID -1.626 1.21 19.45 0.80 43.95

PID 3% 4.642 2.50 20.35 0.80 43.93
PID 5% 8.816 2.61 20.95 0.80 43.94
PID 10% 19.26 2.92 22.59 0.79 43.94
MPC -3.000 -1.32 0.46 0.040 1.92

MPC 3% 2.933 -1.60 0.45 0.039 1.91
MPC 5% 6.297 -2.92 0.45 0.037 1.92
MPC 10% 14.31 -5.21 0.31 0.025 1.93

4 Discussion and Summary

Development of energy-efficient control methods is
crucial to reach the EU waste water directive tar-
get of energy-neutral of WRRF operation. There-
fore, continuous efforts should be made to implement
novel control technologies at municipal and indus-
trial WRRFs. The work on modeling and control
strategy development has been done in collaboration
with Veas municipal WRRF in Norway. One of the
main challenges on for control strategy development
is availability of industrial measurements necessary
to parametrise a state-of-the-art anaerobic digestion
model. Hence, in this work a simplified approach with
linear dynamic models was chosen. Three transfer
function models were identified to model the biogas
production in a bioreactor, temperature in the biore-
actor and outlet temperature of the recirculation heat
exchanger. The modeling results show sufficient fit
14%−60% to the industrial data.
Based on the transfer functions, two control strategies
with PID and MPC controllers were designed. The
control results show that both PID and MPC strate-
gies decrease the variablity in the controlled and ma-
nipulated variables. MPC gave the best results, in-
creasing biogas production up to 10 % and decreas-
ing variability in controlled variables by 50−80% and
92 − 99% in manipulated variables. The answer to
our research question is both PID andMPC control al-
gorithms can optimize energy consumption and max-
imize biogas production. Best results can be achieved
with MPC algorithm. Our results indicate that imple-
mentation of advanced control technologies can im-
prove the energy-efficiency of biogas production at
WRRFs.
We suggest future modeling work estimate the bio-
gas recirculation rate, for example using a Kalman fil-
ter and research on modeling methods feasible for se-
quential operation. Other data-driven modeling meth-
ods could be tested for example using time-series
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Figure 7. Biogas flowrate FCH4 original data (red), 24sample-moving average setpoint (black) and MPC simuled value (blue).
Data is scaled, time in minutes.

Figure 8. Bioreactor temperature T original data (red), 24sample-moving average setpoint (black) and MPC simuled value
(blue). Data is scaled, time in minutes.

Figure 9. Inlet sludge flowrate Fin original data (red) and
MPC simuled value (blue). Data is scaled, time
in minutes.

models or Long-Short-Term-Memory networks could
be tested. Future work on control should include pre-

Figure 10. Hot water flowrate FHW original data (red) and
MPC simuled value (blue). Data is scaled, time
in minutes.

dictive control algorithms that can account for sludge
variations based on seasonality and weather progno-
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Figure 11. Sludge recirculation flowrate FHX original data
(red) and MPC simuled value (blue). Data is
scaled, time in minutes.

sis. Adaptive control with AI approach could be ex-
plored.
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Abstract 

 

Using finite element analysis for rapid dynamic loads without validation of the results can lead to major miscalculation, 

thus making it necessary to examine the accuracy of the software. The structural response from a hydrogen-air mixture 

explosion in a confined channel is investigated with experiments and numerical methods. The channel measures 

1000 mm in length, with an inside diameter of 65 mm, and 15 mm thick transparent polycarbonate sidewalls. 

Hydrogen and air were released into the channel and ignited. Four Kistler transducers record the internal pressures. A 

biaxial HBM rosette strain gauge was bonded to the polycarbonate sidewall, used for recording strains during the 

explosion experiments, where von Mises stresses were calculated from these recordings. The channel was then 

idealized as a computer-aided design model in the engineering software SOLIDWORKS. By utilizing the pressure 

data from the experiments and creating a four-pointed loading curve, finite element analysis was applied for obtaining 

numerical von Mises stress results. Comparing the experimental and numerical results of von Mises stress show a 

variation of 4.9%.  

 

Keywords: Structural Response, Finite Element Analysis, Strain Gauges, Explosions 

 

 

1. Introduction 

Hydrogen can be a key contributor in the transition 

to renewable energy, especially in the process and 

transportation sectors. As hydrogen is an efficient 

energy carrier with a zero emission of CO2 during 

combustion, it will be an important resource for 

solving current environmental challenges. Despite 

this benefit, there is also a downside; hydrogen is a 

highly flammable substance with an associated risk 

of fire and explosion. An accidental explosion can 

have immense consequences such as economic 

losses, personnel injuries, or in worst case fatalities. 

With the following dangers of hydrogen, 

precautionary measures in engineering structures 

and designs transporting or storing hydrogen must 

be taken into consideration. This should be 

prioritized to limit the potential destructive outcome 

in case of an explosion. 

A blast wave from a hydrogen explosion inside a 

confined space will be of a rapid phenomenon, 

combined with high pressures and energies [1]. As 

the explosion’s subsequent waves will reflect inside 

confined spaces such as channels or tunnels, it can 

be challenging to numerically simulate the explosion 

and the structural response simultaneously as a 

coupled occurrence. The normally applied approach 

is using decoupled numerical simulation, where the 

structure is modeled in a computer-aided design 

(CAD) software and furthermore simulated with a 

less complex explosion incident using the finite 

element method (FEM). The loading scenario in 

these simulations are often simplified to a curve in a 

triangular shape for pressures, forces, or velocities, 

where this data can be obtained through 

experiments, distinct numerical simulation or using 

empirical formulas [2-4]. However, this process 

requires certain assumptions for both the CAD 

model and the loading curve. It is hence necessary to 

verify the accuracy of the results from finite element 

analysis (FEA) software. This is especially 

important when performing FEA with complex 

loading situations such as explosions or other rapid 

dynamic loads.  

In this paper, the occurring von Mises stresses on a 

1-meter-long alloy steel channel exposed to a 

hydrogen-air mixture explosion is analyzed, with 

physical experiments using biaxial rosette strain 

gauges, and using decoupled numerical simulation. 

It is also beneficial to use von Mises stresses as a 

reference for comparison, as the strain gauge can 

measure biaxial stresses under complex explosive 

loads. Furthermore, the aim of this study is to verify 
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if the simulation results from the commercial 

computer-aided engineering (CAE) software 

SOLIDWORKS1 will be similar to the strain gauge 

measurements, and if the software is suitable to use 

for these kind of loading circumstances. This 

information will be helpful for engineers designing 

structures which should withstand explosive loads.  

The experiments were conducted in collaboration 

with another research project at the University of 

South-Eastern Norway, where the physics of the 

explosion and the deflagration-to-detonation 

transition (DDT) was investigated [5]. This paper 

will focus on the structural behavior of the 

experimental rig. 

 

2. Experimental setup 

The experimental rig consisted of an alloy steel 

channel with an inside length of 1000 mm and a 

cross section of 116x65 mm. The channel was 

closed at the left end, and open at the right end. On 

its sidewalls, it was fitted with 15 mm thick 

transparent polycarbonate sheets fastened with M8 

bolt connections, tightened to 15 Nm. Two steel 

plates were mounted at the right end for structural 

stability. Recording of pressure data were done by 

four Kistler pressure transducers (P1-P4) with a 

sampling rate of 100 kHz, mounted to the channel 

with a spacing of 250, 450, 650 and 850 mm relative 

to the left side of the channel, see Fig. 1. The center 

of the channel was filled with 40 cylinders, with an 

intent to create a turbulence for the gas and incite a 

DDT.  

 
1 SOLIDWORKS by Dassault Systèmes 
2 catman Data Acquisition Software by HBM 

For strain gauge measurements, an HBM 3/120 

RY81 Rosette with three measuring grids and a 

resistance of 120 Ω was used. The gauge factor was 

2.03 for all measuring grids, with a transverse 

sensitivity of 0.2 % for gitter A and C, and a 0% 

sensitivity for gitter B. HBM states that the 

measurement uncertainty for stress measurements 

can be up to 6% [6]. The strain gauge was wired in 

a half bridge to three channels to an HBM Spyder 8 

data acquisition module (DAQ), with a sampling 

rate of 4.8 kHz. The DAQ module was connected to 

a computer running the catman2 measuring software. 

Catman was set-up to calculate von Mises stresses. 

The strain gauge was bonded to the backside 

polycarbonate sheet, see Fig. 2. 

By initiating a spark to the mixture of hydrogen 

and air in the channel, a following explosion would 

occur.  

Figure 1: Photo and schematic of the channel 

 

Figure 2: Strain gauge location 
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The transducers recorded the achieved explosion 

pressures, which would later be used in the FEA. A 

more in-depth explanation of the initiating 

explosion procedure is given by Henriksen et al. 

[5]. In total, four experiments were conducted. 

Furthermore, as the pressures recorded from 

transducer P4 are the most interesting (since the 

strain gauge is bonded in this area), this pressure 

data will be used in the FEA analysis. A table 

showing the P4 transducer peak pressures can be 

seen in Tab. 1. The pressure curve from Exp. 2 for 

P4, which was the highest achieved pressure, is 

shown in in Fig. 3. 

Tab 1: Peak pressures from P4 

      Peak pressure recorded by transducer 

P4 [MPa] 

Exp. 1 0.42 

Exp. 2 1.21 

Exp. 3 0.58 

Exp. 4 1.19 

 

3. Numerical setup  

The experimental rig was modeled in 

SOLIDWORKS and simplified to a 260 mm long 

symmetric model relative to the open end of the 

channel. For meshing the model, a blended 

curvature-based mesh with a minimum element 

size of 3 mm and maximum element size of 20 mm 

was used. The model consisted of a total of 24739 

four-nodal tetrahedral elements and 41289 nodes. 

98% of the mesh had an aspect ratio lower than 3. 

Using the SOLIDWORKS Connection feature, six 

M8 bolts with a pretension torque of 15 Nm were 

added to the model. Contact feature was used to 

simulate the physical contact of the channel, steel 

plate and the polycarbonate sheet. The model and 

the mesh can be seen in Fig. 4. As the highest 

explosion pressures were recorded in Exp. 2 (see 

Tab. 1), the simulations were based of this data.  

Furthermore, it was used symmetry conditions to 

enforce boundary conditions.  

 

By utilizing the peak pressures recorded by P4 

during Exp. 2, the loading pressure curve was 

simplified to a four-pointed triangular-shaped curve 

relative to time, see Fig. 5. The pressure was 

uniformly placed on all inside surfaces of the model. 

Furthermore, the simulation was run as a non-linear 

dynamic study with 59 steps with an initial time 

increment of 0.001 sec., starting at 0 sec. and ending 

at 0.012 sec. The simulation study was conducted up 

to a time period of 0.012 seconds due to the fact that 

the explosive blast pressures from Exp. 2 diminish 

to nearly 0 MPa at the end this timeframe. 

 

4. Results  

This section is divided into three subsections: 

experimental results, numerical results and 

comparison of the results. 

4.1. Experimental results 

The maximum achieved internal explosion pressure 

from P4 is shown in Tab. 1, as this is the area of the 

strain gauge location. The measured von Mises 

stresses results from the experiments can be seen in 

Fig. 6. u4u5i4u5iu4i5ui4u5iu4i5u4i

Figure 3: Pressure curve from Exp. 2 P4 transducer 

 

Figure 4: Meshed FEA model 

 

Figure 5: Simulation loading curve compared with 

Exp. 2 P4 pressure curve. 
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The values seem to be similar in their maximum 

von Mises stress, alternating between 19 MPa and 

22 MPa. The DAQ recorded five data points of 

stress for the experiments. This can be seen in the 

x-axis presenting time, starting at 0 sec. to 0.08 sec. 

The data points have a spacing of 0.02 sec. 

Data such as hydrogen flow, ignition 

timing/position or if DDT occurred is beyond the 

scope of this paper, and thus not emphasized, nor 

presented.  

4.2. Numerical results 

Numerical results from the non-linear dynamic 

SOLIDWORKS simulation achieved a peak stress 

of 22.2 MPa in the same area as the strain gauge 

was located. This happened in simulation step 49 at 

0.009 sec simulated time., which was the time of 

the highest loading pressure.  The scaling of time in 

the dynamic response is different from the von 

Mises experimental results, as the loading pressure 

curve and simulation are based on data from the 

pressure transducer P4, see Fig. 7. In Fig. 8, the 

FEA stress contour plot of the polycarbonate plate 

model is presented.  

 

 

4.3. Comparison of experimental and numerical 

results 

The achieved von Mises stresses are compared as a 

result. The maximum recorded von Mises stress in 

Exp. 2 was 21.85 MPa compared to the FEA 

simulation with 22.2 MPa, which is a difference of 

4.9%. See Fig. 9 for a graphical representation of 

the comparison of achieved stresses, and Fig. 10 for 

a highlighted area of interest in stress comparison.  

 

 

Figure 6: Strain gauge measurement results 

 

Figure 7: Structural simulation response 

 

Figure 8: Stress contour plot from FEA 
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5. Discussion 

The purpose of this paper was to investigate and 

compare von Mises stresses from experiments and 

FEA using SOLIDWORKS Simulation. For the 

experiments, biaxial strain gauges connected to an 

HBM DAQ recorded at least two data points at the 

polycarbonate sheet’s stress peak. The numerical 

simulation was based on the decoupling method. 

However, instead of using a standard triangular 

shape for the loading curve, a four-pointed curve 

(Fig. 5) was used in the simulation. The simulation 

was run as a non-linear dynamic study. The 

comparison of the experimental and numerical 

results shows similarities, as both reached a von 

Mises stress peak at 22 MPa (± 0.2 MPa). 

Since the simulation was based on the recorded 

internal pressures from the experiments, so was the 

scaling of time. This resulted in a time scale from 

0 sec. to 0.012 sec., set against the strain gauge 

measurements which scaled from 0 sec. to 0.08 sec. 

In the simulation result in Fig. 7, the stresses on the 

polycarbonate reached a maximum stress peak at 

0.0107 seconds, with a decreasing value after the 

peak, ending at 0.012 sec. (also the time the 

simulation ended). The stresses from the strain 

gauge measurements did not start to decrease until 

0.04 sec for 3 of the 4 experiments. This could 

possibly be due to the structure’s inertia [7] or the 

DAQ not being able to record smaller stress 

alternations. During the experiments, a build-up of 

the loading explosion pressure occurred over a 

rapid time interval. However, in the simulation, the 

maximum peak pressure of 1.2 MPa was applied to 

the structure over a slower time interval of the 

simulation study. This suggests the possibility for a 

difference in the stress alternations. 

The sampling rate of the DAQ used for strain 

gauge measurements was low, running at 4.8 kHz 

versus the pressure transducers running at 100 kHz. 

This could result in the DAQ being uncapable of 

recording stresses that could potentially be higher 

than 21.85 MPa, or stresses occurring between the 

0.02 sec. sample intervals. In Fig. 9/10, it is shown 

that the simulated stresses achieve close to 22 MPa 

almost immediately, unlike the measured stresses 

from Exp. 2 which does not achieve any stress 

peaks prior to 0.02 sec. However, none of the 

experiments reached a higher total von Mises stress 

than 21.85 MPa (Exp. 2), while the experiments 

also were consistent in the measured stresses. The 

possibility for stress peaks reaching higher than 

21.85 MPa between the 0.02 sec. intervals for a 

total of 4 experiments therefore seems low, 

meaning that the maximum stress measurements 

appear to be reasonable. 

Limitations of the measuring equipment do clearly 

give an inaccuracy of the time scaling for 

comparison of the results. Nevertheless, as this 

paper focused on analyzing the maximum 

occurring stresses in the polycarbonate sheet 

sidewall, the time scale correctness is not especially 

relevant for this study. In further work, a higher 

sampler rate DAQ should be used for the 

possibility of having an exact time scale and to 

reduce the potential for measurement uncertainty. 

 

6. Conclusion 

This study demonstrates the use of FEA with 

SOLIDWORKS for a decoupled numerical 

simulation, and how the results compare to physical 

experiments using strain gauges to obtain von 

Mises stresses. The results show a difference of 

4.9% of the maximum achieved stresses. This 

information and procedure can be helpful for 

design engineers constructing structures for 

withstanding explosive or other rapid dynamic 

loads. 

 

 

Figure 9: Numerical response compared to 

experimental for Exp. 2 

 

Figure 10: Highlighted area of interest in stress 

comparison of Fig. 9. 
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Abstract 

 

Hydrogen fueled gas turbines are susceptible to rigorous health degradation in form of corrosion and erosion in 

the turbine section of a retrofitted gas turbine due to drastically different thermophysical properties of flue gas 

stemming from hydrogen combustion. In this context fault diagnosis of hydrogen fueled gas turbines becomes 

indispensable. To authors knowledge, there is a scarcity of fault diagnosis studies for retrofitted gas turbines 

considering hydrogen as a potential fuel.  The present study, however, develops an artificial neural network (ANN) 

based fault diagnosis model using MATLAB environment. Prior to fault detection, isolation and identification 

modules, physics-based performance data of 100 kW micro gas turbine (MGT) was synthesized using GasTurb 

tool. ANN based classification algorithm showed a 99.4% classification accuracy of fault detection and isolation. 

Moreover, the feedforward neural network-based regression algorithm showed quite good training, testing and 

validation accuracies in terms of root mean square error (RMSE). The study revealed that presence of hydrogen 

induced corrosion fault (both as single corrosion fault or as simultaneous fouling and corrosion) led to false alarms 

thereby prompting other wrong faults during fault detection and isolation modules. Additionally, performance of 

fault identification module for hydrogen fuel scenario was found to be marginally lower than that of natural gas 

case due to assuming small magnitudes of faults arising from hydrogen induced corrosion. 

 

1. Introduction 

The power sector was responsible for ~38% of the 

global carbon dioxide emissions in 2021. Natural 

gas (NG) reportedly contributed to ~22% of the 

electric power generation globally in 2021 

(EDGAR/JRC. 2022). By far, gas turbines are 

mainly burning NG for power generation resulting 

in greenhouse gas (GHG) emissions and climate 

change. Therefore, decarbonization of gas turbines 

becomes indispensable to meet global energy 

transition mandate. In this context, the gas turbine 

industry aims for 100% carbon neutral gas fired 

power generation using low carbon fuels such as 

hydrogen by 2030 (TURBINE). 

Nevertheless, utilization of hydrogen in gas turbines 

raises several technological and reliability 

challenges due to radically different thermophysical 

properties of hydrogen as compared to NG. For 

instance, hydrogen can potentially lead to flashback 

and thermoacoustic instabilities in lean premixed 

dry low emissions / dry low NOx (DLE/DLN) 

burners. Flashback can damage the upstream 

components of the burner. It is worth noticing that 

available DLN technologies are currently capable of 

burning up to 60% hydrogen (Noble et al. 2021). The 

utilization of 100% hydrogen needs reconfiguration 

of the gas turbine with a new hydrogen compliant 

burner and modified fuel system. However, high 

hydrogen utilization produces enhanced steam 

content in the combustion flue gas that in turn is 

responsible for high heat transfer to the metal parts, 

higher thermal conductivity, aggravated oxidation 

corrosion, increased creep and thermal fatigue 

damages of hot gas path components (Gazzani et al. 

2014). In this regard, hydrogen fueled gas turbines 

are susceptible to more health degradation caused by 

already mentioned problems. Especially, the 

retrofitted gas turbines, in which solely burner is 

replaced with hydrogen compliant burner keeping 

the existing turbomachinery, have more propensity 

of health degradation. Therefore, intelligent fault 

diagnosis, prognosis and health monitoring is of 

crucial importance for enhanced reliability and 

availability of hydrogen fueled gas turbines.  

Normally, as the operating hours of gas turbines 

increase, performance and health degrade due to 

mailto:muhammad.b.hashmi@uis.no
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various components faults (Marinai, Probert, and 

Singh 2004). To carry out effective maintenance 

actions, timely fault detection and identification play 

a key role in assuring reliability of the engines. Fault 

d diagnosis has been used over the years for 

industrial and aero gas turbines. It started with 

Urban’s rudimentary concept of linear gas path 

analysis (GPA) (Urban 1975; Urban and Volponi 

1992). Nowadays, gas turbine gas path diagnostic is 

typically carried out via three methodologies, i.e., 

model based, data driven and hybrid approaches 

(Fentaye et al. 2019).  

For micro gas turbines, there are a few studies 

relevant to performance-based fault diagnosis that 

considered radial compressor fouling, turbine 

erosion and recuperator degradation phenomena, all 

considering NG fueled scenarios. Gomes et al., 

(Gomes et al. 2006) reported that presence of the 

recuperator in MGT increases the sensitivity of 

engine to compressor fouling and turbine erosion 

especially in variable speed operating mode. Hence, 

they conducted a comparative study of several single 

and multiple faults i.e., fouling, erosion, foreign 

object damage (FOD) and recuperator deterioration. 

The study adopted a model-based approach namely 

NLGPA technique using Pythia and Turbomatch 

tools for fault diagnosis. Another study conducted 

by Yoon et al., (Yoon et al. 2008) employed neural 

networks for prediction of degraded performance of 

a 30 kW MGT. Various kinds of single and multiple 

faults in compressor, turbine and recuperator were 

included in the study. The approach was found to be 

predicting the results with much accuracy even if 

some measurements data were missing.  

Talebi and Tousi (Talebi and Tousi 2017) attributed 

compressor fouling as one of the majorly occurring 

faults in the MGT engine and hence they 

investigated the effect of blade surface roughness on 

the performance degradation of radial 

turbomachinery in a 477 kW MGT. The study 

revealed that combustor inlet temperature and 

turbine outlet temperature were more sensitive to 

blade surface roughness because these 

measurements showed increased values than the 

allowable limits. However, compressor discharge 

temperature was found to be less sensitive to the 

roughness. In a similar study, Bauwens (Bauwens 

2015) also asserted that compressor fouling was a 

highly likely occurring fault in a 3 kW MTT MGT 

because of the possibility of oil ingestion in the 

compressor originating from de-aerating oil sump. 

Talebi et al., (Talebi et al. 2022) utilized artificial 

neural network (ANN) for fault detection and 

isolation of a 100 kW MGT considering the 

measurements uncertainties at different part load 

settings. 

After an in-depth literature study, it seems that 

corrosion study of MGTs fueled by NG is scarce. It 

was also found that hydrogen induced corrosion in 

hot gas path components of both larger gas turbines 

and MGTs had not been investigated before based 

on authors’ best knowledge. These research gaps 

paved the way for developing a fault detection, 

isolation, and identification model for a 100 kW 

MGT running with pure hydrogen fuel.  

The present study incorporates a thermodynamic 

model using the commercial tool GasTurb 14 for 

generating a validated design point and off design 

performance data. Data preprocessing was 

implicated for adding noise and correcting the data 

for ambient condition variations. Subsequently, the 

data was fed to classification and regression learner 

tools in MATLAB version 2022a for fault detection 

and diagnosis purposes using neural network 

approach.  

2. Methodology 

The overall methodology of the entire study consists 

of 7-steps as illustrated in Fig. 1. 

 

 
 

Figure 1: Detailed flow path of the methodology 

 

The process includes developing a physics-based 

performance model, validating the model with real 

time MGT data, implanting the physical faults using 

health parameters i.e., flow capacity and efficiency, 

processing of synthesized performance data, fault 

detection and isolation (FDI), fault identification, 
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and finally testing and validation of the algorithms. 

Data processing is further segregated into correcting 

the data against ambient conditions, finding 

measurement deltas of the signals, and noise 

addition. Subsequently, the corrected-measured-

noisy data of the signals are fed to ANN based 

classification and regression algorithms for 

developing a holistic fault diagnosis model. 

Different steps of the fault diagnosis process are 

illustrated in Fig. 1. The details of these steps are 

described in the following sub-sections. 

2.1. Baseline performance model 

A thermodynamic performance model of a 100 kW 

MGT was initially developed using commercial 

software tool GasTurb (Kurzke 2012) for physics-

based data generation. The schematic of the MGT 

with sensor measurement points at various gas path 

stations is illustrated in Fig. 2.  

 
Figure 2. Schematic of a 100 kW MGT 

The stations numbers have been identified at their 

respective positions such as 2 as compressor intake, 

3 as compressor exhaust, 35 as recuperator cold side 

exhaust, 4 as turbine inlet, 5 as turbine exhaust and 

6 as recuperator hot side exhaust. The design point 

calculations were optimized using random search 

algorithm to assure the accuracy of the baseline 

model. The off-design performance was calibrated 

with experimental data for accurate validation 

purposes. The experiments were conducted at 

different power settings varying from 50 to 100 kW 

with a step change of 10 kW. The ambient 

temperatures were noticed to be varying between 

281.15 to 287.15 K during the entire test campaign. 

The real time data were taken by installing different 

pressure and temperature sensors in form of probes. 

To measure gas path conditions at intake of 

compressor, five pressure and four temperature 

measuring sensors were installed. Similarly, at 

compressor exit, three pressure and three 

temperature measuring sensors were installed 120° 

apart at circumferential positions to measure the 

average values at the flow field. Additionally, 

combustor head was also encompassed with 

pressure and temperature sensors to measure the 

conditions of intake air preheated by the recuperator.  

The instruments used for measuring pressure at 

different points were Kiel probes installed ±35° 

apart. Pressure scanners were adopted to scan the 

pressure with an accuracy of 0.05 of full-scale 

output. Similarly for temperature measurements K-

type thermocouple with an accuracy of ±1 K were 

installed, and data acquisition (DAQ) device was 

utilized to get the measured data. Subsequently, the 

pressure scanner and DAQ were connected to a 

computer in parallel mode via two ports which led 

to data visualization through LabView software. The 

validated design point data is listed in Tab. 1.  
 

Table 1: Design point validation after optimization 

Parameter OEM 

data 

(TURBE

C 2017) 

Present 

study 

% 

Error 

Power output [kW] 100(±3) 100.1 0.09 

Electrical 

efficiency [%] 

30 (±1) 29.99 0.03 

Pressure ratio [-] 4.5 4.5 0 

Exhaust mass flow 0.8 0.799 0.12 

Exhaust gas 

temperature [K] 

543 556.83 2.5 

 

The validated off-design data at different part load 

power settings for different measurement points are 

illustrated in Fig. 3 and Fig. 4. Firstly, the engine 

was simulated by assuming NG as a working fuel 

that basically established a baseline for further 

model development. Subsequently, hydrogen was 

utilized as a fuel that was the prime objective of the 

study. Both simulation scenarios, i.e., NG and 

hydrogen fuel were further utilized for appending 

measurement uncertainties along with ambient 

temperature corrections. Finally, this data was made 

ready for classification learning and artificial neural 

network (ANN) to carry out fault detection, 

isolation, and identification. However, P3, T3, P35, 

T35, T4, and T5, measurement signals were identified 

as the most significant parameters for fault diagnosis 

purpose based on their deviating fault signatures.  

 
 

Figure 3. Shaft speed at different power settings 
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Figure 4: Different pressure and temperatures at various 

power settings 

2.2. Component level degradation  

The physical faults such as fouling, corrosion, 

erosion, and FOD occurring in different components 

of gas turbine systems lead to variations in engine 

health parameters or independent parameters i.e., 

flow capacity and isentropic efficiencies. These 

health parameters in turn stimulate deviations in 

engine measurements or dependent parameters such 

as pressure, temperature, fuel flow and shaft speed.  

The present study employs the nonlinear GPA 

(NLGPA) approach for gas path diagnostics of the 

MGT because of its added advantage over LGPA in 

terms of accuracy. This is a model-based diagnosis 

approach that employs a thermodynamic 

relationship between dependent and independent 

parameters addressing the nonlinearity of the gas 

turbine engine. The correlations are as follows,  

∆𝑍 =  𝐻. ∆�⃑� (1) 

∆Z⃑⃑ is a vector of measurement deviations of a 

degraded engine condition from clean condition. 

The clean condition is normally assumed as the 

healthy condition of the engine at design point. ∆X⃑⃑⃑ 

expresses the health parameters and H represents the 

influence coefficient matrix (ICM) that develops a 

correlation between ∆Z⃑⃑, and ∆X⃑⃑⃑. The further details 

can be found in the existing literature (Fentaye et al. 

2019; Tahan et al. 2017).  

The current study encompassed two kinds of 

component faults i.e., compressor fouling and 

turbine corrosion. The reason for choosing fouling is 

due mainly to a higher probability of occurring 

fouling in recuperated MGT as evidenced by the 

literature (Gomes et al. 2006; Bauwens 2015). 

Turbine corrosion was selected because hydrogen 

fuel leads to an enhanced steam content that can 

cause higher corrosion and heat transfer rates as 

compared to a NG fueled gas turbine (Oluyede and 

Phillips 2007). These hydrogen specific attributes 

can further lead to aggravated creep and material 

degradation in hot gas path components and hence 

to a reduced lifetime of the gas turbine. The 

quantification of components’ physical faults is 

carried out by developing scaling factors of the 

health parameters (Flow capacity:𝛤, Efficiency: 𝜂) 

as follows,  

 
𝛤𝑑𝑒𝑔 = 𝛤𝑐𝑙𝑒𝑎𝑛 (1 + 𝛥𝛤/100 ) (2) 

𝜂𝑑𝑒𝑔 = 𝜂𝑐𝑙𝑒𝑎𝑛 (1 + 𝛥𝜂/100) (3) 

 

In the above-mentioned equations, subscript “𝑑𝑒𝑔” 

represents degraded component condition while 

“𝑐𝑙𝑒𝑎𝑛” represents engine’s clean or healthy engine 

condition. Whereas health parameters are 

represented in their respective symbol as follows, 

(Flow capacity:𝛤, Efficiency: 𝜂). However, 𝛥 

denotes the change in health parameters. To develop 

fault diagnosis models for gas turbines, a variety of 

fault magnitudes have been assumed by the 

literature that show a relative change of flow 

capacity and isentropic efficiency from the clean 

condition in form of scaling or correction factors. 

Tab. 2 lists the values of compressor and turbine 

degradation magnitudes with the respective ratios. It 

is worth mentioning that the fault magnitude of the 

fouling has been assumed similar for both fuel 

scenarios while fault magnitude of the hydrogen fuel 

scenarios has been assumed higher as compared to 

NG scenarios. The assumption for steam induced 

corrosion has been borrowed from a study by 

Zwebek and Pilidis (Zwebek and Pilidis 2004; 

Zwebek and Pilidis 2003), that was conducted for 

fault diagnosis of the steam turbine. The reason lies 

in the fact that steam induced corrosion led by 

hydrogen fuel behaves similar for both steam turbine 

and gas turbine.  

 
Table 2: Quantification of various physical faults 

Fault FC 

(X) 

Eff. 

(Y) 

Ratios 

(X: Y) 

Ranges Ref. 

Natural gas case 
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CF Γ𝑐 ↓ 𝜂𝑡 ↓ ~3:1 [0, -7.5] 

[0, -2.5] 

(Qingc

ai et al. 

2016; 

Moham

madi 

and 

Montaz

eri-Gh 

2014) 

TC Γ𝑡 ↑ 𝜂𝑡 ↓ ~2:1 [0, 4] 

[0, -2] 

(Escher 

1995) 

Hydrogen case 

CF Γ𝑐 ↓ 𝜂𝑡 ↓ ~3:1 [0, -7.5] 

[0, -2.5] 

(Qingc

ai et al. 

2016; 

Moham

madi 

and 

Montaz

eri-Gh 

2014) 

TC Γ𝑡 ↑ 𝜂𝑡 ↓ ~2:1 [0, 5] 

[0, -2.5] 

(Zwebe

k and 

Pilidis 

2003; 

Gomes 

et al. 

2006) 
FC: Flow capacity, Eff.: Isentropic efficiency, CF: 

Compressor fouling, TC: Turbine corrosion 

2.3. Fault diagnosis 

The diagnosis of the gas turbines is normally 

performed into three steps i.e., fault detection, fault 

isolation and finally fault identification. Fault 

detection provides information about the presence of 

any imminent physical abnormality in the system. 

Fault isolation helps in determining the exact type 

and location of the fault. Fault identification 

determines the severity magnitude of the any 

physical fault. The present study incorporated all 

these steps involved in the diagnosis.  

2.3.1. Data processing 

Prior to fault diagnosis of the MGT the data 

generated from the performance model went through 

preprocessing phase. During preprocessing, the data 

was first segregated on fuel basis i.e., NG and 

hydrogen. Subsequently, a fault wise segregation 

(i.e., compressor fouling, turbine corrosion, and 

simultaneous compressor fouling and turbine 

corrosion) was carried out. Temperature corrections 

was also considered to avoid the influence of the 

ambient temperature variations on the measurement 

signals, as follows,  

               𝜃 =
𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

288.15𝐾
                      (4) 

The 𝜃, in above equation is the correction factor of 

the measured temperature (𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) with respect 

to ambient temperature that is 288.15 K. 

Measurement deviations of degraded conditions 

from clean condition of each signal i.e., P3, T3, P35, 

T35, T4, T5, and P5 were estimated using the 

following relation, 

Δ𝑍 =
(𝑍𝑑𝑒𝑔 − 𝑍𝑐𝑙𝑒𝑎𝑛)

𝑍𝑐𝑙𝑒𝑎𝑛

× 100 (5) 

Δ𝑍, in the above equation is the measurement 

deviation vector between the healthy/clean engine 

sensors data 𝑍𝑐𝑙𝑒𝑎𝑛, and degraded engine’s data i.e., 

𝑍𝑑𝑒𝑔.Furthermore, noise was added to the 

measurement deltas to account for measurement 

uncertainties that happen in the experimental data. 

The standard deviation for Gaussian distribution was 

assumed to be 1% for temperature signals, while 

0.5% for pressure signals. The equation involved in 

the noise generation using random function is as 

follows, 

𝑥 = −1 + 2 × 𝑟𝑎𝑛𝑑(1, 𝑁) (6) 

N expresses the number of sample points including 

clean and faulty engine data. A total of 800 sample 

points were generated, i.e., 400 samples for each NG 

and hydrogen fuel scenario.  

2.3.2. ANN based classification 

After accomplishing preprocessing of the data, data 

were fed to the ANN based classification learner in 

form of two separate data sets i.e., NG and hydrogen, 

using MATLAB tool. Using scenarios involved in 

the labeled data, a classification algorithm “learns” 

about classifying fresh observations through a 

supervised machine learning approach. Although, 

there are plenty of other algorithms for classification 

learning, the ANN was chosen in the present study. 

The ANN architecture is show in Fig. 5. The reason 

for choosing ANN lies in the inherent ability of this 

algorithm to (i) capture nonlinear behavior of engine 

performance efficiently (Fentaye et al. 2019), (ii) 

extract information in fast and simplistic way 

(Tahan et al. 2017), (iii) handle multiple and larger 

component faults in presence of sensors faults 

(Ogaji and Singh 2003), (iv) deal with measurement 

uncertainties (Marinai, Probert, and Singh 2004), 

and (v) perform diagnosis with scarcity in 

measurements (Singh 2003). In classification 

learner, a validation method needs to be chosen to 

assess the prediction accuracy of the fitted model. 

The validation not only provides performance 

estimations of the model on completely new dataset 

(as compared to the training dataset), but also helps 

in protecting against overfitting. The validation 

scheme chosen in the present study, however, is 𝑘-

folds cross validation. This scheme works by 

dissecting the training datasets into 𝑘 disjoint sets or 

partitions and then randomly shuffles them. For each 

round of training-validation, a certain partition is 

used for validation while the rest of the data is used 

for testing. Therefore, each partition is used once for 

validation while 𝑘 − 1, times for training. The 𝑘 was 

assumed 5 in the present case based on the data 
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samples. Cross validation helps in avoiding the 

overfitting of the training data so that the prediction 

accuracy might not be compromised. 

 
Figure 5: ANN architecture for both fault detection and 

isolation 

The classification algorithms finally provide a 

confusion matrix that determines the number of 

faults accurately predicted or wrongly predicted. 

Confusion matrix provides information about the 

performance of the selected classifier in each class 

i.e., True Class or Predicted Class. The rows in the 

matrix show True Class, while the columns 

represent Predicted Class. The diagonal cells depict 

the matching of both True and Predicted classes. The 

blue color in the diagonal cells illustrates that the 

classifier has classified the observations correctly. 

The confusion matrix plot is also accompanied with 

two more separated columns on the far-right hand 

side that show the performance of the classifier per 

class in terms of True Positive Rate (TPR) and False 

Negative Rates (FNR). TPR is basically the 

proportion of correctly classified observations per 

true class while FNR shows the proportion of the 

incorrectly classified observation per true class. 

Another way of determining the classifier 

performance is by observing the results per 

Predicted Class (instead of True Class) in terms of 

Positive Predictive Values (PPV) and False 

Discovery Rates (FDR). The PPV represents the 

proportion of correctly classified observations per 

predicted class. The FDR measures how many 

observations are classified wrongly for each 

predicted class. The confusion matrix now has 

summary rows far below the table when this choice 

was made. PPV for properly predicted points in each 

class are displayed in blue, and FDR for erroneously 

predicted points in each class are displayed in 

orange. 

2.3.3 ANN based fault identification 

The final step involved in an MGT diagnosis process 

is fault identification. The present study utilizes a 

multi-layer perceptron (MLP) for the intended 

component fault identification. MLP is a kind of 

feed forward neural network that works on the 

concept of supervised learning comprising of input 

layer, output layer, and one or more hidden layers. 

In the training phase of the ANN, the network 

manages to learn the correlations between the input 

and output data using back propagation algorithm. 

The current study utilizes a single layer MLP with 

10 nodes as shown in Fig. 6. In general, the fault 

identification is carried out by tracing the health 

parameters i.e., (Flow capacity: 𝛤, Efficiency: 𝜂) 

back from the deviated fault signatures. In Fig. 6, on 

the left-hand side of the ANN structure inputs are 

provided that have been derived from the equation 5 

while the outputs illustrated on right hand side of the 

structure have been derived from equation 2 and 3. 

The terms with Δ in the figure represent 

measurement deviations while 𝛤 and 𝜂 represents 

the flow capacity and efficiency of compressor and 

turbines. The network was trained on the three fault 

scenarios (CF, TC, CF+TC) to identify some 

suitable relationships from the fed samples thereby 

fine tuning the weights and biases. The performance 

of the training or prediction accuracy is determined 

by mean square error (MSE) by combining the 

results from both training and validation data sets. 

The training progress data and model summary of 

ANN algorithm have been listed in Tab. 3. 

 
Figure 6: Single layer MLP architecture 
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Table 3: ANN training progress data and model summary 

Criteria Indicators 

Total hidden layers 1 

Neurons in hidden layers 10 

Feeding approach Backpropagation 

Target limit of epochs 1000 

Performance accuracy target 0 

Performance gradient target 1.00e-07 

Activation function Sigmoid 

Training algorithm Levenberg-

Marquardt 

Performance indicator Mean square 

error 

 

3. Results and Discussion 

3.1. Fault detection and isolation 

For fault detection and isolation, ANN based 

classifier was employed. Two kinds of data sets 

were trained, and three fault scenarios were 

accounted for. For each data set, 70% of the data 

were utilized for training while the remaining 30% 

were employed for testing and validation (15% for 

each) of the algorithm. The performance of the 

classification algorithm is normally assessed by 

detection decision matrix and classification 

confusion matrix consisting of the main decision 

metrics parameters i.e., True Positive (TP), False 

Negative (FN), False Positive (FP), and True 

Negative (TN) as illustrated in Fig. 7. The main 

diagonal depicts correctly predicted faults while off 

diagonal show wrongly predicted elements. The 

detection rates of these decision parameters can be 

estimated through normalization that is done via 

dividing each matrix’ element by sum of its row’s 

elements as follows (Simon 2010),  

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100% (7) 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
× 100% (8) 

 

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
× 100% (9) 

 

𝑇𝑁𝑅 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
× 100% (10) 

 

 
Figure 7: Fault detection decision matrix 

The selected classification algorithm enables the 

classification of multiple faults, as shown in Fig. 8. 

The figure represents the confusion matrix of NG 

fueled scenario. The labels mentioned on x- and the 

y-axis represent different fault and no-fault 

conditions for predicted and true classes 

respectively, as listed in Tab. 4. 

Table 4: Labels of different physical conditions in the 

classification algorithm 

Label Designated physical condition 

0 No fault 

1 CF: Compressor fouling 

2 TC: Turbine corrosion 

3 CF+TC: Simultaneous 

 

It became evident from Fig. 8 that, at no fault 

condition, the classifier predicted 99.1% correctly as 

clean, while 0.9 % wrongly predicted as corrosion. 

Similarly, in row two, 98.2% data points were truly 

classified as faulty with compressor fouling, while 

1.8% was wrongly predicted as non-faulty. The third 

row depicts that 98.2% samples were correctly 

predicted as corroded, while 0.9% wrongly 

predicted as non-faulty and other 0.9% appeared to 

be wrongly predicting as simultaneous compressor 

fouling and turbine corrosion. The fourth row, 

however, shows that 95.5% of the data points were 

predicted as representing simultaneous fault 

(CF+TC), while 1.8% wrongly predicted as fouled, 

and 2.7% wrongly predicted corrosion. The overall 

positive prediction value (PPV) as shown in Fig. 8 

were found as follows, clean condition: 97.3%, 

fouled: 98.2%, corroded: 96.4%, and simultaneous 

fouled and corroded: 99.1%. However, the rest of 

the data samples showed a false detection rate 

(FDR). 
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Figure 8:Classification confusion matrix per true class 

for NG scenario 

 
Figure 9: Classification confusion matrix per predicted 

class for NG scenario 

The fault detection and isolation of hydrogen fuel 

scenario was conducted similarly as NG scenario. 

The classification confusion matrix of the hydrogen 

fuel scenario has been illustrated in Fig.10. At clean 

condition 0.9% wrong prediction of fouling has been 

indicated, while 99.1% of the data samples were 

correctly classified as no fault samples. At fouling 

condition (depicted in row two), 1.8% samples 

showed a wrong classification as non-faulty, 

whereas 98.2% were correctly classified as fouled 

samples. In the corrosion fault, 3.6% data samples 

were wrongly classified as non-faulty, while 96.4% 

showed a correct prediction of corrosion fault. 

Likewise, at simultaneous CF+TC fault, 93.6% data 

points indicated the simultaneous fault as correctly, 

while there was wrong prediction of 1.8% as non-

faulty, 1.8% as fouled, and 2.7% as corroded 

components faults.  

 
Figure 10: Classification confusion matrix per true class 

for hydrogen scenario 

 
Figure 11: Classification confusion matrix per predicted 

class for hydrogen scenario 

A comparison of Fig. 8 and 10 for corrosion fault 

shows that the percentage of wrongly classified 

faults in hydrogen fuel scenario (3.6%) is more than 

that of natural gas scenario (1.8%). Similarly, for a 

simultaneous fault, the utilization of hydrogen fuel 

is stimulating more wrongly classified fault 

scenarios i.e., one extra wrongly classified 

prediction of non-faulty case of 1.8%. The three blue 

and green dotted circles have been drawn on 

confusion matrix of both NG and hydrogen 

scenarios respectively. The green circles are 

showing extra anomalies in the data as compared to 

NG one. Among the two anomalies i.e., at cell (2,0), 

and (3,0) are representing deviation in two of the 

True classes i.e., corrosion and simultaneous CF+ 

TC. In case of TC, the True class is showing 3.6% 

wrongly identified faults as non-faulty that is almost 

double than the NG scenario. Similarly, the 

simultaneous CF+TC case, is also indicating 1.8% 

data as wrongly identified as non-faults in presence 

of the simultaneous CF+T fault. In contrast, in case 

of NG this wrong non faulty prediction was not 

observed. However, it is important to mention that 

the correctly predicted fault rates percentages of a 
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hydrogen fuel scenario are marginally lower than 

those of a NG scenario. Additionally, the 

comparison of Fig. 9 and 11 indicates that PPV of 

the hydrogen fuel scenario is 100%, while for NG 

scenario it was 99.1%. It implies that the hydrogen 

fuel scenario has more propensity of providing 

positive prediction of faults.  

During fault detection, the presence of hydrogen-

based corrosion fault led to increased level of 

incorrectly classified ‘no fault’ as hydrogen induced 

corrosion fault. Moreover, the simultaneous 

compressor fouling, and turbine corrosion faults 

prompted an extra non faulty prediction in contrast 

with the NG case. It means presence of the hydrogen 

induced corrosion fault might influence the fault 

detection process by giving wrong alarm of fault 

while there is no actual fault. 

3.2 Fault identification 

The fault identification of the MGT was carried out 

by using feed forward neural network. The 

computational framework of the MLP based ANN is 

through regression analysis. The regression plots of 

training, testing and validation have been illustrated 

in Fig. 12. The figure indicates that ANN was able 

to identify the physical faults parameters with quite 

good accuracy since the regression values are almost 

closer to 1. The performance of the ANN prediction 

is normally evaluated by level of error minimization 

with respect to the number of epochs (cycles). An 

epoch is basically the training process of ANN with 

all the available data at once for one cycle. It is 

always desirable to keep accuracy as high as 

possible during the training.   

 
Figure 12: Regression plots for training, testing and 

validation of a NG fuel ANN model 

Normally, a learning curve graph helps in 

visualizing the convergence of the training, testing 

and validation; and hence provides information 

about the accuracy in given epochs. The learning 

curve graph keeps on getting better until the model 

coverages with a minimized error, as shown in Fig. 

13.                                                                                                                                                                                                                         

 

 
Figure 13: Performance of the ANN training for the NG 

fuel scenario 

The regression of both NG and hydrogen fuel 

scenarios was found to be nearly identical with 

similar accuracy as can be observed from Fig. 14. 

The learning curve-based performance of hydrogen 

fuel scenario is shown in Fig. 15. The error 

minimization of the hydrogen scenario took 404 

epochs that was significantly greater than that of the 

NG scenario i.e., 202 epochs.  

 
Figure 14: Regression plots for training, testing, and 

validation of a hydrogen fuel ANN model 
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Figure 15: Performance of ANN training for the 

hydrogen fuel scenario 

The overall accuracy of the ANN training, testing 

and validation was determined by root mean square 

error (RMSE) using Equation 11. The 𝑛, involved in 

the equation expresses the total sample size, while 

𝑝𝑓, and 𝑡𝑓 represent the predicted and target fault 

values. The final results of both MSE and RMSE 

between the predicted and target values for both NG 

and hydrogen scenario are listed in Tab. 5. It became 

evident from the RMSE of the training, testing and 

validation phases of hydrogen were slightly higher 

than that of NG scenario.  

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑛
∑(𝑝𝑓 − 𝑡𝑓)

2
𝑛

𝑖=1

(11) 

 

Table 5: Analysis of the fault identification results in 

terms of RMSE  
MSE 

NG 

MSE 

Hydroge

n 

RMSE 

NG 

RMSE 

Hydroge

n 

Training 5.92e-4 0.0018 0.0243 0.0424 

Testing 6.41e-4 0.0022 0.0253 0.04694 

Validation 7.40e-4 0.0032 0.0271 0.0565 

 

4. Conclusion 

The study was aimed at developing a fault diagnosis 

model for a hydrogen fueled MGT in comparison 

with a NG fueled case. The study involved 

development of a physics-based model for data 

generation as an initial step. The data further went 

through preprocessing phase prior to the fault 

detection, isolation, and identification. Fault 

detection and isolation were carried out using an 

ANN based classification learner, while fault 

identification was performed using an MLP feed 

forward ANN. The detection and isolation module 

showed greater percentages of wrongly classified 

faults due to involvement of steam induced 

corrosion in hydrogen fueled scenario as compared 

to a NG fired MGT. The hydrogen scenario showed 

more propensity of positive prediction values too. 

The performance of fault identification was 

however, found to be similar for both NG and 

hydrogen-based scenarios. Further work is needed 

with increased level of fault severity rising due to 

steam induced corrosion for better fault 

identification in hydrogen fueled scenario. The 

study was part of an initial attempt towards fault 

diagnosis of hydrogen fueled micro gas turbines. 

However, further advancements might help the 

design and maintenance engineers in assuring 

optimum reliability and availability of the MGT. 
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Abstract 

 

Desorption of CO2 from the rich amine solvent is one of the main operations in the amine-based CO2 capture 

process. Proper vapour and liquid flow through the packing materials would enhance the heat transfer that is 

needed for stripping CO2 from solvent. This is achieved by increasing the surface area of the flowing solvent by 

using the packing material. In this study, the created CFD (Computational Fluid dynamics) model in 

OpenFOAMTM was able to simulate the factors influencing TCM (Technology Centre Mongstad) desorption 

performance, including liquid distribution, wettability and film thickness within the packing material. Three 

scenarios were considered including a base case for a better understanding of the hydrodynamics in the desorption 

column. Two of these are to compare the influence of mass flow rates, while one is used to investigating potential 

improvement. Simulation revealed that introducing a deflector plate and CO2 bypass tube has a positive 

hydrodynamic effect in the desorption column. 

 

1. Introduction 

 

Carbon dioxide (CO2) capture using amine solvents 

is a matured technology and has been used in the 

natural gas industry for decades. Various research 

has been performed to investigate the feasibility of 

employing the technology in post-combustion CO2 

capture. Technology Centre Mongstad (TCM) in 

Norway is a test facility that enables examining new 

solvents and to perform many other CO2 capture 

related activities.  

 

The process of post-combustion CO2 capture 

undergoes cyclic absorption and desorption of CO2 

as illustrated in Fig. 1. The 30% wt 

monoethanolamine (MEA) is a benchmark solvent 

that has been tested many times to explore its 

capabilities for capturing CO2 (Martinez, et al. 

2017). The efficiency of absorption and desorption 

depends on the mass and heat transfer in the 

absorption and desorption columns. Thus, 

hydrodynamic of gas/vapour and liquid through 

packing material plays a vital role has a greater 

influence on mass and heat transfer between gas and 

liquid phases. Ideally, the solvent flows through the 

packing material and spreads out as an even, thin 

film across the entire packing material surface. 

However, several factors may negatively influence 

the flow, including: 

 

• Velocities and distribution of liquid as it enters 

the packing bed. 

• Angled channels in the packing material may 

force flow against the desorption tower walls, 

creating thick and fast flowing channels of 

solvent. 

• CO2 rising through the column in a turbulent 

manner may disturb the wetted surfaces. 

• Liquid holdup may occur, creating localized 

flooding. 

The aim of this work was to create a CFD 

(Computational Fluid Dynamic) model able to 

simulate factors influencing TCM desorption 

column performance, including liquid distribution, 

wettability and film thickness within the packing 

material. A scaled down version of the actual 

geometry of TCM desorption column was 

considered in the simulations.  

 

2. Literature 

 

Computational fluid dynamic studies on gas and 

liquid flow through packing have been reported in 

literature. This section cites some of the work done 

in this field regardless of whether it is absorption or 

desorption. Niegodajew and Asendrych, 2016 

discussed a CFD simulation of small laboratory test 

rig which has a random packed bed. A 2-fluid 

Eulerian model has been employed to determine the 

flow behavior and validated using the reference data 

from rig. Pham et al., 2015 described an approach 

taken to simulate an absorber considering the 

complex structured packing geometry to a 

homogeneous porous material. The study revealed 

that the porous media CFD model could reflect 

hydrodynamics and gas–liquid interactions of 

structured-packings. Gbadago et al., 2020 

performed a CFD simulation of a packed bed 

industrial absorber with interbed liquid distributors. 
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A porous media was used to represent the packing 

material in CFD simulations to avoid the high 

computational cost associated with simulating a real 

structured packing.  

Yang et al., 2018 presented a CFD based column 

study in which Mellapak 250 Y was selected as the 

packing material in geometry due to its thorough 

characterization. A similar analysis was performed 

by Isoz, 2017 by considering the real geometry of 

Mellapak 250.X and Mellapak 250.Y to study the 

gas flow through the structured packing. Raynal et 

al., 2004 showed the possible ways CFD can be used 

for hydrodynamics calculations, liquid holdup and 

pressure drop within structured packings. Haroun et 

al., 2012 extended the work by including a 

computational analysis of mass transfer in structured 

packings.  

 

 

 
Figure 1: Process flow diagram of the TCM CO2 capture facility. (Bui et al., 2020)  

 

 

3. Methodology  

3.1. Geometry and Mesh  

 

The geometry and mesh were created by using 

software tools Blender and SnappyHexMesh 

respectively. The simulation has been scaled down 

to make it viable to simulate with the available 

computing power. Symmetry is assumed to acquire 

a good representation of flow through the packing 

material and wall effects. The wall circumference to 

surface area ratio is not equal to the desorber design 

at TCM. This introduces some uncertainties in the 

study of hydrodynamic wall interface actions. The 

desorber at TCM has a packing bed height of 8 

meters, has 28 packing bed layers and is 1.25 meters 

wide with 108 liquid distribution points. The 

performed simulation has been scaled down to a 

height of 0.92 meters with 3 packing bed layers and 

a width of 0.12 meters with 1 liquid distribution 

point. Fig. 2 illustrates a sectioned view of created 

geometry for simulations.  

 

 
Figure 2: Sectioned view showing color-coded geometry, 

left = axis normal. Right = isometric view. 
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The mesh was created in two stages. First the 

geometry was created in Blender using a script 

created by Isoz, 2017 and modified to facilitate two-

phase flow and geometries of the TCM desorption 

tower. 

The SnappyHexMesh was used to create 3 

sizes/types of cells as indicated below and matched 

them to the geometry as shown in Fig. 3,4 and 5. 

 

• Layer 0 cells: cells further than 1.5 mm away 

from any surface, start as 1.5 mm hexahedral 

cells, but are formed and shaped to fit geometry 

as SnappyHexMesh runs. 

• Layer 1 cells: cells closer than 1.5 mm to the 

surface, starting as 1.5 mm hexahedral cells, but 

are split into eight 0.75 mm hexahedral cells and 

formed and shaped to fit geometry as 

SnappyHexMesh runs. 

• Surface layer cells: Added to surfaces of 

cylinder walls and packing material to achieve 

better results in simulations for gradients in 

velocity and film thickness. Two surface layers 

are added to the packing material, and one is 

added to the cylinder walls. Layer 1 and layer 0 

cells are pushed back to accommodate surface 

layers as a surface layer addition, which is the 

last step of mesh generation in 

SnappyHexMesh. 

 

The final mesh has 11.68 million cells in the layer 0 

and 1 and 4.98 million cells in the surface layer with 

a total of 16.66 million cells. A mesh independence 

analysis has not been performed, but previous 

analysis on similar geometries has found 4 million 

cells per layer of packing material to be sufficient 

Isoz, 2017. These simulations have been performed 

with roughly 5.55 million cells per packing element. 

 

 
 

Figure 3: Sectioned view showing mesh at the top. 

 
Figure 4: Sectioned view showing mesh in the middle.  

 

 
Figure 5: Sectioned view showing mesh at the bottom. 

 

3.2. Mathematical models  

 

The simulations were performed using the solver 

called InterFoam in OpenFOAM. It is a widely used 

solver for multiphase simulations of two 

incompressible, isothermal immiscible fluids in 

which VOF (volume of fluid) phase-fraction based 

interface capturing approach is adopted for 

computations (Heyns and Oxtoby, 2014).   

 

Continuity Equation:  

 
𝜕𝑢𝑗

𝜕𝑥𝑗

= 0 01 

Where, u is velocity. 

 

Momentum Equation: 

 

𝜕(𝜌𝑢𝑖)

𝜕𝑡
+

𝜕(𝜌𝑢𝑗𝑢𝑖)

𝜕𝑥𝑗
= −

𝜕𝑃

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(𝜏𝑖𝑗 + 𝜏𝑡𝑖𝑗

)

+ 𝜌𝑔𝑖 + 𝑓𝜎𝑖 

02 

Where, g is gravitational acceleration, 𝜌 is 

density, P is pressure, 𝜏𝑖𝑗 is viscous stress, 𝜏𝑡𝑖𝑗
 is 

turbulent stress and 𝑓𝜎𝑖 is surface tension.  

 

𝜌 = 𝛼𝜌1 + (1 − 𝛼)𝜌2 03 

  

Here, 𝛼 is 1 inside fluid 1 with the density 𝜌1 and 

0 inside fluid 2 with the density 𝜌2. At the 

interphase between the two fluids 𝛼  varies 

between 0 and 1. 



SIMS 64  Västerås, Sweden, September 26-27, 2023 

The surface tension 𝑓𝜎𝑖 is modelled as continuum 

surface force (CSF) and calculated as follows.  

𝑓𝜎𝑖 = 𝜎𝜅
𝜕𝛼

𝜕𝑥𝑖

 04 

𝜎 is the surface tension constant and 𝜅 the curvature. 

The curvature can be approximated as follows: 

 

𝜅 = −
𝜕𝑛𝑖

𝜕𝑥𝑖

= −
𝜕

𝜕𝑥𝑖

(
𝜕𝛼 𝜕𝑥𝑖⁄

|𝜕𝛼 𝜕𝑥𝑖⁄ |
) 05 

 

Equation for the interphase: 

An additional equation for 𝛼  has to be solved in 

order to know where the interphase between the two 

fluids is, 

 

𝜕𝛼

𝜕𝑡
+

𝜕(𝛼𝑢𝑗)

𝜕𝑥𝑗

= 0 06 

The equation can be seen as the conservation of the 

mixture components along the path of a fluid parcel. 

 

3.3 Simulations 

 

Three simulation cases have been considered to 

investigate the desorber performance and archive a 

good understanding of the hydrodynamics. Tab. 1 

lists the parameters considered in each simulation 

case while Tab. 2 provides thermophysical 

properties of CO2 and MEA solvents.  

 

Table 1: Specifications of the simulation cases. 
Parameter Basea  ICL07a Defl_Exp 

CO2 mass 
flow rate 

(g/s) 

7.70 8.07 4.00 

MEA mass 
flow rate 

(g/s) 

125.57 109.47 109.47 

Geometry 
TCM scale-
down 

TCM scale-
down 

TCM scale-
down with 

added MEA 

Deflector 
plate 

Reference (a): Bui et al., 2020. 

 

Both Base case and ICL07 have scaled-down values 

from plant operating parameters (Bui et al., 2020). 

Base case is used as a reference for normal operating 

parameters, which is compared to ICL07, chosen 

because it gives a high CO2 capture rate (Bui et al., 

2020). 

The Delf_Exp is an experimental case where two 

potentially efficiency increasing factors were 

introduced: 

 

i. A deflector plate is introduced into the 

stream of MEA before it enters the packing 

bed, the deflector plate may help in 

distributing MEA before it enters the 

packing bed, the MEA solvent may also 

become smaller droplets before entering 

the packing bed, thus releasing more CO2 

before entering the packing bed. 

ii. The mass flow of CO2 counterflowing 

MEA solvent through the packing bed is 

reduced to lower gas flow influence on 

liquid flow. In practice this might be 

accomplished by introducing a bypass pipe 

for CO2 running parallel with the 

desorption tower along the top half of the 

packing bed. 

 

Table 2: Thermophysical properties of CO2 and 

MEA solvent. 
Property CO2 Solvent 

Temperature [K] 383 383 

Density [kg/m3] 1.384 1057a  

Kinematic Viscosity [m2/s] 1.37×10-5 9.08×10-7 
Dynamic Viscosity [Pa·s] 1.83×10-5 9.6×10-4 b  

CO2 loading (molCO2/molMEA)  0.51c  

MEA concentration (wt%)  27.5c  

Reference (a): Han et al., 2012; (b): Arachchige et al., 2019; (c): 
Bui et al., 2020.    

 

The simulations were set to end at 7 seconds and 

results were taken at the 7th second as the final 

outcome in the simulation. All simulations were 

performed on virtualized Amazon AWS servers with 

64 ARM cores of an AWS Gravitron3 CPU and 128 

GB DDR5 RAM, giving a runtime of 72 hours per 

simulation. 

 

3.4 Boundary conditions 

 

Boundary conditions are necessary to solve 

governing equations. The solver used, InterFoam 

requires the following boundary conditions to be 

defined: Velocity (u), pressure (p), temperature (T) 

and turbulent volume fraction (αMEA). The 

turbulence model, k-ε, requires the following 

boundary conditions to be defined: Turbulent kinetic 

energy (k), turbulent energy dissipation rate (ε) and 

turbulence viscosity (𝜇𝑡). Boundary conditions used 

are listed in Tab. 3 and 4. 

 

4. Results 

 

The pressure drop across the packed bed was 

examined in the different simulation cases. As 

shown in Fig. 6, the “base” case has the highest 

pressure drop of 605 Pa or 705 Pa/m. The simulation 

case “ICL07” has a pressure drop of 535 Pa or 624 

Pa/m and “Defl_Exp” the lowest pressure drop of 

366 Pa or 427 Pa/m. 
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Figure 6: Comparison of pressure drop between cases. 

 

It is remarked that even though “Delf_Exp” has half 

the gas flow of “ICL07”, the pressure drop is not 

halved. Also, “Delf_Exp” has a smoother pressure 

graph, indicating low liquid hold-ups. This pressure 

drop is further illustrated in Fig.7 where the pressure 

is higher at the bottom and lower at the top of the 

column.  

 

 
Figure 7: Sectioned view showing pressure, Left = “Base”, 

Middle = “ICL07”, Right = “Defl_Exp”. 

 

The simulated Base case and ICL07 case indicated 

severe liquid hold-up with large gatherings of liquid 

at certain points of the packing bed, while Defl_Exp 

case has some build-up, but it is not severe compared 

to other two cases as shown in Fig. 8. A smaller 

amount of liquid present in the bottom layer 

indicates the necessity of a longer runtime than 7 

seconds to achieve an equilibrium condition in the 

simulation.  

 

 
Figure 8: Sectioned view showing solvent distribution, 

Left = “Base”, Middle = “ICL07”, Right = “Defl_Exp”. 

 

 
Figure 9: Sectioned view showing velocity, Left = 

“Base”, Middle = “ICL07”, Right = “Defl_Exp”. 
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Fig. 9 illustrates the variation of gas velocity along 

the packed bed. A localized increase of velocity was 

observed in regions where less amount of liquid 

flows through the packing.  

 

Table 3: Patch boundary conditions. 
Variable Liquid Inlet Liquid Outlet Gas Inlet Gas outlet 

𝑢 
flowRateInletVelocity 

constant 

matchedFlowRateOutletVelocity 

Matched: Liquid Inlet 

flowRateInletVelocity 

constant 

matchedFlowRateOutletVelocity 

Matched: Gas Inlet 

𝑝_𝑟𝑔ℎ fixedFluxPressure 
prghTotalPressure 

uniform 100000 
fixedFluxPressure fixedFluxPressure 

𝑇 
fixedValue 

uniform 383 
zeroGradient zeroGradient zeroGradient 

𝑘 
fixedValue 

uniform 0.01 
inletOutlet 

fixedValue 

uniform 0.01 
inletOutlet 

ε 
fixedValue 

uniform 0.02 
inletOutlet 

fixedValue 

uniform 0.02 
inletOutlet 

𝛼𝑀𝐸𝐴 
fixedValue 

uniform 1 
zeroGradient 

fixedValue 

uniform 1 
zeroGradient 

𝜇𝑡 calculated calculated calculated calculated 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 10: (a) Sectioned view showing MEA distribution at midpoint in the middle distribution bed layer, Top = “Base”, 

Middle = “ICL07”, Botom = “Defl_Exp”. (b) Sectioned view showing MEA distribution at midpoint in the top distribution 

bed layer, Top = “Base”, Middle = “ICL07”, Bottom = “Defl_Exp”. (c) Sectioned view showing MEA distribution at midpoint 

in the bottom distribution bed layer, Top = “Base”, Middle = “ICL07”, Botom = “Defl_Exp”. 
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Table 4: Wall boundary conditions 

Variable Top Cylinder 
Packing 

Element 
Bottom 

𝑢 noSlip noSlip noSlip noSlip 

𝑝 
fixedFlux

Pressure 

fixedFluxPres

sure 

fixedFluxPres

sure 

fixedFluxPres

sure 

𝑇 
zeroGrad

ient 
zeroGradient zeroGradient zeroGradient 

𝑘 
kqRWall

Function 

kqRWallFunc

tion 

kqRWallFunc

tion 

kqRWallFunc

tion 

ε 

epsilonW

allFuncti

on 

epsilonWallF

unction 

epsilonWallF

unction 

epsilonWallF

unction 

𝛼𝑀𝐸𝐴 
zeroGrad

ient 
zeroGradient zeroGradient zeroGradient 

𝜇𝑡 
nutkWall

Function 

nutkWallFunc

tion 

nutkWallFunc

tion 

nutkWallFunc

tion 

 

Fig. 10 confirms the phenomenon described in Fig.8 

that Base case and ICL07 case show severe liquid 

hold-up with large gatherings of liquid at certain 

points of the packed bed. Fig. 8 illustrates the liquid 

hold-up in Defl_Exp case, which shows building up 

liquid in some regions, but it is not severe compared 

to the other two cases.  

 

5. Conclusion 

 

This work simulated the top 3 layers out of a total of 

28 layers of the TCM desorption column. The 

performed simulations showed liquid hold-up in the 

top 3 layers of the TCM desorption column packing 

bed when it was operated under normal operating 

parameters. Further it showed that introducing a 

deflector plate and/or a CO2 bypass reduces 

simulated liquid hold-up, but the effect of deflector 

plate or CO2 bypass had not been analyzed 

individually. 

As the MEA flows down and releases CO2 there is a 

decrease in both MEA and CO2 mass flow, while 

also the distribution point(s) has less influence as the 

liquid flows through the 28 layers in the packing 

bed. It is therefore likely that the optimal operating 

conditions for one point in the desorption column 

yields suboptimal conditions above/below that 

point. 

The simulated results were not verified using 

experimental data. Accordingly, such investigation 

is proposed as a future work by using publicly 

available plant operating data of TCM.  
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Abstract 
In the process of system upgrades or migrations, the utilization of existing layouts and object structures for 
designing new Human Machine Interfaces (HMI) can significantly save time and effort. Operator interface 
images, commonly referred to as HMI´s, contain valuable information crucial to industrial operations, but access 
to source code or design files can be limited. Modern frameworks for object detection and text recognition offer 
a solution by extracting information directly from images. However, these methods require time-consuming data 
acquisition and manual effort to initiate. This paper proposes a novel approach utilizing traditional Computer 
Vision (CV) and Machine Learning (ML) techniques to extract objects from images. The extracted objects are 
used as training data to transfer learn a ResNet model for multi-label image classification. The combination of 
this model with techniques such as sliding window, pyramid scaling, and non-maximum suppression forms the 
basis for a semi-automated annotation tool. This tool generates training data for more optimized object detection 
methods, specifically the YOLO (You Only Look Once) one-stage object detector. The semi-automated 
annotation tool allows engineers to manually refine the training data and export state-of-the-art training images 
for YOLO. The YOLO model achieves an impressive mean Average Precision at IoU 50% (mAP50) score of 
95.5% when transfer learned on the annotated data. Additionally, an Optical Character Recognition (OCR) 
engine is utilized to extract text information from preprocessed images, followed by postprocessing to filter tag 
data. An algorithm is then employed to link objects and tags together. The final solution is implemented in 
software designed to optimize user interaction, resulting in an analysis document in Excel format, which can be 
easily exported for end-user access. With the novel use of this software to automate image analysis, the time 
required to analyze HMI images prior to migration or rebuild can be reduced by an estimate of 90%.
1. Introduction 
The rapid advancement of technology has led to an 
increasing reliance on operator interface images, 
such as HMI [1] and Supervisory Control and Data 
Acquisition [2] (SCADA) graphics, in various 
industries. As the field advances the frameworks 
for these interface technologies evolves, new and 
improved design concepts are introduced, and 
migration from old systems to new become a 
necessity. These traditional operator interface 
images contain a wealth of valuable information 
related to production, process flows, and assembly 
lines. However, accessing the underlying source 
code or design files of these operator interface 
images can often be challenging or limited. To 
address this issue, modern frameworks for image 
classification and object detection have emerged as 
potential solutions, enabling the extraction of 
pertinent information directly from these operator 
interface images. 
This paper explores the field of image classification 
[3] and object detection [4] for the purpose of 
extracting information from complex operator 
interface images. The primary objective is to 
develop a tool that can effectively analyze and 
interpret industrial applications depicted in these 
images. Specifically, the project will be conducted 

in two iterations, each with distinct goals and 
outcomes. 
1.2. Previous work 
Several studies have investigated the recognition 
and extraction of information from industry related 
documentation, particularly in the context of Piping 
and Instrumentation Diagrams (P&IDs). Paliwal et 
al. [5] proposed a method in 2021 that utilized a 
Dynamic Graph Convolutional Neural Network 
(DGCNN) to recognize line-drawn symbols in 
P&IDs. Their approach involved constructing a 
graph based on sampled pixels along contour 
boundaries and incorporating ResNet-34 
embeddings to improve classification accuracy. 
They employed an Arcface loss function to address 
misclassification issues caused by similar-looking 
objects [6]. The presented research utilizes a single 
image for each object, setting it apart from 
conventional approaches that typically require 
multiple images for training. 
In an earlier paper, Paliwal et al. [7] developed an 
end-to-end data extraction system for P&IDs using 
fully convolutional networks. This involved 
annotating multiple training images with 
segmented pixels to identify different symbol 
classes. The authors employed a pipeline approach, 
separating text extraction and graphic object 
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detection, and used minimum Euclidean distance to 
link text and objects. Their system achieved 
effective information extraction and demonstrated 
the potential of performing extraction in multiple 
steps or iterations. 
Moon et al. [8],  proposed a three-step method for 
recognizing line objects and flow arrows in image-
format P&IDs. Their approach involved removing 
outer borders and title boxes (considered noise), 
then detecting continuous lines, line signs, and flow 
arrows, and adjusting and merging lines 
accordingly. They employed preprocessing 
techniques to remove noise, applied thinning and 
pixel processing for line detection, and utilized a 
RetinaNet model to train on the line signs and flow 
arrows. 
These studies have made significant contributions 
to the field of analyzing documentation, 
specifically in addressing challenges related to 
object recognition, noise reduction, and 
information extraction. These studies primarily 
focused on analyzing documentation in grayscale, 
predominantly using standardized symbols and 
texts. In contrast, the current project aims to tackle 
similar challenges while dealing with operator 
interface images that exhibit a wide variety of 
complexities, such as color variations, scales, and 
limited features, requiring different approaches for 
object recognition and information extraction. 
1.3. Outline of paper 
System Description chapter explains how the 
project was executed, including the system 
overview and associated advantages and 
challenges. 
Methods chapter covers data collection, training 
models, and tool development in detail. 
Results and Discussion chapter present project 
outcomes, including model performance, 
effectiveness of data annotation tools, and 
discussions regarding the aforementioned topics. 
Future Work chapter explores improvement areas, 
use cases, and opportunities for further 
development. 
Conclusion chapter summarizes key findings and 
highlights the project's significance and potential 
impact. 
This paper is based on a Master's Thesis project [9] 
conducted at USN and supported by Emerson 
Automation Solutions.  
2. System description 
2.1. Project execution 
In the first iteration, the project will focus on 
training a ResNet50 [10] image classification 
model. The model will be trained on custom data 
extracted from existing operator interface images 
using CV [11-12] techniques, manually sorted into 

class folders for data labeling [13]. This phase aims 
to explore different model configurations and 
assess their performance in accurately classifying 
industrial objects. An annotation tool is developed 
to aid in the labeling of training data. This tool will 
streamline the annotation process and lay the 
foundation for subsequent iterations.  
The second iteration will leverage the annotated 
data generated from the previous phase to train a 
one-stage [14] YOLOv8 [15-16] model for object 
detection. The goal is to accurately identify and 
locate objects within the operator interface images. 
Furthermore, text extraction techniques such as 
Pytesseract OCR [17]  will be employed to retrieve 
textual information from these images, which will 
then be linked to the respective objects detected 
using Minimum Euclidean Distance calculations. 
The text extraction will require extensive image 
preprocessing to ensure high acquisition accuracy, 
and a custom text-format library is embedded in the 
software to filter relevant information. To ensure 
usability and accessibility, the solutions developed 
in this project will be combined into one software 
solution tool that is accessible through a web 
interface. All development is done using Python 
and the Flask web framework.  
Users will be able to upload operator interface 
images to the tool, which will then process the 
images and generate an analysis document as 
output. This document will provide a representation 
of the information extracted from the images, 
facilitating informed decision-making and analysis 
for industrial applications. To illustrate the benefits 
and advancements offered, the flowchart provided 
in Figure 1 compares the proposed analysis process 
with conventional approaches involving source-
code tools or manual analysis. 

 
Figure 1: Comparing conventional approaches using 
source-code tools or manual analysis with the object 

detection tool suggested in this research. 

2.2. Advantages 
Performing object detection on computer drawn 
images, such as drawings and documentations, is in 
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some ways easier than real-world images. The 
traditional challenges associated with factors [18] 
like lighting conditions, object angles, line of sight, 
dirt, and other real-life variables are non-existent in 
these 2D images. However, these types of images 
also present unique challenges that need to be 
addressed.  
2.3. Challenges 
Operator interface images contain a large number 
of objects, lines, and text that represent various 
types of information. This abundance of visual 
elements introduces challenges related to noisiness 
and limited features. Due to the similarities 
between objects, there is a higher probability of 
misclassification. In general, there is a lack of true 
standardization in both object and image design, as 
well as tag structure within these images.  
3. Methods 
3.1. Data collection 
If source-code or design files is unavailable, 
extracting training data objects directly from raw 
image files may be necessary. To streamline this 
process, a Python script is developed for object 
extraction, eliminating the need for manual 
snipping tool usage. OpenCV [19] offers various 
methods simplifying the extraction of training, 
validation, and test set objects from raw operator 
interface images. 
The script will convert input images to grayscale, 
apply thresholding and dilation, and identify 
contours using the "find contours" method in 
OpenCV. These contours are then enclosed in 
bounding boxes using a different method from the 
OpenCV library. Each bounding box represented 
an object and is snipped from the full-scale image 
into a separate folder. While some of these objects 
are suitable for training, validation, and test sets, 
others are incomplete or contain noise. Although 
this method is not perfect, it provides a foundation 
for the subsequent manual sorting of objects into 
class folders for labeling purposes. 
Following the extraction of individual objects from 
the full-scale images using the Python script, a 
manual process is undertaken to organize and label 
the extracted objects. This involves moving the 
extracted objects into separate folders, with each 
folder representing a different object class. By 
separating the objects into distinct folders, it 
becomes simpler to manage and track the defined 
classes. Additionally, labeling is achieved by 
associating each object within a class folder with its 
corresponding label. While going through the 
extracted data it is important to check that the 
objects put into class folders represents the data 
that the model needs to learn. An example of a 
clear represented object with the label “valve_p” 
for valve pneumatic is shown in Figure 2. 

 
Figure 2: Clean pneumatic valve object. 

The objects are separated into single-label and 
multi-label folders. In the single-label folders, each 
folder is named according to a single class label. In 
the multi-label folders, the folder names consist of 
all class labels representing the labels of the objects 
contained within, separated by spaces.  
The multi-label classifier requires the data 
converted from this folder structure into a single 
folder with a specification file defining name, label 
and validation set. This is achieved through a 
Python script which also randomly choose 20% of 
objects from each class as validation data. An 
example of the comma-separated values (CSV) 
specification file is shown in Table 1. The entire 
data collection process is summarized in Figure 3. 

Table 1: CSV specification file format for multi-label 
classification. 20% validation (validation column “yes”). 

fname label validation 
object1.png pump no 
object2.png valve yes 
object3.png valve no 

 
Figure 3: Data collection and preparation for training 

image classification models. 

Data for object detection is attained through image 
annotation and will be a resulting part of the 
developed semi-automated annotation tool. 
3.2. Image classification 
In this project, the primary focus for the application 
of single-label classification is to assess the 
performance improvement of a pretrained 
ResNet50 model. The objective is to evaluate the 
effectiveness of transfer learning with custom data 
in comparison to training a fresh model. For more 
information on this topic, please refer to the 
Master’s thesis [9]. The single-label classifiers used 
in this study were trained on approximately 1000 
object images. 
In the future task of classifying objects within a 
region of interest (RoI), the utilization of multi-
label classification with the ResNet50 model 
proves to be advantageous. This approach enables 
the classifier to detect multiple objects within the 
RoI, while also taking into account situations where 
no objects are present, thus minimizing the 
occurrence of misclassifications. The multi-label 
classifier is trained on approximately 1400 object 
images, where 1000 of these are single-label object 
images. It is important to ensure that for all multi-
label object classes, there exist good representative 
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single-label object classes. For instance, if a multi-
label object image contains both a valve and a line, 
it is necessary to have separate single-label object 
images for both the valve and the line classes. This 
approach enables the model to effectively 
distinguish between different objects and enhance 
its classification capabilities. 
3.3. Semi-automated annotation 
Combining three computer vision techniques: 
sliding window, image pyramid scaling, and Non-
Maximum Suppression (NMS), to extract objects 
from an image. The sliding window divides the 
image into overlapping windows, generating 
potential RoI’s. The image pyramid scaling ensures 
object detection at different scales. NMS eliminates 
redundant detections, selecting the most accurate 
bounding boxes. Extracted image snippets are 
classified using a multi-label classification model 
derived in the previous step. This approach serves 
as the foundation for the pre-analysis stage in the 
development of a semi-automated annotation tool.  
The requirements and functionality desired for this 
tool include the ability to upload images, perform 
preprocessing, conduct pre-analysis using the 
above-mentioned method, manually adjust the pre-
analysis annotations, and export the annotated data 
in a format suitable for one-stage or two-stage 
object detectors. Specifically, the tool should 
provide the option to export the annotations in a 
text file format compatible with the YOLO 
detector. 
3.4. YOLOv8 object detector 
The annotation process for generating training and 
validation data for modern object detectors has now 
been optimized. It is well-established that one-stage 
detectors are faster but often yield lower accuracy 
compared to two-stage detectors [20]. At the time 
of undertaking this project, a new one-stage 
detector for YOLO was introduced, promising 
improved mAP scores and better results on tiny 
objects. Considering the goal of analyzing a large 
volume of images in a single run, speed is crucial. 
Consequently, the latest YOLOv8 architecture 
provided by Ultralytics [21] have been chosen. 
Ultralytics provides different sizes of their model. 
As a general guideline, larger models are capable 
of capturing more features than smaller ones [22-
23]. After checking this guideline by evaluating the 
medium, large, and extra-large models using the 
same dataset, the largest model was selected. This 
testing process is listed in Table 2. 

Table 2: Model sizes tested using custom dataset of 21 
train and 3 validation images. 1000 epochs of training. 

Model Early stopping mAP50 

medium 270 epochs 80.8% 
large 388 epochs 83.0% 
xlarge 326 epochs 90.5% 

3.5. Extracting tags 
OCR involves preprocessing the image, localizing 
text, character segmentation and recognition, and 
post-processing. The focus is on utilizing the 
recognition part of the Pytesseract OCR library, 
excluding post-processing dictionary translation. 
The tags in operator interface images consist of 
combinations of numbers, letters, and symbols. To 
filter out unwanted combinations, a custom 
dictionary is created. The recognized tags and their 
positions relative to the image are stored in a text 
file, with positions normalized between 0 and 1. 
Initially, OCR on the raw image did not provide 
valuable information due to small tag sizes, random 
placement, and low contrast. To address this, the 
image is divided/split into sections, a scale pyramid 
is applied, and preprocessing steps such as 
grayscale conversion, blurring, edge detection, and 
dilation are performed as shown in Figure 4. This 
significantly improves the OCR results as shown in 
Table 3. 

 
Figure 4: Preprocessing images to only identify tags and 

high contrast lines. 

Table 3: Showing a small part of OCR result before and 
after preprocessing the image. 

No image 
preprocessing 

Custom image 
preprocessing 

2341 0.090365 0.093981 0.003385 
0.002315 

LSH-1300 0.089461 0.689971 
0.030979 0.020058 

0201 0.533594 0.083912 0.004687 
0.002546 

XS-1323 0.183917 0.687645 0.025043 
0.020058 

0201 0.611393 0.083796 0.003255 
0.001852 

P-1302 0.258107 0.683430 0.019687 
0.023256 

 
3.6. Linking objects and tags 
The concept behind tag extraction in conjunction 
with object detection is to establish a relationship 
between tags and objects based on their respective 
locations. It is reasonable to assume that tags and 
objects located close to each other are associated. 
However, there are certain arguments against this 
generalization. For instance, tags may be situated 
far from an object due to unobservable status 
variables associated with the object in the current 
image state. This distance may even exceed the 
distance between the tag and an unrelated object. 
Consequently, in this scenario, a single tag can be 
linked to multiple objects. 
As demonstrated in the previous step, the OCR 
engine extracts texts and converts their positions to 
a normalized scale ranging from 0 to 1, matching 
the YOLOv8 object detection location scale. To 
determine the distance between the center of the tag 
location and the object location, the Minimum 
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Euclidean Distance calculation is employed. Visual 
representation of the distance calculation is shown 
in Figure 5. 

 
Figure 5: Visualized linking of object and tags. 

3.7. ICE - Industrial Component Extraction tool 
An analysis software that encompasses all the 
components, including the object detector, OCR 
and minimum Euclidean distance calculator, is 
created. Additionally, the software will provide a 
defined export format that allows users to easily 
view the final analysis. The final solution is 
structured as shown in the use case diagram in 
Figure 6. 

 
Figure 6: Use Case Diagram for final analysis software 

ICE – Industrial Component Extraction. 

4. Results and Discussion 
4.1. Multi-label image classification 
A learner is defined, with minor data augmentation 
such as vertical and horizontal flipping, as well as 
zero-padding. Since the data never will be warped, 
and all information within the image is relevant, no 
further augmentation is needed. Figure 7 displays a 
sample from a training data minibatch. 

 
Figure 7: Sample of a minibatch. 

When dealing with multi-label image classification, 
it is crucial to establish an appropriate multi-
accuracy threshold. A threshold value of 0.8 is 
selected which is heigh and within a smoothness of 
FastAI’s [24] threshold finders’ curve for this 
function thus ensuring no outliers are selected [25].  
After finetuning the ResNet50 model for 11 epochs 
(4 freeze and 7 un-freeze), an accuracy of 99.33% 
is achieved. By analyzing the loss plot shown in 
Figure 8 both the validation- and training-loss 
flattens. There is no indication of overfitting, so a 

score of 99.33% is acceptable and training is 
stopped after the 11th epoch. 

 
Figure 8: Multi-label classification loss plot. 

4.2. Semi-automated annotation tool 
The multi-label classifier in combination with 
pyramid scaling, sliding window and soft NMS 
results in a multi-class object detector. A 
customized version of the soft NMS is required to 
only allow same type labels to suppress each other, 
shown in Equation (1). 

𝐽𝑙𝑎𝑏𝑒𝑙(𝐴𝑙𝑎𝑏𝑒𝑙, 𝐵𝑙𝑎𝑏𝑒𝑙) =	
|𝐴𝑙𝑎𝑏𝑒𝑙⋂𝐵𝑙𝑎𝑏𝑒𝑙|
|𝐴𝑙𝑎𝑏𝑒𝑙⋃𝐵𝑙𝑎𝑏𝑒𝑙|

(1) 

 

 
Figure 9: Small extract (snippet) of the multi-class object 

detector result. 

From the image displayed in Figure 9, this method 
appears sub-optimal as it scores poorly on both 
position and classification. The resulting custom 
mAP50 calculation score of 5 individual images was 
11.36%. More on how this custom accuracy 
calculation was performed in Master’s thesis [9]. 
This method provides a reference to the object and 
its location, serving the purpose as a pre-analysis 
step for the semi-automated annotation tool. The 
goal is to enhance efficiency in annotating data for 
modern object detectors.  
The annotation tool is developed as specified by the 
requirements, where a user can upload an image, 
pre-analyze it using the multi-class object detector 
with the multi-label classifier model trained in 
chapter 4.1, and further make modifications and 
improve the annotation. The user can now export a 
state-of-the-art annotation file for the object 
detector. It is estimated an 75% increased 
efficiency using this tool compared to traditional 
third-party tool due to the pre-analysis which 
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provides classes and a starting point for the user to 
annotate. 
The tool was later modified to also take pre-
annotated images, if existing. Which would give a 
good starting point of annotation (no pre-analysis 
needed by multi-class object detector). 
4.3. YOLOv8 object detector 
To prevent aliasing due to downscaling when 
loading the training and validation datasets to the 
object detector, the image and annotation data was 
split with a custom script. Thus, increasing the 
training data. This resulted in a better model.  
At the final iteration, the YOLOv8 model was 
transfer learned on 59 training and 11 validation 
images from three different sites to improve 
generalization. An overview of the training 
iterations can be seen in Table 4. 

Table 4: Iterations of training and validating the 
YOLOv8 transfer learned model. All runs are performed 
with parameters: patience=150, batch=8, model=xlarge. 

Runs Dataset N Sites mAP50 Note 
1 21 train, 3 

val 1 90.5% Tag classes included 

2 21 train, 3 
val 1 87.1% Removed tag classes, 

fixed some errors 

3 40 train, 8 
val 1 97.2% Realized non-

generalized model 

4 59 train, 
11 val 3 95.5% Added more data 

from different sites 
Since the object detector returns an annotation file 
during testing on new data, sub-optimal tests that 
detect only a small percentage of objects can be fed 
back to the semi-automated annotation tool for 
improvement. Consequently, new test images are 
transformed into training and validation images, 
necessitating the need for more data. This created 

the idea of modifying the annotation tool to include 
the YOLOv8 object detector as a pre-analysis step 
instead of the multi-class object detector. 
In summary, the misclassifications of the YOLOv8 
model shown to the left in Figure 10 is strongly 
related to number of representatives in the dataset 
shown to the right in Figure 10. 
4.4. ICE - Industrial Component Extraction tool 
Combining the custom YOLOv8 object detector 
model with OCR and linking objects and tags leads 
to the development of effective analysis software. 
The software is designed based on the requirements 
and use case diagram depicted in Figure 6. The 
resulting software exhibits an estimated 
improvement in efficiency, approximately 10 times 
greater than manual analysis.  
The Pytesseract OCR engine only extracts 
approximately 50% of tags due to non-customized 
model (depending on image to text size ratio). OCR 
image preprocessing is also the most time-
consuming part of the analysis. Analyzing 12 
images takes 1 minute and 20 seconds, where the 
object detection only uses approximately 25ms (on 
average) for each image. Image preprocessing and 
OCR account for most of the remaining time 
required. 
The analysis results are exported in an Excel 
document format, which includes a summary sheet 
as the first page, providing an overview of the 
analyzed images and the detected objects in each 
image. Additionally, separate sheets are generated 
for each image, displaying the bounding box 
objects with labels within the images, shown in 
Figure 11. Moreover, a data sheet for each image is 

Figure 10: YOLOv8 confusion matrix (left) and number of instances (right), run 4. 
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included, showing each detected object snipping 
along with its associated tag and information in a 
table format, shown in Figure 12. 

 
Figure 11: Individual image analysis sheet with bounding 

boxes. 

 
Figure 12: Adjacent image data sheet with information. 

5. Future Work 
5.1. Improvements to current solutions 
The OCR tag extraction method used in this project 
can be improved by exploring alternative extraction 
methods or adding tags as a separate label class in 
the object detector. Treating tags as a separate class 
would require more training data but could improve 
text extraction by individually feeding tag objects 
to the OCR engine. The poor performance in the 
current solution is due to the small size and random 
placement of text compared to other objects. 
Multiple image scales and preprocessing were used 
to improve detection, but this increases computing 
power and is time consuming. 
To enhance the final ICE software, incorporating 
features from the annotation tool would be 
beneficial. Users could perform pre-analysis on a 
portion of customer images using the YOLOv8 
model, make manual adjustments to the detection, 
and retrain the model. Then upload the rest of the 
images and get an improved analysis with the 
improved model. This iterative process improves 
model generalization and user experience. It would 
be valuable to have these features available for all 
users of the ICE software for daily image analysis. 
Including more annotated images from various sites 
would enhance the model's performance and 
generalization. Alternatively, modifying the 
YOLOv8 network architecture by substituting the 
classification network with the multi-label image 
classification model could eliminate the need for 
annotating more images. 
5.2. Opportunities for future development 
Combining the developed product with pixel 
processing for pipeline detections, as discussed by 
Moon et al. [8], could provide a solution for 

documenting structured image flows. Further 
training a large language model (LLM) on the 
source-code libraries for operator interface image 
designs would enable features for mapping of 
detected objects to generate prompts that results in 
automatically generating code for new images. 
Extending this concept to configuration and 
documentation such as system control diagrams 
(SCDs), and P&IDs, by training the LLM on 
relevant data, and improving models for detection 
and text extraction, could automate the process of 
redesign/migrating operator interface images 
entirely. 
A solid object detection model for process graphics 
can also monitor real-time system images and 
extract information without direct system logic 
interaction. For instance, it can be useful in 
situations where integration with communication 
protocols is not feasible. As an example, placing a 
web camera in front of old HMI panels and 
extracting data to a cloud solution offers a solution 
when integration or modernization is not an option. 
These advancements hold potential for diverse 
applications, improving efficiency in challenging 
environments. 
6. Conclusion 
In this project, an object detection system was 
developed for operator interface images, with a 
focus on optimizing data acquisition, annotation, 
model training, and software integration. The 
approach involved a semi-automated annotation 
tool that utilized multi-label classification and 
traditional computer vision techniques, resulting in 
an estimated 75% efficiency improvement 
compared to traditional tools. The tool supports 
both two-stage and one-stage detectors, allowing 
manual adjustments to analysis and exporting 
annotations in popular formats. 
Next, the utilization of the YOLOv8 model from 
Ultralytics was explored, and it was trained with 
custom data generated using the semi-automated 
annotation tool. After multiple iterations and 
preprocessing techniques on 70 images, a mAP50 
score of 95.5% was achieved. The final model was 
then integrated into a user-friendly web application 
that enables users to upload images, perform 
analyses, and obtain downloadable results in an 
Excel format. This tool streamlines project 
planning, improves efficiency, and facilitates cost 
estimation for migration projects. Estimating a 
reduction of time spent analyzing HMI by 90% 
compared to the manual approach. 
The project successfully established a novel 
foundation for object detection in operator interface 
images, providing an efficient semi-automated 
annotation tool and a high-performing YOLOv8 
model. The developed software application has the 
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potential to enhance project planning efficiency and 
accuracy, benefiting various industries. However, it 
is essential to emphasize the need for thorough data 
collection and testing to ensure the accuracy and 
generalizability of the model. 
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Abstract

This paper deals with the modeling and identification of the Quanser Aero. The Quanser Aero is an aerospace lab-
oratory setup designed for teaching aerospace concepts. Two propellers generate thrust and allow the user to control its
dynamic response. The ability to lock axes individually makes it capable of abstracting a variety of aerospace systems,
such as half-quadrotor, 1-Degree of freedom (DOF), vertical take-off and landing (VTOL), and 2-DOF helicopter. This
paper focuses on the latter of these modes. In this configuration, the Quanser Aero can produce different pitch and
yaw angles based on the angular velocity of the propellers, which produces an interesting identification and control
problem, due to the presence of nonlinearities and significant cross-couplings between different variables. In this paper,
a nonlinear model derived from Newton’s law and Euler’s rotational dynamics is obtained, and the unknown model
parameters are identified through an experimental approach, with the model validated through real-time testing. In par-
ticular, it is shown that by means of a more detailed description of the friction, which includes the Karnopp’s model that
keeps the sum of the magnitude of all forces equal to zero until the applied forces are strong enough to overcome the
friction force, and of the centripetal forces acting on the Aero, significant improvements are obtained when compared to
state-of-the-art models. These improvements may hold the potential to enhance the performance of advanced nonlinear
model-based control algorithms for this device.
Keywords: Quanser Aero, nonlinear model, friction

1 Introduction

With the advance of technology, aerial vehicles are
steadily becoming more and more ubiquitous. For ex-
ample, their unmanned versions, commonly referred to as
drones, are widely used in several applications where it
is either dangerous or economically inefficient to employ
human pilots, e.g., for monitoring (Ren et al., 2019) and
transport (Thiels et al., 2015) tasks. In order to train en-
gineers to analyse the dynamical behaviour of aerial ve-
hicles and design efficient and effective feedback control
systems for them, small-scale devices that are apt to use
in laboratories for educational purposes have been devel-
oped. These devices solve some of the most common is-
sues encountered when unmanned aerial vehicles are ap-
plied to education, such as their limited autonomy and lo-
gistical/safety problems, among others (Shadiev and Yi,
2022). One of such devices is the Quanser Aero, a recon-
figurable dual-rotor aerospace setup designed for teaching
control and introducing aerospace concepts at an under-
graduate level, but at the same time complex enough to
enable its use in research, see e.g. (Kim and Ahn, 2021;
Fliess and Join, 2022).

Attaining a satisfactory performance when controlling a
highly coupled and nonlinear system such as the Quanser
Aero is a challenging problem. It is known that nonlinear
control algorithms are able to achieve better performance
than linear control schemes (Kumar and Dewan, 2022),

although they require a precise and reliable model that de-
scribes the system under consideration over a broad range
of operating conditions. For this reason, several students
and researchers have engaged in obtaining a model of the
Quanser Aero that goes beyond the simple linear model
provided by the manufacturer. For instance, (Frasik and
Gabrielsen, 2018) have provided a nonlinear model cali-
brated through the analysis of free-oscillation and step re-
sponses. (Schlanbusch, 2019) derived a nonlinear math-
ematical model based on an Euler-Lagrange approach,
where the uncertain parameters were updated in real-time
by an adaptive control law.(Abdelwahed et al., 2019) used
a reduced complexity autoregressive with exogenous in-
put (ARX)-Laguerre model to describe the Quanser Aero
in a selected operating point. (Segerstrom et al., 2021)
used particle swarm optimization and constrained nonlin-
ear optimization to obtain key electrical, mechanical and
aerodynamical parameters for this device. (Kumar and
Dewan, 2022) further improved the model and used it to
design linear quadratic regulator (LQR) and sliding mode
controller (SMC) algorithms.

In this paper, we obtain a nonlinear model using a
Newton-Euler approach, identify its unknown parameters
through an experimental approach, and validate the model
through real-time testing. The main feature of the pro-
posed model is a more detailed description of the fric-
tion, which includes the Karnopp’s model, and of the cen-
tripetal forces acting on the Aero. Using different per-
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Figure 1. General component arrangement of the mechanical
parts on the Quanser Aero. Adapted from (Qua, 2016)

formance indices under several operating conditions, we
highlight significant improvements in the model’s ability
to capture the nonlinearities of the system in comparison
with state-of-the-art models. Hence, the proposed model
could potentially contribute significantly to the design of
advanced nonlinear model-based control algorithms that
require a stronger match between reality and model.

The remaining of this paper is structured as follows.
Section 2 provides a description of the Quanser Aero. A
detailed explanation of the mathematical model consid-
ered in this paper is given in Section 3. Section 4 presents
the experimental comparison between the proposed model
and other state-of-the-art models encountered in the liter-
ature. Finally, Section 5 summarizes the main conclusions
of the work.

2 System description
The Aero is a dual-propeller laboratory setup designed
for education and research in aerospace control, manu-
factured by Quanser Consulting Inc. It is equipped with
two identical propellers, each of which is driven by a
brushed direct-current (DC) motor. By applying motor
voltages ranging within ±18V, the user can manipulate
the thrust produced by the propellers, thereby affecting
the dynamics of the Aero. Moreover, the experiment is
reconfigurable, meaning that the propeller assemblies can
be tilted to desired angles. This, together with its ability to
lock axes individually, allows the Aero to abstract various
aerospace systems, such as half-quadrotor 1-DOF VTOL,
and 2-DOF helicopter. This paper considers the latter
case, where the propellers are perpendicular, as shown in
Fig. 1.

The Quanser Aero can be considered as the composi-
tion of three structures: the base, the support yoke, and
the helicopter body. The base is a stationary box at the
bottom of the Aero and contains the electrical and elec-
tronic components necessary to control the system. The
support yoke, shaped like a fork, stands vertically on the
Aero base and serves to elevate the helicopter body, allow-
ing it to rotate around its vertical axis. A rotational joint

Figure 2. 3D-printed low-efficiency (left) and high-efficiency
(right) propellers (left)

between the base and the yoke combined with a slip ring
wiring system allows for an unlimited 360◦ yaw rotation.
The helicopter body comprises two coupled metal tubes
held together by a tube clamp, with a pair of propeller as-
semblies at both ends. It is horizontally attached to the
forked yoke through a rotational joint, allowing the pitch
angle of the helicopter body to rotate between −62◦ and
+54◦.

The propeller pair in the Quanser Aero system is inter-
changeable. As of now, Quanser offers two types of pro-
pellers: high-efficiency and low-efficiency (see Fig. 2).
This study considers the latter type. Although the high-
efficiency propellers are more representative of small-
scale aerial vehicles, a dynamic coupling between axes,
which is seen in real aerial vehicles, is only present when
the low-efficiency propellers are used. Thus, from a con-
trol engineering perspective, the use of low-efficiency pro-
pellers poses a more interesting and challenging problem.

The Aero setup is equipped with four optical rotary en-
coders that precisely measure the angular position of each
DC motor, as well as the pitch and yaw angles of the heli-
copter body. An inertial measurement unit (IMU), which
combines an accelerometer and a gyroscope, is also inte-
grated into the Aero.

3 Mathematical Model
The mathematical model presented in this section de-
scribes the 2-DOF helicopter configuration of the Quanser
Aero. It was derived by considering it as a rigid body and
applying Newton’s laws and Euler’s rotational dynamics.
The model is based on several electrical and mechanical
parameters outlined in Table 1, most of which are pro-
vided by the manufacturer. Unknown parameters related
to dynamical properties such as damping, friction, and
propeller thrust have been experimentally identified and
are listed in Table 2.

3.1 Propeller dynamics
The main and tail propeller dynamics are modeled as two
nonlinear differential equations containing identical pa-
rameters:

dωp

dt
=

Kτ

RaJeq
vp −

Kτ KE

RaJeq
ωp −

1
Jeq

fd(ωp) (1)



Table 1. Known/ estimated physical parameters

Symbol description Value
Dc motor
Kτ Torque constant 0.042 Nm/a
KE Motor back-emf constant 0.042 V/rad · s
Ra Terminal resistance 8.4 Ω

Jrotor Rotor inertia 4.0×10−6 kgm2

me Mass of DC motor 0.200 kg
Propeller
Jprop Low-efficiency propeller inertia 3.2×10−5 kgm2

Jhub Propeller hub inertia 3.04×10−9 kgm2

mpa Mass of propeller assembly 0.146 kg
Helicopter body
mb Total mass of helicopter body 1.15 kg
mmt Mass of main propeller tube 0.089 kg
mtt Mass of tail propeller tube 0.089 kg
mtc Mass of tube clamp 0.280 kg
lt Length of tubes and tube clamp when assembled 0.165 m
dt Thrust displacement 0.158 m
dm Aero body vertical COM displacement 0.00325 m
dc Main/tail section horizontal COM displacement 0.106 m
Forked yoke
my Mass of the forked yoke 0.526 kg
ry Radius of the forked yoke 0.02 m

dωy

dt
=

Kτ

RaJeq
vy −

Kτ KE

RaJeq
ωy −

1
Jeq

fd(ωy) (2)

where vp/y is the input voltage of the main/tail motor, ωp/y
is the angular velocity of the main/tail propeller, and Jeq
is the total moment of inertia of the main/tail propeller
subsystem.

The torques exerted by the DC motors on the propeller
shafts can be modelled as the product of a torque constant,
Kτ , and the applied armature currents, iap/y:

τmp/y = Kτ iap/y (3)

The armature current can then be expressed in terms of the
input voltages by applying Kirchhoff’s voltage law:

iap/y =
vp/y

Ra
− La

Ra

diap/y

dt
− eb

Ra
(4)

where Ra is the motor armature resistance, La is the mo-
tor inductance, and eb = KEωp/y is the back-emf voltage
which depends on the angular velocity of the propeller
shafts. As suggested by the Quanser laboratory guide, (4)
can be simplified by neglecting electrical dynamics, i.e.,
setting the motor inductance equal to zero (Qua, 2016).
Furthermore, the Quanser lab guide proposes modeling
the torque exerted by drag and air resistance as linear func-
tions of propeller angular velocities:

τd = kdωm (5)

where kd is an experimentally derived torque constant.
However, online experiments conducted on the Aero’s
main propeller have shown that the following non-linear
function provides a more accurate representation of the
drag and air resistance:

τd = fd(ωp/y) = sign(ωy/p)kd1ω
2
p/y

+kd2ωp/y + sign(ωy/p)kd3
(6)

Table 2. Experimentally identified parameters

Parameter Value Parameter Value
kMpp1 1.69×10−6 kTyp1 1.06×10−6

kMpp2 9.65×10−7 kTyp2 1.17×10−5

kMpn1 −2.55×10−6 kTyn1 −1.41×10−6

kMpn2 −4.69×10−5 kTyn2 −4.16×10−5

kMyp1 7.30×10−7 kT pp1 1.66×10−6

kMyp2 −1.61×10−5 kT pp2 −2.83×10−5

kMyn1 −6.43×10−7 kT pn1 −1.63×10−7

kMyn2 3.28×10−5 kT pn2 8.37×10−6

kd1 2.90×10−7 kDyp1 1.84×10−5

kd2 4.20×10−6 kDyp2 3.64×10−4

kd3 8.00×10−4 kDyn1 −5.05×10−5

kFyp 4.98×10−3 kDyn2 9.86×10−4

kFyn −2.90×10−3 kDp1 7.10×10−3

kF p 2.00×10−4

where kd1, kd2, and kd3 are torque constants identified by
iterative online tuning.

The total moment of inertia, Jeq, has been modeled ac-
cording to the Quanser laboratory documentation as:

Jeq = Jprop + Jhub + Jrotor (7)

where Jprop denotes the moment of inertia of the propeller,
Jhub represents the moment of inertia acting on the clamp
used to mount the propeller to the motor, and Jrotor is
the moment of inertia of the DC motor shaft. The spe-
cific values for Jhub and Jrotor can be obtained from the
Quanser laboratory documentation. However, the moment
of inertia for the propeller, Jprop, is only provided for the
high-efficiency propeller. The moment of inertia for the
low-efficiency propeller has therefore been estimated us-
ing the computer-aided design (CAD) software Autodesk
Inventor.

The resulting propeller velocity model (1)-(2) is ob-
tained by considering equations (3), (6) and (7), and ap-
plying Newton’s second law for rotation: Jθ̈ = ∑i τi.

3.2 Pitch motion
The model describing the Aero’s pitch movement is ex-
pressed as:

dΩp
dt =

fMp(ωp)dt+ fT p(ωy)dt−mbgdm sin(θp)
Jp

− (mA+mB)Ω
2
yd2

c cos(θp)sin(θp)
Jp

− fDp(Ωp)− fF p(Ωp)
Jp

(8)

dθp

dt
= Ωp (9)

where Ωp is the angular velocity in the pitch direction, θp
is the pitch angle and Jp is the moment of inertia about the
pitch axis.



Main
propellers

Tail propellers

Center of
mass

FMp

FMy

Fg

θp, Ωp

z

x

y
θy, Ωy

FT p

FTy

ωy

ωp

Figure 3. Free body diagram of the Quanser Aero 2-DOF heli-
copter configuration.

Fig. 3 shows a free-body diagram illustrating the forces
acting on the Aero. In the 2-DOF helicopter configura-
tion, the main propeller is fixed horizontally and produces
a vertical thrust force FMp that enables the Aero to pitch.
However, the main propeller also produces a perpendicu-
lar force FMy, which produces a cross-torque and thus a
negative yaw rotation. The tail propeller is fixed vertically
and is mainly used to counteract the cross-torque caused
by the main propeller. The predominant thrust force from
the tail propeller, which causes positive yaw rotation, is
denoted by FTy. Similar to the main propeller, the tail
propeller produces an additional perpendicular force FT p,
which causes a positive rotation about the pitch axis. The
gravitational pull Fg acts on the centre of mass (COM)
of the helicopter body, which is slightly below its pivot
point, so that the helicopter body acts like a pendulum.
This implies that the pitch angle of the Aero returns to
a horizontal equilibrium position if no force is applied.
Fig. 4 illustrates the COM displacement dm, which varies
with how the propeller assemblies are angled. Unfortu-
nately the documentation provided by Quanser Inc. gives
the COM displacement only for the 1-DOF VTOL con-
figuration. (Frasik and Gabrielsen, 2018) estimated this
value to be 2.7mm for the 2-DOF helicopter configura-
tion, whereas (Schlanbusch, 2019) suggest a higher value
3.8mm. Our testing suggests that using the mean of the
aforementioned values results in a satisfactory representa-
tion of the real system.

The torque induced by the gravitational force, which
affects the pitch movement, is derived by multiplying the
gravitational force Fg with the moment arm dm sin(θp):

τg = Fgdm sin(θp) = mbgdm sin(θp) (10)

where mb is the mass of the helicopter body.
The predominant thrust force of the main propeller FMp

and the cross-thrust of the tail propeller FT p have been
estimated using the experimental procedure proposed in
(Schlanbusch, 2019). This method involves accelerating
the propeller of interest to various rotational velocities
while the other propeller remains disengaged, with the

dt

dm

Center of
mass

dt

Pivot point

Figure 4. Center of mass and thrust displacement. Adapted
from (Qua, 2016)

yaw axis locked, thus reducing the Aero setup to a 1-DOF
system. The resulting steady-state pitch angles are then
measured to obtain estimates of the thrust forces. With
only the main/tail propeller engaged, the pitch angle at
steady state, and the yaw axis locked, the equation of mo-
tion about the pitch axis with respect to FMp/T p becomes:

FMp/T p =
mbdm sin(θp)

dt
(11)

where dt is the thrust displacement of the Aero illustrated
in Fig. 4. Then with the use of a least square approach,
it was found that the following nonlinear piecewise func-
tions provided a more accurate representation of the thrust
forces:

FMp = fMp(ωp) =

{
kMpp1 ω2

p + kMpp2 ωp if ωp ≥ 0
kMpn1 ω2

p + kMpn2 ωp if ωp < 0
(12)

FT p = fT p(ωy) =

{
kT pp1 ω2

y + kT pp2 ωy if ωy ≥ 0
kT pn1 ω2

y + kT pn2 ωy if ωy < 0
(13)

The Coulomb friction opposing the pitch movement is
modelled using a static friction coefficient:

FF p = fF p(Ωp) = sign(Ωp)kF p (14)

while a linear function identified by Quanser (Qua, 2016)
has been implemented for the pitch damping:

fDp(Ωp) = kDp1Ωp (15)

where kDp1 is a damping coefficient.
As the Aero undergoes a yaw rotation, the helicopter

body’s ends trace a spherical path. This implies that the
main and tail sections will experience a centripetal force
directed toward the centre of curvature, forcing the pitch
position toward its horizontal equilibrium. The centripetal
force acting on the main/tail part of the helicopter body
can be expressed as:

Fcm/t = mA/BΩ
2
ydc cos(θp) (16)

where mA = mtc
2 +mmt +me +mpa and mB = mtc

2 +mtt +
me +mpa, dc is the length from the pivot point to the total



COM of the main/tail tube, main/tail propeller assembly,
and half of the tube clamp. This distance has been calcu-
lated based on the dimensions of the tube clamp, which
measures approximately 90mm, the length of each tube,
which is around 130mm, and the distance from the pivot
point to the centre of each propeller assembly, which is
158mm. The net torque produced by the vertical compo-
nent of the centripetal forces acting on the tail and main
sections of the Aero has been derived following the ap-
proach described in (Christensen et al., 2006), which in-
volves a comprehensive analysis of a similar small-scale
aerospace device. The resulting net centripetal torque is
expressed as:

τCp =−(mA +mB)Ω
2
yd2

c cos(θp)sin(θp) (17)

The resulting pitch motion model (8) is obtained by
considering equations (10), (12)-(15), (17) and (31), and
applying Newton’s second law for rotation. Note that the
torques produced by the thrust forces in (12) and (13) are
computed by multiplying the forces by the moment arm
dt .

3.3 Yaw motion
The model describing the Aero’s yaw movement is ex-
pressed as:

dΩy
dt =

fTy(ωy)cos(θp)dt− fMy(ωp)cos(θp)dt
Jy(θp)

− fDy(Ωy)− fFy(Ωy,FMy,FTy)

Jy(θp)

(18)

dθy

dt
= Ωy (19)

where Ωy is the angular velocity in the yaw direction, θy is
the yaw angle, and Jy(θp) is the moment of inertia about
the yaw axis.

The predominant thrust force of the tail propeller FTy
and the cross-thrust of the main propeller FMp follow the
same model as (12) and (13):

FMy = fMy(ωp) =

{
kMyp1ω2

p + kMyp2ωp if ωp ≥ 0
kMyn1ω2

p + kMyn2ωp if ωp < 0
(20)

FTy = fTy(ωy) =

{
kTyp1ω2

y + kTyp2ωy if ωy ≥ 0
kTyn1ω2

y + kTyn2ωy if ωy < 0
(21)

As the propellers are identical, it can be assumed that the
parameters identified for fMp and fT p are representative
for fTy and fMy, respectively. However, real-time testing
indicated that this assumption resulted in more thrust than
needed for the yaw movement due to unmodeled dynam-
ics. Slightly down-tuned versions of the vertical thrust
force functions are therefore implemented for the horizon-
tal thrust force functions.

The viscous damping acting about the yaw axis,
fDy(Ωy) has been estimated by examining free-oscillation

responses, as proposed in (Qua, 2016). To obtain the free-
oscillation responses, the Aero was decelerated from vari-
ous yaw velocities with both propellers disengaged and the
pitch axis locked in its horizontal equilibrium position. By
approximating the yaw deceleration as ∆Ωy

∆t , (18) reduces
to:

∆Ωy

∆t
=−

fDy(Ωy)+FFy

Jy(0)
(22)

where FFy is the static friction force opposing the yaw ro-
tation. Then, by applying a least square regression to the
measured data, a relationship between the angular yaw ve-
locity and the sum of yaw damping and friction was ob-
tained. The damping and friction have been distinguished
by modeling the viscous damping using the regression co-
efficients and the static friction as the regression constant,
as suggested in (Frasik and Gabrielsen, 2018), resulting in
the following yaw damping function:

fDy(Ωy) =

{
kDyp1 Ω2

y + kDyp2 Ωy if Ωy ≥ 0
kDyn1 Ω2

y + kDyn2 Ωy if Ωy < 0
(23)

and static friction force :

FFy =

{
kFyp if Ωy > 0
kFyn if Ωy < 0

(24)

However, during real-time testing of the Aero system, it
was observed that the specific values obtained for the pa-
rameters kFyp/n from the aforementioned experiment were
too high. As a result, the parameter kFyp has been reduced
by 20% and kFyn by 35%. Furthermore, to ensure that
the net force acting on the yaw axis remains zero until the
applied forces exceed the friction force, a friction model-
ing technique known as Karnopp’s model has been imple-
mented. In this way, the basic friction model in (24) can
be extended to be valid at zero yaw velocity (Egeland and
Gravdahl, 2002):

fFy(Ωy,FMy,FTy) =

{
sat(FTy −FMy,FFy) when Ωy = 0
FFy else

(25)
where sat() refers to the saturation function.

The resulting yaw motion model (18), is obtained by
considering equations (20)-(21), (23), (25)-(26), and ap-
plying Newton’s second law for rotation. Here, the torque
produced by the thrust forces in (12) and (13) are com-
puted by multiplying the thrust force by the moment arm
cos(θp)dt .

3.4 Moment of Inertia about the pitch and
yaw axes

The total moments of inertia about the pitch/yaw axes Jp
and Jy have been obtained as suggested in the laboratory
documentation provided by Quanser Inc. However, by ap-
plying a more detailed description of the mass of the dif-
ferent mechanical components of the Aero, slightly lower
numerical values for both the pitch and yaw inertia were
obtained, which produced better results when the model



was tested against the actual plant. The components used
in these estimates are shown in Fig. 1. Furthermore,
Quanser’s documentation ignores the fact that yaw iner-
tia decreases with increasing pitch angle due to the mass
being more concentrated along the vertical axis. There-
fore, the yaw inertia is modelled as the nonlinear function
of the pitch angle Jy(θp) = kJy fky(θp), where kJy is the
moment of inertia corresponding to a pitch angle of zero.
In (Frasik and Gabrielsen, 2018) it was discovered that
the nonlinear dynamics of the moment of inertia about the
yaw axis are well described by a cosine function, resulting
in the expression:

Jy(θp) = kJy cos(θp) (26)

The moments of inertia of the tubes and tube clamp con-
necting the main and tail propeller assemblies can be mod-
elled as a solid cylinder perpendicular to the axis of rota-
tion, rotating about its centre, resulting in:

Jcylinder =
1
12

(mmt +mtt +mtc)l2
t (27)

By considering the two propeller assemblies as single-
point masses rotating at a distance dt from the pivot point
of the helicopter body, their moment of inertia can be es-
timated as:

Jpa = (mpa +me)d2
t (28)

The forked yoke used to raise the helicopter body from
the Aero base can be modelled as a solid cylinder rotating
about its centre which leads to the expression:

Jyoke =
1
2

myr2
y (29)

The total moment of inertia about the yaw axis with a fixed
pitch angle of zero degrees is then obtained by summing
(27), (28) and (29):

Jy(θp = 0) = kJy = Jcylinder +2Jpa + Jyoke (30)

The total moment of inertia about the pitch axis is found
as the sum of (27) and (28):

Jp = Jcylinder +2Jpa (31)

4 Experimental results
The purpose of the experiments described in this section
was to test the model’s ability to accurately predict the
pitch angle, pitch velocity, yaw angle, and yaw velocity
of the system when subjected to different input signals.
To evaluate the performance of the model under various
operating conditions, the input signal to the system was
either varied in amplitude by changing the voltage level, or
shifted in time by altering the step time. A total of twelve
different input sequences were investigated, as shown in
Fig. 5. For each sequence, ten different experiments have
been performed and the average integral absolute errors
(IAE) and integral square errors (ISE) of the model versus
the plant were computed for the pitch and yaw velocities.
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Figure 5. Input signal sequences

The performance of the model proposed in this paper
compared to other state-of-the-art models in accurately
predicting pitch angle, pitch velocity, yaw position, and
yaw velocity, have been evaluated. Table 3 summarises
the average IAE and ISE obtained for all input sequences.
Fig. 6 shows the results in one particular run of input se-
quence number 3.

The results in the table show that, in the majority of ex-
periments, the proposed model was either the best (dark
green) or the second best (light green) model. Further ex-
amination of Table 3 reveals that the most significant im-
provement relates to the ability of the proposed model to
predict yaw velocity. This is also evident in the plots pre-
sented in Figs. 6c and 6f. We can mention that the case of
input sequence number 6, for which the yaw model under-
performed, is the only observed exception. The improved
performance of the proposed model with respect to pre-
dicting pitch motion, evident in Table 3, is primarily due
to a more accurate representation of the frequency of os-
cillation and damping.



Table 3. Performance comparison of analysed models. The values are the average criteria after ten runs. Dark green color marks
the highest performing model, and light green color marks the second highest performing model.

Sequence Criteria Frasik & Gabrielsen Kumar & Dewan Schlanbusch Quanser Dyvik & al.

1
dPitch IAE 2.49 6.68 3.43 5.26 2.17

ISE 0.28 1.47 0.39 1.07 0.21

dYaw IAE 14.95 20.84 24.63 20.84 3.94
ISE 11.70 18.29 23.26 18.30 1.01

2
dPitch IAE 3.07 6.64 3.44 4.94 2.19

ISE 0.46 1.51 0.47 0.94 0.27

dYaw IAE 16.03 22.02 25.21 22.03 3.24
ISE 12.78 20.30 24.49 20.31 0.66

3
dPitch IAE 5.15 8.45 5.77 12.21 4.16

ISE 0.94 2.38 1.55 5.88 0.77

dYaw IAE 30.62 20.61 21.80 20.62 6.73
ISE 40.64 17.83 20.72 17.84 3.70

4
dPitch IAE 6.62 8.52 4.28 8.65 3.83

ISE 1.55 2.67 0.70 3.03 0.55

dYaw IAE 32.23 21.03 21.84 21.04 11.26
ISE 42.76 19.33 22.28 19.34 6.53

5
dPitch IAE 10.29 10.41 16.57 22.57 7.85

ISE 4.04 3.98 12.19 25.36 2.70

dYaw IAE 48.51 26.81 21.75 26.82 8.13
ISE 88.65 27.93 18.24 27.94 2.92

6
dPitch IAE 10.86 9.22 16.23 19.24 6.23

ISE 4.54 3.13 12.55 18.66 1.41

dYaw IAE 54.31 25.94 21.77 25.95 27.50
ISE 101.07 27.04 18.39 27.06 41.20

7
dPitch IAE 2.47 3.68 2.29 4.14 1.59

ISE 0.31 0.58 0.25 0.75 0.16

dYaw IAE 46.80 39.83 42.84 39.84 11.15
ISE 63.54 41.12 48.85 41.13 4.79

8
dPitch IAE 2.22 3.44 1.97 3.45 1.76

ISE 0.31 0.63 0.18 0.59 0.19

dYaw IAE 43.52 34.18 37.79 34.19 9.39
ISE 56.18 33.95 43.36 33.96 2.59

9
dPitch IAE 5.81 5.42 3.79 5.48 3.70

ISE 1.43 1.28 0.68 1.51 0.77

dYaw IAE 71.47 39.67 40.42 39.68 23.00
ISE 152.45 47.89 52.39 47.91 19.73

10
dPitch IAE 4.77 4.61 3.75 5.64 3.01

ISE 0.89 1.13 0.88 2.01 0.51

dYaw IAE 70.71 36.88 35.08 36.89 20.58
ISE 170.88 37.67 40.93 37.68 13.51

11
dPitch IAE 10.58 6.48 5.56 6.27 5.62

ISE 3.86 2.01 1.44 2.48 1.41

dYaw IAE 99.85 51.09 47.52 51.10 42.14
ISE 302.88 84.77 64.22 84.81 80.97

12
dPitch IAE 10.31 6.09 4.65 5.06 3.05

ISE 3.55 2.21 1.21 2.01 0.52

dYaw IAE 97.20 46.88 37.58 46.90 28.14
ISE 320.08 71.30 41.64 71.33 25.43
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Figure 6. Experiment 3 results. Note that Figs. 6b and 6e contain only the proposed model due to the possible interpretational
challenges that arise from the fact that all the considered models oscillate with slightly different frequencies and amplitudes.

5 Conclusions
This paper has proposed an improved model for describ-
ing the dynamical behavior of a Quanser Aero 2-DOF he-
licopter equipped with inefficient propellers. The model
includes a more detailed description of friction and cen-
tripetal forces acting on the Aero. An extensive ex-
perimental validation using different input sequences has
shown that the improved model provides better results, in
the sense of lower values for IAE and ISE criteria, than
other models proposed in the literature.
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Abstract 

Among the environmentally friendly technologies recently proposed in the literature, high-temperature heat 

pumps represent a promising solution to foster the complete penetration of renewables within the power grid. 

Such systems may be based on closed Brayton cycles and leverage many existing components. As they are 

meant to provide high-temperature heat while using renewable electricity, their potential field of application 

ranges from industrial heating to energy storage. Several variants are currently under development to assess the 

feasibility of such systems in providing flexibility to the electricity grid. To do so, they need to operate in part-

load conditions and quickly react when the load must be adjusted. In this regard, this study investigates the 

transient capabilities of Brayton heat pump technology. To this extent, a detailed transient model of a novel 

prototype proposed in the literature is presented, accounting for controls, thermal inertia and volume dynamics 

related to heat exchangers and piping. Furthermore, the model is used to assess the transient performance of the 

system in response to sudden load variations, which is achieved by adapting the turbomachinery operating 

velocities. Results show that the system can safely operate in part-load conditions with regulation times 

compatible with industrial needs. 

Keywords: high-temperature heat pump; dynamic modelling; transient simulation; control system. 

Nomenclature 

Abbreviations: 

𝑁𝑇𝑈 number of transfer unit, − 

𝑆𝑀 surge margin, − 

𝑃𝑅 pressure ratio, − 

𝑂𝑉 overshoot, % 

𝐶𝑂𝑃 coefficient of performance, − 

Letter symbols: 

𝑡 time, s 

�̇� mass flow rate, kg/s 

𝑝 pressure, Pa 

𝑇 temperature, K 

�̇� temperature slope, K/min 

∆𝑇 temperature difference, K 

𝑁 rotational speed, rpm 

�̇� heat transfer rate, W 

𝐶 heat capacity rate, W/K 

Greek symbols: 
𝜀 effectiveness, − 

𝜏 torque, N m 

Subscripts and superscript: 
0 reference state 

1,2,3, .. cycle points 

𝑐𝑜𝑟𝑟 corrected 

𝑟 ratio 

𝑚𝑖𝑛 minimum 

𝑚𝑎𝑥 maximum 

ℎ𝑜𝑡 hot fluid/side 

𝑐𝑜𝑙𝑑 cold fluid/side 

𝑡𝑢𝑏𝑒 tube side 

𝑠ℎ𝑒𝑙𝑙 shell side 

𝑤𝑎𝑙𝑙 wall 

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 overall 

𝑠𝑢𝑟𝑔𝑒 surge conditions 

𝑜𝑝 operating conditions 

𝑟𝑖𝑠𝑒 rise 

𝑠𝑒𝑡𝑡𝑙 settling 

1. Introduction

According to the latest International Energy

Agency report [1], heat production constitutes the

world’s largest energy end use, accounting for

almost half of the global final energy consumption.

Of the energy consumed for heat production in

2021, industry accounted for nearly 51 %, whilst

46 % was consumed for domestic purposes, such as

mailto:matteo.pettinari@phd.unipi.it
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space and water heating in buildings, and 3 % in 

agriculture-related activities. Since fossil fuels still 

cover over 60 % of heating energy demand [1], 

heat production decarbonization represents a vital 

step towards carbon neutrality. 

Among the solutions to decrease carbon dioxide 

emission due to heating, high-temperature heat 

pumps are increasingly recognized as a key 

technology [2]. Because of the progressive 

penetration of renewable energy sources, heat 

pumps may leverage excess renewable energy to 

recover heat from low-temperature sources 

(e.g., ambient heat, waste heat sources) and supply 

it to high-temperature heat utilizers (e.g. industrial 

processes or thermal energy storage), thus securing 

sustainable heating. Various heat pumps are 

available in the market, namely vapour 

compression, absorption, rotation, hybrid, and 

transcritical heat pumps [3]. The most common 

ones operate according to the Rankine 

thermodynamic cycle, although other cycles, such 

as Brayton heat pumps, were found to provide 

advantages depending on the process' source and 

sink temperature profile under consideration [4]. 

Arpagaus et al. [5] reported that most commercially 

available industrial heat pumps provide heat up to 

90 °C, whilst only a few plants can supply heat at 

temperatures in the 140−160 °C range. Apart from 

domestic purposes, current fields of application 

comprise food, pulp and paper, metal, and chemical 

industries, as they benefit from low-temperature 

heat. Furthermore, several studies have shown a 

large demand for high-temperature heat in the 

European industry [6,7]. Therefore, such systems’ 

range of utilization would likely extend in case 

higher heat temperatures were reached. For 

instance, heat pumps could serve for low-pressure 

steam production [5].  

Low efficiencies, high equipment cost, long 

payback periods, component limitations, and the 

lack of environmentally friendly operating fluids 

performing adequately at high temperatures 

represent the main limitations to heat pump 

development [8]. However, Zühlsdorf et al. [9]  

suggest that heat pumps capable of supplying heat 

to at least 280 °C can be technically and 

economically feasible, for instance, by adopting 

equipment available in the oil and gas industry. 

Several concepts capable of delivering heat above 

150 °C have been proposed in the literature for 

industrial purposes [5]. Further prototypes have 

also been proposed for energy storage 

applications [10]. Nevertheless, these heat pumps 

must be developed, built, and integrated into the 

relevant industries. Besides, such systems should 

also bring flexibility to the power grid, allowing for 

quick start-ups and load variations whilst operating 

safely and ideally at high efficiencies.  

Despite being crucial for the demonstration of such 

technology, only a few works have so far focused 

on the transient capabilities of Brayton heat pumps. 

In particular, Frate et al. [11] investigated the 

power regulation of a Brayton PTES system 

through fluid inventory control, whilst other works 

analysed the behaviour of such systems during cold 

start-up [12,13]. As a contribution to this research 

topic, the paper investigates the transient 

capabilities of a novel Brayton heat pump. 

Particular focus is set on its response to sudden 

variations in  the  desired heat sink temperature by 

regulating the turbo-compressor operating speed. 

 

2. Case study  

The Brayton heat pump concept recently proposed 

by the German Aerospace Center (DLR) [12,14] 

and currently under realization in Cottbus, 

Germany, was considered in the present work. As a 

novel prototype, the heat pump aims to deliver heat 

at more than 250 °C. Figure 1 reports the plant 

layout, mainly comprising a three-stage turbo-

compressor, three shell-and-tube heat exchangers, 

and a two-stage axial turbine.  
 

 
 

Figure 1: High-temperature heat pump layout. 

The system operates according to the Brayton 

cycle. At first, the compressor increases a given 

operating fluid (e.g., dry air, Argon, or CO2) 

temperature and pressure (pt. 1-2) whilst using 

electric power. The useful heat is then transferred 

to the thermal user employing the high-temperature 

heat exchanger (pt. 2-3), and afterwards, the fluid is 

expanded through the turbine to recover power and 

resultingly cool the fluid down to sub-ambient 

temperatures (pt. 3-4). A further heat exchanger 

transfers heat to the fluid from a low-temperature 

heat source (e.g., the environment) before returning 

it to the compressor (pt. 4-1). Moreover, a 

recuperator can recover heat internally, while a 

heater can also provide additional heat to raise the 

gas temperature at the compressor inlet. In the 

present work, the recuperator is assumed to be 

disabled, although present in the actual plant 

layout. In such a setup, the system supplies heat for 

115 kW at 272 °C with a coefficient of 

performance (COP) of around 1.3. Finally, the 

system operates as a closed cycle, enabling fluid 
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inventory control to adjust the provided thermal 

load by extracting/injecting mass into the system 

from a secondary circuit (schematized as a buffer 

for simplicity). However, such a control strategy is 

not analysed in the present work. 

 

3. Methodology  

The heat pump was modelled within the Simulink® 

environment of Matlab® R2022b [15]. The 

Simscape™ package was used as it allows for easily 

implementing control systems due to the 

integration with Simulink®. For what concerns the 

operating fluids, dry air was considered in the 

closed cycle and secondary processes. It was 

modelled as a real gas, and its thermophysical 

properties were computed through RefProp [16]. 

 

3.1. Turbomachinery 

The compressor and turbine were modelled at a 

system level and assumed adiabatic with negligible 

gas volume. The turbomachinery thermal dynamics 

were neglected, while rotor dynamics were 

considered by accounting for the compressor, 

turbine, motor, generator, and transmission 

moments of inertia.  

As for the turbomachines’ off-design modelling, 

actual performance maps provided by DLR were 

used, thereby specifying the relation between the 

conditions at the machine inlet (e.g., mass flow 

rate, pressure and temperature) with the component 

pressure ratio and the adiabatic efficiency. Figure 2 

reports the compressor map used in the present 

work.  

 

 
Figure 2: Compressor performance map [12]. 

It is worth noting that corrected parameters, defined 

as in Eq. (1), were used to account for pressure and 

temperature variations at the machine inlet: 

 

{
 
 

 
 �̇�𝑐𝑜𝑟𝑟 = �̇�

√𝑇/𝑇0
𝑝/𝑝0

𝑁𝑐𝑜𝑟𝑟 =
𝑁

√𝑇/𝑇0

(1) 

where 𝑝0 = 101325 Pa, 𝑇0 = 288.15 K, 𝑁 is the 

rotational speed, and �̇�, 𝑇, 𝑝 are the inlet mass 

flow, temperature, and pressure, respectively. 

 

3.2. Heat Exchangers 

Similarly to the turbomachinery, the three shell-

and-tube heat exchangers were assumed adiabatic 

and modelled based on the technical data provided 

by the manufacturer [12]. Therefore, characteristics 

such as geometry, flow arrangement, and metal 

mass were used to customize the components 

available in the Simscape™ Fluids library [17]. 

From a general standpoint, the flow conditions at 

each side of the heat exchangers were determined 

by means of mass, momentum, and energy 

balances. Conversely, the heat transfer rate 

exchanged between the two sides was established 

according to the ε-NTU methodology [18] as in 

Eq. (2): 

 

{

�̇� = 𝜀 ⋅ 𝐶𝑚𝑖𝑛 ⋅ (𝑇ℎ𝑜𝑡,𝑖𝑛 − 𝑇𝑐𝑜𝑙𝑑,𝑖𝑛)

𝑁𝑇𝑈 =
1

𝐶𝑚𝑖𝑛𝑅𝑜𝑣𝑒𝑟𝑎𝑙𝑙
                         

𝜀 =  𝑓(𝑁𝑇𝑈, 𝐶𝑟)                            

  (2) 

 

where �̇� is the heat flow rate through the heat 

exchanger, ε is the heat exchanger effectiveness 

depending on the flow arrangement, 𝐶𝑚𝑖𝑛 is the 

minimum heat capacity rate between the hot and 

cold side, 𝐶𝑟 is the ratio between minimum and 

maximum heat capacity rate, and 𝑅𝑜𝑣𝑒𝑟𝑎𝑙𝑙  is the 

overall thermal resistance of the heat exchangers. 

Thermal inertia effects were further considered by 

modelling the thermal capacity due to the metal 

mass of the heat exchanger. The heat transfer rate 

at each side of the exchanger was then computed 

as: 

�̇�𝑡𝑢𝑏𝑒 = �̇� + 𝐶𝑤𝑎𝑙𝑙,𝑡𝑢𝑏𝑒�̇�𝑤𝑎𝑙𝑙,𝑡𝑢𝑏𝑒  (3) 

�̇�𝑠ℎ𝑒𝑙𝑙 = �̇� − 𝐶𝑤𝑎𝑙𝑙,𝑠ℎ𝑒𝑙𝑙�̇�𝑤𝑎𝑙𝑙,𝑠ℎ𝑒𝑙𝑙 (4) 
 

where 𝐶𝑤𝑎𝑙𝑙,𝑖 is the thermal capacity of the heat 

exchangers evenly divided between the tube and 

shell sides, �̇�𝑤𝑎𝑙𝑙,𝑖  is the temperature slope in the 

wall half (positive if the temperature increases, 

negative when it drops), and �̇� is the heat transfer 

rate computed according to Eq. (2). 

 

3.3. Piping, valves, and ancillary equipment 

Piping’s contribution to the system gas volume and 

its thermal inertia was accounted for in the model. 

In particular, pipes were assumed adiabatic, and 

their volumes and metal mass were determined 

based on their actual geometry. Similarly, the 

turbine bypass and recuperation valves were 

modelled as adiabatic local restrictions with 

negligible volume. Their geometry, as well as their 

flow characteristic, were specified based on 
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manufacturer data. Finally, only pressure drops 

were considered for what concerns the heater. 

 

3.4. Control strategy 

Two control loops were designed to safely operate 

the system in transient conditions, namely: 

▪ anti-surge controller; 

▪ temperature controller. 

The former prevented the compressor from 

operating within critical areas near the surge line. 

In more detail, the compressor surge was avoided 

by varying the turbine bypass opening to increase 

the compressor flow, as shown in Figure 1. 

Moreover, the valve opening was determined by a 

variable-gain PI feedback controller based on the 

surge margin residual. In the present work, a 

minimum surge margin of 10 % was ensured 

through the anti-surge regulator and computed as: 

 

𝑆𝑀 = (
𝑃𝑅𝑠𝑢𝑟𝑔𝑒

𝑃𝑅𝑜𝑝
− 1)

�̇�𝑐𝑜𝑟𝑟

(5) 

 

where 𝑃𝑅𝑜𝑝 is the operating pressure ratio, whilst 

𝑃𝑅𝑠𝑢𝑟𝑔𝑒  is the surge line pressure ratio evaluated at 

the same corrected mass flow.  

On the other hand, the temperature controller was 

used to regulate the sink outlet temperature at the 

desired setpoint by properly varying the 

motor/compressor speed. As the purpose of the 

analysis was to investigate the system response and 

not to optimize the system performance, only the 

following control requirements were considered: 

▪ zero steady-state residual due to variations in 

the sink outlet temperature setpoint; 

▪ temperature slopes of no more than 2 K/min to 

avoid critical thermal stresses at the heat 

exchangers [12]. 

A cascade architecture was considered to meet the 

considered requirements. Figure 3 reports the 

control schematic.  

 

Figure 3: Temperature control schematic. 

Three control loops were implemented, each one 

characterized by a time-continuous PI regulator. 

The outer loop was used to determine a setpoint for 

the compressor outlet temperature slope based on 

the sink outlet temperature residual. Here, the slope 

setpoint was limited to a maximum value of 

± 2 K/min to avoid undesired stresses at the high-

temperature heat exchanger. The intermediate 

control loop then compares the temperature slope 

setpoint with its measurement (or estimate), thus 

providing a motor speed setpoint. In analogy to the 

outer loop, the speed setpoint was limited to 

guarantee the compressor rotates at admissible 

shaft speeds. Lastly, the inner controller determined 

the motor torque based on the speed error. In this 

regard, the motor speed ramp limits were not 

accounted for within the control architecture for 

simplicity. However, the resulting shaft 

accelerations were verified a posteriori to ensure 

they did not exceed the maximum limit of 300 

rpm/s. Finally, anti-windup methods were adopted 

to prevent integration wind-up of the regulators. 

 

4. Results and Discussion 

4.1. Performed analyses  

The heat pump model presented in the previous 

sections was used to study the system behaviour in 

response to sudden variations of the sink outlet 

temperature demand.  

A sink outlet temperature increment of 10 °C was 

considered at first to investigate the system's 

response in detail. Such a simulation aims at 

assessing the characteristic response time of the 

system and the main issues that occur when the 

high-temperature secondary process requires a 

given mass flow but at a higher temperature with 

respect to the nominal one. Secondly, a sensitivity 

analysis was performed by varying the sink outlet 

temperature setpoint of up to 20 °C. Here, the 

primary purpose was to explore the operability 

range of the system when driven by such a 

regulation approach. Finally, a further analysis was 

performed to assess the impact of the maximum 

allowed thermal stresses at the heat exchangers on 

the system response by simulating the system for 

the same required sink outlet temperature lift and 

different discharge temperature slope limits of the 

compressor.  

At the beginning of each scenario, the system was 

assumed to operate at nominal, steady conditions, 

delivering heat for 115 kW at 272 °C to the 

secondary process, raising its fluid temperature to 

261.4 °C. Therefore, all the components were 

assumed already in steady-state temperature, and 

turbomachines rotating at their nominal speeds. 

Finally, it is worth mentioning that control 

actuators such as the heater and the recuperation 

three-way valve were not utilised in the present 

analyses, despite being accounted for in the model. 

In particular, the three-way valve was regulated 

such that the primary mass flow exiting the high-

temperature heat exchanger went directly to the 

turbine inlet. 

 

4.2. Setpoint variation 

The system response due to a step change in the 

sink outlet temperature demand is shown in 

Figure 4. At the beginning of the simulation, the 
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system operates at nominal conditions, heating the 

sink flow from 15 °C to around 261 °C. At 

t = 5 min, the desired temperature at the sink outlet 

is suddenly increased by 10 °C. As reported in 

Figure 4b, to accommodate the setpoint movement, 

the temperature controller accelerates the 

compressor, which provides a higher and hotter 

mass flow rate at the high-temperature heat 

exchanger. As the primary flow and its temperature 

increase, more heat is transferred to the secondary 

process, and the sink mass flow outer temperature 

rises to the desired value. 

From a transient perspective, the sink outlet 

temperature evolves as a second-order response 

characterized by a settling time of 12.5 min and an 

overshoot of 9.5 %. Moreover, during the rise time 

(trise = 6.45 min), it can be observed that the sink 

outlet temperature increases almost constantly due 

to the temperature controller. As reported in 

Figure 4b, to prevent thermal stresses at the heat 

exchanger, the controller accelerates the 

compressor while ensuring its outer temperature 

(e.g. T2) does not rise with slopes higher than 

2 K/min. In particular, both the relative speed and 

the sink outlet temperature vary linearly when the 

maximum allowed slope is reached. As the 

temperature slope limit bounds the machine 

acceleration, it can be stated that it represents a 

critical parameter characterizing the system 

response to sudden temperature variations. 

Allowing for higher slopes by adopting more 

advanced heat exchangers may likely shorten the 

rise time. 

On the other hand, nearly before t = 15 min, the 

measured sink outlet temperature experiences some 

oscillations, which extend the response time to 

around 3−4 min. Here, both overshoots and 

undershoots are primarily due to the thermal inertia 

of the heat exchangers and piping. When 

optimizing the system response, adopting more 

sophisticated regulators with a feedforward 

component (e.g., FF-FB or MPC) may be 

considered to dampen the oscillations, thus further 

shortening the response time. From t = 20 min until 

the end of the simulation, the compressor speed is 

slowly adjusted as the temperatures within the heat 

exchangers and piping settle.  

It is also interesting to observe how the system 

performance varies during the simulation. 

Figure 4c reports the plant COP and the main 

quantities involved in its calculation. It can be 

observed that the COP decreases from around 1.30 

to 1.18 during the regulation and finally settles to 

1.27 as the new operating conditions are met. This 

is strictly related to the control strategy under 

analysis that varies the compressor operating point. 

Since the compressor rotates at higher speeds, it 

operates at lower efficiencies, absorbing more 

power. Although the exchanged thermal power and  

 
 

 
 

Figure 4: System response to a variation of the desired 

sink outlet temperature: (a) sink outlet temperature; (b) 

control signals; (c) system performance. 

 

the power recovered by the turbine also increase 

due to the higher and hotter mass flow rate 

circulating within the closed cycle, they vary less 

significantly than in the compressor. Therefore, the 

overall system COP is lower. Finally, it is worth 

noting the differences among the compressor, 

turbine, and thermal power exchanged through the 

high-pressure heat exchanger during the regulation 

of the system (t = 5–20 min). In particular, the heat  

exchanger’s thermal inertia helps mitigate the 
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abrupt variations of the power absorbed by the 

compressor, resulting in smoother profiles for both 

the exchanged thermal power and the power 

recovered by the turbine. 

 

4.3. Sensitivity to the desired sink temperature lift 

A sensitivity analysis was performed to compare 

the system behaviour for different temperature 

setpoint variations and to investigate the adopted 

control strategy's limit. Results are shown in 

Figure 5, which reports the sink outlet temperature, 

the measured temperature slope at the compressor 

outlet and the motor/compressor relative speed. 

Table 1 summarizes the main properties 

characterizing the sink outlet temperature responses 

instead. 

 
Table 1: Sink outlet temperature response characteristics 

for different desired temperature steps. 
 

∆𝑇 

(°C) 

𝑡𝑟𝑖𝑠𝑒 

(min) 

𝑡𝑠𝑒𝑡𝑡𝑙,5% 

(min) 

𝑂𝑉 

(%) 

-20 10.95 18.73 6.47 

-15 8.75 15.82 7.82 

-10 6.47 12.52 9.88 

-5 3.93 8.5 14 

5 3.93 8.5 13.92 

10 6.45 12.5 9.97 

15 9.91 13.53 0.41 

20 25.8 40.85 - 

 

In each considered scenario, it can be observed that 

both the compressor speed and the sink outlet 

temperature constantly increase as the setpoint 

perturbations occur due to temperature control. As 

discussed in the previous section, the rate at which 

these quantities rise depends on the maximum 

thermal stress sustainable by the heat exchangers. 

Furthermore, except for temperature increments of 

15−20 °C, each response oscillates and stabilizes at 

the desired value.  

It can be noted that the system response is 

symmetrical with respect to the nominal conditions. 

As reported in Table 1, in the case of changes of 

equal magnitude, the system exhibits almost 

identical response times to reach the new operating 

conditions. The oscillation magnitude is also 

similar, although it is the sign of the variation to 

determine whether the sink outlet temperature 

undergoes an overshoot or an undershoot. Different 

behaviour is observed in the case of increments  

higher than ten degrees. For a required temperature 

step of 15 °C, the sink outlet temperature does not 

experience any overshoot and shows a longer rise 

time and shorter settling time compared to a 

temperature variation of −15 °C. On the other hand, 

the system takes more than 40 min to increase the 

sink outlet temperature of 20 °C, and zero steady 

error is reached slightly after one hour.  

These differences are related to how faster the 

compressor  can  operate compared  to the  nominal  

 
 

Figure 5: Sensitivity to the temperature setpoint 

variation: (a) measured sink outlet temperature; 

(b) relative motor/compressor speed. 

 

operating point, which primarily depends on its 

performance map. As reported in Figure 5b, in such 

cases, the relative speed of the motor/compressor 

continuously increases until it reaches the 

maximum limit of 1, meaning that the compressor 

is operating at its maximum speed and cannot 

increase its outlet temperature any further. 

Consequently, since the compressor cannot provide 

higher and hotter mass flow at the heat exchanger, 

more time is required for the heat exchanger 

material to warm up and overcome its thermal 

inertia, eventually leading to a rise in the sink outlet 

temperature. Such behaviour also implies that 

higher sink outlet temperature step increments are 

not achievable by the system through the proposed 

regulation strategy. 

Conversely, such issues do not occur in the case of 

a desired temperature reduction at the sink outlet as 

the compressor decelerates to reduce the heat 

transferred through the high-temperature heat 

exchanger, thus decreasing the sink outlet 

temperature. Here, depending on the temperature 

step magnitude (e.g., ∆T = −15,−20 °C), it is worth  
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pointing out that the anti-surge regulator may be 

enabled to avoid compressor surge, thus ensuring 

the system operates safely. 

 

4.4. Sensitivity to the maximum temperature slope 

The system response to a desired sink outlet 

temperature step of 10 °C is reported in Figure 6. 

Different maximum compressor outlet temperature 

slopes are considered, which results in higher 

thermal stresses at the heat exchangers being 

allowed. 

As shown in Figure 6a and Table 2, higher slopes 

lead to quicker response times. In particular, both 

the rise and settling times reduce significantly 

when a temperature slope of 5 K/min is permitted. 

Further improvements are achieved for slopes of 

10−15  K/min, although less relevant (e.g., the 

settling time difference is around 1 min when 

comparing results obtained using slopes of 5 K/min 

and 10 K/min, whilst less than 20 s for slopes of 

10 K/min and 15 K/min). The transients' quality 

also improves when higher thermal stresses are 

allowed, as the response maximum overshoot 

reduces by one-half for 5 K/min slopes and 

becomes negligible for 10−15 K/min.  

 
Table 2: Sink outlet temperature response characteristics 

for different allowed temperature slopes at the 

compressor outlet. 
 

�̇�2,𝑚𝑎𝑥 

(K/min) 

𝑡𝑟𝑖𝑠𝑒 

(min) 

𝑡𝑠𝑒𝑡𝑡𝑙,5% 

(min) 

𝑂𝑉 

(%) 

2 6.45 12.5 9.97 

5 3.68 5.06 4.01 

10 3.08 4.13 1.25 

15 2.98 3.82 0.51 

 

From a general standpoint, the higher slopes lead to 

quicker responses as they permit steeper speed 

ramps, as reported in Figure 6b. As a result, the 

compressor can provide higher mass flow at the 

maximum reachable temperature sooner at the 

high-temperature heat exchanger, thus shortening 

the time required to raise the sink outlet 

temperature. The same also holds for the response 

oscillations, which become lower and lower as 

higher temperature slopes at the compressor outlet 

are considered. However, despite allowing for 

quicker responses, almost negligible improvements 

are observed when increasing the maximum slope 

from 10 K/min to 15 K/min, which suggests that 

using heat exchangers capable of sustaining higher 

thermal gradients may not be practical, as they 

would likely be more complex and expensive 

whilst providing similar performance.  

 

5. Conclusions 

The paper analyzed the transient behaviour of a 

Brayton heat pump responding to a desired 

temperature variation at the sink outlet by varying  

 
 

Figure 6: Sensitivity to the compressor outlet maximum 

allowed temperature slope: (a) measured sink outlet 

temperature; (b) relative motor/compressor speed. 

 

the compressor operating speed. To this extent, a 

detailed system model was developed, and control 

loops were designed to safely operate the system in 

transient conditions. The model was then used to 

investigate the system response for a required sink 

outlet temperature increment and to analyze the 

range of applications of the considered control 

strategy. Results can be summarized in the 

following statements: 

▪ the system raises the sink outlet temperature to 

the desired value with a second-order system 

response. The response is symmetrical with 

respect to the nominal operating conditions; 

▪ the rate at which the sink outlet temperature 

increases is limited by the maximum allowed 

temperature slope at the compressor outlet. 

Heat exchangers capable of sustaining higher 

thermal stresses are then required to reduce the 

system response time; 

▪ oscillations characterizing the system response 

are primarily due to the system's thermal 

inertia. More sophisticated controllers may be 
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considered to avoid overshoots, further 

improving the system transient; 

▪ the maximum sink outlet temperature 

achievable by the heat pump is limited by the 

maximum operating speed of the compressor, 

which also affects the system response time for 

desired temperature lifts higher than 10 °C. 

▪ allowing for higher thermal stresses at the heat 

exchangers leads to faster system responses, 

although the improvements progressively 

decrease for temperature slopes higher than 

5 K/min. 
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Abstract

This research addresses the potential for increasing wind power in Sweden’s bidding area SE3. Sweden currently
faces an energy imbalance, with larger production in the north and high demand in the south. Four bidding areas
were introduced to incentivize energy production in the south. SE3, the largest bidding area, represents 60% of total
demand. Using Seasonal Auto-Regressive Integrated Moving Average (SARIMA), historic data analysis from 2007
to 2022 is forecasted to amedium long-term future of 2035. Forecasting the observed trends reveals a potential supply
deficit even under minimum demand growth scenarios made in literature. Closure of nuclear plants contributes to the
shortfall, and the increasing trend in solar and wind power falls short. To study the impact wind power can have, the
monthlywind patterns are analyzed, and used to calculate the power potential of different turbine capacities. Offshore
areas show the highest potential for increasing wind power capacity in SE3. Economic factors, like payback time,
are considered. The research concludes that there is technically and economically viable potential for wind power
capacity to address the demand-supply gap by 2035. However, it depends on permitted areas, excluding built areas,
UNESCO sites, and fishing routes. Future research should further explore these restrictions and address the seasonal
variability in wind power to improve the understanding of the potential for wind power in the SE3 bidding area.

1 Introduction

Swedish electricity generation has historically been
reliant on nuclear and hydro power and produces very
little emissions. However, Swedish nuclear power is
being phased out, and it is uncertain how many reac-
tors will be operational after 2040 (SWEA, 2021; IEA,
2019). An expansion of wind power can replace fos-
sil fuels and nuclear power and thus contributes posi-
tively to the environmental quality goals (Energimyn-
digheten, 2018; SWEA, 2021). These goals follow
from the Energy Agreement formed by the parliament
in 2016 and got adopted in 2018 (IEA, 2019). It
states that the energy policy in Sweden should com-
bine ecological sustainability, competitiveness and se-
curity of supply (IEA, 2019). Regarding electricity,
Sweden must have a network with high security of
supply and low environmental impact and offer elec-
tricity at competitive prices (IEA, 2019; Statens En-
ergimyndighet, 2022). Relative environmental tar-
gets that result from the agreement are (IEA, 2019;
Råberger & Vingmarker, 2019; Statens Energimyn-
dighet, 2022): net zero emissions by 2045 and neg-
ative thereafter, 63% lower greenhouse gas emissions
by 2030 compared to 1990, energy use must be 50%
more efficient in 2030 compared to 2005, and a 100%
renewable electricity production by 2040 (excluding
nuclear energy). The Energy Agreement states that
Sweden must have a network with high security of
supply and low environmental impact and offer elec-

tricity at competitive prices (IEA, 2019; Statens En-
ergimyndighet, 2022).Increasing the amount of wind
power contributes to creating a more resilient and se-
cure energy network because of the spatial distribu-
tion of power plants and would also meet the urgent
power demand in southern Sweden (SWEA, 2022).
However, at the same time, the increased share of
renewables in the power grid raises concerns about
security due to the intermittent characteristics in the
availability of wind and solar energy (Gawel et al.,
2017). Sweden is subdivided into four bidding areas,
SE1-4 (Svenska Kraftnät, 2022). Even though Swe-
den is producing most of its energy within its borders,
southern areas SE3 and SE4 have a relative energy
deficit compared to the northern areas SE1 and SE2
(Armelius, 2022; IEA, 2019). The difference in price
between the bidding areas was introduced in 2011 to
encourage an increase in power production capacity in
the southern areas (IEA, 2019). SE3 is the largest en-
ergy consumer, as it contains the largest share of the
population and industry with cities such as Stockholm
and Göteborg (Svenska Kraftnät, 2007-2022; Sven-
ska Kraftnät, 2021; Back, 2020). The Swedish wind
energy agency (SWEA) estimates an increase from
30TWh in 2020 to 60TWh with a capacity of 18.5GW
in 2030 and 120TWh with a capacity of 33.3GW in
2040 (SWEA, 2021). The overall objective of this
report is to analyze historical electricity consump-
tion and production data, study wind patterns, deter-
mine payback times for turbines, and assess the po-
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tential for wind power to meet future demand. The
goal is to create a tool for evaluating feasible wind
farm locations and assessing the impact on the supply-
demand balance in the SE3 area. The research aims
to contribute to higher electrical independence, lower
consumer prices, and a better understanding of wind
power’s role in the energy mix (SWEA, 2022). This
is done with the aim of answering the question: How
complementary can wind power be in the SE3 bidding
area?

2 Methodology

To be able to understand the impact wind power can
have in the SE3 area, multiple parameters need to be
studied. Historic energy data in SE3 needs to be un-
derstood before setting future demand scenarios. This
data is obtained from the Transmission System Op-
erator (TSO) Svenska Kraftnät and completed using
the imbalance settlement services from eSett. Anal-
ysis of past trends, combined with literature on sup-
ply and demand changes, enables estimations of fu-
ture supply-demand gaps. Forecasting models, such
as the seasonal auto-regressive integrated moving av-
erage (SARIMA), will be employed to establish sce-
narios based on historic patterns. Assuming a lin-
ear increase in electricity demand and a stable share
of Sweden’s total consumption in SE3 of 60%, min-
imum and maximum demand growth scenarios will
be considered. Next to this, wind data analysis using
weather station data around SE3 will assess the po-
tential of wind power to address power production de-
ficiencies and achieve climate goals. The study will
calculate turbine payback time based on power gen-
eration capacity, considering both onshore and off-
shore locations. Gaussian process regression will be
used to fill gaps between weather stations and create
a comprehensive wind speed map for SE3. Surface
roughness lengths extracted from the Global Wind At-
las will be used to convert wind speed measurements
from weather stations to turbine height (Badger et al.,
2023). The grid density obtained from the surface
roughness length data results in cells being approxi-
mately 1 by 1.5 kilometres. Considering current and
future turbine capacities, the research assumes an on-
shore capacity increase from 3.5 MW to 15 MW and
offshore capacity increase from 12.5 MW to 25 MW
for calculations in 2035 (SWEA, 2021). Evaluating
power calculations for different turbine capacities will
aid in identifying suitable locations. The impact on
the grid will be assessed based on the payback time
of each turbine, with cost being a determining fac-
tor for installation and grid integration. To assess the
payback time, the historic day-ahead electricity prices
will be observed, which is obtained from European
Network of Transmission System Operators for Elec-
tricity (ENTSO-E) (ENTSO-E, 2023). The electricity

price observed will be used to set a value for the elec-
tricity price when calculating the payback times. This
will not be forecasted due to the large variability and
dependencies in the electricity price determination.

2.1 Wind power calculations

To be able to comprehend the wind speeds attributes,
understanding the wind speed dependency of turbines
is crucial. The theoretical energy that can be harvested
from wind can be determined using (Boyle, 1996; Shu
& Jesson, 2021):

P =
1
2

Aρu3 (1)

Where P is the energy, A the swept area of the ro-
tor, ρ the air density and u the wind speed. The un-
predictability of wind characteristics has resulted in a
probability distribution that describes the variation of
wind speed at a location, indicating the likelihood of a
wind speed to occur at a location (Shu & Jesson, 2021;
Burton et al., 2011). The two-parameter Weibull dis-
tribution is most commonly used to perform the wind
energy assessment and capture the skewness of the
wind speed distribution (Shu & Jesson, 2021; Burton
et al., 2011). The Weibull distribution is a function of
wind speed f (u);

f (u) =
(

k
c

)(u
c

)k−1
exp
[
−
(u

c

)k
]

(u > 0;k,c > 0)
(2)

The function is further described by a scale parameter
(c (m/s)), which establishes the horizontal axis scale
of the wind distribution and a dimensionless shape pa-
rameter (k), describing the width of the distribution. c
is thus linked to the wind speeds at a site, or elevation.
Meaning, determining the ratio in speed at different
altitudes can help to determine the c parameter at an-
other altitude once it is calculated at an elevation. This
leads to a shift in the probability density function de-
scribed by the Weibull distribution, but the shape of
the function, described by k would not change. The
probability of a turbine being able to operate in the
area can be determined using (2), and can be written
as (Shu & Jesson, 2021):

p(u) = exp
[
−
(uc

c

)k
]
− exp

[
−
(u f

c

)k
]

(uc < u < u f )

(3)

With the cut-in wind speed (uc), the cutoff wind speed
(u f ). The total energy a turbine produces over a certain
time can be calculated by:

E =
i

∑
0
(Pi · pi ·dvi · t) (4)
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where Pi is the power at a wind speed, pi is the proba-
bility of that wind speed occurring according to the
Weibull distribution, dvi is the interval of the wind
speeds in the power curve from the turbine and t is the
time over which the turbine runs. Which in turn can
be used to determine the capacity factor (CF) of the
turbine. This describes the ratio of measured energy a
turbine produced to its rated energy over a year.

2.2 Research boundaries

The Swedish electricity grid faces barriers in electri-
fication related to generation, system adequacy, de-
mand, and grid infrastructure (DNV, 2021). In the
SE3 area, the lack of local generation and available
grid pose significant challenges, along with lengthy
planning and permitting processes for new projects
and grid upgrades (Armelius, 2022; DNV, 2021). The
intermittent behaviour of renewable sources like wind
and solar adds pressure to system adequacy, highlight-
ing the need for storage and grid flexibility (DNV,
2021). However, this research does not specifically
address storage implementation or the use of battery
electric vehicles for grid balancing. Factors such as
population growth, economic development, techno-
logical advancements, and political decisions impact
electricity demand but are not individually addressed
in this study. Demand forecasts from the literature,
representing minimum and maximum growth scenar-
ios, will be considered in conjunction with supply
forecasts using SARIMA. The research focuses on
providing technologically feasible results that account
for seasonal changes and contribute to addressing the
power production gap with wind power. The study
does not consider the influence of political decisions,
public opinions, or other external factors. Limitations
on possible wind turbine sites such as jurisdictional
and natural factors, as well as stakeholder influence
are not fully examined. Economic indicators, specif-
ically the payback time, are considered in determin-
ing turbine feasibility, while grid parameters are not
included. Increasing north-to-south transmission ca-
pacity to utilize wind energy in northern areas is an
alternative to reduce SE3’s self-supply requirements.

3 Results and Discussion

Following the methods on the data gathered different
results are obtained. The historical data is transformed
and visualized after which the production sources are
forecasted. Data from weather stations are trans-
formed to show the general wind direction over the
region and the average monthly wind speeds. This in
turn can be used to calculate the power a turbine can
produce in the area, after which the payback time for
a turbine can be calculated. The results obtained from
the forecasting can be compared with the technical po-

tentially available wind power with a reasonable pay-
back time to learn about the role wind power can play
in SE3.

3.1 Electricity demand and supply

The data from 2007 to 2022 is used to observe the
historic behaviour in demand and supply. The be-
haviour in the different supply sources is forecasted
using SARIMA in order to keep the trend. The trend
observed in demand will be compared with different
demand scenarios in 2035 obtained from literature.
Combining these forecasted results gives an insight
in the future demand and supply of the SE3 area for
the different scenarios and when following the current
trends in power supply.

3.1.1 Historic demand and supply

The annual consumption from 2007 to 2022 is visual-
ized in Fig. 1. The average annual consumption dur-
ing this time period is found to be 83.3 TWh. The
stability in consumption can be explained by trends
counteracting each other; in the 1980s and 1990s the
demand increased by a growth in electric heating, but
the shift to efficient heat pumps stopped the growth in
electricity demand, and also the electrification of the
industry has been counteracted by increasing efficien-
cies (IEA, 2019).

Figure 1. The total monthly consumption in SE3 from
2007 to 2022.

Fig. 2 shows how the demand is met by the different
types of power production sources.

Nuclear power is seen to form the large base in the re-
gion and gets supplemented by hydro power to make
up the vast majority of the power production. Thermal
power can be seen to mostly add in production during
the winter months. The increase in wind power can be
observed, whereas the increase in solar power is still
to small too be visible. The reduction in production
from nuclear power is the result of the decommission-
ing of nuclear power plants in 2020. The forecasting
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Figure 2. Total monthly electricity production by source
in SE3 from 2007 to 2022.

of nuclear power assumes a continuation in produc-
tion based on the capacity from 2020 onwards. Hydro
and thermal power have been a stable source through-
out these years and are assumed to stay stable when
forecasting these sources. The observed solar power
production shows an exponential growth up to 2022.
The forecast follows a linear increase, which is in line
with the expectation of the total installed power from
2023 to 2030 for the whole of Sweden (JB Sustainable
Approach AB, 2019). This linear growth is assumed
to continue to 2035. The wind power production has
a linear increase, which is continued.

3.1.2 Forecasting demand and supply

The supply is forecasted using SARIMA based on the
trends observed and explained in Section 3.1.1. To be
able to adjust the demand growth to the different sce-
narios, the demand from Fig. 1 is represented by a
sine wave. The seasonal variability in consumption is
assumed to stay the same. Assuming a linear growth
in consumption, the largest growth is mentioned to be
+2.5 TWh/year (DNV, 2021). A minimum growth is
found to be +0.1 TWh/year (Bruce et al., 2019). This
growth is based on the whole of Sweden, combining
these growths with the assumption that the SE3 area
consumes about 60% of the total energy, the 2035 de-
mand scenarios are presented in Table 1. Creating a

Table 1. The total electricity demand in SE3 based on dif-
ferent scenarios in 2035.

Scenario SE3 demand in 2035
Minimum 81.2 TWh
Maximum 117.2 TWh

mean demand from these scenarios and adding a de-
viation from the mean to the different scenarios al-
lows for a comparison between the demand scenarios.
The SARIMA forecasting results have been added to-
gether to show a total monthly supply up to 2035. How

the demand and supply forecasting results compare is
shown in Fig. 3.

Figure 3. Visualization of the total forecasted power sup-
ply and a minimum and maximum demand
growth scenario to the year 2035.

From Fig. 3 it can be observed that initially the to-
tal monthly supply can match the total monthly de-
mand during the summer months, when the demand
is lower compared to the colder winter months. This
power shortage during winter months continues, but
decreases with an increases supply. The growing sup-
ply does not match the mean in growing demand and
is increasing more than the supply, increasing the sce-
narios in which there would be shortages. During high
demand periods, the current trends in supply will re-
sult in shortages for all scenarios. The forecasting of
future demand scenarios relies on literature, each with
its own boundary assumptions. Theminimumdemand
value found is lower than the mean historic demand
from 2007 to 2022. To maintain current demand lev-
els with the expected electrification of multiple sec-
tors, significant efficiency improvements would be re-
quired. The paper justifies this assumption based on
expected demand savings in the housing and services
sector. For production forecasting, SARIMA models
are used, which work best with appropriate statisti-
cal values. However, since the goal is to obtain tech-
nologically possible values rather than the best fore-
cast, data transformations and tests are not performed.
The obtained forecasts align well with historic data
for nuclear, solar, and wind power, but are slightly
off for hydro and thermal power. The seasonality of
these sources matches historic data, but the variation
in peaks is not predicted. Improving the forecast for
thermal power would require accounting for weather
changes as a result of increasing global temperatures,
which have uncertainties for the medium to long term.
The presented results are within the bounds of current
production and technically feasible to continue in the
future.
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3.2 Electricity price

To use a realistic price when determining the payback
time of the turbines, the historic day-ahead electricity
prices are shown in Fig. 4. The figures shows a de-
composition of the price from 2017 tomid-April 2023.
The data is extended to show the recent changes in
data. The top line in the plot represents the monthly
mean day-ahead price. The second line represents the
trend, which is the motion of the production over time.
If the power source follows a seasonal pattern, this pat-
tern can be observed in the third plot. The scatter plot
represents the residual, which is the data that is left af-
ter subtracting the trend and the seasonality from the
observed data. The residual can be considered noise,
the lower the residual, the more stable a source is.

Figure 4. Decomposition of the monthly average electric-
ity price in SE3.

The figure shows a large increase setting in from mid
2020. This rise started at the end of the COVID-19
pandemic and growing international demand (Euro-
pean Council, 2023). The war between Ukraine and
Russia, but also heatwaves in the summer of 2022 re-
sulted in a further increase in electricity price (Euro-
pean Council, 2023). The price is also seen to decrease
rapidly from 2023. As can be seen from the residual
plot, the stability increased from 2022. To neglect the
instability and large increased prices, only the months
in 2023 are used to determine an average price used
later-on in determining the payback time. The season-
ality observed in the figure is also neglected and only
one value is used. The average price observed in 2023
is 73.81 EUR/MWh and is used for calculating pay-
back times.

3.3 Wind Analysis

The weather greatly affects energy consumption, but
with the introduction of renewables, production is in-
creasingly influenced by it. To observe the behaviour
of the wind around SE3, the data from the stations
is analyzed to observe the seasonal differences. The
monthly average wind speeds throughout SE3 have

been visualized with the help of a Gaussian process
regression model. To obtain an understanding of the
average monthly wind speeds, the speeds over the re-
gion is shown for three separate months in Fig. 5. The
wind speeds are gathered from stations with an eleva-
tion of 10m above sea level and are transformed to
200m above sea level to improve the clarity of differ-
ence in wind speed over land and over sea. With blue
representing the lower wind speeds, and red higher
wind speeds.

Figure 5. Average monthly wind speeds at 200m above
ground level for February, April and June
around the SE3 area in 2020.

It is found that the all months have higher wind speeds
at offshore areas. The outer northeast and southeast
show low wind speeds off the shore. This is due to a
lack of stations in that area. Nevertheless, both areas
are outside the exclusive economic zone, thus is does
not influence the outcome of potential for wind power
in SE3. Important to note is the change in scale of
the wind speeds for the different months. The average
monthly speeds can go up to 15 m/s in February, but
also only reach half of that at about 7 m/s in June. The
area between the greater lakes in western Sweden also
show larger wind speeds. The higher wind speeds are
recorded in the months October to March.

3.4 Wind power distribution

From the wind speed distribution, the shape and scale
parameters can be determined. From this (3) and (4)
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can be used to calculate one turbine can generate in a
grid cell, after which its capacity factor can be deter-
mined. Before the power can be calculated, the wind
speeds are transformed to the speed at hub height of
the turbine using the surface roughness length of the
grid cell.

3.4.1 Current power capacities

The power that can be generated annually throughout
SE3 with an onshore turbine having a power capacity
of 3.5 MW and a hub height of 100 m and an offshore
power capacity of 12.5 MW at 200m and its capacity
factor is visualized in Fig. 6.

Figure 6. Visualization of the annual energy that can be
produced around SE3 with a 3.5 MW onshore
and a 12.5 MW offshore turbine and its respec-
tive capacity factor at the different sites.

The areas with higher capacity factors correspond to
the areas where higher wind speeds are observed in
Fig. 5. These areas in turn generate more power.

3.4.2 Future power capacities

How turbine capacities impact the potential is studied
by increasing the turbine size to future potential tur-
bine sizes considering technological advancements.
With an onshore capacity of 15 MW at 190m and an
offshore capacity of 25MW at 200m, the power that
can be generated annually around SE3 and the respec-
tive capacity factor is visualized in Fig. 7.
The doubling in offshore production is explained by
the doubling in capacity factor. The amount of energy
that is produced onshore increases more than the in-
crease in capacity factor due to the higher hub heights
and thus the availability of higher wind speeds.

Figure 7. Visualization of the annual energy that can be
produced around SE3 with a 15 MW onshore
and a 25 MW offshore turbine and its respective
capacity factor at the different sites.

3.5 Payback time

Combining the result of the electricity price and the
annual power production, a payback time can be cal-
culated. Payback time is defined as the ratio between
annual cashflow and total investment cost which is de-
termined as an average of 2021 European costs. The
weighted average total installed costs for onshore in
Europe is 1623 USD/kW, whereas for offshore it is
2775 USD/kW (IRENA, 2022). Which are assumed
to stay the same. Annual operating costs are approxi-
mated based on public information from the Swedish
Energy Agency. Payback times for all individual cells
along the examined design space are calculated.

3.6 Current power capacities

Doing the calculations based on the results from Sec-
tion 3.4.1, payback times are found to be generally be-
low 10 years for offshore regions, which is visualized
in green. Onshore however, a major part has high pay-
back times of more than 20 years, visualized in red in
Fig. 8.
Where the pattern observed shows high similarities
with the pattern of the capacity factor distribution in
Fig. 6. Looking into how much power can be gen-
erated in a year, the capacity can be calculated. Do-
ing this for the regions with a payback time below 10
years, a total technical and economical capacity is de-
termined for onshore and offshore turbines. Onshore
a capacity of 14GW is found, while for offshore a ca-
pacity of 304GW is found.
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Figure 8. Distribution of payback times around SE3 for
onshore and offshore turbines with current tur-
bine capacities.

3.7 Future power capacities

Doing the same based on the results in Section 3.4.2
for the future capacities, a payback time distribution
of a single turbine is visualized in Fig. 9.

Figure 9. Distribution of payback times around SE3 for
onshore and offshore turbines with turbine ca-
pacities possible in 2035.

The study identifies improved onshore and offshore
capacities of 83 GW and 608 GW, respectively, with
a payback time below 10 years. Local prices and
changes in 2035 need to be considered for better ac-
curacy. Power production and capacity factors show
linear trends with higher capacity factors resulting in
lower payback times. However, the calculations fo-
cus on individual turbines and do not account for the
efficiency decrease in wind farms.

3.8 2035 power production

To put the results from Section 3.7 into perspective,
the capacity is compared with the forecasted demand
and supply in 2035. The maximum gap in demand
and supply is found to be 33.7 TWh. Additional 3.85
GW wind power capacity would be needed to meet
the annual demand. In a wind farm configuration, the
turbines are assumed to lose 20% of their capacity in
the south of Sweden (Holttinen, 2005). Assuming an
offshore wind farm of 75 turbines in locations with a
payback time below 10 years, where the capacity fac-
tor is averaged to 0.55, a farm can produce 7.5 TWh
per year. Which means 4.5 of such farms can add to
the total annual energy demand in 2035. Hence, the
technically potential energy generated is sufficient to

meet the annual energy demand in 2035 when con-
sidering payback times. However, the area studied
is not fully within the exclusive economic zone and
does exclude governmental restricted areas for wind
farm sites. Next to this, the seasonality of energy pro-
duction and the impact on the grid need further study.
Factors such as load factor and grid losses should be
considered to evaluate the effect of additional turbines
on the grid. The calculated amount of farms is based
on balancing annual consumption. As can be observed
in Figs. 2 & 5, there is a seasonal dependency in
available wind power. Renewable energy actually has
hourly deviations which are difficult to predict, espe-
cially for long-term ahead. The hourly balancing be-
tween demand and supply is crucial to operate a stable
grid. For proper balancing, the surpluses need to be
well managed. Storing the surpluses is a crucial part
to be able to supplement the shortages in production
at other times.

4 Conclusion

The goal of this research was to study the technical
potential capacity for wind turbines in the SE3 area.
Based on the analysis performed here, it is found that
the potential for supplementary wind power in the area
is large. With the sustainability goal of reaching 100%
in 2040, the role of wind power is important to be stud-
ied. This paper contributes to the knowledge of wind
power in the area by comparing the current trends in
individual power supply sources with literature val-
ues for future demand and observing that if the cur-
rent trend is continued, the supply in 2035 can barely
meet the demand. This means that a growth in supply
is likely necessary in order to reduce the costs of elec-
tricity in SE3, as has been the goal of the introduction
of different bidding in Sweden. Having observed the
need for additional power in 2035, the role wind power
can play has been studied. Both current turbine capac-
ities and expected future turbine capacities can be used
to locally produce additional renewable power consid-
ering initial economical factors and reach the sustain-
ability goal. The tool made in this research allows for
focusing on a specific area and performing basic eco-
nomical calculations, which can be expanded beyond
the payback time by adding additional parameters.

Acknowledgement

The authors would like to express their gratitude to
mr. B. Fält from Svenska Kraftnät for his discus-
sion about the historic demand and supply data and
increase our understanding of the system and improve
the data analysis progress. This work has been par-
tially financed by the project GEFWIN, funded by
Vinnova, under the umbrella of Eurostars/Eureka.



SIMS 64 Västerås, Sweden, September 26-27, 2023

References

Armelius, H. (2022, Sep). Electricity short-
age. https://www.ekonomifakta.se/Fakta/
Energi/Energibalans-i-Sverige/elbrist/.

Back, A. (2020). Footprints of an invisible popula-
tion: second-home tourism and its heterogeneous
impacts on municipal planning and housing mar-
kets in sweden (Unpublished doctoral dissertation).
Umeå universitet.

Badger, J., Davis, N., Hahmann, A., Hansen, B. O.,
Mortensen, N. G., Olsen, B. T., … Volker, P.
(2023, Apr). Global wind atlas. https://
globalwindatlas.info/en/. (Data extracted on
23-03-2023)

Boyle, G. (1996). Renewable energy: power for a sus-
tainable future (Vol. 2). Oxford University Press.

Bruce, J., Krönert, F., Obel, F., Yuen, K., Wiesner,
E., Dyab, L., … others (2019, Jun). Färdplan fos-
silfri el–analysunderlag-en analys av scenarier med
en kraftigt ökad elanvändning. Sweco, Profu, IVL,
Augusti. (Translated using Google Translate)

Burton, T., Jenkins, N., Sharpe, D., & Bossanyi, E.
(2011). Wind energy handbook. John Wiley &
Sons.

DNV. (2021, May). Study on opportunities
and barriers to electrification in the nordic region.
https://www.energiforetagen.se/globalassets/dokument/.
(Accessed on 13-02-2023)

Energimyndigheten. (2018, Oct). Strategi för
hållbar vindkraftsutbyggnad miljömålsrådsåtgärd
2018. http://www.energimyndigheten.se/
globalassets/fornybart/framjande-av
-vindkraft/uppdragsplan-1.0.pdf. (Ac-
cessed on 05-12-2022. Trans. Google Translate)

ENTSO-E. (2023, Apr). Day-ahead prices.
https://transparency.entsoe.eu/transmission-
domain/r2/dayAheadPrices. (Data extracted on
23-01-2023)

eSett. (2023). Production. https://opendata
.esett.com/production. (Accessed on 14-02-
2023)

European Council. (2023, Mar). Info-
graphic - energy price rise since 2021.
https://www.consilium.europa.eu/en/
infographics/energy-prices-2021/. (Data
extracted on 28-01-2023)

Gawel, E., Lehmann, P., Purkus, A., Söderholm,
P., & Strunz, S. (2017). Political econ-
omy of safe-guarding security of supply with

high shares of renewables. Retrieved from
https://energiforskmedia.blob.core
.windows.net/media/23204/political
-economy-of-safe-guarding-security-of
-supply-with-high-shares-of-renewables
-energiforskrapport-2017-441.pdf

Holttinen, H. (2005). Hourly wind power varia-
tions in the nordic countries. Wind Energy: An In-
ternational Journal for Progress and Applications
in Wind Power Conversion Technology, 8(2), 173–
195.

IEA. (2019). Energy policies of iea countries:
Sweden 2019 review. IEA, Paris. https://
www.iea.org/reports/energy-policies-of
-iea-countries-sweden-2019-review.

IRENA. (2022). Renewable power generation costs
in 2021.

JB Sustainable Approach AB. (2019, Aug). White
paper: Solar energy in sweden rapid market growth
– consolidation to follow (Tech. Rep.).

Råberger, C., & Vingmarker, V. (2019). Kli-
matstrategi för västmanlands län (G. Trans-
late, Trans.). Retrieved from https://
catalog.lansstyrelsen.se/store/23/
resource/DU_2019_08 (Trans. Google Trans-
late)

Shu, Z., & Jesson, M. (2021). Estimation of
weibull parameters for wind energy analysis across
the uk. Journal of Renewable and Sustainable En-
ergy, 13(2), 023303.

Statens Energimyndighet. (2022, May). Energiindika-
torer 2022 uppföljning av sveriges energipolitiska
mål. https://energimyndigheten.a-w2m.se/
Home.mvc?ResourceId=206547. (Accessed on
05-12-2022. Trans. Google Translate)

Svenska Kraftnät. (2021, May). Kraftbalansen på
den svenska elmarknaden, rapport 2021 (ärendenr
2021/1042). (Translated using Google Translate)

Svenska Kraftnät. (2007-2022). Elstatistik.
https://www.svk.se/om-kraftsystemet/
kraftsystemdata/elstatistik/.

Svenska Kraftnät. (2022). The control room.
https://www.svk.se/en/national-grid/
the-control-room/. (Accessed on 26-04-2023)

SWEA. (2021, Jan). Roadmap 2040. https://
swedishwindenergy.com/wp-content/
uploads/2021/01/Roadmap-2040-ENG-rev
-2020.pdf. (Accesed on 05-12-2022)

https://www.ekonomifakta.se/Fakta/Energi/Energibalans-i-Sverige/elbrist/
https://www.ekonomifakta.se/Fakta/Energi/Energibalans-i-Sverige/elbrist/
https://globalwindatlas.info/en/
https://globalwindatlas.info/en/
https://www.energiforetagen.se/globalassets/dokument/nordenergi/electrification-in-the-nordics---nordenergi_19_05_2021.pdf
http://www.energimyndigheten.se/globalassets/fornybart/framjande-av-vindkraft/uppdragsplan-1.0.pdf
http://www.energimyndigheten.se/globalassets/fornybart/framjande-av-vindkraft/uppdragsplan-1.0.pdf
http://www.energimyndigheten.se/globalassets/fornybart/framjande-av-vindkraft/uppdragsplan-1.0.pdf
https://transparency.entsoe.eu/transmission-domain/r2/dayAheadPrices/show?name=&defaultValue=false&viewType=TABLE&areaType=BZN&atch=false&dateTime.dateTime=31.12.2022+00:00|CET|DAY&biddingZone.values=CTY|10YSE-1--------K!BZN|10Y1001A1001A46L&resolution.values=PT60M&dateTime.timezone=CET_CEST&dateTime.timezone_input=CET+(UTC+1)+/+CEST+(UTC+2)
https://transparency.entsoe.eu/transmission-domain/r2/dayAheadPrices/show?name=&defaultValue=false&viewType=TABLE&areaType=BZN&atch=false&dateTime.dateTime=31.12.2022+00:00|CET|DAY&biddingZone.values=CTY|10YSE-1--------K!BZN|10Y1001A1001A46L&resolution.values=PT60M&dateTime.timezone=CET_CEST&dateTime.timezone_input=CET+(UTC+1)+/+CEST+(UTC+2)
https://opendata.esett.com/production
https://opendata.esett.com/production
https://www.consilium.europa.eu/en/infographics/energy-prices-2021/
https://www.consilium.europa.eu/en/infographics/energy-prices-2021/
https://energiforskmedia.blob.core.windows.net/media/23204/political-economy-of-safe-guarding-security-of-supply-with-high-shares-of-renewables-energiforskrapport-2017-441.pdf
https://energiforskmedia.blob.core.windows.net/media/23204/political-economy-of-safe-guarding-security-of-supply-with-high-shares-of-renewables-energiforskrapport-2017-441.pdf
https://energiforskmedia.blob.core.windows.net/media/23204/political-economy-of-safe-guarding-security-of-supply-with-high-shares-of-renewables-energiforskrapport-2017-441.pdf
https://energiforskmedia.blob.core.windows.net/media/23204/political-economy-of-safe-guarding-security-of-supply-with-high-shares-of-renewables-energiforskrapport-2017-441.pdf
https://energiforskmedia.blob.core.windows.net/media/23204/political-economy-of-safe-guarding-security-of-supply-with-high-shares-of-renewables-energiforskrapport-2017-441.pdf
https://www.iea.org/reports/energy-policies-of-iea-countries-sweden-2019-review
https://www.iea.org/reports/energy-policies-of-iea-countries-sweden-2019-review
https://www.iea.org/reports/energy-policies-of-iea-countries-sweden-2019-review
https://catalog.lansstyrelsen.se/store/23/resource/DU_2019_08
https://catalog.lansstyrelsen.se/store/23/resource/DU_2019_08
https://catalog.lansstyrelsen.se/store/23/resource/DU_2019_08
https://energimyndigheten.a-w2m.se/Home.mvc?ResourceId=206547
https://energimyndigheten.a-w2m.se/Home.mvc?ResourceId=206547
https://www.svk.se/om-kraftsystemet/kraftsystemdata/elstatistik/
https://www.svk.se/om-kraftsystemet/kraftsystemdata/elstatistik/
https://www.svk.se/en/national-grid/the-control-room/
https://www.svk.se/en/national-grid/the-control-room/
https://swedishwindenergy.com/wp-content/uploads/2021/01/Roadmap-2040-ENG-rev-2020.pdf
https://swedishwindenergy.com/wp-content/uploads/2021/01/Roadmap-2040-ENG-rev-2020.pdf
https://swedishwindenergy.com/wp-content/uploads/2021/01/Roadmap-2040-ENG-rev-2020.pdf
https://swedishwindenergy.com/wp-content/uploads/2021/01/Roadmap-2040-ENG-rev-2020.pdf


SIMS 64 Västerås, Sweden, September 26-27, 2023

SWEA. (2022, Oct). Statistics and fore-
cast wind power sweden-q3 2022. https://
swedishwindenergy.com/statistics. (Ac-
cessed on 01-06-2023)

https://swedishwindenergy.com/statistics
https://swedishwindenergy.com/statistics


SIMS 64  Västerås, Sweden, September 26-27, 2023 

 

Simulation of blue hydrogen production by natural gas 

in the North Sea 
 

Chidapha Deeraksaa,*, Nora Cecilie Ivarsdatter Skau Furuvika Britt Margrethe Emilie 

Moldestada 

 
a Department of Process, Energy and Environmental Technology, University of South-Eastern Norway 

Chidapha.Deeraksa@usn.no 

britt.moldestad@usn.no 

 

Abstract 

Hydrogen is an efficient energy carrier and an important contribution to sustainable energy development. 

Hydrogen can be produced based on different methods and on different raw materials. Blue hydrogen is hydrogen 

produced from natural gas via a steam-methane reformer with subsequent carbon capture and storage. The CO2 

from the process can be stored in matured oil and gas fields or in an aquifer. 

This paper studies the potential of producing blue hydrogen from methane from the Troll gas field on the 

Norwegian continental shelf.  The production rate of methane from the Troll field is predicted and based on the 

calculated methane production the steam-methane reformation process is modelled and simulated. The model 

includes the required steps to convert natural gas into hydrogen and CO2 and further to catch the CO2. The volume 

of captured CO2 per m3 of produced hydrogen is calculated. Production of blue hydrogen also includes storage of 

CO2, and the required storage capacity is calculated.  

The purpose of this paper was to investigate whether blue hydrogen produced by natural gas from the Troll field 

is an alternative to reducing CO2 emissions to reach the climate target. The simulation was performed with Aspen 

HYSYS 12 and the calculation on how much CO2 must be stored and the storage capacity needed were performed 

manually. The mass of CO2 resulting from the conversion of about 2400 tons natural gas/h to blue hydrogen and 

CO2 at the Troll field is 5600 tons CO2/hour or 49 megatons CO2/year. The produced hydrogen had a purity of 

95%. The predicted storage capacity for CO2 at the Troll field is found to be 136 megatons. A profitability analysis 

is performed  and the results are promissing. 

 

1. Introduction 

The main cause of climate change is the emissions of 

greenhouse gases such as carbon dioxide (CO2), 

methane (CO4) and nitrous oxide (N2O) (European 

commission, 2023). However, the CO2 emission is 

the largest contributor to global warming. The 

average temperature on earth has increased gradually 

by at least 1.1°C since 1880 and most of the warming 

has appeared since 1975 (Nasa.gov, 2023). If the 

increasing temperature is not limited to 1.5°C but 

reaches 2°C, serious consequences will arise. For 

instance, there will be less insect death which lead to 

less production of rice, corn and other food products. 

Likewise, there will be less fish in the seas since 

approximately 70% to 90% of coral reefs will die. 

Moreover, by 2050 over 300 million people will be 

affected by the rising seas. Reducing global 

greenhouse gas emissions will activate the 

temperature to fall back down and then the climate 

system probably stabilizes again (NPR, 2021). 

For limiting the global temperature rise to 1.5 °C, the 

Paris Agreement has laid the foundation for the 

world to cut the greenhouse gas emissions by 45% 

by 2030 compared to the 2010 level (United Nation 

Climate Change, 2022) Norway was among 175 

countries that have committed to the agreement. 

Norway is now further increasing the target by 

submitting to the UN ahead of the UN Climate 

Change Conference (COP27) in Egypt. The new 

target is to reduce emissions at least 55 % compared 

to the 1990 level by 2030 (Government.no, 2022) 

The emissions that are focused on in this paper are 

CO2 emissions from oil and gas extraction, which 

have a quantity of about 12.2 million tons CO2 

equivalents. It amounts to approx. 32% of the 

Norwegian CO2-emissions (Statistics, Norway, 

2023), (Mustafa et al., 2016). There are projects that 

will reduce the greenhouse gases in Norway such as 

Carbon Capture and Storage (CCS) at Norcem and 

Klemetsrud and renewable energy like hydropower, 

wind power, solar energy, and hydrogen. 

Hydrogen is a highly efficient energy carrier and is 

emitting only water vapor when reacting with 

oxygen. Hydrogen is used in fields like petroleum 

refining, ammonia production, methanol production, 

power generation, and transportation. (Energy 

https://www.eia.gov/todayinenergy/detail.php?id=24612
https://www.eia.gov/todayinenergy/detail.php?id=24612
https://www.fchea.org/in-transition/2020/10/2/ammonias-relationship-with-hydrogen
https://www.csiro.au/en/work-with-us/ip-commercialisation/hydrogen-technology-marketplace/methanol
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efficiency&renewable energy, 2023). To meet the 

Paris Agreement and the COP27 targets, it is 

required to develop cost-effective low CO2 emission 

hydrogen production technologies. Hydrogen can be 

produced based on different methods and different 

raw materials, and is named black, grey, green, and 

blue hydrogen. Black and gray hydrogen is produced 

using coal and natural gas respectively, and without 

any CO2 capture and storage (CCS). Green hydrogen 

is hydrogen produced from renewable resources. 

Blue hydrogen is hydrogen produced from natural 

gas in a gas reformer with CCS (Nationalgrid, 

2023). Steam methane reforming, autothermal 

reforming, and natural gas decomposition are 

technologies used to produce blue hydrogen from 

natural gas. This paper focuses on steam methane 

reforming with CCS. 

Norway is one of the largest exporters of natural gas 

in the world. Norway was in the third place in 2021 

and covered approximately 23% of the gas demand 

in EU and United Kingdom. Norway exported about 

122 billion Sm3 of natural gas in 2022 and roughly 

60% of Norway's natural gas resources have not yet 

been produced (Norwegian Petroleum, 2022). A 

large part of the natural gas production in Norway 

comes from the Troll field, which is the largest field 

in the North Sea (Equinor, 2023). 

To achieve the climate target Norway must shut 

down some of its old oil and gas fields prematurely 

unless they can use carbon-free technologies to cut 

down their emissions (Reuters, 2022). This paper 

studies the potential of producing blue hydrogen 

from the Troll field by using the Aspen HYSYS V12 

software. The paper covers a detail analysis to 

determine whether this process is an economically 

and environmentally friendly way of handling 

natural gas. In other words, this paper investigates 

whether the existing gas fields can be used to convert 

the natural gas to a clean, reliable and affordable 

hydrogen, instead of shutting them down. 

Norwegian Petroleum's website indicates that Troll 

produced 37.36 million Sm3 o.e. natural gas in 2021 

and this paper assumes that natural gas from the Troll 

field contains 92.74 vol.% Methane (CH4), 1.83 

vol.% CO2, 0.0045 vol.% Nitrogen (N2) 4.07 vol.% 

Ethane(C2H6) and 0.91 vol.% Propane (C3H8) 

(Aromada and Kvamme, 2019), (Norwegian 

Petroleum Troll, 2021). 

2. Methodology  

Gas reforming using steam is the most common and 

cheapest method of producing hydrogen and 

therefore over 95% of the world's production of 

hydrogen is based on the steam methane reforming 

process (SMR). There are process plants that have a 

production capacity of anywhere from 1 to 100 tons 

of hydrogen per hour. (Rapier, 2020), (Gupta, 2008) 

2.1 Modelling of the steam methane reforming 

process  

Gas reforming is a chemical process where natural 

gas is reacted with steam using a catalyst at quite 

high temperature to produce carbon monoxide (CO) 

and hydrogen (H2) (Gupta, 2008). 

The process starts with the natural gas being pre-

treated, where organic sulphur compounds (thiols) 

are converted to hydrogen sulfide (H₂S), using a 

catalyst such as porous aluminium filled with cobalt 

(Co), nickel (Ni), molybdenum (Mo) and wolfram 

(W). The H2S is removed from the stream by using a 

catalyst consisting of zinc oxide (ZnO). This step is 

used for preventing sulphur from polluting 

downstream catalysts (Gupta, 2008). 

The sulphur-free natural gas is processed further in 

pre-reforming process which is the process that takes 

place before the reformer. In this process, the larger 

hydrocarbons are broken down into CH₄, COₓ and H₂ 

in an adiabatic reactor at a temperature around 300-

525°C. The catalyst mass in the reactor consists of 

aluminium containing nickel. The advantage of pre-

reforming is that the plant can run a natural gas feed 

stream with varying contents of larger hydrocarbons, 

and the steam-carbon ratio is reduced so that the 

effect of the plant is increased. The chemical reaction 

equation for hydrocarbons is (Gupta, 2008):  

CnHm + nH2O ⇌ nCO + (
m+2n

2
) H2                                      (Rn1) 

The natural gas, which now consists of mostly CH₄, 

COₓ and H₂ is mixed with steam having a pressure of 

approx. 20 – 26 bar.  This mixture is heated before 

being fed to a catalytic reforming reactor which 

contains tubes filled with nickel catalyst. In the 

reformer, methane reacts with water and is converted 

to CO and H₂ according to the major steam 

reforming reaction (Rn2) and is then converted to 

CO2 and H₂ according to the steam reforming 

reaction (Rn3) (Gupta, 2008). 

CH4 + H2O  ⇌  CO + 3𝐻2      ∆𝐻298
0 = +206𝑘𝐽/𝑚𝑜𝑙      (Rn2) 

CH4 + 2H2O  ⇌  CO2  +  4H2   ∆𝐻298
0 = +165𝑘𝐽/𝑚𝑜𝑙  (Rn3) 

The reactions are endothermic, which means that the 

reactions absorb energy from the surroundings, and 

the enthalpy change from the reaction requires 

approx. 206 kJ/mol for Rn2, and 165 kJ/mol for Rn3. 

These energies are supplied by burning some of the 

natural gas, but electricity (EL) should also be 

considered. The temperature required is between 

700°C and 950°C. Low pressures are preferred for 

the reactions, but because most industries require H2 

at a pressure of at least 20 bar the reformer is run at 

a pressure around 20 to 26 bar. High pressures allow 

a more compact reactor design, increased reactor 

output, and reduced material costs. According to the 

stoichiometry in the reactions Rn2 and Rn3, the ratio 

between methane and steam is 1:1 and 1:2 on a molar 

basis. In practice, excess steam is used to prevent 

carbon build-up, hence the ratio1:2 for methane and 
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steam is chosen in the HYSYS simulations (Gupta, 

2008). 

The steam reforming reactions Rn4 and Rn5 for 

C2H6 and C3H8 were not included in the 

stochiometric reactions in HYSYS V12.  

C2H6 + 2H2O → 2CO + 5H2            (Rn4) 

C3H8 + 3H2O → 3CO + 7H2            (Rn5) 

The stream from the reforming stage consists of H2, 

CO, CO2, water vapor and a small proportion of CH4 

that has not been reformed. This stream is processed 

further in the water-gas shift reactors. Here, CO 

reacts with steam over a catalytic bed and produces 

H₂ and CO2 as seen in reaction (Rn6). The lower 

temperature with respect to the reformer is needed 

for this reaction, since it is thermodynamically 

preferred at low temperatures. This is an exothermic 

reaction and emits 41.2 kJ/mol (Gupta, 2008). 

CO + H2O ⇌ H2 + CO2  ∆𝐻298
0 = −41.2 𝑘𝐽/𝑚𝑜𝑙           (Rn6)  

The excess water is separated from the gas stream by 

using a separator with low temperature. Here, the 

water vapor is condensed and leaves the separator in 

the gas stream. The H2 and the CO2 flows are 

separated by capturing the CO2 with monoethanol-

amine (MEA) in an absorption tower. The CO2 will 

be stored in the reservoir or an aquifer, and H2 is 

further sent to a purification process. The remaining 

CO2 and CO are removed in a final step called 

methanisation, where these components are 

converted into CH4 as shown in Rn7 and Rn8 (Gupta, 

2008). 

CO +  3 H2 ⇌ CH4 +  H2O                     (Rn7) 

CO2  +  4 H2 ⇌  CH4 +  2H2O          (Rn8) 

The stream can be processed further in an activated 

carbon adsorber to separate CH4 from the H2 

product. The CH4 stream is then recycled to the 

reformer. If the final stream has only H2 as the 

product, the recirculation can be skipped. Fig. 1 

shows the hydrogen reforming process using the 

Aspen HYSYS V12. The model includes the 

required steps to convert natural gas into hydrogen 

and CO2. Then the CO2 is captured with amine-based 

solution and converting a small proportion of CO 

back to CH4.   In the simulation, the main processes 

occur in the reformer, two water-gas shift reactors, a 

separator, a CO2 absorber and a methanator. 

However, there are some processes that are not 

included in the simulations such as the pre-treatment 

process, the pre-reforming process, and the activated 

carbon adsorption process. 

 
Figure 1: Steam reforming process Aspen HYSYS V12 simulation 

2.2. CO2 storage capacity  

A technology for reducing CO2 emissions is called 

geological carbon sequestration (GCS) (Lackner, 

2003), (Schrag, 2007). Deep saline aquifers have 

large storage capacity and is therefore well suitable 

for GCS (Bachu, 2003). However, to ensure a safe 

utilization of CGS to a particular aquifer, an accurate 

calculation of the storage capacity of the aquifer is 

required. Different models can be used to calculate 

the storage capacity of CO2 in an aquifer. In this 

study a model developed by Szulczewski and Juanes 

(Szulczewski and Juanes, 2009) is used to calculate 

the mass of trapped CO2. The model is simple and 

robust and includes some assumptions to be made. 

The reservoir is assumed to be horizontal, 

homogeneous, and isotropic. Other assumptions are 

that the injected CO2 follows the direction of the 

groundwater and that the viscosities and densities of 

the fluids are constant. It is also assumed that there 

is a sharp interface between the CO2 plume and the 

brine. The storage capacity, C, is calculated from: 

 

𝐶 = [
2𝑀Г2(1 − 𝑆𝑐𝑤)

Г2 + (2 − Г)(1 − 𝑀 + 𝑀Г)
] 𝜌𝐶𝑂2

φ𝐻𝑊𝐿𝑡𝑜𝑡   (1) 

where 𝑀 is the mobility ratio, Г is the trapping 

coefficient, 𝑆cw is the connate water saturation, ρCO2
 

is the density of CO2, φ is the porosity, 𝐻 is the 

thickness of the sandstone, 𝑊 is the length of the 

injection array, and 𝐿𝑡𝑜𝑡 is the total length of the 

simulated reservoir. The storage efficiency, which is 

the term in brackets in Equation (1), relates the total 

pore volume to the volume of trapped CO2.  The 

mobility ratio is expressed as:  

𝑀 =
1

𝜇𝑤
⁄

𝑘𝑟𝑔
∗

𝜇𝐶𝑂2
⁄

                                                                 (2) 

where μw and μCO2 are the viscosity of brine and 

CO2, and krCO2
∗  is the endpoint relative permeability 

of supercritical CO2. The trapping coefficient, Г, is 

defined as: 

 

Г =
𝑆𝑟𝐶𝑂2

1 − 𝑆𝑐𝑤
                                                                     (3) 
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where 𝑆𝑟𝐶𝑂2 is the residual saturation of CO2 and 𝑆𝑐𝑤  

is the connate brine saturation. The CO2 storage 

model developed by (Szulczewski and Juanes, 2009) 

also includes an equation for the CO2 footprint. The 

equation calculates how far the CO2 plume migrates 

away from the injection array when it is completely 

trapped. The distance is expressed as: 

𝐿𝑚𝑎𝑥 = [
(2 − Г)(1 − 𝑀(1 − Г))

(2 − Г)(1 − 𝑀(1 − Г)) + Г2
] 𝐿𝑡𝑜𝑡                 (4) 

 

The CO2 footprint is illustrated in Fig. 2. The 

injection footprint has a length, Linj, and is defined as 

the distance the CO2 plume is moving during the 

injection period and is expressed by: 

𝐿𝑖𝑛𝑗 = 𝐿𝑡𝑜𝑡 − 𝐿 𝑚𝑎𝑥                                                           (5) 

The injection footprint is marked with darker blue in 

Fig. 2. The light blue area in the figure presents the 

trapped CO2 footprint and has an extent Lmax. The 

blue arrays show the groundwater flow direction. 

 
Figure 2: Injection and trapped CO2 footprints 

 

3. Results and discussion 

3.1.  Steam methane reforming process simulation 

The Peng Robinson equation of state was selected 

for the simulations due to the types of gas 

components, chemical reactions and equipment 

used. A conversion reactor was selected as the 

reformer and an equilibrium reactor was selected as 

the Water-Gas Shift reactors and the Methanator. 

The methane to steam ratio, the pressure (P), and the 

temperature (T) were adjusted following the 

methodology in order to achieve the optimum 

results. 

The calculation of energies used for both heating and 

cooling in the system is done in term of electricity. 

The heating and cooling duties required to operate at 

optimal conditions were computed by the HYSYS 

V12 simulator by adjusting the temperatures in and 

out of the reactors, the coolers, and the heater. Based 

on this, the electricity cost was calculated in Excel, 

by assuming that the electricity price was 0.5 NOK 

per kWh. The obtained results are shown in Tab. 1. 

The gas components in and out of the reformer, the 

water-gas shift reactors, the separator, the absorber  

Table 1: Heat duties of reformer, heaters and coolers 

from HYSYS simulations. Electricity costs using 0.5 

NOK/kWh 

El for Heating El for cooling 

Energy 

Stream 

Duty [kW] Energy 

Stream 

Duty [kW] 

Q 405900 Q3 3170000 

Q1 511300 Q4 1119000 

Q2 1329000 Q5 1700000 

Q-

Reformer 7297000 

  

Total: 9543200  Total: 5989000  

Cost: 4.18*1010  Cost: 2.62*1010  

  [NOK/year]   [NOK/year] 

and the methanator were likewise computed by the 

HYSYS simulator, where 85% efficiency was 

chosen for the reformer. Tab. 2 shows the obtained 

results where the produced CH4 was converted into 

69.54% H2 after going through the reformer and the 

two water-gas shift reactors. The concentration of H2 

increased to 95.33% after passing the purification 

and methanation process.

Table 2: HYSYS simulation output data for the reformer, Water-Gas Shift reactors, separator, absorber and methanator 

 Feed Reformer  

𝜂 = 0.85 

Water-Gas Shift reactors Separator Absorber Methanator 

Component Ng Outlet gas 6 Outlet gas 8 Outlet gas 10 Outlet gas 12 Outlet gas 13 Outlet gas 14 

 Molar 

percent 

(%) 

Molar flow 

rate 

[kmol/h] 

Molar percent 

(%) 

Molar percent 

(%) 

Molar percent 

(%) 

Molar percent 

(%) 

Molar percent 

(%) 

Molar 

percent 

(%) 

Molar flow 

rate 

[kmol/h] 

CH4 0.9274 148940 0.0309 0.0309 0.0309 0.0335 0.0331 0.0394 19739 

CO2 0.0183 2938 0.0915 0.1490 0.1747 0.1894 0.0001 0.0001 39 

CO - - 0.0875 0.0300 0.0043 0.0047 0.0058 - - 

H2 - - 0.6122 0.6697 0.6954 0.7542 0.9596 0.9533 477946 

H2O - - 0.2659 0.1084 0.0827 0.0052 - 0.0058 2932 

N2 0.0045 722 0.0010 0.0010 0.0010 0.0011 0.0013 0.0014 679 

C2H6 0.0407 6536 0.0090 0.0090 0.0090 0.0098 - - 16 

C3H8 0.0091 1461 0.0020 0.0020 0.0020 0.0022 - - 0.0002 
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3.2. Net profit calculations. 

Since this paper assumes that the natural gas from 

the Troll field contains 92.74 vol% CH4 and that 

Troll produced 37.36 million Sm3 o.e. natural gas in 

2022, then the mass flow rate of CH4 is calculated to 

be approximately 2400 tons/h or 148940 kmol/h. 

After the gas stream is passing through the steam 

reforming process the concentration of the H2 in the 

final product is 95.33 % which corresponds to about 

960 tons/h or 8444000 tons/year. 

Different price ranges in the market provide 

different incomes from selling the blue hydrogen. 

Tab. 3 shows the estimated income based on various 

hydrogen prices where the highest income from 

selling hydrogen is 1.235∙1012 NOK/year when the 

sale price is 195 NOK/kg. According to 

(glpautogas.info, 2023) the average price of 

hydrogen in Norway in August 2023 is 195 

NOK/kg. This is the price for the customers at the 

hydrogen refueling stations.  The price is including 

25% VAT, which means that the real income is 

146.25 NOK/kg. 

Table 3: Income from selling H2 

Amount H2   Without VAT 25% 

8.444∙109 

[kg/year] 

Sale Price  

[NOK/kg] 

Real price 

[NOK/kg] 

Income 

[NOK/year] 

Alternative 1 159 119.25 1.007∙1012 

Alternative 2 195 146.25 1.235∙1012 

 

The other income comes from using CCS in the 

process. Hence, there is a price that emitters must 

pay per tonne of CO2 emission. This price is the 

summation of the carbon tax and the emission 

trading system set by the government. Hence, 

carbon emissions have a cost, and reducing CO2 in 

the process will reduce this cost (avoided cost). This 

reduction in costs can count as an income to the 

project (Norwegian Petroleum, emissions, 2022). In 

Norway, the companies pay approximately 1100 

NOK/ton for their CO2 emissions (Norwegian 

Petroleum, emissions, 2022). The process 

simulation results show that the  blue hydrogen 

process at the Troll field can help to reduce the 

greenhouse gases by almost 49 megaton CO2 per 

year (5600 tons CO2/h) which corresponds to 

5.39∙1010 NOK/year. The net profits which is the 

sum of income from selling H2 and the profit from 

reducing CO2 emission are shown in Fig. 3, where 

the income level is between 1.06∙1012 to 1.29∙1012 

NOK/year.  

3.2. Calculation for utilities cost with various 

electricity price in Norway. 

There is uncertainty related to electricity price in 

Norway since the price is higher in the winter and 

lower in the summer and changing all day. 

Therefore, the electricity cost was calculated with a 

considerable range of electricity prices (0.5 NOK 

/kWh, 1NOK /kWh and 1.50 NOK/kWh) to cover 

the large variations. The obtained results are shown 

in Fig. 4. 

 
Figure 3: Net income from the H2 production. 

 

Figure 4: Utilities cost for various electricity prices in 

Norway 

3.3. Production costs and operating costs for hydrogen 

production and CCS.  

There are costs related to production and operation 

for hydrogen production and CCS. Other costs are 

maintenance and transportation costs that will affect 

the net profit of the project. In order to be able to 

calculate the financial impacts of converting natural 

gas to H2, it is necessary to take all negative and 

positive cash flows into account. 

However, there are some uncertainties about these 

values, and therefore only the estimation of the 

production cost will be present in this section. As 

seen in Tab. 5 the production cost varies from 

1.10∙1011 to 2.29∙1011 NOK/year when the H2 

production is 8.445∙109 kg/year. The exchange rate 

from US$ to NOK is used as 10.64 NOK/US$. Alt. 

1 in Tab. 5 is based on data from a Norwegian report 

(Klimastiftelsen, 2021) and the estimated production 

cost includes CCS. Alt.2, Alt.3 and Alt. 4 are 

presented by (Oni et al., 2022). All the alternatives 

are based on production of hydrogen from steam 

methane reforming. 
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Table 5: Estimates of H2 production costs. The (Bjartnes 

et al., 2021), (Oni et al., 2022). 

Amount H2 

8.445∙109 

[kg H2/year] 

H2 production 

price rate 

[NOK/kgH2] 

Production 

costs  

[NOK/year] 

Alt.1(CCS) 17.02 1.44∙1011 

Alt.2(0% CCS) 12.98 1.10∙1011 

Alt.3(52% CCS) 17.66 1.49∙1011 

Alt.4(85% CCS) 27,13 2.29∙1011 

 

3.4. Profitability analysis 

Gas reforming requires energy, which results in 

lower profitability, but when using CCS, savings 

from climate taxes can be greater than the expenses. 

There are some uncertainties regarding these values 

including some concerns related to simplifying the 

gas composition of natural gas, which have an 

impact on the economic perspective. Also, the 

amount of H2 produced and the amount of captured 

CO2 will be important factors when it comes to 

assessing the profitability. 

There are many factors that can affect the 

profitability, including the transportation and the 

price of hydrogen. There are other costs that are not 

included in this study, such as maintenance cost, 

deprecitation of investment cost, equipment cost and 

installation cost for the blue hydrogen process. 

However, based on the assumptions and calculations 

that have been made, the profit is large. This means 

there are good opportunities to produce blue 

hydrogen from natural gas from the Troll field. For 

the best-case scenario, the earning after paying the 

utility and the production costs is 1.11∙1012 

NOK/year and for the worst-case scenario the 

earning is 5.74∙1011 NOK/year.  

3.5 CO2 storage capacity at the Troll field 

The storage capacity at the Troll field is calculated 

based on the Szulczewski and Juanes model 

(Szulczewski and Juanes, 2009) and is compared to 

the CO2 production from the blue hydrogen process.  

The density and viscosity of supercritical CO2 and 

brine are calculated based on the temperature and 

pressure at the Troll field which is given as 60 °C 

and 100 bar, respectively. The thickness of the 

sandstone (H), the porosity (φ), the total extent of the 

CO2 plume (Ltotal) and the length of the injection 

formation (W) have been chosen based on older 

available data from the Troll field. The input 

parameters for the storage calculations are given in 

Tab. 6. The calculated storage parameters are 

presented in Tab. 7.  

 

 

 

 

Table 6: Input parameters for calculating CO2 storage 

capacity. 

Parameter   

𝜌𝐶𝑂2  290 kg/m3 

μCO2  2.374∙10-5 Pa∙s 

μW  0.00046 Pa∙s 

SrCO2  0.3 

Scw  0.3 

φ  0.27 

W 

H 

Ltot 

 40 000 m 

30 m 

100 000 m 

krCO2
∗   0.55 

 

Table 7: Results from the storage capacity calculations. 

Parameter  

M 0.0938 

Γ 0.4286 

E 1.44% 

C 1.36∙1011kg CO2 

Lmax 89 000 m 

Linj 11 000 m 

 

It was not possible to find data for the dimensions of 

the aquifer under the Troll field, and the storage 

capacity is therefore calculated based on assumed H, 

W and Ltot. The aquifer under the Troll gas field is 

most proparly much larger, and the calculated 

storage capasity is highly underpredicted.  

The mass of CO2 resulting from the conversion of 

2400 tons natural gas/h to blue hydrogen and CO2 at 

the Troll field is 5600 tons CO2/h or 49 megatons 

CO2/year. The calculated storage capacity for CO2 at 

the Troll field is found to be 136 megatons. This 

gives a perspective on the required storage space and 

the potential for CO2 storage at the Troll field. 
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4. Conclusion 

The purpose of this paper is to investigate whether 

blue hydrogen produced by natural gas from the 

Troll field is an alternative to reducing CO2 

emissions and thereby contribute to reach the 

climate target. The prosess of converting naturalgas 

to blue hydrogen is modelled, and simulations were 

performed using Aspen Hysys 12. The model 

includes the required steps to convert natural gas 

into hydrogen and CO2 and further to catch the CO2. 

Conversion of about 2400 tons natural gas/h gave 

960 tons/h of blue hydrogen with a purity 95%, and 

5600 tons /h of CO2 (49 megatons CO2/year). 

The predicted storage capacity for CO2 at the 

assumed Troll field is found to be 136 megatons. 

However, the aquifer under the Troll gas field are 

most probable much larger and have a much higher 

storage capasity than predicted here. 

There are good opportunities for blue hydrogen 

production from natural gas fields in the North Sea. 

The profit is calculated and the results are 

promissing.  
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Abstract 

The demand for non-conventional oil has increased globally. Non-conventional oil is categorized as extra heavy 

oil and bitumen. In reservoirs with extra heavy oil and bitumen, thermal methods are used to reduce the oil 

viscosity. Steam assisted gravity drainage (SAGD) is a thermal recovery method to enhance the bitumen recovery. 

In this method, steam is injected to bitumen and heavy oil to reduce the viscosity and make the oil mobile and 

extractable. To obtain an efficient SAGD process, the residence time for steam in the reservoir must be long 

enough for the steam to condense and release the latent energy to be transferred to the cold bitumen. Early 

breakthrough of steam in some parts of the well will eventually limit the oil production and must be avoided. 

Autonomous inflow control valve (AICV) can prevent the steam breakthrough and restrict the excessive 

production of steam. The objective of this paper is to investigate the performance of AICV and its impacts on 

increased oil production in a SAGD production well. This is achieved by focusing on the implementation, and 

performance evaluation of inflow control devices (ICDs) and AICVs compared with standard well perforations. 

CMG STARS, a multi-phase, multi-component thermal reservoir simulator, is used to perform numerical 

simulation studies. The simulation results demonstrate the significant benefit of AICV in steam reduction 

compared to ICD and well perforations. The simulation results demonstrate that utilizing AICV in a SAGD 

reservoir will lead to higher oil production, less steam production, and a more uniform temperature distribution, 

and steam chamber conformance. Reduction in steam production, will improve the overall SAGD operation 

performance. This will also result in more cost-effective oil production, as less steam is needed to be generated 

for production of each barrel of oil.  

 

1. Introduction 

The demand for non-conventional oil has increased 

globally. Non-conventional oil is categorized as 

extra heavy oil and bitumen. The mobility of 

bitumen is quite poor since the viscosity can be as 

high as 10
6
 cP (Ghahfarokhi et al., 2012). In 

reservoirs with extra heavy oil and bitumen, thermal 

methods such as steam assisted gravity drainage 

(SAGD) are used to reduce the oil viscosity and 

make the bitumen mobile and extractable. More than 

80 percent of the world's annual output of heavy oil 

is accomplished through the utilization of this 

technique (Xu et al., 2020).  

The SAGD well configuration typically consists of 

a pair of horizontally aligned wells that are between 

500 and 1000 meters in length (Shen, 2013). The top 

wellbore is utilized for steam injection which is 

located about 4-6m above the production well, and 

the lower wellbore is utilized for oil production. 

When horizontal wellbores are used in SAGD, 

reservoir contact, and the overall well productivity 

are both significantly improved (Shen, 2013). Steam 

is injected into the reservoir from the injection well. 

This creates steam chambers at the interfaces as 

shown in Figure 1. These steam chambers expand 

both vertically and laterally (Shen, 2013). Latent 

heat from the steam is transferred to the bitumen at 

the interface, making it less viscous and more 

mobile. Due to the action of gravitational forces, the 

steam condensate, and the mobile bitumen flow 

downwards into the producer well. SAGD has been 

shown to be a successful and cost-effective way to 

get bitumen out of heavy oil reservoirs. 

Several technologies have been created to optimize 

the performance of the SAGD process. Advanced 

well completion devices such as inflow control 

devices (ICDs) and autonomous inflow control 

valves (AICVs) can be used for improving bitumen 

recovery in SAGD operations. ICDs are intended to 

control fluid flow within a wellbore and assuring 

uniform distribution of steam. AICVs, on the other 

hand, are adjustable valves that regulate the 

openings automatically based on the fluid 

viscosities. The AICVs are thereby preserving 

mailto:soheila.taghavi.hosnaroudi@gmail.com
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balanced production rates and are controlling the 

inflow profiles.  

 
Figure 1: Principles of SAGD operation (staff, 2016) 

The use of ICDs and AICVs in SAGD operations 

has the potential to solve several issues associated 

with steam injection and bitumen recovery. These 

issues include steam chamber conformance, early 

steam breakthrough, irregular fluid distribution, 

water and gas coning, and excessive production of 

undesirable fluids. By strategically employing ICDs 

and AICVs, operators can optimize thermal 

performance, maximize bitumen recovery, and 

reduce operating expenses. 

The objective of this paper is to investigate the 

performance of AICVs, and its impacts on increased 

oil production in a SAGD production well. This is 

achieved by focusing on the implementation, and 

performance evaluation of ICDs and AICVs 

compared with standard well perforations. The 

novelty of this work is to simulation of the AICV 

and ICD behavior in a dynamic reservoir simulator 

under SAGD conditions. The functionality of the 

AICV and ICD is simulated through tabulated data 

based on the experiments presented in previous 

author’s work (Taghavi et al., 2022).  CMG STARS, 

a multi-phase, multi-component thermal reservoir 

simulator, is used to perform numerical simulation 

studies. 

 

2. Advanced Wells with Inflow Control 

Technologies; ICD and AICV  

Inflow control technologies such as ICDs and 

AICVs were introduced to the oil industry to 

overcome the early water and gas breakthrough 

challenges associated with the heel-toe effect in 

horizontal wells. Drilling long horizontal wells can 

increase reservoir contact, resulting in improved oil 

recovery. The pressure difference between the toe 

and heel sections of the well becomes large in long 

horizontal wells due to the pressure drop induced by 

friction between the inner pipe surface and fluid 

flowing through the pipe. This pressure difference in 

the well generates a higher pressure drawdown 

between the wellbore and the reservoir at the heel 

than at the toe, resulting in a greater inflow of 

reservoir fluid in the heel rather than in other areas 

of the well as shown in Figure 2. This phenomenon 

is known as the heel-toe effect. Because of heel-toe 

effect, early breakthrough of water and/or gas occurs 

at the heel section of the well, decreasing oil 

recovery efficiency. 

 
Figure 2: Gas and water breakthrough at the heel section 

of the well (Ellis et al., 2009). 

2.1. ICDs in advanced wells  

ICD is used to restrict the flow of fluid entering the 

base pipe from the annulus. It is a passive inflow 

control device, meaning it has no active components 

that can be regulated or altered to regulate the flow 

through it. 

The governing equation of the nozzle-type ICD, as 

shown in Figure 3, is as follows (Lauritzen & 

Martiniussen, 2011): 

                          ∆𝑃 =
8𝜌𝑄2

𝑑4𝜋2𝑛2𝐶𝐷
2 

                          (1)

   

Where ∆P is the pressure drop through the nozzle, ρ 

is the fluid density, Q is the volumetric flow rate of 

the fluid through the nozzle, d is the diameter of the 

nozzle, n is the number of tested nozzles, and CD is 

the discharge coefficient. CD is mostly a function of 

the Reynolds number (Re) (Lauritzen & 

Martiniussen, 2011).  

The pressure drop through the nozzle is mainly 

dependent on the fluid density. 

 

 
Figure 3 : Nozzle-type ICD (Birchenko et al., 2010). 

2.2. AICVs in advanced wells  

AICV is a novel inflow control system that 

combines the most advantageous characteristics of  

inflow controllers. AICVs are autonomous, meaning 

that they operate without the need of external control 

systems and constant human involvement. For oil 

production, AICV offers minimal flow restriction 

and the capability to close for water and gas/steam 

while simultaneously producing oil from other zones 

along the well. The valves in zones where gas/steam 
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and water break through into the well, will close 

locally. Figure 4 shows AICV in closed and open 

position. Figure 4a shows that valve is open and 

producing oil as gas/steam is approaching the valve. 

Figure 4b illustrates that the gas/steam has reached 

the valve inlet, and valve is closed for gas/steam. 

 

(a) 

 
(b) 

 
Figure 4: AICV in open (a) and closed (b) position 

(Aakre et al., 2018). 

The mathematical model describing the 

performance of the AICV can be described as: 

 

          ∆𝑃𝑇𝑜𝑡 = (
𝜌𝑚𝑖𝑥

2

𝜌𝑐𝑎𝑙

) ∙ (
𝜇𝑐𝑎𝑙

𝜇𝑚𝑖𝑥

)
𝑦

∙ 𝑎𝐴𝐼𝐶𝐷 ∙ 𝑄𝑥        (2) 

where ∆PTot is the differential pressure across the 

AICV, ρcal and µcal are the calibration fluid density 

and viscosity, and ρmix and µmix are the mixture fluid 

density and viscosity respectively. The parameter 

aAICD is a valve characteristic given by the ICD 

strength, Q is the volumetric mixture flow rate, and 

x and y are constants (Taghavi  & Ghaderi, 2021). It 
can be interpreted from equation (2) that the pressure 

drop through the AICV is much more viscosity 

dependent than density dependent. The concept and 

principle of AICV is described in detail in earlier 

scientific works (Aakre, 2017; Aakre et al., 2013). 

3. Reservoir and Wellbore Model in CMG 

CMG 2022.10 general release by Computer 

Modeling Group Ltd. is used for accomplishing the 

objectives of this paper. The software has thirteen 

modules, each for a specific purpose. Reservoir grid 

modeling, well modeling, creation of fluid models, 

rock fluid properties and importing previously 

created well, reservoir and component properties are 

done using the Builder module of the CMG 

software. CMG STARS is responsible for 

conducting thermal and steam additive simulations. 

Thermal oil recovery methods such as SAGD, can 

be simulated with the help of STARS. 

3.1. Reservoir construction in CMG Builder 

A cuboid shaped reservoir has been considered 

where gravitational force is acting along the k-

direction (vertical). The reservoir grid building 

constraints have been shown in Table 1.  

Table 1:The dimensions of the drainage area. 

Direction 
No. of 

Blocks 

Block size distributions 

(No. of blocks*block 

length) [m] 

I (x) 30 30*50 

J (y) 15 
2*20, 10, 8, 5, 4, 3, 1, 3, 4, 5, 

8, 10, 2*20 

K (z) 20 11*3.5, 1, 2*3, 1, 3*3, 2*5 

 

The areas marked in blue in Figure 5 represent the 

location of the injector and producer wells. All the 

cells within the blue area are very small in 

dimensions.  

 

 
Figure 5: Reservoir 3D view 

The details regarding the reservoir characteristics 

and parameters for initialization are presented in 

Table 2.  

Table 2: Reservoir Characteristics initialization details. 

Property Value 

Porosity 30 %  

Rock wettability Water wet 

Reservoir top depth 400 m 

Initial pressure at top of the reservoir 1500 kPa 

Initial temperature 12oC 

Initial water saturation  0.10 

Reference depth 430 m 

Water-oil contact depth 455.5 m 

Oil mole fraction (dead oil) 0.80 

Oil mole fraction (solution gas) 0.20 

3.1.1. Reservoir rock and fluid properties 

The reservoir rock and fluid thermal properties are 

given in Table 3. 

 

Oil 

Gas/steam 

Gas/steam 
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Table 3: Reservoir rock and fluid thermal properties. 

Property Value 

Formation compressibility 2.90 × 10-6 1/kPa 

Rock volumetric heat 

capacity 

2.35 × 106 

J/(m3∙C) 

Rock thermal conductivity 
6.60 × 105 

J/(m∙day.C) 

Oil thermal conductivity 
1.25 × 104 

J/(m.day.C) 

Water thermal conductivity 
5.35 × 104 

J/(m.day.C) 

Gas thermal conductivity 
3.20 × 103 

J/(m.day.C) 

Over/Under-burden 

volumetric heat capacity 

2.35 × 106 J/ 

(m3.C) 

Over/Under-burden thermal 

conductivity 

1.496 × 105 

J/(m.day.C) 

 

The viscosity changes of bitumen as a function of 

temperature is taken from the experimental work of 

(Ghahfarokhi et al., 2012) and is shown in Figure 6. 

The oil viscosity at standard pressure decreases 

radically with the increase in temperature.  

 
Figure 6:Viscosity of Athabasca bitumen sample versus 

temperature. 

Generally, it is challenging to obtain information 

about relative permeability for different fields. Data 

for relative permeabilities are set manually in table 

form in CMG Builder. Two-phase relative 

permeabilities for liquid-gas and water-oil are 

shown in Figure 7 and Figure 8 respectively. The 

datasets have been calculated based on the Stone II 

model.  

 
Figure 7: Liquid - gas relative permeability curves. 

 
Figure 8: Water-oil relative permeability curves. 

Sl is the liquid saturation, Kr is the endpoint relative 

permeability, krg is the relative permeability to gas 

at Sl, krog is the relative permeability to oil in the 

presence of gas at liquid saturation Sl = 1-Sg. In 

addition, Sw is the water saturation, krw is the relative 

permeability to water at Sw and krow is the Relative 

permeability to oil at Sw. 

3.2. Well modelling in Builder 

The simulation time has been set to 10 years for the 

SAGD operation and these 10 years have been 

divided into two phases. The first phase, also known 

as the circulation period, starts from 1st of January 

2023 and continue for six months until 1st of July 

2023. The SAGD period starts from 1st of July 2023 

and continue until 1st of January 2033. Each well is 

1201 meters long horizontally. Eight wells have 

been defined for accomplishing the whole SAGD 

process. Their names and period and mode of 

operation are shown in Figure 9. The FlexWell (FW) 

model is developed by CMG and is used to model 

the fluid flow in the wellbore and between the 

wellbore and the reservoir. FW is an advanced 

discretized mechanistic wellbore model which 

models the complex well completions (Mohd Ismail 

et al., 2021). The injector FWs are placed 6 meters 

above the producer FWs maintaining the optimum 

vertical distance. Figure 10 and Figure 11present the 

wells trajectories during the circulation phase and 

the SAGD phase respectively.  
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Figure 10: Well trajectories during circulation phase.  

 

 

Figure 11:Well trajectories during SAGD phase. 

The wells have been modeled this way in order to 

maintain similarity with the real-world conditions as 

the wells working during the circulation stage are 

completely turned off as the SAGD stage starts, 

rendering them nonexistent by CMG. Essentially, 

the wells present during the circulation stage are 

neither active nor present during the SAGD stage. 

The well constraints for circulation and SAGD 

phases are listed in Table 4 and Table 5. 

 

 

 

 

Table 4 : Circulation period well constraints. 

FWs Name Function Constraints 

Injector 

FW_ 

CIRC 

Injector_ 

Annulus 

_CIRC 

Producer 

MIN BHP 3500 

kPa 

MAX STL 150 

m3/day 

Injector_ 

Tubing 

_CIRC 

Injector 

MAX BHP 4000 

kPa 

MAX STW 100 

m3/day 

Injection 

temperature 250oC 

Steam quality 0.9 

Producer 

FW_ 

CIRC 

Producer_ 

Annulus 

_CIRC 

Producer 

MIN BHP 3500 

kPa 

MAX STL 150 

m3/day 

Producer_ 

Tubing_ 

CIRC 

Injector 

MAX BHP 4000 

kPa 

MAX STW 100 

m3/day 

Injection 

temperature 250oC 

Steam quality 0.9 

 

Table 5: SAGD period well constraints. 

FWs Name Function Constraints 

Injector 

FW_ 

SAGD 

Injector_ 

Annulus_ 

SAGD 

Injector 

MAX BHP 4000 kPa 

MAX STW 500 

m3/day 

Injection temperature 

250oC 

Steam quality 0.9 

Injector_ 

Tubing_ 

SAGD 

Injector 

MAX BHP 4500 kPa 

MAX STW 500 

m3/day 

Injection temperature 

250oC 

Steam quality 0.9 

Producer 

FW_ 

SAGD 

Producer_ 

Annulus_ 

SAGD 

Producer 

MIN BHP 2000 kPa 

MAX STL 1500 

m3/day 

Producer_ 

Tubing_ 

SAGD 

Producer 

MIN BHP 2000 kPa 

MAX STL 1500 

m3/day 

Figure 9: Timeline view of well operation data. 
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BHP is bottom hole pressure, STW is the surface 

water rate, and STL is the surface liquid rate.  

The dimensions of the annulus and tubing are listed 

in Table 6. 

 
Table 6: Diameters of annulus and tubing. 

Parameter Size 

Tubing wall inner diameter 0.104 m 

Tubing wall outer diameter 0.114 m 

Annulus wall inner diameter 0.166 m 

Annulus wall outer diameter 0.177 m 

4. Results and Discussions 

The main well of interest for this study is the 

Producer_Annulus_SAGD, the annulus of Producer 

FW_SAGD. Depending on the case definitions, 

Producer_Annulus_SAGD annulus will either have 

only perforations or be equipped with ICDs or 

AICVs for comparing oil recovery. The rest of the 

wells will operate with well perforations.   

 

4.1 Simulation cases 

Six cases have been established for simulation 

purposes. The simulation cases are well perforations 

(without any inflow controllers), well completed 

with 4 ICDs in each 50 meters of the horizontal 

length, and well completed with 4 AICVs in each 50 

meters of the horizontal length in both homogenous 

and heterogeneous reservoir. The horizontal 

permeability of the homogeneous reservoir is 1800 

mD in all blocks. The permeability distribution of 

the heterogeneous reservoir is illustrated in Figure 

12.  

 
Figure 12: Permeability distribution of heterogeneous 

reservoir (I-K plane view). 

4.2 Simulation results in the homogenous reservoir 

During the circulation period, steam is injected from 

both wells. This is to establish thermal 

communication between the injector and producer 

and warm up the reservoir. Figure 13 shows the 

temperature distribution at the end of the circulation 

period which is between 70-100 ºC.  

 
Figure 13: Temperature distribution at the end of the 

circulation period (I-K plane view). 

In order to study the performance of ICD and AICV, 

the accumulated oil, gas (steam), and water for the 

AICV and ICD completion cases are compared to 

the case without any inflow controllers 

(perforations), see Figure 14. Under homogeneous 

conditions, the perforation case (red line) falls 

behind the case with ICDs (dashed green line) and 

the case with AICVs (solid green line), having the 

lowest cumulative oil production for the highest 

cumulative gas and water production. Based on 

cumulative oil and gas production, the AICV case 

outperforms the ICD case having higher oil 

production and lower gas production as shown in 

Figure 14. 

 

Figure 14 : Cumulative oil, gas, and water production for 

perforations, ICDs and AICVs in a homogenous 

reservoir. 
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Understanding the formation of steam chambers and 

temperature distribution across the reservoir is an 

important aspect of the SAGD process. Steam 

chamber patterns and temperature distributions can 

also be used to indicate in which case there is more 

steam production. From Figure 15, it can be 

interpreted that due to the high steam production for 

well perforations, the steam chamber has not 

reached the maximum temperature after 5 years, see 

Figure 15a. Looking closely along J-K plane shown 

in Figure 15c, illustrates that the AICV case has a 

slightly better steam distribution than the ICD case 

shown in Figure 15b. This means that AICVs are 

better in handling steam breakthroughs than ICDs 

and well perforations.  

 

 

 
Figure 15 : Steam chamber conformance along J-K plane 

for (a) perforations, (b) ICDs, and (c) AICVs. 

4.3 Simulation results in the heterogeneous 

reservoir 

Figure 16 illustrates that the AICV case outperforms 

the ICD and perforations cases in terms of having 

the highest cumulative oil production and the least 

cumulative gas and water production. The 

perforation case (red line) falls behind the case with 

ICDs (dashed green line) and the case with AICVs 

(solid green line), having the lowest cumulative oil 

production for the highest cumulative gas and water 

production. 

 
Figure 16: Cumulative oil, gas, and water production for 

perforations, ICDs and AICVs in a heterogeneous 

reservoir. 

This directly indicates that AICVs are better in 

recovery of heavy oil and in resisting gas (steam), 

and water production compared to ICDs and well 

perforations when subjected to heterogeneous 

reservoir conditions, similar to that under 

homogenous conditions. 

As illustrated by Figure 17a, the perforation case 

does not have a uniform steam chamber 

conformance and temperature distribution after 5 

years. Both ICDs and AICVs show uniform steam 

chamber conformance which has reached maximum 

temperature after 5 years as shown in Figure 17b and 

Figure 17c respectively. 

 

(a) 

(b) 

(a) 

(c) 
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Figure 17 : Steam chamber conformance along J-K plane 

for (a) perforations, (b) ICDs, and (c) AICVs. 

Analysis of Figure 15 and Figure 17 demonstrates 

that ICDs and AICVs are much better in maintaining 

proper temperature distribution across the reservoir 

and in formation of uniform steam chamber 

compared to well perforations. When looked from 

the J-K plane, it is seen that steam chamber 

conformations with well perforations in both 

homogeneous and heterogeneous cases do not reach 

the maximum steam injection temperature. On the 

contrary, ICDs and AICVs evidently show better 

steam chamber conformance by reaching maximum 

injection temperatures. 

 

5. Conclusions  

The impact of AICV on enhanced oil recovery in a 

SAGD production well is investigated. This is 

achieved by developing a wellbore-reservoir model 

in the CMG STARS simulator.  

Both homogenous and heterogeneous reservoirs are 

studied by considering ICD and AICV completion 

and well perforations only.  

 

The simulation results demonstrate that utilizing 

AICV in a SAGD reservoir will lead to higher oil 

production, less steam production, and a more 

uniform temperature distribution, and steam 

chamber conformance. 

Reduction in steam production, will improve the 

overall SAGD operation performance. This will also 

result in more cost-effective oil production, as less 

steam is needed to be generated for production of 

each barrel of oil. Less steam generation means less 

energy demand, that consequently contribute to 

lower the intensity of greenhouse gas emissions.  
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Abstract

The recently updated European Union’s Urban Waste Water Treatment Directive proposal, European Green Deal,

Biodiversity Strategy for 2030, and EU’s Energy System Integration highlight a pressing need for innovative biolog-

ical nutrient removal processes and energy-efficient control methods to reduce pollution and minimize the carbon

footprint at water resource recovery facilities. The aim of the PACBAL research project is to develop estimation

methods for nutrient profile in a novel industrial Moving Bed Biofilm Reactor (MBBR) process. This study devises

and assesses a range of data-driven methods to estimate effluent phosphorus concentration by utilizing a combina-

tion of real sensors with software models. The resulting virtual sensor could facilitate the design of energy-efficient

control strategies. The case study data are collected from the MBBR process at Hias water resource recovery facility

in Norway. Data sets from December 2022 to March 2023 include varying weather conditions, such as rain, dry, and

snow. The Hias Process consists of three anaerobic and seven aerobic zones, where biomass carriers removes over

90 percent of the phosphorus from the wastewater in simultaneous biological processes. The industrial online mea-

surements include wastewater flowrate, aeration rates, dissolved oxygen and nutrients COD and NO2/ NO3 at inlet

and total suspended solids at outlet. Dynamic data-driven models indluding transfer functions, state-space models

and ARX models, were developed and compared to estimate the outlet phosphorus concentration. Model fitness

to validation data was around 7% with ARX models, and up to 18% with tranfer function models and state-space

models. The first and second order models gave similar results. The state-space models will be developed further

and implemented to into virtual sensors that will enable energy-efficient control strategy development.

1 Introduction

There is a significant demand for novel biological nu-

trient removal processes and energy-effective control

methods for minimization of carbon footprint and en-

vironmental pollution at wastewater resource recovery

facilities (WRRF). As the European Commission has

proposed an updated urban waste water treatment di-

rective (EuropeanCommission, 2022), stricter require-

ments will be set for the removal of nutrients such

as phosphorus, carbon and nitrogen. Water resource

recovery facilities use approximately one percent of

the total energy consumption in the European union.

EU plan on energy system integration (EuropeanCom-

mission, 2021) requires actions on energy efficiency

that are necessary to convert the WRRFs from an en-

ergy consumer to energy-neutral user, or even an en-

ergy producer. At the municipal WRRF the primary

wastewater treatment, clarification, is followed by a

secondary treatment process, which removes nutrients

such as phosphorus, carbon and nitrogen. The sec-

ondary treatment process relies either on chemical ad-

ditions or biological process. Hias How2O has devel-

oped a novel continuous-flow moving bed biofilm re-

actor process with enhanced biological phosphorus re-

moval (MBBR-EBPR) and simultaneous nitrification

and denitrification as described in Rudi et al. (2019).

This process is an alternative to the biological process

with an activated sludge. In the Hias Process, large

amounts of small biofilm carriers, submerged in the

wastewater, circulate through the ten process stages

while the nutrients are removed from the wastewa-

ter in simultaneous biological processes in different

layers of the biofilm. Soluble phosphorus (PO4) in

wastewater is removed biologically by phosphorus ac-

cumulating organisms (PAO) that grow on biofilm

carriers.

The first step towards energy-effective control is de-

velopment of dynamic models between the Hias Pro-

cess inputs and effluent nutrient composition. Hence,

we need to develop a dynamic model that can repro-

duce effluent nutrient composition accurately enough

based on the Hias process inputs.

Moving bed bioreactor process can be modeled with

ASM2D model as described by Henze et al. (1999).

Application of the ASM2Dmodel for the Hias Process

with ten stages, would require estimation of 430 pa-

rameters and simultaneous solution of 210 rate equa-

tions. Hence, ASM2D model in its original form is

too complicated with the current instrumentation.
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Nair et al. (2019) have simplified the ASM2D model

to include 8 components and 7 process rate equations,

2 stoichiometric constants, 11 saturation coefficients

and 7 rate constants for both anaerobic and aerobic

stages. Therefore, the ASM2D model, as it currently

stands, is overly complex given the available instru-

mentation. The ASM2D model is further simplified

for anaerobic basins with 3 components and 3 rate

equations in Nair et al. (2020). Nair et al have demon-

strated soft-sensor concept with Kalman filter for lab-

oratory pilot system with one tank. Due to the avail-

able instrumentation in theHias Process, this approach

cannot be tested either.

Data-drivenmethods do not require a specific set of in-

strumentation, and several recent papers have reported

successful applications to effluent prediction using

multivariate linear regression (Tomperi & Leiviskä,

2018), feedforward-backpropagation networks (El-

Rawy et al., 2021), and time-series models and ma-

chine learning models (Ly et al., 2022). In a recent

master thesis (Nermo, 2023) transfer function models

were developed to predict the Hias Process effluent

phosphorus. In this article we continue Nermo’s work

by refining the input variable set and developing time-

series models and state-space models.

1.1 Aim and research questions

The main obstacles for development of novel en-

ergy and emission efficient control strategies are the

scarcity and cost of online measurements of nutrients

in municipal WRRFs. Control strategy development

requires models that sufficiently reproduce the nutri-

ent dynamics of the plant based on available measure-

ments. Hence, the aim of this work is to develop and

compare different data-driven modeling approaches

that enable control strategy development. Research

question: Which data-driven models are most effec-

tive in predicting nutrient variations in the Hias Pro-

cess effluent?

2 Materials and methods

2.1 Software

Matlab software package version R2023awas used for

the simulations and System Identification Toolbox for

modeling. The simulation method was ode23s with

automatic settings for the time step and error toler-

ance.

2.2 The Hias Process and instrumentation

The Hias Process with instrumentation is illustrated in

Figure 1. The clarified influent and the recirculated

biofilm carriers on a conveyor belt enter the anaerobic

basins. The water and biofilm carriers float through

the process with gravity. The three anaerobic basins

Figure 1. The Hias Process with instrumentation

are mixed to ensure sufficient distribution of biofilm

carriers in the water. Aeration in the following seven

basins ensures sufficient dissolved oxygen concentra-

tions for aerobic nutrient removal. The Hias Process

instrumentation includes continuous measurements of

flowrates and nutrients compositions. Influent COD,
NO2 and NO3 are measured continuously with the

spectrophotometric instrument. Effluent phosphorus

is measured using an online-analyzer with 10 minutes

sampling time. These measurement as listed in Table

1.

Table 1. Online measurements

Symbol Description Unit

F Water flowrate inlet m3/h
T Temperature inlet oC

COD COD inlet, basin7 g/m3

NOX NO2 + NO3 g/m3

inlet, basin7

FOi Aeration rate basin 4-10 m3/h
DOi Oxygen basin 4-10 m3/h

T SSout Total suspended solids g/m3

out Hias Process

T SSdisc Total suspended solids g/m3

after disc filter

PO4out PO4 effluent g/m3

2.3 Data collection and pre-processing

The Industrial IoT platform KYB, developed by Dig-

itread Connect, was used for uploading and standard-

izing operational data. The online data sets and labo-

ratory data sets were collected in .csv format. The out-

liers in the online data set were first removed. Then,

the missing values in the online data sets were filled.

The correlations between variables were studied with

a heatmap.
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2.4 Data-driven dynamic models

The data-driven models suitable for control strategy

design are desirable for the project, hence transfer

function models, state-space models and time-series

models were chosen. These linear models can be de-

veloped by following the system identification proce-

dure by (Ljung, 1999). First, the data sets for model-

ing and validation are chosen. Then, a set of input and

output variables is composed, and time delays are cal-

culated between each input variables and output vari-

able. The data is imported to the Matlab System Iden-

tification toolbox andmodel type is chosen. Lower or-

der models are preferable to avoid modeling of noise.

The identified models are compared using the fitness

index and mean square error.

A first order transfer function model between inputs

Ui(s) and output Y (s) consist of gain (Kp), delay (Td),

and time constant (Tp1) is presented in Equation 1:

T F(s) =
Y (s)
Ui(s)

=
Kp

(Tp1s+1)
e−Tds (1)

The time series model, an auto-regressive model with

exogenous inputs (ARX) are presented in the equation

2. The model output y(t) has order of 2, and the model
inputs u(t) have order of 2 with time delay td.

y(t)−a1y(t −1)−a2y(t −2)
= bi1u(t − td)+bi2u(t − td −1)+ e(t)

(2)

A state-space model is presented in equation 3. The

derivative of the state x(t) is related to the model in-

puts u(t) with delays td via coefficient matrices A and

B, and to the model error e(t) with coefficient K. The

measurement y(t) is related to the state x(t) via ma-

trix C. The error e(t) is calculated as difference be-

tween the model prediction and the real measurement.

Themeasurement y(t) is not affected by inputs u(t) and

hence, D matrix is zero.

dx(t)
dt

= Ax(t)+Bu(t − td)+Ke(t)

y(t) =Cx(t)+Du(t − td)+ e(t)

(3)

The data-driven models are compared with each other

using the fitness index (FIT) between the real mea-

surements yi,meas, the mean values of the real measure-

ments yi,mean, and the model calculated output yi,model
in Equation 4, where norm is the Euclidean norm.

FIT = (1−
norm(yi,meas − yi,model)

norm(yi,meas − yi,mean)
)100 (4)

Table 2. Pre-processing of input and output variables

Variable Scaling Scaled Scaled

mean stdev

F 3.6/1000 0.3184 0.0777

COD /1000 0.4602 0.1015

NOX /10 0.3566 0.1548

FO5 /1000 1.7614 0.7151

FO8 /1000 0.7833 0.2815

∆T SS /1000 0.1552 0.0323

PO4out no scaling 0.2236 0.1024

3 Results

3.1 Data collection and selection of test data

The data was screened and quality of measurements

were assessed. Due to many missing measurements,

inlet temperature, COD and NOX in basin 7 were

omitted from the data set. The estimation period was

1.12.2022-31.1.2023 and the validation period was

1.2.2023-31.3.2023.

3.2 Data pre-processing

The outliers in the data set were identified based on

the three standard deviation rule, and removed. Then,

the missing values in the data sets were filled in using

Matlab knnimpute function based on nearest-neighbor

imputation method. The data was analyzed with pair

plot (not included here), which shows that the data is

highly nonlinear, and thus z-normalization cannot be

applied. The data were scaled by scalar multiplication

as given in Table 2 and the means (Table 2) were re-

moved.

3.3 Output variable

The only available output variable in the data sets is

effluent phosphorus concentration PO4out .

3.4 Input variable selection

The measured input variables include: inlet wastewa-

ter flowrate F , inlet carbon COD, inlet nitrate and ni-
trite NOX , aeration rates FO4 ... FO10.The dissolved

oxygen concentration in aerobic basins DO4... dO9
are dependent on aeration rate. Results of Nermo’s

Master’s Thesis (Nermo, 2023) pointed into careful

selection of input variables, and creation of extra vari-

able representing the biomass storage capacity. The

biomass carrier’s storage capacity is based on phos-

phorus removal during previous biomass carrier cycle

around the ten basins. The storage capacity was mod-

eled with the difference of total suspended solids be-

tween treated water out of the Hias Process T SSout and
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the total suspended solids after the disc filter T SSdisc,

as in Equation 5:

∆T SS(t) = T SSout(t)−T SSdisc(t) (5)

A heat map of correlations between the variables was

plotted in Figure 2.

The heat map shows that aeration rates in basins 4

- 10 (FO4... FO10) are highly correlated with each

other and PO4out . Hence, we selected two aeration

rates, FO5 and FO8 for input variables representing

the manipulated variables of the system. Dissolved

oxygen measurements are not included as these are

state variables and highly correlated with the aera-

tion rates. Inlet wastewater flow rate (F), inlet carbon
(COD), inlet nitrite and nitrate concentration (NOX)
and total suspended solids (∆T SS) are the measured
disturbance variables of the system. The biological

mechanism of (COD) is improving phosphorus re-

moval whereas (NOX) would hinder phosphorus re-

moval. It is surprising that both are correlated posi-

tively with PO4out , hence both are included as input

variables. Storage capacity (∆T SS) is mildly corre-

lated with PO4out , and included as input variable. The

inlet flowrate (F) should have an effect on the PO4out ,

but the correlation is low. However, (F) is included as
input variable. Based on the biological phosphorus re-

moval process (MBBR-EBPR), we could expect that

increased flowrate would dilute PO4out (- sign), NOX

to hinder removal and increase the PO4out (+ sign),

aeration rates (FOi to improve the removal and de-

crease the PO4out (- sign), and storage capacity ∆T SS
to improve the removal and decrease the PO4out (-

sign). Based on laboratory measurements, inlet COD
is very correlated with inlet phosphorus PO4in, and in-

crease in COD means increase in PO4in, which in turn

increases PO4out (+sign). However, the heat map in

Figure 2 gives positive correlations between PO4out
and the selected inputs.

3.5 Input delays and sampling time

The Hias process has significant time delays between

the process inlet and outlet. The delay can be cal-

culated as volume of ten basins divided by average

wastewater flowrate Faverage as in Equation 6. The

time delay is time variant, but in this work estimated

as time invariant.

T d =
Vtotal

Faverage
=

10 ·215m3

5.58m3/min
= 385min (6)

The six input variables consists of inlet water flowrate

F , the inlet carbon compositionCOD, inlet nitrate and
nitrite composition NOX and total suspended solids

∆T SS all four with a delay of 385min, aeration rate in

basin 5 FO5 with delay of 270 min, and aeration rate

in basin 8 FO8 with delay of 115 min. The data was

imported to Matlab system identification toolbox with

sampling time of 10 minutes.

3.6 Transfer functions

The estimated transfer function model parameters and

error indices for estimation and validation data sets are

given in Table 3 for TF0, a pure gain with a delay, and

Table 4 for TF1, a first order model with delay. Time

constants and delay are given in minutes. The signs

of the gains Kp in the TF0 model are not quite as ex-

pected, but the modeling results are acceptable for es-

timation data (7%) and validation data (18%) and the

model follows dynamic trends. The first order transfer

function model follows the dynamic trends in the data

as illustrated in Figure 3. The time constants Tp of

the second order model TF1 4 are unacceptable large

and give no physical interpretation, however the re-

sults for estimation and validation data are acceptable.

We choose further to use the first order transfer func-

tion model TF0.

3.7 Time-series models

Time-series models in the format of auto-regressive

with exogenous inputs were developed and tested.

The input and output variables, and input delays were

the same as for the transfer functions. The parame-

ters and fitness index are shown in Table 5 for first

order ARX110 model and in Table 6 for second order

ARX220 model. The signs of the coefficients bi1 in

the ARX110 model are not quite as expected, as coef-

ficients for the aeration rates FOi are positive. How-

ever the modeling results are very good for estimation

data (69%) and acceptable for validation data (7%)

and the model follows most of the dynamic trends in

Figure 4. The results for the second order ARXmodel

are similar to the first order model (70% and 7%),

hence we work further with the first order model.

3.8 State-space models

State-space models were developed and tested. The

input and output variables, and input delays, were the

same as for the transfer functions. A first order (SS1)

and a second order (SS2) state space model were iden-

tified. The parameters and results are shown in Table

7 for the SS1. The results for the second order state-

space model were not successful. The signs of the co-

efficients bi1 in the SS1model are logical for the phos-

phorus removal phenomena, except for aeration rates

FO5 and FO8. Coefficient A for previous phosphorus

measurements is ten fold compared to the input coef-

ficients B, which implicates that the model is relies

heavily on the previous effluent phosphorus measure-

ments. As the data set is rather large, the parameter

uncertainties for A, B and C are also very large. How-

ever, the modeling results are sufficient for estimation
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Figure 2. Heatmap between variables

data (6%) and good for validation data (18%) and the

model follows dynamic trends in Figure 5. Hence, we

work further with the first order state-space model.

Table 3. TF0 parameters

Input Td Kp

F 385 -6.68 ·10−2
COD 385 0.9857 ·10−2
NOX 385 8.989 ·10−2
FO5 270 2.317 ·10−2
FO8 115 7.627·10−2

∆T SS 385 23.24 ·10−2
FITest 6.518

FITval 17.67

Table 4. TF1 parameters

Input Td Kp Tp

F 385 0.293 327.5

COD 385 2.5 24838

NOX 385 0.24 159611

FO5 270 1.27 6.21e-7

FO8 115 2.6 20177

∆ TSS 385 -11.3 27322

FITest 15.89

FITval 10.46

Table 5. ARX110 parameters

Output constant a1

PO4,out 1 0.9497

Input delay bi1
F 385 6.067 ·10−3

COD 385 4.392·10−3
NOX 385 0.6784·10−3
FO5 270 0.3634·10−3
FO8 115 4.21·10−3

∆T SS 385 -3.26·10−3
FITest 68.85

FITval 6.743

Table 6. ARX220 parameters

Output constant a1 a2

PO4,out 1 0.6529 0.3123

Input delay bi1 bi2

F 385 11.09 ·10−3 -3.206 ·10−3
COD 385 6.826 ·10−3 - 3.953 ·10−3
NOX 385 -2.044 ·10−3 + 1.693 ·10−3
FO5 270 0.7614 ·10−3 - 0.7147 ·10−3
FO8 115 0.7298 ·10−3 + 3.233 ·10−3

∆T SS 385 -37.75 ·10−3 + 43.62 ·10−3
FITest 70.42

FITval 6.5
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Figure 3. Scaled PO4,out measurement with black and TF0 estimate with blue, time in minutes.

Figure 4. Scaled PO4,out measurement with black and ARX110 estimate with blue, time in minutes.
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Figure 5. Scaled PO4,out measurement with black and SS1 estimate with blue, time in minutes.

Table 7. SS1 parameters

State - a1

x(t) - -72.92 ·10−4
Inputs delay bi1
F 385 -3.731 ·10−4

COD 385 0.256 ·10−4
NOX 385 1.548 ·10−4
FO5 270 0.139 ·10−4
FO8 115 0.973 ·10−4

∆T SS 385 -1.624 ·10−4
Output - c1
PO4,out - 7.578

FITest 6.178

FITval 18.3

4 Discussion and summary

Three data-driven modeling methods were tested for

the four months data set fromHias municipal water re-

source recycling facility. Selection of input variables

and determination of the input delays had most effect

on the modeling accuracy. Using all the aeration rates

and inlet flowrate, COD and NOX with the fitness in-

dex was around 1 % and the model was vaguely fol-

lowing the dynamics in the data (Nermo, 2023). Intro-

ducing the storage capacity estimated with difference

of total suspended solids ∆T SS and reducing number

of input variables (aeration rates FOi) and fixing the

input delay increased the fitness index significantly.

We tried to reduce the number of inputs further by

omitting the other aeration rate FO8, but this did not

improve the results.

The model fitness to estimation data was best with

time-series models, around 70%. The model fitness

to validation data was best with state-space models,

18%. All the first order models follow the dynamic

changes in the data. The model parameter signs did

not have quite the logical interpretation to the biologi-

cal phosphorus removal phenomena between the input

and output variables. As the data set is rather large,

the parameter uncertainty is large, and an estimation

method updating the model output, such as Kalman

filter, could be developed for the online application.

The answer to our research question is: state-space

model can reproduce nutrient variations in the Hias

Process with sufficient accuracy. Hence, we work fur-

ther with the first order state space model and prepare

an online application estimating the effluent nutrient

concentration.

Further work

Further work will encompass work on data pre-

processing methods suitable for online use. We will

test different input variables sets, possibly excluding

FO8 and including dissolved oxygen DO5 as state

variable for state-space model. With this model we

will develop and test novel control strategies for the

Hias Process.

Further work is suggested on developing sub-models

for the Hias Process that estimate phosphorus PO4,out
concentration in basins with newly installed conduc-

tivity and redox-potential measurements. Potentially

these virtual measurements of phosphorus in the

process can then be used as inputs for the outlet

phosphorus modeling.
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Abstract

The harsh operating environment in a wastewater treatment process (WWTP) makes sensor faults commonplace.

Detecting these faults can be challenging due to the complex process dynamics, unknown inputs, and general noise

in the process andmeasurements. Comparing sensor readings against predictions from a physics-based or data-driven

model of the WWTP is a common strategy for detecting such faults. In this work sensor measurements are directly

modelled using Gaussian process (GP) regression, a data-driven multivariate approach. These GP sensor models

are, with a generalised product of experts, combined into a dedicated fault isolation scheme resembling traditional

observer bank methods. The residuals are monitored with a multivariate exponentially weighted moving average

chart which is used for fault detection and isolation. The method is evaluated using simulated data generated with

the Benchmark Simulation Model No. 1 WWTP. Fault detection performance is reported using several standard

metrics such as false alarms, missed detections, time to detection, and successful fault isolations, with emphasis

on reporting across a wide range of sensors and faults to provide a point of comparison for future studies. The

proposed approach performs well across these metrics. Given sufficient data representative of normal operation,

this approach can easily be adapted across a wide variety of plant configurations and can be used to create operator-

friendly diagnostics resembling classical control charts.

1 Introduction

Wastewater treatment plants (WWTPs), like many

critical components of public infrastructure, are grad-

ually shifting to higher levels of automation in process

operation. This is in part driven by global incentives

to shift towards water resource recovery facilities, in

conjunction with progress in regulation of the environ-

mental impact of WWTPs, and typical cost incentives

of reducing energy and material consumption. How-

ever, as in any process, automation depends on reli-

able process supervision; this is particularly challeng-

ing in WWTPs as sensors are often sparse and subject

to harsh operating conditions.

A key task in a process supervision system is fault

detection (FD). A common model-based FD strategy

is to generate a residual signal from the difference

between model predictions and actual sensor mea-

surements (Chen & Patton, 1999). Predictions can

stem from physics-based or data-drivenmodels. Data-

driven methods have risen in popularity as they gen-

erally require less extensive process-specific knowl-

edge. However, forgoing process-specific knowledge

means that more data is required for fitting data-driven

models. Moreover, data-driven methods - neural net-

works as an archetypal example - can exhibit out-of-

distribution overconfidence and in-distribution sensi-

tivity to adversarial examples (Szegedy et al., 2014).

Gaussian processes (GPs) are a class of data-driven

models which explicitly model uncertainty, and pro-

vide clear avenues - see for example (Jidling et al.,

2017) - for reintroducing domain knowledge into

learned models (Rasmussen et al., 2006). This prin-

cipled treatment of uncertainty in the process model

is useful as typically the residual generation process

is complicated by requirements to reject model uncer-

tainty and process disturbances while remaining sen-

sitive to faults (Witczak, 2007).

Fault isolation (FI) - which requires FD - also requires

further structure in the generated residuals. Two such

structures are common: dedicated schemes - wherein

each residual in a set is only sensitive to a single fault -

and generalised schemes - wherein each residual is in-

sensitive to only a single fault (Witczak, 2007; Chen&

Patton, 1999). In WWTPs these schemes have previ-

ously been applied using physics-based state estima-

tors configured in banks of observers (Nejjari et al.,

2008; Nagy-Kiss&Schutz, 2013). However, the com-

plexity of the process makes data-driven state estima-

tion attractive - as in other fields (Palma et al., 2005;

Sina Tayarani-Bathaie & Khorasani, 2015).

An issue which arises in using these schemes for FI

is that the sets of residuals that need to be monitored

for FD become large (one set per observer). The use of
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multivariate statistical process monitoring techniques,

such as the Hotelling T 2 chart (Hotelling, 1947) and

the multivariate exponentially weighted moving av-

erage (MEWMA) chart (Lowry et al., 1992), can al-

leviate some of these difficulties. The latter is often

more sensitive to smaller faults and slow drift faults

(Montgomery, 2009). Creating a single, interpretable,

and easily visualisable FD statistic for monitoring is

of high priority in the WWTP industry; which is tra-

ditionally dominated by operator expertise.

In this work we illustrate the feasibility of the use of

GP regression based sensor models combined using

a generalised product of experts into an dedicated FI

scheme for sensor fault detection in a standard bio-

logical WWTP. The ability to detect sensor faults on

both controlled variable sensors, and ordinary mon-

itored variables, is shown for two fault profiles and

varying fault sizes and durations. The diagnostic per-

formance is based on the number of faults detected,

time to detection, number and duration of false alarms,

as well as the number of faults correctly isolated.

2 Background

This section describes relevant ideas and theoretical

perquisites to clarify the method section. In §2.1 FI

schemes in general and the modification using direct

sensor models proposed in this work are described.

§2.2 concerns GP regression; used to create the afore-

mentioned sensor models. Thereafter §2.3 covers

products of experts, which combine several GP mod-

els into a dedicated FI scheme. Finally, §2.4 describes

the MEWMA chart used for monitoring the residuals.

2.1 Dedicated FI Schemes without State Estimation

In a typical dedicated FI scheme residuals are gen-

erated from a bank of state estimators, where each

estimator in the bank is ignorant of one of the sen-

sors (Chen & Patton, 1999; Witczak, 2007). This

is shown in (1): a sequence of measurements y−i,1:t
from time 1 to t (where y−i,t denotes the vector

[y1, . . . ,yi−1,yi+1, . . . ,yn]t) is used to estimate the state

x̂−i
t from which a sensor model estimates the sensor

measurements ŷ−i
t . The notation −i in a superscript

indicates a state/sensor estimate is ignorant of mea-

surements from sensor i, whereas a subscript indicates
a vector missing state/sensor i.

y−i,1:t
state estimation−−−−−−−−→ x̂−i

t
sensor model−−−−−−−→ ŷ−i

t (1)

This estimate is used to compute a residual between

the sensor estimates and measurements for FD/FI.

However, performing this state estimation in the

WWTP is often difficult. In response to this difficulty

the feasibility of directly estimating ŷ−i
t from y−i,1:t

is considered. However, if the sequence y−i,1:t is as-

sumed to be Markovian, the problem can be further

simplified by instead considering the estimation of ŷ−i
i,t

directly fromy−i,t . There is a problemwith this: in the

scheme shown in (1) if there is a fault in sensor i this
appear as a) a residual in ŷ−i

i,t , and b) in all ŷ
− j
t for i 6= j.

This asymmetry is what allows FI from the residuals in

(1). Directly estimating ŷ−i
i,t from y−i,t eliminates this

property - a fault on sensor i affects every estimate.

This can be remedied by repeating the leave-out-one

pattern in the original scheme. In this work we pro-

pose using a bank of n(n − 1) models M−i j where

i 6= j where each model estimates ŷi,t from all sensors

except i and j. Given theMarkov assumption the time

subscripts are omitted:

y−i j
sensor model−−−−−−−→

M−i j
ŷ−i j

i . (2)

For each i this creates n− 1 estimates ŷ−i j
i , each in-

sensitive to a fault in a different sensor j 6= i. This

reestablishes the required asymmetry for FI.

2.2 Gaussian Process Regression

Gaussian process (GP) regression (Williams & Ras-

mussen, 1995; Rasmussen et al., 2006) is a non-

parametric regression method which assumes the tar-

get function f : Y−i j → R to be a stochastic (Gaus-

sian) process and conditions this prior process on ob-

servations to obtain a posterior distribution over func-

tions that explain the observations. A Gaussian dis-

tribution is fully specified by its mean vector and co-

variance matrix. Analogously, a GP is fully specified

by a mean function m−i j : Y−i j → R and a covariance

function k−i j
f : Y−i j ×Y−i j → R. This is typically de-

noted f ∼ GP(m−i j,k−i j
f ). Assuming the observa-

tions y−i j
i (y−i j) = f (y−i j)+ ε of f are perturbed by

Gaussian noise ε ∼N (0,σ2
n ), the measurement pro-

cess is also Gaussian and is denoted,

y−i j
i ∼ GP

(
m−i j,k−i j) . (3)

Here, the measurement covariance k−i j is a sum of the

‘base’ covariance of f and the noise of the observation
process: k−i j(y−i j,y′−i j) = k−i j

f (y−i j,y′−i j)+δyy′σ
2
n

where δyy′ is the Kronecker delta on y−i j = y′−i j.

Like many forms of Bayesian inference, GP regres-

sion has historically been associated with heavy com-

putational costs. However, frameworks such as GPy-

Torch (Gardner et al., 2018), taking advantage ofmod-

ern hardware and theoretical progress, allow practical

use of GPs with standard covariance functions.

2.3 Generalised Products of Experts

Taken in combination, §2.1 and §2.2 suggest using GP

regression to learn a bank of modelsM−i j. Structure

in this bank can be exploited for FI, but in order to
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allow for clear visualisation and interpretation by op-

erators the signals from these n× (n−1)models must

ideally be used to generate a single FD statistic.

One method of obtaining a combined predictive dis-

tribution pc(y|x) from several GP posteriors pi(y|x) is
the (generalised) product of experts (GPoE/PoE) (Cao

& Fleet, 2015),

pc(y|x) =
1
Z ∏

i
pαi(x)(y|x), (4)

where Z is a normalisation constant. The annealing

parameters αi are used to amplify or diminish the im-

portance of eachmodel’s contribution to the combined

distribution. The simplest parameters, corresponding

to a PoE, αi(x) = 1, are used in this study. If each

model in the product is Gaussian the combined distri-

bution is also Gaussian with mean and covariance

m−i
c (x) = k−i

c (x,x)∑
j

m−i j(x)α j(x)λ−i j(x), (5)

k−i
c (x,x) =

(
∑

j
α j(x)λ−i j(x)

)−1

. (6)

Where λ−i j(x) := 1/k−i j(x,x). Combining the predic-

tions from the bank in this way produces a combined

posterior for each sensor,

y−i
i ∼ GP(m−i

c ,k−i
c ). (7)

The vector ŷ = [y−1
1 , . . . ,y−n

n ]T denotes the full esti-

mate of the sensor state obtained from the GPoE.

2.4 Multivariate Process Monitoring

The multivariate exponentially weighted moving av-

erage (MEWMA) chart, first proposed by Lowry et

al. (1992), utilises information from successive sam-

ples and is therefore relatively sensitive to small shifts

in the mean of the monitored variable. In this applica-

tion, that is the standardised residual vector rt , where

the raw residuals are r̃t = yt −E[ŷt ]. The relevant

parameters are defined as (Montgomery, 2009)

Zt = λrt +(1−λ )Zt−1 (8)

where 0 ≤ λ ≤ 1 andZ0 = 0. The statistic monitored

on the chart is

T 2
t = ZT

t Σ
−1
Zt
Zt (9)

where

ΣZt =
λ

2−λ

[
1− (1−λ )2t]Σ. (10)

Σ represents the covariance of r from a collection of

samples when the process is known to be operating

normally. The performance of the MEWMA chart is

tuned by adjusting λ , the smoothing factor, as well as

the limit H.

When T 2
t > H the limit is violated, indicating a fault.

The source of the deviation can be determined by de-

composition of the MEWMA statistic, described by

VandenHul (2002). This requires recalculating T 2
t

for the value of t at which the limit is violated based

on r−i := [r1, . . . ,ri−1,ri+1, . . . ,rn]
T , thus generating n

values for T 2,−i
t . By observing which T 2,−i

t decreases

the most compared to T 2
t the responsible residual can

be isolated.

3 Methodology

The high-level strategy proposed for performing and

evaluating FD/FI using banks of GPs is as follows.

Data, with and without faults, is generated in simula-

tion (§3.1) and used to train a bank of GP sensor mod-

els (§3.2). These models are combined in a GPoE, and

the combined predictions used to generate aMEWMA

chart on the residuals. FD/FI statistics are calculated

over a set of 320 faults per sensor (12 total) in a typical

sensor set - parameterised by fault type, size, duration,

and start time.

3.1 Simulation

The Benchmark Simulation Model No.1 (BSM1) was

used to simulate the operation of the WWTP. The

simulation platform consists of two anoxic reactors

of 2000 m3 and three aerated reactors of 3999 m3 fol-

lowed by a secondary settler of 6000 m3 (Gernaey et

al., 2014). The BSM1 process contains two standard

control loops: SNO control in the second reactor with

set-point of 1 gNm−3 and SO control in the fifth reac-

tor with set-point 2 gO2 m−3 (Gernaey et al., 2014).

Sensor measurements of dissolved oxygen (SO), alka-

linity (SALK), total suspended solids (T SS), nitrate/ni-
trite nitrogen (SNO), and ammonium/ammonia nitro-

gen (SNH), at several points in the process were

recorded at 15-minute intervals. These are hereafter

denoted: SNH,1, SNO,2, SO,3, SNO,3, SNH,3, SO,4, SNH,4,

T SS4, SO,5, SNO,e, SALK,e, T SSe where the subscripts

denote that the measurements are taken in the indi-

cated tank number (1 to 5) or in the effluent (e). The
the two controller outputs, uNO,2 and uO,5 were also

recorded. The sensors were selected based on the

approach in Marais, Zaccaria, Ivan, & Nordlander

(2022); Ivan (2023).

The simulations used the BSM1 dry weather influ-

ent file, simulating two weeks of operation. The first

week of simulated data was used as training data for

GP training (§3.2) and chart calibration (§2.4, §3.4).

The second week was held-out for testing FD/FI,

where data from the eighth day was used for chart

tuning and faults were introduced starting in the ninth

day. Two fault types, bias and drift, were used with
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Table 1. Fault parameters used for testing performance.

All 320 parameter combinations were tested.

Size
Bias [σ ] 1.5 2 3 5

Drift [µ/Day] 0.1 0.25 0.5 1

Direction + −
Start Time [Day] 8.75 9.5 10.25 11

Duration [Day] 0.5 1 1.5 2 2.5

varying parameters shown in Table 1. All combina-

tions of size-direction-start-duration were simulated

for each fault type for a total of 320 faults per sen-

sor. The fault sizes are specified in proportion to the

standard deviation (bias faults) and mean (drift fault)

of the sensor signal as determined from the training

data. All measurements are also standardised w.r.t.

these statistics, yi,t = (ỹi,t − avgt ỹi,t)/stdt ỹi,t where ỹ
denotes the raw measurements.

3.2 Individual GP Sensor Models

The simulated sensor measurements D = (yt)
T
t=1 are

split into training and test data as described in §3.1.

In order to create a supervised learning problem with

FI asymmetry (see §2.1), n× (n−1) training sets are
derived from this data. Each model M−i j thus has

associated datasets

D−i j = {(x j,yi) : x j = y−i j,y ∈D}. (11)

As the measurements are standardised (§3.1), a GP

prior with zero mean is placed over all models,

y−i j
i ∼ GP(0,k−i j). (12)

The covariance k−i j for each model is a sum of a linear

kernel with noise parameter ψ−i j and a squared expo-

nential kernel with independent lengthscales φ−i j for

each input dimension and scale parameter σ−i j:

k−i j(x j,x
′
j) = σ

−i jk−i j
SE (x j,x

′
j)

+ k−i j
LIN(x j,x

′
j)+σ

2
n δ j j′ , (13)

k−i j
SE (x j,x

′
j) = exp

(
−1

2
dT

j Φ
−2
−i jd j

)
, (14)

k−i j
LIN(x j,x

′
j) = ψ

−i jxT
j x

′
j, (15)

where d j =x j−x′
j and Φ−i j := diagφ−i j. The initial

covariance parameters are shown in Table 2. These

GPs were defined using GPyTorch (Gardner et al.,

2018) and each set of hyperparameters was indepen-

dently optimised until convergence with respect to the

marginal log-likelihood of each model. Optimisation

was performed using the ADAM algorithm (Kingma

& Ba, 2017) with learning rate 0.1 and learning rate

decay 0.99.

Table 2. Initial covariance parameters and optimisation

constraints.

Param. Initial Value(s) Optimisation Bounds

σ−i j 1.0 (0,10)
ϕ−i j Random ∈ (0.5,1.5) (0,10)
ψ−i j 1.0 (0,10)
σ2

n 1.0 (0.01,∞)

3.3 Sensor Residuals via PoE

The GP posteriors are composed in a PoE, obtaining a

combined estimate y−i
i for each sensor:

y−i
i (y−i) ∼ N (m−i

c ,k−i
c ), (16)

m−i
c (y−i) = k−i

c (y−i,y−i)∑
j

m−i j
λ

(y−i j), (17)

k−i
c (y−i,y−i) =

(
∑

j
λ
−i j(y−i j)

)−1

, (18)

where m−i j
λ

(y−i j) := m−i j(y−i j)λ
−i j(y−i j). The

model residuals are obtained from the PoE output at

each timestep, ŷt , as described in §2.4.

3.4 MEWMA Chart

As in §2.4, the residuals are standardised based on the

training data:

rt,i = (r̃t,i − avgt r̃t,i)/stdt r̃t,i. (19)

The covariance of the standardised residuals Σ was

used to calibrate the chart according to (10). Small

values for the smoothing factor, λ = 0.05,0.1,0.2,
were evaluated; which in principle allow for the de-

tection of smaller faults (Montgomery, 2009). For

each value of λ the mean and standard deviation of

the T 2 statistic was calculated during day 8 of the sim-

ulation data (§3.1) to determine an appropriate limit

size H. Three values were tested for the limit size

H = avgt T 2 +hstdt T 2, for h = 2,3,4.
Charts with each combination of (λ ,h) were used to

monitor the performance of the process using (8) and

(9). Every limit violation was treated as a fault alarm.

In the case of correct fault detections, isolation was

performed by constructing reduced charts of the per-

senor T 2-statistic, T 2,−i, as described in §2.4.

3.5 Diagnostics

As described in §2.4, a fault is detected when the chart

limit H is crossed by the MEWMA T 2 statistic during

the fault. For each pair of chart limit and smooth-

ing factor the following statistics were recorded for

all faults in Table 1: a) correct violation of H during

a fault - fault detection (FD), b) number of incorrect
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Figure 1. Illustration of the MEWMA chart showing the chart limit, the statistic, and limit violations. The time period during

which the fault is occurring is highlighted. Top: Drift fault on SO,5 with a rate of -0.25, Bottom: Drift fault on SO,5
with a rate of -0.1.

chart limit violations - false alarms (#FAs), c) dura-

tion of false alarms (FA), d) time taken to detect the

fault (TTD), and e) successful fault isolation (FI).

The MEWMA chart requires some time to return to

normal after a fault stops. As such time spent above

the chart limit immediately following a successful

fault detection is not reported in the FA statistic. Note,

defining a detection by crossing of the limit means that

a false alarm preceding a fault which continues into the

start of the fault does not constitute a detection.

Fault isolation was performed based on the mean of

the T 2-decomposition during the first hour after viola-

tion. Only the T 2,−i deviating most from T 2 was used

for isolation. Isolation of faults of the controlled vari-

able sensors was performed by monitoring the con-

troller outputs, not the sensor measurements. For a

discussion of ‘fault hiding’ on controlled variables see

Marais, Zaccaria, & Odlare (2022).

4 Results and Discussion

Two MEWMA charts are shown in Figure 1 for two

different drift faults on the SO,5 sensor. It is clear

that the smaller fault is harder to detect, shown by the

longer detection time and the smaller values of T 2 rel-

ative to those of normal operation. Natural variation

in the residuals, and therefore the T 2, can worsen the

situation. For example, the T 2 statistic is low around

day 10 - faults occurring near this point will be harder

to detect due to the statistic being below its mean. This

may be improved by reducing the nominal variance of

the chart, requiring improved sensor estimates.

Overall the chart is clear and provides a good start-

ing point for operator-friendly FD. With regard to

FI, Figure 2 shows an example of an isolation plot,

which could be shown to operators continuously us-

ing a rolling window on the decomposed T 2 statistic.

The isolation chart shows clearly which residuals are

contributing to variations in the MEWMA chart.
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Figure 2. Example of an isolation plot for the drift fault in

Figure 1-Top showing the mean of T 2,−i (resid-

ual i excluded from T 2) during the isolation pe-

riod. “None” denotes T 2: no residual excluded.

Figure 2 shows the mean value of T 2,−uO,5 (i.e. the T 2

value calculated excluding uO,5, the controller output

for the SO,5 controller) during the isolation period has

the lowest value. This indicates the violation can be

attributed to uO,5, and therefore SO,5.

The following sections present a more detailed analy-

sis across chart parameters; fault types, sizes, and du-

rations; and across different sensors.

4.1 Impact of MEWMA Chart Parameters

Broadly, the different values of (λ ,h) affect FD/FI in
accordance with theoretical expectations. As the limit

size, h, increased detection becomes slower and less

consistent, false alarms decrease, but FI becomes eas-

ier. As the smoothing factor, λ , increases the oppo-

site occurs; smaller faults become detectable, but FI

on these faults is more difficult, and false alarms in-

crease. Small drift faults, in particular, are most sen-

sitive to the change in the smoothing factor. These

results are summarised in Table 3.

Table 3 clearly shows the expected trade-off that must
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Table 3. Summary of diagnostics performance parame-

ters, averaged over all fault types and character-

istics, for the different chart parameters.

λ h FD [%] FI [%] TTD [d] FA [d] #FAs

0.20 2 0.98 0.69 0.16 0.33 15.31

0.20 3 0.90 0.82 0.28 0.07 4.64

0.20 4 0.87 0.85 0.30 0.01 1.13

0.10 2 0.95 0.70 0.22 0.24 11.07

0.10 3 0.90 0.80 0.28 0.04 2.88

0.10 4 0.87 0.85 0.31 0.00 0.14

0.05 2 0.94 0.72 0.24 0.30 7.04

0.05 3 0.92 0.79 0.27 0.08 5.04

0.05 4 0.89 0.83 0.31 0.02 1.16

be made in the MEWMA chart design: improved de-

tectability comes at the expense of isolability and false

alarms. For a given smoothing factor, detection rates

decrease by between 5 % to 11 % and isolation rates

increase by 15 % to 23 % as the limit size is increased.

Detection times increase by 30 % to 46 % while the

number and duration of false alarms decreases by 83 %
to 97 %. Smaller smoothing factors are less sensitive

to the limit size.

It is worth noting that a real FD system can reasonably

run several combinations of chart parameters with the

strengths and weaknesses of each chart in mind. Bal-

ancing these trade-offs, the remaining analysis pro-

ceeds with (λ ,h) = (0.1,3).

4.2 Performance of Diagnostics

Table 4 shows a comparison between bias and drift

type faults, averaged across all fault parameters and

sensors. The false alarms are not included as they do

not differ from those presented in Table 3; false alarms

are chart-dependent, not fault-dependent.

The drift faults are, as expected, harder to detect and

require a longer time on average before the faults are

detected. However, the isolation of drift faults is not

substantially lower than that of bias faults.

The relative difficulty of detecting and isolating faults

in different sensors can be seen in Figure 3 where, av-

eraged over all fault parameters, detection and isola-

tion statistics are shown. The most challenging faults

to isolate occur in the controlled variable sensors, that

is SNO,2 and SO,5, the lowest average detection rate

among all sensors also occurs in the former. This is

expected: the controller works to keep these sensor

values at the set-point, obfuscating the effects of the

sensor faults on the sensor itself. The proposed resid-

ual scheme relies on the use of the controller output,

as mentioned previously, to reliably circumvent this

issue.

Figure 3 also shows that faults in sensors T SS4, SALK,e,

and SNO,e have some of the highest detection and isola-

tion rates and shortest detection times. This is of spe-

cial importance as sensors in the effluent are important

for monitoring limits related to environmental regula-

tions. In general, sensors which have high isolation

rates, such as SALK,e and SNO,e, should be subject to

further careful monitoring as it is possible that they are

often the target of an incorrect isolation. In the faults

tested these two sensors were responsible for 26 % of

incorrect isolation cases.

In order to evaluate the effects of different fault sizes

and durations on detectability and isolability, the re-

sults for a single sensor (SNO,2 - a controlled variable)

are shown in Figure 4.

Considering the bias faults first: all the faults are de-

tected, and as the size of the fault increases the time

to detection decreases to a minimum of 0.026 d, or
37 min. It might be expected that the isolation rate in-

crease with the size of the fault, however, it is impor-

tant to note that this fault occurs on a controlled vari-

able sensor. This type of fault impacts the operation

of the entire process through the control system, there-

fore, larger faults can have a larger impact on other

process variables. This can make these faults more

challenging to isolate as they disrupt other variables

in the process.

The chaotic behaviour of the smallest drift fault likely

has similar explanation - slow drift is corrected by the

controller and propagates non-linearly throughout the

system. Apart from this exception, the behaviour of

the drift faults is unsurprising: larger faults are de-

tected more reliably and more rapidly, and when a

fault persists for longer it is both easier to detect and

easier to isolate. The minimum detection time of the

drift faults is around 0.44 d, or 10 h.
Comparing the results for faults on the SNO,2 sensor

to those in Marais, Zaccaria, & Odlare (2022), where

a univariate EWMA chart is used, the detection times

for the bias faults are slightly longer but the time for

drift fault detection has been decreased by several

hours. The number of false alarms are in the same or-

der of magnitude, and the detection rate of drift faults

has increased from 56 % to 64 % to between 75 % and

100 % for faults longer than 1 d. In Marais, Zaccaria,

& Odlare (2022) the results were not broken down

by duration of fault so this comparison is not exhaus-

tive. Further comparisons with the broader literature

are difficult due to inconsistencies in how results are

reported, varying fault sizes, and incomparable plant

configurations. A cursory comparison with Luca et al.

(2021, 2023) shows detection times in similar ranges

with possibly better performance on the bias faults.

5 Conclusions and Recommendations

Direct modelling of sensors using GP regression in

a dedicated residual scheme and monitoring with a

MEWMA chart can be used for FD/FI in a WWTP.

Clear comparison with the broader literature is diffi-
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Figure 3. Detection and isolation rates, and time to detection split across bias and drift faults for each individual sensor.
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Figure 4. Detection and isolation rates, and time to detection across all faults on the SNO,2 sensor. The bars represent a combi-

nation of fault type, size, and duration, and are grouped according to type and size.

Table 4. Detection and isolation statistics by fault type.

FD [%] FI [%] TTD [d]

Bias 100 83 0.047

Drift 80 77 0.564

cult, as standardised reporting of performance evalu-

ation parameters in studies performed in this field is

lacking. In response to this difficulty, testing on a

wide range of faults across many standard sensors has

been reported in the hopes of facilitating future com-

parisons.

The method improves over a previous study using a

univariate approach, and the results are comparable to

other multivariate methods for FD/FI. Critically, the

proposed approach is easy to visualise; a priority when

developing FD/FI methods for an industry that relies

heavily on operator expertise and shies away from un-

interpretable automation.

The proposed approach leaves a great deal of room for

further study. Without methodological changes, re-

sults across the each tested sensor can be documented,

performance on out-of-distribution test data such as

the BSM1 wet weather influent data can be evaluated,

and more detailed FI studies carried out. The sensor

models themselves can likely be simplified and made

more interpretable by sharing parameters across mod-

els. Annealing the GPoE distributions, directly using

the pre-GPoE sensor models in a generalised scheme,

or other similar modifications to the sensor models

could also yield improvements.
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Abstract

System Dynamics is a modelling paradigm that has been applied to a wide range of systems, from economic to
physical and from managerial to ecological. The main strength of the paradigm is its ease of use.
A System Dynamics modeller does not need to focus on equations; instead, models are expressed in terms of stocks
and flows. Modelica, on the other hand, is an equation-basedmodelling language capable of multi-domain modelling
using equations. It gives the user more freedom but requires more mathematical focus and skills.
Therefore, a unification of equation-basedmodelling and the SystemDynamics paradigm is seen as highly beneficial.
Advantages include the ability for System Dynamics modellers to use the tools available in the Modelica ecosystem.
Furthermore, it allows the integration of System Dynamics models into Modelica models.
To achieve this goal, we developed an XMILE-to-Modelica translator that maps System Dynamics models repre-
sented in the XMILE standard exchange format to Modelica models. We also applied a Modelica-to-Julia translator
to demonstrate the generality of the approach.
We translated several models to test the correctness of the translator. In particular, the Earth System Climate In-
terpretable Model (ESCIMO) was translated from its original version in the Vensim toolkit into the OpenModelica
toolkit, and a correct validation was obtained by comparing simulation results between simulators.
Our work improves tool interoperability and further demonstrates the feasibility of using Modelica as a unified,
standard language to integrate models created using System Dynamics, including large and complex socio-bio-
physical systems.

1 Introduction

Currently, there exists no single unified environment
for Modeling and Simulation (M & S). Instead, mod-
elers utilize several heterogeneous modeling environ-
ments and paradigms. Consequently, modeler know-
how and expert knowledge encoded in specific mod-
els are not necessarily available in all environments.
The resulting branching for modeling practice imply
that unnecessary idealizations and simplifications are
made when modelers integrate concepts outside their
area of expertise in their models. While there ex-
ist frameworks and methodologies such as the FMI-
standard1 that allow modelers to utilize models de-
veloped in different tools by constructing Functional
Mockup Units (FMUs), these FMUs can then be sim-
ulated together using co-simulation or importing us-
ing model exchange (Gomes et al., 2018). However,
this introduces additional complexity into the resulting
composite model and thus complicates the analysis of
the model variables and equations. Furthermore, the
modeler may need to maintain models across a set of
heterogeneous tools.

1Accessed 2023-05-02: fmi-standard.org

In order to facilitate modeling knowledge sharing and
unify tools across different ecosystems, we present
our approach of integrating models from the modeling
paradigm System Dynamics (SD) into both the Model-
ica and Julia ecosystems by means of automatic trans-
lation: from XMILE into Modelica, and then from
Modelica into Julia demonstrating the usefulness of
Modelica as a unified equation-based language. To
this end, we translated a rather complex SDmodel, the
climate model ESCIMO (Earth System Climate Inter-
pretableModel) (Randers et al., 2016) to test the afore-
mentioned mapping. Furthermore, our approach also
includes:

• The possibility to export SD models encoded in
XMILE to FMUs.

• Integration of preexisting Modelica models into
SD models.

• Increase model exchange between the Modelica,
Julia, and SD communities.

• Increased tool support for SD models including
bifurcation analysis and visualization.

https://fmi-standard.org/
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• Interactive scripting of SDmodels in the Julia and
Modelica environments.

1.1 Organization

The remainder of this paper is organized as follows:
We introduce System Dynamics, Modelica and Julia
in Section 2, Section 3, and Section 4 respectively.
Following these sections, an extended motivation be-
hind our work is presented in Section 6. The climate
model, ESCIMO used as the motivating example for
this work is presented in Section 5, the implementation
of the translator fromXMILE toModelica is presented
in Section 7, and the simulation results are presented
in Section 8. Finally, we outline directions for future
research in Section 9.

2 System Dynamics

SystemDynamics (SD) is a modeling paradigm devel-
oped by the group of Jay Forrester at MIT in the 1950s
(Forrester, 2007). In SD, modelers develop their mod-
els as webs of interacting positive and negative feed-
back loops, using the notion of stocks and flows as
building blocks. Stocks represent the accumulation of
an inventory (such as fish in a lake or cars at a dealer-
ship). Flows represent rates of change to such invento-
ries. Using these notations SD modelers can develop
models for complex systems, such as climate models
or large socioeconomic models, a well-known model
being the World3 global model (D. L. Meadows et al.,
1974). Several environments support SD modeling,
including Stella2, Vensim3, and Simantics System Dy-
namics4.
To increase operability between different tools in the
System Dynamics community, OASIS developed the
Interchange Language for SystemDynamics (XMILE)
standard5. XMILE is an XML-based open exchange
format that encodes System Dynamic models.

3 Modelica

Modelica is an equation-based object-oriented acausal
modeling language developed by the Modelica Asso-
ciation. Modelica aims to be a unified language for
equation-based modeling of (but not limited to) cyber-
physical systems (Fritzson, 2015). Several toolkits
support the Modelica language, including: Dymola6
by Dassault Systèmes, Modelon Impact by Mode-
lon7, and the OpenModelica environment (Fritzson et
al., 2020) by the Open Source Modelica Consortium
(OSMC).
2Accessed 2023-05-06 Stella
3Accessed 2023-05-02: Vensim
4Accessed 2023-05-06: sysdyn.simantics.org
5Accessed 2023-05-06: XMILE
6Accessed 2023-05-02: Dymola
7Accessed 2023-05-02: Modelon Impact

Modelica differs from the SD paradigm because it
supports both causal and acausal modeling and also
object-orientation. As a consequence, SDmodels may
be expressed in Modelica; however, not all Modelica
models can easily be expressed using classic SD no-
tation since Modelica is a more universally applicable
formalism.
Due to the universal application of the equation no-
tation of Modelica, there are libraries that can be used
for the development of SDmodels with Modelica, one
of the most well-known being the System Dynamics
visual library (Cellier, 2008). Also, Modelica tools
can be used for simulation as the backend of other
tools such as the Simantics System Dynamic Tools
(Lempinen et al., 2011). In this case, the models are
expressed using the SD formalism, and they are auto-
matically translated internally to Modelica to be sim-
ulated using the OpenModelica framework.

4 Julia

Julia is a programming language developed with a
strong focus on numerical computing along with pow-
erful metaprogramming capabilities (Bezanson et al.,
2017). In recent years, the Julia language has received
increased attention being awarded theWilkinson price
for Numerical Software in 2019. Due to this focus,
several M&S environments have been developed for
the Julia Language, with ModelingToolkit.jl (MTK)
(Ma et al., 2021) being one of the most well known.
To combine the power of Modelica and Julia, we have
previously developed a framework capable of trans-
lating Modelica models into Julia (Tinnerholm et al.,
2022).

5 The Earth System Climate Interpretable Model
(ESCIMO)

ESCIMO (Randers et al., 2016) is an SD model that
represents the global climate system, focusing on a
time range from 1850 to 2100, and including factors
such as fluctuations in sea levels and global tempera-
ture.
In an article published in Nature in 2020, the model
was extended to simulate the global climate up to the
year 2500. The model’s forecast predicts that even if
man-made greenhouse gas emissions were to stop in
2020, the global temperature would still continue to
rise (Randers & Goluke, 2020).
The main components of the ESCIMO climate model
and their interactions are depicted in Figure 1. The
ESCIMO model consists of 1181 equations and vari-
ables.

5.1 ESCIMO and Earth3

ESCIMO has previously been integrated as a sub-
model in a larger socio-bio-physical model named

https://www.iseesystems.com/store/products/stella-architect.aspx
https://vensim.com/
http://sysdyn.simantics.org/
http://docs.oasis-open.org/xmile/xmile/v1.0/xmile-v1.0.html
https://www.3ds.com/products-services/catia/products/dymola/
https://modelon.com/modelon-impact/
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Figure 1. The three sectors of the ESCIMO climate model
as described by (Randers et al., 2016).

Earth3.
The Earth3 model was developed to examine the ef-
fect on the planetary boundaries if 14 out of the to-
tal 17 global Sustainable Development Goals (SDGs)
agreed by the UN in 2015 were to be fulfilled (Ran-
ders et al., 2019). The conclusion of the simulation
experiments are that it is not possible for humanity to
achieve these 14 SDGs while at the same time not vio-
lating the planetary boundaries by 2030 or 2050 if the
business-as-usual scenario (as defined by the author)
continues.

Figure 2. High-level overview of the Earth3 model where
a variant of the ESCIMO mode called ES-
CIMO+ and Earth3-Core are sub-models. The
dashed lines illustrate possible future feedback
loops.

A high-level overview of the model is depicted in Fig-
ure 2. The model consists of three key sub-models:

• The ESCIMO model that models the global cli-
mate.

• The Earth3-Core model that models the socio-
economic behavior.

• The performance model that calculates the per-
formance with respect to the SDGs.

The Earth3-Core model (Randers et al., 2019) was de-
veloped in Microsoft Excel as a spreadsheet model,
whereas ESCIMO+ was developed using the SD
paradigm, as previously discussed. In its current
formulation, without flows closing loops from ES-
CIMO+ back to Earth3-Core, a changing global cli-
mate will not affect the behavior of humanity as rep-
resented by the Earth3-Core model. Still, Randers et
al. emphasize that the lack of these feedback loops has
a greater effect on model variables after the year 2050,
which was beyond the duration of the simulation ex-
periment presented in the paper. This fact serves as
a motivation behind the work presented in this article
and, as explained in the introduction, translators from
one modeling paradigm to another can yield substan-
tial benefits.

6 Motivation

There exists a plethora of heterogeneousmodeling and
simulation tools. Although solutions exist that al-
low modelers to integrate models from different tools,
such as the FMI standard, not all tools support this. In
other cases, such as for the Earth3 model in Section
5, this is achieved by using the integration capabili-
ties of existing tools; however, as discussed, this also
imposes different limitations for each case. Simulat-
ing models using co-simulation adds extra complexity
such as the selection of suitable master algorithms and
a suitable step size, and might require mastery of sev-
eral modeling paradigms as well as domain-specific
tools in order to develop and maintain several mod-
els in tandem. Also, different scientific disciplines
are accustomed to using different tools and languages
to express their models; this leads to an ecosystem of
modeling techniques that can undermine the develop-
ment of more complex systems. Hence, in this work
we propose to use Modelica as a unified, formal, and
standard language to integrate models created both in
spreadsheets and System Dynamics (SD).

6.1 Why Modelica

We argue that Modelica is a good fit for a unified lan-
guage given it is open, standardized, object-oriented,
and equation-based. As a consequence, it supports
both acausal and causal modeling. This allows causal
models encoded for instance, in SD to be encoded in
Modelica. An example of an SD model is given in
Figure 3.
A Modelica model for the SD model in Figure 3 is
available in Listing 1. This exemplifies how Mod-
elica’s inheritance and composition permit an advan-
tageous component-based approach to reduce dupli-
cated equations in our model.
While there exists research proposing a similar
component-based approach for the SD paradigm
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Figure 3. A simple SD model modeling heat over time
in a coffee cup. This example is adapted from
(D. H. Meadows, 2008).

(Bauer & Bodendorf, 2006) it has yet to reach main-
stream adoption (Yeager et al., 2014).
Similarly to many SD tools, Modelica environments
usually include a graphical notation that modelers can
use to compose models using drag and drop. Exam-
ples of graphical modeling libraries for SD in the con-
text of Modelica include the System Dynamics library
(Cellier, 2008).

model CoffeeCup
parameter Real cStartTemp = 60;
parameter Real roomTemp = 18;
Real roomTemperature(start = roomTemp);
Real coffeeTemperature(start = cStartTemp);
Real tmpChange;
Real discrepancy;

equation
roomTemperature = 18;
tmpChange = discrepancy / 10;
der(coffeeTemperature) = -tmpChange;
discrepancy = coffeeTemperature - roomTemperature;

end CoffeeCup;

model Scenarios
CoffeeCup coffeeCupHeating(cStartTemp = 5);
CoffeeCup coffeeCupCooling(cStartTemp = 60);
Real hotCoffeeCooling = coffeeCupCooling.tmpChange;
Real hotCoffeeHeating = coffeeCupHeating.tmpChange;

end Scenarios;

Listing 1. Modelica model of the SD coffee cup model de-
picted in Figure 3. Here we use inheritance via
modification to enable the two scenarios.

6.2 Why Julia

In addition to Modelica, we successfully experi-
mentedwith translating the resultingModelica version
of the ESCIMO model to Julia.
There are several reasons for this translation. It exem-
plifies the ease of translation from a standardmodeling
language to other languages, and it provides access to
the simulation runtime of OpenModelica.jl. The lat-
ter comes with extensions to the Modelica language
for so-calledVariable-Structure-Systemswhich allows
conditional changing equations models during simula-
tion. Hence, models simulated in this environment can
be further modified to include scenarios where the dy-
namics of models radically change during the course
of a simulation (Tinnerholm et al., 2022).

Access to the Julia ecosystem also comes with several
advantages such as a wide set of scientific machine
learning tools enabling domain-aware and physics-
informed learning, state-of-the-art tools for bifurca-
tion analysis8 and interactive visualization9 to name
a few.
To conclude, in this section we have provided an ex-
tended discussion to exemplify the advantages of an
automatic translation from System Dynamics to other
formalisms. For further details, we refer to (Castro,
2019) which provides an extended discussion of this
topic in the context of global models.

7 Mapping XMILE To Modelica

XMILE is a standard format that allows the inter-
change of SD models between toolkits. In order to
map XMILE to Modelica an initial proof-of-concept
translator was written in Python. The translator works
by mapping entities described in the XMILE standard
to corresponding entities in Modelica. For brevity, we
will not describe all elements of the translator here
(the full source code of the translator and the result-
ing models are available upon request).

<model>
<sim_specs> <!-- OPTIONAL-->
...
</sim_specs>
<behavior> <!-- OPTIONAL-->

...
</behavior>
<variables> <!-- REQUIRED -->

...
</variables>
<views> <!-- OPTIONAL-->
...

</views>
</model>

Listing 2. High level structure of an SD model encoded in
XMILE (OASIS, 2015)

Listing 2 describes the overall structure of the model
tag in XMILE. The current translator from XMILE to
Modelica enumerates all variables and all equations
of an XMILE document. Then, for each variable tag,
it maps it one-to-one into a Modelica variable while
keeping auxiliary information (such as units and di-
mensions). Currently, the translator supports the fol-
lowing categories of variables:

• auxiliary

• stock

• flow

• delay1i

• delay3i
8Accessed 2023-05-09 BifurcationKit.jl
9Accessed 2023-05-09 Interact.jl

https://github.com/bifurcationkit/BifurcationKit.jl
https://github.com/JuliaGizmos/Interact.jl
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• delay3

• smooth3

• smooth

• sample_if_true

Each category for each variable is saved both to be
encoded in the final Modelica model and to generate
the correct equations. Likewise, the initial values of
each variable are used to construct the initial equations
of the resulting Modelica model.
The equations of the model are constructed based on
the category of each variable. The equations for aux-
iliary variables are translated verbatim since they may
be mapped to simple algebraic equations. However,
other categories of variables need to be transformed
into an equivalent Modelica construct. The XMILE
standard (OASIS, 2015) defines the stock as:

stockt = stockt−dt +dt · (in f lowst−dt −out f lowst−dt)

While this form is suitable for explicit solvers typi-
cally used in SD environments, in Modelica, the time
step is not available directly during the simulation, so
instead, this is reformulated as

der(stock) = in f lows−out f lows

where der(stock) is the continuous time derivative.
The mapping for a subset of these categories to the
corresponding Modelica equation is presented in Ta-
ble 1.

Table 1. Subset of Modelica to SD type matchings

SD Type Modelica Formulation

stock der(stock) = in f lows−out f lows
smooth der(smooth) = input−smooth

averagingTimeVariable
flow f low = in f low

We tested the translator with the ESCIMO model de-
scribed in Section 5.
Since ESCIMO is a part of Earth3 and takes some in-
put from spreadsheets, we also needed to integrate an
Excel parser in the translator.
The components of the spreadsheet model as defined
in Excel were mapped to Modelica lookup tables10
Once this mapping was complete, we validated the
model by running it using OpenModelica. The trans-
lation to Julia was simple, as described in Section 4;
an existing compiler from Julia to Modelica was used
for this purpose. The Julia compiler was validated by
10In Julia, these tables were defined and implemented using a
foreign function interface, OMRuntimeExternalC.jl, accessed
2023-05-16.

model ESCIMO
constant Real Future_volcanic_emissions(unit =

"GtVAe/yr") = 0.0 "CONST";↪→
constant Real Albedo_Antarctic_sens(unit = "fraction") =

0.7 "CONST";↪→
constant Real

Annual_pct_increase_CH4_emissions_from_2015_pct_yr(unit
= "1/yr") = 0.0 "CONST";

↪→
↪→

...
initial equation
Antarctic_ice_volume_km3 =

Antarctic_ice_volume_in_1850_km3 "STOCK";↪→
Arctic_ice__on_sea__area_km2 =

Arctic_ice_area_in_1850_km2 "STOCK";↪→
C_in_permafrost_in_form_of_CH4 = 1200.0 "STOCK";

...
equation
...

der(DESERT_Mkm2) =
flow_Shifting_GRASS_to_DESERT_Mkm2_yr -
flow_Sifting_DESERT_to_GRASS_Mkm2_yr "STOCK";

↪→
↪→
der(Fossil_fuel_reserves_in_ground_GtC) = -

flow_Man_made_fossil_C_emissions_GtC_yr "STOCK";↪→
der(GRASS_area_burnt_Mkm2) = flow_GRASS_burning_Mkm2_yr

- flow_GRASS_regrowing_after_being_burnt_Mkm2_yr
"STOCK";

↪→
↪→

...
UNIT_conversion_for_CH4_from_CO2e_to_C = 1/(16/12 *

Global_Warming_Potential_CH4) "AUX";↪→
UNIT_conversion_for_CO2_from_CO2e_to_C = 12/44 "AUX";
UNIT_conversion_from_MtCH4_to_GtC = 1 /( 1000 / 12 *

16) "AUX";↪→
...
flow_SW_surface_absorption=SW_surface_absorption

"FLOW";↪→
flow_GRASS_runoff=GRASS_runoff "FLOW";
flow_NATURE_CCS_Fig3_GtC_yr=NATURE_CCS_Fig3_GtC_yr

"FLOW";↪→
...
end ESCIMO

Listing 3. Excerpt from the translated ESCIMO model,
showing initial equations and equations for
some of the models’ stocks and flows.

comparing the simulation results of the resulting sim-
ulation code with that obtained from OpenModelica.
An excerpt of the ESCIMO model translated to Mod-
elica is available in Listing 3. The full Modelica and
the resulting full Julia models are available upon re-
quest.
This section has presented the XMILE to Modelica
translator capable of translating a significant subset of
XMILE as used by the ESCIMO model to Modelica.
The next part of this paper will present the results of
our validation experiments.

8 Simulation Results

During the course of our work, we experimented
with several iterations of the ESCIMO model. We
generated a corresponding Modelica model for the
three ESCIMO models presented in (Randers et al.,
2016, 2019; Randers & Goluke, 2020). This section,
however, will present our validation of the ESCIMO
model as presented in (Randers & Goluke, 2020). It
should be noted that there are several configurations
(or scenarios) in which one can simulate the model.
The validation presented in this section concerns Sce-
nario 1. The results were gathered from three simu-

https://github.com/OpenModelica/OMRuntimeExternalC.jl
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lations: the publicly available ESCIMO model (base-
line), the Modelica translation of this model, and the
Julia model.
In our experiments, we compared the simulated values
at every decade between 1850 to 2500 using the trans-
latedmodels and the referencemodel for the following
variables:

• Temperature surface anomaly compared to 1850
(Celsius), that is, the difference in average global
surface temperature compared to 1850.

• pH in warm surface water, that is, the acidity of
warm surface water.

• CO2 Concentration in PPM, that is, the concen-
tration of carbon dioxide in the atmosphere.

The following numerical solvers were used:

• Runge-Kutta-411 for the Vensim simulation.

• DASSL for the OpenModelica12 simulation with
variable step-size, the absolute and relative toler-
ance was set to 1E −6.

• Rodas513 for the Julia simulation with variable
step-size, The absolute and relative tolerance was
set to 1E −6.

The resulting plots of these variables for the ESCIMO
model are depicted in Figure 4. From the plots in the
figure we observe that there is no visible difference
between the three models. The graphs reveal that the
translated models generate the same outcomes with
minimal variations.
The percentage difference between the original model
and the translated Modelica model for the Temper-
ature Anomaly is presented in Figure 5. The graph
shows that the difference between the original model
and the resulting Modelica variable was, at most
around 1%.
A plot highlighting the difference between the Julia
and Modelica model for the variable Temperature
Anomaly can be seen in Figure 6. As in the previous
experiment, the difference between the variables was
far below one percent, so it is not shown. In Figure 6,
we can see that there are no significant differences
between the Julia and OpenModelica environments.
The largest difference in values observed between the
Modelica and Julia models in Figure 6 occurred at
t = 1970. Here, the value was≈ 0.0552 and≈ 0.0571
for the Modelica and Julia models, respectively, a dif-
ference around 3.5%. To compare, the value reported
by the Vensim simulation was ≈ 0.0547. Hence, the
difference between the Julia and Vensim model was
11integration.html Accessed 2023-08-21
12OpenModelicaUsersGuide/latest/solving.html Accessed 2023-
08-21

13DiffEqDocs/stable/solvers/ode_solve/ Accessed 2023-08-21
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Figure 4. Graphs showing the simulation result of differ-
ent variables from the year 1850 to the year 2500
for the Vensim, Modelica and Julia.
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Figure 5. Difference in percent between the original SD
Model simulated in Vensim and the Modelica
model produced by the translator.

≈ 4.29%. The reason for this divergence is due to
how the Julia Simulation Engine handles a series of
hybrid discrete events that occur in 1970. To sum-
marize, the experiment shows a very small divergence
from the original model; furthermore, we can observe
that the dynamics of the resulting equations are the
same. These differences in values between the Mod-
elica and Vensim SD Model are due to differences in
the numerical solvers used in the experiment.

https://www.vensim.com/documentation/integration.html
https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/solving.html
https://docs.sciml.ai/DiffEqDocs/stable/solvers/ode_solve/
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Figure 6. One excerpt for our comparison experiment that
shows the difference in percent for the tempera-
ture surface anomaly variable between the Mod-
elica and Julia models for each decade between
1850 and 2500.

9 Conclusion and Future Work

Simulation-based assessment of socio-bio-physical
systems necessarily involves a wide range of knowl-
edge domains. Different scientific disciplines tend to
use different tools and languages to express their mod-
els. This leads to an ecosystem of modeling tech-
niques that can undermine the development of more
complex systems. In this work, we have presented
a translator capable of translating models from one
formalism, System Dynamics, to an object-oriented
equation-based formalism as defined by the Model-
ica language. By so doing, we gained the ability to
extract models from any tool that can export System
Dynamics to XMILE and create a correct and equiva-
lent Modelica and Julia model using a new automatic
parser and translator. The existence of standard in-
termediate representation formats such as XMILE has
been fundamental in achieving this goal.
We validated our efforts by comparing the fidelity of
the translated model to the original Vensim model. In
our experiments, it was shown that the difference be-
tween the Vensim and Modelica models was negli-
gible, at most around 1% for the variables that were
compared, see Figure 5. The overall dynamics of the
translated system remained the same see the graphs
in Figure 4. Hence, we can draw the same conclu-
sions as (Randers & Goluke, 2020). As the main goal
was to investigate the fidelity of the translated mod-
els to the original model, certain aspects, such as ac-
curacy options of the numerical solvers and computa-
tional time, were not investigated in detail. However,
both the OpenModelica environment and the Julia en-
vironment support a wide variety of industrial strength
solvers capable of simulating models with more than
tens of thousands of equations and variables under
controlled accuracy (Ma et al., 2021; Fritzson et al.,
2020; Rackauckas & Nie, 2017).
As future work, it remains to increase the number
of functions and blocks supported by the translator
between XMILE to Modelica, since for the present

project the scope was set at what is necessary to meet
the needs of the ESCIMO model. Further, it could be
interesting to investigate the dynamics of a complete
Earth3 model described in Section 5 by replacing the
spreadsheet model with aModelica model and activat-
ing the now-disabled feedback loops.
Also, as the model is now available in Julia and Mod-
elica, it would be interesting to examine insights that
can be obtained using various powerful tools in the
Julia framework, such as scientific machine learn-
ing. It could also be interesting to augment the ES-
CIMO model using the structural variability of equa-
tions present in (Tinnerholm et al., 2022) and with
other complex models available in the wider Model-
ica ecosystem. Robust optimization-driven sensitivity
analysis could be performed for Earth3 using the OM-
Sens plugin available for the OpenModelica toolkit
(Danós et al., 2017).
We hope our work on unifying heterogeneous model-
ing paradigms will increase interdisciplinary collab-
oration in science and industry and enable a wider
community to gain additional insights into a system
as complex as planet Earth.
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Abstract 
Monitoring the temperature of induction traction motors is crucial for the safe and efficient operation of railway 
propulsion systems. Several thermal models were developed to capture the thermal behaviour of the induction 
motors. With proper calibrating of the thermal model parameters, they can be used to predict the motor’s 
temperature. Moreover, calibrated thermal models can be used in simulation to evaluate the motor’s performance 
under different operating conditions and find the optimal control strategies. 
Parameterization of the thermal model is usually performed in dedicated labs where the induction motor is 
operated under predefined operating conditions and calibrating algorithms are then used to find the model’s 
parameters. With the development of digital tools, including smart sensors, Internet of Things (IoT) devices, 
software applications, and various data collection platforms, operational data can be collected and used later to 
calibrate the parameters of the thermal model. Nevertheless, calibrating the model’s parameters from operational 
data collected from different driving cycles is challenging as the model has to capture the thermal behaviour from 
all driving cycles’ data. 
In this paper, a data-driven reinforcement learning-based parametrization method is proposed to calibrate a 
thermal model in induction traction motors. First, the thermal behaviour of the induction motor is modelled as a 
thermal equivalent network. Second, a reinforcement learning (RL) agent is designed and trained to calibrate the 
model parameters using the data collected from multiple driving cycles. The proposed method is validated by 
numerical simulation results. The results showed that the trained RL agent came up with a policy that adeptly 
handles diverse driving cycles with different performance characteristics. 
 
Keywords: Railway, Propulsion system, Traction motor, Induction motor, Thermal model, Parametrization, Data-
driven, Reinforcement learning, Calibrating, Optimization 
 
1. Introduction 
Traction motors are subjected to varying operating 
and environmental conditions due to the dynamic 
loads over the operation cycle. The transient loads 
may cause overloading of the drive components 
which causes extra heat load. Operations causing 
overheating of the motor parts are of significant 
concern as they may lead to stator winding failure 
and accelerated ageing. Furthermore, to be able to 
exploit the motor’s maximum utilization, it is 
essential that its operation is optimized to make it 
cost-effective. 
On the other hand, induction motors (IMs) are the 
most used motors in railway propulsion applications 
to date because of their mechanical robustness and 
high overload capabilities. The added advantages 
are their low cost and the possibility of employing 
multiple drives connected to a single converter 
(Nategh et al., 2020). However, their performance 
varies nonlinearly with temperature, frequency, 
saturation, and operating point which makes 

temperature monitoring essential for the safe and 
reliable operation of the motor. 
The thermal limits of these motors are associated 
with the winding insulation material which is 
classified based on its temperature withstanding 
capacity. There are several established direct or 
indirect means for estimating the temperature in 
motor parts. Direct methods such as installing 
contact-based sensors in the stator, and rotor are the 
simplest means for measurement. However, the data 
transmission in the rotating parts has to be carried 
out with the help of end slip rings, or telemetry 
means. Regardless, installing sensors requires 
integration effort and additional cost and adds 
complexity due to their inaccessibility for 
replacement in case of failures or detuning. Hence 
model-based measurement techniques have been 
rather focused in the past decade (Ramakrishnan et 
al., 2009; Wilson, 2010). Here the temperatures can 
be estimated from the temperature dependent 
electrical parameters both off-line and online 
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manner. In these approaches, it is imperative that the 
model dynamic behaviours are accurately accounted 
for to avoid any estimation errors. These are also 
invasive in nature and create disturbance to the 
normal operation. 
Computational fluid dynamics (CFD) and heat 
equation-based finite element analysis (FEA) are 
powerful techniques for accurate temperature 
estimation. However, due to their rigorous 
modelling effort and high computational power and 
time, they have been excluded from real-time 
monitoring upfront (Kirchgässner et al., 2021). 
An alternative and computationally light 
temperature estimation technique is using the 
lumped-parameter thermal network (LPTN) model. 
An LPTN model summarizes the heat transfer 
process and can be represented in thermal equivalent 
circuit diagrams with knowledge of the used 
material and geometry and based on heat transfer 
theory. In this model, the thermal parameters are 
thermal resistances and capacitance values (Chen et 
al., 2020). The LPTNs can be designed to estimate 
the temperatures at several or fewer locations in the 
motor. However, the LPTN model needs accurate 
distributed motor losses, surface contact thermal 
conductance and heat transfer convection 
coefficients information, hence, needs to be 
calibrated empirically (Huber et al., 2014). 
The complexity of LPTN models depends on the 
number of chosen nodes in the network. Generally, 
white box LPTN, based on pure analytical 
equations, are more accurate but are endowed with 
many thermal parameters, which could be complex 
to calculate in practice. A low-order structure with 
fewer nodes is computationally lightweight. In the 
past, several reduced order models categorized as 
light grey (5-15 nodes), and dark grey (2-5 nodes) 
LPTN models were structured to estimate the 
temperature with good accuracy. In this approach, 
only the dominant heat transfer pathways are 
represented, hence, expert domain knowledge is 
essential for the correct choice of not only their 
parameter values but also for their structural design 
(Wallscheid and Böcker, 2015). These models have 
proven to have good estimation performance, 
provided the parameters are identified appropriately. 
The use of a reduced order LPTN method would 
require estimations of many parameters that are not 
well known or possible to calculate using analytical 
equations. Thus, the identification of the parameters 
is an important step in these studies. 
To date, several research works on the 
parameterization of the LPTN model have been 
performed using empirical measurements by 
applying different methods (Guemo et al., 2013; 
Huber et al., 2014; Xiao and Griffo, 2020). The 
proposed identification procedure varies the 
parameter values until the used LPTN model gives 

the same results as the experimental ones.  As 
described by (Wallscheid, 2021), parameter 
identification can be made in a local approach or a 
global approach. In the work presented by (Huber et 
al., 2014), a three-node LPTN is parametrized based 
on a global approach. A sequence of interdependent 
identification steps was followed, and the 
experimental data are used to find the thermal 
parameters. The model uses the measurement-based 
loss inputs available with motor electronic control 
unit (ECU) quantities, such as motor speed and 
electric currents.  The parameter identification 
approach has been built on the idea of mapping the 
linear time-varying parameters to a set of time-
invariant models operating within a certain chosen 
environment.  Thus, a consistent parameter set for 
the whole operating region could be obtained with 
the adaptation of the relevant boundary conditions 
through various identification cycles. While the 
global approach is more robust in capturing all 
operating regions of the motor than the local 
approach, it can also be problematic if the parameter 
landscape to be identified is large and highly 
nonlinear in nature. Hence it is complex to find the 
parameter values near the global parameter optimum 
(Wallscheid, 2021). However, the global approach 
captures the nonlinearity in the form of a 
parametrizable function and, hence, they are 
potentially more versatile compared to the global 
and local approaches. 
The use of inverse methods is also popular for 
finding thermal parameters. In the work presented 
by (Guemo et al., 2013), the identification of the 
parameters is made by solving the optimization 
problem using determinist inverse-based methods 
such as the Gauss-Newton method, the Levenberg-
Marquardt method, and stochastic inverse-based 
methods such as the Genetic Algorithms. These 
concept methods are used to minimize the residuals 
between measured and calculated temperatures. 
(Sciascera et al., 2017) employed a tuning procedure 
based on a sequential quadratic programming 
iterative method for obtaining the uncertain thermal 
parameters of the thermal network. However, the 
computation cost of such tuning procedures is high 
due to the time-variant nature of the parameters. 
Furthermore, to improve computational efficiency, 
the dependence of the state matrix on the phase 
current is approximated with polynomial 
approximation. 
The temperature rise in the electric motor occurs due 
to the electro-mechanical power conversion losses. 
Winding and core losses and mechanical and 
windage losses are the prominent ones for an 
induction motor. The winding losses can be 
calculated for a given winding resistance and 
measured current. However, the winding resistance 
changes based on the temperature which is a state 
variable in the thermal matrix. Furthermore, the core 
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loss is not measurable. A usual approach to 
determining iron losses is measuring total power 
losses and subtracting winding losses. Hence, all 
errors in the determination of total and winding 
losses directly add up to an error in the iron losses 
values. To deal with these uncertainties, (Gedlu et 
al., 2020) used an extended iron loss model as input 
to a low-order LPTN model for temperature 
estimation. The loss inputs as a form of spatial loss 
model calculate individual core losses for each node. 
In addition to the heat transfer coefficients, the 
uncertain parameters in the core loss equations are 
calibrated in their possible searching space using 
particle swarm optimization (PSO) to minimize the 
estimation error in comparison to empirical 
measurements. 
Xiao and Griffo (Xiao and Griffo, 2020) in their 
work presented an online measurement-informed 
thermal parameter estimation using a recursive 
Kalman filter method. While a Pulse-Width 
Modulation (PWM)-based estimation method is 
utilized for rotor temperature measurement, the 
temperatures in three nodes such as stator core, 
winding, and rotor are predicted. The input losses for 
the LPTN model are derived based on a model-based 
approach and with the use of Finite Elements (FE) 
analysis. The identification problem is formulated as 
a state observer with eight states. Three of the states 
correspond to the nodes’ temperatures and the rest 
five states represent the unknown thermal 
resistances parameters in the LPT network.  The 
non-linearity of the model is dealt with continuous 
updated linearization the extended Kalman filter 
method. 
The growing interest and upsurge in machine 
learning (ML) techniques in the past decade make 
these potentially viable tools in the area of 
automated monitoring and motor drive control. A 
pure ML model, i.e. a model without expert 
knowledge of any classic fundamental heat theory, 
can be trained to estimate the temperature 
empirically. In this case, the model parameters are 
fitted based on collected testbench/observation data 
only (Kirchgässner et al., 2021; Wallscheid, 2017).  
The widely used ML algorithm is the linear 
regression technique which has low computational 
complexity and is used for temperature predictions 
(Kirchgässner et al., 2019; Zhu, 2019). However, as 
linear regression is a linear time-invariant, it does 
not capture the dynamics of the motor model. 
In the field of sequence learning tasks and in high 
dynamics, recurrent neural networks and 
convolutional neural networks are the state of the art 
in classification and estimation performance. In the 
study conducted by (Kirchgässner et al., 2019), deep 
recurrent and convolutional neural networks with 
residual connections are empirically evaluated for 

 
1 Models without expert knowledge. 

predicting temperature profile in the stator teeth, 
winding, and yoke as well. The concept is to 
parameterize neural networks entirely on empirical 
data, without being driven by the domain expertise. 
Furthermore, supervised ML models are also 
investigated for online parameter estimation such as 
rotor resistance and mutual inductance in the control 
system of an induction motor (Wlas et al., 2008).  In 
the presented work, a simple two-layer artificial 
neural network (ANN), consisting of an input layer, 
one hidden layer, and an output layer, is trained by 
minimizing the error between the rotor flux linkages 
based on an induction motor analytical voltage 
model and the output of the ANN-trained model. 
Feedforward and recurrent networks are used to 
develop an ANN as a memory for remembering the 
estimated parameters and for computing the 
electrical parameters during the transient state. 
While pure data-driven ML models1 are effective in 
predicting the temperature, their parameters are not 
interpretable and could not be designed with the low 
amount of model parameters as in an LPTN model 
at equal estimation accuracy. As a further 
development, to make expert knowledge-based 
calibration less desirable and to account for the 
uncertainties regarding the input power losses, 
(Kirchgässner W. W., 2023) proposed a deep 
learning-based temperature model where a thermal 
neural network is introduced, which unifies both 
consolidated knowledge in the form of heat-transfer-
based LPTNs, and data-driven nonlinear function 
approximation with supervised machine learning. 
The reinforcement learning (RL)-based methods are 
other promising data-driven techniques explored in 
the field of control of electric motor drives (Book et 
al., 2021). RL methods enable learning in a trial-
and-error manner and avoid supervision of each data 
sample. The algorithm requires a reward function to 
receive the reward signals throughout the learning 
process. Thus, the control policy could be improved 
on a continuous basis based on the measurement 
feedback (Sutton and Barto, 2018). 
In this paper, a data-driven reinforcement learning-
based parametrization method is proposed to 
calibrate a thermal model of an induction traction 
motor. 
The rest of the paper is organized as follows. Section 
2 presents the parametrization of an LPTN Model 
for an induction motor. Section 3 explains the 
developed RL framework to calibrate the parameters 
of the parametrized LPTN model. The dataset and 
the training process are given in Section 4. Section 5 
shows and discusses the results of the calibrated 
thermal model. Concluding remarks and future work 
are given in Section 6. 
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2. Parametrizing the Thermal Model 
From a thermal point of view, the motor is modelled 
with four nodes: stator winding (node 1), stator core 
(node 2), rotor winding (node 3) and rotor core (node 
4). The thermal equivalent network is illustrated in 
Figure 1 with thermal capacitances, to which a 
power (heat) source is connected, and with thermal 
conductance among the nodes and to the cooling air. 

 
Figure 1: Lumped Parameter Thermal Network Model 

Thermal capacitances C1𝑠𝑠, C2𝑠𝑠, C1𝑟𝑟, and C2𝑟𝑟 values 
are calculated analytically from the geometry and 
material information of the motor. The capacitance 
for stator yoke 𝐶𝐶1𝑠𝑠 is the sum of the capacitance of 
stator housing, stator back iron, stator tooth and 
flange mounted. The stator winding capacitance 
𝐶𝐶2𝑠𝑠 includes the capacitance for the stator winding 
and the end winding capacitances. The capacitance 
for stator yoke 𝐶𝐶1r is the sum of the capacitance of 
rotor yoke, and rotor bars. The rotor winding 
capacitance 𝐶𝐶2𝑟𝑟 includes the capacitance for the 
rotor winding and the end winding capacitances.  
The thermal conductance λ1s, λ2s, λ1r, λ2r   vary with 
the airflow due to the convection. The model shown 
in Figure 1 can be represented mathematically by the 
following first-order differential system:  

𝑃𝑃1= C1𝑠𝑠
𝑑𝑑𝑇𝑇1
dt + 𝜆𝜆1s(𝑇𝑇1 − 𝑇𝑇env) + 𝜆𝜆12s(𝑇𝑇1 − 𝑇𝑇2)   (1) 

𝑃𝑃2= C2𝑠𝑠
𝑑𝑑𝑇𝑇2
dt + 𝜆𝜆2s(𝑇𝑇2 − 𝑇𝑇env) + 𝜆𝜆12s(𝑇𝑇2 − 𝑇𝑇1)  (2) 

𝑃𝑃3= C1𝑟𝑟
𝑑𝑑𝑇𝑇3
dt + 𝜆𝜆1r(𝑇𝑇3 − 𝑇𝑇env) + 𝜆𝜆12r(𝑇𝑇3 − 𝑇𝑇4)  (3) 

𝑃𝑃4= C2𝑟𝑟
𝑑𝑑𝑇𝑇4
dt + 𝜆𝜆2r(𝑇𝑇4 − 𝑇𝑇env) + 𝜆𝜆12r(𝑇𝑇4 − 𝑇𝑇3)   (4) 

where Ti is the temperature at the corresponding 
node i. The temperatures of the cooling air at the four 
nodes (marked as sw, sc, rw and rc in Figure 1) are 
assigned to the environment (or ambient) 
temperature 𝑇𝑇env. 
The losses at the four nodes in Figure 1 are 
distributed as shown in Table 1 and they can be 
calculated as follows: 

𝑃𝑃1 = 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃𝑐𝑐𝑐𝑐1 +  𝐾𝐾𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠  

 + 𝐾𝐾ℎ𝑠𝑠𝑟𝑟𝑠𝑠𝑃𝑃ℎ𝑠𝑠𝑟𝑟𝑠𝑠 (5) 

𝑃𝑃2 = 𝐾𝐾𝑃𝑃𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑠𝑠               (6) 

𝑃𝑃3 = 𝐾𝐾𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃𝑐𝑐𝑐𝑐2 + (1 − 𝐾𝐾𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠)𝑃𝑃𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠  

+ (1 − 𝐾𝐾ℎ𝑠𝑠𝑟𝑟𝑠𝑠)𝑃𝑃ℎ𝑠𝑠𝑟𝑟𝑠𝑠 (7) 

𝑃𝑃4 = (1 − 𝐾𝐾𝑃𝑃𝑃𝑃𝑠𝑠) 𝑃𝑃𝑃𝑃𝑠𝑠  (8) 

where 𝑃𝑃𝑐𝑐𝑐𝑐1, 𝑃𝑃𝑐𝑐𝑐𝑐2, 𝑃𝑃𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠, 𝑃𝑃ℎ𝑠𝑠𝑟𝑟𝑠𝑠, 𝑃𝑃𝑃𝑃𝑠𝑠  are the stator 
copper loss, rotor copper loss, stray loss, harmonic 
loss, and iron loss respectively. The coefficients 
𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝐾𝐾𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝐾𝐾𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠, 𝐾𝐾ℎ𝑠𝑠𝑟𝑟𝑠𝑠 and 𝐾𝐾𝑃𝑃𝑃𝑃𝑠𝑠 are the 
corresponding losses coefficients. 

Table 1: Loss Distribution in the LPTN Model. 

Node Winding 
Losses 

Stray 
Losses 

Harmonic 
Losses 

Iron 
Losses 

1 x x x  
2    x 
3 x x x  
4    x 

 
The losses in Equations (5)-(8) can be calculated as 
follows (Kral et al., 2013; Filizadeh, 2013; 
Maroteaux, 2016; Nasir, 2020; IEC/TS, 2010): 

𝑃𝑃𝑐𝑐𝑐𝑐1 = 𝑅𝑅1 𝐼𝐼12            (9) 

𝑃𝑃𝑐𝑐𝑐𝑐2 = 𝑅𝑅21 𝐼𝐼212 (10) 

𝑃𝑃𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠 = 𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃  �
𝑃𝑃
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�
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 � 𝐼𝐼1

𝐼𝐼1,𝑛𝑛𝑛𝑛𝑛𝑛 
�
2

     (11) 

𝑃𝑃𝑃𝑃𝑠𝑠  =  𝐾𝐾𝑃𝑃 𝑓𝑓𝛼𝛼𝐵𝐵𝑠𝑠𝑠𝑠𝑚𝑚
𝛽𝛽 (12) 

where 𝐼𝐼1, 𝐼𝐼21 are the stator and rotor currents 
respectively, R1 and R2 are the stator and rotor 
winding resistances respectively which depend on 
the temperature according to following equations: 
𝑅𝑅1 = 𝑅𝑅1,20 ∗ (1 + 𝛼𝛼𝑅𝑅1 ∗ (𝑇𝑇1 − 20)                      (13) 

𝑅𝑅21 = 𝑅𝑅21,20 ∗ (1 + 𝛼𝛼𝑅𝑅2 ∗ (𝑇𝑇3 − 20)                  (14) 

where 𝑅𝑅1,20, 𝑅𝑅21,20 are the stator and rotor winding 
resistance at 20 °C and 𝛼𝛼𝑅𝑅1, 𝛼𝛼𝑅𝑅21 the temperature 
coefficient of stator and rotor respectively. In 
Equation (11), f is the stator frequency with a 
nominal value fnom, I1 is the stator current with a 
nominal value I1,nom and PSUP is equivalent rated 
input power. In Equation (12), Kf is a constant that 
depends on the material properties and the core 
geometry, f is the frequency of the magnetic field, 
Bmax is the peak magnetic flux density in the core and 
α and β are empirically determined constants. The 
harmonic losses 𝑃𝑃ℎ𝑠𝑠𝑟𝑟𝑠𝑠𝑎𝑎 is measured at few 
operation points and included as a look- up table in 
the loss model. 
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Figure 2: Reinforcement Learning Framework 

3. The Reinforcement Learning Framework 
The model developed in the previous subsection has 
been implemented as a parameterized model and 
employed within a reinforcement learning (RL) 
framework as shown in Figure 2. 
3.1. The Parameterized Model 
The parameterized model represents the dynamic 
evolution of the temperature in the induction motor 
according to the model developed in Section 2. The 
model inputs (the red signals) are the stator current, 
the stator frequency, the motor speed, the airflow of 
the cooling air and the ambient temperature. The 
model outputs (the green signals) are the 
temperatures (T1, T2, T3, T4) at the four nodes (P1, P2, 
P3, P4) respectively of the LPTN model shown in 
Figure 1. The blue signals in Figure 2 represent the 
parameters of Equations (1)-(14) explained in 
Section 2. 
3.2. The RL Framework 
The RL framework consists of the RL agent, the 
observations, the reward function and the actions. 
3.2.1. The Observations 
The observations represent the information that the 
RL agent can sense from the environment (the 
parameterized model) during the operation of the 
induction motor. Some observations, such as the 
motor speed (MS) and the motor torque (MT), are 

used directly by the agent to sense any changes in 
the motor’s operating conditions. Other 
observations, such as the measured stator and rotor 
temperatures (Ts, Tr) and the model outputs (T1, T3), 
are used to calculate the reward. It should be noted 
that T2 and T4 could be considered among the 
observations if there are related measurements. 
However, in this work, there are no measurements 
related to T2 and T4. 
3.2.2. The Reward Function 
The reward function produces a value that reflects 
the effectiveness of the agent's actions in the 
environment. This value serves as a critical signal 
guiding the agent's learning process towards 
achieving its goals effectively. The reward value 
encapsulates the objectives of the RL problem, 
which is, in our context, minimizing the error 
between the measured temperatures (Ts, Tr) and the 
model’s output temperatures (T1, T3). Hence, the 
reward function is given by: 

𝑟𝑟 =
−𝜔𝜔1

𝜔𝜔2|𝑇𝑇𝑠𝑠 − 𝑇𝑇1| + 𝜔𝜔3|𝑇𝑇𝑟𝑟 − 𝑇𝑇3| + 𝜔𝜔4
              (15)  

where ꞷ1, ꞷ2, ꞷ3 and ꞷ4 are positive weights. 
3.2.3. The Actions 
The actions represent all the possible values of the 
model parameters (the blue signals in the 
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parameterized model). Actions are computed by the 
agent based on the observations and the reward 
value and using a policy that is optimized during the 
training process to maximize the expected 
cumulative reward over time. The policy is 
essentially the agent's strategy for selecting actions 
in different situations to achieve its objectives 
efficiently. 
3.2.4. The RL Agent 
The RL agent is composed of two main elements: a 
policy and a learning algorithm. The policy maps the 
observations with actions to be taken while the 
learning algorithm updates the policy parameters, 
based on the actions, observations and rewards, to 
maximize the expected cumulative long-term 
reward. During the learning process and depending 
on the learning algorithm, the agent retains two 
types of models: critic and actor models. The critic 
model predicts the expected cumulative reward (Q-
Value) from a given observation and action that is 
later used by the actor model to return the action that 
maximizes the predicted discounted cumulative 
long-term reward (Sutton and Barto, 2018). 
In this work, a TD32 algorithm is used in the RL 
framework shown in Figure 2. TD3 agent works in 
a continuous environment and has improved policy 
model performance over time (Dankwa et al., 2019; 
Nicola and Nicola, 2021). Moreover, the episodic 
training paradigm enables the TD3 agent to select 
different training datasets after each episode. This 
will allow the agent to find the optimal policy (the 
thermal model parameters) from measurements 
recorded during different driving cycles, which is 
the main objective of this work. 
In the following section, the dataset and the training 
process are explained. 
4. Training the RL Agent 
4.1. The Dataset 
The dataset represents the data recorded from the 
induction motor during the operation of nine 
different driving cycles. It is composed of all the red 
signals shown in Figure 2, i.e., the motor speed, the 
motor torque, airflow, the stator current and 
frequency, the motor voltage, the stator winding 
temperature and the rotor winding temperature. 
It should be noted that the data are recorded at 
different sampling frequencies with some missing 
values that require resampling the dataset and 
interpolating the missing values. 
It should also be noted that the dataset is not used 
directly by the RL framework to train the agent, but 

 
2 Twin-Delayed Deep Deterministic Policy Gradient 
 

it is used in the parameterized model which is 
considered an unknown environment to the agent. 
4.2. The TD3 Structure 
The TD3 algorithm employs one actor model 
(network) and two critic models (networks) as 
shown in Figure 3. 

 
Figure 3: Simplified TD3 Structure 

The actor and critic models are approximation 
models, such as a deep neural network, that are 
trained from (Observations, Actions, Rewards) 
sampled from the experience replay buffer. 
4.3. The Training Process 
The RL agent is trained following an episodic 
scheme. Episodes are used to model the concept of 
a task or problem that the agent is trying to learn 
(Sutton and Barto, 2018). An episode refers to a 
single run of the agent's interaction with the 
environment, starting from an initial state and 
continuing until a terminal state is reached. 
Each episode consists of a specific number of 
discrete time steps. At each discrete time step: 

1. The actor applies an action based on the 
current observation and expected Q-value.  

2. The new observation, action and reward are 
stored in the experience replay buffer. 

3. A random batch of experiences is sampled 
from the experience replay buffer and used to 
update the parameters of the critic models by 
minimizing a loss function across all sampled 
experiences. 

4. After some specified steps, the parameters of 
the actor model are updated using a sampled 
policy gradient that maximizes the expected 
discounted reward. 

5. Results and Discussion 
5.1. Preprocessing the Dataset 
In this work, nine driving cycles have been used to 
represent the unknown environment which is used to 
train the agent to find the optimal values of the 
thermal conductance λ1s, λ2s, λ1r and λ2r. As 
mentioned previously, data are recorded at different 
sampling frequencies with some missing values that 
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require resampling the dataset and interpolating the 
missing values. 
Figure 4 shows a sample of measured motor speed 
and motor torque from one driving cycle (DC1) after 
resampling and interpolating the missing values. 

 
Figure 4: A Sample of Motor Speed and Torque (DC1) 

5.2. Training the RL Agent 
The RL agent was trained using the actor and critic 
deep neural network (DNN) models with the layers 
depicted in Figures 5 and 6. 

 
Figure 5: Layers of the Actor DNN Model 

 
Figure 6: Layers of the Critic 1 and 2 DNN Models 

The training steps explained in Subsection 4.2 were 
applied with the parameters shown in Table 2. 

Table 2: Training Parameters. 
Property Value 

Max Episodes 1000 

Max Steps per Episode  9990 
Averaging Window Length 100 

Stop Training Value -190 
Agent Sample Time 0.1 

 

Figure 5 shows the training process where the blue 
curve represents the episode reward, the red curve 
represents the average reward and the orange curve 
represents the estimated cumulative rewards at the 
beginning of each training episode. The figure 
shows that the agent learned an optimal policy 
(parameters) after 101 episodes.  

 
Figure 5: Training Process 

5.3. Validating the Trained Agent 
Validation of the RL agent usually involves 
periodically evaluating the learned policy directly in 
the environment. 
When evaluating the learned policy with different 
driving cycles, the agent came up with the following 
parameters: 
λ1sn = 1, λ1rn = 40, λ2sn = 20, λ2rn = 0.0001, Qn= 10-9 
Figures 7 and 8 show the measured and model 
temperatures for driving cycle 1 (DC1) and driving 
cycle 8 (DC8) respectively. 

 
Figure 7: Model Parameters and Measured and Model 

Temperatures for DC1 

 
Figure 8: Model Parameters and Measured and Model 

Temperatures for DC8 
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6. Conclusion and Future Work 
In the paper, a reinforcement learning framework is 
proposed for training an agent to find the parameters 
of the thermal model in induction traction motors. 
The framework has been applied to find the thermal 
conductance for the thermal network model from 
nine driving cycles. 
By running different driving cycles, the trained 
agent came up with a policy that produces the 
parameters for the different driving cycles. The 
model with the calibrated parameters showed a good 
estimation of stator and rotor temperature. 
In future work, other structures for the agent and the 
reward function will be considered to produce better 
temperature estimation. 
 
Acknowledgment 
This research work has received funding through the 
AIDOaRt project from the ECSEL Joint Undertaking (JU) 
under grant agreement No 101007350. 
 
References 
Book, G., Traue, A., Balakrishna, P., Brosch, A., Schenke, M., 
Hanke, S., Kirchgässner, W. and Wallscheid, O. (2021) 
'Transferring online reinforcement learning for electric motor 
control from simulation to real-world experiments', IEEE Open 
Journal of Power Electronics, 2, pp. 187-201. 
Chen, B., C. Wulff, K. Etzold, P. Manns, G. Birmes, J. Andert 
and S. Pischinger (2020) 'A comprehensive thermal model for 
system-level electric drivetrain simulation with respect to heat 
exchange between components', 19th IEEE Intersociety 
Conference on Thermal and Thermomechanical Phenomena in 
Electronic Systems (ITherm), IEEE. 
Dankwa, S. and Zheng, W. (2019) 'Twin-delayed DDPG: A deep 
reinforcement learning technique to model a continuous 
movement of an intelligent robot agent', Proceedings of the 3rd 
international conference on vision, image and signal processing. 
Filizadeh, S. (2013) Electric machines and drives: principles, 
control, modeling, and simulation. CRC press. 
Gedlu, E. G., Wallscheid, O. and Böcker, J. (2020) 'Permanent 
magnet synchronous machine temperature estimation using low-
order lumped-parameter thermal network with extended iron loss 
model', The 10th International Conference on Power Electronics, 
Machines and Drives (PEMD 2020). IET. 
Guemo, G. G., Chantrenne, P. and Jac, J. (2013) 'Parameter 
identification of a lumped parameter thermal model for a 
permanent magnet synchronous machine', 2013 International 
Electric Machines & Drives Conference. pp. 1316-132. 
IEC/TS 60349-3 (2010) 'Electric traction - Rotating electrical 
machines for rail and road vehicles - Part 3: Determination of the 
total losses of converter-fed alternating current motors by 
summation of the component losses', 
https://webstore.iec.ch/publication/1830  
Huber, T., W. Peters and J. Böcker (2014) 'Monitoring critical 
temperatures in permanent magnet synchronous motors using 
low-order thermal models', 2014 International Power Electronics 
Conference (IPEC-Hiroshima 2014-ECCE ASIA), IEEE. 
Kirchgässner, W., Wallscheid, O. and Böcker, J. (2019) 'Deep 
residual convolutional and recurrent neural networks for 
temperature estimation in permanent magnet synchronous 
motors', 2019 IEEE International Electric Machines & Drives 
Conference (IEMDC). IEEE. 
Kirchgässner, W., Wallscheid, O. and Böcker, J. (2021) 'Data-
driven permanent magnet temperature estimation in synchronous 

motors with supervised machine learning: A benchmark', IEEE 
Transactions on Energy Conversion, 36(3), pp. 2059-2067. 
Kirchgässner, W., Wallscheid, O. and Böcker, J. (2023) 'Thermal 
neural networks: lumped-parameter thermal modeling with state-
space machine learning', Engineering Applications of Artificial 
Intelligence, 117, p. 105537. 
Kral, C., Haumer, A. and Lee, S. B. (2013) 'A practical thermal 
model for the estimation of permanent magnet and stator winding 
temperatures', IEEE Transactions on Power Electronics, 29(1), 
pp. 455-464. 
Maroteaux, A. (2016) Study of analytical models for harmonic 
losses calculations in traction induction motors. KTH, School of 
Electrical Engineering (EES). 
Nasir, B. A. (2020) 'An Accurate Iron Core Loss Model in 
Equivalent Circuit of Induction Machines', Journal of Energy, 
2020, pp. 1-10. 
Nategh, S., A. Boglietti, Y. Liu, D. Barber, R. Brammer, D. 
Lindberg and O. Aglen (2020) 'A review on different aspects of 
traction motor design for railway applications', IEEE 
Transactions on Industry Applications, 56(3): 2148-2157. 
Nicola, M. and Nicola, C.-I. (2021) 'Improvement of PMSM 
control using reinforcement learning deep deterministic policy 
gradient agent', 21st International Symposium on Power 
Electronics (Ee), pp. 1-6. 
Ramakrishnan, R., Islam, R., Islam, M. and Sebastian, T. (2009) 
'Real time estimation of parameters for controlling and 
monitoring permanent magnet synchronous motors', 2009 IEEE 
International Electric Machines and Drives Conference. pp. 
1194-1199. 
Sciascera, C., Giangrande, P., Papini, L., Gerada, C. and Galea, 
M. (2017) 'Analytical thermal model for fast stator winding 
temperature prediction', IEEE Transactions on Industrial 
Electronics, 64(8), pp. 6116-6126. 
Sutton, R. S. & Barto, A. G. (2018) Reinforcement learning: An 
introduction. MIT press. 
Wallscheid, O. and J. Böcker (2015) 'Design and identification of 
a lumped-parameter thermal network for permanent magnet 
synchronous motors based on heat transfer theory and particle 
swarm optimisation', 17th European Conference on Power 
Electronics and Applications (EPE'15 ECCE-Europe), IEEE. 
Wallscheid, O. (2021) 'Thermal monitoring of electric motors: 
State-of-the-art review and future challenges', IEEE Open 
Journal of Industry Applications, 2, pp. 204-223. 
Wilson, S. D., Stewart, P. and Taylor, B. P. (2010) 'Methods of 
resistance estimation in permanent magnet synchronous motors 
for real-time thermal management', IEEE Transactions on Energy 
Conversion, 25(3), pp. 698-707. 
Wlas, M., Krzeminski, Z. and Toliyat, H. A. (2008) 'Neural-
network-based parameter estimations of induction motors', IEEE 
Transactions on Industrial Electronics, 55(4), pp. 1783-1794. 
Xiao, S. and Griffo, A. (2020) 'Online thermal parameter 
identification for permanent magnet synchronous machines', IET 
Electric Power Applications, 14(12), pp. 2340-2347. 
Zhu, Y., Xiao, M., Lu, K., Wu, Z. and Tao, B. (2019) 'A 
simplified thermal model and online temperature estimation 
method of permanent magnet synchronous motors', Applied 
Sciences, 9(15), p. 3158. 
 

https://webstore.iec.ch/publication/1830


SIMS 64 Västerås, Sweden, September 26-27, 2023

Simulation of distribution system for low temperature district heating

in future urban areas – Case study of a planned city district in Gävle

Oskar Olssona,* Mattias Gustafssonb Magnus Åberga

aDepartment of Civil and Industrial engineering, Uppsala University, b Faculty of Engineering and Sustainable

Development, Gävle University
*oskar.olsson.6790@student.uu.se

Abstract

In Europe, the prices of natural gas and electricity reached an all-time high in 2022. Away to mitigate high electricity

costs is to expand district heating systems in urban areas, this will reduce electric load as well as increase the power

generation possibilities in combined heat and power plants. District heating has been the dominant heat supply

technology in urban areas in Sweden since the 1980s. However, as the energy efficiency in buildings increase, district

heating distribution losses must be reduced to ensure a cost-efficient heat supply. This has led to the idea of the 4th-

generation district heating which is characterized by low distribution temperatures. In this study, low-temperature

district heating distribution in a planned future city district is simulated using a Python-based tool. Two different

low-temperature distribution systems are investigated: 1) 2-pipe low-temperature system, and 2) a cascading 3-pipe

low-temperature system. The focus is on simulating the distribution losses, temperature drop, and mass flow in the

pipe network. The scope of the analysis also includes an investigation of the effect of lower return temperatures on

the central district heating network. The results indicate that the low-temperature distribution system with the 2-pipe

system performs better than the cascading system when considering distribution losses and temperature drop. The

mass flow depends on the temperature demand in the heating systems in the buildings and is considerably high for

both low-temperature distribution systems investigated.

1 Introduction

In Europe, record-high electricity and natural gas

prices were noted in 2022. Several countries within

the EU have introduced financial instruments and sub-

sidies to hamper consequences of high energy prices

(Eurostat, 2023). These are, however, short-term so-

lutions that are not necessarily sustainable in the long

run, this as the dependence on fossil fuel imports re-

mains. A more long-term solution is to develop en-

ergy systems to be more efficient and thus reduce

dependence on fossil fuels. A possible way to re-

duce the urban need for electricity and natural gas is

to replace conventional gas- and electric heaters in

buildings with district heating systems (DHS). A mea-

sure that would also enable increased co-production

of electricity in combined heat and power plants and

thereby yield an increased overall system efficiency

(Colmenar-Santos et al., 2016).

DH development has traditionally aimed to reduce

heat distribution temperatures in order to reduce dis-

tribution losses, which is likely to be of further im-

portance as the share of new low-energy buildings

increases meaning that distribution losses tend to in-

crease relative the heat demand. The concept of ”4th-

generation district heating” that was introduced by

Lund et al. (Lund et al., 2014) is based on distribu-

tion temperatures below 70◦C in order to deal with

the challenge of a future high share of energy-efficient

buildings.

The structures of DH networks in cities differs signif-

icantly depending on the local conditions. Access to

industrial waste heat and the need for extra pumps as

a result of large height differences in the system are

two examples of aspects that influence the structure

of a system. This means that when developing and

expanding distribution networks, there is not one sin-

gle solution that is optimal for all systems, instead in-

dividual solutions need to be developed and adapted

for each system (Jakubek et al., 2023). System net-

work models and simulations of temperatures, water

flows and pressure drop, are thus potentially powerful

tools to choose distribution techniques and design net-

works in order to achieve technically well-functioning

and cost-efficient DH systems (Nguyen et al., 2020).

There are previous network-simulation studies that fo-

cus on the effects of reducing distribution losses by

lowering the distribution temperatures. Pirouti et al.

(Pirouti et al., 2013) have optimized flow and supply

temperatures to minimize losses and total cost. Their

results show that small pipe diameters, large pressure

drops, and large differences in supply and return tem-

perature in the system were advantageous. There are

also studies focusing on developing simulation mod-

els for DH distribution. Valdimarsson (Valdimars-
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son, 2012) and Press (Press, 2022) for instance, use

graph theory to present distribution losses, tempera-

ture drops, pressure drops, and flows for each indi-

vidual pipe in a system. Jakubek et al. (Jakubek

et al., 2023) simulates the losses for different types

of pipes. Also, studies exist concerning low tem-

perature DH distribution but without network simu-

lations. Werner for example, investigated to what ex-

tent different types of distribution techniques for low-

temperature DH have been implemented in real sys-

tems (Werner, 2022), unfortunately the article does

not include an analysis of the losses associated to dif-

ferent distribution techniques.

1.1 Aim of the project

The overall aim of this project is to simulate a low-

temperature DHS in order to investigate the impact of

different distribution technologies on heat losses, dis-

tribution temperatures, and mass flows. A case study

is made for the planned city district called Näringen

in the Swedish city of Gävle. The district contains a

high share of energy-efficient buildings and therefore

illustrates the challenges that DHS will face in the fu-

ture. The city district is divided into 11 sub-areas that

that will be sequentially built. One of these areas were

chosen for the distribution network simulations. For

this area, a DH network is designed and implemented

in a simulation model. The question to be answered in

this project is:

How do different distribution system configurations

for low-temperature district heating in the investigated

area differ regarding distribution losses, distribution

temperatures, and mass flow?

2 Background

This section gives a brief introduction to the 4th-

generation DH concept and a description of the district

Näringen, which is the case study object in this study.

2.1 4th-generation district heating

The 4th-generation DH has several similarities with,

what is known as the third generation of DH. Pressur-

ized water is the heat carrier and the pipes are prefabri-

cated and in the ground. The main difference between

the two generations is the lower supply temperatures

for the 4th-generation. This primarily motivated by re-

duced distribution losses that comeswith reduced tem-

perature difference between the ground and the pipes.

However, this also means that waste heat from low-

temperature sources such as data centres, can be used

to a further extent in DHSs (Tofani, 2022). Efficient

DH distribution is generally considered a prerequisite

for the future whit higher building energy efficiency

(Lund et al., 2014).

4th-generation DH is, however, still in the develop-

ment stage and is currently best suited for newly built

residential areas as existing networks are designed and

adapted to existing and less energy efficient build-

ing stocks. Several low-temperature systems have

been built in Germany, but a few projects in Sweden

have also been tested. In order to integrate new low-

temperature systems in new energy-efficient districts

with the existing high-temperature systems, the new

system can be connected to the main DHS as a sub-

system using heat exchangers. This to enable control

of pressure and temperatures in the sub-system sepa-

rate from the main system (Borglund, 2020).

2.2 Näringen

The district of Näringen is centrally located in the

Swedish city of Gävle and has a total area of 232

hectares. Gävle municipality has an agreement with

Region Gävleborg and the Swedish government to

transformNäringen into a sustainable city district con-

taining 6,000 homes. In return, the Swedish govern-

ment is planning investments for infrastructure worth

of 20 billion SEK inGävle until 2040 (Gävle kommun,

2021). A map of the district and the planned sub-areas

are presented in Fig. 1. This paper focus on sub-area

11 that contains 69 buildings, of which 53 are residen-

tial and 16 commercial buildings. There is no DHS in

this area today, the designed pipe network presented

here is therefore a possible design for a future system.

Figure 1. Overview of Näringen and the preliminary sub-

area breakdown of the district.

3 Methodology

This section describes the process from designing the

distribution systems in the sub-area and implementing

it into the simulation tool.

3.1 Model description

The simulation tool used in the project is based on the

Python programming language and created by Arvid

Press (Press, 2022). The tool is further developed in
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this project to increase the precision of the calculations

for heat losses and temperature drop. The two main

changes were first, that the heat loss calculations was

extended from only considering one single pipe above

ground to instead consider two separate pipes in the

ground. The second main improvement is an imple-

mentation of a minimum flow requirement in the sys-

tem. The latter to illustrate a hot water circulation loop

used to avoid extremely low water flows when space

heating demand is low. The simulation tool is based

on graph theory, which means that the DH system is

implemented by defining all branches and connection

points as nodes/points and all DH pipes as arcs/edges,

and that the system components and its connections

are described as a complete graph. A system can thus

be described by a matrix where the rows correspond

to the number of connections and the columns corre-

sponds to the number of pipes. The elements in the

matrix define the direction of the edges, 1 represents

a start node, -1 an end node, and 0 that there is no

connection between the nodes. This means that each

column in the matrix can only have two nonzero ele-

ments, 1 and -1 , because each edge (DH pipe) must

start and end somewhere. The matrix is therefore spe-

cific for every system, two examples of matrices and

for further description of the mathematics behind the

simulation tool are described in (Valdimarsson, 2012)

and (Press, 2022). An illustration of a principal sys-

tem as described in the simulation tool is presented in

Fig. 2.

Figure 2. Example system illustrating themodel principle.

3.2 Distribution network design

The distribution network in sub-area 11 is designed

based on a map of the planned buildings and streets.

The structure of the pipe network follows a tree-

structure, thus there are no loops and only one inlet to

the system. In addition to this, the inlet to the system is

placed to limit the distance to the system’s outermost

connection point. The map was thereafter loaded into

QGIS (GIS simulation program) and by using an inte-

grated measuring tool, all pipe lengths could be deter-

mined and used to describe the system in the simula-

tion tool.

One of the buildings in the area is excluded from the

simulations since it is a parking garage and is assumed

to not be heated. The layout of the distribution sys-

tem and how it connects the buildings is illustrated in

Fig. 3.

Figure 3. Distribution network in sub-area 11.

3.3 Distribution techniques

When distributing DH, the most commonly used tech-

nology is a 2-pipe system where the space heating and

domestic hot water have the same supply and return

pipes. This configuration works for both high and

low distribution temperatures. In this project, a clas-

sic low-temperature system with a 60◦C distribution

temperature was simulated. The return temperature

vary depending on the simulated building type. The

supply temperature is restriced to a minimum of 60◦C
to avoid growth of legionella bacteria in the domes-

tic hot water system (Fredriksen & Werner, 2014). A

schematic view of the 2-pipe system can be seen in

Fig. 4 where SH stands for ”space heating” and DHW

stands for ”domestic hot water”.

Figure 4. Pipe configuration 2-pipe system.

The second investigated distribution system configu-

ration is a cascaded 3-pipe system, where the space

heating supply pipe is connected to the main system’s

return pipe. The difference from from the above de-

scribed 2-pipe system is that the space heating and

domestic hot water supply is divided into two sep-

arate pipes. The 3-pipe configuration thus have the

option of having different supply temperatures for the

space heating and the domestic hot water, that the pipe

for space heating can be disconnected during months

without heat demand, and that each supply pipe can be
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individually sized for the respective heat demand. In a

low-temperature network with energy-efficient build-

ings, the 3-pipe system provides the possibility of low-

ering the temperature of the supply pipe for space heat-

ing below the legionella requirement, which poten-

tially reduces distribution losses and enables the uti-

lization of more low-temperature residual heat. The

supply temperature for SH depends on the tempera-

ture requirement in each building type. A schematic

view of the cascade-connected 3-pipe system can be

seen in Fig. 5.

Figure 5. Pipe configuration of the cascade-connected 3-

pipe system.

However, the 3-pipe systems need to have a back-up

connection to the main systems supply pipe (or some

other local high temperature source) to secure that the

supply temperature during peak demand is sufficient

and to ensure that the legionella requirement is met.

3.4 Simulations

This section describes the used formulas and parame-

ters as well as how the simulations were executed.

3.4.1 Dimensioning

The first step was to size the pipes in the system (see

Eq 1), which is done by calculating the system wa-

ter flow demand using the design outdoor tempera-

ture (in Sweden known as DVUT) and the specific

temperature demands of each building (Fredriksen &

Werner, 2014). DVUT is defined as the average value

of the outdoor temperature during the coldest day and

is the temperature at which heating systems are di-

mensioned according to the Swedish national board

of building, housing and planning building regulations

(BBR) (Warfvinge & Dahlblom, 2010). Simulations

are made with outdoor temperature data for 2022 pro-

vided by Gävle Energi AB, that owns the main district

heating system in Gävle.

di =

(
8λ

π2ρPdlṁ2
i

) 1
5

(1)

In Eq 1, Pdl is the pressure drop per meter and is as-

sumed to be 200 pa/m, λ is the friction factor, ρ is the

water density and ṁi is themass flow in each pipe. The

calculations were done for both distribution system

configurations and building types. The flow demand

is used to calculate the pipe sizes and thereafter is the

obtained pipe dimensions used to calculate the temper-

ature drop in the system at DVUT. In addition to the

pipe-sizing calculations, a simulation was also done

over all hours of the year to calculate the total distri-

bution losses. Calculations were made for both BBR

buildings and passive houses, for detailed description

of the building standards see (Israelsson, 2023).

3.4.2 Distribution losses

The distribution losses were simulated with hourly

data using the equations for two insulated pipes in

the ground, as described in chapter 5 pages 80-82 in

(Fredriksen & Werner, 2014).

3.4.3 Cascaded system

In this part, calculations of return temperatures and

flows for the cascaded 3-pipe system are presented.

Mass flow and return temperature are calculated ac-

cording to Eq. 2-5. T stands for temperature and ṁ
stands for mass flow. The indexing r,H represents re-

turn pipe of the main system, p,H represents the pri-

mary pipe of the main system and p,S represents the

primary pipe in the secondary system. ṁtot,H is the

known total mass flow in the main system, see Tab. 1.

The impact of the return temperature from the sub-

system on the return temperature on the main system

is calculated using a flow-weighted average value for

the two temperatures.

Tr,Hṁr,H +Tp,Hṁp,H = Tp,SṁS (2)

ṁr,H = ṁS(1−
Tp,S −Tr,H

Tp,H −Tr,H
) (3)

ṁp,H = ṁS − ṁr,H (4)

Tny,H =
(ṁtot,H − ṁr,H)Tr,H + ṁSTr

ṁtot,H
(5)

Eq. 3 determine the required flow from the main sys-

tem’s return pipewhile required flow from the primary

pipe is determined from Eq. 4. Eq. 5 calculates the

new return temperature (Tny,H) in the main system.

3.4.4 Mass flow

The mass flow at DVUT was simulated for the differ-

ent building types. The required mass flow was com-

pared to a traditional high-temperature system. Ad-

ditionally, simulations for two different minimal flow

levels a were performed to determine the impact of
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the heat circulation-loops on the distribution temper-

atures. The minimum mass flow was initially and it-

eratively set to 0.02 kg/s to avoid significant losses.

Thereafter, a minimum flow of 0.1 kg/s was investi-
gated as it is suggested by Alros (Alros, 2015).

3.4.5 General input data

Constants used in the calculations are presented in

Tab. 1. Due to a lack of measured data for the specific

site, the ground temperatures for heat loss and tem-

perature drop calculations are illustrated by mean val-

ues of the outdoor air temperature for different parts

of the year; December for the pipe sizing calculations,

annual mean for distribution loss calculations, and the

summer months (June, July, and August) when inves-

tigating the minimum flow requirements (Fredriksen

& Werner, 2014).

4 Results

This section presents the results from the simulations.

In the first part, distribution temperature, return tem-

perature, and distribution losses for the different pipe

systems and building types are presented. In the sec-

Table 1. Constant parameters for the simulations.

Parameter Value Unit

Ta,DVUT -3.1 ◦C
Ta,dist 8.6 ◦C
Ta,summer 19.3 ◦C
Tp,H 99.7 ◦C
Tr,H 49.3 ◦C
ṁtot,H 15.8 kg/s

ond part, results showing the impact of a cascaded sys-

tem on the main system temperatures is presented. Fi-

nally, the mass flow results are presented.

4.1 Temperatures and distribution losses

The temperatures and distribution losses for the sub-

system are presented in Fig. 6. The temperature re-

quirement in Fig. 6a and the return temperature in

Fig. 6b are simulated at DVUT. It can be deduced from

the figures that low radiator temperature for both BBR

buildings and passive houses when using 2-pipe sys-

tems give similar results. Using a 3-pipe system, the

(a) Distribution temperature for 2- and 3-pipe systems. (b) Return temperature for 2- och 3-pipe systems.

(c) Distribution losses for 2- och 3-pipe systems.
(d) Relative distribution losses for 2- och 3-pipe systems.

Figure 6. Distribution and return temperatures at DVUT and the annual absolute and relative distribution losses for buildings

according to BBR and passive house standard in sub-area 11.
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difference between BBR buildings and passive houses

is small but there is a significant difference compared

to the 2-pipe system. With a 3-pipe system, the tem-

perature required for the domestic hot water is 96◦C
for the different building types since it only depends

on the residents’ hot water use (this is further ex-

plained in Section 5.1).

Fig. 6c and 6d shows absolute and relative distribu-

tion losses in the system. For the 2-pipe and 3-pipe

systems, the difference in losses between the build-

ing types is small. The absolute distribution losses are

lower for passive houses, while the relative distribu-

tion losses are lower for BBR buildings. The distri-

bution losses for the domestic hot water account for

a large proportion of the 3-pipe system and the total

losses are greater than for the 2-pipe system for the

different building types.

4.2 Cascaded system

The flows required from the main system pipes (re-

turn and primary) depending on the different building

types, are presented in the two left stacks of bars in

Fig 7. The right stack of bars presents the available

flow in the main system pipes.

Fig. 7 shows that neither BBR buildings nor passive

houses can be supplied with heat entirely from the

main system’s return pipe since the available mass

flow (15.8kg/s) is not sufficient. This means that a

little flow from the primary pipe must be used, even

though the temperature requirement (see Fig. 6a) is

lower than the return temperature in the main system

(see Tab. 1).

Figure 7. Mass flow requirements for the different build-

ing types in sub-area 11 when using a cascaded

system.

The new return temperature for the sub system and the

impact of the 3-pipe cascading system configuration

on the return temperature in the main system is pre-

sented in Tab. 2. The results show that the greatest

temperature reduction of the return in the main system

is obtained with BBR buildings, which is explained by

the higher flow requirements. For the sub-system, the

new return temperature in the main system will be the

same as the return temperature in the sub-systemwhen

the entire flow is used to supply the heat demand, see

Fig. 6b.

Table 2. Temperature and temperature reduction in the

main system return pipe for the different build-

ing types for sub-area 11.

Return temperature [◦C] ∆T [◦C]
BBR low temp. rad 23.6 25.7

PH low temp. rad 24.1 25.2

4.3 Mass flow

In this section, the results for the mass flow at DVUT

for the low temperature systems compared to the mass

flow at current standard radiator-temperatures levels

are presented. The results from the analysis of the

minimum flow requirements are also presented here.

4.3.1 Flow requirement at DVUT

Fig. 8 shows the flow demand for 2- and 3-pipe sys-

tems for the low-temperature radiators compared to

current standard radiator-temperatures. The result

shows that the flow requirement is lower with cur-

rent temperature standards, when compared to the cal-

culated temperatures for low-temperature radiators in

(Israelsson, 2023). The largest flow is required for

low-temperature radiators in BBR buildings, which is

as expected due to the higher heat demand compared

to passive houses.

Figure 8. Flow demand with optimized temperature re-

quirement and today’s temperature for the dif-

ferent building types with 2- or 3-pipe distribu-

tion systems.

4.3.2 Sensitivity analysis of the minimum flow

When simulating the impact of the minimum flow on

the temperature requirements and the total flow in the

distribution system. This analysis is performed for the

summer months when the heating demand is low and

thus flow volumes in the system is generally small.
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For higher heat demand periods the flow levels are

significantly higher and heat circulation loops are thus

not needed. The pipe sizes were obtained from the first

part of the project when the system was sized for the

heat demand at DVUT. As there is no need for space

heating during summer, the 3-pipe system only uses

the domestic hot water pipe in this case.

Tab. 3 presents the mass flow results that clearly

shows that an increased minimum flow in the sys-

tem reduces the temperature requirement in the sub-

system, this goes for both 2- and 3-pipe systems. The

mass flows, on the other hand, increases as a direct

effect of the increased minimum flow.

Table 3. Distribution temperature and mass flow during

the summer for sub-area 11 with different min-

imal flows.

Dist. temp [◦C] Mass flow [kg/s]

2-pipe (0.02 kg/s) 105.8 1.6

2-pipe (0.1 kg/s) 67.8 6.8

3-pipe (0.02 kg/s) 84.6 1.6

3-pipe (0.1 kg/s) 64.5 6.8

5 Summary and Discussions

5.1 Results analysis

With the 3-pipe system, the temperature in the space

heating pipe is lowerwhen compared to the 2-pipe sys-

tem. This, however, comes with low domestic hot wa-

ter flows for the 3-pipe system (see Fig. 8), that cause

large temperature drops in the system. This means

that, in order to meet the temperature requirement of

60◦C at the user, the temperature supplied to the sys-

tems needs to be as high as 90◦C (see Fig. 6a). If the

goal is to lower the temperature in the entire Gävle

DH network and not only in Näringen, these results

suggest that a 2-pipe system is better since the sup-

ply temperatures does not exceed 70◦C for this system

configuration.

The absolute distribution losses are marginally lower

for passive houses compared to BBR buildings which

is explained by the reduced heat demand in passive

houses. The reason to why low-energy buildings with

low radiator temperature requirements yield high dis-

tribution losses is because of relatively high flow re-

quirements at DVUT (see Fig. 8). This high flow de-

mand yield large pipe diameters, which means that

the low flow volumes in summer leads low flow

rates, high temperature drops, and in the end increased

losses. The combined losses for space heating and do-

mestic hot water for 3-pipe systems result in the total

distribution losses being higher for both BBR build-

ings and passive houses. It is explained by the fact

that the low flows for domestic hot water lead to large

losses.

Analysis of the relative distribution losses in Fig. 6d

shows that the lower absolute distribution losses for

passive houses is combined with a relatively larger re-

duction of the heat demand, leading to increased rel-

ative losses for the system. Again, the problem with

the domestic hot water supply in the 3-pipe systems

is clear, the relative losses exceed 70% in sub-area

11, which in combination with the high-temperature

requirements means that such a system design is not

well suited for Näringen.

The results for the cascaded systems show that the

mass flow in the main system return pipe is limited,

but that it could supply at least parts of the heat de-

mand in Näringen. A cascaded system in parts of

Näringen may, however, cause problems in the future

if the return temperature in the main system is reduced

due to other efficiency measures. In that case, the po-

tential for heat supply from the return pipe to Närin-

gen would be further limited. Also, an investigation

regarding the need for circulation pumps to maintain

the pressure in the system is needed.

5.2 Summary

A model based on graph theory has been shown to be

an effective tool when simulating DH networks. De-

signing and implementing future systems is possible

if access to data on the heat demand, geographic lo-

cation, and temperature requirements for the heating

systems is available.

When using low-temperature DH for both space heat-

ing and domestic hot water, 2-pipe systems were

shown to yield the lowest total distribution losses and

distribution temperature requirements. 3-pipe systems

have the potential to reduce distribution losses for

space heating, but the low domestic hot water flows

mean that the total losses and the temperature required

in the system increase.

Finally, it is concluded that cascading entire or larger

parts of Näringen to the return pipe of the nearby

branch of the main network is not possible as the flow

demand exceeds the available flow.
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6 Nomenclature

DH District heating

DHS District heating system

SH Space heating

DHW Domestic hot water

BBR Boverkets building regulations

PH Passive house

DVUT Design outdoor temperature
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Abstract 

 

Hydro Power plant (HPP), being one of the most convenient options for power generation, has been modelled 

considering very wide aspects of their application. A model is simply a mathematical representation of a system 

and it may serve different purposes like dynamic simulation of hydro power, energy systems modelling 

involving policy making, condition monitoring, etc. The purpose of modelling HPPs may lead to various kind of 

models for a single Hydropower. This paper aims at reviewing hydropower models developed using different 

methods along with the purpose for modelling them. This will provide brief insights about state of the art on 

hydropower modelling and its emerging techniques. Furthermore, this paper presents in more detail about 

tracking the advancements in dynamic models for classical and variable speed hydropower plants highlighting 

the need for the development of more accurate models. The work mainly involves narrative review of published 
works on hydro power modelling techniques. Also, it includes systematic reviews about dynamic representation 

of hydropower plants. As this paper aims at presentation of hydro power models in a classified manner based on 

purpose of modelling, the areas of improvement in each type of model have been discussed. Models for control 

can be made to be more accurate by including more realistic featured like penstock dynamics, uncertainties, etc 

which further help in design of advanced control systems. There are several potential benefits of HPP modelling, 

such as optimizing plant performance, improving control, reducing maintenance costs, and enhancing overall 

system efficiency and reliability. 

 

Nomenclature:  

ANPC Active Neutral Point Converter 

CFD Computational Fluid Dynamics 

DFIC Doubly Fed Induction Generators 
FVM Finite Volume Method 

HVDC High Voltage Direct Current 

IGBT Insulated Gate Bipolar Junction Transistor  

MPC Model Predictive Control 

MMC Multi-Level Converters 

NPC Neutral Point Converters 

PMSG Permanent Magnet Synchronous Generator 

PSH Pump Storage Hydropower 

RLC Resistance Inductance Capacitance 

RTDR Rotating Dynamic Response 

SFR Standstill Frequency Response 

  

1 Introduction 

Hydropower plants have been proven to be the 

most sustainable source of energy (Kumari Rupesh 
et al., 2019; Shahgholian, 2020). Installed capacity 

of the hydropower all over the world comprises of 

approximately 20% of the world’s electricity 

sources and 80% of the renewable sources 

(Shahgholian, 2020). This fact reflects the dire need 

to make the hydropower plants more efficient, 

more reliable and more economically viable. For 

this, more studies and research have to be 

performed, and more useful tools have to be 

developed. The primary step to be taken for this is 

to develop an appropriate model of hydropower 
systems which addresses the purpose of study.   

Development of hydropower models has been 

carried out for different purpose and have 

undergone considerable improvement since the 

90’s. Accordingly, the methods used for modelling 

also vary to a wide category based on the 

application of the model. Some of them are 

developed for planning studies while others are 

developed for control, transient response, study of 

dynamics, condition monitoring, etc (de Mello et 

al., 1992; Kishor, Saini and Singh, 2007; Valavi 

and Nysveen, 2018a; Liu et al., 2019; Sapkota et 

al., 2022). A single hydropower has many 

components starting from water reservoir  

and flow regions, mechanical rotating parts to the 
static electric parts in general(Quiroga OD, 2000; 

Rheinheimer et al., 2023). Moreover, variable 

speed hydropower plants have converters as the 

additional elements and pump storage power plants 

have reversible pump-turbines (Nobile, Sari and 

Schwery, 2018a).  Each component falling under 

the different disciplines of study aggregate to make 
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Figure 1 Classification of hydropower models 

a whole hydropower system, but most of the 

modelling has been done focusing the kind of 
studies involved, making the task of a particular 

field easier.  

A simple classification of the hydropower models 

is shown in Figure 1. The upper half of the figure 

shows the classification in terms of the components 

used. The hydropower plants that run with constant 

speed and variable speed are differentiated based 

on the availability of converters or governors for 

simple understanding. Also, both of these kinds can 

further be looked as Run of River (RoR), storage or 

pump storage type. Storage type of hydropower 
plants are less likely to be operated as variable 

speed and so, not shown in the classification of 

(Variable Speed Hydropower) VSHPs(Nobile, Sari 

and Schwery, 2018b; Valavi and Nysveen, 2018a; 

T. I. Reigstad and Uhlen, 2020)The lower half of 

the same figure classifies the available hydropower 

models based on their purpose of modelling. The 

models may have different requirements to enable 

us perform different analysis. For example, models 

for control and optimization ought to represent the 

dynamics of the system as accurately as possible, 

the models associated with planning are less 
concerned with dynamics and are more concerned 

with the amount of power produced, its availability, 

environmental constraints, etc. Computational 
Fluid Dynamics (CFD) models do not usually deal 

with other dynamics of the hydropower system as a 

whole but look at the fluid dynamics and its details 

for different components like turbines, guide vanes, 

etc. Models made for condition monitoring are 

concerned with the sensor data and its analysis (Z. 

Wenjing, 2017; Liu et al., 2019; Tor Inge Reigstad 

and Uhlen, 2020a; Kerdphol et al., 2021; Reigstad 

and Uhlen, 2021; Kincic et al., 2022; Sapkota et 

al., 2022) 

This paper attempts to present a brief review of the 
hydropower models found widely in the literature 

by classifying them into three major categories 

which are (i) Models for Control and Optimization, 

(ii) High Resolution models (CFD models) and (iii) 

Models for planning and Operational studies. 

Although we may derive specific sub-categories 

even under these three major categories and 

critically review each of them, this paper is aimed 

at studying the ‘Models for control and 

Optimization’ in detail and will present only a brief 

overview and major modelling gap for the other 

two.  
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2 General Overview  

In representing a hydropower system, the physical 

phenomenon behind the working of each 

component of a hydropower is necessary to 

understand. Firstly, the major components present 
in a hydropower which show the approximate path 

for the flow of power and energy conversion units 

like turbine and generator is discussed. Figure 3 

shows a block diagram representation of a 

hydropower plant, trying to highlight differences in 

the major components present in a VSHP and a 

normal power plant. The governing principles for 

each component is briefly discussed in this section.  

• Upstream flow region (conduits and 

reservoirs): The first component in a 

hydropower model is upstream water flow 

region which connects the water flow 
from reservoir outlet to the surge tank (a 

kind of reservoir). This consists of pipes 

and reservoirs which are modelled based 

on different conservation principles in 

physics. Equations for mass and 

momentum conservation describe the 

flows in conduits, dynamic equilibrium 

requires the satisfaction of Newton’s 

second law of motion and the condition of 

continuity requires that the available space 

inside a conduit be occupied by water at 
all times (de Mello et al., 1992; Alexandra 

and Tenorio, 2010). 

• Penstock: Penstock involves basic 

phenomenon of momentum balance and 

the mass is considered constant in a closed 

conduit like penstock. Also, penstock 

modelling is associated with water 

pressure balance due to gate closing and 

opening action(de Mello et al., 1992; K. 

Nabd and A. Jesus Fraile, 2017).  

• Turbine: Hydraulic turbines derive 
mechanical power from the force exerted 

by water as it falls from an altitude. May it 

be impulse or reaction turbines, the 

mechanical power developed by the 

turbine is usually dependent on the flow 

rate, head and the efficiency and is 

modelled based on law of conservation of 

energy in general(P. Kundur, 2009). 

• Generator: Generator used in hydropower 

plants has two parts namely: stator (the 

stationary part) and rotor (the rotating 

part). The stator is generally represented 
using Park transformation which gives the 

equations for d-axis and q-axis 

parameters. And the rotor is represented 

using a second order differential equation 

known as Swing equation which relates 

the Power output from the generator with 

the rotation(P. Kundur, 2009). 

• Converter: These are used in Variable 

speed Power plants and are modelled 

using power electronic components like 

Thyristor or IGBT with controlled 

switching. The control unit in switching 
action is designed to maintain the power 

output from VSHPs to have same 

frequency as the grid (Tiwari, Nilsen and 

Mo, 2021). These have been undergoing 

refinement for better performance lately.  

• Governor: Governors for hydropower 

plants work on two basic principles, 

namely mechanical hydraulic action or 

electronic action. Mechanical hydraulic 

governors work by displacing the fluid 

and moving the piston and electronic 
governors generally work on PID control 

action. The governing mechanism of 

hydropower is evolving towards robust 

control strategies using adaptive and 

predictive control algorithms(Li and Zhou, 

2011; Guo and Yang, 2018). 

 

3 Research review 

3.1  Models for Control and Optimization 

Modelling the power plant for dynamic studies 

have been carried since many decades and has still 

been undergoing improvement. The following two 

sub-groups categorize the hydropower models 

available based on their speed.  

3.1.1 Hydropower’s that run on synchronous 

speed 

A work by ‘IEEE working group on Prime mover 

and energy supply models for system dynamic 

performance studies’ in 1992 marks the framework 

for hydraulic turbine and its control models are 

practised until now (de Mello et al., 1992). Authors 

in this work have developed a non-linear turbine 

model assuming a non-elastic water column in 
penstock which is linearized about an operating 

point later on. The effect of friction losses is also 

included in this representation. The linearized 

models are claimed to be useful in the studies of 

control system using linear analysis tools like 

frequency response, eigenvalue, etc. however, the 

non-linear models are required for large 

disturbance studies and large transients.  

This is the baseline for the models working with 

prime movers including water supply conduit and 

prime mover speed controls.  Figure 2 shows the 

general relationship among mechanically rotating 
parts and the water flow channels of a hydropower 

plant which controls the dynamics of a hydropower 

plant. Many recent graduate and doctoral thesis 

works have used this representation and baseline 

and proposed further improvements in the models 

(Alexandra and Tenorio, 2010; Splavska, 2017a; Z. 

Wenjing, 2017; Reigstad Tor Inge, 2021). 
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Figure 2 Block diagram representation of hydro-prime mover system and controls(de Mello et al., 1992) 

The earlier models were considered adequate for 

typical first swing stability simulations, but more 

issues like longer transient stability problems 

simulation, low frequency oscillations, islanded 

operation, load rejection, system restoration, water 
hammer dynamics, pump storage generation with 

complex hydraulic structures, etc. had to be 

addressed with the wide practise of using 

hydropower (de Mello et al., 1992; Fang et al., 

2008; Acakpovi, Hagan and Fifatin, 2014; Yang et 

al., 2015; Guo and Yang, 2018; Rheinheimer et al., 

2023). 

For the case with long penstocks, the pressure 

differences and water compressibility generate 

significant dynamic behaviour which must be taken 

into modelling consideration. The water pressure is 

assumed to be analogous to sound waves 
propagation in water and the wave propagation 

principle is used to model the long penstocks in (de 

Mello et al., 1992) which is termed as method of 

characteristic modelling in (Alexandra and Tenorio, 

2010). This wave propagation model introduces a 

tan hyperbolic function to represent the water 

hammer effect in the long penstocks. This makes 

the functioning of the penstock non-linear.  Also, 

the authors in (Alexandra and Tenorio, 2010) use 

two more methods to model the penstock, namely: 

Finite volume method (FVM) and electrical circuit 
equivalent method. FVM is associated with 

discretizing the main governing equations making 

it representable in suitable PDEs form to apply 

Model predictive control (MPC) algorithms. 

Electrical circuit equivalent method says that the 

flow of water is analogous to flow of current in a 

RLC circuit. The pressure flow is assumed 

analogous to travelling waves in transmission lines 

and the equivalent R, L and C values are derived 

based on penstock parameters. Most of the research 

until now use these methods to model the water 

hammering in penstocks while studying the 
dynamic behaviour of hydropower (P. Kundur, 

2009; H. Ardul Munoz, M. Petrous and J. Dewi 

Ieuan, 2013; Li et al., 2016; K. Nabd and A. Jesus 

Fraile, 2017; Guo and Yang, 2018; Cassano et al., 

2021; Reigstad Tor Inge, 2021; Zhang et al., 2022).  

Also, multiple penstocks supplied from a common 

water column are modelled just based on the flow 
in the upper manifold to be equal to the flow in 

each penstock and the governing principles remain 

the same (de Mello et al., 1992; H. Ardul Munoz, 

M. Petrous and J. Dewi Ieuan, 2013). Based on 

water hammer consideration in penstock modelling 

as described in (de Mello et al., 1992; P. Kundur, 

2009; H. Ardul Munoz, M. Petrous and J. Dewi 

Ieuan, 2013; K. Nabd and A. Jesus Fraile, 2017; 

Cassano et al., 2021; Zhang et al., 2022), the 

hydropower models are classified as the ones with 

‘elastic water column models’ and ‘inelastic water 

column models’ which have significant differences 
in dynamic the response of hydropower plants. 

One more significant component in the upstream 

flow region is the surge tank which is proven to be 

of utmost importance while studying the dynamic 

behaviour of hydropower plants. This is why the 

presence or absence of surge tank brings huge 

difference in planning the control of hydropower 

plant (P. Kundur, 2009; H. Ardul Munoz, M. 

Petrous and J. Dewi Ieuan, 2013). The surge tank 

model is derived from the continuity of flow at the 

two junctions which can further consider pressure 
balance, mass balance, momentum balance and 

forces acting on the surge tank(Alexandra and 

Tenorio, 2010; Pandey and Lie, 2021; Reigstad Tor 

Inge, 2021; Pandey et al., 2022). Time domain 

models and s-domain models of surge tanks are in 

wide practice for the models used for control. (de 

Mello et al., 1992; Fang et al., 2008; Alexandra and 

Tenorio, 2010; H. Ardul Munoz, M. Petrous and J. 

Dewi Ieuan, 2013) present the s-domain model of 

surge tank which approximates the storage constant 

of surge tank and predict the dampening of water 

hammer in the penstock while the authors 
in(Splavska, 2017a; Pandey and Lie, 2021; Pandey 

et al., 2022) present time domain model of the  
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Figure 3 Block diagram representation of (a) General Hydropower (b) Variable Speed Hydropower 

surge tank which is represented as a differential 

equation. (Pandey and Lie, 2021; Pandey et al., 
2022) have developed the models’ representation in 

modellica and is available as open HPL.  

Turbine modelling is necessary because the 

hydraulic turbine dynamics seem to have 

considerable effect on power system stability. As 

can be seen form Figure 2 the turbine dynamics 

have direct influence on rotor dynamics of 

generator. Authors in(P. Kundur, 2009) talk about 

grid stability in terms of rotor angle, which directly 

varies according to the turbine rotation dynamics. 

The functioning of turbine is non-linear because of 
the action of water pressure and head on it. The 

major governing principle behind turbine 

modelling is the balance of mechanical power 

represented by the equation 

𝑃 = 𝜂 ∗ 𝜌 ∗ 𝑞 ∗ 𝑔 ∗ ℎ 

where P=Mechanical Power generated, 𝜌=Water 

density, Q= discharge, g = acceleration due to 

gravity and h = head. 

Hydro turbines have non-linear performance in 

reality but are studied by linearizing the 
mathematical models as well. (Cassano et al., 

2021) presents the performance of linearised 

models of hydropower which implements 
linearised Francis and Kaplan turbine equations. 

Linearization based on first order Taylor expansion 

is claimed to give more tractable alternative to non-

linear models and also can be used for model 

predictive control based on convex optimization. 

 

Authors in (P. Kundur, 2009) derive the transfer 

function of turbine with certain assumptions which 

falls under the linearized model type. The non-

linear behaviour is carried by the assumption that 

mechanical power is directly proportional to the 
square root of the head. Also, authors in the same 

book define water starting time as the amount of 

time required for a head to accelerate water in the 

penstock from standstill to the rated value, which is 

one of the important factors in turbine dynamic-

study. This helps us predict the change in water 

flow and pressure with respect to unit gate opening. 

The usage of water starting time is widely found in 

turbine modelling studies as in (Kishor, Singh and 

Raghuvanshi, 2007; Alexandra and Tenorio, 2010; 

Zhou, Lie and Glemmstad, 2011; Yang et al., 2015; 
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Li et al., 2016; K. Nabd and A. Jesus Fraile, 2017; 

Guo and Yang, 2018; Reigstad Tor Inge, 2021). 

Furthermore, (de Mello et al., 1992) is one of the 

earliest literature making the baseline for modern 

turbine dynamic models which starts with non-
linear modelling and ends with the linearized 

turbine models about an operating point assuming 

both elastic and inelastic water columns. This 

concept has been studied until today (Kishor, Saini 

and Singh, 2007; Acakpovi, Hagan and Fifatin, 

2014; K. Nabd and A. Jesus Fraile, 2017; Cassano 

et al., 2021; Gao et al., 2021). The non-linear 

models of turbine are further represented in the 

form of ordinary or partial differential equations 

which make it easier to implement the modern 

control methods. Linearized turbine models are 

seen as a set of six partial differential equations(Z. 
Wenjing, 2017) while non-linear turbines are 

modelled using Euler’s equations. (Nielsen, 2015; 

Splavska, 2017b; Reigstad Tor Inge, 2021). Also, 

some authors model turbine as simple non-linear 

function in the form of analytic expression as a 

function of wicket gate, water head and speed (Li 

and Zhou, 2011; Li et al., 2016). 

The generators used in hydropower are 

synchronous generators. The modelling of 

synchronous machines has been worked on and 

undergone considerate degree of improvement back 
in 1920s and 1930s itself (P. Kundur, 2009). It is 

modelled using Park’s transformation to represent 

voltage equations in the form of d-axis and q-axis 

parameters. Then comes the rotor swing equation 

which relates electrical power and rotor swing (P. 

Kundur, 2009; H. Ardul Munoz, M. Petrous and J. 

Dewi Ieuan, 2013; Guo and Yang, 2018; Brezovec, 

Kuzle and Krpan, 2022). Generator models are 

more widely used in transient stability studies for 

power system to test the system’s robustness 

against electrical and mechanical faults(P. W. Sauer 

and M. A. Pai, 2006; HM Gibson et al., 2019; 
Brezovec, Kuzle and Krpan, 2022). Furthermore, 

standstill frequency response (SFR) and rotating 

dynamic response (RTDR) are two methods 

currently used to derive the generator parameters. 

These provide further flexibility and enables to 

handle the non-linearities with less computational 

burden(Fonseka, de Silva and Dong, 2021). Also, 

some generators used in VSHPs are permanent 

magnet synchronous generators (PMSG) which 

requires the representation of stator equations in dq 

form (Gao et al., 2021). 
Despite of wide availability of hydropower models 

for control and application of numerous control 

algorithms, there is always a room for 

improvement. The models implementing robust 

control, most preferably the ones with time-domain 

dynamic representation have been worked upon 

very less. Though some time-domain models for 

synergetic control studies and state space models of 

hydropower and (Pump Storage Hydropower) PSH 

have been explored in (Zhang et al., 2022) and 

(Dong et al., 2020), transient studies for grid side 

have been studied more than for the generator side. 

With the concern for reliable and resilient power 

system, the control for hydropower must be 
adequate from all the possible aspects. This 

demands for more accurate dynamic models and 

even undertaking probabilistic dynamics as well.  

 

3.1.2 Variable Speed Hydropower (VSHP) 

Development of variable speed plants dates back to 

early 1990s in Japan (Valavi and Nysveen, 2018b). 

Since then, VSHPs have been undergoing 

pioneering achievements and becoming popular 

because of their capability to provide additional 

ancillary services to the grid apart from power 

production. Figure 3 represents the major 

components reflecting the difference between 

normal hydropower plants and variable speed 

hydropower plants. VSHP consist of a converter in 
addition to a normal hydropower component which 

are either operated as full size or partially when 

needed. The converters’ main task is to fed the 

power to the grid maintaining constant frequency 

despite of changing generator speed (Tiwari and 

Nilsen, 2020; Tiwari, Nilsen and Nysveen, 2020, 

no date). The turbine is allowed to deviate from its 

normal rotating speed enabling itself to vary the 

output power very quickly because of the fast-

acting converter technology (Nobile, Sari and 

Schwery, 2018b). Though popular in pump storage 

plants because of the ability to control frequency in 
pumping mode, variable speed plants are not 

limited to PSH only. They can also be used in 

HVDC connected hydropower facilities because 

the frequency of the generator is not tied to the grid 

and hence the operation of plant can be optimized 

by adjusting rotational speed (Camacho, 1997). 

Furthermore, small hydropower with considerable 

head and flow variations can benefit implementing 

variable speed operation as maintenance of high 

efficiency is possible (Borkowski and Majdak, 

2020).  
The turbine is modelled using Euler’s turbine 

equations which have considered rotational speed 

along with guide vane opening to find the torque 

and flow in (Nielsen, 2015). A one-dimensional 

numerical model of Francis turbine tuned with test 

data for VSHP operation is presented in (Nag and 

Lee, 2018). With the consideration of turbine side 

only and utilizing the water column and reservoirs 

models previously presented, author in (T. I. 

Reigstad and Uhlen, 2020) has compared four 

different hydraulic models namely: Hygov model, 

IEEE model, Euler’s model and Linearised model 
for VSHP operation. The paper discusses that when 

the models are linearised, all four models have a 

similar performance for governor control however 

Euler and IEEE models add dynamics to the 

penstock. This is also stated in other literatures (P. 
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W. Sauer and M. A. Pai, 2006; P. Kundur, 2009; 

Nielsen, 2015). A simple turbine model does not 

consider the relationship of turbine efficiency with 

rotational speed, which is crucially important in 

VSHP turbines. So, Euler’s model is considered as 
most suitable for simulating transients and variation 

in rotational speed in VSHP which have significant 

impact in fast frequency response of gird (Nielsen, 

2015; Nobile, Sari and Schwery, 2018b; Tor Inge 

Reigstad and Uhlen, 2020a; Reigstad and Uhlen, 

2021).  But the interaction of this model with the 

power system also needs to be studied before 

considering it to be the most suitable one.  

The other major component of VSHP is the 

converter. Authors in (Tiwari, Nilsen and Nysveen, 

2020) and (Tiwari, Nilsen and Nysveen, no date) 

talk about the converters for variable speed pump 
storage power plants. Neutral point converters 

(NPC), multilevel converters (MMC) and full sized 

active neutral point converters (ANPC) have been 

in application for both synchronous machines and 

doubly fed induction machine (DFIC) in pump 

storage plants (Tiwari, Nilsen and Nysveen, no 

date; Tiwari, Nilsen and Mo, 2021). ANPC are 

claimed to have high starting torque which is 

essential requirement for machine side application 

in VSHP application but is threatened by the 

converter losses (Tiwari and Nilsen, 2020). Precise 
control strategies like hierarchical control and 

optimization algorithms, model predictive control, 

stator flux regulatory control, etc. for these 

converters have been discussed in many literatures 

such as in (J. Kristansen Noland, J. Hagset and 

Stavnesli, no date; S. K. Peter et al., 2014; Tor Inge 

Reigstad and Uhlen, 2020b; Tiwari, Nilsen and Mo, 

2021),  but the models for coordinated control are 

still lacking.  

Research have been performed to improvise the 

models for more accurate representation of power 

plant dynamics both from load side and the turbine 
side since many decades. Also, the grid side 

interactions like frequency reserves, ROCOF, 

transient analysis, etc. have been studied a little, 

but the uncertainties that might occur during the 

plant operation, particularly for VSHPs have still 

been left behind. With the prevailing examples of 

grid failures because of changing environmental 

conditions and other known or unknown 

uncertainties, there is a dire need to develop models 

which can represent these environmental and other 

disturbances threatening the grid. The probabilistic 
disturbances can be modelled and added to the 

existing models. This enables to come up with the 

control plans in cases of such unprecedented 

conditions. For robust control of hydropower 

plants, the models used for designing these 

controllers should be able to reflect the effect of 

uncertainties on the system. Thus, describing the 

uncertainties during the modelling phase is needed. 

Furthermore in (Dong et al., 2020) a concept called 

quaternary PSH which involves bifurcated 

penstock system is introduced, but description of a 

coordinated control of multiple hydropower plants 

operating from a single water channel is not yet 

available in open literature. 
 

3.2 High Resolution Models (CFD) 

Computational Fluid Dynamics (CFD) is used to 

look at the effect of fluid dynamics on several 
component of the power plant. The most 

extensively studied component in CFD analysis is 

the turbine (Tiwari et al., 2020).  Authors in (Lain 

and Mejia, 2022) claim that physical modelling 

have gradually been replaced by CFD modelling 

techniques which are used to study hydro-kinetic 

along with hydro-dynamic studies. With the 

increasing popularity of PSH as energy storage 

elements and a good ancillary service provider for 

electric grid, CFD simulation of model turbine as a 

pump has been performed in (Deng et al., 2022) to 
quantify energy loss and entropy generation. 

Furthermore, studies about change in guide vane air 

foil on the flow characteristics of draft tube for 

improvement of energy recovery, vibrations 

intensity, stable operation of turbine, design 

methods of multiphase pumps for hydrodynamic 

and structural points of view, etc. have been 

performed widely in the past (Benavides-Morán, 

Rodríguez-Jaime and Laín, 2022; Niebuhr et al., 

2022; Peng et al., 2022).They conclude that the 

power coefficient is affected by presence of free 

surface. Similarly, authors in (Lopez Mejia et al., 
2021) propose practise guidelines for CFD 

simulations in turbines studying the performance 

standard of vertical axis and horizontal axis 

turbines and those in (Xiong, Deng and Chen, 

2021) study about flapping motion in tail edge 

which is found to present a better stability for 

turbine. Although it is said that high level high-

order models like CFD are not practical in 

modelling the whole hydropower, a few low order 

models are studied for the purposes like fault 

occurrence, estimation of number and geometry of 
components for hydropower, etc in practice(Li et 

al., 2021; YoosefDoost and Lubitz, 2021; Saeed et 

al., 2022). Furthermore, optimization of hydraulics 

for a Kaplan turbine at different operating 

conditions is studied in (Benigni et al., 2014) and 

also the curved paddles in the wheel enhanced 

generation by 10-20 % is described in (Akinyemi 

and Liu, 2015).  

CFD models mainly deal with component-wise 

performance in detail rather than looking at the 

whole hydropower. With the evidence that CFD 

models are mainly concerned with turbine study, 
we still find a gap in the study of small details like 

labyrinth seals study, pressure balance in draft tube 

for Kaplan turbines, etc.  
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3.3 Models for Planning and Operational 

Studies 

The operation modes of hydropower are widely 

varying in recent times and so the operating models 

are pushed toward the boundary. Hydropower 
models developed for operation and planning 

studies generally consider nominal water 

availability only and the environmental constraints 

like headwater limits variation, average flow 

variation, etc are not incorporated in the models. 

This might lead to inaccurate long term and short-

term system studies like erroneous transmission 

flow and response to contingencies. A few gaps in 

the order of priority have been identified which are 

listed as follows(Kincic et al., 2022) 

• Water availability not properly represented 

in system models 

• Interdependencies among hydro projects 

and environmental constraints are not 

properly represented in system models 

• Rough zones are not represented in the 

power system model so generation 

dispatch in system studies might not be 

realistic 

• Many dynamic models of hydro 

generation turbines are outdated 

• Inaccuracy in frequency response during 

simulation studies 

• Data issues and incorrect parameters 

values in dynamic models 

• Advanced pumped storage models are not 

widely available 

Each of these gaps have been critically analysed 

and several ways to model the hydropower have 

been suggested more accurate results. Water 

availability issue stated above can be addressed by 

collecting more precise and granular data, 

representation of constraints within production cost 

models and capacity expansion models with 
watershed models. The authors in (Kincic et al., 

2022) further state that the base case models also 

known as power flow models used for power 

system studies only maximum generated power. 

However, this might not always be the case as the 

generation keeps varying with seasonal water 

variations. Also, authors in the same report come 

up with the fact the water levels affect the droop 

and governor response as well which might lead to 

over representation of turbine-governor response to 

system frequency events, voltage stability, and 
transient stability issues. The simulation studies 

have been done in the HYGOV4 governor dynamic 

model implemented with a gas turbine which 

shows that 5-10% variation in head value can 

significantly affect the dynamic response and 

frequency recovery of the source.  

Water basins have different interdependencies like 

tailwater and forebay level change rate limits for 

flood regulation, effect on aquatic ecosystem, water 

ratio maintenance for cascaded plants which are 

required to be coupled in software but are not.  

Authors in (Dong et al., 2019) talk about problems 

in reliability because of oscillation phenomena in 

the hydropower operating in rough zones. The 
turbine undergoes a mechanism called vortexing 

which leads to oscillations in power systems, but 

there is no knowledge of these restricted zones (that 

lead to oscillations) of operation in power system 

simulation studies.  

Incorrect parameters values in the models also have 

a huge role in generating inaccurate results for the 

planning studies. This can lead to the models being 

too optimistic or too pessimistic. Talking about 

dynamic performance as stated in (Pereira et al., 

2003; Kou et al., 2016; Soni, 2016), the incorrect 

parameters used for governor-generator modelling 
has impacts on turbine gain constant and frequency 

of the system. Turbine gain constant is directly 

associated with the mechanical power generated by 

the turbine which is one of the key parameters for 

grid studies ranging from stability to planning. 

Furthermore, the same issue with data leads to false 

frequency nadirs which projects wrong frequency 

response in the grid (Pereira et al., 2003; Soni, 

2016). This is a huge threat to the grid operating 

stability and for decision making regarding 

expansion planning, contingency and line flows.  
Pump storage hydropower (PSH) plant is already a 

mature energy storage technology but there still 

exist gaps in developing advanced PSH models 

which anticipate the real-time operation on PSH. In 

many existing software, the pumping mode of a 

PSH is modelled as motor and generating mode is 

developed as a hydro-generator but the transition 

between them is often ignored (Kincic et al., 2022).  

Models in generating and pumping modes are 

different and need to take into consideration the 

water hammer, throttling of the wicket gate for 

pump starting and shutting down, etc(Nobile, Sari 
and Schwery, 2018a). Furthermore, adjustable 

speed PSH can out space conventional PSH which 

may lead to huge market growth and installation 

(Valavi and Nysveen, 2018a). User defined models 

have been developed in (J. Feltes et al., 2013) 

which try to resolve the above stated issues but 

these models have not been validated and 

commercialized. As seen from the models with 

operation and planning studies, the deterministic 

approaches for grid resiliency and reliability have 

been performed both from grid and load side. 
Moreover, much attention has been given to the 

load models and market operation strategies. But 

there is a need to conduct studies from probabilistic 

approach as well. The unanticipated changes in 

load or operating conditions of hydropower have 

not been taken into consideration much.  

A simplified brief about the development of 

hydropower models from the past to the present is 

shown in Table 1.
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Table 1 Hydropower models: chronological brief 

Classifications 1992-2010 (Past) 2010-2023(current) Future Prospects 

Models for Control and 

Optimization 

- Basis for hydro-turbine 

control models for 

dynamic studies applied 

until present context 

- Dynamic models 

mathematics for transient 

and control study 

- Grid support using 
hydropower 

- Studies in frequency 

domain, mainly using 

classical control methods 

- Concept of variable 

speed hydropower 

emerged 

-  Intermittency of 

renewables balancing 

using hydropower  

- Importance of grid 

support using hydropower 
and pump storage 

flourished 

- Dynamic models for 

transient and control 

study with increased 

detail in models 

- Studies both in s-domain 

and t-domain along with 

the application of robust 

control 

- Dynamic models which 

can represent 

uncertainties 

- Models representing 

multiple hydropower in 

same channel for control 

studies 

High resolution models 

(CFD) 

- Turbine models for 

cavitation studies 
- Physical models 

gradually replaced by 

CFD models 

- Turbine models 

covered the area of pump 
turbines as well 

- variable speed model 

components study 

- Condition monitoring 

of the components 

- Labyrinths seals’ study  

- more insights on 
variable speed power 

plants 

Models for planning and 

operational studies 

- Nominal steady state 

operations considered  

- Less attention on 

environmental constraints 

- Electricity market 

operation strategies 

- Consideration of load 

models 

- Use of AI for numerical 

models 

- Reliability studies 

- Electricity market 

deregulation and 
flexibility 

 

- More focus on 

probabilistic reliability 

studies along with the 

ongoing deterministic 

 

4 Conclusion 

This paper presents a surficial picture about the 
existing hydropower models, linking the commonly 

seen classification to the classification of models 

for purpose. The types of models based on purpose 

of modelling have been stated as: Models for 

control, models based on CFD and models for 

operation and planning.  

The paper provides more broader overview about 

models for control which are found to be developed 

on the basis of principles of physics like mass, 

continuity and energy balance representing the 

dynamics of the system associated. Despite of 

having the same mathematics, way of presenting 
the models varies as per the requirement. For 

example: the non-linearity brought about by the 

water pressure behaviour in the penstock is ignored 

in some models whereas considered to be important 

in some other models. Also, the models developed 

for modern control implementation are found to be 

more detailed and those involving non-linear 

optimization are preferred to be developed in time-

domain. The dynamic models developed are also 

popularly used for transient studies. Furthermore, 

VSHP models also have been developed for control 

purpose among which PSH models are more 

popular. The converters implemented in VSHPs 

have become very popular for their ability to 

change the output power very fast with the 

changing speed capability which can improve the 

frequency response in grid.  

Moreover, considerable amount of work has been 

done in CFD modelling and the models for 
planning studies. The model developed using CFD 

re also used for control, but most of its application 

has been found in the component wise analysis and 

a single component control rather than coordinated 

control. Also, models for operating and planning 

are mostly used to study about the grid impact and 

environmental impact. The scope extends a bit to 

economy and the society as well.  

With the study of the available models and their 

application, the major work that can be done 

immediately is the inclusion of probabilistic 
analysis of uncertain events in all three fields. 

Focusing on control, the optimization of 
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performance or operation in the presence of 

uncertainty can be an interesting field for future 

research since control system can make the 

hydropower more capable to support the grid 

thereby improving the resiliency and reliability of 
the overall power system. 
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Abstract 

 

The System of Systems (SoS) framework plays a pivotal role in delimiting aircraft design spaces by examining 

interactions among its Constituent Systems (CS). Each CS has a distinct collection of capabilities, some of which 

may be shared with other CS. The framework explores emergent behaviours that arise from communication 

between the CS within the SoS. These emergent behaviours are characterized by their unattainability by any 

individual CS and result from their collaborative nature. The identification of these emergent behaviours enables 

System of Systems Engineering (SoSE) to pinpoint the most valuable configurations of the SoS, thereby 

maximizing the collective value. Furthermore, these emergent behaviours aid in stipulating design requirements 

for new systems based on the capabilities outlined in the SoS study. To map the relationship between needs, 

capabilities, requirements, and behaviours, maintaining traceability throughout the study is paramount.  

This research employs workflows created using the Remote Component Environment (RCE), a specialized tool 

for structured and automated task development. The objective is to showcase RCE's integration capabilities- 

specifically for software tools and Python scripts- with task scheduling. This integration enables swift extraction 

of results, making them available at every step, thus augmenting analysis efficiency. The study focuses on the 

perspective of an aircraft designer during the early concept generation phase, specifically applied to the 

development of an electric Unmanned Aerial Vehicle (UAV) concept for wildfire detection.  

Keywords: System of Systems, Aircraft Conceptual Design, Wildfire Detection, Agent-Based Simulation, Systems 

Engineering. 

 

 

1. Introduction 

The System of Systems (SoS) analysis has become 

an important part of systems engineering (Staack, 

2019). An SoS is defined as a system that consists of 

several Constituent Systems (CS) and shares the 

following characteristic properties (Maier, 2014):  

• Each of the CS can operate by itself and execute 

its mission as an individual.  

• Each of the CS is managed independently, 

which means that each one of them is acquired 

and maintained within its own budget 

constraints. 

• The CS are under a geographic distribution, 

with the distance large enough to require a non-

physical communication.  

• Communication and interaction between CS 

results in emergent behaviours, which can be 

not only difficult to predict but also unattainable 

by any single CS.  

• There is an evolution throughout time of the 

SoS, either by adding or removing CS, 

upgrading or renewing them, or integrating CS 

different from the ones in the original 

composition.  

Modelling and simulation become an obvious choice 

for finding emergent behaviours in an SoS 

configuration and to study its evolution when the CS 

arrangement changes.  

With an SoS being a complex assembly of systems, 

large numbers of possible combinations might be 

found during the different analyses. Thus, the 

requirement spaces must be meticulously managed 

to prevent confusion and ensure traceability at every 

step of the process (Mori, 2018). Traceability 

ensures that the customer needs are correctly 

understood and linked to requirements and use cases 

(Luzeaux & Ruault et al., 2013). Requirement 

traceability also supports greatly the analysis of an 

SoS. It narrows down the design space and enhances 

trade-off analysis (Staack, 2019), from the top level 

of the SoS, down to the subsystem level of the CS in 

an asynchronous manner (Dahmann, 2008). Poor 

traceability makes it difficult to identify purposes or 

goals resulting in the less convenient “bureaucracy-

driven architectures” (Maier, 2014). Enhancing 

traceability helps also to propagate changes among 
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different levels, namely concepts, requirements, 

specifications as well as take decisions or perform 

better impact studies. Traceability involves matrix-

based methods (Krus, 2006) for mapping customer 

needs and requirements, design parameters and 

system behaviour. These methods allow re-

evaluations in case of requirement changes 

(Luzeaux & Ruault et al., 2013). Besides 

traceability-oriented methods, it is possible to find 

requirements for traceability of SoS capabilities 

(Tekinerdogan, 2017). 

A wildfire detecting SoS is used in the present work 

to illustrate some of the modelling and simulations 

considerations needed to develop traceable 

workflows. The scenario map, its environmental 

conditions, and the CS included must be allowed to 

change or evolve to study the SoS under different 

conditions. The outcome of the simulated scenarios 

is to be analysed for obtaining a set of requirements 

to constrain the design space of an electric 

Unmanned Aerial Vehicle (UAV). For the SoS 

explorations, the feasibility of Remote Component 

Environment (RCE) workflows will be evaluated 

with a focus on traceability. This paper aims to 

assess the convenience of using RCE’s workflows in 

terms of traceability.  

 

2. A Workflow-based Modelling Environment  

The Remote Component Environment (RCE) is an 

open-source application developed by the German 

Aerospace Center (DLR) for design and simulation 

of systems (Boden, 2021). Serving as a flexible and 

scalable platform, it utilizes object-components, 

which represent a series of tasks to be executed in a 

specific order at predetermined intervals. RCE 

provides a graphical user interface for configuring 

the workflows, empowering users to define inputs, 

outputs, and the sequence of individual tasks. This 

structure ensures systematic and efficient 

experiments. 

2.1. RCE Components 

RCE features a range of components for different 

functions such as simulation, data processing and 

visualization. Central to these components available 

in RCE is the Design of Experiments (DoE) 

component, which allows users to define sets of 

input parameters with specific ranges and 

distributions, to set up and run experiments. 

RCE also supports the incorporation of Python 

scripts as workflow components. This feature 

leverages Python’s versatility, extending the range 

of tasks beyond the capabilities of the default RCE 

components. For example, conduct intricate 

calculations, manipulate data or files, or generate 

plots during the workflow runtime. 

Additionally, RCE enables the integration of 

external tools as components in its workflows. This 

means that users can add their own software 

packages to RCE- for instance, by adding external 

tools for data acquisition, simulation, or analysis- 

and incorporate them into a workflow with built-in 

components for optimization. 

2.2. System of Systems Experiments 

Conducting SoS experiments for Aircraft 

Conceptual Design (ACD) is a complex application 

that requires the integration of multiple components 

for considering the CSs and their respective 

subsystems. The SoS experiments aim at optimizing 

requirements for a new aircraft, considering factors 

such as performance, safety, and cost. To achieve 

this, the DoE component within RCE is used to 

orchestrate and execute a series of experiments that 

delve into the compromises inherent between 

varying requirements and capabilities. The results of 

these experiments can then be analysed using 

Python scripts and external tools to identify the most 

promising design options. An example of an SoS 

workflow is shown in Fig. 1. 

 
Figure 1: Structured workflow in RCE for SoS 

experiments. 

3. SoS Workflow Construction  

This section describes the different disciplines 

involved as block components in the assembly of the 

RCE workflow for wildfire detecting SoS 

exploration. Detection hinges on the subsystems 

nested within the CS. For this study, these 

subsystems encompass visual sensors with a 

resolution range. When a smoke plume is captured 

within the sensor's visual cone, detection is 

confirmed, marking the SoS's operation as 

successful and stopping the simulation.  

 

3.1. Ontology Modelling 

Ontologies serve as an instrument to formally 

encapsulate knowledge specific to a domain, 

including the concepts, relationships, and 

constraints that define it (Knöös Franzén, 2023). 

They provide a shared vocabulary and 

understanding for a group of people working on a 

common task, enabling more effective 

communication and reasoning about the domain. By 

defining a common ontology of the components, 

interfaces, and behaviours of the systems in the 
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study, it becomes easier for everyone involved to 

reason about how different systems interact with one 

another, and how changes done to one system will 

affect the others. Additionally, ontologies can 

facilitate the tracing of requirements, decisions, and 

outcomes across the SoS, which is important for 

understanding the impact of changes and making 

informed decisions (Lovaco, 2023). For visual 

clarity, Fig. 2 shows the ontology structure of a 

surveillance UAV. One ontology definition example 

(used for defining the present scenario) can be seen 

in Fig. 3. 

 

 
Figure 2: Partial ontology structure of a surveillance 

UAV. 

 
Figure 3: Ontology definitions of a surveillance UAV. 

3.2. Clustering 

Clustering can be described as the process of 

grouping a set of objects in such a way that objects 

in the same group (called a cluster) are in some 

manner more alike than those in different groups 

(clusters). Clustering is needed for navigation 

purposes since the flight paths will be defined 

afterwards based on the clusters to be visited.  

The K-Means clustering algorithm is a popular 

method for clustering (Pedregosa, 2011). It 

partitions N data points into K clusters gauging their 

proximity to the centroids. Fig. 4 shows an example 

of the centres generated after clustering a given data 

set. However, determining the optimal number of 

clusters often poses a challenge. The method for 

determining the optimal number of clusters in K-

Means clustering is explained in the section below. 

 

3.2.1. Objective Function 

The objective function of K-Means is to minimize 

the sum of squared distances between each data 

point and its assigned centroid: 

 ∑ 𝑚𝑖𝑛𝜇𝑗∈𝐶‖x𝑖 − 𝜇𝑗‖
2

𝑛

𝑖=0

(1) 

The time complexity of K-Means is O(KNT), 

where N is the number of data points and T the 

iteration number (Pedregosa, 2011). 

 
Figure 4: Centre points after clustering data. 

A method for estimating the optimal number of 

clusters involves plotting the Within-Cluster Sum of 

Squares (WCSS) against the number of clusters and 

selecting the point where the WSS starts to level off 

(Pedregosa, 2011). The WCSS is defined as the sum 

of squared distances between each data point and its 

assigned centroid:  

𝑊𝐶𝑆𝑆 =  ∑( ∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑑𝑖 , 𝐶𝑘)2

𝑑𝑚

𝑑𝑖𝑖𝑛𝐶𝑖

)

𝐶𝑛

𝐶𝑘

(2) 

Where C is the cluster centroid, d the data point and 

n the number of clusters.  

The optimal number of clusters can be determined 

by inspecting the plot of WCSS as a function of the 

number of clusters, shown below in Fig. 5. 

Typically, the plot will show a steep decrease in 

WCSS as the number of clusters increases, followed 

by a levelling off. The "Elbow point" is the number 

of clusters at which the WCSS starts to level off. For 

the plot shown below, approximately 5 clusters yield 

a value of 0.2·108.  

While visually perusing these plots is feasible, it 

might prove tedious and suboptimal, especially in 

large-scale simulations. In contrast, the use of a 

convergence analysis provides an automated and 

systematic approach. This allows for quicker 

identification of convergence behaviour and 

facilitates the exploration of design spaces in a more 

efficient and reliable manner. 
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A straightforward, yet more automation-friendly 

approach is to take the computed sum of squared 

distances and average it using the amount of data 

collected in that group. The result is compared with 

the squared value of a convenient parameter, which 

for the present case is the squared value of the 

distance that the sensors in the UAV can see. 

 
Figure 5: Evolution of the inertia depending on the 

number of clusters used. 

3.3. Graph Theory for Finding the Shortest 

Navigation Path 

The Traveling Salesman Problem (TSP) is a well-

known combinatorial optimization problem that 

involves finding the shortest path to visit a set of 

points exactly once and return to the origin (Reinelt, 

2003). One prevailing technique to tackle the TSP is 

by using graph theory (Euler, 1741), which provides 

an efficient and scalable solution (Hagberg, 2008). 

In this method, the TSP is modelled as a complete 

graph, where each point is represented by a node, 

and the edges represent the distances between them. 

The objective is to find the Hamiltonian cycle, 

which is a path that visits all nodes exactly once and 

returns to the starting node. Various algorithms, 

such as Christofides algorithm (Christofides, 1976), 

Simulated Annealing (Kirkpatrick, 1983), and 

Threshold Accepting (Dueck, 1990), can be used to 

find the shortest path. By using graph theory, the 

TSP can be solved with high accuracy, making it a 

useful tool for solving optimization problems in 

various fields. For the SoS use case, the centroids 

found in the previous step are clustered again 

depending on the number of CSs to be used, which 

for the present case is the number of UAVs. The TSP 

is solved for each aircraft to generate the navigation 

path for patrolling over an area. The Christofides 

algorithm is the chosen one for the present work, and 

it is used over a complete graph G to generate paths 

such as the one shown in Fig. 6. The initial node for 

the path is 0, but the nodes are not necessarily visited 

in the same order as they are numbered. The 

Christofides algorithm consists of the following 

steps (Goodrich & Tamassia et al., 2015): 

1. A minimum spanning tree, M, is 

constructed for G. 

2. Compute the set W with the vertices with 

odd degree from M. Form a new graph H 

with these vertices and the edges 

connecting them in G. Compute a 

minimum-weight matching P in this 

subgraph H. 

3. Then H and P are combined into G’ 

keeping repeated edges. 

4. Find an Eulerian path C. 

5. Finally convert C into a tour by skipping 

each vertex that has already been visited. 

 

 
Figure 6: Hamiltonian cycle generated from a TSP 

solution. 

3.4. Agent-Based Simulations for SoS Exploration 

Agent-Based simulations (ABS) are a distinctive 

modelling and simulation technique that focuses on 

the behaviour of individual agents. Agents are 

entities with the ability to perceive their 

environment, make decisions, and act on their 

environment.  

ABS boasts several advantages when compared to 

other modelling and simulation techniques. For one, 

ABS allows for the modelling of heterogeneity 

among agents, they can have different attributes, 

behaviours, and interactions, which makes the 

system more realistic (Lovaco, 2022). Moreover, 

ABS also allows to observe emergence, which is the 

phenomenon where the behaviour of the SoS is 

unequal to the sum of its individual parts. It must be 

noted that the resulting emergent behaviour should 

be judged as an increase or decrease of the SoS 

group value. Consequently, ABS is a promising 

approach to exploring the behaviour of interacting 

systems.  
The exploration of complex SoS requires 

sophisticated tools for modelling and simulation. 

The tool used for this paper is NetLogo, an open-

source ABS software with a drag-and-drop interface 

to create Agent-Based Models (ABM) (Tisue, 

1999). Fig. 7 shows a NetLogo model interface 

created for firefighting SoS studies. NetLogo has 

several built-in capabilities for creating and 

manipulating agents, defining their behaviours, and 

visualizing simulation results. 
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Figure 7: Agent-Based Model Interface. 

3.5. Functional Mockup Units 

The results extracted from the ABS can be analysed 

to find, for example, range and endurance 

requirements for UAVs. Once these specifications 

are distinctly outlined, cyber-physical UAV models 

with higher fidelity than the ones defined in the ABS 

are more suitable for ACD. These high-fidelity 

models can be made tool independent by using 

Functional Mockup Units (FMUs). Gaining traction 

in contemporary engineering and modelling sectors, 

FMUs are software modules that enshroud a specific 

functionality of a larger model of a system 

(Blochwitz, 2011). The main objective of FMUs is 

to enable model share and exchange between 

different tools and platforms in a standardized way. 

This means that models developed in one software 

environment can be easily integrated and used in 

another, without the need for custom integration 

code. FMUs are designed to be platform and 

language independent, they can be used across 

different operating systems and hardware 

architectures. This positions FMUs as a pivotal asset 

to share work and collaborate on interdisciplinary 

complex modelling and simulation projects (Braun, 

2013).  

 

4. SoS Case study and Results 

This section presents the case study of a 

homogeneous forest-fire spotting SoS that consists 

exclusively of UAVs patrolling a given area to 

detect wildfires. Their respective flight trajectories, 

however, are derived uniquely by harnessing the K-

Means clustering algorithm—which groups 

proximate trees—and subsequently deploying the 

TSP to delineate the Hamiltonian cycle for every 

UAV. Clustering is performed using the radius 

around each centroid determined by the visual 

sensor proficiency of the UAV. To evaluate different 

SoS configurations, the DoE uses a Latin Hypercube 

Sampling (LHS) method to generate different CS for 

the scenario. The UAV capabilities and scenario 

parameters not generated using LHS are extracted 

from the ontology, which is stored in an XML file. 

The simulations are executed in Netlogo with the 

wildfire initial geographic position being at a 

random point in the map. The fire detection success 

or failure is reported for each scenario. The flight 

missions for each UAV are simulated using a high-

fidelity model FMU to evaluate the State of Charge 

(SoC) of the batteries and determine if the UAV 

configuration can achieve their mission (Krus, 

2012). The workflow diagram of this case study was 

shown in Fig. 1, which from left to right starts by 

loading and reading the ontology; then the DoE 

component generates the different CS; the 

vegetation data is clustered afterwards to generate 

the UAVs flight paths; the NetLogo ABS executes 

the different SoS configurations; finally, the high-

fidelity FMUs are executed to evaluate the 

performance of each aircraft concept. The workflow 

cycle is repeated as many times as initially defined 

in the DoE component. All the outputs forwarded at 

each step of the workflow are stored by RCE and 

accessible for the user once the experiment is 

completed, which is key for traceability. 

 

4.1. Experiment Workflow 

An ontology akin the represented in Fig. 2 is used to 

describe the scenario. The ontology XML file is read 

to extract the information needed for the SoS 

experiments. For this paper the values extracted 

from the ontology are the scaling factor, the fire 

detection time limit, position of the fire, wind 

velocity and wind direction. The number of UAVs 

used, and their capabilities are generated using the 

LHS and are catalogued in Tab. 1. This data is 

pivotal in tailoring the ABS, enabling a thorough 

examination of the ramifications stemming from 

diverse SoS layouts.  

 
Table 1: LHS Generated Experiments. 

ID UAVS 
Sensor 

Range [km] 

Velocity 

[km/h] 

1 6 1 88 

2 7 2 106 

3 9 1 153 

4 4 2 190 

 

Navigation routes are formulated in alignment with 

methodologies delineated in Sections 3.2 and 3.3. 

The paths depend on the sensor visual range and the 

quantity of UAVs defined. Fig. 4 shows the 

discerned centroids and Fig. 6 offers a glimpse into 

one such navigation route. The nondimensional 

ranges computed are shown in Tab. 2. The “Min 

Range” and “Max Range” values in the table 

represent respectively the minimum and maximum 

nondimensional distance flown by the UAVs in the 

SoS configuration. The scaling factor aids in 

converting these nondimensional distances into SI 

units. 
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Table 2: Nondimensional Ranges and Map Scaling 

Factor. 

ID Min Range Max Range 
Scaling 

Factor [m] 

1 329 465 100 

2 278 454 100 

3 224 346 100 

4 364 623 100 

 

The ABS is performed for a map, as depicted in Fig. 

8, where different surveillant agents can be seen. 

The map geography is generated importing elevation 

points into the model. The vegetation is dispersed 

randomly under certain topographic criteria, such as 

lake zones, resulting into the data distribution shown 

previously in Fig. 4. The geography and the fire 

location intend to relate to a real fire case (MSB, 

2014). The arrow in the figure indicates the source 

of the smoke plume and the coloured lines represent 

a fraction of the flight paths taken by the aircraft 

systems. 

 

 
Figure 8: Agent-Based simulation visualization. 

The scenario was simulated using a quartet of 

different SoS configurations, each of which was 

executed ten times with wildfires initialized 

randomly, accumulating a total of 40 runs. Tab. 3 

outlines the detection success rate and the averaged 

time required to spot the smoke plume for each SoS 

configuration.  

Following the workflow sequence from Fig. 1, a 

high-fidelity aircraft model available in the cyber-

physical high-performance simulation tool Hopsan 

(Krus, 2012) (which is similar to e.g., Modelica) was 

simulated through an FMU. This was done to 

ascertain the SoC of the battery, as well as the 

propeller diameter required to achieve the necessary 

velocity. 

 

Table 3: Detection success and time. 

ID 
Success Rate 

[%] 

Avg. 

Detection 

Time[min] 

1 100 92 

2 100 139 

3 90 128 

4 90 70 

 

The necessary endurance, corresponding to the most 

extensive range for each UAV setup, is calculated 

and used to define the stop time for each FMU 

simulation. Tab. 4 summarizes the results extracted 

from these simulations: the battery SoC, the required 

diameter for the propeller, and the required 

endurance to complete just one loop of the 

predefined flight path. 

 
Table 4: Aircraft FMU values. 

ID SoC [%] 
Propeller Ø 

[cm] 

Endurance 

[min] 

1 73.0 28 32 

2 78.2 28.5 26 

3 86.5 31.5 14 

4 78.1 34 20 

 

5. Summary and Discussion 

The workflow created ran all the 40 cases to study a 

firefighting SoS in 39 minutes real time. The 

obtained results can be used for constraining the 

design space to generate aircraft concepts, as well as 

discussing the trade-offs needed to achieve the 

capabilities of the desired aircraft concept. For a 

good trade-off analysis, a more extensive set of 

results is needed. But the procedure is exemplified 

in this section. First, Tab. 5 shows the collection of 

different CS capabilities.  

 
Table 5: Constituent Systems Specifications. 

CS 
Sensor 

Range 

[km] 

Velocity 

[km/h]  

Range 

[km] 
Prop. 

Ø [cm] 

Endurance 

[min] 

1 1 88 46.5 28 32 

2 2 106 45.4 28.5 26 

3 1 153 34.6 31.5 14 

4 2 190 62.3 34 20 

 

Then a comparison of SoS capabilities with their 

success rates (Tab. 4) helps in ranking requirements. 

This ranking can be subjective, based on the success 

rates, or on customer pre-defined criteria, 

culminating in a priority matrix. In Tab. 6, values 2, 

1, or 0 denote higher, equal, or lower importance. 

Notably, below the diagonal, values swap between 0 

and 2, while 1 stays constant. The trade-offs, 

discussed by rows are as following: Sensor Range 

(SR) holds higher significance than CS Velocity (V) 

since a higher speed does not increase the success; 
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comparison of SR with Range (R) or Endurance (E) 

needs more data for a decision hence it is assumed 

equal importance; SR, however, is seen as more 

crucial than Propeller Diameter (Ø) for fire 

detection.  

The comparison is only exemplified here since it is 

beyond the current aim. It needs to be mentioned 

that, after identifying and discussing trade-offs to 

prioritize requirements, the ranking is eventually 

combined with methods such as the House of 

Quality (HoQ) or Quality Function Deployment 

(QFD) (Ulrich & Eppinger et al., 2016). 

 
Table 6: Customer Requirement Priorities. 

 
SR 

[km] 

V 

[km/h]  
R [km] 

Ø 

[cm] 

E 

[min] 

SR  2 1 2 1 

V 0  0 2 1 

R 1 2  2 2 

Ø 0 0 0  1 

E 1 1 0 1  

 

Fig. 9 shows an approximate curve representing the 

achieved cruise velocity as a function of the 

propeller diameter for a specified aircraft body 

geometry, which once they are obtained it is possible 

to find feasible regions for the design spaces. 

 

 
Figure 9: Achieved UAV cruise velocity as a function of 

the propeller diameter. 

From the analysis, a notable topic is the aircraft's 

taxiing time. As indicated in Tab. 4, the aircraft can 

complete several missions along its flight path 

before needing to taxi, with the goal of preserving a 

SoC above 20% ideally. If this is not achieved, there 

might be a need to redesign the battery and aircraft 

to lessen their weight. This reduction can decrease 

both cruise speed and associated costs, potentially 

prompting another iteration of ACD.  

For battery sizing, the drag forces over the mission 

can be extracted from the FMU results as well. Fig. 

10 shows the flight altitude, and the aircraft drag 

over mission time. By knowing the altitude, it is 

possible to obtain the atmosphere properties. By 

understanding the forces that the aircraft needs to 

overcome to sustain the flight, it is possible to obtain 

the work and energy needed to fulfil the mission, and 

thus size a battery accordingly. Furthermore, 

studying the drag forces can reveal the parts of the 

geometry with the higher contribution to them and 

initiate a subsystem optimization process. These 

results can be obtained thanks to the use of a high-

fidelity FMU in the workflow. It helps to explain, for 

example, the reduction over time of the drag forces 

observable in Fig. 10, which can be attributed to the 

decreasing energy in the battery that is translated 

into a reduced cruise velocity over the mission time.   

 
Figure 10: Aircraft altitude and drag forces values 

throughout time. 

6. Future Work 

The SoS studies for ACD can be expanded through 

the compatibility of RCE with XML files and 

CPACS files (Alder, 2020). CPACS files are 

designed for storing information related to aircraft 

concept generation. They can be used for 

encapsulating data pertinent to aircraft concept 

development, present a means to consolidate and 

disseminate expertise across diverse engineering 

domains, encompassing aerodynamics, propulsion, 

and structures.  

RCE is equipped with dedicated features for the 

integration and utilization of other CPACS 

compatible tools in its workflows. One example of a 

tool designed to work seamlessly with CPACS files 

is TiGL (Siggel, 2019). TiGL is open-source and 

uses geometry libraries to visualize the 3D 

geometric representations of data extracted from 

CPACS. TiGL is also capable to export to several 

computer-aided design (CAD) formats.  

Another promising future inquiry hinges on 

multidisciplinary optimization. The results of the 

SoS exploration studies can be analysed using HoQ 

and QFD methods for creating SoS value and system 

cost functions from the requirements. Subsequently 

analysing the balance between SoS value and CS 

cost to set the stage for a clearly delineated design 

space, marked by discernible requirement 

constraints, primed for preliminary concept 

evolution and optimization.  
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7. Conclusion 

The research presented here using RCE workflows 

offers a robust method for tracing requirements and 

capabilities in SoS studies. A case study for aircraft 

concept generation to be used for wildfire detection 

was introduced to illustrate the created workflow. 

From parameters generated using LHS, navigation 

routes were generated from areas clustered based on 

the UAVs visual subsystems capabilities. The 

aircraft concepts and their routes were simulated to 

compare SoS mission success rates and constrain the 

design space of the aircraft concepts. Overall, this 

work illustrates how RCE workflows can be used for 

aircraft requirement generation by providing easy 

access to the results of every experiment allowing to 

sustain a high level of traceability. 
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Abstract 

 

As modern societies face increasing energy demands and a complex smart grid with multiple inputs of 

traditional and intermittent renewable energy power generation systems, the need for energy storage systems has 

become a general trend. Among these systems, compressed air energy storage (CAES) has received extensive 

attention due to its low cost and high efficiency. This study proposes a novel design framework for a hybrid 

energy system comprised of CAES system, gas turbine, and high-temperature solid oxide fuel cells, aiming for 

power generation and energy storage solutions. The overall model of the hybrid power generation system was 

constructed in Aspen Plus, and the mass balance, energy balance, and thermodynamic properties of the thermal 

system were simulated and analyzed. The results demonstrate that the hybrid system utilizes the functional 

complementarity of CAES and solid oxide fuel cells (SOFC), resulting in the cascade utilization of energy, 

flexible operation mode and increased efficiency. The overall round trip efficiency of the system is 63%, and the 

overall exergy efficiency is 67%, with a design net power output of 12.5 MW. Additionally, thermodynamic 

analysis shows that it is advisable to operate the system under higher compressor and turbine isentropic 

efficiencies, and optimal SOFC/MGT(Micro Gas Turbine) split air flow rates. The results of this article provide 

guidance for designing innovative hybrid systems and system optimization. 

 

1. Introduction 

For nearly a century, the use of traditional fossil 

fuels has provided a stable and huge contribution to 

the progress of human civilization. But with a 

growing population and improved living standards, 

energy demand is expected to increase dramatically. 

According to statistics, it is estimated that by 2100, 

the global population will reach 10 billion. 

Meanwhile,emissions will increase correspondingly 

if immediate action is not taken. Looking at it today, 

the world emits about 51 billion tons of greenhouse 

gases into the atmosphere every year. In order to 

prevent climate disasters, countries around the 

world have established relevant policies and 

measures to reduce carbon emissions and strive to 

reduce carbon emissions to zero by 

2050(IPCC,2022). This indicates that the most 

imminent and important task within the next three 

decades is to improve the efficiency of the existing 

energy systems, and to increase the share of 

renewable energy in the energy sector. 

However, the utilization of renewable energy 

sources is accompanied by uncertainties and 

instabilities due to environmental factors such as 

wind and solar radiation. The integration of large-

scale renewable energy into the power grid can 

have significant impacts on grid security and 

compromise the quality of electrical energy. This 

poses substantial challenges for maintaining power 

balance and ensuring stability control in the grid. 

To address these challenges, energy storage 

technologies have emerged as essential solutions. 

Energy storage technologies offer the capability for 

large and medium-scale energy storage and rapid 

response. When integrated into comprehensive 

energy systems that encompass conventional fossil 

fuel power generation and renewable energy 

sources, energy storage technologies play a pivotal 

role in maintaining power and energy balance 

across various operating conditions. Consequently, 

energy storage holds crucial implications for 

enhancing grid security, facilitating economic 

operation, and maximizing the utilization of 

renewable energy sources (Bazdar E et.al,2022). 

Among various energy storage technologies, 

Advanced Adiabatic Compressed Air Energy 

Storage (AA-CAES) technology has gained 

significant attention from researchers in the past 

decade due to its advantages of large-scale energy 

storage, high energy efficiency, and zero emissions 
(Zhang, W.2020). However, the operation of AA-

CAES requires the storage of compressed heat 

during the energy storage period the utilization of 

compressed heat to heat the air during the energy 
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release phase (G. Grazzini and A. Milazzo,2008). 

This characteristic imposes high requirements on 

the capacity, efficiency, and control of the heat 

exchangers and thermal storage systems. Therefore, 

in order to improve the overall efficiency of 

Compressed Air Energy Storage (CAES) and 

reduce emissions, one potential solution is to 

explore the utilization of other thermal sources 

within the comprehensive energy system to achieve 

better energy grade utilization (Javier, M,2019). In 

addition, the integration of different thermal 

sources within the comprehensive energy system 

allows for greater flexibility and versatility in 

energy generation and utilization. It enables the 

system to adapt to varying energy demands and 

optimize the use of available resources based on 

specific conditions or requirements. (Li Y, et 

al.2019). 

In order to evaluate the potential of Compressed 

Air Energy Storage (CAES) in enhancing 

renewable energy integration, researchers have 

developed a comprehensive approach by merging a 

fixed efficiency model and a detailed 

thermoelectric model of CAES with unit 

commitment and economic dispatch algorithms 

(Nikolakakis, T, et al.2017). 

SOFC can be well applied to large-scale distributed 

power generation systems of hundreds of 

megawatts. Typically, SOFC is operating at a high 

temperature range of 800-1000℃ with capabilities 

of high energy conversion rate, high current density 

and power density, wide fuel applicability, good 

electrode economy, modular assembly, and low 

emission. In particular, SOFC has strong reaction 

kinetics and is hardly poisoned by impurities such 

as CO and its by-products, so it has received 

widespread attention from researchers all over the 

world. However, commercially available solid 

oxide fuel cells (SOFCs) can only operate safely in 

steady-state mode, and therefore they need to be 

integrated with an energy storage system for use in 

load-following applications. Nease and Adams 

(2014a) proposed a coal-fueled SOFC plant 

integrated with compressed air energy storage 

(CAES) which had no CO2 emissions. And then 

they referred a two-stage rolling horizon 

optimization (RHO) framework is used to optimize 

a SOFC/CAES integrated power plant, achieving 

optimal year-round peaking power with zero 

emissions and significantly improving load-

following performance by up to 90% (J. Nease and 

T.A. Adams II,2013) ( Nease, J, et al.2016). 

This study aims to figure out the interaction 

between a SOFC/MGT system and an AA-CAES 

system by considering the energy and exergy 

balance. The study also investigates the impact of 

different input parameters on novel system 

performance. The contributions of this work are 

summarized as below. 

First, a new hybrid system is proposed in this paper, 

namely the AA-CAES system integrated with the 

SOFC/MGT system. Although there have been 

scholars who have done similar integrations in the 

past, but it is only a simple superposition, the 

system integration in this article is more thorough, 

and the combination between subsystems is more 

precise. This is mainly reflected in the thermal 

coupling between subsystems in this paper is 

designed based on the characteristics of each 

subsystem itself. That is to say, this paper not only 

realizes the cascade utilization of energy according 

to the difference of temperature, but also considers 

the safety and actual operation requirements of the 

subsystem. Moreover, unlike other similar systems, 

the CAES system in this paper is upstream of 

SOFC/MGT, addressing the pain points of the 

control problems caused by the interconnection of 

compressors and turbines and deep coupling with 

SOFC in traditional SOFC/MGT systems. 

Secondly, when considering round trip efficiency 

and exergy efficiency in this paper, different 

analysis methods are proposed because of the time-

segmented characteristics of energy storage 

systems. It considers not only the performance of 

the system under different operating modes, but 

also the intrinsic characteristics of different 

subsystems. 

Finally, the impact of the study of key parameters 

on system performance can provide the goal of 

system optimization and also enhance the actual 

engineering value of the entire system. 
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Figure 1. Overview of the CAES-SOFC/MGT Hybrid system 

2. Methodology 

It can be seen the working process of the integrated 

system used for this work from 

Figure 1. Firstly, it is assumed that the SOFC-MGT 

system is always working as the base load. The 

hybrid power generation system combines 

compressed air energy storage, fuel cells, and a gas 

turbine. The system includes an air compressor unit, 

energy release turbine unit, heat storage tanks, gas 

storage tank, generator, motor, regenerator, and fuel 

cell power generation system. The motor drives the 

air compressor unit to compress air when surplus 

power is available. The compressed air is stored and 

released through the turbine group, connected to the 

generator. The fuel cell system is connected to the 

grid and includes a start-up burner, reactor, fuel cell 

body, afterburner, and post-combustion turbine. The 

high-pressure air from the compressor is heated by 

the microturbine exhaust for waste heat recovery 

before entering the fuel cell. In case of peak load, the 

compressors use the surplus electricity from 

renewable energy generation and compress the air 

into the storage tank in the charge mode. The stage 

inter cooling heat exchanges pump the heat into a hot 

water tank. Meanwhile, the first compressor of the 

charge chain works for SOFC. The compressed air 

without cooling supplies the cathode. Besides, before 

flowing into the fuel cell, the high-pressure air is 

heated by exhaust gas from the gas turbine, which 

can make the utmost of the wasted heat. The fuel cell 

generates the power to grid and the high pressure, 

temperature by-product with remain fuel flows into 

the turbine to generate power too. In the discharge 

mode, the air turbines are also working in four stages. 

The gases coming into the air turbines are heated up 

by the transfer fluid both in hot water tank and gas 

turbine. The cooling water goes to the cold water 

tank driven by the pump system. 

Since the operation of the energy storage system has 

a time difference, in order to better analyze the 

operation of each component in each stage, this paper 

divides the operation of the entire system into five 

states, which can be seen from Figure 2. 

 
Figure 2. Working states of the CAES-SOFC/MGT Hybrid 

system. 
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In Figure 2, mode 1 to 5 represent the operating 

states of each subsystem, where the checkmark 

symbol indicates that the subsystem is running, and 

the cross symbol indicates that the subsystem is not 

running. Mode 2 and 5 represent the typical 

operating states of the system, while mode 1, 3, and 4 

are used only in extreme conditions or for testing the 

system performance. 

When the grid load is below the preset energy 

storage load, the grid functions as a motor to drive 

the air compressor unit, which compresses and stores 

the air in the gas storage device. During compression, 

the cold water from the tank’s cold water tank flows 

into the heat exchanger to cool the compressed air, 

and then flows into the hot water tank. 

Mode 1 is a test mode used to detect the working 

mode of the compression chain when it runs alone. 

At this mode, the air storage reservoir is in the 

energy storage stage, while other subsystems are 

inactive. 

Mode 2 is the normal energy storage mode of the 

system. At this mode, excess power from the grid 

drives the compressor to produce compressed air. 

Some of the compressed air is stored in the air tank, 

while the rest is used as the cathode inlet air of the 

fuel cell, serving as the SOFC-MGT air source. 

Mode 3 is a test mode and also the minimum output 

power condition of the system, which is used to test 

the working mode of the SOFC-MGT system when it 

is running alone. In this mode, the air tank serves as 

the air source of the SOFC-MGT system, and the 

compressed air is used as the cathode inlet of the fuel 

cell. When the air tank is fully charged, the SOFC-

MGT system can provide compressed air to the entire 

system for hours or even days, depending on its 

capacity. Therefore, this mode can be used as a 

reference for black start situations, where the energy 

storage system provides users with the minimum 

necessary output power when the external power grid 

is paralyzed. 

Mode 4 is designed as a test mode to evaluate the 

energy release chain’s working status when it 

operates independently. In this mode, the compressed 

air from the air tank is supplied to the air turbine, and 

the hot water in the hot water tank and the 

regenerator between each stage heat the compressed 

air. This process allows the compression heat in the 

compression stage to be fully utilized. 

Mode 5 represents the normal energy release mode 

and the maximum output power of the system. In this 

mode, the compressed air in the air tank is split into 

two streams, of which one stream directly drives the 

air turbine to generate electricity, while the other 

stream serves as the anode inlet air for the SOFC-

MGT system. Unlike mode 4, the high-temperature 

exhaust gas at the outlet of the SOFC-MGT system 

heats the inlet air of the first-stage air turbine, 

allowing for the full utilization of the waste heat 

from the exhaust gas. 

The following assumptions are made to simplify the 

whole system modeling.  

(1) The composition of air in CAES system and 

SOFC cathode inlet consists of 79% N2 and 21% 

O2 (mass fraction). 

(2) The heat and pressure loss in the pipes 

connecting all the components can be negligible. 

(3) All the kinetic and potential effects are ignored. 

(4) The storage tank is adiabatic during the 

charging and discharging process. 

(5) The water gas reaction is in a state of chemical 

equilibrium. 

(6) The effect of radiation heat transfer is not 

considered. 

(7) The system operates under steady state 

conditions. 

(8) The isentropic efficiency of each compressor 

and turbine is fixed. 

Basic geometric and operating parameters of this 

hybrid system are shown in Table 1 and  

 

Table 2. The SOFC geometric parameters were 

taken from (Huang S, et al.2022): 

 

System parameters Value 

Ambient pressure / bar 1.000 

Ambient temperature / k 298.0 

Maximum pressure of ASR /bar 100 

Minimum pressure of ASR /bar 70 

Volume of the air tank /m3 6000 

Hot water tank temperature / k 403.0 

Hot water tank pressure / bar 4.000 

Cold water tank temperature / k 298.0 

Cold water tank pressure / bar 1.000 

Generator efficiency 0.98 

Inlet pressure / bar 70.00 
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Table 1. Basic operating parameters for CAES 

 

Table 2.Operating parameters for SOFC/GT hybrid system 

 

2.1 Compressor 

There are four air compressors in the system 

connected in series, with interstage coolers between 

each compressor, and an aftercooler after the fourth 

air compressor. The outlet pressure of the air 

compressor can be calculated by the following 

formula (Hartmann N, et al. 2012): 

, ,out c c in cP P=     (1) 

where ,in cP is the inlet pressure of the compressor, c

is the compression ratio of the air compressor, and 

the inlet pressure of the first stage compressor is 

atmospheric pressure. The outlet temperature of the 

compressor is: 

 
(k 1)/k

, in, [1 ( 1) / ]out c c c cT T  −= + −
 (2) 

where in,cT is the inlet temperature and c  is the 

isentropic efficiency of the compressor. k is the 

specific heat ratio. The power consumed by the 

compressor is: 

, , ,in

( 1/ )

p , in,

W (h h )

1

com c in c out c

k k

c in c c

c

m

C m T 


−

= −

= （ -1）
  (3) 

where ,c inm  is the inlet air mass flow rate of the air 

compressor in the energy storage stage, ,hc out  and 

,inhc  are the specific enthalpy of the outlet and inlet 

air, respectively. 

 

2.2 Heat exchanger 

The heat of compression is transferred to the heat 

storage device through the interstage heat exchanger, 

and a counter-flow heat exchanger is used in this 

paper. The water temperature is approximately equal 

to ambient temperature before entering the interstage 

cooler. From the law of conservation of energy 

（Guo C, et al. 2017）. 

 

,air int , , int , ,out

,water int ,water,out int ,water,in int int int

(h h )

(h h )

c er air in er air

c er er er er er

m

m A T

−

= − = 

     (4) 

Where int , ,h er air in  and int e , ,outh r air  are the air specific 

enthalpy at the inlet and outlet of the interstage 

cooler, int ,water,outh er  and int ,water,inh er  are the specific 

enthalpy of the water in the heat storage system at the 

inlet and outlet of the interstage cooler, int er  is the 

thermal conductivity of the heat exchanger, and 

int erA  is the heat transfer area, int erT  is the 

logarithmic mean temperature difference between air 

and water. 

There is a regenerator in front of each turbine, which 

is the same as the energy storage part, which is a 

counter-flow heat exchanger. In the regenerator, the 

hot water stored in the hot water tank is heated to the 

air flowing out of the air storage tank, and then in the 

cold water tank was cooled to room temperature. 

 

,air re, , re, ,in ,water re,water,in re,water,out(h h ) (h h )c air out air cm m− = −

     (5) 

where re, ,inh air . and re, ,h air out are the specific enthalpy 

of air at the inlet and outlet of the regenerator, and 

System parameters Value 

Ambient pressure / bar 1.000 

Ambient temperature / k 298.0 

Maximum pressure of ASR /bar 100 

Minimum pressure of ASR /bar 70 

Volume of the air tank /m3 6000 

Hot water tank temperature / k 403.0 

Hot water tank pressure / bar 4.000 

Cold water tank temperature / k 298.0 

Cold water tank pressure / bar 1.000 

Generator efficiency 0.98 

Inlet pressure / bar 70.00 

Operating parameters Value 

Total cell area 200.0×200.0 mm 

Anode thickness  0.5 mm 

Electrolyte thickness  0.008 mm 

Cathode thickness  0.05 mm 

Number of channels  50 

Channel size  2.0×2.0 mm2 

Cathode inlet pressure 3.9 bar 

Anode inlet pressure 3.9 bar 

Average SOFC temperature 939 °C 

Current density  0.676 A/cm2 

Fuel utilization factor 0.62 

Reformer inlet composition 

(molar fraction)  

33% CH4, 67% 

H2O  

Turbine isentropic efficiency 86% 

Turbine mechanic efficiency 98% 
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re,water,inh  and re,water,outh  are the specific enthalpy of 

water at the inlet and outlet of the regenerator. 

 

2.3 Turbine 

In this paper, four turbines are connected in series. 

The outlet pressure of the turbine can be calculated 

by the following formula (Hartmann N, et al. 

2012)(Guo H, et al.2019): 

 in,t out,ttP P=    (6) 

where in,tP  is the inlet pressure of the turbine, t  is 

the expansion ratio of the turbine, and the inlet 

pressure of the first stage turbine is the outlet 

pressure of the gas storage tank. The outlet 

temperature of the turbine is: 

 
(k 1)/k

,t in,t[1 (1 )]out t tT T   −= − −
 (7) 

where in,tT  is the inlet temperature of the turbine, and 

t  is the isentropic efficiency of the turbine. k is the 

specific heat ratio. Turbine work can be calculated by 

the following formula: 

 
t,air t,in ,out

( 1/ )

p t,air in,t t

W (h h )t c

k k

t

m

C m T   −

= −

= （ -1）
 (8) 

 

2.4 Air storage tank 

After flowing out of the interstage cooler, the hot 

water absorbing the heat of compression will be 

stored in the hot water tank. 

In this paper, the gas storage device adopts the gas 

storage tank. In order to study the performance of the 

gas storage tank, according to the law of mass 

conservation and energy conservation (Wu S,et 

al.2019): 

 
tan , , , ,

split , split , loss

k c in c in t out t out

out out

Q m h m h

m h Q

= −

− −
 (9) 

 tank c, , ,tin c t out t split out tm m m t m t= − −
 (10) 

where tan kQ  and lossQ is the rate of transferred heat, m

is the air flow rate, tc and tt is the charge time and 

discharge time, and the subscript split represents air 

split from tank in the mode 5. 

 

 

2.5 SOFC/MGT  

The SOFC model used the lumped parameter method 

to calculate the local current density, distribution 

temperature distribution, Nernst potential, and 

electrochemical loss of the whole fuel cell. The 

chemical kinetic model was used to calculate the 

water gas shift reaction, steam methane reforming 

reaction, and electrochemical reaction. The SOFC 

model was created in ACM and imported into Aspen 

Plus TM. The current density can be calculated based 

on the feed flow rate of each component of the inlet 

fuel and the set fuel utilization rate. The operating 

conditions of the fuel cell are modeled in terms of 

inlet and outlet average temperatures, pressures, and 

stream composition. The cell voltage is calculated by 

Bulter-Volmer formula, and the power output of a 

fuel cell can be calculated based on the total reaction 

area of the cell and the total number of cells. Thomas 

Paul Smith et al. published a detailed description of 

the model and validation work. The electrochemical 

loss and cell voltage calculations are expressed by 

equations as follows (Liese E A, et al. 2006). 

 ercell N nst act con ohmV V   = − − −
 (11) 

 

2 2

2
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H O
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H O

P PRT
V E
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0

,1.2877 0.0002904 cell bulkE T= −
 (13) 
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 ce ,

,

10.3 3
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     (16) 

 

This paper uses the ACM model in the Aspen Plus 

software model library to establish the SOFC battery 

model. Before flowing into the cathode, a part of the 

air is split into reformer, combusted with part of the 

fuel to make the reformer an autothermal reformer 

and ensure the temperature of the fuel at the anode 

inlet. The remaining air is discharged after 

exchanging heat with SOFC’s outlet flue gas in the 

heat exchanger, while ensuring the inlet temperature 

of the after burner. At the anode, the natural gas 

undergoes a reforming reaction; the produced 

hydrogen reacts electrochemically with the air from 

the cathode to generate electricity. 

The input data for natural gas, air volume, and water 

vapor required for the stack model were determined 

by the calculator model of the ASPEN plus. 

Assuming that the cells in the stack are connected in 

parallel, the voltage of each battery is the same. The 

current of the fuel cell stack is equal to the current 

per cell multiplied by the number of cells, which 

calculated in the SOFC ACM model. 
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2.6 Round trip efficiency 

When dealing with a hybrid power system that 

includes an energy storage system, it can be 

challenging to determine a precise efficiency value, 

as the charging and discharging periods operating at 

divergent times. In such cases, the system's round-

trip efficiency (RTE) is used as a metric. RTE is ratio 

of total electrical energy output to the total fuel and 

electrical energy input for a full charge/discharge 

cycle and can be calculated using the following 

formula: 

 

dc

4 4
ch

t ( )

( )

all

all

MGT SOFC HLOUT T TT

IN c CH CH
T T T

W W W QW
RTE

W W m LHV

+ + +
= =

+ 

 

  
     (17) 

Where OUTW  is the electricity out , INW is the energy 

input, tW  is the electricity generation for expanders, 

MGTW  is the electricity generation for turbine, HLQ  is 

the excess heat load in hot water tank for end user. 

SOFCW  is the electricity generation for SOFC, cW  is 

the electricity consumption of compressors,
4CHm  is 

the mass flow of inlet CH4 , 
4CHLHV is the lower 

heating value of CH4 , dcT is the discharge time, chT  

is the charge time, allT  is the one-cycle time. 

2.7 Total exergy efficiency  
Similar to the definition of system cycle efficiency, 

total exergy efficiency (TEE) is defined as the total 

net exergy output xoutE  in discharging process to 

total net exergy input xinE  in the charging process. 

As the heating exergy is not considered in the 

reference, TEE can be presented as: 

 x

4

out xTB xSOFC xMGT

xin xCOM xCH

E E E E
TEE

E E E

+ +
= =

+

     (18) 

where xTBE  is the total exergy of expanders, xCOME  

is the total exergy of compressors, xSOFCE  is the total 

exergy of SOFC, xMGTE  is the total exergy of turbine 

and 4xCHE  is the total exergy of fuel. 

 

3. Results and discussion 

 

3.1 Influence of outlet pressure of expansion valve 

In discharging process, the air from the ASR passes 

through the expansion valve so that a specific 

pressure will be set, which makes the turbines 

operate at the steady and high efficiency conditions. 

The changing of the required pressure has a direct 

influence on the turbines’ performance. The power 

output of the turbine and the mass flow rate of air 

increase with increasing pressure behind the 

expansion valve. However, the operating range of the 

turbine narrows, and the discharge time decreases 

sharply. The 0-D system model lacks a control 

mechanism, resulting in changes in mass flow rate in 

response to pressure variations. As shown in Figure 3, 

modes 4 and mode 5's efficiencies rise with 

increasing post-valve pressure. The throttle valve has 

no impact on the operation of the compression chain 

and SOFC/MGT subsystems. Hence the efficiencies 

of modes 1, 2, and 3 remain unchanged. As pressure 

behind the valve rises gradually, the system RTE 

drops from 65.9% to 49.6%. The reason is that 

although the turbine does more work per unit of time, 

but the release time for energy decreases, which 

reduces the working range of the air storage tank, 

ultimately decreasing the total work done by the 

turbine. 

Figure 4 shows the effect of expansion valve outlet 

pressure on the total exergy efficiency. In the figure, 

nECOM represents the exergy efficiency of the 

compressor, nETUR represents the exergy efficiency 

of the expander, nESOFC-MGT represents the 

exergy efficiency of SOFC-MGT, and EXALL 

represents the exergy efficiency of the system total 

exergy efficiency. As seen from Figure 4, the TEE of 

the compressor chain and SOFC/GT subsystem keep 

constant as well. But turbine chain subsystem’s TEE 

increases with the varying expansion valve outlet 

pressure from 60 bar to 80 bar. It is evident that when 

the inlet pressure is increased, each turbine performs 

more work, leading to an increase in exergy 

efficiency. While the flow rate also rises, requiring 

more hot water heat and leading to greater exergy 

loss in the turbine chain's regenerator, these effects 

are relatively minor in comparison to the gain in 

exergy efficiency resulting from the increased work 

done by the turbines. However, TEE exhibits a clear 

downward trend. This is due to the significant 

reduction in the energy release time, despite the 

increase in work done per unit time by the turbine. 

Compared to the aforementioned effects, the energy 

discharge time has a greater impact on the total 

output exergy. In conclusion, the highest achievable 

values of the overall system's round trip efficiency 

and exergy efficiency are obtained when the heat 

load output to the user approaches zero, while the 

turbine maximizes the use of the compression heat 

and SOFC/MGT exhaust waste heat. 



SIMS 64  Västerås, Sweden, September 26-27, 2023 

 

Figure 3. Effect of expansion valve outlet pressure on RTE 

 

 
Figure 4. Effect of expansion valve outlet pressure on TEE 

 

 
Figure 5. Energy flow diagram of CAES-SOFC/MGT 

Hybrid system 

 

3.2 Influence of fuel utilization factor and air mass 

flow to SOFC/MGT system 

Figure 5 presents a comprehensive analysis of the 

impact of varying the fuel utilization factor and 

SOFC/MGT air inlet mass flow on the efficiency of 

the hybrid system in different operating modes. 

Specifically, the figure demonstrates the effect of 

changing the aforementioned parameters on the 

overall efficiency of the hybrid system as well as the 

efficiencies of the individual subsystems in different 

operating modes.  

As illustrated in  Figure 5(a), the compressed air 

flow rate is the main factor affecting mode 1, which 

refers to the compression chain of the CAES system. 

When the compressed air flow rate diverted to the 

SOFC/MGT system increases, the flow rate of the 

compressor decreases. Consequently, the power 

consumption of stages 2-4 of the compressor 

decreases, along with a reduction in the compression 

heat. However, this also leads to a significant 

decrease in the energy stored per unit time, resulting 

in a reduction in the efficiency of mode 1. Because 

the efficiency reduction of the compressor is so large 

that even though the efficiency of the SOFC/MGT 

system has increased caused by the Uf(fuel 

utilization) changing, the efficiency in mode 2 is still 

reduced, but a higher Uf will result in higher 

efficiency, as shown in  Figure 5(b). The efficiency 

of mode 3 is directly affected by the variation in Uf 

and the SOFC/MGT inlet flow rate. A high fuel 

utilization rate can reduce the fuel cell efficiency, 

and a large anode air flow can lower the average 

temperature of the fuel cell. However, since the 

compressed air in mode 3 mainly comes from the 

CAES subsystem's compressor, high fuel utilization 

rate leads to higher efficiency in mode 3. On the 

other hand, an increase in SOFC anode air reduces 

the heat output from the SOFC/MGT subsystem to 

the downstream, resulting in a decrease in efficiency. 

As shown in  Figure 5(d), the increase in system 

efficiency is observed only at the energy release end 

of the CAES system. This is because the work done 

by the turbine per unit time remains unchanged, but 

the heat output to the turbine decreases. Combining 

the turbines with the SOFC/MGT, it can be seen that 

the efficiency reduction of the SOFC/MGT 

subsystem has a greater impact, so the efficiency 

under mode 5 is reduced. 

Overall, the hybrid system's efficiency increases as 

fuel utilization increases, considering the changes in 

energy storage and release times due to variations in 

air flow. When fuel utilization is low, the 

SOFC/MGT subsystem's air flow has a positive 

effect on RTE. However, at high fuel utilization rates, 

the SOFC/MGT subsystem's air flow has a negative 

effect on RTE. 

Figure 6 depicts the exergy efficiency of each 

subsystem and the overall system as a function of Uf 
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and the inlet air flow rate to the SOFC/MGT 

subsystem, while Figure 7 shows the variation of 

exergy loss of each main component and its 

proportion in the system under different 

combinations of Uf and inlet air flow rate. In these 

figures, Uf varies between 0.35 and 0.95, and the 

inlet air flow rate changes from 1kg/s to 5kg/s. The 

performance of the SOFC is strongly affected by Uf, 

which, in turn, impacts the performance of 

downstream components, such as the afterburner, 

MGT, and turbine chain. As shown in Figure 6, the 

exergy efficiency of the SOFC/MGT subsystem 

increases with Uf since a higher fuel utilization rate 

results in higher hydrogen reacting in the SOFC and, 

consequently, higher electric energy output. 

Additionally, the outlet temperature of the fuel cell is 

also higher, which reduces the combustible gas 

entering the combustion chamber downstream, 

leading to a reduction in the exergy loss of the 

combustion chamber. Consequently, the exergy loss 

of the MGT also decreases, and the degree of 

decrease has little effect on the decrease of the 

MGT's output work compared to the increase of the 

output work brought by the increase in the turbine 

inlet flow. The highest exergy efficiency of the solid 

SOFC/MGT subsystem is achieved when Uf is 95% 

and the inlet air flow rate is 5kg/s. 

When the air flow to the SOFC/MGT subsystem 

increases, the flow rate of the 2-4 stage compressors 

in the compression chain of the CAES system 

decreases, and the power consumption also decreases, 

leading to a significant reduction in the compression 

heat of the entire compression chain. Furthermore, 

the exergy loss of the interstage cooler is reduced. As 

a result, the total exergy efficiency of the 

compression chain increases with an increase in the 

air flow diverted to the SOFC/MGT system. 

However, after a complete cycle, the split air flow 

rate reaches 5kg/s, and the difference between the 

heat of compression and the heat required for 

expansion of the entire system is negative, indicating 

that the system can no longer operate completely 

without additional external heat supply. 

For the energy release chain of CAES, the input work 

of the turbine remains unchanged since the turbine 

inlet temperature and air flow rate remain constant. 

However, due to the reduction of the exhaust gas 

temperature of the SOFC/MGT system, the exergy 

loss of the heat exchanger between the compressed 

gas tank and the turbine chain is reduced, and the 

exergy efficiency of the solid-release energy chain 

slightly increases. 

Based on the analysis above, combined with Figure 7, 

it can be concluded that for the entire hybrid system, 

the compression chain exergy loss of CAES is more 

sensitive to air flow changes, while SOFC/MGT has 

little effect on the exergy loss of the entire system. 

Therefore, the highest total exergy efficiency is 

67.24%, which increases with the increase of Uf and 

inlet air flow rate of SOFC/MGT. 

 
Figure 6. Effect of variation SOFC/MGT Uf and Inlet Air 

Mass Flow on TEE 

 
Figure 7. Percentage contribution of exergy destruction by 

each component with rise air mass flow to SOFC/MGT 

subsystem at varying fuel utilization factors. 

4. Conclusions 

This study presents a thermodynamic analysis of a 

novel hybrid CAES/SOFC/MGT generation system. 

A reliable static model of the system was established 

using ASPEN Customer Modeler and ASPEN Plus, 

and simulation experiments were conducted on key 

parameters to investigate the operating conditions of 

different subsystems and the overall system, in order 

to establish a reliable power generation and energy 

storage system. The following are some of the main 

results: 

1. The influence of different parameters on the 

performance of hybrid system was evaluated by 

a parametric analysis. The study's findings 

suggest that to enhance the system's RTE and 

TEE, it is advisable to operate the system 

higher compressor and turbine isentropic 

efficiencies and optimal SOFC/MGT split air 

flow rates. These findings can be employed in 

future system design and modeling endeavors 

to perform multi-objective optimization, 

leading to superior system performance. 
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2. The effects of changes in multiple key system 

input parameters on efficiency and exergy 

efficiency were analyzed under different 

working modes and subsystems, which can 

better help to perform individual optimization 

of the actual operating conditions of the entire 

system. 

The results offer valuable insights into the optimal 

operating conditions and design parameters for the 

system and can aid in the development of more 

efficient and cost-effective energy storage and 

generation solutions. Nevertheless, the static analysis 

approach proposed in this study provides valuable 

guidance for future system improvement and 

optimization. Furthermore, the model results 

obtained in this study not only serve as a valuable 

data source for dynamic model establishment, but 

also lay a foundation for multi-objective optimization 

of the system. Therefore, the value of system 

designed parameters should be selected wisely. 

Moreover, based on the findings of this study, the 

commercial potential of the system warrants further 

exploration. 
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Nomenclature 

Abbreviations 

CAES 

SOFC 

MGT 

AFC 

PAFC 

MCFC 

PEMFC 

DMFC 

A-CAES 

AA-CAES 

 

I-CAES 

D-CAES 

Compressed air energy storage  

Solid oxide fuel cell 

Micro gas turbine 

Alkaline fuel cell 

Phosphoric acid fuel cells 

Molten carbonate fuel cell 

Proton exchange membrane fuel cell  

Direct-methanol fuel cells 

Adiabatic compressed air energy storage 

Advanced adiabatic compressed air energy 

storage 

Isothermal compressed air energy storage 

Diabatic compressed air energy storage 

Parameters   

P Pressure (Pa) Uf Fuel utilization 

T Temperature(K) E Potential (V) 

W Work(J) R Molar gas 

constant 

(J·K−1·mol−1) 

EX Exergy (kW) F Faraday constant 

(C⋅mol−1) 

h enthalpy 

(kJkg-1) 

i Current density 

(A/cm2) 

π Compression 

ratio 

Subscripts 

k Specific heat 

ratio 

out Outlet 

m Mass flow 

(kg/s) 

in Inlet 

Cp Heat capacity 

at constant 

c Compressor 

pressure

（J/K） 

Q Amount of heat 

(kJ) 

inter Intercooler 

λ Efficiency re Regenerator 

A Area (m2) t Turbine 

μ Thermal 

conductivity 

(W/m·K) 

Ner

nst 

Nernst Potential 

V Voltage (V) act Activation  

η Polarization 

loss(V) 

con Concentration 

Χ Mole fraction ohm Ohmic 

α Transmission 

coefficient 

split Split after 1st 

compressor 

I Exergy loss 

(kW) 
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Abstract 
 
In the transition to a fossil-free transport sector, the use of Dimethyl ether (DME) can be an environmentally 
friendly alternative. DME is a synthetically produced alternative to fuels like diesel or liquified petroleum gas 
(LPG), and has lower emissions of CO2, NOx and particles compared with diesel. To be a green renewable 
alternative, DME needs to be produced from carbon neutral resources such as biomass. DME can be produced 
from synthesis gas produced by gasification of biomass. The synthesis gas can be used to produce either DME 
directly in a single stage process with a bi-functional catalyst, or in a twostep process in which methanol is 
produced in the first step and converted to DME via dehydration in the second step. In this study process 
simulations of the DME synthesis from methanol is assessed. The paper involves assessment of process 
parameters and energy improvement of the DME synthesis. The study evaluates the effects of different 
thermodynamic models like PRSV, NRTL, WILSON and UNIQUAC in Aspen Hysys. Conversion reactor and 
Gibbs reactor configurations, and sensitive analysis of process parameters is studied. Heat integration is evaluated 
for energy resource management and cost estimation. The Gibbs reactor with the UNIQUAC model and internal 
heat integration resulted in an increase in DME production of 0.5% and a reduction in energy demand of 46%. 
 
1. Introduction 
The world's energy consumption is on the rise, and 
as greenhouse gas emissions continue to increase, a 
complete shift from fossil fuels to renewable energy 
sources has become imperative. The transport sector 
accounts for 15% of direct global greenhouse gas 
emissions (Energi og Klima 2023). The use of 
dimethyl ether (DME) can be an environmentally 
friendly alternative for the transition to a fossil-free 
transport sector, if DME is produced from carbon-
neutral resources such as biomass. DME and diesel 
are fuels that can be used in the transport sector for 
the same purposes. DME offers some advantages 
over diesel, such as a higher cetane number which 
gives lower emissions, better cold start and lower 
consumption than a fuel with a lower cetane number. 
DME also produces lower emissions of particles, 
NOx, hydrocarbons, and carbon monoxide (CO) 
compared to diesel. However, the disadvantages of 
DME are lower density and viscosity which requires 
adaptations in the injection system (Salomonsson 
2023). The volumetric energy density of DME and 
diesel are 21 MJ/dm3 and 36,6 MJ/dm3 respectively, 
indicating for every liter of diesel burned in an 
internal combustion engine there is a need of 1.74 
liters of DME to achieve the same energy output. 

Biomass can be used to produce energy-rich 
synthesis gas through a thermochemical process 
called gasification. The composition of the 
generated gas varies based on the type of biomass 
utilized, primarily comprising CO, H2, CO2, CH4, 
and N2. A pure synthesis gas predominantly 
comprises H2 and CO, serving as essential building 
blocks for the production of biofuels or chemicals. 
Some examples of chemical products are ammonia, 
synthetic petrol and diesel, acetic acid, plastic raw 
materials, methanol and DME (Evans G 2012). The 
process of biomass gasification not only aids in 
waste reduction but also enables the productive 
utilization of materials like agricultural and forest 
residues.  
The synthesis gas can be converted to DME in two 
ways; direct conversion (one-step process) or 
indirect conversion (two-step process), as shown in 
Figure 1. (U.S. Department of Energy 2023). 
 

Sources:
 Coal

Natural gas
Oil

Biomass

Synthesis
Gas

(CO+H2)

Methanol

DMEIndirect conversion

Direct conversion  
 

Figure 1: Dimethyl ether production diagram (Azizi Z. 
2014). 
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The indirect conversion is a twostep process; first, 
methanol is made from synthesis gas in a reactor 
with a metallic catalyst. The methanol is dehydrated 
to DME in the next reactor with an acidic catalyst. 
In the direct conversion, DME is made in one step; 
the synthesis gas reacts directly to DME in a reactor 
with a dual catalyst system that combines the two 
reactions. This method has the advantage of 
avoiding the accumulation of methanol as an 
intermediate, thus increasing the yield of DME 
(Azizi Z. 2014). Both processes are mildly 
exothermic as shown in Table 1 (Guffanti S. 2021), 
thus it is important to control the temperature in the 
reactors to avoid the equilibrium reactions being 
reversed. (Polsen C. 2020) (Pagán-Torres Y. J. 
2017). DME produced via methanol dehydration 
over acid catalysts such as γ-Al2O3, takes place at 
temperatures above 240 °C and pressures above 
10 bar (Peinado C. 2020). 
The reactions taking place in direct and indirect 
conversion is described in Table 1, where the last 
reaction is the main reaction taking place in the 
conversion of methanol to DME and water. 
 
Table 1: Reactions and enthalpy change for the direct and 

indirect process (Guffanti S. 2021). 
Reactions ∆𝐇°𝟐𝟗𝟖𝐊 [𝐤𝐉/𝐦𝐨𝐥]    

CO + 2H2 ⇋ CH3OH -90.4      

CO2 + 3H2 ⇋ CH3OH + H2O -49.4      

CO + H2O ⇋ CO2 + H2 -41.1      

2CH3OH ⇋ (CH3)2O + H2O -23.0      

 
In this paper the focus is on the second step in the 
indirect conversion process which methanol is 
dehydrated to DME. It is assumed that methanol is 
available as a feed stream and that the first step, the 
methanol synthesis from syngas, has already been 
performed (Fossen M. 2022). Thus, only the reaction 
of methanol in a reactor to produce DME and water 
is simulated. Aspen Hysys simulations is used to 
study the process.  
The objective of this research work is to assess 
process design, process parameter study and energy 
integration, as well as cost estimation of the DME 
synthesis. 
 
2. Methodology  
Figure 2 shows the process flow diagram for the 
DME synthesis simulated in Aspen Hysys (Turton 
R. 2018) (Larsen S. 2023). 
Pure methanol (stream 1) is mixed with recycled 
reactant stream (stream 13) and evaporated in the 

heater E-201 before being fed to the reactor R-201. 
The reactor is set to operate at a temperature of 250 
°C and 14,7 bar. The effluent from the reactor 
(stream 6) is cooled by the cooler E-203 before 
entering the first distillation column T-201 at 89°C 
and 10,4 bar. In this column the DME is the distillate 
and final product, and methanol and water are the 
bottom product. The methanol mixture is then 
cooled down in the cooler E-205, before it enters the 
second distillation column T-202, where the water is 
separated from methanol as the bottom product and 
is sent to wastewater treatment to remove traces of 
organics. Unreacted methanol in the distillate is 
recycled and combined with pure methanol in the 
mixer M-201. The purity of the DME in the first 
distillation column is set to 99.5%. The component 
recovery of methanol was set to 95% in the second 
distillation column. Simulated with the 
thermodynamic model PRSV (Peng-Robinson-
Stryjek-Vera), this model is referred to as the base 
case. 
 
2.1 Process parameter study 
The main reaction of methanol to DME and water is 
an exothermic reaction. Increasing the temperature 
for this reaction the system will consume some of 
the heat by shifting the equilibrium to the left as 
described by the Le Chatelier’s principle.  This will 
lead to a reduction of the DME concentrations when 
the temperature increases. Since the main reaction 
has the same number of molecules on both sides of 
the equilibrium, the pressure has no or little effect on 
the composition of DME. 
 
2.2. Thermodynamic models 
Four thermodynamic models were studied in this 
work, all of them relevant for the synthesis of DME. 
These are PRSV, UNIQUAC, NRTL and Wilson.  
The thermodynamic models calculate physical and 
transport properties, as well as phase behavior for 
the simulated processes. These are the models 
recommended from Aspen Hysys for these types of 
polar mixtures.  AspenTech (Aspen Technology, Inc 
2020) describes the thermodynamic models as 
follow: 
PRSV (Peng-Robinson-Stryjek-Vera) considers 
moderate deviations from ideality in gas and non-
ideal liquid phases. This model is well suited for 
aqueous solutions containing water, methanol, or 
glycols. 
UNIQUAC (Universal Quasi Chemical) is a model 
that describes the liquid structure using activity. 
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Figure 2: Process flow diagram for the base case of the synthesis of dimethyl ether (DME) in Aspen Hysys (Larsen S. 2023).
 

Figure 3: Process flow diagram with improved energy integration of the synthesis of dimethyl ether (DME) in Aspen Hysys 
(Larsen S. 2023). 

These activity coefficients are factors that can 
account for deviations from ideality in the liquid 
phase at low to moderate pressures. 
NRTL (Non-Random-Two-Liquid) also uses 
activity coefficients to represent non-ideality in the 
liquid phase. It can also handle electrolytes and 
gases with pressures above 10 bar. NRTL can 
calculate properties for pure components such as 
methanol, water and DME. 
Wilson is also using activation coefficients, but with 
a simpler form than UNIQUAC and NRTL. It 
cannot be used for systems with two liquid phases. 
 
2.2 Reactor design  
Equilibrium reactions in Aspen Hysys should be 
performed in conversion reactors, or in Gibbs 
reactors. A conversion reactor is a simple type of 
reactor in Aspen Hysys where the conversion 
proportion is specified. This reactor needs a reaction 
kit that contains conversion reactions and operates 
on a stoichiometric basis. The reaction stops when 
the specified conversion is achieved. The advantage 
of this reactor is that it can integrate several different 
reactions in the same unit. This can be useful in 
extremely complex reactor designs (Hafiza Shukor 
P. 2023).  
The reactions in a Gibbs reactor determines the 
effluent composition by achieving phase and 

chemical equilibrium. This reactor does not need to 
use reaction stoichiometry but calculates the product 
mix by minimizing the Gibbs free energy of the 
system. In the Gibbs reactor, we assume that neither 
pure substances nor the reaction mixture is ideal. An 
advantage of this reactor is that it can act as a 
separator, an equilibrium reactor, or a reactor that 
minimizes Gibbs free energy without specifying any 
reactions. The Gibbs reactor can be useful for 
simulating the equilibrium state or when reaction 
kinetics are lacking. It is also easier to converge than 
an equilibrium reactor with reactions when the 
simulation is sensitive to the input parameters 
(Hafiza Shukor P. 2023).  
 
2.3 Energy integration 
For energy improvement, the thermodynamic model 
that gave the highest DME mass production was 
used. However, in practical scenarios, it is crucial to 
validate the choice of a thermodynamic model by 
comparing it with experimental data. This validation 
process ensures that the selected model accurately 
represents the real-world situation.  
A heat exchanger E-302, given in Figure 3, replaced 
the heater E-201 in Figure 2. The reaction in the 
reactor R-301 was exothermic, heat was generated 
and released. This means that the outlet flow from 
the reactor was hotter than the inlet flow. This heat 
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flow was used on the shell side of the heat exchanger 
E-301 in Figure 3 so the heat exchanger E-302 had 
a reduced energy requirement. The cooler E-203 was 
replaced with a heat exchanger E-303 which used 
cooling water to lower the temperature further 
before the stream enters the distillation column T-
301. The second cooler E-205 was removed 
completely without replacement, because the 
temperature had been lowered by changing the 
operating parameters earlier, thus no need of cooling 
was necessary. The changes for energy 
improvement and operating parameters are referred 
to as the energy integrated case. 
 
2.4 Cost estimation 
Cost estimation was done for both investment cost 
(CAPEX) and operating cost (OPEX).  
Calculation of investment costs was performed 
using Equation 1, where the CAPEX represents the 
investment costs. ΣCBM is the sum of the purchase 
cost and installation cost for all appliances and 
equipment in the DME synthesis. 
 

𝐶𝐴𝑃𝐸𝑋 =1,18∗Σ𝐶BM     (1) 
 

OPEX consists of three categories: direct production 
costs (DMC), fixed production costs (FMC), and 
general production costs (GE). To calculate the 
electricity cost, an average price of 0.192 USD/kWh 
for global businesses in 2022 was used 
(GlobalPetrolPrices.com 2022). For calculating the 
cooling water cost, a price of 0.0157 USD/m3 in the 
year 2001 (Turton R. 2018) was used. To calculate 
the steam cost, prices from (Turton R. 2018) were 
used, with a medium steam pressure price of 
0.00961 USD/m3 and a high steam pressure price of 
0.00954 USD/m3. To calculate the raw material cost, 
a price of 1.49 USD/US gallon for methanol was 
used (Seaberg 2018).  
The calculation of operating expenses (OPEX and 
COMd) excluding depreciation was performed using 
Equation 2, where FCI represents the investment 
cost, COL denotes operating labor cost, CUT signifies 
the cost of utilities, CWT represents the cost of 
wastewater management, and CRM represents the 
cost of raw materials.  

 
OPEX = COMd = 0.180*FCI + 2.73*COL + 

1.23*(CUT + CWT + CRM)     (2) 
 
For the calculation of DME income (R), an average 
price (P) for DME in 2018 of 2.26 USD/US gallon 
was used (Seaberg 2018). This price is competitive 
with diesel considering the ratio between them of 
1.74. The formulas and data for the cost estimation 
of CAPEX and OPEX are given in (Turton R. 2018). 
The cost was estimated for the base case, for the 
process parameter study, and the energy integrated 
process.  

To calculate the net present value (NPV), a 
cumulative discounted cash flow was computed 
throughout the construction and operational phases 
of the DME synthesis. NPV is a measure of the 
project's profitability based on the present value of 
all incomes and expenses associated with the 
project. The cumulative discounted cash flow is the 
sum of all future cash flows (incomes - expenses) 
generated and accumulated, adjusted back to year 
zero. 
 
3. Results 
 
3.1 Process parameter study 
In Figure 4, the production of DME was studied as a 
function of temperature and pressure. The mole 
fraction of DME in the outlet flow of the reactor as 
a function of temperature was studied in the 
temperature range 200-370°C at 14.7 bar pressure. 
While the mole fraction as a function of pressure 
were studied at 250°C in the pressure range 5-30 bar. 
The simulations were performed with the 
thermodynamic model PRSV.  
 

 
 

 
Figure 4:  Mole fraction in stream 6, outlet flow of the 

reactor, as function of temperature and pressure, for the 
conversion and Gibbs reactor design. 

 
The reaction efficiency in the conversion reactor 
was defined to be constant to 80%. Changing the 
pressure and temperature in stream 4, the inlet 
stream to the reactor, did not lead to a change in the 
DME stream mole fraction, which is reasonable as 
the conversion efficiency calculation was both 
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temperature and pressure independent. Therefore, 
this reactor was not assessed further. 
For the Gibbs reactor, the DME mole fraction in the 
outlet decreases with higher temperature in the inlet. 
The chemical reaction is exothermic and will occur 
spontaneously. This results in a negative value of the 
Gibbs free energy and a negative enthalpy change. 
The reaction will be reserved to stop the temperature 
increase resulting in a lower DME production. An 
increase in pressure favors the production rate, 
because the first 2 reactions in Table 1 contributes to 
larger methanol production. However, the changes 
in the tested pressure range are minimal.  
The Gibbs reactor at 200°C and 17 bar was tested to 
confirm the impact of lower temperature and 
increased pressure on energy improvement and 
increased DME production. Table 2 shows the 
changes in energy consumption as a result of 
parameter changes over the reactor system. A 
decrease in energy consumption of 6.6 % is 
observed. 
A parameter evaluation was also performed over the 
first distillation column T-201. The temperature 
inlet of flow 7 was increased from 89°C to 135°C, 
the pressure remains as in base case at 10.4 bar.  

 
Table 2: Simulation results for the Gibbs-reactor 

parameter adjustment with PRSV.   
Base case  Parameter 

change  
Flow 4 6 4 6 

Temperature [°C]  250  363,9 200 318,3 

Pressure [bar]  14.7  14.7 17 17 

Mass flow DME [kg/h]  0  5 905 0 5 913 

Energy consumption in 
the system[kW]   

17 652 16 491 

Change in mass flow [%]    0.13 

Change in energy [%]   6.6 

 
 

Table 3: Simulation results for the parameter adjustment 
in the distillation column T201 with PRSV.   

Base case  Parameter 
change  

Flow 7 DME 7 DME 

Temperature [°C]  89 45,78 135 45,78 

Pressure [bar]  10.4 10.3 10 10.3 

Mass flow DME [kg/h]  5 913 5 913 5 913 5 914 

Energy consumption in the 
system[kW]   

16 491 14 098 

Change in mass flow [%]  0 0.02 

Change in energy [%]  
 

14.5 

 
Table 3 give the result of the simulation over the 
column. It is observed a reduction of energy of 14% 
in the system using an increased temperature into the 

column because of reduction in cooling water. A 
total energy reduction of 20% are observed because 
of parameter adjustments. 
 
3.2. Thermodynamic models 
Based on Gibbs reactor, different thermodynamic 
models was simulated for comparison. Figure 5 
shows an overview of the change in energy and the 
outlet flow of DME for the four thermodynamic 
models compared to the base case. The UNIQUAC 
model gave the lowest energy consumption before 
energy integration. For the mass flow an increase of 
0.5% for the UNIQUAC model is observed 
compared to the base case. 
The UNIQUAC model is well suited for gases with 
high pressure and a known boiling point. The 
UNIQUAC model was also recommended by 
specialist literature (Turton R. 2018). In a real 
process, it is essential to choose the thermodynamic 
model that best describes the given process. This 
could be done by comparing experimental data or 
real industry data with simulation results. For this 
work, process data was not available to carry out 
validation of the simulation model.  

 
 
Figure 5: Comparison of energy consumption[kW] and 

mass flow DME [kg/h] for different thermodynamic 
models. 

 
3.3 Energy integration 
The UNIQUAC model has been chosen when 
simulating the energy integrated process. Figure 6 
shows an overview and comparison between the 
base case, the process parameter study, and the 
energy integrated process. For the process parameter   
study the pressure and temperature are changed to 
17 bar and 200°C in the reactor, and UNIQUAC is 
used as the thermodynamic model. For the energy 
integrated process two heat exchangers are inserted, 

17652

14098

12134 12410
13149

5905 5914 5914 5913 5989

Energy consumption [kW]

Massflow DME [kg/h]
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one was inserted with internal heat integration to 
reduce energy consumption in the heater. The 
second heat exchanger used external heat transfer in 
the form of cooling water as a replacement for two 
coolers. An energy reduction of 46% is observed 
from the base case to the energy integrated case.   
 

 
 

Figure 6: Comparison of energy consumption between 
base case, process parameter study and energy integrated 

process. 
  
3.4 Cost estimation 
By reducing the energy requirement, the OPEX for 
the energy was reduced. However, as pressure and 
temperature were not changed much compared to 
the base case, CAPEX for the equipment was 
approximately the same. The total OPEX was 
reduced with -11%, while the CAPEX was reduced 
with -4% compared to the base case. The project 
estimated the CAPEX to approximately $1.8 
million, and the OPEX of approximately $58.6 
million, and a revenue of approximately $54.3 
million. 
For the utilities, the costs of electrical energy, 
cooling water and steam were reduced from the base 
case, as shown in Table 4, by 34%, 74% and 49% 
respectively. This is due to lower temperature and 
higher pressure, which led to a lower need for energy 
in pumps, evaporators, and condensers altogether. It 
is also due to the internal heat integration that 
utilized the heat from the reactor to heat the inlet 
stream. This led to less need for steam, which also 
required lower pressure and thus a lower price. An 
increased temperature before the first distillation 

column T-301, led to less need for cooling and 
removal of the second cooler E-205. This resulted in 
less need for cooling water. Total savings for 
utilities were 35% compared to the base case.  
The pressure of the reactor was earlier set to 17 bar 
to examine the impact of the pressure on DME 
production and cost estimation. Because of small 
impact on DME production and cost savings, the 
pressure in the reactor was reduced to 10 bar.   This 
pressure reduction reduced the cash flow with only 
0.02 % or approximately 11 000 USD/year. This 
shows that reduction in the reactor feed pressure has 
insignificant impact on the cost estimation, but it is 
overall beneficial for safety issues.  
 
Table 4: Overview of savings in utility cost per year and 
percentage for changes from the base case to the energy-

integrated process. 
  Change

[USD/year] 
Change

 [%] 
Electrical energy -5 000 000 -34 

Cooling water -48 000 -74 

Steam -850 000 -49 

Totalt  -5 900 000 -35 

 
During the evaluation of the net present value (NPV) 
reaching zero in year 25 at a discount rate of 10%, it 
was determined that the DME price needed to be 
2.46 USD/US gallon in order to achieve the 
breakeven point. 
 
4. Summary and Discussions 
This paper used Aspen Hysys simulations to 
describe the production of green DME from indirect 
conversion of synthesis gas from biomass. The main 
aim was to evaluate process design, process 
parameter study and energy improvement, as well as 
cost estimation of the DME synthesis. The aim was 
to find a process with improved DME yield and 
energy requirement with minimal adjustments to 
operating parameters.  
The process has been simulated and improved using 
various operating parameters, reactor design and 
thermodynamic models. The final process 
configuration was found to be a Gibbs reactor with 
the UNIQUAC model and internal heat integration. 
This process resulted in an increase in the DME 
production of 0.5% and a reduction in energy 
demand of 46%. The cost estimate showed that the 
project was not profitable with the given prices for 
methanol and DME of 1.49 and 2.26 USD/US gallon 
respectively. The price for DME had to be at least 
2.46 USD/US gallon to get a positive NPV within 25 
years. By setting the price at 2.50 USD/US gallon 
the repayment period will be approx. 6.5 years. The 
price of DME (Dimethyl Ether) and Methanol is 
indeed crucial for profitability. The choice of a 
discount rate of 10% also significantly impacts the 
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result, as operating expenses (OPEX) are much 
larger compared to capital expenses (CAPEX). 
Additionally, utility costs are also significant, and 
there is potential for improvement in terms of heat 
integration. The price of electricity, fixed at 
0.19USD/kWh, will also have a considerable impact 
on the result.  
Based on the findings, it was concluded that 
production of green DME from synthesis gas is 
technically and economically feasible. 
It is also concluded that DME is an attractive fuel for 
the heavy transport sector and municipalities. 
Further research into parameter changes and energy 
integration is necessary to optimize the process 
profitability.  
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Abstract 
 
Computational Fluid Dynamics (CFD) simulations are extensively used to model indoor environments, including 
airflow patterns, temperature distribution, and contaminant dispersion. These simulations provide valuable 
insights for improving indoor air quality, enhancing thermal comfort, optimizing energy efficiency, and informing 
design decisions. The recent global pandemic has emphasized the importance of understanding airflow patterns 
and particle dispersion in indoor spaces, highlighting the potential of CFD simulations to guide strategies for 
improving indoor air quality and public health. Consequently, there has been a significant increase in research 
focused on studying the transport and dispersion of pollutants in indoor environments using CFD techniques. 
These simulations are vital in advancing engineers' understanding of indoor environments; however, achieving 
accurate results requires careful method selection and proper implementation of each step. This paper aims to 
review the state-of-the-art CFD simulations of indoor environments, specifically focusing on strategies employed 
for three main simulation components: geometry and grid generation, ventilation strategies, and turbulence model 
selection. Researchers can select suitable techniques for their specific applications by comparing different indoor 
airflow simulation strategies. 
 
1. Introduction 
Understanding and assessing indoor environments is 
crucial, given that people spend most of their time 
indoors. The quality of indoor air, thermal comfort, 
and energy consumption are key factors that directly 
impact individuals' well-being and productivity. 
Poor air quality can lead to various health issues, 
such as respiratory problems and allergies. After the 
recent pandemic, there has been a heightened 
awareness and understanding of the importance of 
indoor air quality. A growing emphasis is on 
implementing strategies and technologies that 
enhance ventilation, filtration, and air purification to 
create safer and healthier indoor environments. The 
COVID-19 pandemic has significantly increased 
research on indoor airflow since the onset of the 
COVID-19 pandemic in 2019 (Kohanski et al., 
2020). 
Investigating enclosed environments commonly 
involves conducting experiments and utilizing 
computational simulations. The increasing number 
of numerical research studies in this area can also be 
attributed to a notable advancement in computer 
capabilities, as well as the development and 
refinement of computational fluid dynamics (CFD) 
methods and software. 

Indoor environments can be broadly categorized into 
private residential spaces and public settings. Public 
utility buildings include diverse spaces, such as 
churches, museums, libraries, and hospitals. Each of 
these environments serves a unique purpose and has 
specific requirements for indoor air quality. The 
quality of indoor air in public utility buildings is 
influenced by various environmental factors, 
including human activity, characteristics of the 
indoor area, and the presence of chemical 
compounds in the surrounding air (Śmiełowska et 
al., 2017). 
Ventilation is an important part of indoor air 
simulations, which also plays a crucial role in 
limiting the spread of viruses. Optimizing 
ventilation rates, eliminating air recirculation, using 
portable air cleaners with proper maintenance, and 
avoiding overcrowding in public spaces are some of 
the recommendations in this area. Implementing 
these engineering controls alongside other 
preventive measures will lower airborne pathogen 
concentrations and reduce infection rates for 
airborne diseases. It emphasizes the need to 
prioritize airborne transmission reduction in 
hospitals and public buildings to protect healthcare 
workers and the public.(Morawska et al., 2020) 
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The effectiveness of designing and operating indoor 
environments relies on accurate and reliable 
numerical simulations. This paper comprehensively 
reviews the latest advancements in Computational 
Fluid Dynamics (CFD) simulations for various 
indoor settings. Specifically, it focuses on three 
crucial and challenging aspects: geometry and grid 
generation, ventilation strategy, and selection of 
appropriate turbulence models. By examining these 
areas, this review aims to enhance the understanding 
of simulation strategies and ultimately improve the 
overall accuracy and reliability of numerical 
simulations in the investigation of indoor 
environments. 
 
2. Methodology 
The method used in this study involves gathering 
information from recent articles by searching for 
keywords such as indoor airflow, ventilation, CFD 
simulation, and indoor air quality in academic 
databases such as Web of Science, SAGE journals, 
and Science Direct. The focus is on studies 
conducted since 2012. The collected information is 
then compared and analyzed, specifically 
emphasizing geometry and grid generation, 
ventilation strategies, and the selection of turbulence 
models. By examining and summarizing these 
aspects, this study aims to understand the latest 
advancements and strategies used in simulating 
indoor environments. 
 
3. Overview of CFD Methods for Indoor 
Environment Simulations 
 
3.1. Yearly publication distribution 
For this review, an analysis was performed on 25 
previous research studies in the field of CFD 
simulation with a specific emphasis on indoor 
airflow. Figure 1 illustrates the yearly distribution of 
reviewed papers. It highlights the observed trend in 
the selected research, showing a focus on recent 
articles from 2020 until the present. 
 
3.2. Simulation tools 
The software tool ANSYS Fluent is widely 
recognized and extensively used for conducting 
CFD simulations in most research papers reviewed 
here. Fluent has gained popularity among 
researchers and engineers for its exceptional 
capabilities and user-friendly interface, making it a 
preferred choice for modeling and analyzing fluid 
flow, heat transfer, and other related simulations. 
This software is also commonly used for simulating 
indoor airflows and conducting CFD analyses in 
indoor air quality and ventilation. It gives 
researchers and engineers the tools to model and 
analyze various aspects of indoor airflows, including 
air distribution, temperature profiles, pollutant 
dispersion, and ventilation effectiveness. The choice 

of CFD software depends on the specific research 
objectives and the researchers' expertise. A few 
studies also employed other CFD tools for their 
simulations. For instance, some researchers utilized 
ANSYS CFX (Kalliomaki et al., n.d.), OpenFOAM 
(Arpino et al., 2023), or STAR-CCM+ (Chang et al., 
2023). 
 
3.3. Geometry and grid generation 
Figure 2 categorizes the selected papers based on the 
different types of indoor spaces studied using CFD. 
These categories include various indoor 
environments, including Hospital Environments, 
Transportation Spaces, Educational Spaces, Offices, 
Restaurants, Residential Spaces, and Museums. 
Among these categories, Figure 2 shows that 
hospital ward research represents the most 
significant proportion, accounting for 36% of all the 
selected research studies. Table 1 provides detailed 
information on the subsections within each category 
and lists the corresponding relevant research studies. 
 

 
Figure 1: Yearly distribution of reviewed studies 

 
Grid generation is a vital aspect of conducting 
indoor airflow CFD simulations. It involves creating 
a grid or mesh that discretizes the indoor 
environment into smaller elements, allowing for the 
numerical solution of governing equations. (Liu et 
al., 2022a) conducted a comparison of three 
different meshing strategies, namely hexahedral, 
tetrahedral, and polyhedral meshes, for simulating 
indoor airflow in geometries with varying levels of 
complexity to assess the performance and suitability 
of each mesh type in capturing the airflow behavior 
within indoor environments  
All the articles studied here utilized three-
dimensional geometry, and most employed 
unstructured grids due to their complex geometry. 
Various types of cells are used in grid generation in 
studied articles, including Tetrahedral, Hexahedral, 
poly-hexcore. 
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Figure 2: Different Types of Indoor Spaces in Reviewed 

Studies and Their Proportions 
 
As depicted in Figure 3, half of the studies utilized 
a tetrahedral mesh for their simulations. Around 
20% of the studies used hexahedral mesh. Only 10% 
of recent studies used a poly-hexcore mesh, which is 
also a new option available in recent versions of 
Fluent meshing software. 
The volume of the simulated geometry varied across 
the different studies. The smallest volume, 0.128 m³, 
was associated with a modeled room (Marashian et 
al., 2022), while the largest volume, 724.56 m³, was 
observed in the context of an open museum space 
(Bakry et al., 2022). 
The average mesh density is another grid property 
determined based on the ratio of the geometric 
model's volume to the total number of cells. (Liu et 
al., 2022a). This parameter also can represent the 
complexity of the generated grid. In Table 1, the 
average mesh density is calculated and reported for 
the studied papers. 

 
Figure 3: Cell Types Used in Grid Generation in Studied 

Articles 
 

 

3.4. Ventilation strategies 
Natural and mechanical ventilation are the two main 
methods to ventilate indoor spaces. Natural 
ventilation relies on natural forces such as wind or 
buoyancy to create airflow. On the other hand, 
mechanical ventilation utilizes mechanical systems 
like fans, blowers, or air conditioners to control 
indoor airflow. 
The number of inlets, outlets, and openings like 
windows and their locations are crucial factors that 
significantly influence indoor air simulations. These 
parameters are critical in determining air 
distribution, ventilation effectiveness, and 
contaminant removal within indoor environments. 
The placement of inlets and outlets affects the 
airflow patterns and the distribution of fresh air 
within the indoor environment. Strategic placement 
of supply air diffusers and exhausts can ensure 
efficient air mixing, reduce the residence time of 
contaminants, and promote thermal comfort. 
According to (Xu et al., 2022), Mixing ventilation 
(MV) and Displacement ventilation (DV) are two 
common approaches for distributing air within 
indoor environments. In mixing ventilation, high-
speed air is released from upper diffusers, causing 
the supplied air to mix with the surrounding air. 
Displacement ventilation, on the other hand, 
involves supplying cool air from lower diffusers, 
utilizing convective thermal flow around heat 
sources, and expelling it from the top of the room. 
Personalized ventilation (PV) is another ventilation 
strategy that has recently been used for indoor 
environments. In personal ventilation, fresh air can 
be directly supplied for inhalation purposes or 
exhaled aerosols can be directly exhausted from 
their source. Downward ventilation (DWV), 
Protected zone ventilation (PZV), and Stratum 
ventilation (SV) are among other strategies used in 
literature. 
Air Changes per Hour (ACH) is an important term 
of ventilation design that refers to the number of 
times the entire volume of air within a space is 
exchanged with fresh air per hour. ACH is a key 
parameter for quantifying ventilation rates and 
determining indoor air quality. Increasing the 
ventilation rate alone does not always ensure better 
contamination control. Therefore, it's important to 
consider the ventilation airflow pattern and the 
efficiency of air changes in order to achieve 
effective contamination control (Wang et al., 
2018a).  
Table 1 provides comprehensive details regarding 
the type of room, the ventilation strategy employed, 
and the Air Changes per Hour (ACH) values, 
wherever available, for the studies examined in this 
review. ACH values in the reviewed studies varied 
significantly, ranging from 0.5 for one of the 
residential building cases to as high as 100 for 
specific cases, such as operating rooms. 
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3.5. Turbulence models 
Turbulence modeling is crucial in simulating indoor 
airflow in CFD simulations. Indoor environments 
are often characterized by complex flow patterns, 
including turbulence, which can significantly impact 
factors such as air quality, thermal comfort, and 
energy efficiency.  
Researchers and engineers can better understand and 
optimize indoor airflow conditions by accurately 
modeling turbulence. The main turbulent models 
commonly used in CFD simulations are Direct 
Numerical Simulation (DNS), Large Eddy 
Simulation (LES), and Reynolds-Averaged Navier-
Stokes (RANS). DNS resolves all the relevant 
spatial and time scales of the flow and none of the 
eddies are modeled but it needs a very high 
computational cost and resources. Hence it is mainly 
used for basic flows in simple geometries. 
RANS models, such as the k-ε, k-ω, and their 
variations, are widely used in indoor airflow 
simulations due to their computational efficiency 
compared to DNS and LES. RANS models solve the 
time-averaged Navier-Stokes equations and provide 
insights into the mean flow characteristics.  
The renormalization group k-ε turbulence model 
(RNG), realizable k-ε turbulence model, standard k-
ε turbulence model, and Shear stress transport model 
k-ω(SST) are among the most employed RANS 
turbulence models in indoor airflow simulations. 
These models involve the estimation of turbulence 
kinetic energy (k) and its dissipation rate (ε or ω) to 

calculate the turbulent viscosity and model the 
turbulence effects. 
 

 
 

Figure 4: Turbulent models Used in selected Articles. 
 
 
According to Figure 4, (RNG) k-ε was the most 
prevalent turbulence model among the reviewed 
studies, accounting for 42% of the cases. LES is a 
turbulence modeling approach that resolves the 
larger eddies in the flow while modeling the smaller 
dissipative scales. Due to its high computational 
expense, this model was used less frequently 
compared to other turbulence models and represents 
8% of the models used in the reviewed studies. 
 

 
Table 1: Geometry Category and Relevant Research Studies; Type of Room; Ventilation Strategy, and ACH (Where 

Available); Average Mesh Density; Turbulent Model 

Types of Indoor Spaces Study Ventilation 
Strategy ACH 

Average 
Mesh            

Density 
cell/m3 

Turbulent 
model 

Hospital   
Environments 

Patient 
ward 

(Almhafdy et al., 
2023)   29167 SST k-ω 

(Satheesan et al., 
2020) 

Mechanically 
ventilated (with a 
positive pressure 

towards the 
corridor), with and 

without local 
exhaust grilles 

3 
6 
9 
13 

 RNG k-ε 

(Lu et al., 2020) 

Stratum ventilation 

12 8283 RNG k-ε 

Mixing ventilation 
Downward 
ventilation 

Displacement 
ventilation 

(Aganovic et al., 
2019) 

Protected occupied 
zone ventilation 

1.57 
2.36 
3.15 
3.94 
4.73 

108696 SST k-ω 
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Operating 
room 

(Sadeghian et al., 
2022)   40000 

RNG k-ε / 
Realizable 

k-ε 

(Rahman et al., 2018)   6667 RNG k-ε 

(Wang et al., 2018) 

Vertical laminar 
airflow ventilation 26 

46 
100 

28925 Realizable 
k-ε Temperature-

controlled airflow 
Mixing ventilation 

(Sadrizadeh et al., 
2014) 

Mixing ventilation 
system 47 19048 RNG k-ε 

Isolation-
room 

(Kalliomaki et al., 
2020.) 

Overhead mixing 
ventilation 

12 46939 SST k–ω       
LES 

Local downward 
ventilation with 

background mixing 
ventilation 

Zonal downward 
ventilation 

Intensive 
care 

units (ICU) 
(Ismail et al., 2023) 

Vertical laminar 
airflow 

 7206 Standard   
k-ε 

Horizontal laminar 
airflow 

Temperature 
controlled 

airflow 

Transportation 
Spaces 

Aircraft 
cabin (Rai & Chen, 2012)   85263 RNG k-ε 

Vehicle 
cabin (Chang et al., 2023)   77778 SST k-ω/ 

RNG k-ε 

Educational 
Spaces 

Classroom 
(Mirzaie et al., 2021)   6458 RNG k-ε 

(Pirouz et al., 2021)   7211 k-ε 

Lecture 
Room 

(Arpino et al., 2023)   8205 SST k-ω 
(Lin et al., 2015)   369 RNG k-ε 

          Office (Pirouz et al., 2021)   9059 k-ε 
      Restaurant (Li et al., 2021)    RNG k-ε 

  Residential Spaces 

(Bahramian et al., 
2023) Mixing ventilation 15 35000 RNG k-ε 

(Zong et al., 2023) Displacement 
ventilation 0.51 27679 SST k-ω 

(Liu et al., 2023) 
Make-up air 

organization from 
window 

 63272 Standard   
k-ε 

(Feng et al., 2020)   66667 LES 
(A. Zhang et al., 

2019)   36765 Standard 
k-ε 

(Plana-Fattori et al., 
2014)   15714 Standard   

k-ε 

          Museum (Bakry et al., 2022)   18450 Realizable 
k–ε 
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4. Summary and Discussions 
In conclusion, this review paper analyzed 25 
research papers focusing on geometry and grid 
generation, ventilation strategies, and turbulence 
model selection in the context of indoor airflow 
simulations. This review investigated various 
geometries with varying dimensions and 
complexities, reflecting the diverse indoor 
environments. The tetrahedral mesh was the most 
frequently employed cell type among the different 
mesh types. The RNG k-ε model was the most used 
in studied papers regarding turbulence models. 
Furthermore, a comprehensive overview of the 
various ventilation strategies employed in each type 
of indoor environment is presented. This 
information provides valuable insights into the 
diverse approaches to ensure optimal air quality and 
circulation in various settings. 
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Abstract 

 

The Construction and mining Industry comprises complex operations and interactions between various actors at 

different levels. Simulation has emerged as a valuable tool in this domain to better understand the site's behavior 

and optimize its operation. However, developing a simulation platform that can handle all the operations on the 

site is challenging due to the computational cost of the digital representation of reality along with the required 

accuracy level. 

This paper aims at extracting and mapping the optimization requirements of construction sites at three main 

levels: site level, operational level and dynamics level. More precisely, this work seeks to define and map the 

most important requirements between these levels that ensure simulation credibility and reliability. 

Based on interviews with experts in the domain, both from academia and industry, several key insights and 

recommendations emerged: at the site level, the layout and the key performance indicators, such as productivity, 

time, cost, number of machines and workers, need to be modeled and simulated. At the operational level, the 

simulation platform must include the main activities, such as loading, excavating, transporting and dumping. 

Moreover, the dynamics level should involve machine models and their interactions with the site's environment, 

such as earthmoving, drilling, excavating and blasting. 

 

1. Introduction 

In today's rapidly evolving digital landscape, 

digitization, as an essential pillar of Industry 4.0, is 

presented as a great enabler in the industry in terms 

of efficiency and productivity (Hermann et al., 

2016). This is because it allows companies to 

leverage cutting-edge technologies, such as 

artificial intelligence, the Internet of Things (IoT), 

and machine learning, to organize operations and 

optimize resource utilization. In this context, 

simulation technology can be a great service to be 

digitized and presented to a broader range of end-

users in the construction and mining industry (Tsai 

et al., 2016). Quarries, construction and mining 

sites are vital and dynamic work environments that 

involve harsh operations such as blasting, digging, 

excavating, and loading different kinds of 

materials. In order to optimize the workflow in 

these sites and maximize productivity while 

minimizing the cost and meeting environmental 

constraints, it is vitally important to have a well-

designed management and control system in place 

at each level, site, operations and machines, with 

well-defined KPIs at each level. 

At the site level, the main KPIs of the site related to 

productivity, time and cost calculations can be 

determined, which provide a comprehensive 

overview of the site's overall performance. At the 

operational level, we can define the main 

operations that will be ongoing in the selected site, 

including the type of equipment needed, the 

manpower required, and the safety protocols that 

need to be followed. Finally, and most importantly 

from a software engineering perspective, the 

machine dynamics level is where we set the proper 

parameters to represent the machines and facilities 

on the site, and that includes the type and 

specifications of used machines, and the modeling 

of machines' dynamic and their interaction with 

each other and with the surrounding environment. 

By replicating real-world scenarios in a virtual 

environment, site simulation can be a great help to 

site designers, managers and engineers to plan, 

monitor, manage, and predict hazards and potential 

failures in their sites. However, the use of site 

simulation is often constrained by a significant 

bottleneck represented by the computational cost of 

modeling and simulating all actors operating on the 
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site at different levels. The main challenge is 

acquiring the required accuracy with the increased 

number of simulated machines, tasks, and facilities, 

creating a trade-off between accuracy and 

feasibility. 

This work is motivated by two aspects: first, the 

current simulation tools are limited in their ability 

to provide a comprehensive site simulation due to 

their high computational cost (Guo & Zhang, 

2022), and the huge amount of involved elements 

that can be in a site (Wickberg et al., 2022). 

Second, the decision-making process for designing 

and operating construction and mining sites is 

heavily based on experience rather than data-driven 

or standard insights. 

This study represents an initial exploration in the 

field of full site modeling and simulation, with the 

intention of laying a foundation for further 

research. Subsequent studies will be conducted to 

expand upon and refine the findings presented 

herein, in order to contribute to the ongoing 

advancement of knowledge in this field. Moreover, 

future research endeavors will also aim to develop 

and test algorithms that can effectively address the 

problem explored in this study. These efforts will 

contribute to the advancement of the field and aid 

in the development of practical solutions for real-

world applications. 

The structure of this paper is as follows: Section 2 

delves into a review of related literature, followed 

by an explanation of the research methodology in 

Section 3. The results are presented in detail in 

Section 4, and finally, a summary and discussion 

are provided in Section 5.  

 

2. Related Work  

Mapping the optimization requirements is defined 

as the process of understanding and identifying the 

key components, constraints, and variables 

involved in the optimization problem and 

representing them in a structured framework that 

can be used for analysis and solution finding. 

Scientific software projects often overlook formal 

requirement engineering, as scientists may not see 

its benefits and lack knowledge in the field. A 

recent approach was to use natural language 

processing techniques, which achieved a high 

accuracy rate (Li et al., 2015). However, extracting 

these requirements in practical field is essential part 

of solving the problem and it requires a deep 

understanding of the involved processes and factors 

(Bashir et al., 2023). 

In the following subsections, the evolutionary 

trajectory of earthwork and allocation optimization 

techniques will be presented, alongside an 

exploration of the approaches employed for 

addressing and resolving these optimization 

challenges. 

2.1 Earthwork Optimization: Evolution and 

Categorization 

In the context of construction site optimization 

requirements, there has been a growing interest in 

understanding the impact of earthwork 

optimization on mining and construction site 

operations. Starting from 1958 with Kantorovich 

and his proposal of a simple mathematical method 

to allocate materials to minimize the total cost of 

transportation of 1 m3 of material from point A to 

B, up until 2021 where we start to see that it 

evolves to become multiple objectives optimization 

problem (Fernandes et al., 2022). 

Delving into the body of literature through a 

meticulous review conducted by Fernandes et al. 

(2022), distinct categories within the domain of 

earthwork optimization emerge, such as: 

2.1.1. Earth Allocation Planning: 

This category is primarily dedicated to the 

minimization of costs, often constrained by 

financial considerations encompassing excavation, 

hauling, and compaction expenses. 

 

2.1.2. Equipment Fleet Planning: 

In this segment, studies gravitate towards multi-

objective strategies that extend beyond cost 

optimization, encompassing concerns related to 

fuel consumption and emissions reduction. 

 

2.1.3. Earthmoving Operation Routing and 

Scheduling: 

Researchers in this area are committed to 

optimizing costs, time, and transportation distances 

through judicious routing and scheduling of 

earthmoving operations. 

 

Despite the strides taken in earthwork optimization, 

a critical observation arising from the reviewed 

studies is the often-peripheral treatment of 

environmental effects linked to earthmoving 

operations within optimization objectives. This 

vital aspect highlights a potential gap in current 

research priorities. 

 

2.2 Methodological Approaches to Earth 

Allocation Optimization 

Numerous methodologies have been employed to 

tackle the intricate challenge of earth allocation 

optimization, such as: 

 

2.2.1 Genetic Algorithms, Linear Programming 

(LP), and Mixed-Integer LP: These traditional 

techniques serve as the cornerstone. Yet, challenges 

like discrete domain variables and nonlinear 

relationships can impede their effectiveness 

(Burdett & Kozan, 2014; de Lima et al., 2020; 

Fattouh et al., 2021; Lim et al., 2017; Montaser et 

al., 2012). 
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2.2.2 Hybrid Approaches: A notable contemporary 

trend involves the fusion of algorithms, such as 

genetic algorithms and LP or combinations like 

tabu search and simulated annealing (Burdett & 

Kozan, 2014; de Lima et al., 2020; Fattouh et al., 

2021; Lim et al., 2017; Montaser et al., 2012). 

 

2.2.3 Fleet Planning: Evolutionary techniques 

assume significance in this domain, often 

synergizing with GPS and GIS methodologies to 

enhance precision in productivity estimations 

(Montaser et al., 2012). 

 

It's imperative to acknowledge the limitations 

intrinsic to each of these algorithms, arising from 

factors such as discrete domain variables or 

nonlinear relationships.  

 

2.3 Innovations in Site Layout Planning 

Optimization 

Turning attention to site layout planning, research 

predominantly leans towards heuristic or 

metaheuristic models, driven by mathematical 

constraints in optimization software and the 

inherently multifaceted nature of site layouts, 

featuring diverse objectives, laborer and equipment 

pathways, and facility configurations (Kaveh & 

Vazirinia, 2018). An underlying premise in 

optimization algorithms is the alignment between 

their search paths and the search capability they 

provide (Xu et al., 2020). 

 

3. Methodology  

This research was performed using the case study 

procedures (Patton, 1990), as the study was 

designed based on a certain number of workshops 

and interviews with experts in different levels of 

the studied case. The selection of the interviewed 

people was based on their relevance to the involved 

project, as the selected experts were chosen to 

cover different operational levels from business to 

operations and finally technical software modeling 

and simulation.  Table 1 shows the details of the 

conducted interviews and workshops.  
Table 2 shows the participants’ designation. The 

workshops were conducted on a regular basis to 

discuss the best practices for general construction 

and mining site optimization solutions. 

The interview questions were set to extract the 

main site design considerations and map them 

downwards to achieve the most ideal machines, 

materials and facilities digital representation. The 

questions were designed to distinguish different site 

levels (site, operations and machine dynamics), this 

distinguish comes from the software design needs 

for more dynamic architectural design of the 

suggested framework (Fattouh, 2022), as one of its 

main features is the ability to be expanded always 

to include new machines, material types and 

different kind of facilities. The goal of these 

questions was to get the boundaries on each site 

level that are essential to keep the site in ideal 

operation mode, how to achieve that currently and 

to explore the possibilities of mistakes and 

problems that can happen on the site and map all 

this information together to help to build better 

models of the machines, material their interaction 

and finally the whole site in general. 

 

We interviewed one site manager, one business 

development engineer and several modeling and 

simulation experts. The interviews were conducted 

online with an approximate timing of 2-3 hours 

each, while the workshops' timing was 

approximately 6 hours each. 

 
Table 1: Conducted interviews and workshops. 

Description Interview Workshop 

Number of 

conducted 

sessions 

6 5 

Time/session 2-3h 6h 

Total Number of 

Experts 
5 6-12 

 

Table 2: The participants’ designation. 

Title 
Functional 

Organization 

Years of 

Experience 

Simulation 

Engineer 

 

Product Platform / 

Wheel Loader 
15 

Calculation 

Engineer 

 

Virtual Product 

Development 
17 

Research 

Owner 

 

Emerging 

Technologies 
16 

Senior 

Lecturer 

 

Product Realization 

Division 
5 

Business 

Development 

Engineer 

 

Stone materials 

Department 
7 

Construction 

Site Manager 

Stone materials 

Department 
19 

 

 

4. Results 

The objective of this research is to establish a 

comprehensive framework for defining and 

categorizing optimization requirements pertaining 

to quarries, construction, and mining sites, with the 
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aim of achieving a practical and dependable 

approach to site modeling and simulation. 

 

Findings from interviews and workshops, 

particularly with industry experts, indicated that a 

significant number of design decisions and 

considerations continue to be influenced by 

experiential knowledge, business objectives, and 

regulatory constraints, as these factors define the 

realistic boundaries within which site operations 

are conducted 
Figure 1. 

 

 

 

 

Additionally, from a software perspective, 

simulating complete construction and mining sites 

involves significant computational expenses, 

specifically when considering diverse machinery 

types, materials, and the presence of static and 

dynamic objects. The behavior, interactions, and 

movements of machinery like excavators, 

bulldozers, cranes, and trucks require complex 

algorithms. Material simulations encompass forces, 

deformation, and flow for various materials such as 

soil, rock, aggregates, and ores. Simulating 

interactions and collisions between static objects  

 

(structures, terrain) and dynamic objects (vehicles, 

personnel) necessitate sophisticated algorithms and 

precise modeling of dynamics, kinematics, and 

spatial relationships. 

Consequently, it is imperative to carefully examine 

the design considerations pertaining to models 

representing sites, machinery, materials, and 

machine-material interactions, in order to mitigate 

the exponential escalation of system complexity. 

The resulting requirements and recommendation 

for simulation optimization can be summarized as 

follows. 

 
Figure 2: Important KPI at each level in a quarry site. 

 

Figure 1 The factors influencing the decision-making processes. 
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4.1. General KPI’s of the Site 

There are several factors that need to be considered 

when evaluating a site for a project ( Figure 2). 

These include but are not limited to productivity, 

cost, time, energy consumption, environmental 

requirements, and governmental permissions. It is 

important to mention that these factors are highly 

dynamic throughout the lifespan of the site and 

adapting to these factors together could be 

challenging. Governmental permissions are a 

critical consideration that can affect various aspects 

of a project. These permissions dictate working 

hours, safety measures, noise levels, and 

environmental constraints. Understanding and 

complying with these regulations is crucial for 

legal compliance and avoiding potential penalties 

or delays. Additionally, governmental permissions 

can align with business objectives, ensuring that the 

project meets all necessary regulations while 

achieving its desired outcomes. 

 
Figure 3 KPI-Based design and models selection 

 

Changes in project goals, market conditions, or 

regulatory frameworks can introduce new 

challenges and considerations. Therefore, it is 

essential from a software perspective to have 

adaptable characteristics and decision-making 

processes that can accommodate these evolving 

factors Figure 3. These characteristics include: 

 

4.1.1. Flexibility and Customizability: to 

accommodate any change in the targeted KPI or the 

nature of the site itself based on the need of the 

project like new routes, increased or decreased 

number of machines and operators, different kinds 

of equipment... etc. 

4.1.2. Integration: to have a successful, 

meaningful, and smooth simulation the software 

must have the ability to integrate and interact with 

other tools and software. 

4.1.3. User Interface: to give the user the ability to 

set up the simulation in an easy and meaningful 

manner a user-friendly interface is essential in such 

an application. 

 

4.2. Design based on Task 

Designing the models of machines, material and 

their interaction in such applications is the most 

challenging part as this problem can easily grow in 

complexity to a very high level due to the huge 

number of parameters needed to represent the site 

and the activities going on in an accurate way, and 

due to the nature of these activities that has a huge 

complexity level in its nature as it is heavily 

dependable on previous state of the model in each 

task independently. That is why these models 

should be designed in a modular flexible way 

where certain parts of the model can be enabled or 

disabled based on the nature of the task. The main 

tasks that we will discuss are the loading and 

dumping task and the moving task.  

During the loading and dumping task, the main 

factors to estimate the fuel consumption and 

subsequently the other relevant KPIs like 

productivity and CO2 emission are the forces 

generated from the bucket-material interaction. The 

machines mainly articulated wheel loaders, or 

excavators, will be in a relatively stationary state, 

where the bucket and hydraulic systems are mainly 

the active systems to perform the loading and 

dumping processes (Filla, 2005; Frank et al., 2018). 

Modeling and simulating these processes represent 

one of the main bottlenecks in the site’s simulation. 

This interaction problem can be approached 

through various methods, including numerical-

based approaches, trajectory-based approaches, and 

machine learning techniques.  

The numerical-based approach in site simulation 

involves approximating the interaction between the 

machine's bucket and the material pile as two sides 

of an equation. The goal is to establish a 

relationship between the parameters representing 

the forces involved in the interaction. Although this 

approach shows feasibility and promise, it 

encounters a significant challenge when applied to 

large-scale sites with numerous machines in 

operation. 

Trajectory-based approaches aim to estimate the 

state parameters of the interaction between the 

bucket and the material. This method relies on 

modeling the interaction based on the previous 

states of the bucket along its trajectory during the 

excavation process, Notably, the distinct pathways 

followed by the bucket during excavation lead to 

the generation of differing forces inherent to this 
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excavation procedure,  Figure 4 shows the possible 

trajectories that could be taken in the excavation 

process. However, this approach introduces a 

complexity problem akin to the Travelling 

Salesman Problem (TSP), as the estimation of 

forces changes with each new penetration into the 

material pile. Consequently, this dynamic 

estimation challenge poses a significant obstacle to 

overcome in the trajectory-based approach.  

Machine learning techniques have become 

increasingly popular for addressing the interaction 

problem in site simulation (Egli et al., 2022). By 

training on large datasets, machine learning 

algorithms can recognize patterns, learn from past 

simulations, and predict system behavior. This 

approach is particularly valuable in complex and 

dynamic environments where traditional analytical 

models may be limited. Through machine learning, 

simulation models can continuously improve and 

adapt, leading to enhanced accuracy and predictive 

capabilities. 

  
Figure 4: Trajectory-based approach - possible 

trajectories that can be taken through the excavation 

process. modified from [(Filla, 2005)].  
 

During the moving task, the machine model 

exhibits a reduced level of complexity as compared 

to the model employed in the prior task. 

Nevertheless, several factors exist that could 

potentially contribute to increased system 

complexity. The impetus to minimize this 

complexity stems from the overarching goal of 

attaining a comprehensive view of the site 

simulation environment in this case study. Our 

findings suggest that a few key parameters, namely 

the road profile, power train, and axle load, have 

significant impacts on the energy management 

calculations during the moving task, Therefore, 

these parameters should be considered the primary 

components in the task's model design and 

subjected to thorough analysis. 

 

The optimization problem faced by specialists in 

the construction, mining and quarries industries 

encompasses multiple dimensions and is evident 

both during the initial planning phase of opening a 

new site and in daily operations. The inherent 

limitations of humans make it challenging to 

effectively solve multidimensional problems, 

resulting in suboptimal solutions. However, these 

challenges highlight the need for alternative 

approaches.  

Looking toward the future, it is anticipated that the 

number of dimensions involved in site optimization 

will increase further. For example, achieving zero 

emissions may require the use of battery electric 

machines, which necessitate more frequent and 

longer charging times compared to refueled 

equipment. Additionally, automation is expected to 

play a significant role, especially in sites with 

mixed traffic and partial automation, necessitating 

a different design approach (Frank, 2019; 

Wickberg et al., 2022).   

 

5. Summary and Discussions 

This research aimed to extract and map the 

simulation optimization requirements among 

quarries, construction, and mining sites. The study 

revealed that site design and management decisions 

are highly influenced by experiential knowledge, 

business objectives and regulatory constraints. 

These factors along with the complicated nature of 

the daily site operations put the site into a 

suboptimal state and this problem can be solved by 

simulation. Moreover, simulating complete sites 

presents its own set of challenges. The dynamic 

nature of site processes, coupled with the presence 

of diverse machinery, materials, and static and 

dynamic objects, introduces significant 

computational demands. 

Different approaches were discussed with experts 

from the industry to recommend suitable methods 

to build and simulate sites and optimize the 

simulation. The study highlighted the importance 

of adaptable software that can accommodate the 

dynamic nature of sites, modular design approaches 

that allow for flexibility and customization, and the 

consideration of key parameters in the simulation 

process.  

Overall, the research offered valuable insights for 

effective site simulation optimization. The next 

step will be to investigate the best machine learning 

approach to solve the complexity problem and 

compare that to the performance of numerical 

approaches. 
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Abstract 

 

In this paper we present a standard platform XC05 for an Edge Controller based on an Industrial Control System, 

where functions made in Modelica and Python can be run as an integrated part of an automation system. We 

demonstrate how the platform is used to run a complex Model Predictive Control (MPC) strategy to optimize 

indoor heating in a residential building. MPC strategies have been increasingly popular due to their ability to 

handle nonlinear dynamics with constraints and multi-objective optimization. Since industrial control systems are 

real-time based, consideration must also be taken to running security and the real-time characteristics and timing 

of the overall system solution. We also show that heavy calculation, protected by the industrial control system 

operative, can run safely together within fast automation using standard electronics. The controlled variable in the 

MPC strategy is the supply water temperature (Space heating), and the objective is to keep the indoor temperature 

at a predefined setpoint despite variations in outdoor weather conditions by using local measurements and weather 

forecasts from the Swedish weather service SMHI. The model used in the MPC is trained automatically with real-

time data during running. We describe the controller architecture and briefly the model predictive control 

algorithm, analyze the overall system performance regarding safety and real-time characteristics. The proposed 

model predictive control application showed stable operation and expected real-time characteristics during 

operation. Furthermore, a reduction in indoor temperature deviations was achieved. 

 

1. Introduction 

The XC05 automation platform was developed as an 

activity in the DISTRHEAT research project where 

the aim of the project is to demonstrate and test in 

real operating environment (MPC) applied to 

District Heating and Cooling networks. The 

automation platform is in fact an “Edge controller” 

as expressed in the standard Industry 4.0 i.e., a 

highly intelligent unit interfacing the process or 

machine. Such controllers are expected to replace 

conventional PLC systems in the future. The details 

of the software design are described below. 

In the DISTRHEAT project we applied our ideas to 

Model predictive control (MPC) for optimizing the 

indoor temperature in residential buildings. Model 

predictive control (MPC) is an optimal control 

technique where the control actions minimize a cost 

function over a finite specified time horizon.[1] 

Using MPC for controlling different processes in the 

heating sector has proven to be highly successful as 

shown in [6] [7] [8] and [9]. To implement an MPC 

in a conventional control system (PLC) has been 

done [2] but requires deep understanding of the 

underlying PLC language and is often limited to 

special use-cases. The novelty of the proposed 

solution is using well known languages and tools 

which interact in a safe way with the time-critical 

functions of the PLC software, 

The research project includes all the basic steps of 

development such as control methods, simulations, 

and installation in a physical process.  

The automation platform was developed to cover all 

these aspects. It includes an industrial control system 

(ICS) which is integrated with commonly used 

research tools like Python scripts and Modelica 

simulations. In XC05 we introduce a new standard 

how to integrate research tools with an ICS system. 

For this purpose, we developed a graphical tool, 

FirstGraph where the objects in the ICS and the 

extended Python and Modelica libraries can be 

connected in a simple way. The tool is an extension 

of what we previously have used in the ICS and is 

understood by any process engineer. At each time 

step, the MPC controller receives or estimates the 

current state of the process being controlled. It then 

calculates the sequence of control actions that 

minimizes the cost over a specified time horizon by 

solving a constrained optimization problem that 

relies on an internal process model and the current 

system state. The controller then applies the first 
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computed control action for the building and the 

procedure is then repeated each time instance. The 

internal model in the MPC algorithm is 

automatically updated from real-time data during 

periodical learning periods which are run in parallel 

to the control actions. Data are assembled and stored 

by the ICS part. The temperatures in the building are 

read from a local PLC via a standard Modbus TCP 

communication line and the weather forecast are 

read periodically from the Swedish Meteorological 

and Hydrological Institute (SMHI). 

This MPC application was a good test of the XC05 

platform since it consists of both heavy calculations 

in the MPC algorithm and fast real time data 

handling. Moreover, the platform had to integrate 

MPC software made by other researchers with the 

ICS functions and safety supervision. 

Before it was connected to the building, the MPC 

application was run in a real-time simulation inside 

the XC05 to verify the operation, capacity and safety 

in the simple standard electronics used (Raspberry 

4). Linux with the RT_PREEMPT patch is chosen 

as the operative system because of its stable real-

time performance [3][4][5]. The MPC installation 

has now been in operation for more than five months 

without a single operation failure.  

 

2.Methodology 

The basic task was to integrate an ICS system with 

functions created in Modelica and Python. The new 

platform is based on the same principles that were 

used in the ICS system, that is used as a base for the 

platform.  

 

2.1. Industrial control system 

 

We choose our own ICS which has been used in 

many industrial installations and therefore is very 

safe and contains all the functions needed in an 

automation task including our own version of 

adaptive control. It is based on the self-tuning 

concept and has been awarded by the IEEE. The ICS 

is then transformed to the Linux operative with 

necessary changes to preserve the original properties 

of the ICS platform. 

 

2.2. Python scripts 

 

The python scripts are made in the normal way in a 

standard PC and then loaded into the XC05 platform 

where they are stored in a special library dedicated 

to Python scripts. They must be supplied with simple 

standard input/output functions to interface the ICS.   

 

2.3. Modelica simulation 

 

The Modelica simulation is designed in the normal 

way on a standard PC and then loaded into the XC05 

where it is compiled locally and stored in a special 

library dedicated to Modelica models.  

 

2.4. Supervision and safety 

 

The Python scripts and the Modelica models are 

external software which may contain errors.  

Therefore, they must be supervised and 

disconnected in case of malfunction or a software 

error to prevent disturbance in the automation 

system. The ICS part contains by itself safety 

protection developed for very sensitive processes in 

the steel and energy areas. 

 

2.5. Functional integration 

 

All functions in the platform are regarded as 

“modules” or “objects” with specified inputs and 

outputs according to the same standard as is used in 

the ICS system. This means that much of the 

software developed for the ICS can be reused in this 

case. 

 

2.6 MPC algorithm 

 

The core focus of this paper is the ICS edge 

controller, therefore only a brief description will be 

provided for the MPC kernel that runs inside. The 

MPC is a Python-based optimizer that is employing 

a machine learning model for building heat demands 

and thermal comfort. The objectives of the optimizer 

comprise multiple indices related to energy 

performance of the heating system or indoor 

temperature in the apartments. 

Anyone familiar with control theory knows that PID 

technique developed for more than 50 years ago is 

far too limiting in this case since its internal structure 

is limited, not prepared for predictive control, and 

does not support feedforward. According to the 

internal model principle, any efficient control 

algorithm must contain an internal model of the 

process and its disturbances. A candidate would be 

a general adaptive controller based on the self-

tuning principle, which is in fact an adaptive MPC 

based on a linear dynamical model.  Such a regulator 

is available in the ICS part of XC05 and has been 

used in many installations. In this case, however, an 

MPC controller was favored since it is more general, 

can handle nonlinear physical models and the 

optimization algorithm can be adjusted to the 

specific case.  Such a solution has also a higher 

development potential in the future. The drawback 

is the computational burden caused by the 

optimization and model training, but we have 

demonstrated it is quite feasible within the 

XC05Edge controller. 

 

 

2.7 Experimental study 
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An experimental study was conducted in a 

residential building. The MPC algorithm was 

developed and customized for the building's district 

heat substation. It used real-time data from the local 

PLC, such as temperature and outdoor weather 

conditions, to optimize the operation of the system. 

The MPC algorithm determined the optimal 

setpoints for the forward temperature based on 

keeping the indoor temperature at a fixed setpoint. 

To evaluate the performance of the system, data 

were collected at one- and sixty-minutes intervals 

throughout the test period. Descriptive statistics, 

such as mean value and standard deviations were 

calculated before and after installation of the system. 

 

3. Edge computing 

The automation platform described in this paper is 

an “Edge Controller” as expressed in Industry 4.0. 

Such controllers are expected to replace 

conventional PLC systems in the future.  

An important issue is to spread research results to 

ordinary process engineers. This means that the way 

the engineer interfaces the new technology should 

be according to the standards used in common 

automation.  

Our previously developed tool FirstGraph for the 

ICS, which has been used by engineers for several 

years, has been extended to the generalized XC05 

platform. It provides a standard format where all 

functions are regarded as “objects” which are 

connected to each other. The platform then unifies 

the automation functions in ICS with external 

functions created in Modelica or Python. 

 

The FirstGraph project tree has been extended with 

two new libraries Modelica and Python.  

 

 
Figure 1: The XC05 graphical programming 

 interface for engineers. 

 

The process engineer selects elements from the 

extended libraries and connects them graphically to 

the automation system as is illustrated in figure 7. 

This can be done without stopping the running 

control task. Note that a program change will be 

active within about 0.5 msec after being loaded since 

it is handled locally by the operative. 

If there is an MPC function or a Modelica function 

loaded to the library, the process engineer may 

directly use it in the automation system which 

creates a direct link between researchers and users. 

This was an important factor in this development. 

 

4.Proposed architecture 

 

4.1. Embedded system Architecture 

 

To make the entire system portable to different 

hardware architectures all software are developed in 

C99 targeting different Linux distributions. It is also 

possible to port the framework to other operating 

systems by using a simple API to interface the new 

operating system. 

The system consists of four main modules and a 

supervisor where all are strictly prioritized based on 

their different functionalities. 

These modules are: 

 

• Main controller task (ICS) 

• Simulation executor 

• Supervisor task 

• Communication task 

• Python executor 

 

 
Figure 2: Embedded system architecture 

 

The main controller task (ICS) handles all PLC 

functionality and executes all user applications. 

These applications could be run on eight different 

priority levels depending on their purpose. It’s also 

responsible for creating the different subtasks and 

supervising these. 

The simulation executor is responsible for running 

simulation of user-defined models created in the 

OpenModelica language and communication with 

the main controller task by using shared memory. 

All external communication is handled by the 

communication task which supports a variety of 
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industrial protocols like Modbus TCP/IP, Modbus 

RTU and others. The Python executor handles the 

execution of user defined python scripts and 

communicates with the main controller task by using 

POSIX queues. Each parent task in the systems 

supervises and receives errors from subtasks. All 

errors are forwarded to the supervisor task which 

takes different actions depending on the severity of 

the error.  More detailed information about the 

principles in the XC05 platform [10]. 

 

4.2 ICS task  

 

The threads in the main controller task are strictly 

prioritized with respect to their functionality. 

Application level indicates nine different levels 

(priority 67 to 75, 75 being the highest) where user- 

applications could be executed at different priorities. 

The system is strictly event based and the threads are 

only woken when some external- or timer event 

occurs. The main controller task has the highest 

thread priorities in the system except for the 

Supervisor task main thread. The communication 

task main thread will inherit the same priority as the 

thread handling the communication in the main 

controller task (COMM1 and COMM2). To 

minimize latency times, all threads which belong to 

the main controller are directed to a single CPU-

core. 

 

Name Type

RT-Priority 

(80 highest)

MAIN System thread 80

TIMER System thread 79

PCHH System thread 76

APPLEVEL1 Application thread level 1 75

APPLEVEL2 Application thread level 2 74

APPLEVEL3 Application thread level 3 73

APPLEVEL4 Application thread level 4 72

APPLEVEL5 Application thread level 5 71

APPLEVEL6 Application thread level 6 70

APPLEVEL7 Application thread level 7 69

APPLEVEL8 Application thread level 8 68

APPLEVEL9 Application thread level 9 67

COMM1 System thread 65

COMM2 System thread 64

UDPIN System thread 63

MTCP System thread 62

MDUPOUT System thread 60

MTCPS System thread 58

PYTHONSUPERVISOR System thread 47

MODELICASUPERVISOR System thread 46

TERMIN System thread 44

TERMOUT System thread 42

CYCLIC System thread 38

FCOMMIN System thread 36

FCOMMOUT System thread 34

BACKCALC_HI System thread 32

PCHL System thread 30

OPCOM System thread 28

MODELCACOMP System thread 26

BACKCALC_LO System thread 24  
Figure 3: Threads and priorities main controller task 

 

The applications written in the ICS by the user are 

executed on APPLEVEL1 – 9 which have among 

the highest priorities in the system. 

 

4.3 Simulation executor 

 

The simulation executor is responsible for executing 

code written in the Modelica language which is used 

in various academic institutes as well in industry. 

In order to accomplish this the complete 

OpenModelica package is preinstalled on the 

system. This includes the OpenModelica compiler, 

the OpenModelica simulator and a large library of 

predefined objects. 

The simulation executor consists of two parts, the 

Modelica compiler and the Modelica executor. 

 

 
Figure 4: The simulation executor 

The Modelica executor compiles the Modelica code 

defined by the user into a shared library according to 

the Function Mock-up Interface (FMI) into a 

Functional Mock-up Unit (FMU). The main 

controller task communicates with the simulation 

executor using shared memory protected by POSIX 

semaphores. 

 

4.4. Python executor 

 

The application thread of the main controller task is 

responsible for creating each corresponding subtask 

to the Python code that should be executed. 

Each subtask is then supervised from python 

supervision thread in the main controller. 

 

 
Figure 5: Python sub task creation 

 

In order to support different scenarios of how the 

python code should be executed, two different 

modes are introduced, synchronous and 

asynchronous. In synchronous mode each subtask is 

created at the same priority level as the calling 

application thread which waits for an answer or a 
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user defined timeout before it continues execution. 

In asynchronous mode each subtask is created on 

priority level 0 (background) and the calling thread 

immediately continues execution and checks 

periodically if an answer has been received. A fixed 

limit of how many sub tasks that can be created has 

been set in the system due to system limitations. 

The python code is called by an interface function 

defined in the python script by the user. The function 

can have an arbitrary name but must be defined with 

a specific number of arguments that corresponds to 

the executing block in the ICS. The function consists 

of a list of four which contains float, integer, 

Boolean and text values. The last three arguments 

are prepared to be returned by the python script and 

contains real, integers and Booleans. 

The data exchange between the ICS and python 

executor is handled by POSIX message queues. 

Each sample, set by the user in the ICS, the 

corresponding ICS block checks if the python 

subtask is Idle. If the Python subtask is idle a 

message is sent to the message queue with the last 

values from the ICS. The Python subtask then 

receives the values, executes the script and returns 

the result to the ICS. Depending on if the python sub 

task is created in synchronous or asynchronous 

mode the corresponding block in the ICS waits for 

the answer or continues execution immediately. 

The errors in the python script are handled by the 

corresponding block in the ICS. Any syntax error 

in the python script causes the python sub task to 

end execution. 

 

4.5. Supervisor 

 

The main functionality of the supervisor is to 

monitor all other sub tasks in the system. The 

supervisor has the highest priority in the system and 

is able to take predefined actions depending on if an 

error state exists in some of the sub tasks.  This could 

be, for example, a controlled shutdown of all system 

tasks, restart of a certain sub task or a complete halt 

of the system. Each task communicates with the 

supervisor task using a shared memory which 

contains the current state of the specific task.  

 

5.  Test installation in a residential building 

 

 
Figure 6: Test installation site 

 

The experimental setup is performed at a district 

heat substation in a residential building in an urban 

area. The experiment is conducted in the heat season 

to get reasonable data for the MPC algorithm. 

Hardware and Technical Stack: The framework runs 

on Linux (Debian 10) on a Raspberry Pi4. The 

detailed system setup and technical specifications to 

run the experiment are presented in Table 1.  

 
Table: 1. 

Parameters Values  

OS 
ARM based 

Raspbian 

OS Name Debian 10 

OS Version 
Linux 5.11 RT-

PREEMPT 

Processor 

Broadcom 

BCM2711 SoC 

with a 1.5 GHz 

64-bit quad-core 

ARM Cortex-

A72 processor 

System RAM 2GB 

 

We implement and evaluate the MPC algorithm 

using the Scikit-learn2 library, SciPy library and 

NumPy library for Python3. The data from different 

sensors are fetched from the local PLC by using 

Modbus TCP/IP with a time resolution of 50 

milliseconds. The prediction of the local outdoor 

temperature for the next 10 hours is fetched from the 

Swedish weather service using SMHI API. The 

MPC algorithm then calculates the setpoint for each 

hour and writes it back to the local PLC by using 

Modbus TCP/IP. The data is saved locally with one- 

and sixty minutes time resolution for further analysis 

and to be processed by the MPC algorithm. The 

internal sample time of the ICS is set 10 

milliseconds for each application task to register the 

real-time behavior of the overall system. 

Timestamps are recorded for each sample interval to 

be used for further analysis. 
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Figure 7: Application program in the ICS 

 

6. Results of the test installation 

The data gathering started at the end of January and 

the controller was turned on February 6th.  

The complete system showed stable real-time 

characteristics during the whole test period 

regardless of the heavy background load due to the 

MPC computations. The ICS system functions were 

performed within the time intervals set by the user, 

which in this case was a sampling time of 10 

milliseconds without any disturbances. 

The Python-implemented MPC algorithm was 

executed as expected on the proposed platform and 

without interfering with the ICS system's 

functionality. This includes updates of python 

software, application changes including adding new 

applications programs and functions. When 

comparing the time required for a cycle's 

calculations, these were performed on a normal PC 

with a time consumption of approximately 4 minutes 

and on the industrial control system, the time 

consumption was approximately 8 minutes. This 

depends on hardware capabilities and process 

architecture.  

The MPC algorithm performed very well and was 

stable throughout the whole test period. The purpose 

was to keep the indoor temperature at a predefined 

set-point, in this case 21.5°C and minimize the 

variations. The controlled variable was the supply 

temperature (space heating) which was set to the 

local PLC at site. As seen in figure 8 the indoor 

temperature was reduced from a mean value of 

22.5°C to 21.5°C about one day after the controller 

was switched on. The variations were about +-0.2K.  

 

 

 
Figure 8: MPC performance 

  

The response in temperature can of course be made 

much faster, but that would not have been 

convenient for inhabitants in the building.  In this 

case, the control action is deliberately limited to 

achieve an “acceptable change in temperature” as 

was requested by the end user. The limit is only 

active when large changes are required for instance 

in a start-up as is shown in figure 8. During normal 

operation, there are no limits in control action. 

 

7. Summary and Discussions 

In this paper we have attempted to form a standard 

for “Edge computing” i.e.  how advanced functions 

created in research tools like Modelica and Python 

can be included in automation. Such a standard is 

necessary for broader use. As far as we know, the 

attempts that have been done so far consist of special 

programming in each individual case which is much 

more costly and requires help from a software 

specialist. With a standard setup as is described here, 

the process engineer can use external functions 

made by researchers in the automation system 

without the assistance of software experts. 

The proposed solution showed that it was feasible to 

implement a MPC strategy together with an existing 

industrial control system without interfering with its 

critical functionality and real-time behavior. The 

execution time for the MPC algorithm was 

reasonable and it performed well for the specific 

process. The Modelica simulator was not used in the 

experimental setup in this case but may be used for 

more complicated physical-based models as a local 

“Digital Twin”. We have shown that the capacity is 

sufficient for such solutions. 

In this experiment the dynamics of the process being 

controlled were slow which meant that the CPU 

capacity was enough to calculate the setpoint once 

per hour. Processes with faster dynamics may 

require other approaches, for example other 

hardware solutions, such as dedicated hardware, a 

more simplified model for the MPC or different 

solvers and optimizers. The Python interface to the 

ICS could also be improved regarding data 

conversion, messages, optimization etc. 

The main idea about using python as a base for 

MPC, and other types of control algorithms is that 

implementations easily can be transferred from 

construction and design phase to an ICS without any 

further or very little modifications. Python is also a 

well-known language which has many libraries 
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available for different purposes and also has a huge 

amount of support among the developer community. 

Many other use-cases exist that can take advantages 

of the introduction of Python in an ICS, for example 

different ML-implementations which will directly 

appear as new blocks in the ICS. Using ML in the 

ICS with data-driven models could be an alternative 

to the physics-based models implemented in the 

simulation task. Future research should focus on 

further validating the framework’s performance in 

different industrial processes and explore the 

scalability and reliability of the proposed solutions. 
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Abstract 
 
Porous pavement is a well-documented, low-impact stormwater management technique. When it comes to 

design of the top layer, the amount of void space (porosity) is often of interest as it influences both infiltration 

and strength of the pavement. Laboratory equipment can be used to measure the porosity of core samples, but 

when more detail is required, other equipment or methods must be used. One such method is to scan the entire 

sample using a computer tomography (CT) machine and then perform some image processing techniques on the 

scanned data to reconstruct the sample digitally. While the workflow of scanning and processing to produce the 

3D digital twin of porous pavement is not new and can be in fact done by open-source or commercial software, 

there are still some parts of the process that deserve a deeper investigation, for example binarization and 

segmentation algorithms applied to the solid-and-void space and void space, respectively. This is difficult to do 

with commercial software which operates like a black-box, and there needs to be more open-source codes that 

are user-friendly, extendable, and competitive to what commercial software can do. This work presents a 

MATLAB-based code that allows for a deeper investigation of how one can accurately and efficiently quantify 

the effective (or connected) void space of a porous pavement sample from a 3D digital model. We demonstrate 

the effect of dataset coarsening, which can be used to reduce the computational intensity of the algorithm while 

preserving accuracy. The code is publicly available online to allow for reproducible research and the possibility 

of extensions for increased functionality and complexity. 

 

1. Introduction 

 

Asphalt is ubiquitous in city parking lots, roads and 

highways, and research is often focused on how to 

increase its lifespan to minimize maintenance costs. 

However, one problem that arises with asphalt 

covered surfaces is storm water management: 

excessive rainfall leads to high volumes of runoff 

that must be managed properly to avoid surface 

flooding. Traditional methods to handle this surface 

flooding involve collecting runoff in storm sewers 

and moving this water either directly to a body of 

water (lake or sea) or to an area where it can collect 

before eventually draining into the ground. 

 

An alternative approach to stormwater management 

involves the use of asphalt which is typically 

termed porous asphalt (PA) or also drainage 

asphalt (DA) (Dylla & Hansen, 2015), and is 

typically recommended for parking areas and low-

volume roadways (Roseen et al., 2012). As these 

names imply, the role of this alternative asphalt is 

to allow surface water to permeate through the 

layer, from top to bottom, while at the same time 

remaining strong enough to sustain typical vehicle 

loads. The challenge is thus the trade-off between a 

higher-than-typical porosity and reduced strength. 

When installed as an overlay above traditional 

impervious asphalt pavements, PA is known as 

Permeable (or Porous) Friction Course (PFC), 

Porous European Mix (PEM) or Open-Graded 

Friction Course (OGFC), a type of pavement 

developed to improve road safety under wet 

conditions and reduce noise (Stanard et al., 2007; 

Watson et al., 2018). Noise reduction and improved 

safety are the reason why the surface layer of the 

majority (>90%) of the Dutch principal motorway 

network consists of a course PA (Aalst et al., 2015; 

Bondt et al., 2016; Plug & Bondt, 2021). 

 

Advances in PA research can be realized through 

studying the unique relationship between porosity 

and strength. Studies (Chen et al., 2021, Ferreira et 

al., 2021, Król et al., 2017) have focused on 

obtaining empirically-derived expressions for 

permeability as a function of porosity. The value of 

these expressions lies in the fact that they can be 

used to predict permeability given a certain change 

in porosity caused by clogging, for example. But 

first, to capture the PA’s ability to filter water, the 

https://www.tandfonline.com/author/Kr%C3%B3l%2C+Jan+B
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connected1 pore space needs to be determined, i.e., 

the amount of the total pore space that becomes 

filled with water as it flows from top to bottom of 

the layer. The other pore space can be classified as 

isolated since they are not directly connected to the 

connected pores. Determining the total volume of 

the connected pore space can be measured in a lab 

with the right equipment, however information 

about the exact geometry of the connected pore 

space is required in order to study the infiltrating- 

or permeable-behavior of the PA. A popular and 

non-destructive method to get highly-resolved pore 

space details involves taking hundreds of 2D 

images of a PA sample using a computer-

tomography (CT) scanner and then performing a 

set of image processing techniques on these 2D 

images to construct a 3D digital representation of 

the sample (Schuck et al. 2021). This same 

workflow of imaging, processing, and 3D 

reconstruction of a so-called digital twin has also 

been applied to many other areas of application, 

such as pervious concrete (Jagadeesh et al., 2022), 

geomaterials (Quinteros & Carraro, 2023), and 

even green roofs (De-Ville et al., 2017). 

 

The studies cited above involve independent efforts 

at preforming image processing techniques in order 

to extract meaningful information from the CT-

scan images. Some use commercial software 

(Simpleware ScanIP, Avizo) while others develop 

their own programs or codes that rely on either 

open-source programming languages and their 

image-processing tools (Python-based Spam) or 

license-based programming languages and their 

image processing tools (MATLAB-based Image 

Processing Toolbox). While commercial software 

certainly has its strengths – it is validated, robust, 

developed by a team of people, and hopefully user-

friendly – the efforts of developing a computer 

program or code to perform research on PA is also 

valuable and arguably more flexible and open than 

its commercial software competitors. And yet, even 

though we have found several studies that are based 

on self-generated code, we find a lack of 

reproducibility in the research community when it 

comes to image segmentation applied on PA 

samples and algorithms used to extract the effective 

pore space. For example, Schuck et al., 2021 and 

Jagadeesh et al., 2022 documented very clearly 

their image processing steps, however leave the 

reader without any code that could be applied to 

their work. We understand that it is not always the 

objective of a researcher to openly publish their 

developed programs and codes, however we see the 

benefit that code-sharing can have in the research 

 
1 Some researchers use the term connected while some 
use the term effective. 

community. As such, a main objective of this work 

is to start an online repository (find link at end of 

paper), for porous media characterization beginning 

with asphalt samples. Specifically, this study 

focuses on processing a stack of micro-CT images 

of asphalt using built-in MATLAB functions and 

on the characterization of the sample according to 

its local and global porosity. The code is applied on 

images from two sources: a laboratory made PA 

sample and a cored sample from a county road in 

Norway. The cored sample is not a PA sample but 

rather considered as regular asphalt and is used to 

demonstrate the code’s ability to quantity porosity 

in samples with very low porosity. 

 

 

2. Materials and Methodology  

 

2.1. Asphalt Samples 

The asphalt samples studied in this work are shown 

in Figure 1. “DA” stands for drainage asphalt2, and 

“H” stands for Hafjell, a location in Norway where 

the sample was extracted. The photo for sample 1H 

is in fact a photo of sample 3H (both of which are 

studied in Kassem et al., 2023), however it is 

presented here as a representative photo since they 

were both cut from the same road. Material details 

of the DA and 1H samples are summarized in 

Table 1. The binder type was regular (PGB) for the 

DA sample and modified with polymer (PMB) for 

the 1H sample. Dmax stands for the maximum 

aggregate size. 

 

 
Figure 1: The porous (left) and regular asphalt (right) 

samples considered in this work. 

Table 1: Material information of samples. 

Spec. \ Sample DA 11 A 1H 

Type Porous Regular 

Source Lab-made Cored 

Binder type PGB 70/100 PMB 65/105-60 

Dmax 11 16 

 
2 PA (porous asphalt) and DA (drainage asphalt) are used 
interchangeably in this work. 
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2.2. Computer Tomography (CT) Scanning 

Scanning of the samples was done at the 

Norwegian Geotechnical Institute (NGI) in Oslo, 

using a Nikon Metrology XT H-225LC device. 

Details of the scans are summarized in Table 2. 

Two-thousand projections were used for the DA 

sample which means a total of 2000 .tiff images 

were created and each image contained 2000 by 

2000 pixels. However, the sample itself and its 

volume of interest (VOI) take up only a portion of 

the images; the number of pixels in the 2D region 

of interest (ROI) and the number of images that 

make up the VOI are reported in Table 2, and the 

total number of voxels is the product of these two. 

As such, the total number of cells in the VOI is less 

than (2000)3.  

 
Table 2: CT image specifications and dataset sizes in 

terms of ROI (region of interest) and VOI (volume of 

interest). 

Spec. / Sample DA 1H 

Voxel size (µm) 62.6 56.3 

# of projections 2000 2500 

# pixels in ROI 1.87 x 106 2.25 x 106 

# images in VOI 901 701 

# voxels in VOI 1.68 x 109 1.57 x 109 

 

 

2.3. Image Processing 

The CT scanning procedure produced hundreds of 

.tiff files for each sample, with a total size of 7.5 

and 6 Gigabytes for the DA sample and the regular 

sample, respectively. These image files were 

processed using MATLAB release version R2021a, 

MATLAB’s Image Processing Toolbox, and a 

laptop with Intel(R) i7-1165G7@2.8Hz CPU and 

32 GB memory. The basic steps taken to process 

these image files with the objective of detecting the 

connected pore space is summarized below: 

 

1. Read each .tiff 2D image file 

2. Define a ROI, applied to each image 

3. Crop and mask the image data to the ROI 

4. Filter out noise from each image with either a 

median filter and/or a Gaussian filter 

5. Detect total pore space in each 2D image using 

a binarization method, based on either 

automatic or manual thresholding 

6. Construct the 3D volume of total pore space by 

assembling stack of the 2D total pore spaces 

7. Apply the detect-connected-pores algorithm on 

total pore volume to detect the top-to-bottom 

connected pore volume 

 

The region of interest (ROI) was manually cropped 

with a draw circle tool such that all the space 

beyond the sample boundaries, in addition to a 

small outer ring of sample, was labelled as outside 

the ROI. This ensured we were focusing only on 

the sample. The noise reduction filters used were a 

median filter followed by a Gaussian (with 

standard deviation equal to 2) for the PA sample 

and Gaussian (with standard deviation equal to 2) 

followed by adaptive histogram equalization for the 

1H sample. The binarization method was based on 

manual thresholding for both samples. The output 

of steps 1 to 5 are presented in Figure 2, and output 

from steps 6 to 7 in Figure 3. 

 

 
Figure 2: Visualization of the various stages of image 

processing, from 1-original, 2-cropped and masked, 3-

filtered, and 4-binarized image. 

 

Figure 3: Visualization of a constructed 3D pore volume 

(1) which is made up of isolated pores (2) and connected 

pores (3). 

 

2.4. Detecting Connected Pores 

The main contribution of this work is the detect-

connected-pores algorithm which is openly 

available online (find link at end of paper). The 

basic idea of the algorithm is to initialize and 

continually update a pore cell map, which includes 

the index of all the pore cells as well as the indices 

of the 6 neighboring cells. Besides the index, a 

label is assigned to each pore cells (2=pore needs 

checking, 1=connected pore). All pore cells in the 
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top image are immediately labelled with as a top-

connected pore. Then a while-loop is used to 

continually update the labelling of the pore cells 

based on whether or not they have a neighboring 

cell that is labelled as top-connected. To help with 

performance, the neighboring cells that were just 

used to label a pore cell as top-connected is 

labelled with NaN so they are skipped over during 

any consecutive iterations. Two while-loops are 

required: the first one detects all top-connected 

pore cells, and the second one detects all bottom-

connected pore cells. Two while-loops are used 

because a pore cell could be connected to other 

pore cells that eventually lead up to the top of the 

sample. However, this does not mean they will lead 

down to the bottom of the sample. Thus, the top-to-

bottom connected pores are pores which are 

common to both the top-connected AND bottom-

connected pathways. 

 

3. Results 

 

We present total pore space results for each sample 

(DA and 1H), since the 1H sample provides a nice 

comparison to a regular and road-cut asphalt 

sample. However, afterwards we focus our 

attention on the DA sample only since the 1H 

sample lacks a “top-to-bottom” connected pore 

space. 

 

The connected pore space that was extracted using 

the detect-connected-pores algorithm on the DA 

sample is illustrated on the left side of Figure 4. 

The right side of Figure 4 illustrates all the pore 

space of sample 1H because a top-to-bottom 

connected pore space could not be detected in this 

sample. This is not surprising given that it was not 

designed to infiltrate water. 

 

 
Figure 4: Connected pore space in our DA sample (left) 

and total pore space in our 1H sample (right). Both 

samples are fully-resolved (not digitally coarsened). 

The vertical distribution of porosity of each sample 

is plotted in Figure 5. For the DA sample, the top is 

located at 6 cm and the bottom is located at 0 cm, 

and a few millimeters from both ends were not 

included in the digital analysis to avoid boundary 

effects. The connected porosity is always lower 

than the total porosity, as expected. While there is 

some fluctuation in porosity with depth, we notice 

a slight trend of increasing porosity with sample 

depth. A possible reason for this behavior is the 

sample was compacted on only one end, namely 

the top-end. Thus, the porosity is smaller at the top 

than at the bottom. Furthermore, the typically 

observed bathtub shape in the porosity-distribution 

is not very evident in our DA sample, although it is 

possible that it could appear in the profile if a few 

more slices were included on the ends. For the 1H 

sample, the top is located at approximately 4.3 cm 

and the bottom is located at 0 cm, and a few 

millimeters from both ends were not included in the 

analysis, similar to the DA sample. The vertical 

porosity distribution in the 1H sample is quite 

different from the DA sample; it is quite non-

uniform and contains a sudden reduction of 

porosity at about 2.3 cm. That is, the top half of the 

sample has an average porosity of 0.4 while the 

bottom half has an average of 0.003. This bottom 

half contains very few pores, and any pore that 

does exist is very isolated from its surrounding 

pores. It is unlikely that water would easily filter 

through this road’s top layer, and of course, it was 

never designed too. 

 

For comparison, the porosity of the DA sample was 

measured in the lab using the CoreLock apparatus 

and found to be 16.6%. 

Figure 5: Vertical distribution of porosity in our DA 

sample (left) and 1H sample (right). Both samples are 

fully-resolved (not digitally coarsened). 

Besides the porosity distributions, we are interested 

in knowing how fast our detect-connected-pores 

algorithm is. Our algorithm that detects the top-to-

bottom connected pore space is computationally 

intensive because it uses two different while-loops 

that must iterate many times until the search for 

connected cells is over. The first row of Table 3 

shows the CPU run time and number of while-loop 

iterations required in the finest resolution of our 

DA sample which contained around 218 million 

pore voxels. 
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Table 3: CPU run time and while-loop iterations required 

to detect connected pores in our DA sample in the non-

coarsened case (1) and two coarsened cases (15 and 30). 

Coarsen

-ing level 

# pore 

voxels 

(x106) 

#connect

-ed pore 

voxels 

(x106) 

CPU 

run 

time 

(min) 

# while-

loop its. 

needed 

1 218.05 207.16 1022 5468 

15 14.82 13.36 35.7 3360 

30 7.56 6.00 17.7 3058 

 

We consider the CPU run time of 1022 minutes 

problematic. To reduce the amount of time it takes 

for the detect-connected-pores algorithm to finish, 

we ran several data coarsening experiments. That 

is, we coarsened the vertical resolution of the 

samples, and studied how CPU run time, number of 

while-loop iterations, total and connected porosity 

changes with vertical coarsening. Results from the 

R=15 and R=30 coarsening experiments performed 

on the DA sample are shown in the rest of Table 3 

and the iteration count results from all of the 

coarsening experiments performed on this sample 

are plotted in Figure 6. 

 
Figure 6: Influence of coarsening on the number of 

iterations required for the detect-connected-pores 

algorithm to finish. 

Coarsening most certainly reduces the CPU run 

times, mainly because less while-loop iterations are 

required before all neighboring-cells to pore-cells 

have been labelled as NaN (which means they do 

not get checked again). However, our intention is to 

maintain sufficient accuracy of the digitally 

measured porosity values, and thus realize we 

cannot over-coarsen the datasets. The vertical 

distributions of porosity under R=1, R=15, and 

R=30 are shown in Figure 7. These profiles show 

that coarsening smooths out some of the 

perturbations in both the total and connected 

profiles, and that the connected profile moves 

further to the left of the total profile as the degree 

of coarsening increases. This means the pore space 

is less connected as the sample dataset is 

coarsened. Going back to Figure 6, there is a 

sudden change in iteration count behavior at around 

R=30 and above: it is likely that over-coarsening 

has resulted in a connected pore structure that looks 

quite different from the previous coarsening 

degree. Skipping over the key pores that link the 

majority of the connected pore space together can 

produce a very different result.  

 

Figure 7: Total (solid line) and connected (dashed line) 

porosity distribution in the DA sample dataset that was 

coarsened by various degrees: R = 1, 15, 30. 

To better quantify the effect of coarsening, we 

compare the porosity values in each coarsened 

sample (R=2 to 50) against the porosity values in 

the finest-resolved sample (R=1). That is, we 

calculate the relative difference between coarsened 

to non-coarsened (or finest) results. Results for the 

DA sample are presented in Figure 8. 

 

 
Figure 8: Impact of resolution coarsening on the digitally 

measured total and connected porosity in the DA sample. 

Results are given in terms of porosity divided by finest 

porosity. 

This plot indicates the following three things. First, 

coarsening tends to overestimate total porosity and 

at the same time underestimate connected porosity. 

Second, accuracy is not greatly sacrificed under 

coarsening of R=2 to 10 (up to 0.5% relative 

difference for total porosity and 2% relative 

difference for connected porosity; see R=10). But 

applying coarsening beyond R=10 results in up to 
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1% relative difference for total porosity and 40% 

relative difference for connected porosity; see 

R=50.  And third, coarsening impacts the 

connected porosity measurement more than the 

total presumably because more pores have become 

isolated from the top-to-bottom pore pathways. The 

pores along the perimeter of the cylindrical sample 

could be most suspectable to isolation. 

 

 

4. Summary 

 

This work presents an algorithm to detect the 

connected pore space of porous asphalt. This 

algorithm was applied on a real porous asphalt 

sample and the pore space was characterized in 

terms of its 2D porosity distribution in the vertical 

direction. The algorithm was assessed in terms of 

the time it took to analyze the dataset comprised of 

about 200 million pore cells. To reduce the 

computational intensity of analyzing 200 million 

cells, the dataset of the DA sample was vertically 

coarsened and acceptable estimates of the 

connected pore space were obtained in a much 

shorter length of time. Specifically, a coarsening 

level of 10 cut the CPU time by a factor of around 

25 while producing a digital representation that was 

only 2% difference relative to the full resolution 

result. The detect-connected-pores code is available 

online; see link presented in the Author Notes 

section below. Future work is planned to develop 

the repository further to include code used to 

simulate water filtration through the pore space and 

characterize fluid flow parameters such as 

permeability and tortuosity, as well as to calculate 

parameters that include mechanical characteristics 

of the asphalt such aggregate-to-aggregate contact, 

binder layer thickness, etc. 
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Abstract 
 
District heating system often consists of a long, complex network of piping carrying heat from a power plant to 
the consumers. The supply temperature from the plant is either controlled by the operator from experience or a 
predefined curve based on the outdoor temperature. An optimized supply temperature which would be lower 
than the one obtained traditionally would lead to lower heat loss and reduced peak load on the power plant. In 
this paper, we investigate the machine learning models for heat load forecasting which is a crucial parameter in 
the optimizing process. Models are generated using supervised machine learning algorithms: Linear models 
(Linear Regression, Ridge and Gaussian Process Regressor), Random Forest Regressor, Support Vector 
Machine (SVM) and Long Short-Term Memory (LSTM) recurrent neural network (RNN). Data-driven models 
are used extensively in the literature to predict heat load prediction based on the weather and the time effect on a 
fixed training set, however, in this study, we model the heat load in the network in real-time scenarios i.e., 
adaptive training and forecasting. The model is adaptively updated as well as the training of the machine 
learning model in real time. It provides a “plug-and-play” solution for real-time prediction without significant 
pre-tuning requirements. The results of all the models are compared with various time horizons i.e., 6 hrs, 10 
hrs, 24 hrs and 1 week, using the district heating data obtained for the city of Vasteras in Sweden. The 
performance of the prediction algorithms is evaluated using Mean Absolute Percentage Error (MAPE) and Root 
Mean Squared Error (RMSE). An algorithm with the best accuracy is selected based on the performance 
comparison. Also, models suitable for short-term and long-term forecasting are discussed towards the end of the 
article.  
 
1. Introduction 
Optimizing district heating systems using machine 
learning (ML) techniques has gained significant 
interest in recent research. ML models can help 
improve the efficiency and operation of district 
heating systems by optimizing heat distribution and 
consumption. ML models can be used to predict 
heat demand patterns in buildings or areas 
connected to the district heating system. By 
analyzing historical data, weather conditions, and 
other relevant factors, these models can forecast 
heat demand accurately. This enables more 
efficient planning and optimization of heat supply 
from the plant and distribution, reducing energy 
waste and costs.  
The focus of this article is a combined heat and 
power (CHP) plant, also known as a cogeneration 
plant, a type of district heating (DH) system that 
simultaneously generates electricity and useful heat 
from a single energy source. The CHP plant uses a 
primary energy source, such as natural gas, 
biomass, or waste heat, to produce electricity and 
heat in a combined process. The primary energy 
source drives a generator to produce electricity, 

while the waste heat generated during electricity 
generation is captured and used for heating 
purposes. The waste heat produced during 
electricity generation in the CHP plant is captured 
and utilized for district heating. This waste heat is 
typically recovered through heat exchangers and 
transferred to a heat distribution network. The heat 
distribution network consists of insulated pipes that 
transport hot water from the CHP plant to 
connected buildings and areas. Heat exchanges and 
control valves regulate the flow and temperature of 
the heat within the network. Buildings and 
residential areas connect to the district heating 
network through heat exchangers in the consumer 
substation. Heat exchangers transfer the heat from 
the hot water in the network to the building's 
internal heating system, providing space heating 
and sometimes domestic hot water. Currently, the 
supply temperature from the plant is governed by 
the operator’s expertise and knowledge based on 
historical consumption data. Due to temperature 
delay in the piping network, the operator injects 
heat into the network without any clarity on actual 
heat demand at the end user. The drawback of this 
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strategy is that, although satisfying consumer 
expectations, the return temperature in the network 
would be higher than necessary. This suggests that 
lowering the network supply temperature has a 
significant potential to reduce the load on DH 
plants in addition to the fact that the supply 
temperature is frequently greater than is necessary. 
The optimum peak supply temperature, which is 
lower than the historical supply temperature, would 
facilitate more electricity production for the CHP 
plant. Such energy optimization could result in a 
district-wide reduction in greenhouse gas emissions 
given the rising worries about climate change.  
Heating load forecasting plays an essential role in 
reducing network losses and performance 
optimization (reduced plant supply and return 
temperature). Supervised machine learning (SL) 
techniques are widely researched for heat demand 
forecasting in district heating systems while 
Reinforcement learning(RL) is suitable for optimal 
control and load balancing strategies (Idowu, 
Åhlund and Schelén, 2014). These methods 
leverage historical data, weather information, and 
other relevant factors to predict future heat demand 
accurately. Researchers have studied various ML 
models such as Regression models, Support vector 
Machine (SVM), Nature inspired, Artificial Neural 
network (ANN) etc. (Idowu et al., 2014) presented 
a data-driven heat load forecasting for multi-family 
buildings using four ML methods – SVM, ANN, 
Multiple Linear regression(MLR) and 
Classification and Regression Tree (CART).   The 
forecasting model was evaluated for horizon values 
of 1, 3, 6, 12, 18 and 24-h. The SVR method was 
found to be the best performing followed by MLR. 
The authors were able to achieve a 5.6% (best-
performing) Mean Absolute Percentage Error 
(MAWP). The use of a context-based regression 
approach model for average and individual user 
consumption is shown to be effective (Rongali et 
al., 2015). Dalipi et al (Dalipi, Yildirim Yayilgan 
and Gebremedhin, 2016) have performed a 
comparison of ML models for heat load forecasting 
for multiple buildings and showed SVR to be the 
best-performing one.  Idowu et al (Idowu et 
al., 2016) evaluated and compared different ML 
methods such as SVM, FFNN, MLR and regression 
trees. The models are produced and evaluated using 
data observed from 10 district heating substations 
for five multi-family apartments and five 
commercial buildings. They included outdoor 
temperature, day of the week, hour of the day, 
historical values of thermal load and the physical 
parameters of a substation (supply temperature, 
difference between supply and return temperature 
and flow rate) for a forecast horizon up to 48 hr. 
They found that SVM gave the best prediction 
performance, with FFNN and MLR having similar 
error rates as SVM and Regression tree models 

with higher performance error rates. Suryanarayana 
et al (Suryanarayana et al., 2018) have shown that 
the linear models can be very powerful for heat 
load forecasting outperforming some of the 
advanced models like SVR (Support Vector 
Regressor) and Gradient-Boosted Trees (GBT). 
They achieved an MAWP of as low as 8.77 with 
linear models and 8.07 with DNN. Ntakolia et al 
(Ntakolia et al., 2022) did a comprehensive review 
of machine learning models used for heat load 
forecasting and concluded that ANN and SVM are 
found to be the most frequent models used for heat 
load prediction.  
Accurate heating load forecasting is a precondition 
to the optimization and control of district heating 
systems. Zhao et al. (Zhao, Li and Shan, 2021) 
have used SVM in their study to forecast heat load 
to optimize the DH system using Model predictive 
control (MPC). They have shown a reduction in 
energy peak and total energy consumption of the 
system. Similarly, Zimmerman et al. (Zimmerman, 
Kyprianidis and Lindberg, 2019) demonstrated a 
reduction in network supply and return 
temperatures by using MPC with feed-forward with 
CHP heat load reduction of 12.5% to 13.7%. 
However, the weakest point of the paper was that a 
realistic heat-load model was missing. The machine 
learning models studied in the literature for heat 
load predictions are for fixed training sets and not 
adaptive for real-time scenarios which creates the 
motivation for the present study. 
The objective of this paper is to compare machine 
learning models to forecast heat load for the DH 
system of the city of Västerås in Sweden, for 
adaptive and real-time forecasting. The model 
created should not require any pre-tuning for use in 
the DH system. Following machine learning 
techniques have been considered in this paper: 

1. Linear models: linear regression (LR), 
Ridge Regression(RR), Gaussian Process  
regression(GPR) 

2. Support Vector Regressor (SVR) 
3. Random Forest (RF) 
4. LSTM (Long-Short-Term Memory) 

The model is developed for a single substation 
(Tillberga) and then validated with another 
substation (Skultuna) present in Västerås city 
(explained in the next section). 
The paper is organized as follows. Firstly, the DH 
system is described followed by a modelling 
approach and an overview of the considered 
algorithms is presented. Secondly, the methodology 
is described, including the training, validation and 
test periods. The accuracy of the different models is 
then investigated and compared using experimental 
data from a real-world DH plant. 
 
 
 



SIMS 64  Västerås, Sweden, September 26-27, 2023 

2. Methodology  
In this section, to emphasize the motivation behind 
this work, a brief overview of the DH system is 
provided first. The dataset, ML models and 
methods, variables, and their structure are then 
explained. 
 
2.1. District heating system 
The DH system presented in this study is from the 
city of Västeås and its surrounding region. A 
typical DHS has three main parts - The heat 
generation - which usually consists of a co-
generation plant and/or a heat-only boiler station, 
the Distribution network - which consists of 
insulated pipes of varying diameters carrying hot 
water through the entire network and the 
substations - where heat is transferred from the 
primary to the secondary network via a heat-
exchanger. Fig. 1(top) shows the basic schematic 
drawing of a CHP plant and a DH system. The red 
and blue lines denote supply and return pipes 
respectively. Fig. 1(bottom) shows the schematic 
illustration of the city of Västerås with a CHP plant 
connected with different regions around the city.  
 

 

 
Figure 1: (top)A schematic diagram showing a district 

heating system network with substations connected to the 
regions (bottom) Schematic illustration of regions 

connected with the DH system to the CHP in the city of 
Västerås and its surrounding regions 

The supply temperature of the hot water is 
controlled directly from the plant’s control room 
based on the outdoor temperature and it follows 
mostly a given operation temperature curve. The 
return temperature, on the other hand, depends 
mainly on the customer’s heat usage. The current 
DH system is 3rd generation where the temperature 

level varies between 70 and 120∘C, particularly 
during the winter season. The heat load in district 
heating systems is the sum of all heat loads that are 
connected to the network and distribution and other 
losses in the network. 
The heat load ML model is created using the DH 
system of the region Tillberga, which is 
approximately 14.5 km from the CHP. The reasons 
for choosing Tillberga are due to the fact of having 
access to historical network measurements for 
multiple years. The ML model will be validated 
both with Tillberga and Skultuna of the city of 
Västerås. 
The heat consumption at the substation, Qsb 
delivered to the region is mainly a function of the 
supply temperature, Ts, the return temperature, Tr, 
and the flow rate, m, as shown in Eq. (1). 
 

𝑄𝑄𝑠𝑠𝑠𝑠 =  𝑚𝑚.𝐶𝐶. (𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑟𝑟) (1) 
 
Where, Qsb is heat consumption at the substation, C 
is the specific heat of hot water, Ts is supply 
temperature and Tr is the return temperature at the 
substation. 
 
2.2. Dataset 
The data used in this study are provided by 
Mälarenergi who operates the CHP plant. These 
data are measured and collected by regular 
measurements that are part of the control system in 
a DH plant. The measurements consist of the time 
of day, supply temperature (ST), return temperature 
(RT), flow rate (FR), and heat load (HL) at the 
individual substations with 1-hour time step 
intervals. The data used in this study are for the 
winter season:  January 1st 2019 to March 31st 2019 
for model selection and January 1st 2022 to March 
31st 2022 of Tillberga and Skultuna for testing. 
Before building a machine learning model, it is 
important to preprocess the data and remove or 
replace any missing values or outliers. The data is 
preprocessed to remove and replace any missing 
data/outliers (outside ±3-standard deviation) that 
could cause problems with the ML model, such as 
biased results or inaccurate forecasting. We used 
interpolation to replace the missing/outlier data. 
Another step in the data preprocessing is to scale 
the data. Scaling means changing the range of data 
so that all the values are within a similar range. The 
data is scaled using the ‘MinMaxScaler() 
(sklearn.preprocessing.MinMaxScaler)’ function 
from the Python library which scales and translates 
each feature individually such that it is in the given 
range on the training set, e.g. between zero and 
one. 
The data is then split into training, validation, and 
test sets. This is because we want to train our 
models on the training data, validate them on the 
validation data, and then test them on the test data. 
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In this model, we have used a 70-30 split for 
training and testing respectively to assess the 
model. 
 
2.3. Input variables 
The heating demand of a consumer depends on 
several types of factors such as climate and weather 
conditions, timestamp information, and historical 
information. In this work, we use the data which is 
readily available from most of the plants which are 
limited to weather, historical, and time-stamp 
information. 

a. Historical heat load data 
b. Weather input variables: Outdoor air 

temperature 
c. Time-stamp variables: hour of the day and 

day of the week  
 
2.4. Machine learning models 
The following ML models are studied in this paper 
which are found to be more suitable for the heat 
load forecasting problem (Ntakolia et al., 2022). In 
this study, we have used supervised ML models 
which use a set of input variables to forecast the 
values of an output variable.  In these models, we 
look at historical data to train a model to learn the 
relationships between variables and a target 
(output), the thing we’re trying to forecast. This 
way, when new data comes in, we can use the input 
values to make a good prediction of the output 
(target). We have studied the four most widely used 
supervised learning algorithms: Linear models 
(LM), Random Forest (RF): a Tree-based model, 
SVM and LSTM: ANN based model.  
 
Linear models: Linear ML models are simple (old-
school) algorithms that make predictions based on 
linear relationships between the input variables and 
the target variable. The relationship between the 
inputs and the target is represented by a linear 
function. The following three LMs are used in this 
study: 

a. LR: Linear regression models the 
relationship between the inputs (features) 
and target by fitting a linear equation to 
the observed data. It aims to minimize the 
sum of squared residuals between the 
predicted and actual target values. 

b. Ridge Regression (RR): Ridge regression 
is a regularized version of LR that adds a 
penalty term to the cost function, aiming 
to reduce the model's complexity and 
prevent overfitting. 

c. Gaussian Process Regression (GPR): GPR 
is a non-parametric Bayesian regression 
technique that can be used for regression. 
It models the relationship between the 
input and the target variable as a 

distribution over functions rather than a 
single function. 

 
Random Forest (RF): RF is a tree-based algorithm 
that combines multiple decision trees to make 
predictions. It belongs to the ensemble learning 
family, where multiple models are combined to 
improve overall performance and generalization. 
 
Support Vector Regressor (SVR): SVM, based on a 
statistical learning theory, are one of the most 
successful and widely applied ML methods, for 
solving regression problems. SVR is a method of 
SVM for regressions. SVR is a powerful approach 
for handling non-linear regression problems by 
mapping the input variables into a higher-
dimensional space and finding an optimal 
hyperplane that fits as many data points as possible 
within a specified margin. 
 
Long-Short-Term Memory (LSTM): LSTM is a 
type of recurrent neural network (RNN) 
architecture that is widely used for sequential data 
analysis, such as time series forecasting, natural 
language processing, and speech recognition. They 
introduce specialized memory cells and gating 
mechanisms that allow the network to selectively 
remember or forget information over time. LSTM 
networks have been proven effective in modelling 
and predicting sequences with long-term 
dependencies (Schaefer, Udluft and Zimmermann, 
2008). 
 
Hyperparameter analysis is a crucial step in 
machine learning to optimize model performance. 
It involves tuning the hyperparameters of a 
machine learning algorithm to find the best 
combination that yields the highest accuracy or 
lowest error on a given dataset. In this study, an 
automated grid search was conducted for each 
specific ML model by selecting the 
hyperparameters of the ML model. Grid search is a 
popular technique for hyperparameter optimization 
in machine learning. It involves exhaustively 
searching through a specified grid of 
hyperparameter values to find the combination that 
yields the best model performance. 
Table 1 shows the hyperparameters used in each 
ML model. 
All the ML models are assessed using open-source 
software like Python with  packages like Scikit-
Learn (scikit-learn: machine learning in Python — 
scikit-learn 1.2.2 documentation, 2023) and 
Tensorflow (TensorFlow, 2023).  
 
2.5. Performance metrics 
In this work, we considered commonly used 
metrics for evaluating the performance of the 
proposed models. These are the Root Mean-Square 
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Error (RMSE), the Mean Absolute Percentage 
Error (MAPE) and the Correlation coefficient (Corr 
Coef). In this paper, we have used MAPE and 
RMSE for performance evaluation.  
RMSE is commonly used to measure the difference 
between a model’s predicted values and actual 
values observed (the average prediction error over 
all time instants) and is computed as: 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  ��
1
𝑛𝑛
�(𝑦𝑦𝚤𝚤� − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

� (2) 

 
Table 1: ML models and hyperparameters 

 
 
 
MAPE estimates how close forecast values are to 
actual values in percentage and is computed as: 

𝑅𝑅𝑀𝑀𝑀𝑀𝑅𝑅 =  
100
𝑛𝑛

�
|𝑦𝑦𝚤𝚤� − 𝑦𝑦𝑖𝑖|

|𝑦𝑦𝑖𝑖|

𝑛𝑛

𝑖𝑖=1

(3) 

 
where 𝑦𝑦𝚤𝚤�   is the estimated value in a forecasting 
model, 𝑦𝑦𝑖𝑖   is the measured value and n is the total 
number of forecasted data points in each forecast 
horizon.  
 
2.6. Model workflow 
As mentioned earlier, we have used two datasets 
from different years to build and test the models in 
adaptive learning and real-time scenarios. The first 
dataset i.e. dataset from region Tillberga from 2019 
is used to test the performance of different ML 
models. The decision is taken based on their 
performance metrics and the best model is selected 

for adaptive learning. Figure 3 shows the workflow 
of the development of the heat load forecasting 
model. The selected model with optimized 
hyperparameters will be used in the dataset of the 
year 2022 for Tillberga and Skultuna of Västerås 
City. The final model is trained adaptively as the 
new data adds to the historical set and the training 
set. The training set moves as the new data is 
available i.e., the model which dynamically adapts 
to the new patterns in the data.  
 

 
Figure 2: Workflow for machine learning model 

selection and heat load forecasting 
 
3. Results 
In this section, results are presented in two 
subsections: a) the performance of different models 
and selection for the testing data b) the 
performance of selected models in adaptive 
learning.  
 
3.1 Performance comparison of ML models 
The performance of all the ML models mentioned 
above is evaluated for the dataset of the Tillberga 
substation. The data is from the winter season from 
1 January 2019 to 31 January 2019. Table 2 shows 
the performance of different ML models for the 
testing dataset. Amongst the linear models, GPR 
shows very good performance in prediction with 
4.77% MAPE with LR and RR showing similar 
performance. GPR can capture the complex and 
non-linear relationship between input features and 
output. The high accuracy of GPR suggests that 
there might be a non-linear relationship between 
features and output.  

Table 2: ML models and hyperparameters 

 

ML model Hyperparamete Definition Defined Parameter

LR (Linear ֊ ֊ ֊
RR (Ridge 
Regression)

alpha (α) the regularization 
parameter

0.01 - 10

Kernel type    the Kernel function  RBF(Radial Basis 
Function)    

 length_scale Smootheness of the 
kernel

0.1- 10

alpha (α)                  Regularization 
Parameter   

0.001-10

n_estimators number of decision 
trees in the random 

100-500

max_depth the maximum 
depth of each 

0-10

Kernel type    the Kernel function RBF(Radial Basis 
Function)   

C the penalty paramete0.1- 10

epsilon the margin of 
tolerance around 
the predicted value 

0.01-1

units the number of 
memory cells or 
hidden units in the 
LSTM layer

10-500

activation Activation Function relu
Batch Size ֊ 8-64
Number of 
Epochs ֊

50-500

Loss Function ֊ mean_squared_error
optimizer ֊ adam

GPR (Gaussian 
Process 
Regression)

RF (Random 
Forest)

SVR (Support 
Vector 

Regressor)

LSTM (Long-
Short-Term 
Memory)

ML model MAPE, % RMSE
LR (Linear Regression) 8.22 394.8
RR (Ridge Regression) 8.26 388.5
GPR (Gaussian Process 
Regression) 4.77 242.4

RF (Random Forest) 4.30 233.8

SVR (Support Vector Regressor) 4.28 225.8

LSTM (Long-Short-Term 
Memory) 5.50 279.9
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Table 1 also shows that the best-performing model 
is SVR with 4.28% MAPE which suggests that 
predicted heat loads with SVR are closer to the 
actual heat consumption as also seen in Figure 3.  
The best performance of the SVR over the other 
methods is associated with efficient feature space 
modelling and the fact that SVR is less prone to 
overfitting. It can be concluded that the GPR, RF 
and SVR can be effectively applied to the 
prediction of heat load in the DH system. In this 
study, we select SVR for adaptive training in real 
real-time scenario of heat load forecasting. 
 
3.2 Adaptive modelling and performance 
The SVR model is applied to the dataset of 
Tillberga and Skultuna region of Västerås city for 
adaptive learning and heat load prediction. The data 
is taken for the winter season from 1st January to 
31st March 2022. The performance is evaluated for 

the adaptive training set of two weeks and four 
weeks. Figure 4 shows an example of the 
performance execution for the Tillberga region. 
The Fig, black line represents the measured data of 
the heat load of Tillberga against which predicted 
values (green line) are plotted. The training set is 
shown in the red line which adaptively moves with 
the addition of new data. The blue line represents 
the predicted horizon (6 hrs, 10 hrs, 24 hrs or 1 
Week). The hours in the period are plotted on the 
x-axis which represents the total time duration. 
Figures 5 and 6 show results of actual heat load and 
heat load prediction for 24 hrs, based on the SVR 
algorithm for Tillberga and Skultuna respectively. 
The figures also show the performance indicators 
(MAPE and RMS) for two different training set 
lengths i.e., 2-weeks and 4-weeks.  

 
Figure 3: Performance comparison of actual and forecasted heat load for testing data for ML models 
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Figure 4: Adaptive learning of model to predict heat load  

 
Figure 5: Forecasted heat load and Performance indicators (MAPE and RMSE) for Tillberga region with data from 1st Jan 

2022 to 31st March 2022 with 24 hr of prediction horizon 

 
Figure 6:  Forecasted heat load and Performance indicators (MAPE and RMSE) for the Skultuna region with data from 1st 

Jan 2022 to 31st March 2022 with 24-hour prediction horizon 
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As can be seen from Figure 5, the predicted HL 
with SVR is closer to the actual energy 
consumption, with a MAPE value fluctuating 
between 3 to 10%. The high error at the initial 
predictions is due to the small training set available 
for the forecasting model. However, as the training 
set achieves the 2-week/4-week data, the accuracy 
improves. Also, the 4-week training data shows 
better performance than the 2-week training data 
which follows the intuition. The high error shown 
by the 2-week training data at around hour 27650 is 
due to the exclusion of the low outdoor temperature 
data. The 4-week training data captures the low 
outdoor temperature hence the more accurate 
predictions. The RMSE plot shows similar 
behaviour, and no deviations are observed. This 
confirms the good performance of the SVR for 
adaptive learning with good accuracy.  
The model is adaptively updated as well as the 
training of the machine learning model in real time. 
It provides a “plug-and-play” solution for real-time 
prediction without significant pre-tuning 
requirements. This claim is validated by applying 
the SVR model to a completely different data set of 
another region i.e., Skultuna. Figure 6 shows the 
forecasted heat load and Performance indicators 
(MAPE and RMSE) for data from 1 Jan 2022 to 31 
March 2022. The performance is quite like seen in 
the previous case of Tillberga region. The MAPE is 
within the range of 3-10%.  
The performance discussed above was for 24 24-
hour forecast horizon. The performance with 6 
hours, 10 hours and 1 week is also evaluated and 
presented in the appendix section of the paper. It 
can be seen that for the short forecasting horizons, 
6 hrs and 10 hrs, the errors are slightly higher than 
the long forecast horizon. The error in the long 
forecasting horizon seems to be more stable.  
 
4. Conclusion 
In this paper, six ML algorithms for the heat load 
prediction in the DH network of Västerås city are 
developed, compared and analyzed. The algorithms 
studied are LR, RR, GPR, RF, SVR and LSTM. 
Hyperparameter analysis is carried out to find the 
optimized values for each model. The performance 
of the models was compared using data from 2019 
for the winter season. The predicted hourly results 
were compared with actual heat load data.  
The SVR algorithm proved to be the most efficient 
one, producing the best performance in terms of 
MAPE and RMSE. The SVR model is then 
selected for adaptive learning and heat load 
forecasting in real-time scenarios. The model is 
tested for the actual data from the winter of 2022 of 
the Tillberga region. The results are also compared 
with shorter (2-week) and longer (4-week) training 
sets. The model, overall, shows good performance 
with MAPE ranging from 3 to 10%. To provide a 

“plug-and-play” solution for real-time prediction 
without significant pre-tuning requirements, the 
model is tested also with completely different 
regions on winter data. The performance shows 
similar accuracies to that in the Tillberga region. It 
proves that the developed SVR method is 
appropriate for adaptive learning and application in 
heat load prediction. In future, we intend to use this 
model to predict heat load in real-time scenario for 
the optimization of DH network supply and return 
temperature.  
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Figure 7: Forecasted heat load and Performance indicators (MAPE and RMSE) for Tillberga region with data from 1st 

Jan 2022 to 31st March 2022 with 6 hr prediction horizon 

 
Figure 8: Forecasted heat load and Performance indicators (MAPE and RMSE) for Tillberga region with data from 1st Jan 

2022 to 31st March 2022 with 10 hr prediction horizon 
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Figure 9: Forecasted heat load and Performance indicators (MAPE and RMSE) for Tillberga region with data from 1st Jan 

2022 to 31st March 2022 with 1-week prediction horizon 

 
Figure 10: Forecasted heat load and Performance indicators (MAPE and RMSE) for Skultuna region with data from 1st Jan 

2022 to 31st March 2022 with 6 hr prediction horizon 
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Figure 11: Forecasted heat load and Performance indicators (MAPE and RMSE) for Skultuna region with data from 1st Jan 

2022 to 31st March 2022 with 10 hr prediction horizon 

 
Figure 12: Forecasted heat load and Performance indicators (MAPE and RMSE) for Skultuna region with data from 1st Jan 

2022 to 31st March 2022 with 1-week prediction horizon 
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Abstract 
 
Thermochemical conversion processes of biomass, such as gasification and pyrolysis, can convert a wide range 
of feedstocks into liquid fuels, including forest residue, agricultural, food, and municipal solid waste. These 
more widely available and theoretically lower cost feedstocks make biofuel production through thermochemical 
pathway more cost-competitive. Furthermore, the thermochemical conversion pathway for biomass conversion 
could be relatively easy to integrate with the existing biomass combined heat and power plant, making it an 
attractive technology for the future commercialization of biofuel production through biomass. A detailed 
analysis was undertaken of a retrofitted biomass combined heat and power plant for biofuel production in this 
work. The biofuel production plant is designed to explore the polygeneration of hydrogen, biomethane, and bio-
oil via the integration of gasification, pyrolysis, and renewable-powered electrolysis. The G-valve in the 
biomass circulating fluid bed plant, which is generally used for sand and char recycling, is retrofitted in the 
proposed system to fit the pyrolysis reaction for bio-oil production. Centering around the biomass circulating 
fluid bed gasifier, the system is also outfitted with a condensation and distillation process for bio-oil production, 
and a membrane reactor system for biomethane production. A mathematical model of the proposed biofuel 
production plant is established in Aspen Plus, followed by a performance investigation of the biofuel production 
plant under various design conditions. The limitations and opportunities of this retrofitted biomass combined 
heat and power plant for biofuel production are explored in this study.  

 

1. Introduction 
 
Biomass has been acknowledged as a premier 
renewable energy resource in the EU. Among 
various biomass conversion pathways, 
thermochemical conversion processes such as 
gasification and pyrolysis, are capable of producing 
biofuels from a diverse of feedstocks, including 
forest residuals, agricultural waste products, food 
waste, and municipal solid waste. These 
theoretically low-cost feedstocks make the 
thermochemical pathways of biomass conversion 
more economically viable for biofuels production 
[1]. 
As a thermochemical pathway for biomass 
conversion, fast pyrolysis has the potential to be 
integrated into existing biomass combined heat and 
power (CHP) plants [2], thereby enhancing its cost 
competitiveness for biofuel production. Karvonen 
et al. performed an environmental assessment on 
the integration of fast pyrolysis into a CHP plant [3]. 
This integration was achieved by using the heat 
from the char and non-condensing gas combustion 
to enhance heat and power generation in a CHP 
plant. The results indicated that the efficiency of 
stand-alone pyrolysis was improved from 59% to 

71% upon integration into a CHP plant. A study on 
the integration of biomass fast pyrolysis with a 
municipal waste CHP plant was conducted by Kohl 
et al. [4]. The heat required in the biomass pyrolysis 
process was supplied by the hot flue gas from the 
CHP plant in this work, aiming at improving the 
pyrolysis product yield and retaining the district 
heat load simultaneously. It is noted that the 
operational hours of the CHP plant could be 
potentially increased by 57%, which makes this 
integration economically viable. Onarheim et al. 
performed a techno-economic analysis of a fast 
pyrolysis bio-oil production process with 
integration into an existing Fluid Bed Boiler CHP 
plant [5]. The sand heated in the CHP plant was sent 
to support the endothermic reaction in the pyrolysis 
reactor. Sensitivity analysis on different feedstocks 
and varying heat and electricity prices were also 
implemented in this study. The results showed that 
the economically advantages of this integration 
highly depend on the cost of heat and feedstocks. 
Zetterholm et al. completed a comprehensive 
evaluation of fast pyrolysis value chain 
configurations considering different types of 
locations, emissions, feedstocks, and final products 
[6]. The results showed that production cost for 
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crude pyrolysis liquid is in the range of 36-60 
€/MWh (LHV of pyrolysis crude oil), and 61-90 
€/MWh after further upgrading pyrolysis crude oil 
to diesel and petrol. It was also found that the 
integration of existing industrial infrastructure 
helps to mitigate the production cost. 
Various gasification technologies are also 
considered in biofuel production processes since 
they provide excellent synergies. As a 
thermochemical process, biomass gasification can 
benefit from the integration of existing CHP plants. 
Piazzi et al. performed an experimental study to 
investigate the feasibility of retrofitting existing 
small-scale gasifier from CHP production to 
hydrogen and biofuel generation [7]. Co-production 
of syngas and biofuel by using the dual fluidized 
bed gasifier has been examined by Gustavsson et 
al., demonstrated a substantial enhancement on 
system efficiency [8]. An economic feasibility 
analysis of complementing existing CHP plants for 
hydrogen production was investigated by Naqvi et 
al., in this research the estimation cost for hydrogen 
production is 0.125-0.75 €/kg hydrogen [9]. 
Thunman et al. conducted an economic analysis of 
the GoBiGas plant, which is the first industrial 
installation for biomethane production with 
gasification [10]. This study found that the economic 
performance could be improved if integrated with 
existing infrastructure and low-grade feedstocks. 
Holmgren et al. examined the performance of 
gasification-based biofuel production systems with 
integration of district heating system [11]. It is 
concluded that the profitability of this system 
strongly depends on the specific production 
technologies and on the reference power 
production. The integration of existing CHP plant 
and gasification process for dimethyl ether or 
methanol production was analyzed by Salman et al. 
[12]. The results showed that the profitability could 
be notably improved by integrating gasification 
with CHP plants for biofuel production, as 
compared with the CHP plants that are only for 
heat and electricity generation.  
In this study, a detailed analysis was undertaken of 
a retrofitted biomass combined heat and power 
plant for biofuel production. By retrofitting the G-
valve in the biomass circulating fluid bed boiler for 
pyrolysis, the biofuel production process can 
benefit from the heat and hydrogen generation from 
the biomass gasification. It is expected that the 
proposed system could reduce the investment cost 
of biofuel production, and the integrated 
technologies could also serve as a solution for 
energy storage and transportation for renewables 
integration. 
 
 
 
 

2. System description 
 
The proposed pilot plant is designed to explore the 
polygeneration of hydrogen, biomethane, and bio-
oil via the integration of biomass gasification, 
pyrolysis, and electrolysis with utilizing renewable 
energy. The primary component of the pilot plant is 
a Circulating Fluidized Boiler (CFB) with biomass 
as feedstock. The G-valve, typically used for sand 
and char recycling in the CFB, is retrofitted to fit 
the biomass pyrolysis reaction for biooil 
production. Centering around the Biomass CFB, 
the plant is also outfitted with cooling and 
distillation for bio-oil production, and membrane 
reactor system for biomethane production.  
The schematic diagram of the facility is presented 
in Figure 1. During operation, ambient air is 
preheated to around 600 ℃ before being fed into 
the CFB, where the air transports and heats the 
feeding biomass up to enable the gasification 
process to occur downstream.  
Then syngas generated from biomass gasification is 
separated from the solids (uncombusted biomass, 
char, and sand) in the cyclone. The solids, which 
still carry heat, are directed to the G-Valve 
(pyrolyzer), where the sensible heat of the solids is 
used to support the endothermic pyrolysis reaction 
and to generate pyrolysis vapor. After the cooling 
process within a condenser, the pyrolysis vapor 
becomes liquid bio-oil, which will be further 
upgraded to bio-gasoline or biodiesel in the 
hydrotreatment reactors with the presence of 
hydrogen. Meanwhile, the syngas after the cyclone 
will go through a reformer and a two-stage water-
gas shift reactor to enhance the hydrogen 
generation. Finally, the existing carbon monoxide 
and carbon dioxide in the syngas, together with the 
generated hydrogen, is sent to a methanation 
reactor for biomethane generation.  
 

 
Figure 1, Schematic diagram of biomass pyrolysis, 

gasification, and electrolysis integrated polygeneration 
system 
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3. Process modeling 
 
3.1 Biomass pyrolysis integrated with gasification 
 
The process model for the entire biofuel production 
pilot plant was established in Aspen Plus to 
evaluate the system performance. Figure 2 
illustrates the flowsheet of incorporating the 
pyrolysis process into the biomass CFB gasifier in 
Aspen Plus. The gasification was simulated by 
using two blocks, namely the DECOM block 
(RYield reactor) and the Gasifier block (Gibbs 
Reactor). Biomass is first converted into 
conventional components (C, H2, O2, N2, S and ash 
) in the DECOM block, in which the product yield 
is calculated by an external Fortran code based on 
mass balance. The Gasifier block mixes the 
products from DECOM with air and simulates the 
gasification process by computing thermodynamic 
equilibrium.  
A RYield reactor (Pyrolyzer block in Figure 2) is 
also used to conduct the pyrolysis process in the G-
Valve. The mass yield fraction of pyrolysis product 
was taken from Lisa et al. [13] with the fixed 
pyrolysis temperature at 480 ℃.  Char and ash 
generated from pyrolysis, along with recycled sand, 
are then directed to the Char Combustor block, 
where the solid char will be combusted. If needed, 
additional air will also be injected to the Biomass 
Comb block to supply heat for the pyrolysis. Part of 
the preheated air is also injected into the gasifier to 
support the endothermic gasification reaction. SiO2 
is used in this study to simulate sand in the 
Gasifier. The normalized feedstock ultimate 
analysis and the product yield for the pyrolysis 
reactor are given in Table 1. Peng Robinson cubic 
equation of state with the Boston-Mathias alpha 
function is used in Aspen Plus for all 
thermodynamic properties. 
 
 

Table 1,  Ultimate analysis of the feedstock and 
product yield for the pyrolysis 

Ultimate analysis of the 
feedstock  

Product yield for the 
pyrolysis 

Carbon 49.66 % H2 0.0000 
Hydrogen 6.31 % CO 0.0582 
Oxygen 43.55 % CO2 0.0603 
Nitrogen 0.10 % CH4 0.0028 
Sulfur 0.08 % C2H4 0.0028 
Ash 0.30 % Acetic Acid, 

C2H4O2 
0.1107 

LHV 15.1 MJ/kg Acetone, 
C3H6O 

0.1272 

  M-Cresol, 
C7H8O 

0.0398 

  Coniferyl 
Aldehyde, 
C10H10O3 

0.0068 

  Guaiacol, 
C7H8O2 

0.2680 

  Levoglucosan, 
C6H10O5 

0.0440 

  Furfural, 
C5H4O2 

0.0294 

  Water, H2O 0.1480 
  Char 0.0968 
 
3.2 Bio-oil production and upgrading with onsite 
hydrogen generation 
 
The pyrolysis vapor generated from the G-valve 
(Pyrolyzer) needs to be condensed to form bio-oil. 
To achieve this, a quench loop, depicted in Figure 
3, is implemented to facilitate the condensation of 
the pyrolysis vapor into a liquid phase. The 
pyrolysis gas after the quench loop is sent back to 
the Char Combustion block (shown in Figure 2) to 
support the heat for gasification.  
After the quench loop, bio-oil is separated from the 
aqueous phases in the pyrolysis product. To 
enhance the stability and heating value of the bio-
oil, a hydrotreatment process is employed after the 
quench loop. The hydrotreatment reactions and 
operating parameters employed in the 
Hydrotreatment Reactor block are taken from Dutta 
et al. [14]. The product resulting from the 
hydrotreatment process is directed to the distillation 
column, where biofuel is separated out and 
produced. It is worth mentioning that the hydrogen 
required for the bio-oil upgrading is from 
gasification, which enables onsite self-sufficient 
hydrogen generation. 
 
3.3 Bio-methane generation with renewables 
integration 
 
As presented in Figure 4, to enhance the biofuel 
production of the pilot plant, syngas produced from 
the gasification process is mixed with the recycled 
gas from the bio-oil upgrading process and directed 
to the steam reformer to increase hydrogen 
production. To further increase hydrogen 
generation, a two-stage water-gas shift reactor 
(high temperature water-gas shift reactor, HT-
WGS, and low temperature water-gas shift reactor, 
LT-WGS) is incorporated after the reformer. 
Subsequently, in the pressure swing adsorption 
(PSA) process, a portion of the hydrogen is 
diverted to the bio-oil upgrading process, while the 
remaining gas (primarily composed of H2, CO, and 
CO2) is compressed and channeled to the 
methanation reactor to produce bio-methane, 
aiming for enhanced biofuel production and carbon 
capture and utilization. Additionally, air preheating 
and high temperature steam generation are 
implemented into the process to improve the 
thermal efficiency of the entire pilot plant.  
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Figure 2, Process flowsheet of biomass pyrolysis integrated with gasification process in Aspen Plus 
 

 
Figure 3, Process flowsheet of Bio-oil production and upgrading process in Aspen Plus 

  

 
Figure 4, Process flowsheet of hydrogen and biomethane production process in Aspen Plus 
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4. Results 
 
4.1 process modeling results 
 
The goal of the process modeling is to determine 
the optimal parameters for the plant design to 
improve fuel production and profitability. In this 
baseline scenario, electrolyzers are not integrated in 
the polygeneration system. Based on the capacity 
of the pilot plant that is under construction at 
Malardalen University, the biomass feeding into 
the gasifier and pyrolyzer (G-Valve) are fixed at 
45kg/hr and 15 kg/hr respectively,  
 

 
Figure 5,  CH4 production after the methanation reactor 

and H2 production after LT-WGS reactor 
 

As aforementioned, the pyrolysis and gasification 
process are coupled in the polygeneration plant by 
taking the heat from the recycling sand to support 
the endothermic pyrolysis process. The 
uncombusted solid left from the pyrolysis is then 
recycled back to the gasifier to participate in the 
gasification process. Therefore, the operating 
condition of the gasifier has a major impact on the 
downstream processes such as bio-oil production, 
hydrogen and biomethane generation. A sensitivity 
analysis is performed in this work to investigate the 
impacts of operating temperature of gasifier on 
hydrogen and methane production of the proposed 
system. Figure 5 shows the methane production 
(after methanation reactor) and hydrogen yield 
(after the LT-WGS reactor) when the gasification 
temperature varies from 700 to 1000 ℃. As 
illustrated in Figure 5, CH4 and H2 production 
increase when gasification temperature rises from 
700 to 800 ℃, after which the CH4 and H2 yields 
start to drop if further increasing the gasification 
temperature from 800 to 1000 ℃. The reason 
behind the peak production of H2 and CH4 at 800 
℃ gasification temperature is that, while 
gasification benefits from the higher temperature, 
more air is required to support the higher 
gasification temperature through combustion, thus 
resulting in the reduced CO, H2, and CH4 in the 
syngas composition, and eventually causing the 

drop of H2 and CH4 production after WGS reactor 
and methanation reactor. 
Figure 6 shows the gas composition change along 
with the process streams (after gasification, 
reforming, and two stage water-gas shift reaction), 
it can be seen that hydrogen composition in the 
syngas increased significantly after reforming and 
water-gas shift reaction. 
 

 
Figure 6,  Mole concentration at varied location of the 

process line 
 
4.2 Air, heat, and power consumption  
 
Air and power consumption of the polygeneration 
system under varied operating gasification 
temperatures are summarized in Figure 7. As we 
discussed before, more air is injected into the 
gasifier to maintain a higher gasification 
temperature, which contributes to the increase in air 
consumption. As also shown in Figure 7a, in the 
case of gasification temperature lower than 800 ℃, 
the heat carried by the recycled sand is not enough 
to support the endothermic reaction, therefore air is 
feeding into the pyrolyzer to support the pyrolysis 
process. The same happens in the steam reformer 
reactor, air is also injected into the reformer to 
supply the heat (so called auto-thermal reforming). 
It is worth noting that the air required by the 
pyrolysis and reformer are calculated and 
controlled by an external Fortran code integrated in 
Aspen Plus. 
Figure 7b demonstrates the power consumption of 
the polygeneration plant under different operating 
conditions. As shown in Figure 7b, more than half 
of the power consumption comes from the gas 
compression for the methanation. The methanation 
reactor operates at a high pressure above 30 bars, 
which consumes a large amount of power (about 20 
kW, shown in Figure 7b) to pressurize the syngas 
before feeding into the methanation reactor. The 
second largest power consumption in the system is 
from the hydrogen compressor, as shown in Figure 
7b. Hydrogen compressor is employed to compress 
the hydrogen (generated from the gasification, 
reforming, and water-gas shifting process) to the 
operating pressure (40 bar) of the bio-oil 
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hydrotreatment reactor, therefore  resulting in an 
unneglectable proportion of power consumption. 
 

 
Figure 7a, Air consumption in the polygeneration system 

 

 
Figure 7b, Power consumption in the polygeneration 

system, baseline scenario 

 
Heat requirements and the heat produced in the 
polygeneration plant are described in Figure 8. The 
heat demand comes mainly from the bio-oil 
upgrading process, such as hydrotreatment process, 
water separation and distillation process, about 2.8 
kW. The operating conditions of the gasifier hardly 
affect the bio-oil production process, thus resulting 
in the nearly constant heat requirement with varied 
gasification temperatures, as shown in Figure 8a. 
Figure 8b shows the changes of the heat produced 
in the polygeneration plant, as more combustion is 
required to support the higher gasification 
temperature, more heat released from the system, 
around 9 - 10 kW, which provides an opportunity 
to be used for district heating. 
 

 
Figure 8a, Heat demand in the polygeneration system 

 

 
Figure 8b, Heat produced in the polygeneration system 
 
 
4.3 Carbon efficiency  
 
Figure 9 shows the carbon distribution and carbon 
efficiency of the polygeneration system under 
varied gasification temperatures. Carbon efficiency 
represents the proportion of carbon that has been 
converted into biofuels from the feedstock. As 
shown in Figure 9, around 40% of the carbon from 
the biomass could be captured in biomethane and 
bio-oil. The optimal gasification temperature in 
terms of the highest carbon efficiency (around 
40%) is 800 ℃. And it is also worth noting that a 
large proportion of carbon is left in the ash when 
the operating temperature of gasifier is lower than 
750 ℃, which is not favorable.  
 

 
Figure 9, Carbon distribution in the final products and 

carbon efficiency of the polygeneration system 

 
Figure 10 illustrates the carbon flows in the 
polygeneration system in the case of 800 ℃ 
gasification temperature. It is obvious that more 
than half of the carbon is still released into the 
atmosphere through waste and exhaust in this case. 
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Figure 10, Carbon flows (kmol/hr) in the polygeneration 

system with 800 ℃ gasification temperature 

 

 Since the capacity of the pyrolyzer (G-Valve) 
could be relatively easy to scale up, a sensitivity 
analysis of pyrolyzer capacity (varied biomass 
feeding mass flowrate from 15 kg/hr to 45 kg/hr) is 
performed in this work. Table 2 summarizes the 
fuel productions  and carbon efficiencies of the 
polygeneration system under varied pyrolyzer 
capacities, while the gasifier operating temperature 
and the biomass feeding flowrate in the gasifier are 
fixed at 800 ℃ and 45 kg/hr respectively in this 
case. 

 

5. Summary and Discussions 
 
A polygeneration system of retrofitting the existing 
biomass CHP plant for biofuel production was 
proposed and analyzed in this work. The process 
modeling of the polygeneration system, which 
integrates biomass gasification and pyrolysis to 
generate biofuels (biooil and biomethane), is 
performed in Aspen Plus. Sensitivity analysis of the 
key design parameters, such as gasification 
temperature, was conducted to investigate the 
impacts on system performance.  
 Retrofitting of existing CHP plant for biofuel 
production provides good opportunities for 
sustainable fuel generation and surplus renewable 
energy storage. By the integration of gasification 
and pyrolysis, the uncombusted char left from 
pyrolysis could be used to support the endothermic 
gasification process, and the hydrogen generated 
from gasification could be used to upgrade the 
biooil through hydrotreatment, thus improving the 
fuel production and profitability of such systems. 
The results also shows that the optimal gasification 
temperature in terms of enhancing biomethane and 
hydrogen production is 800 ℃. The carbon 

efficiency of the entire system could reach up to 
40%.  
It can be expected that when integrated with 
renewable energy, the polygeneration system could 
benefit from the oxygen and hydrogen produced by 
renewable-powered electrolysis, which could 
increase the biomethane production, this will be 
explored in our future work. It is also worth noting 
that a large amount of heat is produced in the 
polygeneration process, which could also be 
considered for district heating.  
The results of this process modeling work will be 
utilized to optimize and guide the construction of a 
pilot scale reactor at Mälardalen University, 
Västerås, Sweden. Furthermore, a concurrent 
investigation into economic analysis is currently 
underway to explore the economic feasibility of 
such systems. 
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Appendix 

Table 3, Biooil composition 

Table 4, Specifications used for reformer, water gas shift reactor, and methanation reactor 

Block name  Specifications 

Gasifier (RGibbs) 

Pressure 2.02 bar

Temperature 750 - 1000 ℃ 

Calculation option Calculate phase equilibrium and chemical 
equilibrium 

Steam reformer (RGibbs)  
Pressure  -0.20 bar

Temperature 800 ℃
Calculation option Calculate phase equilibrium and chemical 

equilibrium 

HT-WGS (REquil) 

Pressure drop -0.35 bar

Inlet temperature 340 ℃
Reactions CO + H2O = CO2 + H2

LT-WGS (REquil) 

Pressure drop -0.35 bar

Inlet temperature 220 ℃
Reactions CO + H2O = CO2 + H2

Methanation reactor (REquil) 

Pressure  30 bar 

Temperature  360 ℃ 

Reactions CO + H2 = CH4 + H2O 

CO2 +4 H2 = CH4 + 2H2O 

CO + H2O = CO2 + H2 

Table 5, Reactions and Operating parameters in the hydrotreatment reactor 

Operating parameters of the Hydrotreatment reactor 

Temperature 400 ℃ 

Pressure 105 bar

Chemical reaction considered in the Hydrotreatment reactor 

Reaction 
number 

Fractional conversion component and 
rate 

Reactions 

1 Acetic Acid, 1 Acetic Acid+ 2 H2 = Ethanol+ H2O 

2 Furfural, 1 Furfural + 3 H2 = Tetrahydrofurfuryl alcohol 

3 Levoglucosan, 1 Levoglucosan + H2 + H2O = Sorbitol 

4 M-Cresol, 0.26 H2 + M-Cresol = Toluene + H2O 

Biooil composition Mass fraction, % LHV, MJ/kg 

Benzene 32.1 36.3

Ethanol 25.2

Methylcyclohexane 11.6

Cyclohexane 20.0

Tetrahydrofurfuryl alcohol 9.7 

Ethylbenzene 1.4
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5 M-Cresol, 1 4 H2 + M-Cresol = Methylcyclohexane + H2O 

6 Guaiacol, 0.2 Guaiacol + 6 H2 = Cyclohexane + 2 H2O+ CH4 

7 Guaiacol, 1 Guaiacol + 3 H2 = 2 H2O+ CH4+ Benzene 

8 Benzene, 0.2 Benzene + 3 H2 = Cyclohexane 

9 Coniferyl Aldehyde, 0.5 Coniferyl Aldehyde + 2 H2 = Toluene + 2 CO+ 
CH4+ H2O 

10 Toluene, 1 Toluene + 3 H2 = Methylcyclohexane 

11 Coniferyl Aldehyde, 1 Coniferyl Aldehyde + 3 H2 = Ethylbenzene + CO2+ 
CH4+ H2O 
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