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Preface 
 
The Second SIMS EUROSIM conference on Simulation and Modelling (SIMS EUROSIM 2024) and 65th 
SIMS conference on Simulation and Modelling (SIMS 2024) were organized in Oulu, Finland. The 
background of this conference series is in the 65-years history of Scandinavian Simulation Society, SIMS. The 
first SIMS EUROSIM Conference was organized as a virtual conference in 2021. The SIMS conferences are 
annual and every third of them is a joint SIMS EUROSIM conference. 

The Scandinavian Simulation Society consists of members from five Nordic countries: Denmark, Finland, 
Norway, Sweden, and Iceland. The goal of SIMS is to further develop the science and practice of modelling 
and simulation in all application areas and to be a forum for information interchange between professionals 
and non-professionals in the Nordic countries. SIMS is a member society of The Federation of European 
Simulation Societies (EUROSIM) was set up in 1989. The purpose of EUROSIM is to provide a European 
forum for regional and national simulation societies to promote the advancement of modelling and simulation 
in industry, research and development. EUROSIM consists of 17 European Simulation Societies. The 
Scandinavian Simulation Society (SIMS) had the Annual Meetings during the conference. International 
Federation of Automatic Control (IFAC) co-sponsored the conference via technical committees:  

 TC 3.2. Computational Intelligence in Control 
 TC 6.1. Chemical Process Control 
 TC 6.2. Mining, Mineral and Metal Processing 
 TC 6.3. Power and Energy Systems 
 TC 6.4. Fault Detection,Supervision&Safety of Techn.Processes-SAFEPROCESS 

The conference program consisted of keynote presentations, regular presentations and a panel discussion. The 
call for papers resulted in 98 submissions prepared by 337 authors from 25 countries. Submissions were 
reviewed by six chairs, 26 IPC members and 21 international reviewers. Full articles were selected on the 
grounds of academic merit and relevance to the conference theme. Each submission had 2-5 reviews and the 
acceptance rate was 67% for the full articles. The proceedings include 66 articles prepared by 200 authors from 
15 countries. The keynotes are included as abstracts. The IFAC conference templates were used for the regular 
papers. 

The conference covered broad aspects of simulation, modelling and optimization in engineering applications. 
The most active area, energy systems, includes many articles on renewable energy, energy storage and power 
production. High number of contributions are for the circular economy, where the focus is the CO2 capture and 
use, in the steel industry, where articles are in thermodynamics and computational methods, and in the 
automation where advanced process control, parameter estimation, process intensification and optimization 
are used in various application areas, including also mobile robots, warehouse optimization and oil recovery. 
Other session topics include water treatment and nature-based solutions, biosystems, fluid flow and heat 
transfer, transportation, machine learning, and modelling in process analysis and optimization. 

Panel discussion was organized on future challenges and possibilities for simulation. The discussion focused 
on four areas: artificial intelligence, importance of the expert or domain knowledge, requirements of data and 
use of written or spoken expert data. Discussions emphasized using different forms of expertise together with 
the data-driven approaches. The audience had time for two questions. The limitations on relying only on expert 
knowledge was the question. This risk can be avoided by following mixtures of ideas also out of box. This 
answered the question of why to participate to the next SIMS? SIMS continues to focus on different industrial 
and environmental applications, modelling and simulation tools and provides strong support for PhD students 
continue for stimulating process development for model-based automation. 
 
We would like to express our sincere thanks to the keynote speakers, authors, session chairs, members of the 
program committee and additional reviewers who made this conference such an outstanding success. Finally, 
we hope that you will find the proceedings to be a valuable resource in your professional, research, and 
educational activities whether you are a student, academic researcher, or a practising professional.  
 
Esko Juuso, Jari Ruuska, Gaurav Mirlekar, and Lars Eriksson 
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Conferences location   
 
The conference was organized at Original Sokos Hotel Arina in Oulu, Finland.   
 

Oulu City Reception at Oulu City Hall, 10 September 2024 

Opening, 11 September 2024 

Opening of The Second SIMS EUROSIM Conference on Simulation and Modelling SIMS EUROSIM 2024 
and The 65th SIMS conference on Simulation and Modelling (SIMS 2024): 

 Adj. prof. Jari Ruuska, Conference Chair 

 Address from University of Oulu, prof. Antti Niemi, University of Oulu, Faculty of Technology 

 Address from Scandinavian Simulation Society (SIMS), prof. Tiina Komulainen, SIMS President 

 Adj. prof. Esko Juuso, IPC Chair, University of Oulu, Finland 

Keynote presentations 

The Role of Simulation Governance in the AI Era: Applications in Structural Engineerin 
Prof. Antti H. Niemi, University of Oulu, Faculty of Technology, Finland 

Role of Physics-Based Realistic Simulation Environments for Research and Education in Robotics and AI       
Associate Senior Lecturer Sumeet Gajanan Satpute, Robotics and AI, Luleå University of Technology, 
Sweden 

Conference topics 

The Proceedings include 66 papers in ten topic areas: 

Topics Pages 

Renewable energy, energy storage and power production 1 - 105 

Circular Economy: CO2 capture and use 106 - 176 

Steel Industry: thermodynamics and computational methods 177 - 241 

Water treatment and nature-based solutions 242 - 265 

Bio systems: processes and environmental impacts 266 - 296 

Fluid flow and heat transfer 297 - 323 

Transportation: engines, vehicles, fuels and electrification 324 - 361 

Automation 362 - 424 

Machine learning 425 - 455 

Modelling in process analysis and optimization 456 - 494 
 

Conference program 

Both conference days started with a keynote and continued with three parallel sessions. The Annual 
SIMS meeting was held in the end of the first day. The second day ended with  

Panel Discussion on Future Challenges and Possibilities for Simulation 

More information is available at SIMS website (https://www.scansims.org/).   
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Co-Chair 

Dr. Gaurav Mirlekar, University of South-Eastern 
Norway, Norway, Co-Chair 

Prof. Lars Eriksson, Linköping University, Sweden, 
Co-Chair 

Prof. Konstantinos Kyprianidis, Malardalen 
University, Sweden, Co-Chair 

Dr. Avinash Renuke, Malardalen University, 
Sweden, Co-Chair 

Dr. Timo Ahola, Outokumpu Stainless, Finland 

Prof. Erik Dahlquist, Malardalen University, Sweden 

Prof. Tormod Drengstig, University of Stavanger, 
Norway 

Prof. Yrjö Hiltunen, University of Eastern Finland, 
Finland 

Prof. Biao Huang, University of Alberta, Canada 

Assoc. prof. David Hästbacka, Tampere University, 
Finland 
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Navarre, Spain 

 

Prof. Kauko Leiviskä, University of Oulu, Finland 
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University of Science and Technology, Norway 

Dr. Markku Ohenoja, University of Oulu, Finland 

Assoc. prof. Adrian Pop, Linköping University, 
Sweden 

Prof. Vicenç Puig, Universitat Politècnica de 
Catalunya, Spain 

Assoc. prof. Michela Robba, University of Genova, 
Italy 

Dr. Jani Tomperi, University of Oulu, Finland 
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Dr. Stavros Vouros, Malardalen University, Sweden 
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Patel Institute of Technology, India 

Assoc. prof. Ru Yan, University of South-Eastern 
Norway, Norway 

Prof. Chunhua Yang, Central South University, 
China 

Dr. Peter Ylen, VTT, Finland 

Adj. prof. Kai Zenger, Aalto University, Finland 

Prof. Borut Zupančič, University of Ljubljana, 
Slovenia 

Prof. Lars Erik Øi, University of South-Eastern 
Norway, Norway 

National Organizing Committee 
 

Adj. prof. Jari Ruuska, University of Oulu, Finland, Chair 

Adj. prof. Esko Juuso, University of Oulu, Finland, Co-Chair 

Ms. Anu Randén-Siippainen, Finnish Automation Society, Finland 

Mr. Marko Vuorio, Finnish Automation Society, Finland 
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The Role of Simulation Governance in the AI Era: Applications in Structural 
Engineering 

Antti H. Niemi 
Dean, Professor, Faculty of Technology 

University of Oulu, Finland 

Abstract 
 
In the era of artificial intelligence (AI), machine learning (ML) and advanced computational techniques 
have revolutionized the design, analysis, and assessment processes in structural engineering. These 
methods enable engineers to optimize structural designs, predict behaviour under complex loading 
conditions, and evaluate risks more eƯiciently. However, the increasing reliance on simulations to 
inform critical decisions highlights the growing need for robust simulation governance. This governance 
ensures that computational models are credible, transparent, and aligned with real-world performance 
expectations. 

Simulation governance encompasses a range of activities aimed at ensuring the quality and reliability 
of computational models and results. Key aspects include verification and validation (V&V) of models, 
uncertainty quantification (UQ), and adherence to principles of data integrity. Verification ensures that 
mathematical models are accurately solved, while validation confirms that models faithfully represent 
physical phenomena. UQ addresses the inherent uncertainties in material properties, boundary 
conditions, and loading scenarios, oƯering insights into the reliability of predictions. Together, these 
elements form the foundation for trust in simulations in safety-critical applications such as structural 
engineering. 

One of the most pressing challenges in applying simulation governance to civil engineering is the 
disparity between time scales in structural performance. While simulations often focus on short-term 
responses (e.g., dynamic behaviour under seismic loads), many civil structures are designed for 
decades or even centuries of service life. Accurate modelling of long-term phenomena, such as material 
creep, fatigue, and environmental degradation, requires integrating multi-scale and multi-physics 
approaches. These considerations add complexity to the modelling process and necessitate careful 
calibration and validation to ensure predictive accuracy over extended time horizons. 

Finite element analysis (FEA), a cornerstone of computational structural engineering, presents 
additional challenges requiring robust governance frameworks. Issues such as stress recovery at 
interfaces, the treatment of stress concentrations around geometric discontinuities, and the resolution 
of singularities demand careful numerical treatment. Classical finite element methods often struggle 
with accuracy in these areas, particularly under complex loading or irregular geometries. The 
Discontinuous Petrov-Galerkin (DPG) methodology has emerged as a promising approach to address 
these challenges. By using tailored test spaces and robust stability properties, DPG methods improve 
the reliability of stress predictions, especially in regions of interest like sharp corners or material 
interfaces. These advancements align with the principles of simulation governance by providing 
rigorously validated computational tools. 

Another critical dimension of simulation governance in the AI era involves integrating sustainability 
considerations into computational frameworks. Civil engineers increasingly face pressures to minimize 
environmental impacts, optimize resource use, and design for adaptability and resilience. Simulation 
tools informed by AI can evaluate the lifecycle performance of structures, assess carbon footprints, and 
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explore trade-oƯs between competing design objectives. However, these applications rely on high-
quality input data, calibrated models, and rigorous V&V processes to ensure meaningful results. 

In summary, simulation governance is indispensable for harnessing the full potential of AI-driven tools 
in structural engineering. By addressing challenges such as time-scale disparities, numerical accuracy 
in FEA, and the integration of sustainability considerations, robust governance frameworks ensure that 
computational insights translate into reliable, safe, and eƯicient designs. As structural engineering 
continues to evolve in the AI era, the development and enforcement of these frameworks will play a 
pivotal role in shaping the future of the field. 

Biography 

Dr. Antti H. Niemi earned his M.Sc. in Engineering Physics (2004) and D.Sc. in Mathematics (2009) from 
the Helsinki University of Technology (now Aalto University). Since 2020, he has been a professor of 
structural design and engineering mechanics at the University of Oulu, where he also serves as Dean of 
the Faculty of Technology. In this role, he leads a diverse and dynamic academic community, fostering 
innovation and collaboration across disciplines. 

Dr. Niemi's research focuses on developing advanced mathematical models and numerical simulation 
methods in structural mechanics, addressing topics such as finite element methods, stress analysis, 
stability, and multi-scale modelling. His work integrates fundamental mathematics with practical 
applications to improve the reliability, eƯiciency, and sustainability of structural designs. 

He has held research positions at international institutions, including Aalto University (Finland), KAUST 
(Saudi Arabia), and the Oden Institute at the University of Texas at Austin (USA), which have enriched 
his global perspective and interdisciplinary expertise. In addition to his academic roles, he has worked 
in engineering consulting as a bridge and structural designer, combining hands-on experience with 
theoretical advancements. 

 
 

SIMS EUROSIM 2024

DOI: 10.3384/ecp212 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

VII



Role of Physics-Based Realistic Simulation Environments for Research and 
Education in Robotics and AI 

Sumeet Gajanan Satpute,  
Associate Senior Lecturer, 

Robotics and AI, Luleå University of 
Technology, Sweden 

 

George Nikolakopoulos,  
Chair Professor of Robotics and AI, 

 Luleå University of Technology, Sweden 
 

 
Abstract: Physics-based realistic simulation environments are vital for advancing research and 
education in AI, providing an accurate and controlled platform for testing algorithms and models. 
These environments simulate real-world physics, including dynamics, collisions, and sensor 
interactions, allowing AI systems to learn and adapt in complex, lifelike scenarios. In research, 
they enable experimentation with AI-driven robotics, autonomous systems, and reinforcement 
learning without the constraints of physical setups. For education, they oƯer hands-on 
experiences for students to explore AI concepts and algorithms in dynamic environments, 
bridging the gap between theoretical learning and practical application, fostering innovation and 
understanding. During this talk, we will present our eƯorts in the development of relevent 
simulation environments within the Robotics and AI group, at Lulea University of Technology, 
Sweden. These environments are used in the ongoing coruces as well as the advancement of 
autonomy algorithms towards their field implementation. 
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Education 

2012 Master of Technology in Electrical Engineering with specialization in Control 
Systems, Mumbai University, India 
Thesis: Control of noisy underactuated mechanical systems 

2021 PhD in Onboard Space systems, Luleå University of Technology, Luleå, Sweden.  
Thesis: Guidance and Control of Multiple Spacecraft Formation  

 

Professional Experience 

2023 Associate Senior Lecturer, Robotics and AI Group, Luleå University of 
Technology, Luleå, Sweden.  

2021-2023 Postdoctoral Researcher, Robotics and AI Group, Luleå University of 
Technology, Luleå, Sweden. 

2015-2021 PhD in coolaboration with OHB systems, Sweden and Onboard Space 
Systems, Luleå University of Technology, Kiruna, Sweden. 

2012-2015 Lecturer, Electronics Department, Veermata Jijabai Technological Institute 
(VJTI), Mumbai, India 
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Panel Discussion on Future Challenges and Possibilities 
for Simulation 

 
Chair: Adj. prof. Jari Ruuska, University of Oulu, Finland 

Panelists: 

 Associate Senior Lecturer Sumeet Gajanan Satpute, Division: Signals and Systems, 
Department of Computer Science, Electrical and Space Engineering, Luleå University of 
Technology, Sweden 

 R&D Manager Severi Anttila, Outokumpu, Tornio, Finland 

 Prof. Tiina Komulainen, SIMS President, Oslo Metropolitan University, Oslo, Norway 

 Senior prof. Erik Dahlquist, Past SIMS President, School of Business Society and 
Engineering, Division of Automation in Energy and Environmental Engineering, Västerås, 
Sweden 

 Adj. prof. Esko Juuso, Conference IPC chair, Past EUROSIM President, Control 
Engineering, Environmental and Chemical Engineering, Faculty of Technology, University 
of Oulu, Finland 

 
The panel discussion was the last part the 
conference. The panellists were the keynote 
presenter Sumeet Gajanan Satpute (SS), the current 
president of SIMS Tiina Komulainen (TK) and the 
IPC chair of the conference Esko Juuso (EJ), who 
is also a past president of both Eurosim and SIMS. 
Industry was represented by Severi Anttila (SA). 
Erik Dahlquist (ED) has a long experience in 
simulation, including over 20 years activityiesin 
SIMS. The chair of the national organizing 
committee Jari Ruuska (JR) was the chair of the 
panel. The discussion focused on four questions: 
artificial intelligence, importance of the expert 
knowledge, requirements of measurement data and 
use of written or spoken expert data. These 
questions were presented by the panel chair. The 
audience raised a question on limitations on relying 
only on expert knowledge. The audience also asked 
why to participate in the next SIMS? 

The answers of the panellists were collected 
during the panel discussions by Dr. Markku 
Ohenoja and doctoral student Henri Välikangas.  

1. Artificial intelligence 

 ED: AI is as good as the data fed into it.  
 EJ: AI does not answer to everything, but a 

tool among others. 
 SS: Requirements for AI are not reasonable, 

although the performance of them is getting 
better all the time. 

 SA: If it helps to lessen our workload, it will 
allow us to focus on other things. 

 EJ: Machine learning and AI are additional 
tools, not direct solution in process industries. 

2. Importance of expert or domain 
knowledge 

 ED: Go first to the experts to start on a higher 
level. Measurement data not enough, 
knowledge needed. Examples from mining 
safety, paper mill troubleshooting. 

 SS: Working in robotics is a multidisciplinary 
area, so getting input from many experts of 
different areas is important to reach optimal 
solutions. More complex systems, more 
multidisciplinary expertise needed. 

 EJ: Data-based solutions without expertise fail 
to reach the same level which they usually 
achieve with expert knowledge.  

 EJ & TK: It is important to understand the 
system state, and the fact that companies lose 
the most amount of profit in error situations, 
importance of that are hard to model and need 
to be handled with expert knowledge. 

 SA: Data quality combined with operation 
point detection with experts. 
 

3. Requirements of measurement data 

 ED: It is important to focus effort on the selected 
data, as it will define most the performance of the 
AI solution.  

 TK: Data quality combined with operation 
point detection with experts.   
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 EJ: More focus should be on the data and the 
uncertainties present in it, rather than 
imagining that more data is always better.   

 ED: Expertise is needed to guide efforts of 
data-analysis to the right direction. 

 

4. How to facilitate use of written or 
spoken expert data in system 
development data 

 ED: Expert knowledge vs. expert guess: data 
quality also there, i.e. verification of data is 
important 

 SA: Reliability of prediction/simulation as 
well! Difficult for operators to re-gain the trust 
for a monitoring/model once lost. 

 EJ/ED/TK: Also operator decisions are 
subjective sometimes 

 ED: Learning from other operators and mills, 
risk-taking to test and go outside comfort zone 
in training (for advances systems) 

 SS: Experts might have 40 years of experience 
for good decision-making. AI also needs 
(some) time to learn. 

 EJ: An active research area including new 
possibilities are available for the challenging 
problem. 

 ED: AI-based advisory systems are needed to 
support operator to conduct best practices. 

 TK: An example is spotting energy saving 
potential in WWTP. 

5. Audience: Can relying upon only 
expert knowledge can inhibit progress? 

 ED: Relying upon only expert knowledge can 
inhibit progress, thus a mixture of these should 
be utilized to achieve the best outcome. 
Different thinkers are preferred, because it 
will lead to innovation more than similar 
thinking people, because no one will want to 
do things differently or to think on what else 
their method could be utilized upon.  

 SA: Such a risk exists. Relying on peers to 
innovate doesn’t give enough varying 
information to create a lot of innovative ideas 
or solutions. It is like talking to a mirror, 
especially here in the Nordic countries, where 
there are only a handful of R&D personnel, 
and all of them come from a similar 
background. 

 TK: It takes time and effort to standardize the 
culture and get everyone to use the new 
methods. 

 EJ: It would be important for people who have 
innovative ideas to stand behind their ideas in 
the face of “old thinkers”.  

 SA: The field of development should be able 
to adapt to the new ideas, and not think that the 
methods haven’t evolved with the time, even 
though they were not working solutions 40 
years ago. 

 SS: Braking boundaries is a difficult task. 
 ED: Culture of work and development needs 

time to change and adapt to new ideas and new 
thinkers. 

6. Audience: Why to participate in the 
next SIMS? 

 ED: Mixture of ideas available. 
 SA: Possibility for other area experts to hear 

out of the box. 
 TK: Different application areas, different 

methods when listening others’ work is 
inspiring / gives ideas to own research.
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Renewable Energy Resource Risk
Quantification and Mitigation Assessment

for Mining Micro-Grid

Moksadur Rahman Stefan Thorburn

ABB Corporate Research Center, Forskargränd 7, 72226 Vasteras,
Sweden

Abstract: As one of the most energy-intensive industries, mining accounts for over one-third of
industrial final energy consumption. With the growing mineral demand, combined with declining
ore grades, it is expected that the energy demand in mining will only grow in the future,
potentially increasing its already large greenhouse gas footprint. With rising energy costs,
renewable energy presents a viable option not only to improve the environmental footprint
but also to reduce overall costs with optimized operation of mines. While renewable energy
generators i.e., solar photovoltaics and wind turbines offer numerous benefits like modularity,
environmentally friendliness, and natural availability; the major drawbacks are their temporal
intermittency and seasonal and long-term variability. Hence, these generators pose a resource
risk that the actual quantity of wind and solar irradiation can be less than expected. The resource
risk imposes uncertainty in short-, medium- and long-term energy generation and
consumption. Hence such risk needs to be actively considered and mitigated during the
evaluation and operational phase of renewable or hybrid energy system projects. This
paper provides a comprehensive review of renewable resource risk quantification techniques.
Subsequently, a list of renewable energy resource risk quantification methods is discussed i.e.,
renewable reliability (i.e., the percentage of demand met by renewables), energy deficit and
energy oversupply index, probability of exceedance (PoE) for annual energy production (AEP),
probability of generating at least k MW of renewable power, capacity factor. Finally, some
selected matrices are used to assess the effect of different risk mitigation options, e. g. the
optimal size of energy storage.

Keywords: Mining, renewable resource risk, resource reliability, sustainable energy.

1. INTRODUCTION

Mining is one of the most energy-intensive industries. It
accounts globally for 11% of the total final energy con-
sumption and 38% of industrial final energy consumption
(McLellan et al., 2012). Also, being one of the largest
expenses in mining, energy on average accounts for 15%
to 40% of the total operational cost (Igogo et al., 2020).
Having said that, the sector’s final energy consumption
is still heavily dependent on fossil fuels, with 62% of
final energy consumption being made up of oil, gas, and
coal directly, while 35% is made up of electricity from
the grid that often includes fossil fuels (Maennling and
Toledano, 2018). With the increase in mineral demand,
combined with declining ore grades, it is expected that
the energy demands in mining will only grow in the fu-
ture, potentially increasing its already large greenhouse
gas (GHG) footprint (Nasirov and Agostini, 2018). Under
these circumstances, the mining industry has been under
enormous pressure to reduce its environmental impacts.
This is leading to an increasing interest in adopting renew-
able energy to power mining operations. With increasing
energy costs, renewable energy like solar and wind present
a viable option not only to improve the environmental

ous benefits such as environmental friendliness, natural
availability, and lower life-cycle cost; the major drawbacks
are their temporal intermittency and seasonal and long-
term variability. Therefore, renewable energy generators
pose a resource reliability risk that can be manifested as
a quantity risk—i.e., the risk that the quantity of wind
and sunshine will be less than expected (Bolinger, 2017).
The resource reliability risk imposes uncertainty in short-
, medium- and long-term energy generation and
consump-tion. Hence such risk needs to be actively
considered and mitigated during the evaluation and
development phase of renewable or hybrid energy
system projects. There-fore, a methodology is required
to quantify the energy supply risk in a renewable or
hybrid energy generation system. Subsequently, such risk
quantification method can be used to analyze the effect
of different risk mitigation options, e. g. the optimal
size of energy storage and/or backup/emergency energy
generator or through grid or de-mand flexibility. In this
paper, we have focused exclusively on battery energy
storage as a risk mitigation option. Nevertheless, the
methodology presented can be adapted to other
mitigation strategies as well.

footprint but also to reduce overall costs with optimized
operation of mines. While renewable energy generators i.e.,
solar photovoltaics (PV) and wind turbines have numer-
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Fig. 1. Hybrid energy generation system for mines

2. MATERIALS AND METHODS

2.1 Hybrid Energy Generation System for Mines

A hybrid energy system combines multiple types of en-
ergy generators and/or backup energy sources like storage
or grid in a complementary fashion to ensure depend-
able power supply at a competitive cost (Fathima and
Palanisamy, 2015). One of the major benefits is that it can
capitalize on existing grid infrastructure and add different
components to help reduce costs, environmental impacts,
and system disruptions. Hence, a hybrid energy system
is a viable option that can help the mining industry to
transition away from fossil fuel-based operations. Depend-
ing on the renewable resource availability and economic
feasibility, a hybrid energy system for mines can consist
of solar PV, wind turbine along with diesel generators
(DG) and/or storage and grid as backup source, as shown
in Fig. 1. Of course, the actual configuration will vary
depending on site and mine-specific requirements. How-
ever, including solar and wind generators in mining energy
generation systems comes with disadvantages like tempo-
ral intermittency, and seasonal and long-term variability.
Traditional mining energy sources like diesel and grid can
deliver energy whenever needed. Contrarily, solar and wind
generators can only deliver energy when the sun is shining,
and wind is blowing. This makes both the demand side
and the generation side of the energy system variable. The
challenge lies in the need to constantly balance energy
demand with energy generation. Hence, backup sources
like storage, diesel generators, or connection to regional
electricity grids are essential for the security of supply.
Due to the remote nature of mining sites, combining solar
and wind energy with battery energy storage systems
(BESS) is seen as the most viable option to initiate energy
transition in the mining industry.

2.2 Wind Energy

The use of wind energy in electricity generation is
widespread in today’s world. Typically wind turbines, de-
vices that convert the kinetic energy of wind into electrical
energy, are used for this purpose. Wind energy can also be
used to complement solar energy due to its availability
during the night and on cloudy days.

Wind Resource Assessment

The economic value of wind energy generators depends
on the availability of wind resources at the intended geo-
graphical location. Hence, the wind resource assessment is

a crucial part of the feasibility study. Even though the ap-
proaches for resource assessment typically vary depending
on many factors like purpose, stage of development, and
generator types under consideration, such calculations are
often based on some on-site wind measurement, sometimes
augmented by meteorological modeling, and likely to be
combined with longer-term measurements from offsite (but
ideally nearby) reference stations. Typically, Weibull dis-
tribution is used to represent the frequency of wind speeds
at a specific location. The general form of the Weibull
distribution for wind speed takes the following form as
shown in equation (1) as presented in (Al Buhairi, 2006),

fv(v) =
k

c

(v
c

)k−1

exp

[
−
(v
c

)k
]

(1)

Wind Turbine Modelling

A model of a wind turbine is typically represented by a
power curve, which is a plot between power output and
wind speeds at a particular hub height. In this work,
a piecewise model of a power curve from Devrim and
Eryilmaz, 2021 is used as described in equation (2),

Pi(v) =


0 if v < vci or v ≥ vco
1 if vci ≤ v < vr
Pr if vr ≤ v < vco

(2)

where vci, vco, and vr are cut-in, cut-off, and rated wind
speeds respectively. Pr is the rated output power of the
wind turbine.

Specification data for different wind turbines can be ob-
tained freely from the wind turbine library maintained by
Open Energy Platform.

2.3 Solar Energy

Solar energy is one of the fastest-growing renewable energy
technologies available today. The most common options for
utilizing solar energy are PV and solar thermal systems.
In this paper, the focus will be on solar PV, which
are electronic devices that convert sunlight directly into
electricity.

Solar Resource Assessment

One of the major factors for the economic feasibility of
solar PV systems is the availability of solar energy that
can be utilized to produce electricity. Typically, solar
irradiation, the amount of energy that reaches a unit
area in a unit of time (expressed as Wh/m2), is used
to quantify available solar energy. There are different
methods available to estimate solar irradiation in a given
location such as based on in situ data, derived from
satellite data, or a combination of both. Typically, Beta
distribution is used to represent the solar irradiation data.
The general form of the Beta distribution is depicted in
equation (3) as described in Liu et al. (2016),

f(r) =
Γ(α+ β)

Γ(α)Γ(β)

(
r

rm

)α−1 (
1− v

A

)β−1

(3)
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where r and rm are the actual solar intensity and the
maximum intensity in a time period, α and β are the shape
parameters of Beta distribution, Γ is a function of Gamma.

Solar PV Modelling

The output power of solar PV is calculated from equa-
tion (4),

PPV = ηPV APV PRPV ×GHI (4)

where, ηPV , APV , PRPV and GHI denotes solar module
yield, area, performance ratio (also known as a coefficient
for losses that range between 0.9 and 0.5, the default value
is 0.75), and global horizontal irradiance. It’s worth noting
that the above formula is an estimation, as the actual
solar power generation depends on many factors such as
temperature, shading, dust, and the age of the panel. Some
of these factors can be covered by solar module yield.

2.4 BESS

BESS plays an important role in renewable energy inte-
gration due to its ability to directly address intermittency
issues that are inherent to renewable energies. Major bene-
fits of BESS include assistance in peak shaving, load shift-
ing, voltage and frequency regulation by adding virtual
spinning reserve, etc. Typically, a BESS consists of battery
cells connected in parallel and series configurations with
inverters to facilitate charging and discharging.

BESS Modelling

A simplified battery model based on charge quantity and
state of charge (SoC) calculation is used in this work.
The charge quantity of battery storage at the time t is
calculated by equation (5) according to Deshmukh and
Deshmukh (2008),

EB(t) = EB(t−1)(1−σ)+

(
EGA(t)−

EL(t)

ηinv

)
×ηbat (5)

where, EB(t) and EB(t − 1) are the charge quantities of
battery storage at the time t and (t − 1), σ is the hourly
self-discharge rate, EGA(t) is the total energy generated
by the energy source after energy loss in the controller,
EL(t) is load demand at the time t, ηinv and ηbat are
the efficiency of inverter and charge efficiency of battery
storage. The charge quantity of battery storage is subject
to the constraints represented by equation (6),

EBmin ≤ EB(t) ≤ EBmax (6)

where EBmax and EBmin are the maximum and minimum
charge quantity of battery storage.

When referring to BESS, it is more common to use an
empirical definition of SoC, as represented in equation (7),

SoC =
EB(t)

EBmax

(7)

2.5 Renewable Resource Risk

Often the availability of renewable resources dictates the
economic viability of renewable energy integration. Hence,
a feasibility study for renewable energy projects must
include resource assessment as a first step. Most often
a “P50” estimate of wind speed or solar irradiance is
used to calculate the annual energy production that forms
the basis for economic calculation. This introduces two
primary sources of potential error or bias: 1) the system-
atic bias from the resource measurement and/or modeling
techniques used and 2) the random error related to the
inherent short-, medium- and long-term variability of the
resource over time. There is a third error of systemic type
from energy converter models that are used to estimate the
amount of energy generation. Another aspect that is often
overlooked in such traditional approaches to the feasibility
study is that during the operational phase, the energy
demand must always be matched by the energy available
instead of ensuring only an annual balance. This means
energy must be balanced in short-terms like 15− minutes,
hourly, etc., and medium-terms like daily, weekly, monthly,
etc. to long-term like yearly and over the project lifetime.
Thus, the traditional methods overlook the dynamic en-
ergy supply risk and are unable to analyze and provide risk
mitigation options and their associated costs. In addition
to this, for completeness, such a feasibility study should
also consider options related to the other side of the energy
balancing act i.e., the demand side flexibility options.
Energy consumption peaks should be avoided to reduce
the risk of emergency shutdowns and high peak price
payments. At least, the decision makers need ways/tools
to compare different risk mitigation alternatives related
to both the supply- and demand-side that also include
associated costs of corresponding options. For example,
what are the overall costs and benefits of reducing peak
energy demand at rear times with no or exceptionally low
renewable generation against installing additional energy
storage or emergency backup generators to cover rear
peaks? There is a need for a well-defined method/tool
to quantify, predict, and reduce the operational risks of
energy supply and to evaluate means to reduce these risks.

There are multiple approaches used in the literature to
quantify the renewable resource risk. The most common
ways to quantify the renewable resource risk are:

• Probability of exceedance (PoE) for annual energy
production (AEP).

• Renewable reliability (i.e., the percentage of demand
met by renewables).

• Probability of generating at least k MW of renewable
power.

• Energy deficit index and energy oversupply index
• Capacity factor

One of the most widely used matrices is the probability
of exceedance for annual energy production (illustrated
in Fig. 2(a), which, with just a few key inputs, can
be used to estimate the probability that, for example,
the wind or solar generation at a given site will fall
below a given level (Bolinger, 2017). This also allows
comparison of the resource risk among multiple project
sites in terms of probabilistic values. Probability of
exceedance is often represented as “P −level” which
ranges from P 1 (i.e., there
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is only a 1% chance that actual generation will exceed the
P1 estimate) to P99 (i.e., there is a 99% chance that actual
generation will exceed the P99 estimate). In comparison
to the central or median estimate that is equivalent to
the “P50” estimate, the probability of exceedance allows
the project analyst to choose different “P − level” for
wind and/or solar generation. Another common way to
quantify the renewable resource risk is by calculating
the reliability (i.e., the percentage of demand met by
renewables) (Tong et al., 2021). Devrim and Eryilmaz
(2021) proposed calculating the probability of generating
at least k kW of renewable power. Additionally, simple
indicators like the energy deficit index, energy over-supply
index, and capacity factor can be calculated to quantify
energy supply risk.

According to Tong et al. (2021), the renewable energy
system’s reliability index is the percentage of the total load
that is met by renewables at a given time, as depicted in
equation (8),

Ireliability =
Renewable generation at time t

Load at time t
× 100% (8)

The energy deficit index is defined as the ratio between
energy shortage and energy demand in a particular hour,
as described in equation (9),

Ideficit =
Energy deficit at time t

Load at time t
× 100% (9)

Similarly, the energy oversupply index is the ratio between
energy oversupply and energy demand in a particular hour,
as shown in equation (10),

Ioversupply =
Energy over supply at time t

Load at time t
× 100% (10)

The capacity factor of a renewable energy system is a
measure of how much electricity the system generates com-
pared to its maximum potential output. It is calculated by
dividing the actual energy generated by the system over
a certain period of time by the maximum possible energy
that could have been generated during that same period
(Ahmad et al., 2018). The result is then expressed as a
percentage. The formula for calculating the capacity factor
can be expressed as below,

CF =
Actual energy generated at time t

Maximum possible energy generation
×100% (11)

2.6 Renewable Resource Data

There are several ways to obtain solar and wind resource
data for a specific location. The historical wind data can
be obtained from various sources such as the National
Renewable Energy Laboratory (NREL) or other national
meteorological services. These datasets usually provide
data in the form of wind speed and direction measurements
at a specific location and time. Some of these datasets
can be downloaded in bulk, while others require you
to request access or download data on a case-by-case
basis. Similarly, the historical solar radiation data can be

Fig. 2. Illustration of (a) probability of exceedance, (b)
reliability (% of load met by renewables), (c) proba-
bility of generating at least k kW of renewable power,
and (d) energy deficit and oversupply index, are visu-
alized.
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obtained from various sources such as NASA’s Surface
Meteorology and Solar Energy (SSE) dataset, the NREL
or other sources. These datasets usually provide data
in the form of solar radiation measurements (usually
in kWh/m2 or W/m2) at a specific location and time.
Some other online databases and platforms provide solar
and wind data, such as the European Renewable Energy
Data Platform (EURODATA) and Renewable Resource
Data Center (RReDC). It’s important to note that using
historical data alone may not provide a complete picture
of the renewable energy resources available in a specific
location, and it’s recommended to combine with other
sources of information, such as on-site measurements, local
weather patterns, topography, and land use, etc. to get a
more accurate assessment.

In this work, NASA’s Solar and meteorological resource
data- “POWER data” are used for wind and solar resource
assessment (NASA, 2024). This satellite and modeled-
based database are accurate enough to provide reliable
solar and meteorological resource data over regions where
surface measurements are sparse or non-existent and offer
two unique features – the data are global and contiguous
in time (Pavlović et al., 2013). Microgrid design tools such
as HOMER and RETscreen also use “Power data” as
one of the data sources. Most importantly, the data from
“POWER data” is available at multiple temporal levels:
hourly, daily, and monthly.

For this work, the hourly data for wind speed, GHI,
atmospheric temperature, and pressures are collected over
21 years from 2001 to 2021 for a location in Scotland
(Latitude: 57.0161 and Longitude: −2.8719; referred to
as location-1). To get an overview of the data, wind

speed, and solar irradiation are visualized in Figs. 3

and 4. The wind speed shows greater variability with
a mean around 7.4 m/s. Interestingly, for the selected
location the wind speed is slightly higher in winter than
summer. This is linked to the fact that the winter
brings higher temperature gradients. On the other
hand, as expected the solar irradiation peaks during
summer and very low during winter.

3. RESULT AND DISCUSSION

3.1 Prerequisites

To estimate power generation from available wind and
solar resources, the wind turbine model described in Sec-
tion 4.2 and the solar PV model described in Section 5.2
are used. The hourly electricity generation from wind and
solar is calculated for the entire historical dataset of 21
years. The wind and solar park are sized such that it can
on average meet 20% of the load assumed to be 20 MW .
In reality, the load will be variable but for the sake of
simplicity, it is assumed to be constant here. Eventually,
six different cases as presented in table 1 are formulated
by considering different shares of solar and wind in the
renewable energy share. The wind turbine and solar mod-
ule specifications presented in table 2 and 3 are used for
the calculation. Accordingly, the wind farm and solar park
capacities are upscaled to fulfill the installed power needed
for each use case.

Fig. 3. Hourly (a) wind speed and (b) solar irradiation for
the year 2020.

Fig. 4. Hourly (a) wind speed and (b) solar irradiation for
the year 2011-2020.

3.2 Renewable Resource Reliability

In Figure 11 the wind and solar energy generation cor-
responding to the historical dataset for a given location
is visualized. To be able to include both wind and so-
lar energy case-2 was selected. As expected, the energy
generation from wind and solar follows the same trend as
available wind and solar resources. However, the variability
of available energy is something to note here. If we look
at the hourly mean as well as percentile values, wind has
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Fig. 5. Individual power generation from wind and solar
plant for case 2.

much larger variability than solar. Of course, the wind
speed variation is partly amplified due to the high share
of wind in case-2. However, variability in wind energy
generation comes from high wind speed variability. One
interesting fact is that wind generation cannot be more
than the total rated power of the wind park that is imposed
by the cumulative power curves. Another observation is
that over a year solar and wind can act as complementary
energy sources for this location. By using both solar and
wind energy together, it is possible to reduce the impact
of the yearly variability of each source and have a more
consistent supply of electricity.

Subsequently, the total energy produced combined by
the wind and solar is calculated by adding individual
generation. The cumulative power generation for each of
the cases is chronologically visualized in Fig. 6. By looking
at the average energy generated by each of the system
configurations, it is obvious that case-2 and case-3 provide
fairly stable average energy throughout the year. The
results are summarized in table 4. For better visualization,
the mean reliability for different cases is plotted in Fig. 7.
The mean reliability decreases as the system configuration

Table 1. Cases with different share of solar and
wind

Case no. Description

Case-1: 0% PV & 100% Wind
Case-2: 20% PV & 80% Wind
Case-3: 40% PV & 60% Wind
Case-4: 60% PV & 40% Wind
Case-5: 80% PV & 20% Wind
Case-6: 100% PV & 0% Wind

Table 2. WT (Enercon e-53/800) specification

Parameter Value Unit

Rated power: 810.0 [kW]
Cut-in wind speed: 3.0 [m/s]
Rated wind speed: 12.0 [m/s]
Cut-out wind speed: 26.0 [m/s]
Rotor Diameter: 52.9 [m]

Hub height: 60/73 [m]
Swept area: 2198 [m2]

Table 3. PV module specification

Parameter Value Unit

Module efficiency: 15 [%]
Performance ratio: 0.75 [-]

Life: 25 [years]

changes from “Case-1: 0% PV and 100% wind” to “Case-
6: 100% PV 0% wind”. Meaning, for this specific location
wind wind-heavy systems offer higher mean reliability. On
the other hand, the mean energy deficit and the oversupply
index increase with solar-heavy systems. However, one
must not get deceived by the facts or base their conclusion
entirely by looking at the mean values only. The local
variation must be considered as well. Mean value over such
a long timescale often doesn’t tell the whole story.

Table 4. Renewable Reliability at location-1 for
different cases

Case
Mean

reliability

Mean
P50

reliability

Mean
energy deficit

index

Mean
oversupply

index

1 19.8% 12.5% 12.5% 21.9%
2 19.2% 14.2% 10.8% 17.0%
3 18.5% 14.6% 10.8% 17.0%
4 17.9% 12.8% 11.3% 16.4%
5 17.3% 9.1% 11.7% 25.3%
6 16.6% 1.2% 14.5% 32.0%

Subsequently, the same calculation is performed for an-
other location in central Australia (Latitude: −22.5909
and Longitude: 133.4432, referred to as location-2). As can
be seen from table 5 and Fig. 8, the trends are reversed
as this location has relatively higher solar irradiation and
lower wind. This shows how renewable generation and
their reliability can be very much location-dependent and
thus the system configuration will vary based on renewable
resource availability.

Table 5. Renewable Reliability at location-2 for
different cases

Case
Mean

reliability

Mean
P50

reliability

Mean
energy deficit

index

Mean
oversupply

index

1 14.5% 12.0% 8.7% 11.5%
2 19.8% 17.9% 9.2% 11.6%
3 25.1% 16.6% 14.2% 24.4%
4 30.4% 12.7% 21.5% 37.6%
5 35.7% 12.7% 21.5% 50.6%
6 41.1% 2.2% 37.1% 63.8%

3.3 PoE for AEP

Once the preferred share of wind and solar for a specific
location is known, the AEP of the system is calculated at
different PoE levels. To do so, individual AEP with PoE
for wind and solar PV is computed for location-1. For a fair
comparison between wind and solar case-3 with 60% wind
and 40% solar is selected for this analysis. For wind, the
spread between P99 and P1 for AEP is around 19.5 GWh
to 34.5 GWh. Subsequently, the spread between P99 and
P1 for AEP is around 10.6 GWh to 12.8 GWh for solar
park. For a combined system, the AEP values are just
added together as presented in Fig. 9. Now, this graph
can be used as the basis of financial calculation when a
P − value is given. As mentioned earlier, typically a P50
AEP is used for such calculation. For a more conservative
calculation, a higher P − value can be used.
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Fig. 6. Combined power generation from wind and solar
plant for different cases.

Fig. 7. Renewable reliability of different cases for a
location-1.

Fig. 8. Renewable reliability of different cases for a
location-2.

Fig. 9. AEP with PoE for case-3 at location-1.

3.4 Renewable Risk Mitigation with BESS

To get a further understanding of renewable energy vari-
ability, the energy deficit (or power shortage) and over-
supply for case-3 over a year is visualized in Figs. 23
to 25. It is important to note here, a constant load is
considered to calculate the energy deficit and the
oversupply.

Fig. 10(a) shows, that the energy deficit and

oversupply are spread out over the entire year
except for some parts, which is preferable when
considering a BESS. While analyzing the monthly
trends, it was found that there are months where the
energy deficit and oversupply are equally distributed (as
in Fig. 10(b) and months where that is not the case (Fig.
10(c). The argument here is that a BESS needs to be
designed to cover a month where the renewable
generation was particularly low. In that case, the BESS
needs to be oversized and that is associated with high
capital cost.
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Fig. 10. Energy deficit and oversupply for (a) 2001, (b)
June 2001, and (c)December 2001, (case-3, location-
1)

Fig. 11. Average energy deficit index for BESS with Solar
and Wind system (case-3, location-1)

To analyze how the BESS can help mitigate some of
the variability introduced by renewable energy, the BESS
model described earlier is used. Subsequently, different
battery size is used to calculate the corresponding average
energy deficit index for systems with BESS, solar and
wind (case-3). The results are visualized in Fig. 11
where the BESS capacities are represented as hours of
storage. Here, “1 hour of storage” corresponds to a
BESS size that can cover the entire load by an hour.
As can be seen from Fig. 11, initially the average
energy deficit index reduces sharply with increasing
battery sizes. The slope of the curve diminishes as the
BESS size increases.

To analyze how different shares of solar and wind change
the energy deficit versus the BESS size graph, the calcula-
tions are repeated for different cases (case-1 to case-6). The
result is summarized in Fig. 12. “Case-2: 20% PV and 80%
wind” can have a lower energy deficit index than “case-
1: 0% PV and 100% wind”. Interestingly, with further
increase in PV share in the system results in a higher
energy deficit index. Overall, the case-2 with BESS can
provide the lowest energy deficit index.

Fig. 12. Average energy deficit index for BESS with Solar
and Wind system (case-1 to 6, location-1)

4. CONCLUSIONS

The mining industry has huge potential for renewable
energy to meet its energy needs while reducing environ-
mental footprint and overall cost. Freely available solar
and meteorological data sources provide a good starting
point for the assessment of renewable energy potential,
allowing for a fairly accurate and efficient evaluation of
the feasibility of different renewable energy projects for
mines. These datasets can provide information on factors
such as solar radiation levels, wind speeds, and tempera-
ture, which are all important for determining the potential
output of renewable energy systems. Indeed, the renewable
energy generation potential of mines will vary depending
on the onsite availability of renewable resources. Accord-
ingly, the preferred share of different renewable sources,
here solar and wind, in a mining energy grid will differ
significantly at different sites. The reliability of renewable
energy generation from the same solar-wind combination
can be utterly different in different locations. Interestingly,
the reliability trend can reverse for two different locations,
meaning increasing the share of solar in a wind-solar mix
can result in both decreasing or increasing reliability based
on the location. Additionally, using both solar and wind
energy together, it is possible to reduce the impact of
yearly variability of each source and have a more consistent
supply of energy. For financial calculation, annual energy
production with the probability of exceedance can act as
a better indicator. When it comes to the battery energy
storage sizing, the benefit diminishes with increasing size.
Meaning, the reduction in overall energy deficit from a
solar-wind-battery system decreases exponentially with
increasing battery energy storage size. Additionally, the
lowest possible energy deficit is also heavily dependent on
the share of solar and wind in the system.
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Abstract: Life cycle analysis is considered as a valuable decision-making tool to oversee the environmental 
impact of a product through its various stages. Starting from the raw material sourcing up to the end-of-life 
processes of the product. Life cycle costing is added to the life cycle analysis to augment the economic 
aspects. One of the main drawbacks of the life cycle analysis is the focus on single path for the life stages 
as it evaluates single option for each life stage and adds the impact to the following stages. this study 
presents a tool to evaluate the environmental and economic impact of different options in life cycle stages, 
determine the possible combination of different life cycle choices, and calculate the emissions, energy 
intensity and cost of each combination scenario. The study takes wind turbine blade as a case study, where 
glass fiber reinforced polymers and carbon fibers reinforced polymers are considered as a row material 
alternatives with two supply options Europe or China markets, four manufacturing site options (onsite, 
Denmark, Germany, and China) and four end of life processing options (reuse, pyrolysis, landfill, and 
mechanical grinding). The results range the different combinations scenarios emissions in the range of (74 
– 17) tons of CO2 eq, the energy intensity between 261 GJ and 863 GJ, and the cost vary from 89000€ to 
22,000€. This work presented a logical method for mapping, analyzing, and evaluating the environmental 
and economic sustainability of a wind turbine blade through different life cycle pathways. 
Keywords: Life cycle analysis, life cycle cost, wind turbine, wind turbine blades, wind turbine blades end 
of life. 

1. INTRODUCTION 

Wind energy is considered one of the fastest growing 
renewable energies in Europe. Europe wind energy installed 
capacity increased from around 140 GW to 272 GW in 2023 
(Costanzo et al., 2024). Sweden had even faster growth rate as 
it expanded from 5.1 GW to 16.3 GW in the same period 
(Swedish Wind Energy Association, 2024). Several studies 
proved high technical and economic potentials of wind energy 
in several areas of Sweden (Warners et al., 2023). In addition 
to the increased installed capacity, the wind turbines had also 
been scaled up to maximize wind energy exploitation. 
Between 2014 and 2023, Sweden's installed turbines count 
increased by less than half, while its installed capacity 
increased by more than three times (Swedish Wind Energy 
Association, 2024). This increase led to greater attention on 
wind energy sustainability with particular emphasis on the 
end-of-life treatment. Europe decommissioned 1.5 GW and 
repowered 736 MW of wind turbines in 2023 (Costanzo et al., 
2024). Composite materials used to manufacture wind turbines 
blades and nacelles pose one of the main environmental 
challenges due to the difficulty of disposal and recyclability. 

To better understand and manage sustainability, life cycle 
analysis and costing have been utilized as a valuable tool in 
this sector. Life cycle analysis (LCA) is a tool to evaluate the 
environmental impact of a product through its different life 
stages. The complete spectrum of stages starts from the initial 
raw material resources taken from the environment to the end-

of-life disposal of the product (Bjørn et al., 2017). A general 
framework has been adopted to perform the LCA, this 
framework standardized through ISO 14040. The main steps 
in the standardized framework are goal definition, scope 
definition, inventory analysis and impact assessment. This 
logical approach permits to identify parts of the life cycle to 
emphasis, such as cradle to grave which cover the complete 
stages spectrum, and gate to gate which focuses on the 
manufacturing stage, starting from the raw material at the 
factory gate until the product leave the gate of the factory 
(Hauschild, 2017). 

LCA has been used to evaluate energy sources environmental 
impact. for renewable energy, the focus is determining the 
emission reduction and evaluating the energy green pathways. 
Numerous LCA studies were conducted in wind energy with 
various goals. Most studies were for specific locations and 
farms sizes, due to the direct effect on impact per the generated 
power, mainly the impact of the transportation, installation, 
and operation and maintenance (O&M) stages. More recent 
studies focused on the environmental impact of the new 
technological development on wind turbines such as offshore 
installations (Brussa et al., 2023; Garcia-Teruel et al., 2022; 
Yuan et al., 2023). Some studies adopted comparative life 
cycle analysis (Schreiber et al., 2019). (Ozoemena et al., 2018) 
compared the environmental impact of 4 different 
technological improvements opportunities on a 114 MW 
onshore wind farm located in UK with 1.5 MW, the 
improvement opportunities evaluated were using stiffer carbon 
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fiber to enlarge the rotor swept area without increasing the
structural loads or equipment requirements, new tower concept
using carbon fiber instead of metal allowing to increase the
hub height from 65 meters to 100 meters without using higher
cranes capacity, and permanent magnet generator using a
lower rotational speed (150 rpm).

With expected increase in wind turbine capacities and installed
numbers, wind turbine blades draw a significant interest in
wind turbine LCA research area because of its high share on
the total wind farm environmental impact (15-25) %, only
exceeded by the tower (Mali and Garrett, 2022). In addition 
to the composite materials recycling challenges (glass and 
carbon fibers) which compromise around 80% of the total 
mass of the blade (Liu et al., 2019).

Considering the increased attention on carbon fibers and wind
turbines blades LCA, this study introduces a scientific
approach to evaluate and compare the environmental impact
and cost of different options of three life cycle stages, taking a
wind turbine blade as a case study.

2. METHODOLOGY

A case study has been made to describe the work done. The
case study evaluates the alternative options of three stages of
wind turbine life cycle namely (material acquisition stage,
manufacturing stage and end of life treatment stage). The study
blade is the National Renewable Energy Laboratory (NREL)
WindPACT project reference turbine blade, 1.5 MW turbine
with 33.35 m long and 4.335 tons in mass (Malcolm and 
Hansen, 2000). The case study assumes the turbine 
installation location near Eskilstuna Sweden. The study 
evaluates different options for each life cycle stage. The 
main evaluation criteria are the climate change impact 
represented by equivalent carbon dioxide emissions (kg 
CO2 eq), energy intensity in mega joules (MJ) and cost 
in Euros. Figure 1 shows the options
evaluated.

2.1 Material Acquisition Stage

Materials considered are composite fibers and resin, as it
compromises approximately 75% of the total blade weight
(Bortolotti et al., 2019) . Recent studies proved that using
carbon fibers as replacement of glass fibers is assumed to
reduce weight due to the higher strength and stiffness. This
study assumes a full replacement of glass fibers reinforced
polymers (GFRP) by carbon fibers reinforced polymers
(CFRP) with the assumption of 20% weight reduction based
on (Corona et al., 2024) and (Ennis et al., 2019). Materials
weight and cost are assumed based on (Bortolotti et al., 2019),
environmental impacts are based on Environmental Footprint
Database (Sala and Cerutti, 2018) used with 
OpenLCA software, (Jensen, 2019), (Rani et al., 2021) and 
(Stróżyk et al., 2024).

The fiber glass environmental impact is assumed to be the
same regardless of the directions and axials of the fiber.
Materials Prices taken from USA market assumed to be the
same for Europe, and 20% less for China due to the low cost
of labor and energy. The environmental impact of China
sourced materials is scaled up based on the difference of

energy mix impact between China and Europe. Material 
acquisition stage inputs are presented in Table 1. 

Table 1. Material acquisition stage inputs 

Description Unit Value 

Glass fiber emissions kg CO2 eq/kg 4.79 

Resin emissions kg CO2 eq/kg 6.59 

Carbon fiber emissions kg CO2 eq/kg 11.2 

Glass fiber energy intensity MJ/kg 35.80 

Resin energy intensity MJ/kg 128.5 

Carbon fiber energy intensity MJ/kg 210 

Glass fiber cost €/kg 2.66 

Resin cost €/kg 3.38 

Carbon fiber cost €/kg 27.9 

Fiber glass mass kg 2453.79 

Carbon fiber mass kg 1963.03 

Resin mass kg 1292.16 

 

Fig. 1. Options per each stage. 
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2.2 Manufacturing Stage

Wind turbine blade manufacturing process involves various
steps namely (material cutting, demold, infusion of the
components, assembly, trim, overlay, posture, root cut and
drill, root fastener installation, surface preparation, paint,
surface finishing, weight and balance, inspection, and shipping
preparation). These steps utilize simple equipment and
machines in addition to a resin curing oven with a curing
temperature approximately 70 ⸰C. All equipment is assumed
to be powered by electricity. Hence the main impact is caused
by using electricity plus transporting the finished blade to the
site. Manufacturing locations grid mix data are taken from
Environmental Footprint Database (Sala and Cerutti, 
2018) browsed using OpenLCA software. Manufacturing 
processes electricity demand and labor hours are based on 
(Bortolotti et al., 2019) . Electricity average price and labor 
cost are based on (ILOSTAT, 2022). Manufacturing stage 
inputs are shown in Table 2.

2.3 End of life Stage

To improve wind power sustainability multiple academic and
industrial parties are investigating several end-of-life options
for wind turbine blades. The studies vary from adding
secondary life to the wind turbine blade and using them as a
construction material up to numerous ways to recover the
fibers (Paulsen and Enevoldsen, 2021) (Rani et al., 
2021) (Yousef et al., 2024). Main proposed options for the 
end-of-life stage are summarized below:

• Functional repurposing (cutting the wind turbine in
pieces and using them for simple structures like bus
stops and barns).

• Mechanical grinding (producing fiber rich powder to be
used for new fibers production).

• Pyrolysis (obtaining pyrolysis gas and oil with other
solid by products).

• Fluidized bed (reclaiming fibers through burning out
the resin).

• Solvolysis (chemically decomposing the fibers matrix
to get the fibers).

• High voltage pulse fragmentation (decomposing the
fibers matrix by high voltage electrolysis process).

• Mechanical shredding and cement or asphalt co
processing.

This study assumes four options for end-of-life stage, which
are:

• Repurposing blade as a high voltage transmission pole
based on (Henao et al., 2024).

• Fibers treatment through pyrolysis.
•  Recovering fibers through mechanical grinding.
•  Land filling at farm stie.

The inputs data for the end-of-life stage shown in Table 3 are
taken from (Paulsen and Enevoldsen, 2021; Jensen, 2019; Liu
et al., 2019; Sproul et al., 2023). The negative impact
values represent the net gain acquired through the end-of-life
treatment, it presents the difference between the recycled or

reused fibers and the production of virgin fibers or 
construction materials. 

Table 2. Manufacturing stage inputs 

Description Unit Value 

Sweden electricity grid mix 
emissions 

kg CO2 
eq/MW 0.0834 

Denmark electricity grid mix 
emissions 

kg CO2 
eq/MW 0.60768 

Germany electricity grid mix 
emissions 

kg CO2 
eq/MW 1.19462 

China electricity grid mix 
emissions 

kg CO2 
eq/MW 1.9158 

Sweden electricity grid mix
energy MJ /MW 3.80815

Denmark electricity grid mix
energy MJ /MW 3.8283

Germany electricity grid mix
energy MJ /MW 7.57788

China electricity grid mix
energy MJ /MW 9.54177

Sweden electricity grid mix
average price €/MW 265.05

Denmark electricity grid mix
average price €/MW 325.5

Germany electricity grid mix
average price €/MW 372

China electricity grid mix
average price €/MW 74.4

One blade manufacturing
labor hour h 407.37

One blade manufacturing
electric energy in MW MW 1.5725

Labor cost in Sweden €/h 47.8299

Labor cost in Denmark €/h 53.3448

Labor cost in Germany €/h 46.0908

Labor cost in China €/h 4.464

2.4 Transportation and shipping

Transportation is considered for materials and manufactured
blades. Land transportation is assumed to be by 7 Ton trucks
for the materials and 30-ton trucks for the blade. A full 30 Ton
truck is assumed for blade transportation, as it depends on the
size required to fit the blade rather than the weight
dependency. The China options sea transportation assume
container shipping for materials and medium barge for blade.
Distances assumed are 1000 km for material transportation in
Europe and Google maps factory to site measured distance for
the blade.

No road topology is considered in the study, the study assumes
all roads are paved. Transportation main inputs are shown in
Table 4. Emissions and energy intensity are based on
Environmental Footprint Database (Sala and Cerutti, 
2018)
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browsed by OpenLCA software, transportation cost figures are 
based on (Sander van der Meulen et al., 2023). 

Table 3. End of life stage inputs. 

Description Unit Value 

Repurposing emissions kg CO2 eq/kg -1.2 

Pyrolysis emissions kg CO2 eq/kg -2.06 

Landfill emission kg CO2 eq/kg 0.05477 

Mechanical grinding 
emissions kg CO2 eq/kg -1.29 

Repurposing energy MJ/kg 1.351 

Pyrolysis energy MJ/kg 30 

Landfill energy MJ/kg 0.35827 

Mechanical grinding MJ/kg 4.8 

Repurposing Cost €/kg 0 

Pyrolysis Cost €/kg 0.2556 

Landfill Cost €/kg 0.0882 

Mechanical grinding €/kg 0.0856 

 

2.5 Model and calculations 

To evaluate the options of each stage and calculate the total 
emissions, energy intensity and cost of the three stages, a 
python model is built to determine all scenarios of options 
combinations and calculate the total impacts and cost. Figure 
2 demonstrates the model schematic diagram. 

Sensitivity analysis is made to explain the effect of (carbon 
fiber mass, glass fiber mass, materials transportation distance, 

manufacturing location distance to site, manufacturing 
location grid mix, manufacturing location electricity price, 
manufacturing location labor cost, recycling method 
emissions, recycling method required energy and recycling 
method cost). The sensitivity analysis baseline scenario is 
GFRP as a material sourced from Europe, Germany as blade 
manufacturing location, and repurposing as an end-of-life 
treatment. The emissions and energy intensity of electricity are 
treated as independent variables, disregarding their mutual 
dependency due to the complexity of their relationship and 
reliance on electricity generation and grid operation 
technologies.  

The study is conducted under the limitation of the data found 
in literature and Environmental Footprint Database, Industrial 
sources found was only for complete turbines, and the data 
source they use for LCA inventory was commercial databases. 
No consideration is made for the time value of money as the 
main future cost element is the end-of-life cost which is 
sourced based on literature estimation as most of the composite 
materials recycling methods are not mature enough yet. 

Table 4. Transportation inputs 

Description Unit Value 

7-ton truck emissions kg CO2 
eq/ton.km 0.2912 

7-ton truck energy MJ/ton.km 1.94286 

7-ton truck cost €/Ton.km 0.125 

Containers ship emissions kg CO2 
eq/ton.km 0.02954 

Containers ship energy MJ/ton.km 0.18034 

Containers ship cost (€/Ton.km) €/ton.km 0.0014 

Site distance km 0 

Vestas factory distance to farm 
location km 770 

Nordx factory distance to farm 
location km 930 

Goldwind factory distance to 
farm location km 900 

China- Europe Sea distance km 23000 

Blade truck emissions kg CO2 
eq/km 

2.79529
9 

Blade truck energy MJ/km 18.6991
4 

Blade cost €/km 9.7565 

Blade Barge emissions kg CO2 
eq/ton.km 0.16447 

Blade Barge energy MJ/ton.km 1.04824
6 

Blade Barge cost €/Ton.km 0.09103
5 

Fig. 2. Model structure. 
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3. RESULTS AND DISCUSSION 

Determining all combinations of options result in 64 possible 
scenarios combining one option for each stage. Figure 3 
presents the total climate change impact, energy intensity and 
cost of the resulting 64 scenarios. 

The total emissions vary between (16,525 to 74,384) kg CO2 
eq. The lowest emissions come with scenario 4, which 
represents GFRP as a material sourced from Europe with 
onsite blade manufacturing and mechanical grinding as a 
recycling option. The highest value represents CFRP as blade 
material, with China as material source and manufacturing 
location in addition to landfilling as end-of-life option.  

Total energy intensity calculations fell in the range of (261,179 
– 862,661 MJ). The highest energy intensity score is for 
scenario number 62 which represent a CFRP blade with China 
as material source and blade manufacturing location, and 
pyrolysis as end-of-life option. The lowest is for the GFRP 
blade with material sourced from Europe and site as a blade 
manufacturing location with repurposing as end-of-life option.  

Figure 3 shows that CFRP sourced from Europe with Denmark 
as a manufacturing location and pyrolysis as end-of-life option 
involve the highest cost blade (89,159 €), while the lowest cost 

(22,115 €) represents a GFRP blade with material source and 
blade manufacturing location in China and repurposing as an 
end-of-life option. 

The results show variation among the different scenarios with 
a general trend of high emissions and energy intensity for the 
CFRP blade where China set as material source, while 
excessive cost follows the carbon fiber sourced from Europe 
and blade manufactured in Europe. The high effect of location 
can be seen on all indicators, this can be attributed to the effect 
of transportation distance and type, and the effect of the energy 
mix in each location. The high energy demand, emissions and 
cost related to carbon fiber manufacturing made it less 
favorable compared to glass fiber. 

Correlation can be seen between the low cost and low 
emissions for the scenarios including European sourced GFRP 
and China as a blade manufacturing location, this can be 
attributed to the tradeoffs between the low emissions related to 
the glass fibers manufacturing in Europe and the low cost of 
labor and electricity in China. As the blade manufacturing 
processes requires small amount of power (1.57 MW) the 
effect of high emissions of China grid mix is not significantly 
affecting the results in this case (Fig. 4). 

Fig. 3. Emissions, energy intensity and cost per scenario. 

Fig. 5. Scenarios cost versus energy intensity. 

Fig. 6. Scenarios emissions versus energy intensity. 

Fig. 4. Scenarios cost versus emissions. 
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Correlation between low cost and low energy can be seen for 
the scenarios including GFRP as material, regardless of the 
manufacturing location or end of life treatment method, this 
result driven by the high energy intensity and inflated cost of 
the CFRP compared to the GFRP (Fig. 5). 

Energy intensity and cost relations show higher sensitivity to 
the material source in the case of CFRP more than for GFRP 
case (Fig. 5). Europe CFRP represent the high-cost medium 
energy intensity and China CFRP represent the high energy 
intensity and medium cost. The high cost and high energy 
intensity comes with the scenarios linking carbon fiber and 
Europe manufacturing locations resulting from the high 
energy intensity of the carbon fibers and the high cost of labor 
in Europe. 

Figure 6 presents the relation between the emissions and 
energy intensity of the scenarios. The effect of grid energy mix 
can be seen in the difference between Europe and China as a 
materials sources and manufacturing location. The GFRP of 
European source represent the lowest emissions and energy 
intensity, while the CFRP of the same origin imposed higher 
emissions and energy intensity compared to China sourced 
GFRP but lower emissions and energy compered to Chinese 
sourced CFRP. 

Figure 7 represents the sensitivity analysis results, showing the 
percentage change in emissions, energy intensity and cost as 
result of changing one of the variables. Emissions exhibits 
high sensitivity to the end-of-life treatment method. This can 
be justified by the high materials emissions per weight 
compared to the other stages, recovery of 1 kg CO2 eq /kg 

reduce approximately 20% of the fiber glass emissions. The 
same applies for energy intensity which is affected mostly by 
the recycling method but with significantly minimal impact 
compared to the emissions. Most of the recycling methods 
require energy to perform the recycling and to produce the 
recovered materials. In addition to the recycling method, we 
can see the effect of changing the mass of carbon fiber and 
glass fiber affecting the energy intensity by 1.036 this effect is 
due to the high energy intensity of the carbon fibers compared 
to the glass fibers and the equivalent numbers caused by the 
interchangeability between the two materials as we reduce the 
glass fibers, we increase the carbon fibers and vice versa. 

The minimal sensitivity of the emissions, energy intensity and 
cost for most variables with consideration of the wide range of 

the scenarios results prove the significance of joint effect of 
changing multiple variables at the same time as each scenario 
present a unique set of variables values.  

Changes in electricity price, labor cost and recycling method 
cost only affect the total cost as no relation applied between 
the cost and the other impacts.  

4. CONCLUSION 

The work presented has demonstrated a logical approach to 
evaluate several life stage options, which can improve the 
LCA studies. Furthermore, it has highlighted the importance 
of composite materials recycling. The study results have 
proved the magnitude of joint effect of changing several 
variables on the LCA and LCC studies.  

Fig. 7. Emissions, energy intensity and cost sensitivity to variables change. 
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The study results have shown the lowest climate change 
impact for scenarios 4 (16525 kg CO2 eq), lowest energy 
intensity for scenario 1 (261179 MJ), and lowest cost for 
scenario 29 (22,115 €), while the highest impacts have been 
the results of scenario 63 (74,384 kg CO2 eq), scenario 62 
(862,661 MJ), and scenario 38 (89,159 €). This has proven that 
no single scenario can give the lowest or highest impact in all 
categories and gives room for optimization problem solution. 

This work can be a valuable initial step in studying wind 
turbine blades material sourcing, manufacturing, and 
recycling. 

Future work needs to include more life cycle stages, extra 
investigation on the interdependency of variables like the 
electricity mix relation with cost, and modeling different 
transportations mode and topography. 
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Abstract: This paper focuses on the utilization of dynamic simulation models in the planning
of experiments for control development. The simulation system is a set of models based on
the first principles for system level simulation of the complete TCP-100 research facility at
Plataforma Solar de Almeŕıa (CIEMAT). This new research facility replaced the 32-year-old
ACUREX facility with which so many advances in Automatic Control were reached by the
research community. The dynamic models are developed to speed up this research for the new
field. The part for control development is the solar field whose parabolic trough collectors (PTCs)
are modelled at module level and combined into PTCs and loops. The presented models of the
parabolic trough field (PTC) will be validated with experimental data and the controllers will
be tested under real conditions. The sequential loops have different operating conditions. This
research uses the parameters based on the parameter selection from providers’ data sheets and
the engineering design project of the TCP-100. The system level model has been implemented
in the Modelica language. All state variables are temperatures according to the modelling
hypothesis applied, and the inputs of the model are: solar radiation, ambient temperature,
setpoints for both circuits pumps, setpoints for two loops control valves, and setpoint for air
cooling power. The simulation experiments are first focused on the modules, PTCs and loops of
the solar field and the full model need to be extended with dynamic LE models before going to
the full simulation tests. In the test campaigns with the new facility, the dynamic LE models
are used for planning the test cases.

Keywords: nonlinear scaling, uncertainty, dynamic modelling, first principles, simulation,
operation of solar PTC plants

1. INTRODUCTION

Modelling and Control of solar thermal power plants is
among the research activities performed at Plataforma
Solar de Almeŕıa (PSA, PSA-CIEMAT). In the past,
active developments of mathematical models and control
techniques were done with the ACUREX experimental
research facility whose key unit was a parabolic trough
collector (PTC) field.

The first modelling and control works were done by R.
Carmona, Director of PSA center, in the period from
1985 to 1987. Carmona (1985) defended his dissertation
presenting a non-linear distributed mathematical model
of the ACUREX field and proposing an adaptive control
temperature technique (Camacho et al., 1986). Many con-
trol strategies for solar systems have been tested in this
facility in its 32 years of life (Camacho et al., 2007; L.Brus
et al., 2010; Gallego et al., 2013). Nowadays the TCP-100
facility has replaced ACUREX field and it was specially
designed to continue the research activities in Automatic
Control, aimed at contributing to the enhancement of the
efficiency of this plant technology.

Many parabolic trough collector (PTC) plants have been
commissioned in the last 20 years. Only in Spain around
45 PTCs power plants have been setup and more than
26 abroad, built or under construction (PROTERMOSO-
LAR, 2024). As examples, we can mention the three 50
MW Solnova and the two 50 MW Helioenery parabolic
trough plants of Abengoa in Spain, and the SOLANA
and Mojave Solar parabolic trough plant constructed in
Arizona and California, each of 280 MW power production.

The main approach followed in the research activities
developed so far was to define as control objective the
regulation of the outlet temperature of the PTC field
around a desired setpoint. These are complementary ad-
ditional objectives dealing with the automatic start-up,
different operating point operation changes and shutdowns
of the plant. A previous simulation based analysis of the
facility used the nonlinear distributed parameter model
presented in (Gallego et al., 2016). A more recent system
level dynamic model based on the first principles has been
developed and presented in (Pérez et al., 2018). This model
provides various possibilities for simulation experiments
for developing and validating control solutions. It was used
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in (Yebra et al., 2020) for the development of operation
training techniques for the TCP-100 facility.

The nonlinear scaling approach has been earlier used for
the ACUREX facility (Juuso and Yebra, 2013; Juuso,
2016). The TCP-100 plant has more detailed control
possibilities (Fig. 1). This brings new control cases but also
makes the tuning more complicated. Simulation models
will be used as a replica of the process in the development
of controllers.

This paper is organized as follows: Section 2 summa-
rizes the TCP-100 plant. Section 3 focuses on different
possibilities to use the first principles simulation model
in tuning. Section 4 presents the nonlinear data analysis
methodology. Section 5 presents a planning of simulation
experiments to be performed for typical operation days.
Finally, Section 6 provides some concluding remarks and
future works.

2. TCP-100 FACILITY

The TCP-100 facility consists of two thermofluid circuits
thermally connected by a heat exchanger. This research
focuses on the solar field is formed by three PTC loops,
each of them composed by two PTCs in a North-South
orientation (Fig. 1). Each PTC is 100 meter long, formed
by eight modules and all in parallel. Figure 2 shows the
first PTC in the first loop.

The solar field is in the primary circuit (Fig. 1). In each
loop, the PTCs are connected in the South extreme, and
the colder PTC will always be the first in the row, placed
at the right part of each loop. Each circuit has one tank:
the primary tank T-2 with 10m3 volume and the storage
tank T-1 in the secondary with a volume of 115 m3. The
pumps for each circuit are placed after both tanks and
can be controlled. There is an oil cooler in the secondary
circuit.

The other loop, including a storage tank, a cooler and the
connecting heat exchanger, may be bypassed during the
daily operation to let the control system to choose the
operational mode at each time. Operating conditions are
chosen with different operation modes:

(1) Stopped facility. In this mode, both circuits are in
stand-by. Both pumps are stopped and the solar field
unfocused.

(2) Both pumps are working and the solar field is unfo-
cused.

(3) The storage tank is charging with the cooler stopped.
(4) The storage tank is charging with the cooler working

(variable charge).
(5) The storage tank is discharging.
(6) The solar field is cooling.

The new solar field provides new remarkable features to its
predecessor ACUREX. The main differences among both
facilities could be summarized as follows: The ACUREX
solar field consisted of 480 East–West aligned single axis
tracking PTC forming 10 parallel loops. Each loops was
172 m long, and formed by four 12-module collectors
suitably connected in series. The active part of the loop
(those parts receiving beam irradiance) measuring 142 m
and the passive part (those not receiving beam irradiance)

Fig. 1. Top view of the TCP-100 field at Plataforma
Solar de Almeŕıa (PSA-CIEMAT). The three loops
are shown, with two PTCs in each of them, numbered
from 1 (rightmost) to 6 (leftmost). The first loop is
formed by the connected pair 1-2 (right loop), the
second loop by 3-4 (center loop) and the third by 5-6
(left loop).

Fig. 2. Lateral view of the first PTC in the first loop at
Pataforma Solar de Almeŕıa (PSA-CIEMAT). It is
composed of 8 modules of 12 meters length.

30 m. The HTF used was Therminol 55 thermal oil,
capable of supporting temperatures of up to 300°C. There
were temperature sensors and the intlet and outlet of
each loop and the solar field, and the flow rate could be
controlled with the pump field. The experimentation of
advanced control techniques can utilize the new sensors
and actuators installed in the TCP-100 facility summed
up in the next. Temperatures are measured in the inlet
and outlet of the solar field, the inlet and outlet of each
loop, in the inlet and outlet of each PTC and the middle
point of each PTC. Volumetric flow rates are measured
for each loop. Control valves are used to regulate the mass
flow rates in each loop.

3. TCP-100 FACILITY MODEL

The simulation studies can use a hybrid (continuous and
discrete) system level model based on the first principles
model (Pérez et al., 2018). The parameters for that model
were obtained from the plant engineering design project
data and are also used in this paper. The system level
model has been implemented in the Modelica language
with the modelling tool Dymola (DassaultSystems, 2018),
which applies special algorithms for the manipulation of
hybrid models (Mattsson et al., 1999).
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After the symbolic manipulations performed by Dymola,
the model can be expressed as a general nonlinear state
space system in the form

ẋ = F(x,u) (1)

y= G(x,u) (2)

where x ∈ R28, u = {(uc,ud) ∈ R7 × {0, 1}3}, and
y ∈ RNy , where Ny could be arbitrary chosen from the
variables computed in the model detailed in (Pérez et al.,
2018). The variables are used in two ways:

28 state variables (x ∈ R28) .
Each one means a temperature for: each PTC medium
control volume (CV), see (Patankar, 1980), each PTC
absorber tube, each PTC glass envelope, each tank
medium CV, each tank metal walls, each tank isolation
layer, each of both medium CVs in the HEX, the HEX
metal wall and the air cooler medium CV. All state
variables are temperatures according to the modelling
hypothesis applied.

10 input variables (u = {(uc,ud) ∈ R7 × {0, 1}3}) .
Seven real input variables (uc ∈ R7): solar radiation,
ambient temperature, setpoints for both circuits pumps,
setpoints for two loops control valves, setpoint for air
cooling power; and 3 boolean input variables (ud ∈
{0, 1}3): bypass activation for the storage tank, for the
HEX, and solar field defocusing activation signal.

The Dymola model is capturing the thermal dynamics
for the validation of the facility operation modes and
operation training purposes as a causal block because of
the representation of the inputs and outputs. All the ma-
nipulable inputs are shown with the RealInput interface
component:

• The volumetric flow rates (l/s) in control loops for
pumps in primary circuit (Syltherm800 medium) and
secondary circuit (Therminol55 medium).

• The setpoint for the air cooler cooling power that
modulates forced convection.

• The setpoints for both control valves apertures that
vary the mass flow rate (kg/s) through 1st and 2nd
loops.

• The Boolean control input is used in commanding the
bypass of the storage tank in the secondary circuit.

• The Boolean control input is used to bypass the
HEX, simultaneously in both circuits: primary and
secondary.

• SF_Defocus is the boolean control input to defocus
the solar field. The whole solar field is not reached by
any solar irradiance when this signal is activated.

The non-controllable or disturbance inputs are the solar
irradiance and the ambient temperature.

The output of the model is a generic output vector y[:]
that represents in a general form any arbitrary output
computed by the model and that could vary from one to
another simulation experiment.

Figure 3 shows the summarized model of the TCP-100
facility, that is being acted by a discrete controller imple-
mented with the StateGraph formalism implemented in
the Modelica Standard Library. More details about this
experiment can be found in (Yebra et al., 2020).

TCP-100
Solar	Facility

model

r_pump_1

r_pump_2

r_UVF_cooler

r_valve_loop1

r_valve_loop2

bp_st_Tank

bp_HEX

SF_Defocus

y[:]

MODE_2 T1

0.1*3600

true

MODE_3 T2

TCP100.y[1]	>	Cooler_Activation_Temp

MODE_4 T3

TCP100.y[1]	>	Max_OP_Temp

MODE_5 T4

(10	-	6.25)*3600

true

MODE_6

T5

(24	-	10)*3600

true

stateGraphRoot

root

24.35

r_pump_1

MODE_6.active

bp_st_Tank

19.93

r_pump_2

r_UVF_cooler

1/3

r_valve_loop1

1/3

r_valve_loop2

false

bp_HEX

not	(MODE_3.active	or	MODE_4.active)

SF_Defocus

if	((MODE_4.active	or	
MODE_5.active
or	MODE_6.active)	
and	time	>	8*3600)	
then	1	else	0

Fig. 3. Modelica model of the TCP-100 facility com-
manded by a discrete controller implemented with the
StateGraph library.
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Fig. 4. Direct Normal Irradiance applied in the simulation
experiment.

Figures 4 and 5 show respectively the Direct Normal
Irradiance (DNI) applied to the model in Figure 3, and the
simulated results for the storage tanks in both subcircuits.
In the primary circuit with Syltherm800 HTF, the mean
temperature of tank T1 is shown when the controller
forces the plant to pass through different operation modes.
After 5.2 hours from the beginning of the experiment,
the T1 temperature rises to its maximum daily value of
316◦C. Then, the solar field is defocused and the primary
circuit exchanges energy with the secondary, still keeping
on charging the T2 tank until it reaches its maximum
mean temperature of 219◦C at 5.8 hours. During some
hours, the system is evolving thermally coupled in the
absence of incoming DNI, and at time 8 hours the whole
system begins to be cooled. At time 9 hours the bypass
of tank T2 is activated, so the cooler is acting over a
lower thermal load, which makes the primary circuit cool
down to ambient temperature (16◦C) at 13.5 hours. In
this simulation experiment, the model of the facility has
passed through most of the operational modes indicated
in Section 2.
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Fig. 5. Simulated temperature profiles for the tanks T1
and T2 in the TCP-100 facility, under the DNI profile
in Fig. 4 and StateGraph controller in Fig. 3.

4. NONLINEAR DATA-BASED MODELS

Tests with the previous collector system have shown clear
nonlinear behaviour in the normal operating range. The
directions of interactions remain constant but the mean-
ings of the variables depend strongly on the operating
conditions. In many cases, the nonlinear systems can be
implemented with nonlinear scaling and linear interaction
models. In the beginning of tuning, the uncertainties need
to be taken into account. The representation with natural
language is beneficial for understanding an comparing with
expert knowledge.

The energy balance of the collector field can be represented
by expression (Juuso, 2009):

IeffAeff = (1− ηp)FρcTdiff , (3)

where Ieff is effective irradiance (Wm−2), Aeff effective
collector area (m2), ηp a general loss factor, F flow rate
of the oil (m3s−1), ρ oil density kgm−3, c specific heat of
oil (Jkg−1K−1) and Tdiff temperature difference between
the inlet and the outlet (oC). The effective irradiance is the
direct irradiance modified by taking into account the solar
time, declination and azimuth. The density decreases and
the specific heat increases resulting a nonlinear increase of
the term. In the start-up, the flow is limited by the high
viscosity.

4.1 Nonlinear scaling

The nonlinear scaling was presented as a methodology
for improving membership functions of fuzzy set systems
already in (Juuso and Leiviskä, 1992; Juuso, 1992). Nonlin-
ear scaling functions (NSFs) are monotonously increasing
functions xj = f(Xj) where xj is the variable and Xj

the corresponding scaled variable in the range [-2, 2]. The
function f() consist of two second order polynomials, one
for the negative values of Xj ∈ [−2, 0] and one for the
positive values Xj ∈ [0, 2], respectively. Five parameters
are needed to define these functions since the overall func-
tions are continuous (Fig. 6). The core area [(cl)j , (ch)j ],
corresponding [-1, 1], is within the support area defined
by the minimum and maximum values (Juuso, 2004). The
corresponding inverse functions Xj = f−1(xj) based on
square root functions are used for scaling to the scaled
range.

Everything can be defined manually, but it is important to
obtain the variable specific parameters of the scaling func-
tions by data-based methodologies. Arithmetical means

Fig. 6. Nonlinear scaling and membership functions.

and medians were used in Juuso (2004). The current solu-
tion uses the central tendency values based on generalised
norms (Juuso and Lahdelma, 2010). The generalised norm
is defined by

||τMp
j ||p = (Mp

j )
1/p = [

1

N

N∑
i=1

(xj)
p
i ]

1/p, (4)

where the order of the moment p ∈ R is non-zero, and N
is the number of data values obtained in each sample time
τ . The norm (4) calculated for variables xj , j = 1, . . . , n,
have the same dimensions as the corresponding variables.
The norm ||τMp

j ||p can be used as a central tendency value

if all values xj > 0, i.e. ||τMp
j ||p ∈ R.

The analysis divides the measurement values into two
parts by the point where the skewness changes from
positive to negative, i.e. γp

3 = 0. Then the data set is
divided into two parts: a lower part and an upper part.
The same analysis is done for these two data sets. The
estimates of the corner points, (cl)j and (ch)j , are the
points where γp

3 = 0 for the lower and upper data sets,
respectively. Since the search of these points is performed
by using the order of the moment, the resulting orders
(pl)j , (p0)j and (ph)j are good estimates when additional
data sets are used. The orders of the norms help in changes
in operating conditions.

4.2 Steady state LE models

Linguistic equation (LE) models consist of two parts: in-
teractions are handled with linear equations, and nonlin-
earities are taken into account by nonlinear scaling (Juuso,
1999). In the LE models, the nonlinear scaling is performed
twice: first scaling from real values to the interval [−2, 2]
before applying linguistic equations, and then scaling from
the interval [−2, 2] to real values after applying equations
The linguistic level of the input variable xj is calculated
the inverse functions of the polynomials (Juuso, 2004).
More inputs can be included with a steady state LE model
represented by

xout = fout

(
−
∑m

j=1,j ̸=out Aij f
−1
j (xj) +Bi

Ai out

)
(5)

where the functions fj and fout are nonlinear scaling
functions of the input variables xj , j = 1, . . . ,m and the
output xout, respectively.
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The LE model includes linguistification and delilinguistifi-
cation blocks for the nonlinear scaling of variables. The
linear interaction model is used in the equation block
which can include a set of equations as well. These blocks
are shown in Fig. 7.

Fig. 7. Blocks of dynamic LE models for calculating ∆y.

4.3 Dynamic LE models

Dynamic LE models are rather simple input-output mod-
els, where the old value of the simulated variable and the
current value of the control variable as inputs and the new
value of the simulated variable as an output, can be used
since nonlinearities are taken into account by nonlinear
scaling functions (Fig. 7). For the default LE model, all the
degrees of the polynomials in parametric models become
very low, i.e. all the parametric models become the same:

y(t) + a1y(t− 1) = b1u(t− nk) + e(t). (6)

This model is a special case with three variables, y(t), y(t−
1) and u(t− nk), and a zero bias.

The output, the derivative of the variable y, is integrated
with numerical integration methods:

y =

TI∫
0

F (t, y, u)dt+ y0, (7)

where TI is the time period for integration, and y0 the ini-
tial condition. Usually, several values from the integration
step or the previous steps are used in evaluating the new
value. Step size control adapts the simulation to changing
operating conditions.

Effective time delays depend on the working conditions
(process case), e.g. the delays are closely related to the
production rate in many industrial processes. In the block
shown in Figure 8, the delay of the variable Var1 depends
on the variable Var2: the linguistic level of the variable
Var2 is multiplied by 1 or -1 to get the linguistic level of
the delay for the variable Var1, coefficient 1 means that
the delay increases when the variable Var2 increases. The
real value of the delay is obtained by the delinguistification
block.

Conventional mechanistic models do not work since there
are problems with oscillations and irradiation distur-
bances. In dynamic LE models, the new temperature dif-
ference T̃diff (t+∆t) between the inlet and outlet depends
on the irradiance, oil flow and previous temperature dif-
ference:

T̃diff (t+∆t) = a1T̃diff (t) + a2Ĩeff (t) + a3F̃ (t), (8)

where coefficients a1, a2 and a3 depend on operating
conditions, i.e. each submodel has different coefficients.

Fig. 8. Time delay of Var1 depends on Var2.

The nonlinear scaling functions of the outlet temperature
does not depend on time. Model coefficients and the scal-
ing functions for Tdiff , Ieff and F are all model specific.
For the ACUREX field, the fuzzy LE system with four
operating areas is clearly the best overall model (Juuso,
2003, 2009): the simulator moves smoothly from the start-
up mode via the low mode to the normal mode and
later visits shortly in the high mode and the low mode
before returning to the low mode in the afternoon. Even
oscillatory conditions, including irradiation disturbances,
are handled correctly. The dynamic LE simulator predicts
well the average behaviour but requires improvements for
predicting the maximum temperature since the process
changes considerably during the first hour. For handling
special situations, additional fuzzy models have been de-
veloped on the basis of the Fuzzy–ROSA method (Juuso
et al., 2000).

4.4 Working point model

The volumetric heat capacity increases very fast in the
start-up stage but later remains almost constant because
the normal operating temperature range is fairly narrow.
This nonlinear effect is handled with the working point LE
model

wp(i) = Ĩeff (i)− T̃diff (i), (9)

where Ĩeff (i) and T̃diff (i), which are obtained by nonlin-
ear scaling of variables: efficient irradiance Ieff and tem-
perature difference between the inlet and outlet, Tdiff =
Tout−Tin, correspondingly. The outlet temperature Tout(i)
is the outlet temperature of the module i. Since each loop
consists of 16 modules, there are 48 sequential modules in
the solar field. The outlet temperatures at modules 16, 32
and 48 are controlled.

The working point, wp, represents a fluctuation from the
normal operation. In the normal working point, wp = 0:
the irradiance Ĩeff and the temperature difference, T̃diff ,
are on the same level. A high working point (wp > 0)

means low T̃diff compared with the irradiance level Ĩeff .
Correspondingly, a low working point (wp < 0) means

high T̃diff compared to the irradiation level Ĩeff . The
normal limit (wpmin = 0) reduces oscillations by using
slightly lower setpoints during heavy cloudy periods. This
is not sufficient when the irradiance is high between cloudy
periods. Higher limits (wpmin = 1) shorten the oscillation
periods after clouds more efficiently.
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5. PLANNING OF EXPERIMENTS

The TCP-100 solar thermal power plant replaces the
ACUREX experimental research facility. Therefore, the
scaling functions of the irradiance (W/m2) do not change
which means that also the indicator of the cloudiness
remains the same. This is a good starting point for the
planning of the experiments. All the other variables are in
totally different value ranges.

Fig. 9. Modules of the intelligent analyzers and control.

In the LE systems, all variables xj are handled with vari-
able specific nonlinear scaling functions: xj = fj(Xj) and

Xj = f−1
j (xj), see Section 4. The interactions of the scaled

values Xj are presented with linear equations, like (8).
In the starting phase, the scaling functions are available
only for the irradiance. The scaling of the temperature
differences Tdiff is estimated for the loops from the con-
figuration of the field.

The feedback controller is a PI-type LE controller with one
manipulating variable, oil flow, and one controlled vari-
able, the maximum outlet temperatures of the loops. The
PI-type means that the change of control is the sum of the
error and the change of error. The acronym LE means that
dimensionless scaled values are used in the control equa-
tion. The very compact basic controller provides a good
basis for advanced extensions: the scaling functions can
be to versatile operating conditions, and control equations
can extended from the PI type with different algorithms,
e.g. all different types of PID controllers could be used.
The blocks are the same for different modules and loops.

The LE controller contains several parametric scaling
functions for variables, errors, changes and corrections.
Since there is no actual test data available from the new
research plant, the parameters are chosen before the test
campaign by using previous test results from the ACUREX
plant and adjusting or scaling them to correspond better
to the specifications of the new TCP-100 collector field or
using the simulator of the new field. These properties are
tuned after the test campaign.

Intelligent analysers have been used for detecting changes
in operating conditions to activate adaptation and model-
based control and to provide indirect measurements for the
high-level control (Fig. 9). There are many improvements,
which are planned to be introduced to the new TCP-100
facility. For the first tests, the intelligent analysers are
not used. The correction factors based on the working

point value wp are utilized in the adaptation of the LE
control. The fine-tuning with the predictive braking and
asymmetrical actions are left for later studies.

The working point wp is important in both in this study
and the final system since the model-based control lim-
its the acceptable range of the temperature setpoint by
using the chosen working point (Fig. 9). The fluctuation
indicators are used for modifying these limits to react
better to cloudiness and other disturbances. The manual
setpoints are used only within these limits. Dynamic mod-
els developed for the TCP-100 facility could be used for
development in this task.

High-level control is aimed for manual activating, weight-
ing and closing different actions. As there are many ac-
tions, this is needed to run the tests efficiently. These ideas
will be developed interactively during the test campaigns
to provide a basis for The performance analysis and inte-
gration of expertise (Fig. 9).

The full first principles model is highly complicated and a
lot of tuning work is needed before it can be used in tuning
the controller for the special cases listed above. Actually,
the simulator would already need adaptive parts. A better
way is to focus first on the PTC loops (Fig. 2). There
are three loops in the solar field (Fig. 1) which all consist
of two PTCs both having eight similar modules. These
can be handled with the same parametric LE model. The
modules are working in different operating conditions: the
input and output temperatures depend on the sequence of
the modules. The control of the loops introduces additional
differences between the loops.

The project will then continue first with the full dynamic
models enhanced with the new LE models. Then the full
set of the experiments can be started in the real new
TCP-100 facility which finally provides the data which
can be used in the tuning of the plant and the control
system. The simulation studies provide a starting point
for the test campaigns with the new field. The parameters
will be updated offline during the test days by using the
recursive approach. The TCP-100 facility includes more
units, loops and connections. There are more sensors for
the temperatures and volumetric flows. The control is
available in each of the loops. The dynamic simulation
model includes 28 state variables and seven input variables
(Section 3).

The dynamic simulation model is used as a plant in this
research. This is a flexible solution for analysing differ-
ent weather conditions and disturbances. The strongly
fluctuating situations are difficult to handle reliably with
models. However, they can be taken as scenarios in this
model based analysis. The idea of the nonlinear scaling is
that the algorithms remain unchanged.

6. CONCLUSIONS AND FUTURE RESEARCH

This research focuses on starting to apply the intelligent
models and control algorithms for the new TCP-100 solar
thermal plant. The scaling functions of the ACUREX
facility remain unchanged for the irradiance which also
means that the earlier indicators of the cloudiness can
be used. The new facility includes more units, loops and
connections. The algorithms are not changed and the
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data analysis can be done by using the dynamic models
for a limited set of measurements and subsystems. This
research means preliminary simulation experiments. The
first principles models would require adaptive parts before
going the full simulation experiments. The work can be
started with the loops and modules by using parametric
linguistic equation models. The simulation studies will
be extended with these models before going to the test
campaigns with the new facility.
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Juuso, E.K. and Leiviskä, K. (1992). Adaptive expert sys-
tems for metallurgical processes. IFAC Proceedings Vol-
umes, 25(17), 119–124. doi:10.1016/B978-0-08-041704-
2.50027-3.

Juuso, E.K., Schauten, D., Slawinski, T., and Kiendl,
H. (2000). Combination of linguistic equations and
the fuzzy-ROSA method in dynamic simulation of a
solar collector field. In L. Yliniemi and E. Juuso
(eds.), Proceedings of TOOLMET 2000 Symposium -
Tool Environments and Development Methods for Intel-
ligent Systems, Oulu, April 13-14, 2000, 63–77. Oulun
yliopistopaino, Oulu.

Juuso, E.K. and Yebra, L.J. (2013). Optimisation
of solar energy collection with smart adaptive con-
trol. In IECON Proceedings (Industrial Electronics
Conference),10-14 November, 2013, Vienna, Austria,
7938–7943. doi:10.1109/IECON.2013.6700459.

L.Brus, T.Wigren, and D.Zambrano (2010). Feedforward
model predictive control of a non-linear solar collector
plant with varying delays. IET Journal of Control The-
ory and Applications, 4 (8), 1421–1435. doi:10.1049/iet-
cta.2009-0316.

Mattsson, S.E., Otter, M., and Elmqvist, H. (1999). Mod-
elica hybrid modeling and efficient simulation. In Pro-
ceedings of the 38th IEEE Conference on Decision and
Control (Cat. No.99CH36304), volume 4, 3502–3507.

Patankar, S.V. (1980). Numerical Heat Transfer and Fluid
Flow. Series in Computational and Physical Processes
in Mechanics and Thermal Sciences. Taylor & Francis,
London, UK.
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Abstract:
This work is a step towards conceptualizing a smart multi-modular structure, whose main
application is solar energy harvest, with the innovative idea of connectors that can be
controlled to mitigate motions and loads in a changing environment. The paper presents
selected preliminary results from experimental tests of an array of floating column-based modules
exposed to regular waves of different periods. Each pair of neighboring modules was connected
by two spring connectors with both tension and compression stiffness. The paper presents an
investigation of motion responses versus load frequencies corresponding to four tested spring
stiffnesses.
The model test results serve as a basis for validating a numerical model that is implemented for
control design and simulation purposes. Wave-, mooring- and connector forces are considered
in the simulations. The proposed method will act as a tool for further evaluation of the effect
of changing the connection stiffness according to the incoming waves and the investigation of
whether it is beneficial to apply a smart connector that can adapt to varying sea states.

Keywords: Renewable Energy, Floating Solar, Model Testing, Numerical Modelling, Control

1. INTRODUCTION

1.1 Background

The world demands more green energy to reduce the global
carbon emissions. To replace polluting energy sources, a
large variety of sustainable solutions is essential. According
to the Intergovernmental Panel on Climate Change, solar
photovoltaic (PV) has become a competitive energy source
as the cost has decreased by 85 % between 2010 and 2019
(IPCC, 2023). In areas where solar irradiation is abun-
dant, but available land areas are in high demand, building
floating solar plants could be a valuable contribution to-
wards the energy transition. In addition to the advantage
of not using land areas, Kumar et al. (2021) summarized
benefits of floating solar, including better cooling effect,
reduction of water evaporation and less accumulation of
dust.

If floating large-area structures can be designed to sustain
higher environmental loads in an exposed or offshore en-
vironment, new solutions for floating photovoltaic (FPV)
power plants can be investigated. DNV (2022) listed the

⋆ The PhD position of the first author is funded by Department of
Marine Technology at NTNU. This work was partly supported by
the Research Council of Norway through SFI BLUES, grant number
309281.

main opportunities for FPV as; making use of abundant
solar energy in more areas; maximizing the use of space
and existing infrastructure by combining FPV with for in-
stance offshore wind installations; provide offshore charg-
ing for electric marine vessels or for production of alterna-
tive fuels; supplying green energy to islands or maritime
industry; and finally, the reuse of competence from other
marine industries.

Placing floating structures in harsher offshore environ-
ments with wind, current and changing wave states is not a
new research topic. The oil and gas industry has designed
and built offshore installations for decades. Ideas for very
large floating structures (VLFSs) explores making large
areas available on water surfaces for e.g. buildings, float-
ing ports, airports and agriculture (Lamas-Pardo et

al., 2015). To reduce bending moments on these large-
area structures, connecting several smaller modules
together to make a flexible structure that is allowed to
move with the changing sea surface could be a solution.
Such multi-modular structures, in a smaller scale than
the VLFSs, will in this paper be investigated for the
purpose of solar harvest in exposed areas.

A nonlinear model of connected floating modules using
network theory has been used to analyze the response
and connection loads of a multi-modular structure (Zhang
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et al., 2015). Shi et al. (2018) validated the network mod-
elling method by experimental testing of three modules in
an array, and Ding et al. (2021) by full scale results from
the Scientific Research and Demonstration Platform in the
South China Sea.

Multi-modular structures introduce connection points
which present weak links in terms of fatigue life and dura-
bility. This motivates research on how to reduce relative
module motion and loads in connections when such struc-
tures are exposed to changing environmental conditions.
The motion response and oscillations as well as connector
loads of a multi-modular structure were shown by Jiang
et al. (2021) to be affected by the connector stiffness
between modules. By adapting this stiffness to different
wave periods, studies have shown that it is possible to
retain the structure in a state where oscillations are kept at
a minimum, also known as amplitude death state (Xu et
al., 2014; Xia et al., 2016; Zhang et al., 2017). By actively
controlling their stiffness, the connectors themselves can
be used as actuators.

This paper investigates a type of multi-modular struc-
ture with modules larger than the components of typical
floating solar rafts, but smaller than the modules in very
large floating structures. Further, this paper contributes to
research by including varying connector stiffness in both
numerical and experimental tests. The main objectives
are to analyze the behavior of different configurations of
multi-modular structures, investigate the effect of different
connector stiffness and to validate a numerical simulator
by comparable experimental results. The motivation for
the work is to prepare for development of a control system
that changes the dynamics of the structure as a response
to the current sea state by using active control of the
stiffness in connection points. The work utilizes existing
numerical and experimental modelling techniques on a new
type of structure and, by creating a modeling framework,
contributes towards an evaluation of the idea of creating
smart multi-modular structures that adapt to changing
environmental conditions.

1.2 Paper Outline

The paper starts with Sect. 2 presenting a test case with
necessary parameters for both the experimental and sim-
ulator setup. It describes how the test case is adapted for
model testing and introduces the mathematical modelling
of the dynamical system. Results are presented in Sect. 3
and concluding remarks are given in Sect. 4.

2. CASE STUDY

2.1 Test Case

A common test case is used in both the experimental and
numerical investigation for easy comparison. This case is
based on an offshore floating solar power concept, utilizing
the same modules as used in previous model tests (On-

srud, 2019). Square rigid platforms with four cylindrical
floaters or columns (Fig. 1) are flexibly connected to form
an interconnected large-area structure. Arrays of 1, 2,
3 and 5 modules are subjected to regular waves in the
longitudinal direction and are tested with varying stiffness

in the connection points. Table 1 presents the full-scale
parameters of the test case.

Table 1. Test case parameters (full scale)

Parameter Unit

Module size L×W 12×12 [m]
Module mass m 9088 [kg]
Draft d 1.13 [m]
Column radius r 0.8 [m]
Column height h 2.63 [m]
CG (xg , yg , zg) (0,0,-1.3) [m]
CF (xf , yf , zf ) (0,0,0) [m]
CB (xb, yb, zb) (0,0,d/2) [m]
Module distance ∆x 1.3 [m]
No. of modules N 1-5 [-]
No. of mooring lines Nm 4 [-]
No. of connectors Nc 2 [-]
between neighbors
Mooring line stiffness Km 2800 [N/m]
Connector stiffnesses: Kc 6-29 [kN/m]
- Conn. stiffness S1 29000 [N/m]
- Conn. stiffness S2 26000 [N/m]
- Conn. stiffness S3 15000 [N/m]
- Conn. stiffness S4 6000 [N/m]
Wave period Tw 2.0-8.0 [s]
Wave steepness H/λ 1/116 [-]
Water density ρ 1000 [kg/m3]

Table 2. Run overview

Parameter Variations

Module configurations: 1×1, 2×1, 3×1, 5×1
Connector stiffness: S1, S2, S3, S4, Hinge*
Wave period: 2.0-8.0 s

*Only model test with configu-
ration 2×1 and 5×1

2.2 Model Test

The model tests were performed in a towing tank at NTNU
in Trondheim, Norway. The tank is 2.8 by 25 meters, with
a water depth of 0.7 meters. It has a wave maker and a
wave beach to absorb energy from the waves. The model
was Froude scaled by 1:20 according to the parameters
presented in Table 1. Figure 2 shows a photo of the model
test setup for the three-module configuration in the towing
tank where the experiments were performed.

The first and last module in each test configuration were
moored in four corners by pre-tensioned springs (Figs. 1
and 2). All modules are thus kept in a neutral position in
calm water. Each pair of modules was connected by two
spring connectors (Figs. 3 and 4) functioning with both
tension and compression stiffness. Tests were performed
according to Table 2. Each combination of connector type
and number of modules was exposed to regular waves
travelling in the negative x-direction. The wave period was
limited by the water depth in the tank, ensuring linear
wave behavior.

The response of each module was tracked in six degrees
of freedom (DOFs) using a camera-based motion capture
system. Load cells were used to measure the force in local
x-direction in one spring of each connection pair, see Fig.
3. The wave height was measured by wave probes at 8
different locations throughout the tank.
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Fig. 1. General overview of the test case. Module numbering and global reference frame {g} = (Xg, Yg, Zg), as well as
selected parameters from Table 1 are presented. The local {li} and body-fixed {bi} reference frames coincides when
the modules are in neutral position. Further, connection springs are indicated between modules, and mooring lines
are indicated as dotted lines in the corners of the end modules.

The results from this model test have also been evaluated
in a master thesis from NTNU by Fagerbakke (2023).

Fig. 2. Model test setup, N=3.

Fig. 3. Model test connector and load cell.

2.3 Modelling of the Test Case

The numerical model is based on a mathematical descrip-
tion of rigid modules with flexible connections.The main
assumptions for the numerical model are:

Assumption 1. The modules are assumed rigid.

Assumption 2. Waves are modelled as linear deep-water
waves, unaffected by shallow-water effects

Assumption 3. Motions in xy-plane are assumed small,
thus reducing the analysis to a 2D-problem.

Assumption 4. Connector springs between the modules
are limited to axial forces.

Assumption 5. The effect of finite column length is ne-
glected.

Assumption 6. Modules are allowed to overlap if motions
are large, collisions are not modelled.

Reference Frames: Three types of reference frames
were used to model the multi-modular island, see Fig.
1. A global inertial reference frame defined by {g} =
(Xg, Yg, Zg), where Xg and Yg is zero in the initial position
of the geometrical center of the first module, and Zg is zero
at the water surface, with positive axis downwards. A local
coordinate system {li} = (xli, y

l
i, z

l
i) has its origin in the

neutral position of each module. In addition, each module
has its own body-fixed reference frame, {bi} = (xbi , y

b
i , z

b
i ),

also with the positive z-axis down from the sea surface.

The position and orientation vector for a 6 DOF module
i, in its local reference frame is defined as ηi = [p⊤

i ,Θ
⊤
i ]

⊤,
where pi = [xi, yi, zi]

⊤ represent the module’s x-, y-
and z-position in {li}, and Θi = [ϕi, θi, ψi]

⊤ represent
the orientation of {bi} in {li} in roll, pitch and yaw
respectively. The velocity in the body-fixed reference frame
of each module is νi = [ui, vi, wi, pi, qi, ri]

⊤ representing
translational velocities in x, y and z (ui, vi, wi), and
rotational velocities around these axes (pi, qi, ri).

The transformation between two reference frames is de-
scribed by η̇i = J(Θi)νi with the transformation matrix
J(Θ) being a block diagonal matrix defined by the trans-
formation of translations, R(Θ), and rotations, T (Θ),
according to Fossen (2021).

Equation of Motion: The equation of motion for module
i in its body-fixed frame {bi} is given by

M i(ω)ν̇i +Di(ω)νi + J⊤(Θi)Ciηi = F b
i (ω), i = 1, ..., N

(1)
M i(ω) includes the rigid body mass matrix MRB,i and

hydrodynamic added mass Ai(ω). The force vector F b
i is

the sum of connector forces F b
c,i, mooring forces F b

m,i, and

wave loads F b
w,i(ω). D(ω)i and Ci represents potential

damping and restoring matrices respectively.
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Wave Loads: The wave loads are modeled as potential
linear excitation loads, F b

pot.,i(ω), and hydrodynamic drag,

F b
morison,i(ω). The potential wave loads can be expressed

as

F b
pot.,i = F̄ pot.,i(ω) cos (ωwt− kxglg,i + αi) (2)

The amplitude, F̄ pot.,i(ω), and phase angle, αi(ω), are

calculated with help from WADAM (DNV-GL, 2017).
k is the wave number, defined by k = ω2/g, where g
is the gravity acceleration. xglg,i is the position of the
local reference frame of the module in the global reference
frame. To account for viscous effects, drag loads are added
through Morison’s equation in vertical and horizontal
directions. Drag forces and moments are calculated using
strip theory and the crossflow principle for each column
i.p:

f b
morison,i.p =

∫ 1

2
ρCD2r|ur,i.p|ur,i.pdz

mb
morison,i.p = ri.p × f b

morison,i.p

(3)

where CD is the drag coefficient, ur,i, is the relative
velocity vector on the column and ri.p is the distance
between the body frame origin and the force application
point. The total drag load is the sum of loads on all Np

columns on the module:

F b
morison,i =

Np∑
p=1

[
f b
morison,i.p

mb
morison,i.p

]
(4)

Connector Loads: The moving neighboring modules will
impose forces on each other based on the distance between
connection points and the spring stiffness of the connector.
Following Assumptions 3 and 4, forces occurring from
movement along the transversal and vertical direction (i.e.
along y and z) are neglected, thus the connector forces are
a result of movement in x-direction. The numbering of the
four connectors of module i is presented in Fig. 4.

Fig. 4. Connectors 1-4 on module i. N indicates the north
face of the module, S indicates the south face.

The total connection force on module i is given by

F b
c,i =

N∑
j=1

∑
m∈M
o∈O

Φm,ijKc(pi,pj)m,o,

{
M = [N,S]

O = [S,N] (5)

where Φm ∈ RN×N represent the topology matrices for
the m face of the modules. ΦN,ij is 1 if the north face of
module i is connected to module j, and 0 if not. Further,
Kc(pi,pj)m,o is given by

Kc(pi,pj)m,o =

Nc∑
k=1

[
f b
c(pi,pj)m,o,k

rc,i.m.k × f b
c(pi,pj)m,o,k

]
(6)

where

f c(pi,pj)m,o,k = −Kc(p
l
i.m.k − pl

j.o.k − p0) (7)

Simplified to consider motion in x-direction only:

Kc(pi,pj)m,o = −Kc

Nc∑
k=1

[(xgi.m.k − xgj.o.k − δx), 0, 0, 0, 0, 0]⊤

(8)
where δx is the neutral distance between modules in x-
direction.

Mooring Loads: Mooring stiffness is implemented with
only one connection point moving, and the other fixed in
a simulated anchoring point. The force and moment from
mooring line km on module i are given by

f l
m,i.km

= (Km(∥li.km∥ − Lkm) + fpt,km)
li.km

∥li.k∥
mb

m,i.km
= rbm,i.km

× J⊤(Θi)f
l
m,i.km

(9)

where fpt,km
is the pretension in the mooring line, li.km

is the vector describing the relative position of mooring
point and the anchoring point, Lkm

is the initial length of
mooring line km and rbm,i.km

is the lever arm to the point
where mooring line km is connected to module i.

The total mooring load on module i is the sum of forces
and moments from all Nm mooring lines connected to it:

F b
m,i =

Nm∑
km=1

Φi

[
f b
m,i.km

mb
m,i.km

]
, i = 1, ..., N (10)

where Φ ∈ RN and Φi is equal to 1 if module i is moored,
and 0 if it is not.

3. RESULTS AND DISCUSSION

3.1 Natural Periods

Table 3. N = 2, Calculated undamped natural
periods (mass + added mass 1.5e4)

Kc = S1 Kc = S2 Kc = S3 Kc = S4

Tn1 [s] 11.8 11.8 11.8 11.8
Tn2 [s] 2.2 2.3 3.0 4.5

Table 4. N = 3, Calculated undamped natural
periods in surge (mass + added mass 1.5e4)

Kc = S1 Kc = S2 Kc = S3 Kc = S4

Tn1 [s] 14.5 14.5 14.5 14.7
Tn2 [s] 3.1 3.2 4.2 5.9
Tn3 [s] 1.8 1.9 2.6 3.8

Table 3 presents the estimated full scale undamped natural
periods in surge of a 1 DOF system with 2 modules
and with different stiffness of the connector spring. Tn1
corresponds to the mode shape where both modules are
moving in the same direction, while Tn2 corresponds to
motion in opposite directions.

Natural periods for a system with 3 modules are presented
in Table 4. Tn1 corresponds to all modules moving in the
same direction. Tn2 corresponds to the middle module at
a standstill, while the two end modules move in opposite
directions causing large relative motion in both connection
pairs. Tn3 is the natural period of the mode shape where
the first and third modules move in the same direction, but
opposite the middle. Based on the nature of these mode
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shapes, the relative motion, and thus the connector force,
is expected to be largest at Tn2 and Tn3.

Finally, the mode shapes for the five-module configuration
are similar to the three-module case. With more modules,
there are more mode shapes and possible resonance peri-
ods, and it becomes less evident which wave periods will
lead to the largest mean connection load amplitudes.

The first natural periods are corresponding to global
surge motion of the island and are not expected to lead
to significant relative motion. These were calculated to
be outside the interval of wave periods that have been
investigated, and Tn1 will thus not be discussed further in
this work.

Heave natural period for a single module due to hydro-
static restoring force is estimated to be 2.7 s.

3.2 Stiffness Dependence in Model Test

(a) N=2

(b) N=5

Fig. 5. Measured higher harmonic forces in one connector
between module 1 and 2. Hinged connection compared
to the softest spring connection, stiffness Kc = S4.

Connector loads are plotted in frequency domain in Figs.
5(a) (N=2) and 5(b) (N=5) for wave period Tw = 5.0 s. To
highlight the effect of the connector stiffness, these figures
present two extreme cases: the hinged connector and the
softest spring connector, S4. Although amplitudes at the
wave frequency are higher, the softer spring appears to
transfer little to no forces at higher frequencies.

(a) N=2

(b) N=5

Fig. 6. Average connector force all connectors.

Figures 6(a) and 6(b) present connector forces in the local
x-direction for N=2 and N=5 configurations respectively.
The hinged connector generally yields higher connector
loads than the tests where modules are connected by
springs. It appears beneficial with a softer connection at
lower wave periods, while for longer periods the stiffer
springs are preferable to avoid the resonance peak related
to Tn2.

As mentioned in Sect. 2.2, the first and last module of
each array were moored in all tests. The connector stiffness
is therefore expected to have less impact on module
response of a two-module array, where both modules are
moored, than for a five-module array with three middle
modules held in place only by connectors. This can explain
the similar surge motion at Kc = S1, S2 and S3 for
two-module array, seen in Fig. 7(a). The softest spring,
S4, yields a resonance peak at Tw = 4.5 s, coinciding
with the calculated second natural period of the system,
Tn2. Similar resonance peaks for the stiffer connection
stiffnesses are visible, though less prominent.

Collisions between modules, as well as larger sway motion,
were observed for some tests. The occurrence was most
severe for the five-module configuration with the two
softest springs S3 and S4. Ideally, the symmetrical model
should show little to no sway motion when subjected
to regular waves in the longitudinal direction. However,
due to model asymmetries and low bending stiffness of
the springs, collisions lead to transversal motion of some
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(a) N=2

(b) N=5

Fig. 7. Average of response amplitude of all modules in
surge.

modules. This nonlinear behavior became evident at Tw =
6 s for S3 and Tw = 5.5 s for S4, expected to be related to
the second and third natural periods of the system. These
larger amplitudes in surge are visible in Fig. 7(b). Hinged
modules allow less relative motion, and the response is
thus expected to be smaller, as seen in the same plot.

These results point to several potential control objectives:
avoiding higher frequency loads, minimizing connector
load, minimizing module motion or relative motion, closely
related to moving the natural periods of the system away
from the current sea state.

3.3 Comparison with Numerical Model

The hinged configuration is simulated by setting the con-
nector stiffness high, Kc = 4e5. As seen in Fig. 8(a),
the simulator is able to give a satisfactory estimation of
the relative motion between hinged modules, a motion
mainly occurring due to pitch motion. Further, as the
connection springs get softer, there is a larger discrepancy
between ex-perimental and numerical results. Fig. 9 shows
the relative motion between modules for different
connector stiffnesses. The peaks can be seen in relation
with Tab. 4 as resonance peaks. The plots include a solid
horizontal line indicating the collision limit.

The heave and pitch response for different connector stiff-
nesses are shown in Figs. 11(a) and 11(b) respectively. An

(a) Relative motion

(b) Heave motion

(c) Pitch motion

Fig. 8. Comparison of results with hinged modules.

average response is calculated from the motion amplitude
of all modules. The heave response is mostly governed by
potential forces, and not affected as much by the connec-
tions to other modules. The resonance peak corresponds
to the calculated eigenperiod in heave for one module.
The heave and pitch plots show a closer correspondence
with the model test than the estimated surge motion and
connector force shown in Fig. 10.

3.4 Error Sources

The main sources of discrepancy between the model test
and the simulations are considered to be:
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(a) Kc = S1 (b) Kc = S4

Fig. 9. Relative motion in surge between modules, N=3.

(a) Average connector force amplitude (b) Average response amplitude

Fig. 10. Comparison between experimental and numerical results, N = 3, at different connector stiffness Kc.

(a) Average heave amplitude, all modules. (b) Average pitch amplitude, all modules.

Fig. 11. Comparison between experimental and numerical results, N=3, heave and pitch response at different connector
stiffness Kc.

• Mooring line friction: The mooring line in the model
test included pulleys resulting in unmeasured friction
and considerable added damping to the system. A
corresponding force has not been included in the
numerical model.

• Nonlinear connector behavior: The design of the con-
nection springs only allowed for a known stiffness
in the axial direction. The transversal and vertical,
as well as the rotational stiffnesses are unknown.
This leads to nonlinear behavior, especially for larger
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waves and softer springs, that is not captured by the
numerical model. The simulator does not seem to
recreate the connector force measured in the model
test well.

• Collisions: Collisions between modules and sway mo-
tion forced by the springs were observed for some
runs.When collisions occur, forces in connections may
be transferred to the module structure or to transver-
sal motion without being measured, meaning that in
these cases the load cells do not capture all interaction
between neighboring modules.

• Module overlap: Related to collisions. Modules are al-
lowed to overlap in the numerical simulations, mean-
ing that response from the simulations can become
large at resonance since the relative motion between
modules is not limited by collisions.

• Wake effects: The design with several columns in
close proximity of each other is expected to experience
significant wake interaction, which is not considered
in the simulator. These interactions will affect the hy-
drodynamic loads on the module columns, especially
higher harmonic loads.

4. CONCLUSION

This paper has presented experimental and numerical
analyses of a multi-modular floating structure, to inves-
tigate three main objectives: 1) Analyze the behavior of
a multi-modular structure in changing wave conditions,
2) Investigate the effect of changing the stiffness of con-
nectors between neighboring modules and 3) Validate a
numerical simulator by comparable experimental results.
First, choosing a spring connection with a proper stiffness
instead of a hinged connection between modules appears
to be beneficial to reduce connection loads between neigh-
boring modules. When the array of modules is subjected
to longer waves, a stiffer connection leads to a lower con-
nection load, while at shorter waves a softer spring seems
preferable. A softer spring shows fewer higher harmonic
frequencies in the connection load than a hinge type con-
nection. Choosing a softer spring in the connections could
thus be beneficial if higher frequency loads are undesirable.
The optimal stiffness for different sea states must be found
as a balance between minimizing loads and staying within
acceptable limits for module motion.

In general, the simulator proposed in this work overesti-
mates load and response compared to model tests. The
simulator does not capture the full dynamics shown by
the model test and needs further investigation, especially
considering the error sources mentioned in Sect. 3.4.

There is a significant amount of uncertainty related to the
model tests, particularly related to connector design and
mooring configuration. An improved connector design in
future tests is necessary, and a mooring system without
pulleys is preferable. Other possible topics for future
experimental testing include investigating a 2D matrix of
modules, changing wave angle, and including irregular sea
states.
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Abstract: To address climate change and energy security issues from fossil fuels, wind power is a 

promising renewable energy source, projected to grow significantly by 2050. Offshore wind energy, 

especially floating offshore wind farms shows great potential due to higher and more consistent wind speeds 

at sea. However, these turbines have negative environmental burdens throughout their life cycle. This The 

present study focuses on a comprehensive cradle-to-grave life cycle assessment of the Hywind Tampen 

floating offshore wind farm in Norway. The assessment covers all stages from manufacturing, 

transportation, installation, operation, and maintenance to decommissioning, utilizing openLCA® software 

and ecoinvent 3.9 database with the ReCiPe 2016 impact assessment method. Key findings indicate that 

manufacturing is the primary contributor to total emissions, followed by operation and maintenance. The 

study emphasizes the necessity of developing more sustainable manufacturing methods, designing turbines 

that are more efficient and versatile, and better maintenance forecasting and planning in order to minimize 

the environmental impact of these turbines. 

Keywords: life cycle assessment, offshore wind, floating, openLCA®, wind energy, renewable energy, 

climate change

1. INTRODUCTION

Rapid urbanization and population growth are driving a 50%

increase in global energy demand in the coming years (Skår,

2022). This surge is primarily met by fossil fuels, leading to

resource depletion, global warming, and other environmental

impacts. Among renewable energy resources wind power

stands out as one of the most accessible and environmentally

friendly options (Narayanan, 2023). Additionally, offshore

wind energy is emerging as one of the most promising options

for the coming years and decades, thanks to the higher and

more consistent wind speeds found in open seas(Kaltenborn et

al., 2023).

Despite producing clean electricity, offshore wind turbines

have environmental impacts across their life cycle, including

manufacturing, installation, and decommissioning. The

environmental impact and energy performance of offshore

wind technology are commonly assessed using Life Cycle

Assessment (LCA) (Bhandari et al., 2020) which is the most

commonly employed method to simulate and assess the

environmental impacts of products and processes (Barahmand

and Eikeland, 2022).

Offshore wind turbines are categorized into two types based

on their foundations (Bhattacharya, 2019).

Grounded (bottom-fixed): The wind turbine is securely bolted

or driven into the seabed, like a giant anchor.

Floating: The wind turbine sits on a special platform that floats

on the water, held in place by mooring lines.

Floating wind is an emerging technology, thus there is a

limited availability of studies on the subject. After conducting

a literature review, to date, the authors identified only 9 LCA

studies on floating offshore wind. Although some studies like

(Alsubal et al., 2021) were performed for life cycle cost

assessment (LCCA). Among these studies only (Bang et

al.,2019; Brussa et al., 2023; Garcia-Teruel et al., 2022;

Struthers et al., 2023; Yildiz et al., 2021), were focused only

on the floating platforms while the rest of them were more

interested in bottom-fixed platforms.

Yildiz et al.(2021) conducted LCA on only one wind 

turbine. On the other hand, Bhandari (2020) conducted LCA 
on both farms and wind turbines, the rest of the studies was 
conducted on wind farms. The rest of the previous LCA 
studies were conducted on all life cycle stages of the wind 
farm including manufacturing, transportation, operation 
and maintenance (O&M) and decommissioning. On the 
other hand, Skår (2022) considered only the 
decommissioning stage. In all founded research, the 
manufacturing stage is regarded as the most important 
stage due to its highest contribution to the total
emissions. Only a few studies conducted LCA on real-
world wind farm case studies.
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2. BACKGROUND

In recent years, the offshore wind industry has seen notable

expansion, with offshore wind capacity growing by

approximately 30% annually since 2010. Moreover, the size of

the largest wind turbines has risen from 3 MW in 2010 to 8

MW in 2016, with projected ratings reaching up to 15–20 MW

by 2030 (Garcia-Teruel et al., 2022).

While most deployed technologies utilize bottom-fixed

structures such as monopiles or jackets, the utilization of

floating turbines is rising as the industry explores locations

with deeper sea depths. There's ongoing debate and research

to determine the economic viability of floating platforms

compared to bottom-fixed turbines, typically within the

transition depth range of 50 to 100 meters. This threshold may

be affected by factors such as the type of floater and the site

conditions. However, for depths more than 100 meters,

floating concepts are widely regarded as the most cost-

effective approach (Karimirad, 2014). The floating wind

turbine foundations can be categorized into three main types,

as illustrated in Fig. 1 adopted from (Bhattacharya, 2019):

 

Fig.  1. The main Types of floating wind turbine adopted from

(Bhattacharya, 2019).

1-TLP (Tension Leg Platform) with mooring stabilization:

This system utilizes tensioned mooring for stability and is

firmly anchored to the seabed to maintain buoyancy and

stability.

2-Spar buoy with ballast stabilization, optionally equipped

with motion control stabilizers: this system features a deep

cylindrical base for ballast, with the lower section significantly

heavier than the upper section, ensuring the center of buoyancy

is higher than the center of gravity. While cost-effective

initially, these structures require greater water depths and are

not suitable for shallow environments.

3-Semisubmersible buoyancy stabilization: This design

combines ballasting and tensioning principles, requiring

substantial steel components.

3. METHODOLOGY

As per ISO 14040 and 14044 standards, the Life Cycle

Assessment (LCA) framework comprises four stages

(Lotfizadeh, 2024):

• Defining goals and scope

• Conducting a Life Cycle Inventory (LCI) analysis

• Performing a Life Cycle Impact Assessment (LCIA)

• Interpreting the results

3.1 Goal and scope

The initial step in an LCA, defining goals and scope, is widely

regarded as crucial as it sets the research context, defines

modelling requirements, and outlines project planning (Hesan,

2023).

The goals of this study were to: 1) Assessing the

environmental impact of all life cycle stages of the Hywind

Tampen wind farm. 2) Identifying the key elements affecting

the environmental impact of offshore wind projects. 3)

Learning about potential opportunities for environmental

optimization throughout the life cycle and 4) Identifying

relevant areas for further studies.

A cradle-to-grave method is chosen, and the boundaries of the

system are shown Fig. 2. The defined functional unit (FU) 

in this study is 1 MWh of electricity generated by the wind 

farm during its life cycle and then delivered to the grid. 

Recycling was not included in the current study's end of life 

(EOL) stage due to uncertainties and data availability issues. 

As shown in Fig. 2, recycling falls outside the system 

boundaries.

3.2 Life cycle inventory analysis (LCI)

In this section the data collection and calculations will be

briefly discussed. The Hywind Tampen is chosen as base case

scenario because this wind farm uses the most recent

technologies and largest turbine sizes in floating offshore wind

(Lotfizadeh, 2024). 

Table 1. Specifications of the base case (Lotfizadeh, 2024). 

Wind Farm Name Hywind Tampen 

Distance to port 140 km 

Power of each turbine 8 MW 

Number of turbines  11 

Wind Farm Capacity Factor 54 %  

Generator type Direct drive  

Lifetime 20 years 

Foundations Concrete SPAR-type 

Tower Length  92 m 

Rotor Diameter 167 m 

Total Height 175 m 

Distance between the turbines 1.5 km 

Water depth  200 m 

 

Inventory analysis involves collecting data and performing 

calculations to identify the inputs and outputs of a product 

system. Inputs consist of energy, raw materials, and other 

products, while outputs encompass waste, water and air 

pollution, and various byproducts (Garcia-Teruel et al., 2022). 

These inputs and outputs were utilized as flows in each unit 

process and modelled using the openLCA® software. The 

inventory data were gathered from the following sources: 1) 

literature 2) reference wind turbines 3) environmental product 

declarations (EPDs).
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Fig. 2. System boundaries adopted from Lotfizadeh,2024)

 

It is important to note that access to specific details about wind

turbines and wind farms is restricted due to commercial

sensitivity. This lack of full transparency requires making

certain assumptions when conducting LCA of offshore wind

farms (Lotfizadeh, 2024).In the following a brief description

of inventories and calculations will be given. Detailed

inventories and calculations are available in open access

(“Supplementary materials-life cycle assessment of offshore

wind Farms, Lotfizadeh,” 2024).

3.2.1 Materials and manufacturing

Simulating the raw material supply is done by using market

datasets from the ecoinvent database, including material

procurement and transit to Europe (Brussa et al., 2023).

Previous research either focused on smaller wind turbines or

lacked details about the materials used. Some studies like

(Bang et al., 2019) and (Garcia-Teruel et al., 2022) estimated

missing information by using regression. This study assumes

a linear connection between the size of a turbine and material

weight distribution. To determine the materials and weight for

the 8 MW turbines , we used interpolation method based on a

6 MW turbine and a 15 MW reference turbine (Gaertner et al.,

2020).

3.2.1.1 Tower and Nacelle

The main component of the 8 MW tower is low-alloy steel

(Brussa et al., 2023). Siemens Gamesa EPD specifies the

tower's length 92 meters, but information about its diameter

and wall thickness is missing. The estimation of the weight

was done using a linear interpolation method. The paint on the

tower is negligible compared to the weight of other materials

and was therefore excluded from the calculations.

For welding the processes “welding, arc, steel” in Ecoinvent 

was applied. In some other studies, the welding length was 

regarded as a continuous weld along the tower height. 

However, this study assumes that the tower is composed of 

welded segments, each with a height of 2 meters, and takes 

into account the peripheral length of these welded segments. 

Figure 3 illustrates the welding process, and Equation (1) 

demonstrates the calculation method.  

 

Fig. 3. Tower manufacturing process (Lotfizadeh, 2024).

 

𝐿𝑊 = 𝐿𝑇 + 𝑁𝑠 × 𝑃                                  (1) 

 

Where 𝐿𝑊  represents the total welding length of the tower, 

𝐿𝑇 denotes the length of the wind turbine tower, 𝑁𝑠 is the 

number of segments in the tower, and P is the perimeter of each 

segment. For an 8 MW wind turbine with a diameter of 10 m, 
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the total welding length 𝐿𝑊  is calculated as follows. The tower 

length is 92 m, made up of 46 segments, each 2 m in height 

and 10 m in diameter. 

𝐿𝑊 = 92 + 46 × 𝜋 × 10 = 1537 𝑚 

3.2.1.2 Substructure 

The material and weight of the 8 MW turbine substructure 

were taken from the environmental product declaration (EPD) 

of Siemens Gamesa 8 MW wind turbine. The substructure 

comprises two main components: the spar structure and 

ballast. The welding length of the spar structure was also 

calculated using Equation (1). 

 

3.2.1.3 Mooring System

The mooring system data for the Hywind Tampen project was

unavailable, however the weight and material data for the

Hywind Scotland project were obtained from the project's

manufacturing factsheets (“Manufacturing Factsheets,” 2024).

As a result, it was assumed that the mooring chains and

anchors for the two projects were identical.

3.2.1.4 Power Transmission

The power transmission category includes inter-array cables,

export cables, and substations. As Hywind Tampen wind farm

distributes electricity to the nearby oil platforms, no substation

was used in this study's base case scenario. Hywind Tampen

inter-array and export cables were made by JDR company,

which also manufactured cables for Hywind Scotland project,

hence this study relied on the manufacturing factsheets of the

Hywind Scotland project to get data on cable specifications.

The Hywind Tampen Inter-array cables are 2.5 kilometres

long, 66kV dynamic array cables (Lotfizadeh, 2024). The 

length of the export cable for the Hywind Tampen wind

farm was determined to be 45.4 kilometers based on the

relative distances of the five nearby platforms.

3.2.2 Transportation

Two modes of transportation are covered within the study's

boundaries. To begin, as previously stated, this study models

the raw material supply chain by using market datasets from

the Ecoinvent database, which includes both material

acquisition and transit to Europe (Brussa et al., 2023).Second,

transportation from the factory to the installation port. These

transports are carried out by truck or vessel. It was assumed

that some parts of the turbine components were transported by

truck within Denmark to the Siemens Gamesa factory and after

assembling there were transported by ship to Norway to be

installed at the Hywind Tampen site.

3.2.2 Installation

Most prior research used the "transport, freight, sea, ferry -

GLO" process in ecoinvent to model the emissions from vessel

installation activities; however, this study chose ecoinvent's

"diesel, burned in diesel-electric generating set" process.

The energy demand of all vessels in installation activities 

including, installing foundations, turbine tower, rotor, nacelle, 

cables and mooring system was calculated and set as "diesel, 

burned in diesel-electric generating set" process in the 

openLCA® software. 

 

3.2.3 Operation and Maintenance (O&M)

This stage quantifies emissions from operations and

maintenance (O&M) activities, including unexpected repairs

due to failures, routine preventative maintenance, and spare

parts. It is important to note that due to the lack of data on

remotely operated vehicles (ROVs) in the Ecoinvent database,

their activities and emissions were excluded from this study.

3.2.3.1 Unexpected Maintenance

For unexpected maintenance the failure rates are categorized

into major replacement, major repair, and minor repair. To

calculate the overall number of turbine failures over their

lifetime, the annual failure rates (Fig. 4) were multiplied by 

the number of turbines of the farm (×11×20). The time 

needed to fix each component within each operation and 

maintenance category were obtained from (Centeno-Telleria 

et al., 2024). With available energy consumption data for 

the vessels, the energy consumed for transport to the site and 

O&M operation was calculated in MWh using repair 

hours for each component. These figures were 

employed in ecoinvent's "diesel, burned in diesel-electric 

generating set" process in openLCA® software, following 

the same approach as the installation phase.

 

3.2.3.2 Regular Maintenance 

The same method applied to regular maintenance, assuming 

once-a-year visit of the wind farm for preventative 

maintenance (PM) of the wind turbines’ components. 

 

3.2.3.3 Spare parts 

There is limited publicly available data on wind turbine 

component replacement rates. This study adopted the same 

exchange rate as (Arvesen et al., 2013).The rate of annual 

replacement for large wind turbine components is assumed to 

be 0.075 per wind turbine, and for generators and blades 0.333 

per wind turbine. 

 
Table 2. Spare parts replacement rates (Lotfizadeh, 2024). 

Spare Parts 

Annual 

replacement 

Per Wind 

Turbine 

Annual 

replacement 

Per Wind 

Farm 

Lifetime 

replacement 

Per Wind 

Farm 

Replacement 

large parts1 
0.075 0.825 16.5 

Blades 0.333 3.667 73.3 

Generators 0.333 3.667 73.3 

 

 

 

 
1 Turret / Nose, Bedplate, Flange, Shaft Bearings, Yaw System 
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Fig.  4. Annual failure rates (Lotfizadeh, 2024).

3.2.4 Decommissioning 

In this study it is assumed that the emissions from 

decommissioning stage are the reverse and equivalent to the 

installation stage. 

 

3.2.4 Electricity delivered to the grid by the wind farm 

The lifetime electricity production of the wind farm was 

calculated using the Equation 2. 

 

𝐸𝐹,𝐿,𝑅 = 𝐶 × 𝐶𝐹 × 𝐿 × 𝑁𝑇 − 𝐸𝐿𝑜𝑠𝑠               (2) 

 

where, each term is described in Table 3. 

 
Table 3. Different terms of electricity calculation equation 

Term Description Unit 

𝐸𝐹,𝐿,𝑅 
Real power production of the farm 

after losses 
MWh 

𝐶 Capacity of each turbine MWh 

𝐶𝐹 Capacity factor - 

L Lifetime of the wind farm hour 

𝑁𝑇 Number of turbines in the farm - 

𝐸𝐿𝑜𝑠𝑠 Electrical loss due to downtime MWh 

The loss due down time was calculated to be : 𝐸𝐿𝑜𝑠𝑠 =
53,508 

Then 

𝐸𝐹,𝐿,𝑅 = 8 × 0.54 × 20 × 365 × 24 × 11 − 53508

= 8,256,878 𝑀𝑊ℎ 

 

3.3 Life Cycle Impact Assessment (LCIA)

The openLCA® version 2.1 and ecoinvent 3.9 databases were

utilized to perform LCIA. The ReCiPe 2016 v1.03 midpoint

(H) method was selected to ensure that the results are

comparable with previous studies.

4. RESULTS AND DISCUSSION

  The impacts of the base case scenario were measured using the

ReCiPe Midpoint (H) 2016 approach, which included 18

impact categories. The results were normalized by dividing by

𝐸𝐹,𝐿,𝑅  (the lifetime electrical power delivery of the farm after

all losses in MWh). The results of the 18 impact categories of

the base case scenario are shown in Table 5.

Some heatmaps were created using Microsoft Excel® software

to help visualizing the data. These heatmaps employ three

colors to depict varying levels of influence. Green

colors indicate lesser impact values, yellow indicates the 50th

percentile (the midpoint), and red intensifies when values

exceed the middle and approach maximum impact. Fig.

5 illustrates the rule for creating heatmaps in Microsoft

Excel®. 

 

Fig. 5. The rule for creating heatmaps with Microsoft Excel®.
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Table 4.A heatmap of the contribution of each life cycle stage to 

the total GWP for the base case scenario. 

Stage 
Contribution 

(%) 

GWP (kg CO2-

Eq/ MWh) 

Wind Turbine 

Manufacturing 
26.79% 9.85 

Substructure 

Manufacturing 
26.73% 9.83 

Mooring system 

Manufacturing 
2.82% 1.04 

Power Transmission 

Manufacturing 
1.32% 0.49 

Transportation 0.07% 0.03 

Installation 5.91% 2.17 

O & M vessel 16.27% 5.98 

O & M spare parts 14.18% 5.22 

Decommissioning 5.91% 2.17 

Total 100.00% 36.78 

 

Transportation has a very low share, with 0.03 Kg CO2-Eq per 

MWh. Manufacturing contributes the most to overall GWP, 

and the floating farm's substructure had significant emissions 

due to the use of concrete to manufacture the spar substructure. 

Figure 6 illustrates the contribution of the main five life cycle 

stages to the total GWP. The second contributor to the total 

GWP emissions was operation and maintenance stage. 

 

Fig. 6. Contribution of the main five life cycle stages to the total

GWP.

4.1 Sensitivity Analysis

This section examines how variations in critical characteristics

during the life cycle stages of the base case scenario impacts

the overall results of the life cycle assessment.

As can be seen in Fig. 7  by decreasing the capacity factor

(CF), it was expected that the global warming potential (GWP)

and other environmental impacts would increase, which the

results confirmed. Conversely, increasing the CF was expected

to reduce GWP and other environmental impacts, and

extending the farm's operational lifespan was anticipated to

further decrease these impacts. Both hypotheses were

validated by the results.

As the distance to the shore increases, the fuel consumption for

vessel activities rises, leading to an increase in the GWP

amount. However, the increase in GWP due to changes in the 

capacity factor (CF) and lifetime was significantly greater than 

the increase resulting from changes in distance to shore. 

The strategy of towing to the shore was assumed to be used 

only for major replacements. While major repairs and minor 

repairs were conducted at the wind farm location. Results 

indicated that GWP increased by 11.5% when this strategy was 

implemented. Therefore, the optimal O&M approach for 

major replacements is to perform operations at the wind farm 

site rather than towing the wind turbines back to shore. 

 

 

 

Fig. 7. An overview of GWP value in all scenarios.

5. CONCLUSIONS AND FURTHER RESEARCH

This paper provides a detailed assessment of the

environmental implications associated with the Hywind

Tampen floating offshore wind farm. The LCA findings

indicated that, for the base case scenario, the GWP was

calculated to be 36.78 kg CO2-Eq per MWh.

It was also discovered that the manufacturing stage was

accounted for nearly 57% of total GWP emissions, followed

closely by the operation and maintenance (O&M) stage. Wind

turbine failures accounted for approximately 90% of emissions

throughout the operation and maintenance stage. To

address these challenged wind turbine component

manufacturers ought to develop and implement more

sustainable production practices. For example, design

strategies that maximize generation capacity per unit of

material used could significantly reduce emissions associated

with the manufacturing stage. Furthermore, improving wind

turbine reliability can lower the environmental impact of the

operation and maintenance stage.

Additionally,The sensitivity analysis explored how various

parameters impact the results. Notably, the capacity factor and

lifetime of the wind farm significantly influence overall

environmental impacts.

Fort further studies, it is recommanded that: 

• Using eco-friendly vessels during installation, operation and 

manintenance and decommissioning 

• The O&M stage was shown to be the second-largest 

contributor to overall emissions in the evaluated wind farm. 

This emphasizes the significance of performing a sensitivity 

analysis for failure rates. 
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• Emissions from decommissioning were assumed to be 

equal to those from the installation stage. Further 

investigation of the decommissioning stage, as well as a 

sensitivity analysis using various decommissioning 

strategies, is recommended. 

• The study did not include recycling in the end of life stage 

due to uncertainties and data availability issues. Further 

investigations on this stage, such as performing a cradle-to-

cradle LCA, could provide useful insights into the materials 

used to manufacture offshore wind turbines. 

 

 

 

 

 

 

 

Table 5. The results of 18 impact categories of the base case scenario 

Impact category Reference unit/MWh Value 

acidification: terrestrial - terrestrial acidification potential (TAP) kg SO2-Eq 0.15 

climate change - global warming potential (GWP100) kg CO2-Eq 36.78 

ecotoxicity: freshwater - freshwater ecotoxicity potential (FETP) kg1,4-DCB-Eq 2.93 

ecotoxicity: marine - marine ecotoxicity potential (METP) kg1,4-DCB-Eq 3.90 

ecotoxicity: terrestrial - terrestrial ecotoxicity potential (TETP) kg 1,4-DCB-Eq 305.75 

energy resources: non-renewable, fossil - fossil fuel potential (FFP) kg oil-Eq 8.75 

eutrophication: freshwater - freshwater eutrophication potential (FEP) kg P-Eq 0.01 

eutrophication: marine - marine eutrophication potential (MEP) kg N-Eq 0.01 

human toxicity: carcinogenic - human toxicity potential (HTPc) kg  1,4-DCB-Eq 15.89 

human toxicity: non-carcinogenic - human toxicity potential (HTPnc) kg 1,4-DCB-Eq 46.71 

ionising radiation - ionising radiation potential (IRP) kBq Co-60-Eq 1.01 

land use - agricultural land occupation (LOP) m2*a crop-Eq 0.72 

material resources: metals/minerals - surplus ore potential (SOP) kg Cu-Eq 71.09 

ozone depletion - ozone depletion potential (ODPinfinite) kg CFC-11-Eq 0.00 

particulate matter formation - particulate matter formation potential (PMFP) kg PM2.5-Eq 0.08 

photochemical oxidant formation: human health - photochemical oxidant formation 

potential: humans (HOFP) 
kg NOx-Eq 0.21 

photochemical oxidant formation: terrestrial ecosystems - photochemical oxidant 

formation potential: ecosystems (EOFP) 
kg NOx-Eq 0.21 

water use - water consumption potential (WCP) m3 0.23 

REFERENCES

Alsubal, S., Alaloul, W.S., Musarat, M.A., Shawn, E.L.,

Liew, M.S., and Palaniappan, P. (2021). Life cycle 

cost assessment of offshore wind farm: Kudat malaysia 

case. Sustainability (Switzerland) 13.

doi:10.3390/su13147943

Arvesen, A., Birkeland, C., and Hertwich, E.G. (2013). The

Importance of Ships and Spare Parts in LCAs of Offshore

Wind Power. Environ. Sci. Technol. 47, 2948–2956.

doi:10.1021/es304509r

Bang, J.-I., Ma, C., Tarantino, E., Vela, A., and Yamane, D.

(2019). Life Cycle Assessment of Greenhouse Gas

Emissions for Floating Offshore Wind Energy in

California.

Barahmand, Z., and Eikeland, M.S. (2022). Life Cycle

Assessment under Uncertainty: A Scoping Review.

World 3, 692–717. doi:10.3390/world3030039

Bhandari, R., Kumar, B., and Mayer, F. (2020). Life cycle

greenhouse gas emission from wind farms in reference to

turbine sizes and capacity factors. Journal of Cleaner

Production 277, 123385. doi:10.1016/

j.jclepro.2020.123385

Bhattacharya, S. (2019). Design of Foundations for Offshore 

Wind Turbines, 1st edition. ed. Wiley, Hoboken, NJ, 

USA. 

Brussa, G., Grosso,M., and Rigamonti, L. (2023). Life cycle 

assessment of a floating offshore wind farm in Italy. 

Sustainable Production and Consumption 39, 134–144. 

doi:10.1016/j.spc.2023.05.006 

Centeno-Telleria, M., Yue, H., Carrol, J., Penalba, M., and 

Aizpurua, J.I. (2024). Impact of operations and 

maintenance on the energy production of floating 

offshore wind farms across the North Sea and the Iberian 

Peninsula. Renewable Energy 224, 120217. 

doi:10.1016/j.renene.2024.120217 

Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, 

B., Barter, G., Abbas, N., Meng, F., Bortolotti, P., 

Skrzypinski, W., Scott, G., Feil, R., Bredmose, H., 

Dykes, K., Shields, M., Allen, C., and Viselli, A. (2020). 

Definition of the IEA 15-Megawatt Offshore Reference 

Wind Turbine (Report), Definition of the IEA 15-

Megawatt Offshore Reference Wind Turbine. National 

Renewable Energy Laboratory (NREL). 

Garcia-Teruel, A., Rinaldi, G., Thies, P.R., Johanning, L., and 

Jeffrey, H. (2022). Life cycle assessment of floating 

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.005 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

39



offshore wind farms: An evaluation of operation and 

maintenance. Applied Energy 307, 118067. 

doi:10.1016/j.apenergy.2021.118067 

Hesan, M. (2023). Life Cycle Assessment of an NPK Fertilizer 

Production with the Focus on Principal Harmful 

Substances (Master thesis). University of South-Eastern 

Norway. 

Kaltenborn, B.P., Keller, R., and Krange, O. (2023). Attitudes 

toward Wind Power in Norway–Solution or Problem in 

Renewable Energy Development? Environmental 

Management 72, 922–931. doi:10.1007/s00267-023-

01870-5 

Karimirad, M. (2014). Offshore Energy Structures: For Wind 

Power, Wave Energy and Hybrid Marine Platforms, 

2014th edition. ed. Springer, Cham Heidelberg. 

Lotfizadeh, O. (2024). Life Cycle Assessment of Offshore 

Wind Farms – A Comparative Study of Floating Vs. 

Fixed Offshore Wind Turbines (Master thesis). 

University of South-Eastern Norway, Porsgrunn. 

Manufacturing Factsheets [WWW Document]. (2024). . HIE. 

URL https://www.offshorewindscotland.org.uk/the-

scottish-offshore-wind-industry/manufacturing-

factsheets/www.offshorewindscotland.org.uk (accessed 

3.16.24). 

Narayanan, V.L. (2023). Reinforcement learning in wind 

energy - a review. International Journal of Green Energy. 

doi:10.1080/15435075.2023.2281329 

Skår, E.H. (2022). An Assessment of the Global Warming 

Potential of Marine Operations Related to 

Decommissioning of Offshore Wind Farms (Master 

thesis). NTNU. 

Struthers, I.A., Avanessova, N., Gray, A., Noonan, M., 

Thomson, R.C., and Harrison, G.P. (2023). Life Cycle 

Assessment of Four Floating Wind Farms around 

Scotland Using a Site-Specific Operation and 

Maintenance Model with SOVs. Energies 16. 

doi:10.3390/en16237739 

Supplementary Materials-Life Cycle Assessment of Offshore 

Wind Farms – A Comparative Study of Floating Vs. 

Fixed Offshore Wind Turbines-Master Thesis-Omid 

Lotfizadeh, (2024). doi:10.23642/usn.25818493.v1 

Yildiz, N., Hemida, H., and Baniotopoulos, C. (2021). Life 

cycle assessment of a barge-type floating wind turbine 

and comparison with other types of wind turbines. 

Energies 14. doi:10.3390/en14185656 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.005 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

40



Computationally Efficient Optimization of
Long Term Energy Storage Using Machine

Learning ?

Simon Karlsson, Stavros Vouros, Kristian Sandström,
Konstantinos Kyprianidis

Mälardalen University, Västerås, CO 72123 Sweden (e-mail:
simon.karlsson@mdu.se

Abstract:
Energy storage can be charged when energy is cheap and discharged when it is expensive to make
an energy system more profitable or used to make the plant operation more efficient to reduce
CO2 emissions. To optimize long term energy storage with conventional methods a long time
horizon must be used. When the long term energy storage is combined with a complex energy
system the computational cost becomes large when using conventional methods. To reduce the
time horizon, an algorithm will be used to decide the state of charge of the long term energy
storage at the end of the day. This algorithm is trained using machine learning with data of the
optimal state of charge obtained by running computationally heavy long time mixed integer
linear programming ahead of time. Then a one-day or week mixed integer linear programming
optimization will be done for the production planning. The seasonal patterns of the long term
energy storage can then be captured while giving the plant operator a simple one-day or week
production plan. A case study will be done with a combined heat and power plant system with
4 boilers, a long-term thermal storage, and a hydrogen storage system. Using this method the
complexities of a multi energy system with long term energy storage can be captured while doing
day ahead production planning.

Keywords: Energy, Optimization, Energy Storage, Machine Learning, Unit Commitment,
Production Planning

1. INTRODUCTION

Energy storage is an important technology in the transi-
tion to more sustainable energy system since the energy
generated from variable renewable energy sources will not
match up with demand. This leads to energy having to
be stored to meet demand without oversizing the energy
generation and curtailing energy. Some types of renewable
energy generation such as solar or wind also have seasonal
patterns which can require long term energy storage (LTES)
for efficient operation of the energy system International
Energy Agency (2024). Because of this, the optimization of
LTES is important to help the efficient transition towards
a more sustainable energy system. For example, Brey et al.
investigate how hydrogen could be used as seasonal energy
storage in Spain and conclude that it could be used to
smooth out seasonal imbalances Brey (2021).
There are different kinds of electricity markets, in some of
these markets like Nordpool in northern Europe. Trading is
done with both electricity users and suppliers placing bids
and then a price is decided depending on where these bids
meet Nordpool (2024). In this system, the bidding period
? This work is supported by project ProPlan under the RESILIENT
competence center, financed by the Swedish Energy Agency (2021-
90273) and co-financed by Mälardalen University and industrial
partners. The support received by Mälarenergi AB and Eskilstuna
Strängnäs Energi och Miljö AB is appreciated.

is 1 hour and because of this, there are requirements on
the computational speed of the optimization process for
electricity suppliers. To optimize LTES with conventional
methods like mixed integer linear programming (MILP)
a long time horizon must be used which can make the
optimization computationally expensive. This time can be
too long to make bids on the electricity market especially if
the optimization has to be run several times to run different
uncertainty scenarios.
Saletti et al. use linear programming (LP) for the long
time horizon (LTH) while MILP is used for the short time
horizon (STH) Saletti et al. (2022). This method has a
fast solution time, however, the solving time of the (LTH
still depends on system complexity. The objective of the
optimization is to meet the heat and electricity demand
of a hospital and not maximize profit by selling to the
electricity market. Marzi et al. use MILP to do day ahead
scheduling of a multi energy system with LTES considering
uncertainty Marzi et al. (2023). The computation time for
their method is, however, too long to do bidding in less
than one hour.
In a study by Bischi et al. a rolling horizon is used together
with typical weeks to optimize plant operation with MILP
considering the entire year. The goal of this optimization
is however not to consider how the state of charge (SOC)
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of the storage will change over the year but to make sure
that yearly emission constraints are met optimally.
Bruninx et al. optimize an energy system with energy
storage using unit commitment by considering reserve
capacity in a computationally efficient way Bruninx and
Delarue (2017). The time horizon in this study is however
24 hours so the focus is not on LTES. Optimization of a
compressed air energy storage is done by Ghaljehei et al.
by using using stochastic programming and mixed integer
nonlinear programming. Here the time horizon is also 24
hours so it is not fit for LTES Ghaljehei and Golkar (2017).
System states are used to optimize medium and long term
energy storage in a study by Worgin et al. Wogrin et al.
(2016). Here some states of the system are defined and
clustered and based on what cluster the system is in the
storage is operated accordingly.
A life cycle analysis with energy storage optimization is
done by Dong et al. where the energy storage is optimized
using a representative day for each season Dong et al. (2023).
This representative day is used to calculate how much the
storages will be charged or discharged during each season
to store energy over seasons. This method will however not
work when doing operational optimization since it will just
have the same operation every day and not ex discharge
the storages more for a day with high electricity prices
Mi et al. use multi timescale optimization to do generation
and expansion planning where the longest timescale is one
month Mi et al. (2021). Here the longer timescale is however
used to optimize capacity credits and not to optimize
LTES. Zhang et al. also use multi timescale optimization to
optimize the operation of an energy system with hydrogen
energy storage Zhang et al. (2023). Here a rolling horizon
optimization is used where different kinds of energy have
different time resolutions. Here two days ahead is used
to optimize the energy storage using MILP. Su et al. use
multiple timescales and add a flexibility requirement to
make the energy system more prepared for uncertain future
disruptions Su et al. (2023). Here a short, medium, and
long time horizon is used where the long time horizon is
one week.
In a study by Bahlawan et al. the design and operational
operation of an energy system with long term thermal
energy storage is optimized Bahlawan et al. (2022). Here
switch on priority is used to do the operational optimization
where one energy conversion technology is used first and
only if this technology can not supply the demand the next
conversion technology is used. This method will however
not work well for a system where the operational cost of
different technologies changes and there is no electricity
demand but instead electricity is sold to the grid.
Reinforcement learning is used by Alabi et al. to control
an energy system with energy storage and carbon capture
Alabi et al. (2023). Here reinforcement learning is used to
control the power output of the energy units and not to
optimize any kind of LTES. Sleptchenko et al. use LP to
optimize multiple different energy storage technologies as a
part of an energy system Sleptchenko and Sgouridis (2019).
In this study, the focus is not on computational speed but
on the seasonal patterns of the storage operation.

Water value is an optimization method to optimize how
hydropower resovoirs are used. Here a value of the water
in the reservoir is calculated and used to determine if the
reservoir should be discharged Helseth et al. (2017); Jahns
et al. (2020). This method is quite computationally costly
if used for daily production planning with the optimization
by Helseth et al. taking between 28 and 40 hours.

1.1 Current Work

In this paper day ahead planning will be done for an energy
system with LTES where the goal is to make as much profit
as possible by selling electricity to the grid while supplying
the required district heating (DH) demand. Instead of using
LP or MILP to optimize the long term behavior of the
system a machine learning (ML) model will be used to
predict the end of day SOC of storages and then MILP
will be used to optimize the daily operation with this SOC
as a constraint.
The contribution of this work will be (i) to develop a new
faster method to optimize LTES which allows for scenario
analysis in production planning or be used in studies where
the optimization has to be used many times. (ii) Analyze
the effect of system complexity and optimization horizon.
(iii) Test which input features give the best prediction.

2. METHODOLOGY

Because MILP is slow over long time horizons, a ML
algorithm is used to predict the SOC of the storage’s at
the end of the day or week so the MILP can run for one
day or week instead of a longer time. The ML algorithm is
trained using optimal SOC data obtained by running the
MILP on historical electricity price and DH demand data.
Because only a few years of DH demand data was available
some synthetic electricity price and DH demand data were
also generated for training. This was done by using the
probability density function (PDF) which can be seen in
Eq. (1) to decide how much the scenarios should deviate
from the real data like in Marzi et al. (2023) but with some
changes. These changes are, instead of using the PDF to
decide the deviation from the real data the PDF is used
to decide the change in deviation at each timestep. Some
of the spikes in the electricity price were also randomly
removed and new ones were added so the spikes in the
electricity price would not occur at the same time of year
in all the generated scenarios. This synthetic data was run
through the MILP to get optimal SOC data for training
the ML algorithm. A flowchart of how the training and
optimization are done can be seen in Fig. 1.

PDF (x) =
1

σ
√
2π

e−
(x− µ)2

2σ2
(1)

A case study based on the system seen in Fig. 2 where
the full system has four combined heat and power (CHP)
plants, one TES (thermal energy storage) which uses water
to store heat. There is also a hydrogen energy storage (HES)
with an electrolyzer to convert electricity to hydrogen, a
hydrogen storage tank, and then a fuel cell (FC) to convert
the hydrogen back to electricity For both the electrolyzer
and FC there are some losses in the form of heat which is
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Fig. 1. Flowchart of method
used to both charge the TES and provide heat to the DH
network. The system is used to provide the DH demand
to the district heating network and sell electricity to the
electricity grid. To evaluate how system complexity affects
the current methods performance some other cases were
also evaluated, these are one case with one boiler, the HES,
and the TES, one case with one boiler and the TES, and
one case with one boiler and the HES.

Fig. 2. Full system layout

2.1 Mixed Integer Linear Programming (MILP)

The general MILP formulation can be seen in Eq. (2),
where x is a vector of the decision variables, c is a
vector with the relationship between the decision variables,
and A and b make the constraints where A is a matrix
and b a vector. When running the MILP the binary
constraints were relaxed to increase computational speed
since generating training data without relaxing binaries
was too computationally costly with the used hardware.
However, if the model is simple enough or there is enough
computing power the full model could be run with binary
constraints. Other methods could also be used to increase
the computational speed of the MILP.

min(cTx)
st. Ax <= b

(2)

The objective function can be seen in Eq. (3) where Ceco

is the economic cost and Cchange is a penalty to punish

uneven operation of the storages and boilers. In the results
when profit is referred to it refers to Ceco. The constraints
that are considered in the MILP model can be seen in
Table 1 with what constraints apply to each unit.

C = Ceco + Cchange (3)

Table 1. List of constraints for MILP model
Constraint CHP HES TES

Max/min power 3 3 3

Ramp up/down 3 3 3

SOC 5 3 3

Min up/down time 3 5 5

on/off status 3 3 3

electricity to heat ratio 3 5 5

SOC start and end of time horizon 5 3 3

Heat loss to enviroment 5 5 3

Startup status 3 5 5

DH demand met - - -
Transmission capacity out of plant - - -

The MILP was tested in three different ways, the first is to
just run the MILP for 1 year to get the optimal behaviour of
the system. The second way is to give the MILP a constraint
at the end of day SOC and then run the MILP for 36 hours
but only taking the operation from the first 24. The third
option is to use a rolling horizon optimization Bischi et al.
(2019); Marquant et al. (2015) where the optimization is
done daily with a one week time horizon. For this method
the constraint on the SOC on the storages was also set to
happen after one week. A optimality gap of 1% was used
for the MILP otpimization

2.2 Machine Learning (ML) Algorithm

Some different ML algorithms were tested these are deep
neural network (DNN), random forest (RF), historic
gradient boosting (HGB), and Gaussian regression (GR).
For all of these hyper parameter optimization was done and
for the DNN different architectures of the network were
also tested. The variables being predicted are the optimal
daily or weekly charge and discharge from the HES and
TES where training data is retrieved by running the MILP
with a long time horizon. Some different input features
were tested to get the lowest prediction error possible. The
training and testing data were split by having training
data be the data generated based on the first year and the
testing data be the real data from the second year.
Prepossessing of the data was done before passing it to the
ML algorithm. This prepossessing consisted of calculating
the mean, max, and minimum daily electricity price and
DH demand and monthly and weekly mean electricity
price and DH demand. The data was also scaled with the
electricity price, DH demand, SOC of the storages, day of
the year, and weekday being scaled between 0 and 1 and
the charge/discharge of the storages being scaled between
-1 and 1 where -1 is fully discharging and 1 is fully charging.
The loss metric used during the training of the ML models
is mean square error.
A lot of the charge and discharge data of the storages
is distributed around 0 to avoid any bias in the model
training weights were used in the loss function to make
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all charge and discharge amounts be equally represented.
This was done using DenseWeight which applies weights to
different values of the training data based on kernel density
estimation Steininger et al. (2021).

3. RESULTS

3.1 Long term Mixed Integer Linear Programming MILP

Figure 3 shows how the SOC of the HES and TES change
when using MILP to optimize the system. The data used
for optimization is from 2017, the year the ML algorithm
makes its prediction. The storages does not start and end
at the same SOC since the MILP optimization was done
over 3 (2016-2018) with the SOC being constrained to be
the same at the beginning of 2016 and the end of 2018.

Fig. 3. SOC of storages based on MILP over predicted
year

3.2 Full System One Day Prediction Horizon

The MAE as a percentage of the maximum occured
charge/discharge of the storages for different ML algorithms
can be seen in Table 2. As can be seen, the MAE of HGB
is the lowest, however, this MAE is achieved by having the
charge/discharge around zero all the time which does not
lead to a good operation of the storages. The DNN on the
other hand makes predictions that are based on the features
and most of the time the decision to charge or discharge
the storage is correct. The amount charged or discharged is
however often wrong. This leads to the DNN operating the
storages in a better way than HGB even though the MAE
is higher. RF operates the storages in a similar way as
HGB in that it tries to keep the charge/discharge around
zero. GR operates the storages in a way that is somewhere
between the strategy of the DNN and HGB. Because of
this, the DNN is used as the ML algorithm for the rest of
the results.

Table 2. Prediction performance of ML algo-
rithms

ML method MAE HES MAE TES
DNN 25% 20%
RF 22% 19%
HGB 14% 16%
GR 23% 19%

The ML algorithm predicts the optimal SOC of the storages
at the end of the day or week based on the features that

can be seen in Table 3. Different combinations of features
were tested but these were chosen since they gave the
lowest mean absolute error (MAE). The data from the long
term MILP and ML prediction using a DNN (deep neaural
network) can be seen in Figs. 4 and 5, here a one-
day prediction horizon was used. As can be seen, the
prediction error is evenly spread except for predicting too
low values when the HES is charged at maximum
power. The HES has a MAE of 4500 kWh and the TES
has a MAE of 332 000 kWh. This MAE is quite high,
around 25% and 20% of the maximum daily charge/
discharge power that occurred for the HES and TES. This
error is however not important as long as the ML
algorithm can give predictions that have a good
operation of the storages in the daily MILP
optimization.
In future research, this error could be reduced either by
using a more complicated method such as first classifying
if the storage will be charged, discharged, or not used, and
then after that having 2 different specialized models for
charging and discharging for each of the storages. Different
ML models could also be used for different periods of the
year. Another way to improve the results could be to use
reinforcement learning and a one-day or week MILP model
to more directly optimize based on the objective function.

Fig. 4. Correlation between predicted and real charge/
dis-charge for HES using DNN with a one-day
prediction horizon

Fig. 5. Correlation between predicted and real charge/
dis-charge for TES using DNN with a one-day
prediction horizon
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Table 3. Features used for ML
Feature HES TES
Current day mean electricity
price and DH heat demand 3 3

Current day max electricity price
and DH heat demand 3 3

Current day min electricity price
and DH heat demand 3 3

Two weeks of mean electricity
price 3 3

Two weeks of mean DH demand 5 3

Two months of mean electricity
price and DH demand 3 3

Time of year 3 3

Day of week 3 3

SOC of storages 3 3

The DNN performs better in some parts of the year and
worse in others as can be seen in Figs. 6 and 7. The
accuracy might be able to be improved if multiple ML
models were trained for different parts of the year. The
algorithm does however still mostly charge and discharge
the storages at the correct time but the amount charged
or discharged is often wrong. For both figures the DNN
was trained using data generated based on data from
2016 and then tested using real real data from 2017.
The optimality gap used for the MILP for both training
and testing is 1%.

Fig. 6. Comparison charge/discharge HES MILP and
DNN

Fig. 7. Comparison charge/discharge TES MILP and
DNN

The SOC of the HES for MILP and with constraints from
the ML model can be seen in Fig. 8 and the same for
the TES in Fig. 9. Both the HES and TES SOC are
quite different between using MILP and using DNN model
constraints. The important thing here however is not that
the SOC of the storages are the same but how profitable the
operation of the entire energy system is in both scenarios.
This will be discussed in the next section. The SOC pattern
for the TES is however similar between the MILP and DNN
model constraint with it discharging during the winter and
charging during the summer. There is a difference in when
the storages is being charged/discharged between the MILP
and DNN. The reason for this could be that the DNN gets
a low electricity price as an input and therefore charges the
storage while the MILP does not charge the storage since
it has all the data and knows that there will be an even
cheaper electricity price in the future. In reality, a forecast
for the electricity price would have to be used to operate
the MILP in this way which could make the results of the
MILP and DNN more similar.

Fig. 8. Comparison SOC HES MILP and DNN

Fig. 9. Comparison SOC TES MILP and DNN

3.3 Comparison Cases

Table 4 compares the profitability of the daily MILP
model with the ML constraints and when constraints are
taken from the optimal operation of the previous year. The
comparison is made as a ratio profitability compared to
the long time MILP optimization results. When a one day
time horizon is used the daily MILP model with constraints
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from DNN outperforms the other models with constraints
from the optimal operation of the last year and other ML
methods. All of them are also close to the long time horizon
MILP optimization being 1, 4, and 6 percent away. Of note
here is that the energy storages is only one part of the
system so it is not the only factor effecting profitability.
When a one week time horizon is used, both the models with
constraints from ML algorithms and last year’s optimal
operation have the same profitability as the long time MILP
optimization. This is because a rolling time horizon is used
with the constraint placed at the end of the week but only
the operation from the first day is used, then the next day
the optimization is run again. This means that even if there
is some error in the prediction the operation of the first
day can be good since there is no constraint for the SOC
at the end of the first day.
Even though the MAE of the prediction is high the
profitability is not greatly impacted. This is because the
prediction is based on the electricity price DH demand
and time of year. This gives a good operation even if the
prediction is different from the value from the long time
MILP.
Another benefit to using ML to give constraints to the
MILP compared to using values from last year is that if a
change in the electricity price or DH demand were to occur
the operational plan can change. This makes the constraints
given by the ML model more robust. The diversity and
amount of training data generated and the number of years
used to generate training data will also affect how robust
the optimization is.
One thing to note when looking at Table 4 is that the
SOC the storages is not constrained to be the same at the
end of the year which affects the profitability. The final
SOC with the DNN constraints can be seen in Figs. 8
and 9. The final SOC when using the optimal results
from the last year can be seen in the same figures but
looking at the beginning of the year.

Table 4. Profitability comparison with con-
straints from ML models and taking SOC values

from last year MILP optimization
hhhhhhhhhhhhMethod

Time horizon 1 day 1 week

DNN 0.97 1
Last year MILP 0.96 1

GR 0.94 1
HGB 0.94 1
RF 0.94 1

In Table 5 the MAE and computational speed of the
method using daily and weekly MILP with DNN constraints
and the long term MILP model can be seen. Here the MAE
is a percentage of the maximum occured charge/discharge
of the storages. As can be seen, the optimization is fast
both for the one day and one week time horizon when
using constraints from the DNN. When running the MILP
for a year with the full model the optimization time is
over 30 hours which does not allow for day ahead planning.
Another problem when running the model in this way is
that a forecast for electricity price and DH demand is
needed for the entire year. When using the ML algorithm

only a forecast for the average electricity price for the next
2 weeks and next 2 months is needed. Even this can be
removed with some increase in the prediction error.
The MAE of the HES prediction increases when doing a
one week prediction while the MAE of the TES prediction
decreases. This is likley because the seasonal patterns of
the TES are stronger which makes a one week prediction
easier since any irregular spikes in temperature will have
a lower effect. The HES is more driven by the electricity
price which has a less seasonal pattern so in this case the
increase in features for the DNN only increase the MAE.

Table 5. MAE for different time resolutions and
horizons

Time horizon MAE HES MAE TES Computational time
1 day 25% 20% 1.78 s
1 week 30% 18% 12.33 s

Long term MILP - - 180.2 s*
*With binary constraints relaxed, the full model takes over 30 hours

to run

Table 6 shows the error when doing predictions based
on data from a simpler system. The prediction is slightly
better for the system with only one boiler. The prediction is
better on simpler systems since the behavior of the system
becomes less complex and therefore easier to predict.

Table 6. Comparison different systems

System MAE HES MAE TES
One boiler only TES - 20%
One boiler only HES 22% -

One boiler HES and TES 22% 18%
Four boiler HES and TES 25% 20%

4. DISCUSSION

This method is fast enough to implement in real-time, when
doing so retraining of the ML model should be done to
catch any new patterns in electricity price or DH demand.
The period between retraining will have to be decided based
on testing different periods. When retraining the algorithm
data could be generated again to increase the training data
since the generated data is created based on real data and
will therefore have some similar patterns.
Some things are required for it to be possible to use this
method, the first is some historical data that can be used for
training and creation of synthetic data or a way of creating
realistic synthetic data without any real data. Some long-
term energy storage is also needed for this method to be
effective, if no long-term energy storage exists conventional
methods are more suitable for optimization.
The use case for this kind of optimization method is in
cases where the optimization has to be done in a short time
or where the optimization has to be done a lot of times, for
both of these cases LTES should also be a part of the energy
system. For the case where optimization has to be done
fast it could be at a powerplant where the MILP model is
too complex to optimize over a long time horizon, then this
method can be used to speed up the optimization. For a
case where optimization has to be done many times, there
could be a case where the MILP optimization is part of an
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inner loop where it has to run many times per iteration of
some other optimization layer.
Since the synthetic data is only used for training the ML
algorithms and is generated without using any of the testing
data the use of synthetic data should not have any negative
impact on the results. The use of synthetic data might also
not be needed if enough historical data is available, other
methods of generating synthetic data could also be used.

5. CONCLUSIONS

Using ML to reduce the time horizon of a MILP model by
constraining the SOC of LTES gives a similar economic
operation to letting the MILP run over a long time horizon.
The MAE of the prediction is large but the economic
operation is still good with this method. This method
outperforms using the past years storage operation when
running the MILP daily and has an equal performance
when running the MILP weekly.
The ML method that gives the best operation of the
storages is a DNN.
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Abstract: Batteries are used in electric vehicles as well as in stationary applications. In electric vehicles,

high energy density, as kilowatt hour per kilogram (kWh/kg), is needed while stationary applications are

less sensitive to the energy density. Principally, it may be a good idea first to use batteries for transportation

applications and then when capacity has reached a certain level start using them for other applications in a

“second life”. Both for optimizing the performance of operations in 1st and 2nd life and for making fair

commercial agreements when selling used batteries for second life applications, there is a need to make

predictions of Remaining Useful Life (RUL) and State of Health (SoH). For this purpose, battery models

are needed. This paper presents a methodology for building a useful battery model based on our experiments

and literature data. Single cells and cells in series of  Nickel Manganese Cobalt (NMC) batteries and

Lithium Iron Phosphate (LFP) batteries have been cycled. Electrochemical Impedance Spectra (EIS) and

differential capacity (dQ/dV) have been measured for each cycle. These data were then used to develop

SoH and RUL models using various regression methods. The developed models are described and

discussed, and the results are presented in the paper.

Keywords:  Battery model, electric vehicles (EV), stationary applications, kilowatt hour per kilogram

(kWh/kg), Nickel Manganese Cobalt  (NMC), Lithium Iron Phosphate (LFP), Electrochemical Impedance

Spectra (EIS), differential capacity (dQ/dV), regression.

1. INTRODUCTION AND RELATED WORK

There is a strong interest in following the degradation of

batteries during the first life to give the possibility to predict

the remaining useful life (RUL) for the battery, especially for

the second-life use of batteries. By following the state of health

(SoH) continuously, correlating it to how the battery has been

used, and following it until it is totally wared out, reasonably

good prediction models can be determined and used. This

information can be utilized for 2nd life use of batteries

(Chirumalla et al., 2023, 2024).

In this paper, we want to extract experience from what has

been done earlier and add to it our own battery modeling

approach for the simulation of batteries used in Vehicles. For

second life use of batteries there is a high interest to use for

power grid balances as shown in e.g. Dahlquist et al. (2023).

Many researchers have modelled battery performance in

different ways. Pelletier et al. (2017) focused on modelling

cycle-life as a function to the depth of discharge (DOD) and

discharged rate relative to the battery maximum capacity (C-

rate). Ahmadiana et al. (2018) modeled battery resistance

growth versus state of charge (SoC) and battery degradation as

a function to DOD. Maheshwari et al. (2020) have modelled

cycling life vs C-rate using a non-linear model. O’Kane et al. 

(2022) have used the PyBaMM, an open source modelling 

environment for simulation of the effect of different variables 

important for degradation of Li-ion batteries. Four degradation 

mechanisms are coupled in PyBaMM. The most important 

ones are the loss of lithium inventory and the loss of active 

material. For the same cell, five different pathways have been 

evaluated. Lam and Bauer (2012) performed a lot of cycling of 

LFP batteries and from the experiments, an empirical model 

was constructed, which was capable of modeling the capacity 

fading in electric vehicles (EV) battery cells under most 

operating conditions. Ravali and Raju (2023) developed a 

Lithium-Ion Battery model for estimation of degradation 

capacity and SoC using Sigma Point Kalman filter. After one 

thousand cycles, the amount of capacity faded from 24Ah to 

20.5Ah at 25oC. 

de la Vega et al. (2023) have proposed to monitor battery 

performance by measuring instantaneous terminal cell voltage 

as a function to SoC during the first discharge cycle, as a 

reference cycle, and the nth cycle. The SoC interval [SoCmin, 

SoCmax] = [0.55, 0.75] was chosen to calculate the ΔVRMS 

indicator, which is terminal voltage difference between first 

and nth cycle at SoCmin and SoCmax. This is an interesting 
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approach to give the possibility to follow the degradation 

continuously if the values at SoCmin and SoCmax are stored 

continuously.  

Shamarova et al. (2022) have developed a method utilizing 

data from electrical circuit models (ECM) where dependency 

of ECM parameters on the electrochemical properties of the 

battery was examined in using a pseudo-two-dimensional 

(P2D) model. This is combining physical and statistical 

modelling approaches. Wildfeuer et al. (2023) made a set of 

experiments studying impact on SoH for capacity, resistance, 

Li-inventory, positive electrode losses, and negative electrode 

losses for SoC 10-100% and temp 20-60oC for NAC batteries. 

Panchal et al. (2017) did similar experimental studies for LFP 

batteries.  

Drive cycles with different modes like acceleration, constant 

speed, and deceleration in both highway and city driving were 

implemented at −6°C, 2°C, 10°C, and 23°C ambient 

temperatures with all accessories on. 4.6% capacity fade 

occurred over 3 months of driving. The empirical degradation 

model was fitted to these data, and an extrapolation estimated 

that 20% capacity fade would occur after nine hundred daily 

drive cycles. This is a high degradation rate, but experimental 

data and model were close for the 3 months test period. Zhang 

et al. (2023) have compared LFP and NMC batteries. 

Degradation characteristics during charging of LiFePO4 

(LFP)/Graphite batteries at voltages of 3.65–4.8V and 

Li(Ni0.5Co0.2Mn0.3)O2 (NCM)/Graphite batteries at 4.2–

4.8V at −10 °C with currents of 0.2–1A were determined. The 

loss of active material (LAM) causes the height of the highest 

IC peak (dQ/dV-V) to decrease for a given voltage, while the 

loss of Lithium inventory (LLI) shifts the DV curve (dV/dQ-

Q) toward lower capacities. 

It can also be interesting to see what measurements on real 

vehicles indicate with respect to capacity losses. Salazar and 

Bengoechea (2021) have summarized information reported by 

different Tesla Model 3 owners. One had a decrease of 

capacity by 4.8% during 136,000km operation, another 2.3% 

loss during 22,000km, when the vehicle was charged to 10% 

five days a week. A third had a 2.2% decrease during 

32,000km of SoH for 12 months operation. In this case all the 

cars had LFP batteries.  

Shen et al. (2019) tried to make RUL predictions. They were 

working with NASA data set and the CALCE data set. They 

compared their own model to another approach. Still, the value 

is to use common data sets for comparing different modelling 

approaches. Uddin et al. (2016) used an approach with 

identification and tracking of electrochemical battery model 

Parameters. This combines physical and statistical methods. 

The method was demonstrated on a 3.03Ah LiC6/NCA battery 

stored at 45°C with 50% SoC for 476 days.  

Rahbari et al. (2018) used another approach with an Adaptive 

Neuro-Fuzzy Inference System for SoH of real-life plug-in 

hybrid electric vehicles (PHEVs). The model was representing 

the experimental data in a good way. Dai et al. (2018) showed 

a SoH estimation method by using prior knowledge-based 

neural network (PKNN) and Markov chain for a single 

lithium-ion battery. Shi et al. (2019) used another method with 

estimation of the state of health (SoH) for a lithium-ion battery 

based on the ohm internal resistance R0. They were 

considering the variation of R0 with the state of charge (SoC), 

which was new. 

This overview covers a broad spectrum of methods, although 

many other techniques are also utilized. From all this, we 

developed a simplified battery degradation model that can be 

adapted to different types of batteries and with reasonable 

values for impact of different variables like temperature, C-

rate, DOD/DOC and calendric time. 

The paper is organized as follows. Section 2 presents the 

experiment setup while Section 3 presents the experimental 

data, both our data and other data from literature. In Sections 

4 and 5, we develop a battery degradation model and power 

demand model from vehicle, respectively. The paper ends with 

discussion and conclusions in Section 6. 

2. EXPERIMENTS SETUP 

2.1 Testing of battery cells 

Single cells can be tested with Electrochemical Impedance 

Spectroscopy (EIS). The spectra are made by measuring the 

current and the capacity as a function of voltage as the 

frequency of the supplied current is going from 1000Hz to 

0.001Hz. At high frequencies, we see the resistance in the 

electrolyte, at mid frequencies capacitance over the electrode 

surface, and at low frequencies the inner resistance of the cells 

as such. By following the EIS at the start and after a number 

of cycles, you can get both a quantitative measure of the 

overall degradation over time as well as an indication of what 

mechanisms in the battery cells are causing this. 

Another measure is to follow dQ/dV or dV/dQ, as a function 

of V, where Q is cell capacity (Ah) and V voltage. By 

measuring and plotting this over cell cycles a battery 

performance pattern is achieved. This can be measured 

continuously during the use of the cell, which is not possible 

with the EIS, and thus can be a good complement. Figure 1 

depicts a system for prediction of RUL, SoH and SoC. 

There is a correlation between DoD (depth of discharge)/DoC 

(depth of charge) and degradation rate. Figure 2 shows this 

correlation presented by Qadrdan et al. (2018). Real operation 

with Tesla cars still indicates that this curve is not relevant for 

NAC batteries in “real life” operations. 
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𝐷𝑜𝐷=𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐ℎ𝑎r𝑔𝑒/𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑒=𝑄𝑑/𝐶∗100 [%] 
The SoH can be shown in an EIS, Electrochemical impedance 

spectrum. In Fig. 3, we see how the pattern in a Zreal vs Zim is 

looking like when a frequency scan is made from 1000Hz to 

0.001Hz. Higher frequency is to the right. Closest to y-axis we 

have ohmic resistance (Rohm): 

𝑍(𝜔) = 𝑉 ̃(𝜔)�̃�(𝜔) 

         =|�̃�(𝜔)�̃�(𝜔)|(cos𝜙(𝜔)+𝑗sin𝜙(𝜔)) 

        = 𝑍𝑟+𝑗𝑍𝑗 

 

 

 

 

 

 

 

 

 

 

 

The impedance spectrum can also be represented as an 

equivalent electric circuit model as shown in Fig. 4. 

 

 

According to Xiong et al. (2020), the model in Fig. 4 is the 

most common ECM, which is composed of three parts:  

• Part 1: a series of  ROHM and L. 
     

 
  

 

            

                    

                                        

    

 

        

  

Fig. 1. Experimental setup to collect data that will be used to

develop algorithms for prediction of SoH, RUL, and SoC.

Fig. 2. Battery cycle life as a function to depth of discharge.

Adapted from Qadrdan et al. (2018).

Fig. 3. Analysis of EIS in a Nyquist plot inspired by Li et al.

(2020), and Iurilli et al. (2021).

Fig. 4. Common equivalent circuit model inspired by Xiong et al.

(2020).

• Part 2: a parallel of CPESEI and RSEI. 

• Part 3: a parallel of CPEdl and series of RCHT and ZW
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. 
Part 1 indicates the ohmic resistance increase, where ROHM 

incorporates the ohmic resistance of electrolytes, electrode, 

binder and current collector. It can be acquired by resolving 

the intersection among the impedance spectrum and high 

frequency region of the Nyquist plot. The inductance 

incorporated the high frequency phenomena occurring in the 

collector, can be acquired by the impedance positive imaginary 

part. Part 2 describes the formation, decomposition and growth 

of SEI film, where the RSEI is calculated from the first semi 

arch span at mid-frequency. Part 3, RCHT the charge transfer 

resistance attained by a second semiarch at low frequency, 

CPEdl simulates the double-layer affect that occurs during 

battery discharge for the shape of electrode according to Xiong 

et al. (2020). 

In our cycling tests we have collected spectra with dQ/dV as a 

function of voltage and number of cycles. Here we can see how 

the spectrum for the same battery is changing pattern. In this 

case we cycled NMC batteries model 18650 up to four hundred 

cycles from 3.3 to 4.2 Volt. The results are shown in Fig. 5. 

 

 

The shift in pattern during cycling is shown as a few arrows. 

This information can be used to predict the performance of the 

batteries. It can also be used for prediction of remaining useful 

life, RUL, if cycling proceeds until the capacity has faded to 

below 70-80% of the original SoH. 

In Fig. 6, we see how the EIS changes during cycling. The 

diagram to the left is for fresh batteries while the others are 

after several cycles. The higher the cycle number, the further 

to the right. 

From experimental data, regressions and prediction models 

have been developed using different AI-algorithms. Results 

from these are exemplified in Fig. 7. 

Some other approaches using different type of models is e.g. 

capacity degradation estimation using sigma point Kalman 

filter (Gaddipati and Kuthuri, 2023) and Lin et al (2023) using 

a data driven approach. 

2.2 Testing of battery packs 

For many cells in series and parallel, it is difficult to perform 

EIS, while dQ/dV or dV/dQ is possible to measure. By 

comparing this for packs as well as single cells, and 
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Fig. 5. Results of the incremental capacity analysis over the cell’s

cycling (a) NMC cell from Biltema and (b) NMC cell from

Samsung.

Fig. 6. Electrochemical impedance spectra (EIS) for a NMC

battery from Samsung after Nyquist plot for battery cell (marked

16): cycle 200, 207 and 300. Experiments performed at MDU.

Fig. 7. Battery capacity estimation using different deep-learning

algorithms as a function of cycle number

(FNN10,FNN40,CNN1,CNN2 and LSTM). Rojas Vazquez

(2023).
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performing EIS as well for the single cells, we can create data 

that can be used to make AI models for different types of 

performance numbers. These can be state of charge (SoC), 

state of health (SoH), remaining useful life (RUL), and similar. 

By measuring full cycles for batteries and packs when fresh 

and after different numbers of cycles, prediction models can 

be developed. Also the depth of discharge (DoD), that is how 

close to 0% charge you go, is of interest to monitor. C-rate for 

both charge and discharge as well as temperature in the cell 

packs are other factors. 

3. EXPERIMENTAL DATA 

3.1 Our experimental data 

Previously we presented data from NMC battery cycling 

performed at our lab. We also have done testing with LFP 

batteries, or more correct Lithium Iron Manganese Phosphate 

batteries with 20Ah capacity. The latter are prismatic, while 

the first ones are cylindrical with a 2.9Ah capacity. 

As seen above, the degradation during fifty cycles of a NMC 

battery was 1.8% or 0.035% per cycle, when cycling between 

2.5V and 4.2V. Another cell was cycled 325 cycles between 

2.5V and 4.2V with 1.5A charging current (C-rate= 0.52) and 

3A discharge current (C-rate =1.04). The decrease in capacity 

went from 2.91Ah to 2.73Ah, or 0.18Ah. This means 6.2% 

during 325 cycles or a decrease of 0.019% per cycle. If we just 

look at the first fifty cycles of the same battery (S20), the 

decrease was from 2.91Ah to 2.81Ah, or 3.4%, or 0.069% per 

cycle. There is a faster degradation in the beginning, but it is 

reduced with time. 

For the LFP batteries, we had a degradation of 0.12% per cycle 

at C-rate 0.15 during thirty-nine cycles, when cycling between 

2.5V and 3.7V at 3A for the 20Ah batteries. It was the same 

for charging and discharging. 

We did the same cycle for LFP batteries but with four cells in 

series with 10A and 40A respectively. This corresponds to a 

C-rate of 0.5 and 2 respectively. For the reference case with C-

rate 0.5 and cycling only between 12.6V to 13.7V for four 

batteries, corresponding to 3.15-3.4V per cell. We could not 

see any degradation at all after one hundred cycles with this 

mild cycling. For C-rate 2, 40A, we saw a small degradation 

by 0.0079% per cycle during 102 cycles. When running at C-

rate 0.5, the temperature increase was around 2-3oC but for C-

rate two it was 55-65oC measuring between the cells at various 

positions. The lower temperature was at the entrance and outlet 

from the series, while the higher temperature was between the 

cells. 

A problem with these measurements is that we get slightly 

non-linear degradation. The degradation is higher in the first 

fifty cycles compared to later. This also will depend on 

temperature, C-rate, and other factors. To get more insights, 

we have collected data from the literature as explained in the 

next subsection. 

3.2 Other experimental data 

Tests with different Tesla cars with NAC batteries were made 

with fast charging 90% of the time (Tesla 3 and Tesla Y) and 

compared to Tesla models with only 10% fast charging. This 

was followed 1000- 2000 days. What they found was that the 

degradation was very similar in both cases (SOH from 99% to 

91% for 1000 days and 89% for 2000 days. The % is the 

percent of the SOH measured as original distance with fully 

charged batteries after use compared to fresh batteries). Still, 

here the temperature control has been good, and a charging 

pattern with low power close to full charge (around 80-90%). 

Still, it is not known how degradation affects the long-term 

capacity like 10-20 years. 

Later the Tesla user’s organization compared LFP batteries. 

Salazar and Bengoechea (2021) have summarized information 

reported by different Tesla Model 3 owners, who have LFP 

batteries. One had a decrease of capacity by 4.8% during 

136,000 km operation; another 2.3% loss during 22,000 km, 

when the vehicle was charged to 100% five days a week. A 

third had 2.2% decrease in SOH during 32,000 km and 12 

months of operation. In this case, all the cars had LFP batteries. 

The second Tesla owner says he was charging to 100% five 

days a week, which is higher DOC than recommended. Also, 

the others said they often charged to 100%. A Tesla model 3 

consumes 1.4-1.7kWh/10km which means 136,000 km 

corresponds to some 19,000 – 23,100kWh total charging. The 

battery capacity is some 55-77kWh depending on the model, 

so it corresponds to 250- 420 full battery cycles. 4.8% total 

degradation then corresponds to 0.011-0.019% per cycle. The 

second had a loss of 2.3% during 2,000 km or 3080–3740kWh. 

This means forty -68 full cycles, or 0.058- 0.034% per cycle. 

Zhang et al. (2023) studied the degradation of both LFP and 

NMC batteries as a function of temperature and C-rate. The 

LFP batteries were charged to 3.65V while the NMC batteries 

were charged to 4.2V. The degradation is seen in Table 1. 

Table 1. Degradation of LFP and NMC batteries as a function 

of C-rate and Temperature according to Zhang et al. (2023) 

 % degradation per cycle 

C-rate 0.2  0.5  1  

Temp 25oC -10oC 25oC -10oC 25oC -10oC 

NMC 0.02  0.07  0.05  

NMC   0.0375 1.16 0.4125 3.6 

LFP 0.03  0.25  0.36  

LFP   0.0233 0.26   

 

Lin et al. (2023) have studied SoH in relation to internal 

resistance. They found a degradation of SoH by 8% during 

three hundred cycles while the inner resistance increased from 

0.18 to 0.213 Ohm. The SoH decrease per cycle was 0.027%.  

Shabani et al. (2023) have shown that DOD/DOC has an 

impact on degradation, but also where in the span charge and 

discharge occur. With the same total cycle depth but with 

different spans you see different degradation. With DOC 

=50%, we can see that the degradation rate goes from 12 to 
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14.5% for 10 years when having a cycle of 40-90% SoC 

compared to 10-60% SoC. When we increase the DOC above 

this span of 50%, we also see an increased fade. How much 

this is depends on temperature, battery type, and C-rate? 

3.3  Summary of degradation data 

If we try to summarize the data, both our own and others’ data, 

we get a high variation as % per cycle, but still, we can see 

some trends. An increased C-rate above 0.5-1 usually 

increases the fade of SoH. When the temperature is below 0-

10oC and above 30oC, we also see an increased degradation 

rate. The difference between LFP and NMC batteries is not 

clear from these data. What can be seen is that the value for 

the same condition varies significantly at the same temperature 

and C-rate. We can see that the C-rate above 0.2 is increasing 

the degradation rate as well as -10oC compared to +25oC. This 

is for both LFP and NMC batteries. It is usually said that LFP 

should not get that hot as energy per kg is lower, but we saw a 

very high increase to 65oC at 40A with four cells in series, with 

each 20Ah, or C-rate 2. This led to the swelling of the batteries 

significantly. Concerning DOC/DOD many authors report that 

this is important, like Shabani et al. (2023), but in absolute 

numbers, it is not that easy to get a reliable figure.  

What we have done with our simulation model is to set some 

average values on degradation rate and from these estimate 

parameter values. Adjustment is made for large changes in 

DOC, temperature, and C-rate. We have made these 

adjustments for each cycle assuming a full cycle. When the 

cycle is not full, we assume degradation in SOH is a share of 

the full cycle. 

4. BATTERY DEGRADATION MODEL 

The battery degradation will depend on several factors like 

time, temperature, Depth of Discharge (DOD), Depth of 

Charge (DoC), number of cycles, and C-rate as well as the 

calendric time as such. It is of interest to define some key 

numbers to follow that integrate these different factors.  

The algorithm we use for the battery simulation is shown in 

Table 2 (input data), Table 3 (calculations) and Table 4 

(calculations for first 21 timesteps during charging) below.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Input data to battery simulator. In this case a single 
LFP cell. 

 

 
 
The calculations in the simulator are chosen as constant 

voltage, constant current or constant power. In Table 3 
below we see calculations for the constant power case 
during charging. For discharge the calculation of SoC is 
slightly different compared to during charging. 

 
Table 3. Calculation for constant power (kW) during charge 

and discharge 
 

 
 

Principally we calculate an update of SoC for each time step 

depending on the kW discharge or charge. Calculations are 

done for a single cell, but several cells in parallel and series are 

configured to get the correct current, voltage, and energy 

content (kWh). 

 
 

Input LFP Sort

Cell

Emax,cell 64 Wh

E0,cell 3.2 Wh

E100,cell 60.8 Wh

Umax,cell 3.7 V

Ulow,cutoff 2.5 V

U0,cell 2.5 V

U100,cell 3.515 V

I0,cell 15 A

I100,cell 2 A

Unormal 3.2 V

Pcell 48 W
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Table 4. Calculation of first 10 time-steps during charge of 15 cells in series 
 

If we look at the degradation due to different factors, we can 

see that cycling conditions can be accounted for with a number 

of adjustment factors or KPIs: 

1. DoD/DoC is calculated as SoCin when a cycle starts 

minus SoCout when we switch from charging to 

discharging or the opposite. When DoD/DoC is larger 

than 60% the amount between actual value and 60% 

is calculated and multiplied by KPIdoc.  

2. The temperature is assumed normal between 10oC 

and 30oC, but increased degradation in proportion to 

temperature difference higher or lower than this. 

KPItemp = Toperational – (> 30 oC or <10oC) * Ctemp. 

3. Adjustment for C-rate is KPI c-rate =  C-rate^Cc-rate. 
4. Calendric time influence KPIcal = number of hours 

since manufacture of battery * Ccal. 

Degradation now becomes average degradation when 

DOD/DOC is <60%, temperature 10-30oC and C-rate < 0.5. 

We then add degradation rate as add-ons to this average value. 

Degradation of SoH equals to: 

SoHdeg = SoHaverage + (SOC-60)*KPIdoc + (Temp – >30 

or<10)*KPItemp + C-rate*KPIc-rate 

The SOHaverage is calculated from the measured values when 

conditions are stated as above. For fifty cycles we have eight 

test sets giving an average of 0.045%/cycle. For 325 and 435 

cycles we have used two data sets, giving 0.015%/cycle. These 

are the base values under “normal conditions”. So SOHaverage,50 

= 0.045% and SOHaverage,400 = 0.015%. We assume the same 

for both NMC and LFP batteries. 

When the temperature went down to -10oC, the degradation 

rate for NMC batteries was 1.16%/cycle at C-rate 0.5 and 

3.6%/cycle at C-rate one. For C-rate going from 0.5 to 2 the 

degradation rate went from 0.001 to 0.0079 for LFP battery 

and from 0.038 to 0.41 for a NMC battery in one set but from 

0.07 to 0.05 in another! The tests unfortunately give quite 

diverse measures! At extreme temperatures we normally see 

significant degradation of SOH, but sometimes less than 

expected. We thus have chosen to use conservative values. The 

plan is to use future measurements to make these factors better 

by time, including both measurements done in lab as well as 

including module and pack data from different vehicles. The 

following values have been set as our initial estimates: KPIdoc 

= 0.002,  KPItemp = 0.005, KPI C-rate = 0.01. This would give for 

DOD=90, temperature 0oC and C-rate 2 a SoHdeg,400 = 0.015 + 

(90-60)*0.002 + 10*0.005 + 2*0.01 = 0.145%. 

Battery degradation could be modelled as U=I*R where R is 

increased as a function of degradation of SoH. The correlation 

between inner resistance and SoH is that a decrease of R by 

0.18 to 0.213Ohm correspond to a decrease in SoH by 8% 

during three hundred cycles according to Wang et al. (2023). 

This means 0.027% per cycle. This is a reasonable value if we 

assume 25oC and C-rate 0.2-0.5. We also assume DOC/DOD 

to be 60% (SoC 20-80%).  

The actual power then could be calculated as Pactual= P*( 

Roriginal/Rpresent). When we demand P= 980W, we only get 

P*(Roriginal/Rpresent) which is lower than demanded, assuming 

that total resistance is increasing. 

In our simulation model though we are using the SoH 

degradation depending on temperature, DOC/DOD and C-rate 

as stated previously. From this we can calculate battery 

degradation giving RUL and SoH from running with different 

scenarios with respect to the different conditions. 

5.  POWER DEMAND FROM VEHICLE 

The power demand for each time step is given from a model 

over e.g. a train line going from one station to the next. There 

is a time schedule that must be followed given the limitations 

with respect to acceleration, deceleration, and average 

Constant power 15 cells

t 1 2 3 4 5 6 7 8 9 10

dt 0.01667 0.01667 0.01667 0.01667 0.01667 0.01667 0.01667 0.01667 0.01667 0.01667

E0 48 48 48 48 48 48 48 48 48 48

E100 912 912 912 912 912 912 912 912 912 912

U0 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5

U100 52.275 52.275 52.275 52.275 52.275 52.275 52.275 52.275 52.275 52.275

P 720 720 720 720 720 720 720 720 720 720

I0 15 15 15 15 15 15 15 15 15 15

It 19.2 19.09548 18.9921 18.88983 18.78865 18.68856 18.58952 18.49153 18.39457 18.29861

Et 48 60.0024 72.0048 84.0072 96.0096 108.012 120.0144 132.0168 144.0192 156.0216

Ut 37.5 37.70525 37.9105 38.11575 38.321 38.52625 38.7315 38.93675 39.142 39.34724

Et+1 60.0024 72.0048 84.0072 96.0096 108.012 120.0144 132.0168 144.0192 156.0216 168.024

SoC 0.013892 0.027783 0.041675 0.055567 0.069458 0.08335 0.097242 0.111133 0.125025 0.138917

Ut+1 37.70525 37.9105 38.11575 38.321 38.52625 38.7315 38.93675 39.142 39.34724 39.55249

It+1 19.09548 18.9921 18.88983 18.78865 18.68856 18.58952 18.49153 18.39457 18.29861 18.20366
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velocity. When passing sensitive areas there are speed

limitations e.g. 80 km/h to reduce the impact of noise. The

power demand for a train line is seen in Fig. 8 below. The

power demand is calculated from the weight of the train,

distance, inclination, velocity limitations, acceleration, friction

due to bearings, and wind. The results are shown in Fig. 9. The

power demand is in kW. Positive values are discharging

batteries and negative values charging the batteries due to

“motor breaking”.

 

 

From the data in Fig. 8 power demand for each zone is 

calculated and sent to the battery simulator. In Fig. 9 we see 

the speed of the train in each zone, or more precisely the 

velocity of the train when it enters and leaves the zone. 

Thereafter we see the power demand as kW in each zone, the 

energy output or input to the battery as kWh and finally the 

state of charge, SoC, calculated for each zone. In this case 

there were just seven zones, but where there are major 

accelerations/decelerations each zone may be divided into 

several zones. 

 

  

For each full cycle, we do a calculation on degradation of SoH 

due to calendric time, temperature, DOD/DOC and C-rate. For 

part of a full cycle, that is how much of a full cycle before 

changing from charging to discharge or vice versa, we do this 

calculation as percent of a full cycle, so as a function of total 

Ah stored and used. 

6. DISCUSSION AND CONCLUSIONS 

From the experimental results, we have made prediction 

models for RUL and SoH. Concerning the battery simulator, 

we have formulated the equations for constant power during 

each section of the distance of a vehicle, or during a certain 

time period. By running scenarios like a train line as above or 

some other driving cycle for another type of vehicle, we can 

simulate future degradation and from this calculate RUL and 

SoH at certain times, or for “end of life” (EOL). Also 

calculations can be made on when SoH has reached e.g. 80%, 

where a second life use would be recommended. From the 

intensity of the drive cycle, we also can recommend suitable 

use of the batteries for this second life use. In case of harsh 

cycles, it may be better to use the batteries for only energy 

storage like in photovoltaic (PV) cell applications. If low 

DOD/DOC has been applied generally, a power application, 

like for example frequency control, can be possible, where 

high power may be demanded. 
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Abstract: The importance of EVs and li-ion batteries are pinpointed in the automotive industry during the 

last decade by increased growth of electrified powertrain. Li-ion batteries offer significant improvements 

in terms of energy and power density; however, safety challenges continue to exist. Different thermal, 

mechanical, or electrical abuse conditions in li-ion batteries can trigger a series of exothermic chain 

reactions in the battery cells and finally result in thermal runaway (TR) and combustion of battery cells and 

EVs. Furthermore, different battery technologies exploit various cell chemistries, leading to the distinct 

thermal behavior of battery cells during normal and abuse conditions. This work aims at investigating the 

TR kinetic mechanisms to evaluate thermal behavior of the battery cells under thermal abuse conditions. 

Furthermore, this work investigates the different li-ion battery cathode, anode and electrolyte materials to 

assess the safety of battery systems in EV application. The results revealed that unlike batteries with LiCoO2 

cathodes with temperature threshold of 150 ℃, Li1.1(Ni1/3Co1/3Mn1/3)0.9O2 batteries do not undergo TR 

process at temperatures below 170 ℃. Moreover, the temperature peak is more hazardous in LiCoO2 

batteries with LiPF6/PC: DMC electrolyte compared to the same battery with standard electrolyte. In 

addition, batteries with Lithiated Li4Ti5O12 anode showed safer TR process compared to all the previous 

battery types. 

Keywords: Numerical simulation, Electric Vehicles, Li-ion batteries, Safety, Thermal runaway kinetic 

mechanisms 

1. INTRODUCTION 

The importance of EVs and li-ion batteries are pinpointed in 

the automotive section by the zero-tailpipe emission 

requirement of EU fleet and increased share of electrified 

powertrain in the market (IEA). Li-ion batteries offer 

significant improvements from the first generations of EVs in 

terms of energy density and power density, however, safety 

challenges in the way of li-ion EVs continue to exist (Wang et 

al., 2023). Extensive research has been done in thermal 

management of EV batteries by proposing hybrid cooling 

methods or even battery operating under cold climate to 

enhance the performance of battery system (Gharehghani et 

al., 2022, 2023). However, battery performance under abuse 

conditions remains a challenge for battery developers. 

Different thermal, mechanical, or electrical abuse conditions 

in li-ion batteries can trigger a series of exothermic chain 

reactions in the battery cells and finally result in thermal 

runaway (TR) and combustion of battery cell, battery system 

and the EV. Therefore, investigations of thermal behavior of 

battery cells under critical conditions are of outmost 

importance for EVs security and driver’s safety. Moreover, 

different battery technologies exploit various cell chemistries 

(Cathode, anode, electrolyte and separator materials), leading 

to their distinct thermal behavior. Some researchers have 

conducted investigations on the thermal behavior of Li-ion 

batteries under TR. A lumped model is proposed by Hatchard 

et al. (Hatchard et al., 2001) to model the oven test as a 

standard procedure of battery TR under thermal abuse 

conditions. Kim et al. extended the previous models to 3D 

models for oven tests of cylindrical cells and showed that 

smaller cylindrical cells can reject heat faster than larger cells 

and undergo a more moderate TR. Different studies have 

focused on the thermal stability of cathode materials. MacNiel 

et al. (MacNiel et al., 2002) studied the thermal stability of 

seven different cathode materials by differential scanning 

materials (DSC) and ranked them from safest to the least safe. 

Jiang et al. studied the three different cathode materials, 

LiCoO2, Li(Ni0.1Co0.8Mn0.1)O2 and LiFePO4 using accelerated 

rate calorimetry (ARC) and showed that LiFePO4 offers 

highest thermal stability. Peng et al. (Peng et al., 2016) 

numerically investigated thermal safety of batteries for five 

different cathode materials. Wang et al. (Wang et al., 2006) 

investigated the thermal stability of li-ion battery electrolytes 

and fitted the chemical reaction kinetics by Arrhenius law. 

They concluded that the stability of electrolyte plays a 

substantial role in li-ion safety. The effect of anode material 

was also investigated by Haung et al. (Haung et al., 2016). The 

thermal and combustion characteristics of TR over the battery 

module with Li4Ti5O12 anode battery cells were investigated 
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through heating. Numerical investigation of thermal runaway

behavior of lithium-ion batteries with different battery

materials is also done by other researchers in the field (Kong

et al., 2021). In spite of numerous research on the effect of

battery material on the thermal stability of li-ion cells, a

comprehensive study to investigate the effect of different cell

components TR process of the battery cells is rarely done.

This work aims at the investigation of the most well-proven

kinetic mechanism reactions of TR phenomena to evaluate

thermal behavior of the battery cells with different materials

under thermal abuse conditions. A thermal model with TR

kinetic mechanism sub-model is adopted to replicate the

behavior of the battery cells under thermal abuse conditions.

Furthermore, to investigate the effect of different battery

materials of the cell thermal behavior during TR, two different

cathode, anode and electrolyte is selected from the literature

and also their temperature evolution with heat rates are

compared in the simulation of thermal abuse test. The results

of this work will facilitate the integration of kinetic

mechanisms into battery modelling under critical operation

and will improve the safety design of li-ion batteries in EV

application.

2. METHODOLOGY

This work employs a 2D thermal model integrated with the TR

kinetic mechanism to evaluate the thermal stability of different

li-ion battery cells under thermal abuse condition. The model

was built in the commercial COMSOL Multiphysics software

and by setting PDEs describing the undergoing physics of the

problem. The simplified schematic of battery cell is presented

in Fig.1 based on the 18,650-cell geometry and the model was

developed by 2D definition.

 

Fig. 1. A) Schematic of battery cell and inner structure B) Model

Geometry of present work

The thermal model was adopted by defining the conservation 

of energy law and introducing the heat source term of TR 

reactions. Heat source term considers heat of reaction in TR 

event and by including a variety of different exothermic 

reactions in each component of battery. The objective of 

simulation is to replicate ARC test and trigger li-ion battery 

cells with thermal abuse and by setting oven temperature. 

The interplay of heat transfer between cell and environment, 

heat of exothermic reactions and cell thermal balance 

determines the temperature dynamics of the cell. The 

temperature of the cell increases by the enthalpy of each 

reaction, which further increases the cell temperature and 

decreases the concentration of that component. The framework 

of numerical thermal model in the present study is illustrated 

in Fig. 2. Furthermore, li-ion cell properties in this simulation 

are listed in Table 1. 

 

Fig. 2. Thermal modeling and TR framework

2.1 Thermal model

The thermal behavior inside the battery is modeled by the

conduction heat transfer and conservation of energy as Eq.1

and 2. The generated heat 𝑄gen by decomposition of each

component and dissipated heat 𝑄diss to the environment is then

introduced into the energy equation.

d𝑇Bat

d𝑡
=

𝑄gen − 𝑄diss

𝑀𝐶𝑝

                                                              (1)    

𝑇Bat(𝑡) = 𝑇Bat,0 + ∫  
d𝑇Bat

d𝑡
 d𝑡                                              (2) 

The generated heat of each reaction is calculated by the TR 

model. Then, total generated heat is expressed as the 
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summation of multiple heat components following the 

following equation: 

 

𝑄𝑔𝑒𝑛 = ∑  𝑄𝑥                                                                            (3) 

The interaction between battery and environment is 

determined by considering the convection and radiation heat 

as in Eq.4 and allows battery to reach to the environment 

temperature and calculate the released heat of reaction in that 

temperature. This iterative process is illustrated in Fig.2  

 

𝑄diss = 𝑄conv + 𝑄rad

= ℎ ⋅ 𝐴 ⋅ (𝑇ARC − 𝑇Bat)
+ 𝜀𝜎(𝑇ARC 

4 − 𝑇Bat
4 )                                   (4) 

2.2 Thermal runaway model 

The present model utilizes TR kinetic mechanisms introduced 

by Kim et al. (Kim et al., 2007). The model follows the basic 

kinetic mechanism of chemical reactions by the following 

Arrhenius form:  

𝜅𝑥 =
d𝑐𝑥

d𝑡
= 𝐴𝑥(𝑐𝑥)𝑛1(1 − 𝑐𝑥)𝑛2𝑒

𝐸𝑎,𝑥
𝑅0⋅𝑇                                 (5) 

Where 𝜅𝑥 is the reaction rate and 𝑐𝑥 is the normalized 

concentration. Furthermore, 𝐴𝑥, 𝐸𝑎 and 𝑔𝑥 are the pre-

exponential factor, activation energy and mechanism function 

respectively. The concentration of each species is then updated 

in the TR process as follows and by calculation of the reaction 

rate. Model parameters for Kim et al. mechanism is presented 

in Table 2 and.  

𝑐𝑥 = 1 − ∫  𝜅𝑥 d𝑡                                                                    (6) 

The heat of the reaction is then calculated by multiplication of 

reaction rate, heating value (𝐻𝑥) and total mass of that 

component (𝑚𝑥) as the following: 

 

𝑄𝑥 = 𝑚𝑥 ⋅ 𝐻𝑥 ⋅ 𝜅𝑥                                                                      (7) 

 

Finally, the generated heat of each reaction calculated by the 

model is superimposed to determine the total generated heat in 

the following equation: 

 

𝑄𝑔𝑒𝑛 = ∑  𝑄𝑥 = 𝑄𝑆𝐸𝐼 + 𝑄𝑎 + 𝑄𝑐 + 𝑄𝑒                              (8) 

Where 𝑄𝑆𝐸𝐼  is the heat from the SEI decomposition reaction, 

𝑄𝑎 is the heat from the anode active material and electrolyte, 

𝑄𝑐 is the heat from the cathode active material and electrolyte 

and 𝑄𝑒  is the heat from the electrolyte decomposition. The 

Model parameters of different battery materials are listed in 

Table 1. 

The results of temperature evolution simulation are compared 

with the experimental data in Kim et al. (Kim et al., 2007) 

study. The comparison in Fig. 3 shows that temperatures in the 

simulation are in good agreement with the experimental data. 

 

Fig. 3. Comparison of the simulated temperature and reference

temperature for Kim et al. mechanism and Oven Temperature of

155 ℃

In this study, a LiCoO2 battery with standard LiPF6 electrolyte

and graphite anode is selected for oven test. Furthermore, a

Li1.1(Ni1/3Co1/3Mn1/3)0.9O2 cathode (Kong et al., 2021),

LiPF6/PC: DMC electrolyte (Wang et al., 2006) and lithiated

Li4Ti5O12 anode (Haung et al., 2016)  is selected from the

literature to assess the effect of different cathode, electrolyte

and anode material on the thermal stability of the cell during

thermal abuse conditions respectively. The Model parameters

of different battery materials are listed in Table 1.

Table 1. Model parameters of different anode, cathode and

electrolyte materials.

 

Lithiated 

Li4Ti5O12 

anode 

(Haung et 

al., 2016) 

Li1.1(Ni1/3Co1/3

Mn1/3)0.9O2 

cathode (Kong 

et al., 2021) 

LiPF6/PC: DMC 

electrolyte 

(Wang et al., 

2006) 

Hx 2.568×10^5 7.9×10^5 3.209×10^5 

Ax 5.21×10^19 2.25×10^14 7.53×10^19 

Ex 1.88×10^5 1.54×10^5 1.882×10^5 

Wx 1.274×10^3 1.293×10^3 0.96×10^3 

   Table 2. Model parameters and Li-ion cell properties for 

Kim et al. (Kim et al., 2007) mechanism. 

Symbol Description Value 

Cell format 18,650 - 

Battery radius, m rbatt 0.009 

Battery height, m hbatt 0.065 

Thickness of battery can, m dcan 5E-4 

Mandrel radius, m rmandrel 0.002 

Volumetric heat capacity of 

jellyroll, (J m−3 K−1) 
Rho.Cp,batt 2.789E6 

Average jelly roll radial 

thermal conductivity, W/cm K 
kT,batt 0.034 

Heat transfer coefficient, 

W/(m²·K) 
hconv 7.17 

Reaction heat, 

J⋅kg^(-1) 

Hsei 2.57×10^5 

Ha 1.714×10^6 

Hc 3.14×10^5 
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He 1.55×10^5 

Reaction frequency factor, 

s^(-1) 

Asei 1.667×10^15 

Aa 2.5×10^13 

Ac 6.667×10^13 

Ae 5.14×10^25 

Reaction activation energy, 

J⋅mol^(-1) 

Easei 1.3508×10^5 

Eaa 1.3508×10^5 

Eac 1.396×10^5 

Eae 2.74×10^5 

Initial value, dimensionless 

c0,sei 0.15 

c0,a 0.75 

α0 0.04 

c0,e 1 

Reaction order 

msei 1 

ma, n 1 

mc, p1 1 

mc, p2 1 

me 1 

t0,sei 0.033 

Volume-specific content of 

reacting material, kg⋅m^(-3) 

Wa 610

Wc 1300

We 406
Table 3. Initial concentrations and reaction rates for each

component in Kim et al. (Kim et al., 2007) mechanism.

Component Initial concentration dc/dt

Anode 0.75 -Ran

Cathode 0.04 -Rcat

Electrolyte 1 -Re

SEI 0.15 -Rsei

tsei 0.033 -Ran

Binder - -

3. RESULTS AND DISCUSSION

The TR simulation of the li-ion battery cells with different

cathode, anode and electrolyte materials is performed to

investigate the thermal stability and safety of li-ion batteries

with different materials. The thermal stability of Li-ion

batteries is characterized by the onset temperature and time of

TR events. In addition, the thermal safety of the TR process

can be characterized by the heat rate and peak temperature.

The thermal safety of li-ion battery cell with LiCoO2 cathode,

graphite anode and standard LiPF6 electrolyte is assessed

based on Kim et al. kinetic mechanism. The results illustrated

in Fig.4 indicate that battery cells are not prone to TR event at

the temperatures under 150 ℃. However, higher temperatures

cause the start of exothermic reactions and further increased

temperature. It can be found that higher temperatures can

cause more serious hazard TR events in terms of released heat,

temperature peak and onset time of TR. The results of

temperature diagram, heat rate and average values for

components are presented in Fig. 4.

 
Fig. 4. TR kinetic mechanisms for LiCoO2 battery with 

standard LiPF6 electrolyte and graphite anode. A) Maximum 

temperature for Oven Temperature  150-200 ℃ B) Heating 
rate for Oven Temperature 160 and 165 ℃) Average values and 

temperature for Oven Temperature 180 ℃.

The thermal safety of Li1.1(Ni1/3Co1/3Mn1/3)0.9O2 battery

cathode with standard LiPF6 electrolyte and graphite anode is

evaluated in Fig. 5. Unlike batteries with LiCoO2 cathodes that

presented temperature threshold of 150 ℃,

Li1.1(Ni1/3Co1/3Mn1/3)0.9O2 batteries do not undergo TR process

at temperatures below 170 ℃. However, the thermal runaway

events are much more intensive and oven temperatures of 180

can result in peak temperatures of 443 ℃ while LiCoO2

batteries peak at ≈300 ℃ during TR at the same oven
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temperature. The results of temperature diagram and heat rates 

for Li1.1(Ni1/3Co1/3Mn1/3)0.9O2 batteries are presented in Fig. 5. 

 
Fig. 5. TR kinetic mechanisms for Li1.1(Ni1/3Co1/3Mn1/

3)0.9O2 battery with standard LiPF6 electrolyte and graphite

anode A) Maximum temperature for Oven Temperature 165-
180 ℃ B) Heating rate for Oven Temperature 175 and 180 ℃.

The thermal safety of LiCoO2 batteries with LiPF6/PC: DMC

electrolyte and standard graphite anode was also assessed in

this study to compare the influence of different electrolyte

materials. The results indicate that batteries undergo TR

process at 150 ℃ while this is a safe temperature for

Li1.1(Ni1/3Co1/3Mn1/3)0.9O2 batteries or even LiCoO2 batteries.

The temperature peak is less substantial in LiCoO2 batteries

with LiPF6/PC: DMC electrolyte compared to

Li1.1(Ni1/3Co1/3Mn1/3)0.9O2 batteries, but more intensive

compared to LiCoO2 batteries, especially at higher oven

temperatures. The results of temperature diagram and heat

rates for LiCoO2 batteries with LiPF6/PC: DMC electrolyte is

presented in Fig. 6.

Lastly, thermal safety of LiCoO2 batteries with standard LiPF6

electrolyte and Lithiated Li4Ti5O12 anode is assessed in this
study to compare the influence of different anode materials.
The results indicate that batteries undergo TR process at 160
℃. LiCoO2 batteries with Lithiated Li4Ti5O12 anode show less
intensive TR process compared to all the previous battery
types. This is evident from comparison of temperature peaks
for different battery materials. The results of 
temperature diagram and heat rates for LiCoO2 batteries 
with Lithiated Li4Ti5O12 anode are presented in Fig. 7.

 

 

 

 
Fig. 6. TR kinetic mechanisms for LiCoO2 battery with LiPF6/

PC: DMC electrolyte and graphite anode. A) Maximum
temperature for Oven Temperature 140-200 ℃ B) Heating

rate for Oven Temperature 150 and 160 ℃.

4. CONCLUSIONS

In this study thermal stability of different battery materials was

evaluated for li-ion batteries under thermal abuse conditions.

A LiCoO2 battery with standard LiPF6 electrolyte and

graphite anode is selected for oven test as the basic battery.

Furthermore, a Li1.1(Ni1/3Co1/3Mn1/3)0.9O2 cathode, LiPF6/PC:

DMC electrolyte and lithiated Li4Ti5O12 anode is selected to

assess the effect of different cathode, electrolyte and anode

material on the thermal stability of the cell during thermal

abuse conditions respectively. The results of temperature

evolution and heat rate diagram are reported and comparison

between different battery materials has been drawn.

It is shown that unlike batteries with LiCoO2 cathodes with

temperature threshold of 150 ℃, Li1.1(Ni1/3Co1/3Mn1/3)0.9O2

batteries do not undergo TR process at oven temperatures

below 170 ℃. However, the temperature peaks are more

substantial in batteries with this type of cathode. Moreover, the

temperature peak is more intensive in LiCoO2 batteries with

LiPF6/PC: DMC electrolyte compared to the same battery with

standard electrolyte but less intensive compared to

Li1.1(Ni1/3Co1/3Mn1/3)0.9O2 batteries. In addition, batteries with

Lithiated Li4Ti5O12 anode show less intensive TR process

compared to all the previous battery types.
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Fig. 7. TR kinetic mechanisms for LiCoO2 battery with

standard LiPF6 electrolyte and Lithiated Li4Ti5O12 anode A)

Maximum temperature for Oven Temperature 140-200 ℃ B)
Heating rate for Oven Temperature 160 and 170 ℃.

The result of this study provides battery safety researchers with

new insights into the thermal stability of different battery

types. Further investigation into the assessment of battery

materials thermal stability will foster the EV battery safety.
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Abstract: This paper assesses the impact of increasing wind power production and energy storage 

systems on grid resilience in Sweden. Wind power currently makes up 17% of Sweden’s electricity mix, 

and this share is expected to rise significantly in the coming decades as Sweden aims for 100% renewable 

energy generation by 2040. However, the variable and intermitted output can negatively impact grid 

stability. A microgrid model is developed, incorporating a wind turbine, battery storage, power grid, and a 

representative demand profile. Wind speed data is analysed to select profiles representing high and low 

variability, with variance used as a metric for resilience. Planned production is constructed in 12-hour 

intervals based on wind speed forecasts. The model compares grid dependency and electricity delivery 

with and without battery storage of varying capacities. The results show that battery storage reduces grid 

interactions and grid dependency. Furthermore, it aligns actual wind power production with the planned 

production profile. Optimisation analyses find that minimising operational costs and battery usage 

increases grid reliance while minimising costs and grid supplies provides a more stable supply but 

overuses batteries. Sensitivity analysis demonstrates higher grid dependency in high-variance wind 

conditions. The paper contributes to understanding how to enhance wind power resilience through 

improved production planning and battery integration. It proposes using variance analysis in wind profile 

selection and identifies trade-offs between system stability, costs and battery lifespan under different 

optimisation strategies.

Keywords: wind power, planned production, battery storage, resilience, Sweden

1. INTRODUCTION 

Sweden primarily relies on hydropower and nuclear energy for 

domestic electricity production (The Swedish Energy Agency, 

2023). In 2020, renewable energy sources contributed to 92% 

of Sweden’s electricity production, with hydropower 

accounting for 45%, nuclear power for 29%, wind power for 

17% and solar power for 1%. The remaining 8% was generated 

through combined heat, power, and industrial processes. 

Globally, there has been a rapid increase in the adoption of 

wind power (Benitez, Benitez and van Kooten, 2008), a trend 

mirrored in Sweden. The installed capacity of wind power in 

Sweden increased from 3,487 GWh in 2010 to 27,536 GWh in 

2020, a growth attributed partly to supportive renewable 

electricity policies (IEA, 2019). Sweden aims to achieve 100% 

renewable energy production by 2040, while still retaining 

nuclear energy as an option (The Swedish Energy Agency, 

2023). However, this goal is complicated by the predicted rise 

in energy demand over the coming decades, driven by various 

factors including emissions reduction, industry growth, 

hydrogen production, and the electrification of transportation 

and the steel industry (Holmberg and Tangerås, 2023). To 

address this growing demand, it is expected that wind energy 

production will need to increase over the coming decades 

(Ministry of the Environment and Energy, 2018). Current 

projections indicate that the installed capacity of wind power, 

which stood at 12,100 MW, is expected to rise to 18,500 MW 

by 2030 and 33,300 MW by 2040 (Swedish Wind Energy 

Association, 2021). Integrating wind power into the electricity 

grid presents several challenges due to its inherent weather-

dependent nature, which results in variable and unstable power 

output (Zhao et al., 2015; Reddy, 2017). This variability may 

adversely affect the stability and performance of the electric 

power system, causing frequency and voltage disturbances that 

may lead to system shutdowns (Li et al., 2021). Additionally, 

the intermittency of wind power affects market mechanisms 

for electricity trading, as these mechanisms rely on accurate 

production planning forecasts. Inaccuracies can lead to price 

fluctuations in electricity prices, particularly as wind power 

penetration rises (Peizheng Xuan et al., 2019). The primary 

goal of grid operation is to meet electricity demand, however 

variable wind power output complicates this objective. 

Accurate forecasting of production and demand is crucial for 

determining the required amount of dispatchable electricity. 

Despite advancements in forecasting techniques, errors are 

inevitable, necessitating power reserves for grid operators 

(Michiorri et al., 2018), ultimately hindering the integration of 

wind power (Zhao et al., 2015). One proposed solution to 

mitigate these grid issues is combining wind power with 

energy storage systems (ESS). ESS can provide the necessary 

flexibility to smooth out the variability in wind power output 

(Zhao et al., 2015; Michiorri et al., 2018; Barra et al., 2021). 

Previous research has explored various aspects of ESS 

integration: Li et al. examined short-term “power-smoothing” 

applications utilising high-power ESS that rapidly respond to 
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high power outputs (Barra et al., 2021), Sperstad and Korpås 

et al. investigated the optimal scheduling of ESS in grids 

with large renewable energy shares, developing a 

framework to avoid suboptimal operations (Sperstad and 

Korpås, 2019). Additionally, M. Ghazipour and M. Abardeh 

et al. developed a stochastic optimisation approach for 

optimising the location and size of ESS in energy systems 

(M. Ghazipour and M. Abardeh, 2019). These studies 

collectively aim to enhance the understanding of ESS 

from various technological perspectives, addressing 

the volatile energy output of renewable energy sources 

(RES) and mitigating their adverse effects on the energy 

system. However, none of these studies specifically address 

ensuring a guaranteed electricity supply, a critical factor as 

the increase in wind power reduces the amount of 

controllable electricity supply. This aspect is vital in the 

broader context of energy system resilience.

Acknowledging resilience is increasingly crucial within the

ongoing energy transition, despite its varied definitions across

multiple disciplines. Fundamentally, resilience revolves

around the capacity to cope with disruptive events (Gasser et

al., 2021; Jasiūnas, Lund and Mikkola, 2021). One definition

of resilience involves minimising service disruptions by

anticipating, resisting, absorbing, adapting to and recovering

from disruptive events (Ahmadi, Saboohi and Vakili, 2021).

Gasser et al. define resilience as the capacity of systems to

withstand stress, pressure or disturbance without loss of

function (Gasser et al., 2021). This research aims to develop a

microgrid model that integrates wind power and battery energy

storage, assess the role of battery storage in mitigating wind

power variability, and analyse the system's resilience. By

evaluating performance during disruptive wind events, this

study aims to enhance the broader understanding of how ESS

can enhance the resilience of renewable energy systems,

ensuring a more stable and reliable electricity supply. The

central question addressed is: How can battery energy storage

mitigate volatility and increase the integration of wind

turbines?

2. METHODOLOGY

This research employs a case study representative of recent

developments in Eskilstuna, Sweden. The primary

components of the microgrid model include a wind turbine,

battery storage, a power grid and a representative demand

profile. Two configurations will be modelled, to assess the

value added by battery storage. These configurations are

modelled using Modelon Impact, a systems modelling and

simulation program. Modelon Impact utilises Modelica’s core

modelling and simulation capabilities. Modelica is an object-

oriented programming language. Modelica allows for a

detailed description of the behaviour of physical components

and their interactions within the system.

2.1 Components and controls

Figure 1 illustrates the microgrid model. The Wind and

Temperature blocks contain wind speed and air temperature

data, respectively. The Temperature block determines the air

density, directly affecting the wind power produced in the

Turbine block. By incorporating these data, the model

accounts for the impact of temperature-induced density

variations on wind power generation. The power generated by

Fig.  1. The microgrid model developed with Modelon Impact.

the wind turbine is then directed to the Converter block which

converts the alternative current (AC) to direct current (DC).

This DC power flows through the transformer- which converts

the high voltage to a lower voltage suitable for distribution

within the grid. The electricity is delivered to the Demand

block, representing a representative demand profile. The

Demand and Demand profile blocks represent the forecasted

power demand. The Grid block can provide and receive

unlimited electricity to balance the grid. This setup facilitates

analysis by comparing the actual power output against the

planned output. An important component of the microgrid

model is the Control unit. The operation of the battery is based

on the net amount of power denoted by Pnet, described in (1).

Pnet = Pwind - Pdemand (1)

 

The Control unit measures Pnet at each time point and 

operates according to the following control scheme.  

• If Pnet < 0, the required power is generated by 

discharging the battery, or bought from the grid 

• If Pnet > 0, the surplus is either used to charge the 

battery sold to the grid or both. 

2.2 Wind power  

The theoretical power that can be extracted from the wind by 

a wind turbine is proportional to the wind speed to the power 

of three (Kim, 2013). This relation is described in (2), where P 

represents the total wind power production by the turbine, 

measured in watts. The total area the turbine blades cover in 

one rotation is described by A, the swept area of the wind 

turbine in m², ρ is the density of the air in kg/m³ and v 

represents the velocity of the wind in m/s, Cp is the power 

coefficient, defined as the ratio of power extracted by the wind 

turbine from the energy available in the wind. 

 

𝑃 =
1

2
A 𝜌 𝑣3𝐶𝑝 (2) 

  

In addition to calculating the theoretical wind power, a suitable 

wind speed profile is required. Moreover, a thorough wind data 

analysis is needed to capture resilience in a wind speed profile. 

Rapid and large changes in wind speeds are identified as 

disruptive events. One example of such events is sudden drops 

in high wind speeds. These abrupt changes can be quantified 

through statistical measures such as variance. Variance 

assesses the spread of data points relative to their average in 

the data set. Specifically, in wind speed analysis, variance 

indicates the degree of variability in wind speeds over time. 

Greater variability, as indicated by a higher variance signifies 
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an increased need for system resilience. A timeframe of one 

week is selected for the modelling phase to calculate the 

variance of the wind speed of the dataset. Hence the variance 

will be calculated for each week of the dataset.  The formula 

for the variance is shown in (3). Where xi is each value in the 

data set, x is the mean of all values in the data set and N is the 

number of all values in the data set (Hui, 2018). 

𝜎2 =
(𝑥𝑖 − �̅�)2

𝑁
 (3) 

The selection of wind speed profiles in this research is based 

on several criteria. First data was sourced from a location of 

importance to the research region. Additionally, the profiles 

were chosen to represent a range of scenarios including 

average, low and high-wind conditions, to assess the system’s 

resilience under diverse operational conditions. 

2.3 Planned production 

Forecasting wind speed will become increasingly paramount 

as future wind farms function more like conventional power 

plants. This transition implies a shift towards more accurate 

planning of electricity production, leading to the development 

of guidelines focused on reliability to ensure the safe operation 

of wind farms. Several factors are driving the shift in the role 

of wind power. Firstly, wind power’s exposure to volatile 

wholesale electricity prices changes its economic dynamics. 

Given the relatively low marginal cost of producing wind 

power, increased wind power tends to decrease electricity 

prices. Secondly, governmental support schemes, such as feed-

in-tariffs (a guaranteed cost-based purchase price for 

electricity), are being replaced by auctioning systems, 

incentivising wind farm owners to prioritise profit 

maximisation over pure electricity production volume. This 

shift underscores the growing importance of accurate wind 

speed forecasts in optimising wind farm operations and 

maximising profitability (Kölle et al., 2022). Wind speed 

forecasts are constructed for various timeframes depending on 

the specific application. These include very short-term 

forecasts (a few seconds to 30 minutes), short-term forecasts 

(30 minutes to 6 hours ahead), mid-term forecasts (6 hours to 

a day ahead), and long-term forecasts (1 day to a week or 

more). Different methods, such as machine learning or 

statistical approaches are employed for generating these 

forecasts (Khosla and Aggarwal, 2022). In this research, a 

mid-term forecast for a half-day ahead is used, with wind 

speed predictions generated every 12 hours. The variables used 

in the planned production profile are depicted in (4) and (5), 

where vaverage represents the average wind speed, and 𝑉i 

represents the hourly wind speed values i = 1,2, …, 12. The 

choice of a 12-hour planning interval aligns with the timeframe 

of day-ahead wholesale electricity price data, ensuring 

coherence between the forecasting parameters and pricing 

data. 

 

𝑣𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
1

12
∑ 𝑣𝑖

12

𝑖=12
 (4) 

 

 

𝜌𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
1

12
∑ 𝜌𝑖

12

𝑖=12
 (5) 

2.4 Optimisation 

The optimiser minimises the total cost, as presented in (6). 

Where L(x,u,p) represents the integral cost depending on the 

process state x, the controls u, and the plant parameters p. State 

variables x denote the dynamic state over time, such as the 

state of charge (SOC) of the battery, the power output of the 

wind turbine or the electricity consumption of the grid. Control 

variables u are decision variables that can be adjusted to 

optimise the system performance, such as the charging and 

discharging rate of the battery or the import and export to and 

from the grid. Parameters p are fixed values for a system, 

including the power efficiency of the turbine, battery capacity, 

electricity prices, or demand profiles. The cost integrand 

𝐿(𝑥, 𝑢, 𝑝) can be further decomposed into two terms, presented 

in (7). Costy typically refers to the operational cost per unit 

time (OPEXsec), while costu penalises the controls u (du²/dt) to 

promote smoother and more stable operation. 

𝑚𝑖𝑛𝑢(𝑡),𝑝𝑐𝑜𝑠𝑡 = ∫ 𝐿(𝑥, 𝑢, 𝑝) 𝑑𝑡
𝑇𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

0

 (6) 

Costu can be defined as minimising the battery’s aggressive 

charging and discharging behaviour, thus extending its 

technical lifetime. Generally, the penalty of costu is much 

lower than the operational cost costy. Dynamic optimisation 

aims to find the optimal trajectory u(t) while satisfying the 

system constraints. Modelon Impact utilises the Interior Point 

OPTimiser (IPOPT) to determine the best next step. IPOPT 

gradually narrows down search barriers within a feasible 

region to approach an optimal solution without reaching the 

boundary until close to finding it.  

𝐿(𝑥, 𝑢, 𝑝) =  𝑐𝑜𝑠𝑡𝑦 + 𝑐𝑜𝑠𝑡𝑢  (7) 

  

In this research, different objectives are chosen to be 

minimised. The first scenario combines operational cost and 

battery controls to minimise total cost while minimising 

battery operation to extend the technical lifetime. The second 

scenario considers operational cost and the power output of the 

grid, aiming to minimise grid dependency. In Table 1 the 

optimisation scenarios are presented. 

Table 1: Optimisation scenarios 

Scenario Costy Costu 

OPEXsec, controls OPEXsec 
Battery(Power charge * 

Power discharge) 

OPEXsec, power grid OPEXsec Grid power 

2.5 Data 

This section outlines the key properties and sources of the time 

series data used in the research, which include air temperature, 

wind speed, electricity prices, and demand profiles. The 

following tables provide a summary of the data.   
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Table 2: Demand profile data 

Parameter Resolution Period Unit 

Demand 

profile 

12 hour 

interval 
Weekly [MW] 

 

Table 3: Time series data 

 
Parameter Unit Range Period Source 

Air 

temperature 
[K] 

01/01/2010 – 

01/10/2023 
Hourly 

(SMHI, 

2023) 

Wind speed [m/s] 
01/01/2010 – 

01/10/2023 
Hourly 

(SMHI, 

2023) 

Electricity 

price 

[€/M

Whe] 

01/01/2015  

– 01/12/2023 
Hourly 

(ENTSO-E, 

2023) 

2.6 Modelling assumptions

The battery capacity is assumed to remain constant, meaning

that the battery’s efficiency does not degrade over the

simulation period of one week. This assumption is reasonable

given the short simulation period, where the number of

charging cycles during this time is insufficient to cause the

battery capacity to degrade. Additionally, unlimited import

and export from and to the grid is assumed. However, in real-

life, the grid may encounter congestion, where the

transmission network cannot meet the demand. In such cases,

assets like wind farms may receive compensation from

Svenska kräftnat (Transmission System Operator) to adjust

production or decrease consumption accordingly (Holmberg

and Tangerås, 2022). The total installed cost of batteries

decreases as the capacity increases. Most costs are calculated

for a battery system with a 2-hour duration, meaning the time

it can deliver its full power capacity in MW. For example, a

battery with 2 MW and a 2-hour duration has a capacity of 4

MWh. In the case study, the battery system has a 1:1 power

ratio  (MW:MWh). Data on batteries with a 1-hour duration is

limited, therefore it is assumed that the cost of batteries for

different capacities is based on 2-hour duration systems.

Although the transmission capacity of the power grid is

assumed to be unlimited in this research, in reality, exceeding

transmission capacity can result in penalties for wind farm

owners. For example, if the 220 kV transmission line

connecting the wind farm to the grid is exceeded, penalties

may be imposed on the wind farm owner for not meeting

planned production. To mitigate this, batteries with longer

durations and different power ratios could enable more

effective operating strategies. A 1:1 power ratio is selected,

allowing the battery to discharge completely within one hour.

3. RESULTS

3.1 Wind profile selection

The wind speed variance at hub height is calculated from 2010

to 2023, plotted in Fig. 2. Each bar in Fig 2. represents a

week and its corresponding variance value. A higher variance

indicates greater variability in wind speed, while a lower value

suggests more stable wind conditions. The highest and lowest

variances are 51 and 0, respectively. It is important to note that

the variance is rounded up towards the nearest integer. The

variance is calculated at hub height, as the wind speed at this

height determines the wind turbine's power output.

3.2 Planned production

It is essential to establish a baseline by examining the wind

power output generated solely by the wind farm, without any

battery storage. This baseline gives insight into how accurate

the actual production of the wind turbine is compared to the

planned production. Furthermore, the interaction between the

wind turbine, power grid, and planned production will be

visible. In Fig. 3 the produced power of the wind turbine is

presented. The planned power production and the actual power

production are not balanced most of the time. During periods

of imbalance, the electricity grid functions as a source and sink

of electricity. Analysis indicates that 65% of the total

exchanged electricity flows into the systems and 35% is

delivered to the grid. Integrating battery storage aims to

decrease grid interactions, especially the delivered electricity

to increase power system autonomy. Battery integration with

a wind turbine increases power output. This influences the

total amount of electrical energy the grid has to provide. The

total electricity delivered is presented in Fig. 4. The blue bar

represents the delivered electricity in the scenario when only

the wind turbine operates, and the yellow bars indicate the

scenario in which both the wind turbine and battery are in

operation. With increasing battery capacity, there is a notable

decrease in the total energy demand from the grid. For

instance, in the wind turbine-only scenario, the grid delivers

430 MWh. However, with 1 MW of installed battery capacity,

the grid delivers 37 MWh less. At 30 MW installed capacity,

the grid provides a total of 183 MWh.

3.3 Battery storage

The straightforward observation of decreased electricity

delivered by the grid with increased battery capacity can be

further analysed when looking at capacity efficiency. Capacity

efficiency is defined as the difference between the delivered

electricity by the grid in a scenario with only wind turbines and

the electricity delivered by the grid when batteries are

installed, divided by the total battery capacity. It measures how

effectively the battery is utilised. For example, in Fig. 4, the

total electricity delivered by the grid in the wind turbine

scenario is 430 MWh, and the delivered electricity for a 2 MW

battery is 382 MWh, resulting in a capacity efficiency of

430−382= 24 MWh/MW. In Fig. 5 the capacity efficiency

 

Fig.  2. Variance of the wind speed at hub height, from 2010 until

2023. The chosen wind profile is indicated in red.
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for each battery size is plotted against the battery capacity. It

can be observed that as battery capacity increases the capacity

efficiency goes down. This implies that increasing battery

capacity has diminishing returns in terms of its effectiveness

in reducing grid dependency.

3.4 Optimisation

The results of the two optimisation scenarios in Table 1 are

presented in Fig. 6 and compared with the main scenario

from Fig. 4, which involves the simulation with the microgrid

controller. The control strategy of the microgrid controller, as

outlined in (1) focuses on maintaining grid balance by

prioritising maximum utilising the battery while minimising

reliance on the grid. Unlike optimisation strategies, this

method does not involve optimising specific variables but

rather adopts a more direct approach to grid management. The

optimisation analysis reveals that integrating 1 MW of battery

capacity reduces grid-supplied electricity when minimising

operational cost and battery controls. Grid-delivered

electricity shows a steep increase after installing 10 MW

battery capacity. This observation suggests a trade-off,

wherein efforts to smooth battery controls to extend battery life

elevate the reliance on the grid. In the scenario aimed at

minimising the operational cost and grid power output, the

dependency on grid-supplied electricity remains relatively

stable for each additional battery capacity. However,

exceptions are noted with the installation of 2 MW and 30 MW

battery capacities, where an increase in grid dependency is

observed. Figure 7 presents the operational cost across all

scenarios. In each scenario, the operational cost of the wind

turbine and the battery are constant as they incur fixed

operational expenses. Conversely, the grid’s operational costs

 
Fig. 5. The impact of battery capacity on the total amount

of the grid’s delivered electricity.

 

vary and depend on the power output and electricity price. The

optimisation analysis reveals that incorporating up to 2 MW

of battery storage leads to a small decrease in operational cost.

Compared to the main scenario, incorporating 10 MW, 20 MW

and 30 MW of battery storage leads to higher operational costs.

The SOC of the battery is presented in Fig. 8. In the

optimisation scenario aimed at minimising the operational cost

and grid supply, the SOC begins at 0.9 and gradually decreases

until 0.1 over the simulation period. Although continuous

charge and discharging cycles occur, they constitute only a

small fraction of the total battery capacity. In the optimisation

scenario of the operational cost and battery controls, the SOC

exhibits different patterns of battery utilisation. A more regular

pattern is observed in the SOC of the battery, especially in the

first two days of the simulation. The small operational cycle

during day six indicates a degree of flexibility in deviating

from the optimised battery controls to minimise operational

costs. Compared to battery controls a higher penalty is

associated with optimising operational costs. In contrast, the

SOC during the simulation with the microgrid controller

indicates a more frequent utilisation of the battery, aligning

with the result of Fig. 6, which suggests reduced grid

dependency. Specifically, the microgrid controller simulation

experiences a total of fourteen operational cycles, whereas the

battery controls optimisation scenario only experiences a total

of eleven operational cycles. This indicates a trade-off wherein

the grid can be stabilised at the expense of potentially

overusing the battery, or reducing stress on the battery by

increasing dependency on the grid.

 
Fig. 3. The actual and planned power production of the wind

farm.

 
Fig. 4. The total electricity delivered by the grid with and without

battery storage.
Fig 6. Delivered power grid electricity for the main and

Optimisation scenarios.
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3.5 Sensitivity analysis

To measure the impact of variance on the results, different

wind speed profiles and their 12-hour interval average are

presented in Fig. 9. What can be observed from this analysis is 

that the high variance profile exhibits more pronounced

peaks and troughs in wind speed throughout the week. High

peaks are observed on the first and third days of the simulation.

The low-variance profile demonstrates a more stable pattern

and gradually increases from 0 m/s on the first day to

approximately 5 m/s by the end of the week. Quantitatively,

the high variance profile has a variance of 16.01 and the low

variance has a value of 2.27. Figure 10 presents the electricity

delivered by the grid in the high and low-variance scenarios,

showcasing a similar trend to that of the main scenario. In the

high variance scenario, more electricity is delivered by the grid

in both the wind turbine-only simulation and the incorporation

of each additional battery storage capacity. This observation

can be attributed to the deviations between planned and actual

production caused by the high variance in wind speed. The grid

intervenes to align the actual with planned production,

resulting in an increased demand for electricity from the grid.

Conversely, in the low variance scenario, less electricity is

required from the grid as the actual production closely aligns

with the planned production due to lower variance in wind

speed. Consequently, there is a reduced need for the grid to

 
Fig. 9. The selected wind speed profiles and their average wind

speeds.

 

intervene to align the two. For instance, in the wind turbine-

only simulation, the electricity delivered by the grid is 116 

MWh in the low variance scenario but decreases to 0 MWh 

when 30 MW of battery capacity is installed, this indicates the 

significant impact of variance on grid dependency and the 

effectiveness of battery storage mitigating it. In addition to 

analysing variations in wind speed, it is essential to consider 

the potential effects of model prediction uncertainties on the 

system’s performance. Prediction errors, whether in wind 

speed or demand can lead to imbalances in supply and demand, 

compromising grid stability. Errors in forecasting can lead to 

inefficient dispatch resulting in increased operational costs and 

can reduce system efficiency. Storage sizing depends on 

accurate forecasts, if errors are not accounted for, resilience 

strategies may be underutilized.     

 

 
Fig. 7. The operational cost of the simulation and Optimisation

scenarios for every battery size.

 

4. DISCUSSION

4.1 Battery optimisation

Michiorrit et al. researched strategies to minimise power errors

in wind turbines and optimise battery storage sizing in a 9 MW

wind farm. The wind farm owner provided to the transmission

system operator with 30-minute interval power predictions. A

5 MW power-rated battery, resulted in high penalties and

periods of disconnection. To address this, a sizing

methodology was developed that generated error time series

characterised by their autocorrelation. This led to an optimal

capacity. A smaller-sized battery performed better because it

effectively absorbed prediction errors correlated over

timescales of around 6 hours, rather than compensating for all

the differences between actual and predicted output over time.

Consequently, a smaller battery reduced penalties while still

achieving the target level of allowable errors, allowing it to be

utilised to its full technical potential (Michiorri et al., 2018).

In this research, no error range is employed for the operational

strategy, resulting in immediate battery utilisation whenever

there is a misalignment between predicted and actual power.

This complicates the comparison between the study of

Michiorri et al and the current research. However, both studies

agree that a smaller battery can better utilise its full potential.

This is demonstrated in the present research, where the battery

capacity increases and the capacity efficiency decreases.

4.2 Production planning interval

This research shows that a 12-hour interval accumulates

production planning errors in a high-variance scenario,

resulting in increased electricity from the grid. As the variance

decreases, the forecast error also decreases, suggesting that a

12-hour forecast interval is more suitable for low-variance
Fig. 8. The battery SOC during the simulation run with the wind profiles. In contrast, high-variance wind profiles could

microgrid controller and the optimisation runs. 
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benefit from a narrower interval. Y et al. investigated the

optimisation of a self-disciplined interval of a wind farm.  This

interval is calculated assuming an error distribution around the

mean of the predicted power output. An estimation technique

models the historical error distribution shape between the

actual and predicted wind power output. This interval width is

optimised using the IPOPT. A case study analyses a 10-minute

simulation interval to validate this method. Optimised battery

storage technology supplies the necessary power to maintain

this interval. It was found that the optimised method can

effectively improve the self-disciplined level. Showing shorter

intervals is an effective way of constructing robust production

planning. A limitation of this research is the exclusion of

battery degradation. Furthermore, only one case study is used

and the method does not consider any error in actual wind

power production (Yu et al., 2020).

4.3 Policy decisions

Policy decisions should focus on resilient energy

infrastructure, with investments made in battery optimisation

to achieve cost-effective grid independence. Furthermore,

policies should address grid congestion and provide

compensation mechanisms for energy producers. Increase

penalties for overproduction to encourage efficient energy

management. Furthermore, high upfront costs and varying

electricity prices are barriers to large-scale deployment of

battery storage. Governments can provide subsidies for stable

pricing mechanisms and long-term contracts to ensure

financial security.

5. CONCLUSIONS

This research aims to investigate how battery storage can

mitigate the volatility of wind power and its implications for

the resilience of the Swedish energy system upon integration

into the power grid. Given the growing trend of wind power

with battery storage in Sweden, this study contributes to our

understanding of improving wind turbine resilience through

better production planning. Presented below are the main

findings stemming from this research:

 

• Incorporating battery storage significantly reduces 

dependency on the power grid, especially in the 

lower-variance wind profiles.  

• Enhanced utilisation of batteries is observed as 

battery capacity decreases. 

• The research introduces a method for selecting wind 

speed profiles based on variance analysis, which 

captures the dynamic nature of wind behaviour. This 

approach identifies disruptive events through 

variance, providing a nuanced understanding of wind 

variability and system resilience.  

• Enhancing system resilience by reducing grid 

dependency can increase capital and operational 

costs. Consequently, this leads to a higher variability 

in the SOC of the battery while smoothing the power 

grid supply. This creates a trade-off between 

stabilising the grid by heavily using the battery and 

protecting battery life by relying more on the grid. 

• High-variance wind speed profiles lead to greater 

discrepancies between planned and actual 

production, requiring more grid intervention. In 

contrast, low-variance profiles aligned better with 

forecasts, reducing grid dependency.  

 

The research identifies a clear trade-off between battery usage

and grid dependency. While battery integration reduces grid

reliance, it also necessitates careful consideration of battery

control strategies to prevent increased operational costs and

ensure battery longevity. This insight is crucial for optimising

microgrid performance and achieving a more autonomous,

cost-effective, resilient power system.
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Abstract: In offshore oil and gas production gas turbines are used for both power production
and to provide process heat. CO2 emissions from the gas turbines accounts for about 25% of
the total Norwegian emissions and installing a bottoming cycle to produce power by recovering
heat from the gas turbine exhaust is one way to reduce these missions. When installing a
steam bottoming cycle offshore, the total weight and size will be important, and there is a
need for a compact heat recovery steam generator (HRSG). A compact HRSG will often need
to be designed with smaller tube diameters than conventional on-shore steam generators. To
increase confidence in the compact design, the heat transfer and pressure loss models need to
be accurate for the relevant geometry ranges. In this work, a compact Once Through Steam
Generator (OTSG) is designed using optimisation procedures where the total weight of the
steam generator has been minimised for a desired duty with restrictions for pressure losses.
A range of correlations from the literature were used for the calculation of the performance.
The results from the optimisation show that the ’heaviest’ results were about three times the
minimum weight than the ’lightest’. To increase confidence in the results, and to provide a
recommendation for design models, a validated CFD model was used to perform a numerical
analysis of the optimised geometry and compare this with the correlations.

Keywords: heat exchanger optimization, finned tube bundle, heat transfer, pressure drop, CFD

1. INTRODUCTION

The oil and gas industry is a significant contributor to
the Norwegian overall emissions, with offshore installations
accounting for a quarter of total greenhouse gas emissions.
Most of these emissions come from gas turbines used on the
platforms. To reduce CO2 emissions towards 2030, the in-
stallation of steam bottoming cycles for power production
has been proposed as illustrated in Fig. 1. Another technol-
ogy to reduce emissions from gas turbines is to use carbon-
free fuels like for instance mixtures including ammonia
and hydrogen. Then the fuels must be imported off-shore
and installing a bottoming cycle will have considerable
fuel-saving potential. Weight and size of these cycles are

Exhaust

OTSG

Water

Steam

To ambient

Gas turbine
Bottoming

cycle

Steam
turbine

Condenser

Pump

Fig. 1. Gas turbine with a steam bottoming cycle.

currently limiting factors for their widespread implementa-
tion, and efforts have already been made to develop designs
1 This publication has been funded by HighEFF - Centre for an
Energy Efficient and Competitive Industry for the Future, an 8-year
Research Centre under the FME-scheme (Centre for Environment-
friendly Energy Research, 257632/E20). The authors gratefully ac-
knowledge the financial support from the Research Council of Nor-
way and user partners of HighEFF.

that meet these criteria. Previous studies have shown that
using small diameter tubes in the heat exchanger is one of
the key factors in achieving compact design. However, the
design of the heat exchanger currently relies on empirical
correlations that are not necessarily validated for offshore
geometries. As a result, designs can vary greatly depending
on which correlation is chosen. Mazzetti et al. (2021) and
Deng et al. (2021) developed an optimisation procedure for
steam bottoming cycle design, which demonstrated that
the heat recovery steam generator (HRSG) was the main
contributor to the total weight of the cycle. They showed
that optimising the HRSG with minimum weight as the
objective, the lowest possible tube diameter was always
selected In Montañés et al. (2023), a similar optimisation
study for a combined heat and power bottoming steam
cycle was done. Here, typical available tube diameters and
wall thicknesses were chosen for the HRSG while the re-
maining geometry parameters were optimized. The results
showed a clear trend on how the obtained minimum weight
increased with the selected tube diameter. The fin height
and the fin- and tube spacing were different for each tube
diameter. To increase the confidence in these results and
alternative to experimental work, numerical studies with
CFD can be an option. Lindqvist and Næss Lindqvist and
Næss (2018) developed a steady-state CFD model for plain
and serrated fin tube bundles, which was validated against
available experimental data. The layout angle was limited
to 30◦, and both solid and serrated fins were investigated.
A periodic domain was used, where a single tube row
is modeled. The results were compared to a simulation
where 8 tube rows were modeled, and it was found that
the periodic model provided near identical results at a
fraction of the computational cost. The numerical results
were also compared with some widely used correlations,
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showing that the CFD model generally was more accurate
than the correlations, being within 20% of experimental
values. It was found that none of the investigated empirical
correlations yielded results similar to those of the CFD
model for all geometries.

The current author, Espelund et al. (2022), expanded on
this work by including tube bundles also with larger layout
angles. It was found that the steady-state approach did not
converge for larger angles, but transient simulations gave
accurate results. Comparisons with experiments showed
that the transient CFD model agreed within 20%.

In this work, an optimised set of design parameters using
the different exhaust side heat transfer and pressure loss
models from Table 1 are found and the different minimum
weights are compared. In earlier studies of compact Once
Through Steam Generators (OTSG’s) by Mazzetti et al.
(2021), Deng et al. (2021), and Montañés et al. (2023),
the ESCOA correlations have been used as the basis for
the thermal design. Therefore, the thermal performance
(duty and exhaust side pressure loss) when using the
other models with the optimized ”ESCOA geometry” has
been evaluated as a pure simulation. Simulated Nu- and
Eu-number are compared to the results from the CFD
analysis.

2. GEOMETRIES AND CORRELATIONS

The heat recovery heat exchanger in a steam bottoming
cycle can be a Once Through Steam Generator (OTSG).
The OTSG geometry consists of finned tube bundles,
either as a single core or divided into different bundles,
each representing the economizer, the evaporator, and the
superheater. In this case study, a single tube bundle is used
as the base case. Relevant OTSG geometry parameters are
illustrated in Fig. 2. A staggered tube pattern is used
with a fixed layout angle of 30◦ as shown in Fig. 2(a).
In this study, only models for solid round fins have
been evaluated. Figure 2(c) shows the notation for the
number of passes and rows per pass. The number of tubes
per row Nt, is the number of tubes along a header.

The performance of the OTSG is calculated as a cross-
counter flow heat exchanger with exhaust flowing upward.
The exhaust flow is flowing across 60 tube rows (30 · 2).
Each parallel circuit, ”tubes per row”, is defined to have
equal performance so the problem is 2-dimensional. Each
tube pass is divided into 20 sub-elements and the heat
balance between gas and water/steam is solved for each
of the the 1200 heat exchanger elements. For each sub-
element the transferred heat, Q, is calculated from

Q = U ·A ·∆T. (1)

The overall heat transfer coefficient U (W/(m2 K)) is
calculated from (2) based on internal and external heat
transfer coefficient, αi and αo, the tube side and fin side
surface areas, Ai and Ao, and the conductive resistance
through the tube wall, Rw.

U =

[
α

1

· Ao

Ai
+Rw +

1

αo

]
(2)

In the performance calculations, the correlation from Ben-
nett and Chen (1980) is used for the two-phase heat

transfer when evaluating αi in (2). Two-phase frictional
pressure loss is calculated with the Friedel (1979) cor-
relation. The extended surface ”apparent” heat transfer
coefficient αo in Eq. (2) is calculated from a correlation for
the Colburn j-factor or Nu-number that uses the detailed
fin and tube geometry into account. The derived heat
transfer coefficient is the αc in Eq. (3) where ηf is the
fin efficiency, Af is the fin surface area and Ao is the total
outside surface area.

αo =αc ·
[
1− (1− ηf )

Af

Ao

]
(3)

The relations between the heat transfer coefficient αc, the
j-factor, Stanton- (St), Prandl- (PR) and the Nusselt (Nu)
-number are shown in Eqs. (4) and (6).

j = St Pr2/3 = αc
Pr2/3

ρ · umax · cp
(4)

Nu =
αcdh
λ

(5)

Pr =
η · Cp

λ
(6)

where η (Pa s) is the dynamic viscosity, Cp (J/(kgK))is
the specific heat capacity, λ (W/(mK)) is the thermal
conductivity and dh is the hydraulic diameter. The Re-
number is based on the maximum velocity, umax inside
the tube bundle and with the hydraulic diameter as the
diameter at the fin base, namely

Re =
umaxdh

ν
. (7)

We have assumed L-fin where the fin base diameter, so
the hydraulic diameter, dh, is the outside tube diameter
do plus 2 · Ft where Ft is the fin thickness. The fin
efficiency ηf in Eq. (3) is calculated as recommended by
the correlation while the temperature difference ∆T in
Eq. (1) is calculated for the arithmetic mean temperature
difference between inlet and outlet fluid temperatures
on inside and outside. Since the performance calculation
model is called from an optimisation routine, we want
to avoid unnecessary iterations so the OTSG is solved
from the ”warm” end, following the exhaust flow from
the warm inlet. From a desired steam outlet temperature
and pressure, the calculation is done backward to the feed
water flow direction inside the tubes. When solved, the
unknown inlet state for the steam and outlet state for
the exhaust can be found. To solve the heat balance in
each integration step, the 2’nd order Heun’s method is
used to accurately predict the temperature difference and
the transferred heat, Q, from the warm to the cold end.
After the integration, the total heat duty and the pressure
losses for the exhaust and waterside are known and used by
the optimisation routine in the constraint evaluations. The
various correlations used for heat transfer and pressure loss
on the exhaust side are listed along with the in Table 1

The pressure drop is calculated using the Euler number
Eu, which is defined as the pressure drop across a tube
row normalized by the dynamic pressure,

Eu =
∆p

1
2ρu

2
Fmin

(8)
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ws, hs
β = 30◦

Pt

Gt

Pl

Fh

do

(a) Staggered tube pattern showing solid and serrated fins

Fp Ft

(b) Tubes with circular fins

1 pass

2 rows per pass

W

(c) Number of passes and rows per pass

Parameter Unit Value

Fin height, Fh mm 4.0 - 25
Fin pitch, Fp mm 2.0 - 8.0
Fin thickness, Ft mm 1.05
Tube outer diameter, do mm 25.4
Wall thickness mm 2.11
Transversal/diagonal fin gap, Gt mm 1.5 - 100
Core width, W m 3.0 - 10.0
Number of passes, Np - 30
Rows per pass, Nr - 2
Tubes per row, Nt - 30 - 80
Layout angle, β ◦ 30
Transversal tube pitch, Pt mm Calculated
Longitudinal tube pitch, Pl mm Calculated

(d) Fixed and variable design parameters for the OTSG

Fig. 2. Geometry definitions for the OTSG used by the design optimisation model.

where ∆p is the pressure drop across one tube row and
UFmin

is the velocity through the minimum flow area.

Table 1. List of evaluated correlations for out-
side heat transfer and pressure loss for round

solid fins

3. OPTIMIZATION PROCEDURE

The optimisation procedure is set up as a flowsheet optimi-
sation model with only the OTSG as a single unit model.
It is implemented in an in-house heat exchanger modelling
software by Skaugen et al. (2013). The optimisation was
done with the NLPQL model from Schittkowski (1986).
NLPQL requires a function for the calculation of an ob-
jective and functions for the calculation of all equality and
inequality constraints.

The optimisation model in this work is configured to min-
imise the weight of the OTSG in Fig. 1 for a given steam

production and duty. The steam turbine and other compo-
nents in the steam cycle are not included. The gas turbine
is a natural gas-fired gas turbine with around 30MW
power output. The exhaust flow rate is 86.1 kg/s with
a temperature of 510◦. The corresponding water/steam
boundary conditions used are: Feed water flow rate and
temperature of 10.2 kg/s and 17.0 ◦C. The inlet feed water
pressure is 29.5 bar.

The geometry design parameters, and their range, are
listed in Table 2d. These are the free optimisation vari-
ables for the problem.

The underlying heat exchanger model consists of the ther-
mal simulation model described in Sec. 2 combined with
weight calculation model for the fin and tube weights plus
an estimation for the total weight of the casing with plates,
beams, and insulation. So, for a set of geometry input
parameters, the free optimisation variables, the thermal
model finds the transferred heat and pressure losses while
the weight model estimates the total weight. The cal-
culated results are converted into constraints and objec-
tive for the optimisation routine. By minimising the total
weight, and not only the bundle weight, the model ensures
that the size and shape of the tube bundle will require
unnecessary large inlet/exit transition ducts for instance.
The tube bundle will typically account for about 50% or
less of the total weight for the OTSG. The optimisation
problem is defined in Table 2. The condition for the
required duty is the only equality constraint. NLQPL
evaluates the constraints and the objective function and

Correlation
Heat transfer
Pressure loss

Briggs & Robinson

Briggs and Young (1963)

Robinson and Briggs (1966)
Stasiulevicius Stasiulevicius et al. (1988)
PFR Rosenman (1976)
Mon Mon (2003)
ESDU Hewitt (1998) (ch 2.5.3)
ESCOA See. Ganapathy (2003)
Holfeld Holfeld (2016)
Lindqvist Lindqvist (2019)
Rabas Rabas et al. (1981)
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∂ui

∂x
j

= −1

ρ

∂p

∂x
i

+ νeff
∂2ui

∂x
jxj

+ Si, (10)

where p is the pressure field, ρ is the density and νeff
is the effective kinematic viscosity (accounting for both
molecular and turbulent viscosity). The turbulence model
by Spalart and Allmaras (1992) is used. Si is an external
driving force (corresponds to the pressure loss ∂p

∂xi
) to

drive the flow through the cyclic domain, as described by
Patankar et al. (1977).

The energy conservation equation is formulated using the
specific enthalpy h, viz.

∂(ρh+ eK)

∂t
+

∂

∂xi
(ui(ρh+ eK))−

Dp

Dt
= − ∂qi

∂xi
, (11)

where the heat flux is given by Fourier’s law qi =
ραeff ∂h/∂xi , where the effective thermal diffusivity is

defined as αeff = κeff/(ρcp) and eK = 1
2ρuiui is the

specific kinetic energy. Here κeff is the effective ther-
mal conductivity. In the solid region, the special case of
ui = Dp/Dt = 0 in Equation (11) is solved. The solid
region is also assumed to have constant thermal properties.

To reduce the time needed to reach pseudo-steady-state
conditions, steady-state simulations are run initially, using
the chtMultiRegionSimpleFoam solver. Once the average
fin temperature Tf stabilises, the steady-state simulation
is terminated, and the transient simulation is initiated. To
ensure converged results and a sufficiently long sampling
interval, the transient simulations were run for 30 fluid
exchange times τ = Pl/UF,max. Data were sampled for
τ > 15.

4.2 Geometry and discretization

A periodic domain is used to model the heat exchanger,
and the discretization follows the procedure in Lindqvist
and Næss (2018). The geometry is specified according
to the optimised solid fin OTSG. The mesh consists of
hexahedral cells, with wall refinement at the fins sides and
at the tube surface. The mesh at the edges of the fins are
not refined towards the wall boundary, which means that
wall functions are needed to model the turbulent profiles
here. The numerical mesh is illustrated in Fig. 4.

4.3 Boundary conditions

By adding an external pressure force Si in the momentum
equation, Eq. (10), cyclic boundary conditions can be
used in all directions. As the pressure gradient is not
known a priori, the meanVelocityForce option is used in
OpenFOAM. This will adjust the source term to reach
a specified mean velocity, which was used to fix Re to
relevant values from the optimized OTSG design.

The temperature field needs additional treatment since the
total heat transfer to the domain is not known a priori.
To keep a fixed average inlet temperature, a cyclic jump
boundary condition is used between the inlet and outlet
for temperature.

Tin(x, y) = Tw +
Tout(x, y)− Tw

Tout − T
w

· (Tin,target − Tw), (12)

where Tin(x, y) and Tout(x, y) is the inlet and outlet
temperature fields, respectively, Tw is the constant wall
temperature and Tin,target is the constant target inlet
temperature. The average temperature is defined as

T =
1

ṁ

∫
A

T (x, y)ρuidni, where ṁ =

∫
A

ρuidni, (13)

and ni is the patch normal vector and A is the domain
of the patch. Thus, this is a mass flux weighted average
which ensures a fixed inlet temperature, but with a cyclic
profile that also ensures that the temperature is constant
at the walls. In this work, the conditions of Tin = 320K
and Tw = 300K has been used, which corresponds to
experimental conditions for correlation development.

At the interface between the gas and solid regions, no-slip
and no-penetration are prescribed the velocity field and

proposes a new set of design variables (from Table
until the minimum is found and none of the constraints
are violated.

Table 2. Defined constraints and objective
function for the optimisation problem

/s

The optimisation routine does not guarantee that the
global minimum is found, so to improve confidence in the
result a multi-start where each case has been run with 10
random sets of initial values for the free variables within
the specified range.

4. CFD MODEL

A CFD model for plain and serrated fin tube banks
has previously been developed by the current author

(Espelund et al., 2022). A detailed description can be
found in (Espelund,2022), but a summary of the model
is given here. The simulations were run on the IDUN
HPC cluster (Själander et al. 2021). The incompressible
Navier-Stokes equations are solved for the external flue
gas in a periodic domain, while the heat equation is
solved in the fins. The domains are coupled with thermal
boundary conditions, and the equations are solved using
the chtMultiRegionFoam solver in OpenFOAM v2206.

4.1 Governing equations

The Navier-Stokes equations are solved in the gas region.
They are constituted by the continuity, momentum, and
energy equations. In this section, Einstein notation is
used, with i ∈ {1, 2, 3} corresponding to the three spatial
coordinates. The continuity equation reads,

where ui is the velocity component in the i direction.
The gas is modelled as incompressible and with constant
thermal and transport properties, yielding the following
momentum balance equations,

Description Condition

OTSG Duty Q = 34
Exhaust pressure loss ∆pex
Water/steam pressure loss ∆pws

Maximum exhaust velocity Umax

Diagonal tube pitch Pd < 3
Objective min (Total weight)

∂ui

∂xi
= 0, (9)
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Fig. 3. Illustration of sampling. Time signal for Eu and Nu, with the sampling region shaded around the time average
value. The signals are from the coarsest mesh simulation with Re = 7500 The illustration shows 6 periods used for
sampling, while the actual sampling was performed with 15 periods.

von Neumann-boundary conditions for the pressure. The
temperature field is coupled in the two domains and obeys
continuity in temperature and energy conservation, i.e.

Tw,gas = Tw,fin and qini|w,gas = −qini|w,fin, (14)

where ni is the wall normal direction.

4.4 Post-processing

The transient temperature, heat flux and pressure drop
data were time averaged as

X =
1

t2 − t1

∫ t2

t1

x(t)dt, (15)

where t1 and t2 is the start and end time of the sampling
interval, respectively. x(t) is the transient time signal and
X is the time average. The sampling of Nu and Eu is
illustrated in Fig. 3.

Fig. 4. Computational mesh used in the CFD simulations.

Eu is calculated directly by using Eq. (8), with ∆p = Pl ·
∂p/∂x . To calculate Nu, the temperature driving force ∆T
in Eq. (1) needs to be extracted from the CFD simulations.
This is taken to be the difference between the bulk gas
temperature and the wall temperature

∆T = Tb − Tw, (16)

where the bulk temperature is defined as

Tb = Tfront + Tback, (17)

where Tfront and Tback are the temperature fields at the
planes located at −Pl/2 and +Pl/2 relative to the center
tube, respectively.

The heat flux and fin temperatures are sampled at the
center tube, and Nu is then calculated using the definition
in Eq. (5).

4.5 Thermophysical properties

The thermal and transport properties are assumed to be
constant for both the gas and fins. They are summarised
in Table 3. The fin region properties correspond to that of
carbon SS-304 steel, while the gas phase is modelled as air
at 310 K. These conditions correspond to the experimental
conditions in which most correlations are developed.

Table 3. Constant thermophysical properties
used in the CFD simulations.

Property Gas Fins

Density, ρ (kg/m3) 1.1614 7950
Specific Heat Capacity, Cp (J/kg·K) 1007 520
Thermal Conductivity, κ (W/m·K) 0.0263 15.5
Dynamic Viscosity, (Pa·s) 1.8455× 10−5 –

4.6 Grid refinement study

To assess the grid sensitivity of the solution, a grid refine-
ment study was performed. The simulations were run with
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Re = 7 500 using four different mesh resolutions, where
the wall cell sizes were equal for all meshes, ensuring the
same y+ values for each simulation. An initial steady-state
simulation was conducted using the coarsest mesh, and its
final time step was used as the initial condition for all
simulations in the grid refinement study. The simulations
were run until a quasi-steady state was achieved, where
the time-averaged values of Eu and Nu did not change
significantly. The resulting values are presented in Fig. 5.
A mesh resolution of 730 000 cells was deemed sufficient, as
both Eu and Nu are within 1% of the values at the finest
grid (1 850 000 cells).
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Fig. 5. Results from grid refinement study. Eu and Nu are
normalised by the value at the finest grid.

5. RESULTS AND DISCUSSION

5.1 Results from optimisation

The main results from the optimisation are shown in Table
4 and are an indication of the different models ability
to extrapolate. The optimisation is run twice. The first
time the number of tubes per row is treated as a decimal
number, providing a continuous flow area. As a second
run, its value is a fixed integer value while the other three
parameters, tube length, fin height, and fin pitch are re-
optimised with a slight minimum weight increase as the
penalty. It was also observed that all the models were
constrained by the minimum tube pitch of 3 times the
outer tube diameter, so a fixed triangular tube pitch of
76.2 mm was specified in the 2’nd optimisation run.

As seen from Table 4, the obtained minimum weights
range from 84 to 124 tonnes. The tendency is that the
models obtaining the lowest weight seem to favour very
low fin- height (3-7.5 mm) and pitch below 4 mm while the
others are generally in the range of 7-15 mm and 4-8 mm.
In a practical situation, the fin height and pitch cannot be
varied freely meaning that the spread in the weight could
be larger depending on the underlying model. In an OTSG,
the heat transfer on the outside is limiting, so therefore
fins are used to increase the surface area. However, when
optimising for a specific duty and minimising the total
weight, the weight contribution from the fins seems to
be significant, and thus the optimisation routine finds the
alternative solutions as discussed above.

The optimal tube lengths generally are between 5 and 6
m with the number of tubes per row around 50. These
two parameters make up the exhaust cross-flow area and

Table 4. The result for the free geometry vari-
ables and the objective function for the differ-

ent models

Model
Tube
length

Tubes
per row

Fin
height

Fin
pitch

Minimum
Weight

[m] [-] [mm] [mm] [Ton]

Briggs 6.29 56 10.1 5.6 124.7
Holfeld 5.91 50 10.5 4.4 114.6
Lindqvist 6.84 52 14.1 9.7 109.6
Rabas 5.71 50 14.5 8.1 102.6
PFR 5.32 42 3.5 1.9 99.3
ESCOA 5.83 48 7.6 4.0 97.7
Mon 5.47 51 3.0 1.5 97.3
ESDU 5.41 49 6.2 3.5 91.5
Stasiulevicius 4.87 50 6.5 3.7 84.1

determine the size of the enclosing casing which accounts
for about half the total weight

Each of the correlations from Table 1 has also been used to
simulate the performance of the optimised geometry from
the ESCOA models. In Fig. 6 the comparison between the
predictions is shown.
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Fig. 6. Resulting duty and pressure losses for the simula-
tion of the fixed geometry.

Some of the models predict the duty and pressure loss close
to 34.4 MW and 25 mbar. Outliers seem to either predict
the duty with too high pressure-loss. The correlation
from Holfeld (2016) seems to underpredict both the duty
and the pressure loss although this was developed based
on experimental data that also included small-diameter
tubes. A similar trend can be observed from Lindqvist
and Næss (2018) that also were developed with compact
geometries in mind.

5.2 Results from CFD simulations

Figure 7 presents the streamlines sampled during tran-
sient simulations at Re = 7500, coloured according to
the normalised temperature. The figure also displays the
temperature field of the fins. The streamlines distinctly
illustrate vortex shedding occurring behind the tubes. This

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.010 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

76



vortex shedding is likely the primary cause of the signif-
icant oscillations observed in Eu and Nu, as depicted in
Fig. 3. These oscillations were also observed after a cer-
tain number of iterations in the preliminary steady-state
simulations, indicating that the steady-state assumption
is un-physical. These oscillations are indicative of highly
transient flow and heat transfer phenomena taking place
within the OTSG, suggesting that steady-state simulations
are not sufficient to model these flows accurately.

Fig. 7. Velocity streamlines and fins coloured by nor-
malised temperature, for Re = 7 500. Here Φ = (T −
Tw)/(Tin,target − Tw) is the normalised temperature.

Figure 8 shows that the correlation from Rabas et al.
(1981) is closest to the CFD results for the Nu, with an
average deviation of 6%, while the model from Holfeld
(2016) seem show best agreement for Eu, with an average
deviation of 16%. In general, most of the empirical corre-
lations seem to overestimate the Eu and thus also predict
a higher pressure loss, with the correlation by Lindqvist
being the most extreme, deviating by 120%. This corre-
lation also has the largest deviation for Nu, with 53%. In
Fig. 6 the Holfeld-correlation shows the lowest pressure
loss of all the models for the optimized geometry from
using the ESCOA correlation. We note from looking at the
streamlines in Fig. 7 that the geometry is quite ”open”
with regions with considerable turbulence and backflow.
One might suspect that some local ”pressure recovery” is
not captured by any of the correlations. On the other hand,
the correlation by Holfeld was designed with a bias toward
compact geometries.

An additional optimisation, using the Stasiulevicius et al.
(1988) correlation for the Nu and the Holfeld (2016)
correlation for the Eu was performed.

The result from using these two models found a design
with a very low fin pitch (1.07 mm) and with very low fins
(2.2 mm). The resulting weight was 76.5 tons, about 20
tons less than the ”reference” weight from the use of the
ESCOA correlations. This design resembles a tube-bundle
with low-fin tubes and this is probably not to be trusted to
extrapolate a correlation developed for individually finned
tubes to such type of low-fins. The more constrained the
optimisation problem is, the more the minimum weight
will increase. So, where weight is important, like in off-
shore installations, more experimental data or a systematic
approach with CFD and machine learning would be useful
to increase confidence in the design result.
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Fig. 8. Results from CFD simulations compared with
empirical correlations. The bars on the CFD markers
denote ±20%.

6. CONCLUSIONS

In this work, we performed design optimisation of an
offshore Once Through Steam Generator (OTSG) using
nine different correlations to predict pressure loss and heat
transfer. A reference optimised design was selected, and a
validated CFD model was used to simulate pressure loss
and heat transfer. The simulation results were compared
against the correlations. The following conclusions were
drawn:

• There is a significant variation in optimised designs,
depending on the selected correlations.

• CFD results indicate transient behaviour in the se-
lected configuration.

• A comparison with CFD data reveals significant de-
viations in pressure loss predictions for several corre-
lations.
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• The ”best” models appear to extrapolate excessively.
• Additional experimental data and/or a systematic
CFD approach to developing new models would be
beneficial.

Without a CFD analysis of the optimal geometries found
for the typical outliers from Fig. 5, (Holfeld, Lindqvist,

Rabas and Briggs and Young) for a cross-check, it is
difficult to conclude and recommend which of the
models that is suitable for designing a compact OTSG.
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Abstract: This paper presents simulations of an ammonia cracker process using Aspen HYSYS. Ammonia 

is identified as both a promising low-emission maritime fuel and an energy carrier. This study focuses on 

converting ammonia to hydrogen through an ammonia cracker process. In the literature, there are found 

simulations of similar processes, but not much about optimization of the ammonia cracker process. A 

centralized ammonia cracking process was designed using the Peng-Robinson fluid package and Gibbs 

reactor in Aspen HYSYS. Gibbs reactors were employed  to simulate both the cracker and the furnace 

(ammonia combustion reaction). Simplified assumptions included using a 100 % efficient splitter instead 

of a pressure swing adsorber. The ammonia feed had a molar flow rate of 500 kmole/h. The simulations 

included a base case scenario and an improved case for energy optimization. The base case scenario resulted 

in a total production of 0.13 kg of hydrogen per kg of ammonia feed. The improved case resulted in a 

production of 0.14 kg hydrogen. This was due to using the energy content present in the hydrogen and 

nitrogen product streams for warming up the ammonia before entering the cracker. This work demonstrates  

that Aspen HYSYS is a useful tool for optimizing the energy efficiency of an ammonia cracker process. 

Keywords: Ammonia cracking, hydrogen, Aspen HYSYS, Aspen Plus, simulation, energy optimization 

1. INTRODUCTION 

Ammonia is a zero-emission energy carrier that could play a 

vital role in the shift towards more sustainable energy systems. 

A promising option is to transport the energy carrier as 

ammonia by ship and then transfer it to another ship equipped 

with an onboard cracker unit. The ammonia could then be 

converted into hydrogen in the cracker process before it is 

transported to the onshore (and offshore) end-users. Plans are 

known for building a maritime pilot/demonstration facility for 

ammonia cracking within the next couple of years (Wärtsilä, 

2023). However, there is a need for additional research and 

development to obtain the level of knowledge needed to 

materialize the idea and build a large-scale facility. Simulation 

of the ammonia cracker process is a key step in the 

development to establish the mass and energy balance of the 

system and improve the process parameters with respect to 

energy usage and cost. This paper presents results from 

ammonia cracking simulations using Aspen HYSYS V12.  

2. LITERATURE 

Thermal and catalytic cracking of ammonia are mature 

technologies that involve the controlled decomposition of 

ammonia into nitrogen and hydrogen, by applying heat and/or 

suitable catalysts. The interest in the use of ammonia as an 

energy carrier has increased in recent years which is reflected 

in an increasing number of scientific publications. Machaj et 

al. (2022) published a review paper on the use of ammonia in 

the maritime sector highlighting that the price of green 

ammonia is expected to drop significantly by 2050. 

Mallouppas, Ioannou and Yfantis (2023) examined key 

barriers to the use of green ammonia as an alternative fuel in

the maritime industry. The barriers included high production

costs, availability, the challenge of ramping up current

ammonia production and the development of ammonia-

specific regulations (Mallouppas et al., 2023). Ashcroft and 

Goddin (2023) published a technical review of the 

ammonia cracking process, comparing centralized and

localized hydrogen production by ammonia decomposition.

Minimizing capital and operations costs are important aspects

to consider in designing industrial solutions for ammonia

cracking. Optimizing the recovery of waste streams containing

ammonia and hydrogen could contribute to higher energy

efficiency (Ashcroft and Goddin, 2023). Hansson et al. (2023)

published an article on energy systems modeling and multi-

criteria decision analysis to examine the potential role of

ammonia as a marine fuel. They concluded that while the use

of ammonia is promising, there are still unresolved issues that

need to be addressed before it can be introduced on a large

scale as a maritime fuel.

Ammonia cracking has been given increasing interest in clean

energy production and industrial chemistry. It offers a

sustainable path to produce high-purity hydrogen, a crucial

resource for fuel cells, and as a heat source (Speight, 2023).

Regardless of the scale of hydrogen production, ammonia is

cracked by applying heat, typically through the combustion of

a fuel or an energy source such as electricity. When ammonia

is thermally decomposed, it produces a 1:3 molar ratio of

nitrogen and hydrogen. See Equation 1.
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The first time ammonia was cracked thermally was by Bruke 

in 1933. This process was conducted at temperatures between 

550 - 600 °C and achieved a 90% conversion rate (Yousefi Rizi 

and Shin, 2022). Different reactor types for NH3 cracking are 

discussed by Mukherjee et al. (2018). 

 

2𝑁𝐻3 (𝑔)
𝐻𝑒𝑎𝑡
→   𝑁2(𝑔) + 3𝐻2(𝑔)       

(1) 

  

Table 1. Ammonia conversion at different temperatures in an 

ideal Gibbs reactor simulation (Chiuta et al., 2013). 

Temperature ( C) Ammonia conversion (%) 

250 89.2 

300 95.7 

350 98.1 

400 99.1 

450 99.5 

500 99.7 

600 99.9 

700 99.95 

 

This section presents a brief review of the simulation studies 

of hydrogen production using the ammonia cracking process. 

A literature search showed that a majority of the process 

simulations were done in Aspen Plus. This preference is likely 

due to Aspen Plus being more flexible and therefore more 

suitable for these simulation tasks compared to the Aspen 

HYSYS software. 

Chiuta et al. (2013) simulated the ammonia cracking reaction 

in HSC Chemistry 7 software through Gibbs free energy 

minimization. The results, presented in Table 1, demonstrate 

an increase in equilibrium conversion with rising temperature. 

Cha et al. (2021) conducted a study on an efficient process for 

sustainable green hydrogen production from ammonia 

decomposition, using Aspen Plus for simulation. The Peng 

Robinson thermodynamic model was applied in this 

simulation. Pure NH3 from liquid storage was released through 

a feed valve (10–2.5 bar) at the start of the process. The main 

heat sinks in the process included Ammonia heating, recycled 

ammonia desorption from the adsorbent material (by raising 

the temperature from 31 to 310 °C), and endothermic reaction 

heat from ammonia decomposition. The majority of the 

hydrogen was separated using a pressure swing adsorption 

(PSA) section, as the remaining products were primarily a 3:1 

mixture of H2/N2. At fixed conditions with a pressure of 2.5 

bar and a temperature of 20 °C, the results showed that 71 % 

of the hydrogen could be recovered (with a purity of 99 mol%). 

The process used approximately 200 kg of activated carbon 

per kmole of the PSA inlet gas. The simulation results showed

good agreement with the experimental results. (Cha et al.,

2021).

Devkota et al. (2023) published a study on the process design

and simulation of onsite hydrogen production from ammonia

decomposition. The designed process was modeled using

Aspen Plus, with Peng-Robinson equation of state employed

to estimate the thermodynamic properties. The study utilized a

feed rate of 4000 kg/h of pure ammonia, maintained at a

temperature of 298 K and a pressure of 10 bar, as the input

parameters for the calculations. Given the endothermic nature

of the decomposition reaction, the necessary heat energy was

generated by burning carbon-free ammonia, requiring about

9% of fresh feed. The resulting product stream contained a

small amount of unreacted ammonia, which was subsequently

separated and sent to the furnace after being mixed with fresh

fuel and air.

The waste stream from this process, containing a large amount

of hydrogen and nitrogen gas, was recycled to the furnace for

thermal energy production. The study employed a steady-state

model of a multi-catalytic packed bed reactor for ammonia

decomposition, incorporating an intermediate heating system

to enhance the reaction rate. Additionally, the ammonia gas

was preheated in a fired furnace to achieve a decomposition

temperature of 773 K before entering the reactor, utilizing the

catalyst Ru/Al2O3 for the decomposition process (Devkota et

al., 2023).

Another study was published by Lee et al. (2023) on carbon-

free hydrogen production using an induction heating-based

reactor for ammonia decomposition, achieving a hydrogen

production rate of 150 Nm3/h. This study was conducted both

experimentally and through simulation. The process design

included a reactor for ammonia decomposition, a pre-heater,

an adsorption column, and a pressure swing adsorption (PSA)

unit. To maintain a carbon-free process and produce green

hydrogen, the external heat for ammonia decomposition was

supplied using electricity from renewable energy sources. The

hydrogen recovery rate of the PSA was fixed at 79 % and

incorporated into the process simulation. Experimental results

demonstrated that the induction heating reactor achieved an

ammonia conversion exceeding 90 %  at a temperature of 600

°C and a pressure of 7 barg. This conversion rate was

subsequently used as an assumption for the conversion reactor

model in the process simulation.

Restelli et al. (2023) conducted a comprehensive techno-

economic analysis of green hydrogen production via ammonia

decomposition. This research includes various hydrogen

production processes, including a centralized ammonia

cracking process where all the stored ammonia in the inlet is

converted to hydrogen. The process was simulated using

Aspen Plus (Restelli et al., 2023). The process flow diagram

of this simulation is shown in Fig. 1. In this process, 

the Ammonia stream is pressurized to 30 bar and 

preheated through in a series of heat exchangers, before being 

directed to the cracking reactor, taking advantage of the 

high enthalpic content of the reaction products. The reactor 

simulation was conducted using the Gibbs module 

within Aspen Plus. Consequently, the conversion of 

ammonia aligns with thermodynamic equilibrium at
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the reactor's operating conditions of 30 bar and 900 

°C. These conditions are consistent with those 

typically used for commercially available nickel-based 

catalysts. To facilitate the cracking reaction, the 

necessary heat is generated by combusting a portion of 

the supplied ammonia, combined with waste streams 

possessing a high H2 content that originate from the

purification section. Air is employed as an oxidizer in slightly

excess quantities to ensure complete combustion. Following

the reaction stage, the separation of the hydrogen product from

any unreacted ammonia and nitrogen is achieved through

pressure swing adsorption (PSA).

3. METHODS

The central focus of this study is the simulation of the

ammonia cracking process, employing Aspen HYSYS V12

with the Peng-Robinson fluid package. The ammonia

combustion reaction is modelled as an equilibrium reaction,

with equilibrium parameters determined through the

minimization of Gibbs free energy. The simulation is based on

the following key assumptions:

Assumption 1. To facilitate the combustion of ammonia, a

Gibbs reactor (furnace) was defined. This was necessary since

ammonia alone did not exhibit combustion reactions in the

furnace.

Assumption 2. In the absence of catalyst data, the process

employs the minimization of Gibbs energy for ammonia

cracking. This approach assumes thermal cracking, relying on

heat to break down ammonia into hydrogen.

Assumption 3. Instead of using adsorber and Pressure Swing

Adsorber (PSA) units, a component splitter was employed.

This approach assumes no temperature or pressure losses and

assumes 100% efficiency in separating unreacted ammonia,

hydrogen, and nitrogen in both separation units.

 

Fig. 1. Process flow diagram of centralized ammonia cracking 

(Restelli et al., 2023). 

Finally, the study optimizes energy within the process by using 

waste heat from outlet streams (hydrogen and nitrogen) to 

preheat the ammonia stream heading to the cracker. To achieve 

this, two coolers are introduced to lower the temperatures of 

the hydrogen and nitrogen streams to ambient levels. The

combined heat from these streams is then employed to preheat

the ammonia using a heater, facilitated by a recycling

manipulator. This optimization not only improves ammonia

pre-heating but also reduces ammonia consumption as fuel,

thereby increasing the efficiency of the ammonia-cracking

process.

Based on the literature review, the process design proposed by

Restelli et al. (2023) was selected as the basis for the Aspen

HYSYS simulation work presented in this article.

Specifications for the streams are given in Table 2. The

chemical reaction used in the main combustion reaction in this

study is specified in (2).

 
Table 2. Inlet and outlet stream specifications. 

Stream 

name / 

Parameter 

NH3 H2 AIR 
FLUE 

GAS 

Temperature 

(C) -27.6 25.5 25.0 139 

Pressure 

(bar) 1.3 30 1.01 1.01 

Feed TOTAL 

(kmoles/h) 592.33 698.07 608.13 999.28 

Mole Fractions 

H2 0 0.999 0 0.0003 

N2 0 0.001 0.79 0.775 

H2O 0 0 0 0.191 

NO 0 0 0 0.0029 

NH3 1 0 0 0 

O2 0 0 0.21 0.0309 

 

4𝑁𝐻3 + 3𝑂2 → 2𝑁2 + 6𝐻2𝑂 + 𝐻𝑒𝑎𝑡                (2) 

 

4. RESULTS AND DISCUSSION 

4.1 Base case

Figure 2 depicts the Process Flow Diagram (PFD) of the base

model for simulation of ammonia cracking. Simplifying

assumptions were listed at the start of Section 3 (methods).
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Fig. 2. Aspen HYSYS Process Flow Diagram (PFD) of ammonia cracking (Base case model). 

 

Simulation results from the base case are presented in Table 3.  

Table 3: Results from the process simulation - base case. 

Species Parameter Unit Value 

 

 

 

 

 

NH3 

Total Feed (kmoles/h) 500 

Cracker Feed (kmoles/h) 375 

Unreacted (kmoles/h) 4.3 

Burned in Furnace (kmoles/h) 129.3 

Cracker conversion (%) 99.42 

Total conversion (%) 74.14 

Cracker yield on H2 (%) 98.88 

Total yield on H2 (%) 74.14 

H2 

Total Production (kmoles/h) 556.1 

Total H2 to NH3 (kmoles / 

kmoles) 

1.11 

Total H2 to NH3 (kg/kg) 0.1316 

 

 

4.2 Improved case 

In this section, the available heat streams within the process, 

specifically the heat from the hydrogen and nitrogen product 

streams, were utilized to increase the hydrogen production, the 

desired final product. To achieve this objective, a new case 

was introduced, referred to as the "energy consumption 

improved case" or simply the "improved case". 

To optimize the energy of the process, the energy flow from 

the outlet streams, namely the produced hydrogen and 

nitrogen, was used to preheat the ammonia stream fed to the 

cracker. For this purpose, and simulation simplicity, instead of 

defining heat exchangers, two coolers were introduced to cool 

down the hydrogen and nitrogen streams to ambient 

temperature. These two heat flows were then combined and 

used to preheat the ammonia stream to the cracker using a 

heater. Furthermore, optimizing the energy in this manner aids 

the ammonia cracking process by heating the ammonia stream 

to the cracker, allowing for an increased fraction of ammonia 

to be directed to the cracker. Consequently, this reduces the  

ammonia flow used in the furnace. As a result, the 

optimization not only involves utilizing waste heat to preheat 

the ammonia to the cracker but also results in burning less  

ammonia to supply heat for cracking. The flowsheet of the 

improved case is illustrated in Fig. 3.  
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Fig. 3. Aspen HYSYS Flowsheet of the improved case. 

The simulation results of the improved case are presented in 

Table 4.  

Table 4. Results from the process simulation - improved case. 

Species Parameter Unit Value 

 

 

 

 

 

NH3 

Total Feed (kmoles/h) 500 

Cracker Feed (kmoles/h) 400 

Unreacted (kmoles/h) 3.26 

Burned in Furnace (kmoles/h) 103.3 

Cracker conversion (%) 99.6 

Total conversion (%) 74.35 

Cracker yield on H2 (%) 99.59 

Total yield on H2 (%) 79.35 

H2 

Total Production (kmoles/h) 595.1 

Total H2 to NH3 (kmoles / 

kmoles) 

1.19 

Total H2 to NH3 (kg/kg) 0.141 

 

4.3 Discussions 

The Gibbs reactor, which cracks the ammonia operates without 

any kinetic model and provides a similar conversion to the 

studies done by Chiuta et al. (2013) and Ojelade and Zaman 

(2021). This study has a 99.4% conversion at a cracker 

temperature of 437 °C in the base case and a 99.6% conversion 

at a cracker temperature of 466 °C in the energy-optimized 

case. This reflects on previous studies mentioned in the 

literature review. In Table 5, the obtained hydrogen production 

in the simulations is compared with literature values. It shows 

that the simulations in this work are in the same order of 

magnitude compared to earlier simulations. It also shows that 

8 % increased hydrogen production from 0.131 to 0.141 is 

obtained by process improvements. 

Simplifying assumptions have been made in the simulations in 

this work. Assumption 1 and 2 are that Gibbs equilibrium 

reactors are used to simulate the ammonia combustion and 

ammonia cracking reactions. This is also done in literature. 

These assumptions are optimistic, and more realistic 

simulations would result in lower cracker conversion and 

lower hydrogen production. Assumption 3 is that an ideal 

component splitter is used to simulate the PSA unit. This is 

also optimistic, and this tends to overestimate the hydrogen 

production.  

Table 5. Results - comparison with previous studies. 

Sources 
hydrogen production 

(kg)/ ammonia feed (kg) 

This study - base case 0.131 

This study - improved case 0.141 

Restelli et al. (2023) 0.140 

Lee et al. (2023) 0.127 

Devkota et al. (2023) 0.129 

Heat exchange in the process is simulated with ideal heaters 

and cooling, and it is assumed no heat loss. These assumptions 

are assumed to be negligible because the heat loss is assumed 

to be much smaller than the heat of reactions. To make a 

comparison of these two fluid packages, the base case 
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simulation was executed using both Peng Robinson and

Soave-Redlich-Kwong (SRK). There was not a significant

difference in the results of the two equation of state models.

In this work, a portion of ammonia was used as fuel to provide

energy for the cracking reactor. This has been done in a Gibbs

reactor instead of a furnace. Suggestions for further work

include using a furnace, not an ideal Gibbs reactor for burning

ammonia. Aspen HYSYS has a limitation of using ammonia

as a fuel in the furnace. A potential for energy consumption is

identified that can be investigated in future work. Also, energy

optimization based on Pinch Technology can be conducted to

improve the energy efficiency of the process.

Additionally, doing a techno-economic analysis of the

hydrogen production from the ammonia cracking process can

be valuable. As an example, this economic investigation can

also consider the economic analysis of the energy resource for

the cracker.

5. CONCLUSIONS

The paper showed results from simulations of an ammonia

cracking process to produce hydrogen using Aspen HYSYS.

Ammonia represents a promising way of transporting

hydrogen over long distances. A base case that replicated

previous work from literature was improved with respect to

energy consumption. The improved case gave 0.141 kg

hydrogen per 1 kg ammonia feed, marking an 8 %

improvement. Recommendations for further work include

using available experimental kinetic data and replacing the

Gibbs reactor in Aspen HYSYS. Additionally, heat

exchangers could be used instead of heaters and coolers to

enable energy optimization analysis, perform equipment

sizing, and conduct techno-economic evaluations.
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Steady State and Transient Modelling of A
Three-Core Once-Through Steam

Generator
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Abstract: To reduce emissions and save fuel in offshore power production using gas turbines,
one can use the gas turbine exhaust as a heat source for a bottoming cycle for heat and
power production. This can replace about one in four gas turbines. In offshore applications
weight and size become more important and thus a once-through steam generator (OTSG) is
a way to achieve low weight for the bottoming cycle. To reduce the size and weight of the
OTSG further, one can reduce the tube diameter in the tube bundles. In this work a three-
core OTSG, representing the economizer, evaporator, and superheater, was modelled and the
design optimized to achieve minimum weight, while producing a certain amount of power and
keeping within constraints of flue gas and steam pressure losses. This was done for varying tube
diameters in each of the cores, in steady state. Afterwards transient simulations were performed
for each optimized design to find their response times to a step change in the gas turbine load.
The evaporator has the biggest impact on both the weight and the response time, while the
superheater and economizer had similar and smaller impacts on both the weight and response
time.

Keywords: Heat exchanger, OTSG, power production, steam production, optimization,
transient modelling

In offshore oil and gas production a large source of CO2

emissions is gas turbine exhaust, and in 2023 it accounted
for 80% of CO2 emissions from Norwegian oil and gas pro-
duction according to the Norwegian Petroleum Directorate
(2023). One opportunity for reducing these emissions is to
install a steam bottoming cycle to use the hot exhaust
gas as a heat source. By installing a bottoming cycle,
the fuel consumption of a gas turbine can be reduced

by about 25% (Nord and Bolland, 2012; Mazzetti et al..
2014). For a processing facility with a fleet of several
gas turbines, installing a bottoming cycle will mean that
one or more of the gas turbines can be removed. In the
bottoming cycle, illustrated in Fig. 1, pressurized water
is heated, evaporated, and superheated through a heat
recovery steam generator (HRSG) and then expanded in a
steam turbine to generate power. The low-pressure steam
is condensed and cooled by sea water before being pumped
back to the HRSG. Other non-conventional fluids have
also been studied for use in bottoming cycles, including air
by Pierobon and Haglind (2014), CO2 by Walnum et al.
(2013) and Skaugen et al. (2014), and organic Rankine
cycles by Pierobon et al. (2014) and Motamed and Nord
(2022). However, only steam bottoming cycles have been
installed on the Norwegian Continental Shelf, making it

⋆ This publication has been produced with support from the LowE-

mission Research Centre (www.lowemission.no), performed under
the Norwegian research program PETROSENTER. The authors
acknowledge the industry partners in LowEmission for their con-
tributions and the Research Council of Norway (296207).

1. INTRODUCTION the most mature technology. The HRSG is a large installa-
tion with a weight that can reach several hundred tons, so,
for offshore installation a compact bottoming cycle will be
necessary. This can be achieved by optimizing the HRSG.
In offshore installations, the HRSG without a steam drum
will normally be suggested and the excess heat is recovered
in a once-through steam generator (OTSG). In
(Mazzetti et al., 2021) an outline on how a compact steam
bottoming cycle can be designed is discussed - where
one of the main size/weight drivers was the tube
diameter selection in the OTSG. Similar analysis was
shown by Montañés et al. (2023) for a compact steam
bottoming cycle for heat and power production on a
floating production plant. Deng et al. (2021) studied
vibrations of the tubes in an OTSG and found that
vibrational constraints increased the optimal weight of
the OTSG, and that the increase was larger for the
single-core case compared to the three-core case.

In this work a three-core OTSG is studied in detail in
order to optimize the tube diameters and circuiting in
the three cores, the economizer, the evaporator, and the
superheater, individually, in order to find the minimum
weight for a specified duty and with restriction on pressure
losses. In earlier works optimizing OTSG designs, the tube
diameter has been used as an optimization parameter in
the single-core case and fixed in the three-core case. How-
ever, in this work, we investigate four different industry
standard tube diameters to get a thorough understanding
of how each part of the OTSG is affected by changing
the diameter of the tube and if having different diameters
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Steam turbine
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Fig. 1. Heat recovery steam generation from gas turbine
exhaust in a bottoming cycle for power production.

in each of the cores will be optimal. This is done by
optimizing each core with respect to weight and afterwards
looking at the response time for a load change.

2. NUMERICAL METHODS

To optimize the geometry of the OTSG and perform
dynamic simulations we used an in-house modeling tool
developed by SINTEF Energy Research (Skaugen et
al., 2013). The OTSG geometry optimization was done
in several steps. First, a thermodynamic optimization
of the whole bottoming cycle was done to investigate
the potential power production and find a suitable mass
flow and pressure for the geometric optimization. After
this, the geometric optimization of the three cores was
performed in three steps. From the thermodynamic
optimization, we knew the mass flow and the pressure of
the steam at the superheater outlet which coincides with
the exhaust inlet, both of which are at the bottom of the
superheater. Thus, we began with the superheater
optimization, and using the lowest weight design we used
the flow conditions from the top of the superheater to
optimize the evaporator and again using the flow
conditions from the lightest evaporator design we
optimized the economizer.

2.1 Thermodynamic optimization

The thermodynamic optimization considers the entire bot-
toming cycle including the OTSG at a flowsheet level, as
seen in Fig. 1, however, it does not include the full OTSG
geometry. To solve the model it takes both external and
process variables. The external variables are the mass flow,
pressure, and composition of the exhaust gas coming from
the gas turbine and a pinch point temperature difference
(PPTD), i.e. the minimum temperature difference between
the exhaust gas and the water. The process variables
are the outlet temperature of the exhaust gas, the water
pressure at the pump outlet, the water temperature at
the turbine inlet, the water pressure at the turbine outlet,
and the temperature increase of the cooling water in the
condenser. The heat transferred from the exhaust gas to
the water Q is calculated as

Q = (h(p, T )ex,in − h(p, T )ex,out)ṁex, (1)
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Fig. 2. Typical temperature profile in a counter flow heat
exchanger as a function of the heat transferred along
the flow direction of the cold fluid. The pinch point,
where the temperature of the cold and the hot liquids
are the closest, is here marked by the second set of
dots and is 10°C.

where h is the enthalpy, p the pressure, T the temperature,
and ṁ is the mass flow rate, while the subscript ex denotes
the exhaust and the subscripts in and out refer to the inlet
and outlet states of the OTSG. This heat transfer is then
used to calculate the water flow rate ṁw as

ṁw =
Q

(h(p, T )w,out − h(p, T )w,in)
. (2)

The amount of power produced in the turbine expansion
Wexp is calculated from an isentropic expansion with
isentropic efficiency 0.85, while the pump work Wpump is
calculated from an isentropic compression with efficiency
0.7. Together these give the net power produced by the
bottoming cycle Wnet as

Wnet = Wexp −Wpump. (3)

The optimization is performed using the gradient-based
constrained optimization solver NLPQL by Schittkowski
(1986) to optimize the process variables with the objective
of maximizing the net power produced. The optimization
variables are all given initial values as well as lower and
upper bounds when passed to NLPQL. Instead of opti-
mizing all the parameters one or more can also be given a
fixed value. In addition, it is subject to several constraints,
such as a minimum vapour fraction at the steam turbine
outlet and minimum pinch temperature, which are all
inequality constraints, and an equality constraint to ensure
continuous pressure for the water. In our case, we fix the
water temperature at the turbine inlet and then the pinch
is at the onset of boiling of the water, and thus the PPTD
decides the temperature difference between the exhaust
and water at this point. This can be seen as the second
set of points in Fig. 2 which shows standard temperature
profiles of the exhaust (above) and water (below) as a
function of heat transferred in the OTSG.

2.2 Geometric optimization

The geometry of the OTSG is described by three cores, the
economizer, evaporator, and superheater, each consisting
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Fig. 3. A simple tube bundle, the fins are only shown for
half of the width to get a better view of the tubes.

of a tube bundle along with support beams, as well as
a surrounding duct for each tube bundle to contain the
exhaust gas and an inlet duct for the superheater and an
exit duct for the economizer. The duct size and thus weight
is dependent on the size of the tube bundles. The weight
of the entire core consists of the tube bundle weight, as
well as the duct surrounding the bundle and the inlet or
exit duct when applicable. A simple example tube bundle
is shown in Fig. 3. We see that each tube passes through
4 times, i.e. 4 passes, there are 2 parallel rows of tubes in
each pass, i.e. 2 rows per pass, and there are 3 tubes per
row. The width of the tube bundle equals the length of
the water flow in one row, the depth is the length of flow
for the exhaust gas along the tube bundle. The tubes are
laid out with a 30° offset between each row which gives a
hexagonal pattern. In addition, the tubes have fins on the
outside to improve the heat transfer from the exhaust gas.
The fins have a set thickness, but the distance between
them and their height can be varied.

To solve each of the cores we start by assuming that all
tubes in one row are equal to get a 2D problem and then
discretizing along the width and depth such that each
tube is divided in several tube segments, or nodes, and
the exhaust gas flows in several separate columns. This
allows us to start from the outlet of the bottom tube and
solve the heat transfer for each node. The heat transfer Q
is given by

Q = UA∆T, (4)

where U is the overall heat transfer coefficient, A is the
heat transfer area and ∆T = Tex − Tw is the temperature
difference between the exhaust gas and water. In the
simplest case one can use the initial temperature difference
as ∆T . However, in the OTSG there is quite a big
temperature change in each node and thus we instead
use Heun’s method to update the temperature difference
with intermediate steps and thus get a better heat transfer
calculation. The heat transferred is then used to update
the fluid enthalpies as

hout = hin − Q

ṁ
, (5)

where both the exhaust and the water get a minus sign as
we are calculating backwards along the water. Each node is
solved iteratively until the end of the tube pass and then
the tube above is solved in the same fashion and so on
until one reaches the inlet. As the pressure and enthalpy
of the water might vary for parallel passes, they are here

Table 1. Variables with initial guess and
bounds for the geometric optimization.

Variable Unit Initial guess Range

Tubes per row [ ] 50 5-180
Transversal fin tip gap [mm] 50 5-125

Fin height [mm] 6.5 5-20
Fin pitch [mm] 5.5 2-8

mixed to get a common outlet condition and the same is
also done for the exhaust gas. The outlet conditions can
then be used as inlet conditions for the next core.

Just as for the thermodynamic optimization we also use
NLPQL for gradient-based constrained optimization of the
core geometry. The objective of the optimization is to
minimize the total weight of the core. The variables with
initial values as well as their range are shown in Table 1.
The constraints consist of a single equality constraint for
the heat recovered as well as inequality constraints for
pressure losses for both fluids, maximum exhaust velocity,
and minimum fin and tube spacing. There are also a
few variables that NLPQL does not optimize, namely the
number of passes, the number of tubes per row, the width
of the core, and the diameter of the tubes. These are
given as inputs and the NLPQL optimization is run a
separate time for each combination. The number of passes
and tubes per row are both integer values and thus not
suited for NLPQL to optimize. The width is also controlled
separately to ensure that all three cores have the same
width. Finally, the tube diameter is given certain fixed
values based on industry-standard tubes.

After the thermodynamic optimization, we have the heat
transferred in each core, the mass flow of the water, as well
as the temperature and pressure at the steam turbine inlet
and thus the superheater outlet. With these values as well
as the mass flow, temperature, and pressure of the exhaust
gas we can begin with optimizing the superheater. After
finding the lightest superheater design, we can use the inlet
conditions of the superheater as the outlet conditions of
the evaporator and optimize it, and finally we can do the
same with the economizer after optimizing the evaporator.

As we calculate the heat transfer and pressure drop at
each node, we need correlations for both suitable for
our geometry. For the heat transfer and pressure loss of
the exhaust we use the ESCOA correlation
(Ganapathy, 2002). For the water/steam inside the
tubes the heat transfer coefficient is calculated from the
Gnielinski (1976) correlation for single phase flow and the
Bennett and Chen (1980) correlation during evaporation.
The pressure losses are calculated with the Blasius
correlation for single phase flow and the Friedel (1979)
correlation during evaporation. To calculate the
thermodynamic properties of the water the IAPWS

formulation is used (Wagner and Pruß, 2002), while the
cubic Peng-Robinson equation of state from

Thermopack (Wilhelmsen et al., 2017) is used for the
exhaust gas.
2.3 Transient modelling

The transient model uses many of the same principles as
the steady state optimization. We assume equal conditions
for all tubes in a row, so we only need to solve for one
and we discretize each bundle along its width and depth.
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However, in contrast to the steady state model, we use as
input the exhaust entering the bottom of the superheater
and the water entering the top of the economizer. In
addition, we also calculate the wall temperature for each
node, such that the heat transfer is calculated using Eq. 4
between the wall and each fluid separately, and conductive
heat transfer along the wall is included. This means that
the wall interacts with the two fluids and the temperature
change ∆Twall in the wall is given by

∆Twall =
Qex −Qw +Qcond

Cp
, (6)

where Qex is the heat transferred from the exhaust to the
wall and Qw is the heat transferred from the wall to the
water, both of which are usually positive, Qcond is the net
conductive heat transfer along the tube wall, and Cp is
the combined heat capacity of the wall and fins at the
temperature of the wall.

To start the transient modeling we first specify the tem-
perature of each wall node and we then solve along each
fluid flow. For the water we start from the inlet of the
economizer, and for each node we calculate the heat trans-
ferred from the wall at that node to the water as well as
the pressure loss of the water. This is then done all the
way through until the end of the economizer which gives
the inlet conditions for the water entering the evaporator.
The same procedure is applied to the evaporator and
superheater. For the exhaust gas we start from the exhaust
gas inlet at the bottom of the superheater. Along each
exhaust gas column, we calculate the heat transferred to
the wall at that node as well as the pressure loss, then move
to the next node above and so on until leaving the top of
the economizer. Calculating the conductive heat transfer
for each wall node allows us to use Eq. 6 and the time step
to update all wall temperatures. This constitutes a single
step in the time integration and this procedure is repeated
until the chosen finish time of the integration. To ensure
each time step is of a sufficient length the fourth-order
Runge-Kutta-Fehlberg algorithm from GSL (Galassi et
al., 2009) is used. In addition, during the integration,
the inlet conditions of the water and exhaust gas, i.e.
pressure, temperature, and composition or gas turbine
load, can be changed freely at any specified time.

3. RESULTS

3.1 Thermodynamic results

We first consider the simplified case of a heat exchanger
without geometry, where the heat recovered and net power
is calculated for varying values of the PPTD. For all the
simulations the exhaust gas is assumed to come from a
LM2500+G4 gas turbine running at 90% load, giving an
exhaust inlet temperature at 510.1°C, pressure of 1bar
and a mass flow of 86.12kg/s unless otherwise specified
and we fix the outlet steam temperature to 480.1°C. The
optimization was performed with PPTDs ranging from 0
to 30°C to give a good grasp on how the PPTD affects
the power produced and the heat recovered. At a PPTD
of 30°C we have pinch at both the onset of boiling and
the water outlet and going lower than this we would
only have pinch in the hot end. Having pinch in only the
hot end would lead to a lower mass flow and less power
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Fig. 4. Net power produced in the combined cycle OTSG
without geometry for varying PPTD for fixed outlet
temperature 480.1°C.
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Fig. 5. Heat recovered in the OTSG without geometry
for varying PPTD for fixed outlet temperature of
480.1°C.

produced and has not been investigated here. The net
power produced is shown in Fig. 4 and the heat recovered
from the exhaust gas is shown in Fig. 5. We see that the
amount of heat recovered is larger than the net power
produced by a factor of almost 3, with a maximum power
produced of 13.7MW and a maximum heat recovered of
37.6MW, and that both decrease linearly with an increase
in the PPTD. Thus, we want the PPTD to be as small as
possible, but this does not take into account the size of the
heat exchanger and the pressure loss in the heat exchanger.
When the PPTD becomes smaller the necessary area
increases and thus at a very small PPTD the OTSG needs
to be very large. As obtaining a PPTD close to 0 is very
hard we will use the flow conditions calculated for a PPTD
of 10°C to optimize the geometries of the separate cores
of the heat exchanger. The flow conditions are given in
Table 2, and it also contains the heat duties used for the
optimization where some extra duty is moved from the
economizer to the evaporator.
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Table 2. Input values for the water and exhaust
gas stream for the geometric optimization.

Variable Unit Value

Inlet temperature of exhaust gas [C] 510.1
Outlet temperature of steam [C] 480.1
Inlet pressure of exhaust gas [bar] 1
Outlet pressure of steam [bar] 25.74
Mass flow of exhaust gas [kg/s] 86.12

Mass flow of steam [kg/s] 10.846
Superheater heat duty [MW] 6.2
Evaporator heat duty [MW] 23.0
Economizer heat duty [MW] 6.2

3.2 Geometric results

Based on the flow conditions in Table 2 found in the
thermodynamic optimization we performed the geometric
optimization. The heat loads used are also given in the ta-
ble, but they are slightly different from the thermodynamic
optimization. In Fig 2 we see three distinct phases for
the water, between the first and second pairs of dots it is
heated, then, between the second and the third it boils and
between the third and the fourth it is superheated. This
corresponds to the economizer, evaporator, and super-
heater. However, for the geometric optimization we move
some extra heat duty to the evaporator from the econo-
mizer to ensure that we avoid boiling in the economizer
for different part loads. This could lead to instabilities

such as the Ledinegg instability (Ledinegg, 1938) which
we want to avoid. The pressure loss restriction was set to
600Pa for the exhaust in each core to get a total pressure
drop of less than 3000Pa when including the inlet and exit
transition ducts. The water pressure loss restriction was
set to 100000Pa or 1bar in the evaporator and superheater
and to 50000Pa in the economizer as here there is only
liquid water which has a lower pressure loss. As lower tube
diameters increase pressure losses it can become favourable
to have many rows per pass when optimizing with respect
to weight. However, this can become quite complicated to
manufacture. Therefore we locked the number of rows per
pass to be 2 in the evaporator and superheater where we
have boiling and steam and thus higher pressure losses,
and the number of rows per pass to 1 in the economizer as
it has a lower pressure loss.

The weight of each of the cores, including both the tube
bundle and ducting, and inlet duct for the superheater
and outlet duct for the economizer, were optimized with
widths varying from 3m to 7m with 0.5m intervals. For
each width the design with the number of passes which
gave the lightest weight were used as the input to the next
core, i.e. from superheater to evaporator and evaporator
to economizer. The investigated tube diameters are shown
in Table 3 and are the tube diameters labeled as sensible
range for offshore systems by Montañés et al. (2021) based

on the ASME standard (STEELTUBE, 2021).

To investigate the weight savings of having different tube
diameters in different cores we also consider cases where
not all three cores have the same tube diameter. However,
with the four tube diameters from Table 3 there are a total
of 60 such combinations. Thus, we need to reduce this
further. To begin with we notice that in the economizer
there only flows liquid water, in the superheater there
is only steam, while the evaporator has a mix. This

Table 3. The different tubes with inner and
outer diameter that were investigated in this

study.

Inner diameter [mm] Outer diameter [mm] Outer diameter

32.56 38.1 1 1⁄2′′

27.53 31.75 1 1⁄4′′

21.18 25.4 1′′

15.75 19.05 3⁄4′′

Table 4. The different combinations of inner
diameters in the superheater, evaporator and
economizer that were optimized for minimal

weight.

Superheater [mm] Evaporator [mm] Economizer [mm]

32.56 32.56 32.56
32.56 32.56 27.53
32.56 27.53 27.53
27.53 27.53 27.53
32.56 27.53 21.18
27.53 27.53 21.18
27.53 21.18 21.18
21.18 21.18 21.18
27.53 21.18 15.75
21.18 21.18 15.75
21.18 15.75 15.75
15.75 15.75 15.75

means that we expect the pressure loss to be largest
in the superheater and smallest in the economizer. In
addition, the superheater is closest to the gas turbine
so it experiences the harshest exhaust gas conditions
while the economizer which is furthest away experiences
the least harsh exhaust gas conditions. Thus, we expect
that the superheater should be made of the sturdiest
and largest tubes. Because of these two reasons we only
consider combinations where the tube diameter does not
increase when moving from the superheater to evaporator
or evaporator to economizer, however, two or three of the
cores can have the same diameter. In addition, we expect
an actual design to not have huge differences in the tube
diameters and thus we only consider designs where the
change in tube outer diameter from one core to the next is
at most 6.35mm or 1/4

′′
. Including the designs where the

tube diameter is equal in all three cores leaves us with the
designs consisting of the combinations shown in Table 4.

The optimized weights as a function of width for each of
the cores in the OTSG for the tube diameter combinations
given in Table 4 are shown in Fig. 6, where repeating com-
binations are excluded for the superheater and evaporator.
For both the evaporator and the economizer we note that
the weight has a very weak dependence on the previous
core(s) and almost only depends on the tube diameter in
that core. This is due to the fact that we fix the heat trans-
fer in the previous cores and the pressure loss is relatively
small in the evaporator and restricted in the superheater,
leading to very similar conditions for the core independent
of the geometry of the previous ones. However, for larger
superheater diameters the pressure loss does not reach the
maximum and thus we see a slightly lower weight of the
evaporator as the water has a lower pressure and thus
also a lower evaporating temperature. We also observe
that reducing the tube diameter always leads to a weight
reduction for the evaporator, the economizer and the total
OTSG, and sometimes for the superheater. The reason
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for this is that a smaller tube diameter gives more heat
transfer area per volume which improves the overall heat
transfer and thus less weight is needed. However, the
smaller tubes also give a larger pressure drop in the tubes.
In the superheater there is only steam flowing inside the
tubes which leads to a pretty high pressure loss. As this
pressure loss is restricted this leads to significantly more
tubes per row being needed for smaller tube diameters
to reduce the flow in each tube and thus the pressure
loss, which counteracts the weight saving of having smaller
tubes. Thus, we see that for a tube diameter of 21.18mm
there is only a weight saving for widths up to 5m compared
to the larger diameter, while for 15.75mm there is only a
weight saving up to a width of 3.5m. In addition, this larger
pressure drop for smaller diameters leads to the optimal
width becoming smaller such that the length of each tube
is shorter which also helps reduce the pressure loss. In the
evaporator and economizer the pressure loss is not close
to the restriction and thus we do not see the same effect
in either of them.

If we compare the weight savings in each of the cores
we see that in the superheater and economizer we only
save about 9 and 8.5 tons respectively changing from the
largest to the smallest tube diameter, while we save about
50 tons in the evaporator. As the evaporator transfers a
lot more heat than the other two cores it is heavier and
there is more to save by reducing the evaporator tube
diameter. Finally, the total weight of the OTSG shows
the same trend as each of the cores, with a noticeable
weight reduction for each tube diameter. There are also
four bands where the weights are relatively close, one for
each evaporator diameter, which shows that reducing the
evaporator diameter has the biggest effect on the weight
of the entire OTSG.

3.3 Transient results

While the weight of the OTSG is very important for
their use offshore, reducing the diameter of the tubes also
changes the dynamic response of the OTSG. This is due
to the fact that when reducing the tube diameter we get
more heat exchanger area per volume of flow and per mass
of the tubes. This means that we both reduce the amount
of water stored inside the OTSG tubes and the mass of
the tubes which reduces the total heat capacity of the
system. This means that we expect faster response times
for the designs with smaller tube diameters, however, we
need to check how much each different core affects the
response time. To do this we did a simple transient test.
The OTSG was initialized with the flow values used for
the steady state optimization and ran for a sufficiently long
time such that it was in steady state. Then the gas turbine
load was changed instantaneously from 90% to 50%, which
amounts to a change in the exhaust gas temperature from
510.1°C to 510°C and a change in exhaust gas mass flow
from 86.12kg/s to 66.34kg/s. This was then run until a new
steady state and we found the time for the water outlet
temperature from the superheater to reach within 1% and
0.1% of the new steady state value. The resulting times
are shown in Table 5.

Looking at the response times we see that just like the
weights of the OTSG the response time is generally re-
duced for reduced diameters, with some slight increases for

a few cases, which could be due to the width only being
optimized in discrete steps. Changing from the heaviest
design with the largest tube diameters to the lightest
design with the smallest tube diameters halves the re-
sponse time. Also, the reduction is not evenly distributed
between the cores, instead, the evaporator clearly has the
biggest impact. This is again due to the evaporator be-
ing significantly heavier and thus also having significantly
more thermal mass in the tube bundle which takes longer
to cool. The reduction in response time is very similar
when reducing the diameter of the economizer and of
the superheater, which is because of their weight saving,
and thus the thermal mass reduction is approximately the
same. Finally, we note that the response time is changed
more for larger tube diameters. For example, reducing the
evaporator diameter from 32.56mm to 27.53mm reduces
the 1% response time by about 1900s while changing from
an evaporator diameter of 21.18mm to one of 15.75mm
only reduces the response time by about 1200s. However,
if we look at the percentage-wise reduction this is about
a 20% reduction for both cases. For comparison reducing
the superheater diameter gives a reduction of −0.8%-2.2%
and the economizer 0.3%-2.4% when ignoring the outlier
with 21.18mm diameter in all three cores. Compared with
the evaporator the relative change is significantly smaller
for the response time contribution of the economizer and
the evaporator compared to the weight savings, showing
that the evaporator is significantly more important for the
response time. This could also explain why the response
time of the design with 21.18mm tube diameter in all three
cores has a significant increase in response time compared
to the designs with similar diameters. In this case, the
superheater weight increases quickly with the diameter,
leading to an optimal width smaller than the design with
a larger superheater diameter. Thus, the evaporator be-
comes heavier and as it contributes more to the response
time than the other cores compared to its weight this then
leads to an increase in the response time.

4. CONCLUSION

In this study, a numerical framework has been used to
minimize the weight of an OTSG consisting of three
cores for varying tube diameters in each of the cores.
First, the OTSG combined cycle was investigated without
a geometric heat exchanger to find suitable operating
conditions. The chosen operating conditions were then
used to minimize the weight of each of the three cores
in the OTSG. It was found that the evaporator was the
heaviest and thus had the largest weight savings when
reducing the tube diameter, while the superheater had
diminishing weight savings due to higher pressure losses
for steam in smaller tubes. Finally, the transient response
for each of the optimal designs was investigated when
reducing the exhaust gas flow rate and keeping the water
flow rate constant. Here it was found that reducing the
tube diameter and thus the weight generally reduced the
response time of the OTSG due to reducing the thermal
mass of the system. Just as for the weight the evaporator
had clearly the biggest effect due to it having the largest
thermal mass reduction when reducing the tube diameter.
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Fig. 6. Weight of the optimal design of the three different cores of the OTSG as well as the total weight of the OTSG
for varying widths and diameter combinations given in Table 4. Repeating combinations in the superheater and
evaporator are not included to ease readability. The minimum weight is reduced with tube diameter and the
evaporator is the heaviest and has the biggest reductions.

Table 5. Time for each three-core design to reach 1% and 0.1% of the final steady state value
of the water at superheater outlet when changing the gas turbine load from 90% to 50%. The
response time is reduced for smaller tube diameters, and the evaporator has the biggest impact.

Superheater [mm] Evaporator [mm] Economizer [mm] Time for ±1% [s] Time for ±0.1% [s]

32.56 32.56 32.56 9521 19995
32.56 32.56 27.53 9563 19935
32.56 27.53 27.53 7657 16072
27.53 27.53 27.53 7698 16205
32.56 27.53 21.18 7596 15873
27.53 27.53 21.18 7517 15824
27.53 21.18 21.18 6484 13672
21.18 21.18 21.18 6657 14118
27.53 21.18 15.75 6393 13462
21.18 21.18 15.75 6280 13160
21.18 15.75 15.75 5079 10992
15.75 15.75 15.75 5114 10805
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Abstract: Lime production is essential in the chemical recovery cycle of chemical pulping mills, typically 

relying on fuel combustion and thus contributing to greenhouse gas emissions. While Nordic pulp mills 

mainly use carbon-neutral biofuels, future biomass scarcity underscores the need for sustainable biomass 

management and alternative lime calcination methods. Electrification presents a promising solution, as CO₂ 

emissions depend on the carbon intensity of the electricity grid, which increasingly relies on renewable 

sources. Electrified solutions offer chemical pulp mills the opportunity to function as biorefineries and 

potentially produce higher-value biofuels in a constrained market. Plasma calcination provides benefits 

over conventional lime kilns, such as faster reaction times, reduced reactor volume, and lower shell losses. 

This work develops mathematical models for conventional kilns and plasma calcination to evaluate their 

techno-economic feasibility and decarbonization potential. A sensitivity analysis identifies influential 

parameters, and energetic requirements for both technologies under different fuel scenarios are assessed 

along with CO₂ emissions and economic factors. Results indicate that while plasma calcination’s current 

decarbonization potential depends on the electricity grid’s carbon intensity, future projections show its 

competitiveness over conventional kilns, with significantly lower CO₂ emissions across regions. The 

economic viability of plasma calcination is further influenced by projected carbon prices and process 

parameters, which impact its specific electricity consumption. 

 

Keywords: Plasma calcination, Decarbonization, Electrification of heat, Lime kiln, Energy modelling, 

Pulp and paper 

1. INTRODUCTION 

The pulp and paper industry belongs to one of the most energy 

intensive industries in the world. Globally, it accounts for 

around 5% of total industrial energy consumption and is 

responsible for around 2% of emissions related to industry 

(IEA 2020). Despite rapid developments in digitalization, the 

pulp and paper industry is growing with a rate of 2% annually 

and is projected to continue rising due to several sectors, such 

as packaging or tissue production, more increasingly relying 

on paper-based products (IEA 2020; Summanen 2022). 

Currently, however, the pulp and paper industry is regarded as 

not being on track to reach net-zero emissions in 2050 which 

are obligated by the European Green Deal and legally binding 

through the European Climate Law (EC 2020; IEA 

2020).More efforts need to be made in order to reduce carbon 

dioxide emissions by moving away from fossil fuels and 

adopting new technologies in the production process. 

Electrification is seen as a promising option for supplying the 

necessary heating demand currently covered by fuels as carbon 

dioxide emissions are ultimately subject to the carbon intensity 

of the electricity grid. With an increased development of 

renewable and low carbon sources, electrification is therefore 

a crucial strategy to reach ambitious climate goals and 

contribute to the decarbonization of energy supply chains (IEA 

2024). 

One of the main heat intensive process steps in the pulp and 

paper industry is the production of lime within the chemical 

recovery cycle for chemical pulp mills. This is conventionally 

achieved in lime kilns that rely on fuel combustion to meet 

thermal energy demand. Lime kilns are primarily powered by 

fossil fuels such as natural gas or coal which is directly linked 

to carbon dioxide emissions (Falcke et al. 2017).Alternatively, 

biofuels can be utilized as a renewable energy source in lime 

kilns which is mostly the case in Nordic pulp mills. In 2020, 

90% of the total energy used in Swedish lime kilns was 

supplied by biofuels, mostly tall oil pitch (63%) and bark 

powder or sawdust (24%) (Berglin and Schenck 2022). In 

Finnish lime kilns, roughly 45% of the energy was supplied by 

biofuels, mostly through gasified bark (18%), tall oil pitch 

(13%), and lignin powder (8%) (Berglin and Schenck 2022). 

Even though biofuels are considered a renewable energy 

source due to their participation in the carbon cycle, carbon 

dioxide emissions from combustion still occur (Newell 2010). 

Simultaneously, biomass demand is projected to increase 

significantly in the future, potentially surpassing the available 

supply (Material Economics 2021). This supply bottleneck 
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may be further exacerbated by the European Parliament’s 

environmental committee, which advocates for restricting the 

use of primary woody biomass for energy purposes, arguing 

that an ecological limit on biomass harvesting must be 

considered (Material Economics 2021; Svebio 2022). This 

would conclusively result in a significantly tighter market for 

biofuels and an urgent need to consider how to best use 

biomass in Europe. Pulp mills therefore can play a significant 

role in becoming bio-refineries by converting available 

biomass residues into higher-value biofuels while at the same 

time opening the door for electrified calcination solutions. 

Plasma calcination is seen as a promising, electrically driven 

solution for lime production (Madeddu et al. 2020). It can offer 

several advantages over conventional lime production through 

lime kilns such as faster reaction times, reduced reactor 

volume and decreased shell losses (Andersson and Skogström 

2020). It is, however, not yet commercially available for the 

pulp and paper industry and comparative studies to 

conventional lime kilns showcasing the potential of plasma 

calcination have not been conducted. The key question, 

therefore, is to evaluate the comparative benefits of plasma 

technology versus lime kilns under both current and projected 

future conditions. 

This works aims to conduct a comparative techno-economic 

assessment between the plasma calcination technology and 

conventionally used lime kilns. Mathematical models for lime 

kilns and plasma calcination are developed to analyze the 

energetic requirements for both technologies under the 

investigation of different fuels. Corresponding carbon dioxide 

emissions are further calculated to assess the decarbonization 

potential of the plasma calcination technology and an 

economic assessment including operational and capital 

expenditures is performed. 

2. PROCESS DESCRIPTION 

Two technologies are being considered and compared for the 

production of lime, those being conventional lime kilns and 

plasma calcination. Energy models for both technologies are 

developed to estimate the energy and fuel consumption as well 

as production related CO2-emissions under consideration of 

the relevant process steps and corresponding energy and mass 

balances. 

 

Long rotary kilns are conventionally used in the pulp and paper 

industry for the production of lime. Fuel is combusted at the 

discharge of the lime kiln and its flue gases move counter-

current to the flow of the lime mud, providing the necessary 

energy to cover the heating demand for lime production. In its 

core, a lime kiln can be divided into four heating zones as seen 

in Fig. 1. First, wet lime mud enters the kiln and is dried to 

remove all water. After that, the dried lime mud is heated up 

until it reaches the calcination temperature. The calcination 

reaction itself is endothermic and requires additional heat to 

occur. In a last step, the produced lime sintered by further 

raising its temperature and agglomerating smaller particles to 

bigger ones. The hot lime is then discharged and cooled while 

preheating a secondary air stream to reduce the fuel 

consumption of the kiln (Bajpai 2018). 

 

 
Fig. 1. Illustration of lime kiln with corresponding heating

zones.

The plasma calcination technology aims to replace fuel driven

lime kilns by providing the necessary heat for lime production

with an ionised gas stream, also referred to as plasma, in a

calcination reactor. The plasma stream itself is generated from

an electric arc through which the gas stream passes, partially

ionises and leaves as a gas-plasma mixture reaching

temperatures of up to 5000 °C. The hot gas-plasma stream can

then drive the calcination reaction (Andersson and Skogström

2020).

 

Figure 2 shows a simplified process schematic of the electric 

plasma calcination technology. Lime mud needs to be dried 

before entering the plasma reactor to reduce its electricity 

consumption as the evaporation enthalpy of water is 

comparatively high. For the scope of this work, a heat 

exchange network design is modelled in which the heat content 

of the hot discharge gases is used to dry the lime mud partially 

or fully. In the plasma generator, CO2 is heated when getting 

in touch the electrically generated arc and leaves the plasma 

generator as a gas-plasma mixture to drive the calcination 

reaction in the plasma reactor together with the dried lime 

mud. The CO2 stream after the plasma reactor needs to be 

cooled before the CO2 stream is separated into two streams due 

to the additional CO2 created during the calcination reaction. 

The first stream is compressed and recycled into the process 

while the second CO2 stream is emitted and thus leaving the 

system boundaries. CO2 created during plasma calcination is, 

however, of high purity meaning that the non-recycled CO2 

stream can be used in other process steps within the pulp 

production process, such as pulp washing (Bjotveit et al. 

2003). 

 

Plasma calcination can offer significant benefits compared to 

conventional lime kilns. Lime mud reburning with plasma can 

significantly reduce the process time of lime production from 

several hours in lime kilns to only a few seconds in a plasma 

reactor offering improvements in process control and reduced 

start and stop times. Additionally, equipment size is 

significantly smaller with a plasma reactor only having 1% of 

the volume of a lime kiln and no moving parts allowing for 

reduced operating costs and decreased shell losses (Andersson 

and Skogström 2020). 

 

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.013 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

94



 
Fig. 2. Simplified process diagram for plasma calcination,

adapted from (Andersson and Skogström 2020).

In order to quantify the energy demand of the conventional

lime kilns and the plasma calcination technology, the two

thermodynamic principles of energy and mass conservation

are applied for every relevant component. Temperature

dependant heat capacities are being considered as well as

additional ionization enthalpy when modelling a phase change

from gaseous to plasma state within the plasma calcination

energy model. For the lime kiln model, different fuels can be

investigated based on their molecular composition. Aside from

the energetic requirements, both energy models further allow

to estimate fuel and electricity consumption as well as

corresponding CO2-emissions to further assess the

decarbonization potential of the plasma calcination technology

and its economic competitiveness.

3. RESULTS

The developed energy models for conventionally used lime

kilns and the novel plasma technology allow for analysis of

energetic requirements as well as corresponding fuel

consumption and CO2-emissions. Both models were

developed in Python 3.12.2. A list of relevant process

parameters can be found in table 1.

Table 1. Process parameters

Parameter Value Unit Source

Cooling

temperature 200 °C (Bajpai 2018)

Flue gas

temperature 200 °C (Lundqvist 2009)

Solids

content 0.75 -

(Vainikainen 

2021) 

Sintering 

temperature 1100 °C 

(Gulbrandsen and 

Stenqvist 2016) 

Loss factor 

shell 0.1 - (Lundqvist 2009) 

Plasma 

temperature 3600 °C 

(Andersson and 

Skogström 2020; 

Blackman 2024) 

Reactor 

efficiency 1 - 

(Bjotveit et al. 

2003) 

 

Figure 3 shows the sensitivity analysis results for the energetic 

analysis of both technologies. Key influential process 

parameters for the lime kiln model on its heat rate can be 

identified as the solids content of the lime mud entering the 

kiln, the flue gas temperature of the combustion products 

leaving the kiln and the loss factor accounting for heat losses 

through the shell of the kiln. In the plasma calcination model, 

partially ionized CO2 provides the necessary heat for the 

calcination process. Results indicated that the temperature 

range of the ionized CO2 has a significant impact on the 

electricity demand of the plasma generator, with a steep 

increase for plasma temperatures lower than 3000 °C. 

Additionally, variations in the sintering temperature have a 

higher impact on the specific electricity consumption of the 

plasma generator than on the heat rate of the lime kiln. 

 

Fig. 3: Sensitivity analysis of chosen process parameters for 

the lime kiln model (top) and plasma calcination model 

(bottom). The values in the brackets of the legends refer to 

the corresponding baseline parameter. 

The decarbonization potential of plasma calcination can be 

estimated with the modelling results generated by an in-depth 

sensitivity analysis in which the parameters described above 
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have been cross varied. The conducted emissions analysis 

takes into account direct CO2-emissions from fuel combustion 

in lime kilns and indirect emissions for the electricity supply 

of lime production via plasma technology. For the lime kiln, 

three fuels have been analyzed those being natural gas (NG), 

tall oil pitch (TOP) and bituminous coal (BC). CO2-emissions 

from plasma calcination are ultimately subject to the carbon 

intensity of the electricity grid. As carbon intensities vary, 

three regions have been selected to assess the decarbonization 

potential of the plasma calcination technology those being the 

EU, China and Sweden. Current as well as projected carbon 

intensities for 2030 and 2050 are taken into consideration for 

the analysis. Figure 4 illustrates the decarbonization potential 

of the plasma calcination technology. The boxplots show the 

potential range of specific CO2-emissions based on the multi-

way sensitivity analysis for the given regions and time spans. 

The rectangles across the figure represent the interquartile 

range of CO2-emissions for the analyzed lime kiln fuels. It can 

be concluded that the current decarbonization potential of 

plasma calcination is heavily dependent on the carbon 

intensity of the corresponding electricity grid. Countries with 

a higher carbon intensity, such as China, cause higher CO2-

emissions from plasma calcination in comparison to the 

analyzed lime kiln fuels. Countries with a low carbon intensity, 

such as Sweden, however, cause plasma calcination to 

outperform conventional lime kilns from a decarbonization 

perspective. Future trends regarding carbon intensity further 

reveal the competitiveness of plasma calcination and lead to 

lower specific CO2-emissions for all analyzed regions in 

comparison to the analyzed lime kiln fuels in 2050. 

 

Fig. 4: Decarbonization potential of plasma calcination 

technology for different regions and time spans. 

For the economic analysis, both operational and capital 

expenditure are being considered using the Net Present Value 

(NPV). Operational expenditures consider current and 

projected fuel and industrial electricity prices until 2050. 

Additionally, carbon prices are applied based on the EU ETS 

framework. For the capital expenditure, a 15 MW plasma 

generation system is considered with total investment cost for 

the plasma generator itself as well as auxiliary equipment. 

Based on the in-depth sensitivity analysis, this system would 

yield a lime production capacity of 121 – 245 t/day. This 

difference creates an upper and lower bound for the total 

investment costs of a lime kiln with equivalent production 

capacity. Figure 5 illustrates the NPV over a time span until 

2050 as a function of the lime production capacity for two 

scenarios. The first scenario uses a high carbon price of 500 

€/t in 2050 and the second one applies a more conservative 

carbon price of 200 €/t in 2050. Lower production capacities 

imply a lower electrical efficiency of the 15 MW plasma 

generation system while higher production capacities imply an 

increased electrical efficiency. For the high carbon price 

scenario both natural gas and bituminous coal can be 

outperformed by the plasma calcination technology even 

though higher electrical efficiencies of the plasma calcination 

system are required to result in a higher NPV than lime kilns 

fueled with natural gas. A lower carbon price requires higher 

electrical efficiencies of the plasma calcination system to be 

economically competitive with lime kilns fueled by 

bituminous coal while natural gas fired lime kilns always result 

in a higher NPV.  

 

Fig. 5:  NPV for plasma calcination system and lime kilns 

fueled by natural gas and bituminous coal for a carbon price 

of 500 €/t in 2050 (top) and 200 €/t in 2050 (bottom). The 

vertical line shows the median value obtained from the 

sensitivity analysis. 

It can be concluded that the economic competitiveness of the 

plasma calcination technology is highly dependent on the 

projected EU carbon prices and the time of investment as a 

general increase of carbon prices is forecasted with a rather 

high uncertainty regarding the precise extend of this increase. 

4. DISCUSSION 

The primary objective of this work was to explore the potential 

of plasma calcination as a sustainable alternative to 

conventional lime kilns for lime production within the pulp 

and paper industry. This investigation was motivated by the 

industry’s need to reduce greenhouse gas emissions and align 
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with European and global decarbonization goals. The study 

examined the technological, economic, and environmental 

aspects of plasma calcination and compared those to 

conventionally used lime kilns. The generated results for the 

energetic requirements of both models are aligned with 

literature findings even though a data bottleneck for the plasma 

calcination technology has been identified. Plasma calcination 

for lime production in the pulp and paper industry is not yet 

applied on a commercial level and public availability of 

process flow sheets or process parameters is very limited 

causing the range of certain process, such as the plasma 

temperature, to be most likely wider than for a scenario in 

which this technology is well established in the industry. The 

decarbonization potential of plasma calcination is currently 

heavily dependent on the carbon intensity of the electricity 

grid. While the current decarbonization potential is 

geographically limited, the results show that future trends 

indicate plasma calcination to clearly outperform lime kilns 

from a decarbonization perspective. The economic 

competitiveness of plasma calcination is not only governed by 

the investment costs which are dependent on the selected 

process parameters but also on the operational expenses. The 

latter mostly depend on the projected carbon prices and 

corresponding policies such as the carbon leakage status of the 

pulp and paper industry or a potential inclusion into the Carbon 

Border Adjustment Mechanism.  

 

Future work should explore enhancements and additions to the

plasma calcination model developed in this work. The results

generated in this work are based on simulation models.

Especially for the plasma calcination model, for which a data

bottleneck has been identified, experimental validation of the

modeling results and potential adjustments would be desirable.

Based on that, the plasma calcination model can further be

enhanced by modelling the plasma generator and calcination

reactor component in greater detail under consideration of

dynamic heat transfer and different plasma torches. One major

advantage of the plasma calcination system are fast ramping

times which could be applied to fluctuating electricity prices

to optimize lime production from an economic perspective.

Additional gases other than carbon dioxide under different

thermodynamic properties can further be investigated to

increase the performance of the plasma calcination system.

5. CONCLUSIONS

This study demonstrates the potential of plasma calcination as

a sustainable and efficient alternative to conventional lime

kilns for decarbonizing lime production in the pulp and paper

industry. While current adoption depends on the carbon

intensity of the electricity grid, future projections indicate

significant CO₂ emission reductions and competitive

economic performance under anticipated carbon pricing

scenarios. Plasma calcination offers technological advantages,

including faster process times, reduced equipment size, and

integration potential within biorefinery frameworks. Future

efforts should focus on experimental validation, enhanced

modeling, and dynamic optimization to fully realize the

benefits of this promising technology.
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Abstract: Accurate measurement of flow rate of the multiphase flow of oil, gas and water from
the oil wells, is an important part of the oil and gas industry. This enables the safe operation
and proper optimization of the production. With the increasing availability of process data,
machine learning algorithms are used to create models for various applications. The application
of these algorithms for flow rate estimation provides a more accurate representation of the oil
and gas production process. In this paper, two oil wells and ten machine learning algorithms
are evaluated. Long Short-Term Memory (LSTM) provides the best results with Mean Absolute
Percentage Error of 1.96% for Well 1 and 1.56% for Well 2. In addition, the effects of noise on
the models are explored. Median filter with window size of three provides good noise reduction.
The uncertainty of the predictions are quantified using 95% confidence intervals in XGBoost
model.

Keywords: Machine learning techniques, Data-driven estimations, Uncertainty quantification,
Measurement noise

1. INTRODUCTION

The production of oil and gas requires measurements of
various process data. This process data is used to ensure
optimal production of oil and gas and the safe operation
of the production system. One of the most important
variables necessary for this is the accurate measurement
of oil, gas, and liquid flow rates from the oil wells. Since
there is multiphase flow from the oil wells, it is a challenge
to obtain the individual flow rates of oil and gas. Typically,
a separator is used as shown in Fig 1 to obtain an accurate
flow rate of oil, gas and water. Here to measure the
individual phases the multiphase mixture are separated
physically with a separators. Phase flow meters are used to
obtain accurate flow measurements, Bikmukhametov and
Jäschke (2020). This process requires a steady state flow
from the given oil well. In addition to this, the other oil
wells have to be shut down to avoid interference with the
results. This is a costly and time consuming process.

To estimate the flow rates without use of separators,
Multiphase flow meters (MPFMs) can be used. While
MPFMs has many advantages in measurement of multi-
phase flow, they are very expensive. Also, the accuracy of
them gets degraded over time. In addition maintenance
of these sensors are important to ensure good working
conditions. Oil and gas production systems will already
have many sensors installed which monitor certain physical

⋆ We gratefully acknowledge the support from the Research Council
of Norway and Equinor ASA through Research Council project
“308817 - Digital wells for optimal production and drainage” (Digi-
Well). Corresponding author’s e-mail: gaurav.mirlekar@usn.no.

Fig. 1. Example of sub-sea oil production

quantities. The use of data driven modelling (also called
machine learning modelling) in the oil and gas industry
has been increasing with the availability of and storage
of process data. As early as 1993, Qiu and Toral (1993)
have used neural networks to estimate the flow rates of
multiphase flow. Considerable research is ongoing to im-
prove the application of machine learning models in the
oil and gas industry. AL-Qutami et al. (2018) also uses
neural networks to estimate phase flow. They used feed
forward neural networks with k fold cross validation and
early stopping. A more advanced method using LSTM
has been used by Andrianov (2018) to forecast forecast
the rates for a series of future time instants in addition
to reliably estimating the multiphase rates at the current
time. For VFM the process data usually collected are:
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• Bottomhole pressure and temperature.
• Wellhead pressure and temperature upstream of the
choke.

• Wellhead pressure and temperature downstream of
the choke.

• Choke opening values.

1.1 Objective

The main objective here is to assess the machine learning
algorithms for flow rate predictions in a sub sea oil produc-
tion system. The sub-tasks in this are 1) Data collection
and preprocessing, 2)Predictions of flow rates of oil, gas
using machine learning, 3) Evaluation of measurement
noise on machine learning algorithms performance and 4)
Quantification of the uncertainty in the predictions.

2. METHODS

2.1 Process Description

For the oil well, the simplified schematic is shown in Fig 2.
Through the gas lift choke valve, high-pressurized natural
gas is continually injected into the wells annulus in this
system, which is mostly utilised to extract lighter crude
oils. The injected gas finds its way into tubing at some
points located at proper depths and mixes with the multi-
phase fluid from the reservoir. As a result of this mixing,
the density of the fluid in the tubing will be reduced,
which means that the flowing pressure losses in the tubing
reduce. Consequently, the reservoir pressure will be able to
overcome the flowing resistance in the well and push the
reservoir fluid to the surface. Each well has its own inflow
characteristics. A graphical representation of this project
is shown in Fig 3.

Fig. 2. Single oil well schematic

2.2 Machine learning algorithms

A brief description of the machine learning algoirthms used
in this paper are describe here

Fig. 3. Process Flow of the Project

Multivariate Linear Regression Linear Regression is the
simplest machine learning algorithm. It makes a prediction
by simply computing a weighted sum of the input features,
plus a constant called the bias term, as shown in equation
(1).

ŷ = θ0 + θ1x1 + θ2x2 + · · ·+ θnxn (1)

Where,
ŷ - predicted value,
n - number of features,
xi - ith feature value,
θj - jth model parameter,
θ0 - bias term.

This can be modified to output multiple ŷ values. Mul-
tivariate linear regression is a statistical technique that
models the linear relationship between multiple indepen-
dent variables and a single dependent variable. It extends
simple linear regression by allowing for the inclusion of
more than one predictor variable. The goal is to find the
linear equation that best predicts the dependent variable
based on the independent variables Zangl et al. (2014).

k-Nearest Neighbors Regression The k-nearest neighbors
(kNN) algorithm is a non-parametric, supervised learning
method used for classification and regression tasks. It
works by identifying the k closest training examples to
a given data point and assigning a class or value based on
the majority vote or average of those neighbors. kNN is
a versatile algorithm that can handle both numerical and
categorical data without making assumptions about the
underlying data distribution. It is commonly used in appli-
cations like recommendation systems, pattern recognition,
and anomaly detection. The choice of k is important, as
lower values can lead to overfitting while higher values may
cause underfitting, Géron (2023).

Support Vector Regression Support Vector Regression
(SVR) is a non parametric technique that uses kernel
functions to estimate a function from a set of training
data. The goal is to find a function f(x) that deviates
from the target values y by no more than ε, while being
as flat as possible. This is achieved by solving a convex
optimization problem that minimizes the norm of w,
subject to the constraint that the regression errors are
within ε. SVR can handle high-dimensional data and
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nonlinear relationships by implicitly mapping the input
data into a higher-dimensional feature space using kernel
functions. Unlike other regression models that try to
minimize the error between the real and predicted values,
SVR tries to fit the best line within a threshold value
(distance between the hyperplane and boundary line).
The data points on either side of the hyperplane that
are closest to the hyperplane are called Support Vectors,
which are used to predict the output Xu et al. (2012).
SVR has several advantages, such as being robust to
outliers, having excellent generalization capability, and
easy implementation. However, it is not suitable for large
datasets, and its performance may degrade when the
number of features exceeds the number of training samples
Smola and Schölkopf (2004).

Decision Tree Regression A decision tree algorithm is
a supervised machine learning technique used for both
classification and regression tasks. It constructs a tree-
like model of decisions based on the data’s attributes. The
process starts at the root node and splits the data into sub-
sets using the most significant attribute based on selection
criteria like information gain or Gini impurity. Each inter-
nal node of the tree represents a ”test” on an attribute,
each branch represents the outcome of that test, and each
leaf node represents a class label or a continuous outcome.
The paths from root to leaf represent classification rules or
regression paths. Decision trees handle both numerical and
categorical data and are intuitive, as they mimic human
decision-making processes. They are particularly useful in
scenarios where relationships between parameters are non-
linear or complex. However, decision trees can suffer from
overfitting, especially with very complex trees. Techniques
such as pruning are used to remove parts of the tree that do
not provide additional power in order to reduce overfitting
and improve the model’s generalizability. Decision trees
are foundational elements in more complex algorithms like
Random Forests and boosting methods, enhancing their
stability and accuracy Dayev et al. (2023).

Gradient Boosting Regression Gradient Boosting Re-
gression is a powerful machine learning algorithm that
combines multiple weak models to form a strong learner.
It is particularly effective for regression problems where
the goal is to predict continuous values. The algorithm
works by iteratively training decision trees on the residuals
of previous predictions, which are the differences between
the actual and predicted values. Each tree is trained to
minimize the error of the previous tree, and the learning
rate determines the contribution of each tree to the fi-
nal prediction. The process begins with an initial guess,
typically the mean of the target variable. Then, at each
iteration, a new tree is trained to predict the residuals
from the previous tree. The residuals are the differences
between the actual and predicted values. The new tree is
added to the previous trees, and the process is repeated
until a stopping criterion is reached, such as a maximum
number of trees or a minimum improvement in the model’s
performance. The final prediction is the sum of the predic-
tions from all the trees, weighted by their learning rates.
This approach allows the algorithm to capture complex
relationships between the input variables and the target
variable, making it highly effective for regression problems
Kniazev et al. (2023).

XGBoost Regression XGBoost is a powerful algorithm
for building supervised regression models. It was developed
by Chen and Guestrin (2016). It is an implementation of
gradient boosting that is designed to be highly efficient
and scalable. The algorithm is particularly effective for
regression problems where the goal is to predict contin-
uous or real values. XGBoost is based on the concept
of ensemble learning, where multiple base learners are
trained and combined to produce a single prediction. The
core components of XGBoost for regression include the
objective function, base learners, and regularization. The
objective function is responsible for defining the loss func-
tion and the regularization term. The base learners are the
individual models that are trained and combined to pro-
duce the final prediction. Regularization is used to prevent
overfitting by penalizing complex models. XGBoost uses a
unique approach to building regression trees. Each tree
starts with a single leaf and all residuals go into that leaf.
The algorithm then calculates a similarity score for this
leaf based on the residuals. The similarity score is used
to determine how to split the data into two groups. This
process is repeated recursively until a stopping criterion is
reached. XGBoost is widely used in various applications
due to its high accuracy and efficiency. It is particularly
effective for large datasets and can be easily integrated
with other tools and packages such as scikit-learn and
Apache Spark.

PC Regression Principal component regression (PCR)
is a regression analysis technique that combines principal
component analysis (PCA) and linear regression. The key
idea behind PCR is to first perform PCA on the predictor
variables to obtain a set of uncorrelated principal com-
ponents, and then use these principal components as the
new predictors in a linear regression model, instead of the
original variables. The advantages of PCR are that it can
help address issues like multicollinearity and high dimen-
sionality in the predictor variables. By using a subset of
the principal components, PCR can reduce the number of
predictors in the regression model, which can improve the
model’s interpretability and generalization performance.
However, PCR does not perform feature selection, as each
principal component is a linear combination of all the
original predictors. While PCR can be a useful technique,
it has some limitations. It relies on the assumption that
the directions of maximum variance in the predictor vari-
ables are also the most predictive of the response variable,
which is not always the case. Additionally, PCR can result
in information loss, as it discards some of the principal
components during the regression step Bello et al. (2014).

PLS Regression PLS regression is a powerful statistical
technique that is particularly useful for analyzing high-
dimensional data with many predictor variables. The key
idea behind PLS regression is to find a set of latent com-
ponents (linear combinations of the original predictors)
that maximize the covariance between the predictors and
the response variable. Unlike traditional linear regression,
PLS does not require the predictors to be orthogonal or
the number of predictors to be less than the number of ob-
servations. PLS regression works by iteratively extracting
latent components that explain as much of the covariance
between the predictors and response as possible. The re-
sulting PLS model provides both dimension reduction and
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regression coefficients, allowing for accurate prediction of
the response variable from the original high-dimensional
predictors. PLS regression has several advantages over
other regression methods, including its ability to handle
multicollinearity, its robustness to noise, and its suitability
for datasets with more predictors than observations. As
a result, PLS is a widely used technique in fields such
as chemometrics, bioinformatics, and marketing research
Boulesteix and Strimmer (2006).

MLP Neural network A Multilayer Perceptron Neural
Network (MLPNN) is a type of artificial neural network
that consists of multiple layers of interconnected nodes,
or neurons. Unlike a single-layer perceptron, which can
only learn linearly separable patterns, an MLP can learn
more complex, non-linear relationships in data. The key
components of an MLP are the input layer, one or more
hidden layers, and an output layer. The input layer receives
the data, which is then passed through the hidden layers,
where the network learns to represent the data in a more
abstract way. Each hidden layer applies a non-linear acti-
vation function to the weighted sum of its inputs, allowing
the network to learn complex patterns. The final output
layer produces the predicted result.MLPs are trained using
a supervised learning algorithm, typically back propaga-
tion, which adjusts the weights of the connections between
neurons to minimize the error between the predicted and
actual outputs. This iterative process allows the MLP
to learn the underlying structure of the data and make
accurate predictions on new, unseen data.

LSTM Long Short-Term Memory (LSTM) is a type of
recurrent neural network designed to address the vanishing
gradient problem in traditional RNNs. The key feature of
LSTMs is their memory cell, which can selectively retain
or discard information as it flows through the network.
LSTMs have three gates that control the flow of infor-
mation: the input gate, the forget gate, and the output
gate. The input gate decides what new information from
the current input and previous output should be added to
the memory cell. The forget gate determines what infor-
mation from the previous memory cell should be retained
or forgotten. The output gate controls what information
from the current memory cell and input should be used to
produce the output. This gating mechanism allows LSTMs
to learn long-term dependencies in sequential data, making
them well-suited for tasks like language modeling, machine
translation, speech recognition, and time series forecast-
ing. LSTMs have been widely adopted and have signifi-
cantly advanced the state-of-the-art in many sequence-to-
sequence learning problems.

Data driven VFM (also called machine learning VFM) is
the method where a model of the oil and gas production
system is created using the available sensor data. Here
in depth domain knowledge about the process is not
necessary to create a model. A typical schematic for a
sub-sea oil and gas production systems which used data
driven VFM is shown in Fig 4. Broadly, the steps involved
are as follows:

(1) Data collection.
(2) Data pre processing.
(3) Model development.

Fig. 4. Data driven VFM.

2.3 Data collection

The first step to creating a data driven model is the collec-
tion of relevant data. In Virtual Flow Metering systems,
information is transmitted from wells and processing facil-
ities and this includes sensor readings. This data may be
wireless transmitted using IoT systems or through physical
communication wires. It can involve different communi-
cation protocols to ensure proper transmission of data.
Historical data from the same or analogous fields may
also be used as a calibrating data set for fine-tuning the
model. Generally, the data collected tends to be unclean,
contaminated, and may have missing values, outliers and
redundant inputs. Here the data is obtained from the oil
well model described by Janatian et al. (2022). Using the
equations described in the paper, an open loop simulation
of the oil well is obtained. For the oil well 1 and 2, 5762
samples are obtained. These are split in 70% train and
30% test sets.

2.4 Data pre processing

Data filtering, where the removal of noise from raw data is
performed is part of this step. There exist many filters that
can be deployed to clean the raw data. In addition out-
lier detection, correcting missing values can be included.
Preprocessing can also involve data transformation, which
might yield new insights about the information the data
contains. Feature engineering is the common term for this
technique. Since the oil and gas production process is time
dependent, care should be taken when splitting the data
for training. Time series split from Sci-kit learn library
is used for this. Two splits are created as shown in Fig
5. Using this, data leakage in the training stage can be
avoided. A standard scaler is used on the inputs of the
train dataset. It involves re-scaling each feature such that
it has a standard deviation of 1 and a mean of 0. This
is necessary since the inputs have different ranges. It also
help to reduce training time in certain algorithms like SVR
and neural networks.

2.5 Model development

In order to create a model, an algorithm that can map
input features to output (target) variables must be de-
veloped. The mapping process, also known as training or

(4) Predictions of flow rates.
(5) Data reconciliation.
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Fig. 5. Time series splitting.

learning, involves the algorithm modifying the parameters
so that it can precisely estimate the desired variables.
Depending on the algorithm being used, the parameters
must be changed. The weights that connect the neurons
in a neural network, for example, are the parameters. In
regression trees, on the other hand, the parameter may
be the tree depth. Reducing the difference between the
algorithm’s predicted values and the actual (measured)
values to minimise a cost function, is how training is ac-
complished. Mean squared error (MSE) is usually used as
a cost function to solve regression problems such as Virtual
Flow Metering. Here ten algorithms are used to create
models for Well 1 and Well 2. LSTM Regression, Multi-
variate Linear Regression, KNN Regression, Decision Tree
Regression, Gradient Boosting Regression, XGBoost Re-
gression, Principal Component Regression, Partial Least
Squares Regression, and MLP Neural Network Regression
are used.

2.6 Predictions of flow rates

Once the training and validation for the model is com-
pleted, the model is tested on unseen data. New pre-
dictions from this data are noted and the effectiveness
of model can be determined. For oil and gas flow rate
predictions the commonly used performance metric is the
Mean absolute percentage error (MAPE). With this the
performance across various algorithms can be compared.
It is easy to interpret and can be used across different
input data scales. MAPE can be found by:

MAPE(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

|yi − ŷi|
max(ϵ, |yi|)

.100 (2)

where ŷ is the predicted value of the ith sample, yi is is the
corresponding true value, nsamples is number of samples, ϵ
is an arbitrary small yet strictly positive number to avoid
undefined results when y is zero.

2.7 Data reconciliation

An optimization algorithm adjusts the model parameters,
for instance, flow rates, choke discharge coefficient, gas and
water fractions, and friction and heat transfer coefficients
such that the model outputs match the validated measured
data being constrained to process conditions, for instance,
the material balances. The reconciliation procedure in
virtual flow metering systems is frequently expressed in
the constrained least squares form.

3. RESULTS AND DISCUSSIONS

3.1 Predictions using algorithms

For Well 1, Figures 6 shows the results of each algo-
rithm. Figure 7 shows the predictions for Well 2.

For LSTM model early stopping is used to prevent over-
fitting. This is implemented in Tensorflow. For well 1, 32
memory cells are used. For well 2, 40 memory cells were
used. The ’adam’ optimizer with loss function of mean
squared error is used for training both models. A linear
activation unit is used in the output layer.

In the Multi-layer perceptron neural network model, for
well 1, 2 hidden layers are used, ’identity’ activation
function, an optimizer in the family of quasi-Newton
methods (lbfgs solver) is used, L2 regularization of 0.0005
and the maximum number of iterations is 1000. For well
2 only ’logistic’ activation function is changed and other
hyper-parameters are same as well 1.

In the Multi variate linear regression, for well 1 and
well 2 the intercept is calculated. The copy X parameter
is true, which means the input features are copied, not
overwritten.

In the Support vector regression model, for well 1, radial
basis function is used as kernel, with kernel coefficient of
0.1, and regularization of 1 is used. For well 2, radial basis
function is used as kernel, with kernel coefficient of 0.01,
and regularization of 10 is used.

In the K nearest neighbors model, for well 1 and well 2,
8 neighbors were used. For well 1, the power parameter
for the Minkowski metric is used. For well 2, the power
parameter for the euclidean distance metric is used. These
metrics are used in distance computation.

For the Decision tree model, for well 1, the maximum
depth of the tree is 1, the minimum number of samples
required to be at a leaf node is 1, the minimum number
of samples required to split an internal node is 2 and the
number of features to consider when looking for the best
split is the sqrt of the number of features. For well 2, the
maximum depth of the tree is 10, the minimum number of
samples required to be at a leaf node is 1, the minimum
number of samples required to split an internal node is 10
and the number of features to consider when looking for
the best split is the log2 of the number of features.

For Gradient boosting model, for well 1 and well 2, the
loss function used is squared error for regression. The
maximum depth of the individual regression estimators is
3. For well 1, the learning rate is 0.1, and for well 2 the
learning rate is 0.05. With this algorithm it is possible to
find the importance of each input feature. Here Pwh, the
wellhead pressure shows the maximum effect.

A more efficient and faster implementation of gradient
boost, XGBoost model Zheng et al. (2022) is developed
next. Here for well 1, the squared error is used as objec-
tive function, 300 estimators, maximum depth of 7 and
learning rate of 0.01 is used. For well 2, the number of
estimators are reduced to 100, maximum depth of 3 and
learning rate of 0.1.
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Fig. 6. Flow rate Predictions for Well 1.

Fig. 7. Flow rate Predictions for Well 2.

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.014 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

103



For the PLS and PCR models, the number of component
used in 1 in both wells. These models are useful when
dimension reduction of input feature space is needed.

The MAPE for each model is shown in Table 1

Table 1. MAPE for Well 1 and Well 2.

Algorithm Well 1 (%) Well 2 (%)

LSTM 1.96 1.53
MLP NN 2.43 5.49
MV Linear Regression 2.14 7.57
SVR 5.04 4.31
KNN 8.05 5.41
Decision Tree 9.26 5.43
Gradient Boost 4.95 5.55
XGBoost 4.23 5.56
PLS 9.54 7.57
PCR 9.52 16.69

The LSTM model produces the best results. The disad-
vantages of using this is the training time is longer. Also
to find the proper parameters is a time consuming process.
It is observed that for each well the hyper-parameters
has to be tuned. GridSearchCV helps with this, but it
is still a complicated process. For the algorithms that are
generally used for classification tasks like SVM, kNN, some
modification is required to enabling its use for regression.
Many of these algorithms including linear regression, and
tree based, require modification to predict multiple out-
puts. With modifications it is possible to get the results,
but the downside is the hyperparameter tuning becomes
more complex. Neural networks and the LSTM model can
be made more complex, giving better results. This takes
more time and computation power. For finding the best
hyper-parameters multiple runs are required. Since the
programs were executed on a laptop, these take more time.
For decrease in computation time a sample size of 5762
was used. If more samples were used in the modelling the
results would probably be much better.

3.2 Effects of noise

The effect of random errors is tested on three machine
learning models: XGBoost, MLP NN and LSTM. Impulse
noise introduces sudden jumps or falls in the data values,
simulating real-world data with occasional spikes at ran-
dom locations. First a noise sample of 3% is created. The
values in the sample are uniformly distributed between
20% of the minimum value of the column and 30% of the
maximum value of the column. This ensures that the noise
added is relative to the range of the data in the column.
The noise is randomly distributed across the column and
added to the 3 input features. The 3 algorithms are trained
and tested. Here the figures are shown of only Well 1,
since the effects are can be similarly observed in Well 2.
Figures 8 and 9 show the effect of impulse noise on LSTM,
MLP NN and XGBoost models respectively. To solve the
problem of impulse noise, there are many filters that can be
used. For example Median filter, Order statistic filters, and
so on. Here the Median Filter is used to reduce the impulse
noise. SciPy is used, which has a median filter function that
is well-suited for removing impulse noise, as it replaces
each data point with the median of the neighboring data
points within a specified window size. The results of the

Fig. 8. Effect of Impulse noise on LSTM model.

Fig. 9. Median noise filter.

median filter is shown in Fig 9. A window size of 3 is used.
Each data point is replaced with the median of itself and its
two neighbors. Most of the impulses are filtered out. The
prediction accuracy of the 3 models is improved. Tables 2
and 3 shows the effect of impulse noise on MAPE of the 3
models.

Table 2. Impulse noise effects

Well no. LSTM (%) MLP NN (%) XGBoost (%)

Well 1 5.98 8.76 7.51
Well 2 4.67 5.13 5.77

Table 3. Median Filter effects

Well no. LSTM (%) MLP NN (%) XGBoost (%)

Well 1 1.87 4.97 6.47
Well 2 2.86 5.51 5.29

3.3 Uncertainty quantification

Uncertainty refers to a state of limited knowledge or in-
formation, where it is impossible to precisely describe an
existing state, future outcome, or multiple possible out-
comes. There are two main types of uncertainty: Aleatory
and Epistemic Uncertainty Pelz et al. (2021). There are
many methods to quantify the uncertainty in predictions
for machine learning models. Some of them are: Confidence
intervals, Quantile regression, Bootstrapping, Ensemble
methods and Bayesian optimization.

Using XGBoost the confidence intervals can be added.
For other algorithms like LSTM it is a more complicated
process. Figs. 10 and 11 show the confidence intervals of
95% for XGBoost model for well 1 and well 2.
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Fig. 10. Confidence intervals for XGBoost model (Well 1)

Fig. 11. Confidence intervals for XGBoost model (Well 2)

4. CONCLUSION

Applying machine learning for flow rate estimation in oil
and gas productions is a complex process. From the data
collection to uncertainty quantification, considerable work
has to be done to obtain useful results. The applicability
of the results depends on the situation. Long short-term
memory (LSTM) provides the best results with Mean
absolute percentage error of 1.96% for Well 1 and 1.56%
for Well 2. It may be best to use the predictions from
the models as a backup for more robust systems. Since
each well has its own characteristics, they must be modeled
individually. In addition more process data would probably
improve the accuracy of the flow rate predictions.

More filters can be tested to remove measurement noise.
Different methods of uncertainty quantification can also be
tested. The outlier detection and correction can be added
in future. Unsupervised techniques like Local Outlier Fac-
tor, Isolation Forest, Kernel Density Estimation can be
tested. Data reconciliation can also be added. Here the
process flow diagram is necessary, the constraints of the
each well are also needed.
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APPENDIX A. PROGRAM CODES

The Matlab codes for the simulator and the python ma-
chine learning code can be accessed here:
https://github.com/dsouzaneville/FMH606-1-Masters-Thesis
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Abstract:  This study presents a techno-economic assessment of an amine-based carbon capture

technology. The aim is to compare different methods to evaluate the cost effect of doubling the capacity.

A base case was established in Aspen HYSYS with 15 m absorber packing height, 6 m desorber packing

height, removal efficiency of 85 % and a heat exchanger minimum temperature approach (ΔTmin) of 10

°C. In a first additional case the flue gas flow rate was doubled and in the second case a new absorber in

parallel was added. Then dimensioning and cost estimation was carried out using Aspen HYSYS

spreadsheets to automatically calculate CAPEX, OPEX and carbon capture cost per ton CO2 captured. To

estimate the Bare Erected Cost (BEC), the Enhanced Detailed Factor (EDF) and the Aspen Process

Economic Analyzer (APEA) were employed. The EDF method determines the installation cost of each

piece of equipment, while the Nazir-Amini method only offers the Total Plant Cost (TPC) without

calculating individual equipment. Applying the EDF method, the TPC for the base case, the doubled feed

gas case and the two-absorber case were calculated to 76, 141 and 150 MEuro respectively. This illustrates

that cost increase may be less than proportional to the flow rate increase. The estimated annual OPEX for

the base case was 42.5 MEuro, while for the two alternatives the OPEX was very close to the double of the

base case. The estimated carbon capture cost for the base case, two-absorber case, and double feed gas

scenario were 52.4 €/ton, 51.8 €/ton, and 50.5 €/ton, respectively. The study demonstrates that a

combination of Aspen HYSYS simulation, Aspen Process Economic Analyzer and the EDF method is an

effective method to evaluate different alternatives for increasing the capacity.

Keywords: Carbon capture, Aspen HYSYS, simulation, dimensioning, cost estimation.

1. INTRODUCTION 

1.1. Aim  

The first aim of this work is to compare different methods to 

cost estimate a CO2 capture process based on process 

simulation.  The second aim is to evaluate how efficient the 

different tools are to calculate different process alternatives and 

especially evaluate the cost effect of doubling the feed gas 

capacity of the CO2 capture process. 

1.2. Literature  

There are several tools available to perform cost estimation of 

a process simulated in a process simulation tool like Aspen 

HYSYS or Aspen Plus. The Aspen Process Economic Analyzer 

APEA) is a tool that is a part of Aspen HYSYS and Aspen Plus. 

An alternative is factor based methods, like different detailed 

factor methods like the Enhanced Detailed Factor (EDF) 

method developed at USN (Ali, 2019; Aromada et al., 2021). 

Much general work has been published on cost estimation of 

CO2 capture plants (Rubin et al., 2013; van der Spek et al., 

2019; Roussanaly et al., 2019), but in these methods the cost 

estimation is traditionally performed independent of a process 

simulation tool. Other publications presenting both process 

simulation and cost estimation are (Mores et al., 2012; 

Agbonghae et al., 2014; Manzolini et al., 2015; Luo and Wang, 

2016; Eldrup et al., 2019 and Hasan et al., 2020).  A traditional

limitation for the efficiency of the cost estimation in these

references, is that the cost estimation is performed for each case

with added specifications for each specific case.

For CO2 capture, a focus at USN has been on automatic process

simulation combined with cost estimation in Aspen HYSYS

(Øi et al., 2021; Øi et al., 2022; Shirdel et al., 2022). This work

is based on the Master Thesis of Masoumeh Dehghanizadeh

(2023). In this work, it is aimed to compare the accuracy and

efficiency of different tools for combined simulation and cost

estimation.

1.3. Process Description

Figure 1 illustrates a typical CO2 absorption process using

amine-based systems. The CO2 rich gas is first cooled in a

direct contact cooler (DCC) and the CO2 is then absorbed into

the monoethanol (MEA) solvent and removed from the gas

stream in an absorber. The CO2 rich solvent is then pre-heated

and pumped into a desorber column, where it is heated and the

CO2 is stripped off the CO2. The regenerated solvent is

recycled to the absorber tower, while the high purity CO2

stream off the top of the desorber column is sent further to

processing for  transportation and storage. If the flue gas

capacity is doubled, another absorber can be set in parallel to

the one in Fig. 1.
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Fig. 1. Process flow diagram of a standard amine-based CO2 capture 

process (Aromada et al., 2020). 

2. SPECIFICATION AND SIMULATIONS 

2.1. Specifications and simulation of base case CO2 capture 

process  

The Aspen HYSYS V12 was used to simulate an amine-based 

CO2 capture process. The Acid Gas property package was 

employed, which includes the electrolyte non-random two-

liquid (e-NRTL) model for electrolyte thermodynamics and 

the Peng-Robinson equation of state for the vapor phase.  

The absorber and desorber were simulated using equilibrium 

stages with Murphree stage efficiencies. The Murphree 

efficiency is defined by dividing the change in CO2 mole 

fraction from one stage to the next by the change on the 

assumption of equilibrium.   

The specifications for the base case Aspen HYSYS simulation 

are given in Table 1.  These specifications give a 85 per cent 

CO2 removal efficiency and a minimum approach temperature 

of 10 °C in the lean/rich amine heat exchanger.  The simulation 

is similar to earlier studies (Øi, 2007; Aromada et al., 2021 and 

Shirdel et al., 2022).  The absorber has 15 stages with 

Murphree efficiency 0.15, while the desorber has 10 stages 

with Murphree efficiency 0.5. In the columns, the Modified 

HYSIM Inside-Out numerical solver was selected. The 

adiabatic efficiency of the pumps was specified to be 75%. 

2.2. Calculation sequence  

The calculation sequence in the Aspen HYSYS flowsheet in 

Figure 2 is similar to the simulations in Øi et al. (2022) and 

Shirdel et al. (2022). In the base case there is only one recycle 

block to check that the amine liquid flow recirculated is equal 

to the inlet flow to the absorption column. Figure 3 illustrates 

the process flow diagram of the two-absorber scenario with 

two simulated absorption columns. 

 Table 1: Specifications for the base case alternative  

Parameter Value 

Inlet flue gas temperature [oC] 40.0 

Inlet flue gas pressure [kPa] 110 

Inlet flue gas flow rate [kmol/h] 85000 

CO2 content in inlet gas [mole %] 3.73 

Water content in inlet gas [mole %] 6.71 

Lean amine temperature [oC] 40.0 

Lean amine pressure [kPa] 110.0 

Lean amine rate [kg/h] 103500 

MEA content in lean amine [mass %] 29 

CO2 content in lean amine [mass %] 5.4 

Number of stages in absorber [-] 15 

Murphree efficiency in absorber  0.15 

Rich amine pump pressure [kPa] 200.0 

Rich amine temp. out of HEX [oC] 104 

Number of stages in desorber [-] 6 

Murphree efficiency in desorber  1.0 

Reflux ratio in stripper [-] 0.3 

Reboiler temperature [oC] 120.0 

 

2.3. Equipment dimensioning  

The dimensioning of all the equipment (except for the DCC 

unit) were performed as in previous studies (Øi et al., 2022; 

Shirdel et al., 2022). The diameters of the absorption and 

desorption columns were evaluated from the gas volumetric 

flows and based on a superficial gas velocities of 2.5 m/s for 

the absorber and 1 m/s for the desorber column. Each 

packing stage in the absorber and desorber was assumed to 

be 1 m high. To include the height for packing, liquid 

distributors, water wash, demister, gas inflow, gas outflow 

and sump, the total column heights are considerably larger, 

and set to 30 m and 16 m for the tangent-to-tangent heights 

of the absorber and desorber column. 

The overall heat transfer coefficients specified are 1.20 

kW/(m²∙K) for the reboiler, 0.73 kW/(m²∙K) for the lean/rich 

heat exchanger, 0.80 kW/(m²∙K) for the amine cooler, and 

1.00 kW/(m²∙K) for the condenser as in Aromada et al. 

(2022). The pumps had an efficiency of 0.75. It was assumed 

that the maximum heat exchanger size is 1000 m2, and in case 

of the need for larger heat exchanger area, more units are 

necessary. 
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Fig. 2. Aspen HYSYS flowsheet for the base case (Dehghanizadeh, 2023) 

 

Fig. 3. Aspen HYSYS flowsheet for the case with two simulated absorption columns (Dehghanizadeh, 2023) 

 

3. COST ESTIMATION PROCEDURES AND 

ASSUMPTIONS 

3.1. Capital cost estimation method  

The purchased cost of each equipment unit is estimated in 

this work with Aspen In-Plant Cost Estimator based on the 

dimensioning. 

 

After estimating the cost of each part of equipment, cost 

factors are added to obtain the quantities Bare Erected Cost 

(BEC) and Total Plant Cost (TPC). A description of what is 

traditionally included in the BEC, and what is traditionally 

included in the TPC is presented and discussed in Rubin et 

al. (2013).  The BEC and TPC are defined differently in 

different literature (Rubin et al, 2013).  In this work the BEC 

is determined using the EDF method by creating a detailed 

list of all the process equipment, obtaining estimates on 

purchased equipment cost and estimating all the cost of 

material and labour required to complete the installation. It 

includes the cost of equipment, erection, piping, electro, 

instrument, ground work, steel and concrete, insulation and 

engineering. To obtain the TPC, contractor services, process 

contingency and project contingency is also included. Then 

the cost of the equipment is adjusted to the correct size, year, 
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and material of construction. This method is documented in 

(Ali, 2019 and Aromada et al., 2021). 

 

Another approach to estimate BEC employed in this study is 

the Aspen Process Economic Analyzer (APEA). It relies on 

model-based estimation to generate project cost estimates. 

The APEA can calculate not only the equipment cost but also 

the installed direct cost (piping, civil, structural steel, 

insulation, etc.) for each process equipment. The equipment 

cost calculated using APEA and Aspen In-Plant has in this 

work been compared, and the results were very similar. 

 

To calculate the TPC, the Nazir-Amini method (Nazir et al., 

2018) was used as an alternative to the EDF method. In this 

work 10 % of BEC is added for engineering procurement 

construction cost, 10 % for process contingency and 15 % 

for project contingency is added to obtain  the TPC. 

The cost currency and cost year were Euro (€) and 2019 for 

Aspen In-Plant and 2020 for the detailed factor table. The 

default location in Aspen In-Plant Cost Estimator, 

Rotterdam, was assumed in this work. The equipment units 

were assumed to be constructed from stainless steel SS316. 

The material factor for welded equipment was 1.75 and 1.30 

for machined equipment. 

The total installation cost factor includes the sub-factors for 

direct costs, engineering costs, administration costs, and 

commissioning and contingency costs. Equation (1) is used 

to calculate the total installation factor in carbon 

steel (𝐹𝑇,𝐶𝑆). The procedure of utilizing the EDF method for 

TPC calculation corresponds to the methodology outlined in 

Ali (2019).   

 

𝐹𝑇,𝐶𝑆 = 𝑓𝑑𝑖𝑟𝑒𝑐𝑡 + 𝑓𝑒𝑛𝑔 + 𝑓𝑎𝑑𝑚 + 𝑓𝑐𝑜𝑚𝑚 + 𝑓𝑐𝑜𝑛𝑡𝑔𝑒𝑛𝑐𝑦    (1) 

  

where the subscripts in the factors means direct 

installation cost, engineering, administration, 

commisioning and contingency.  The individual factors 

are in this work from an EDF table sheet in (Aromada et 

al., 2021).     

 

The total equipment installed cost (𝐸𝐼𝐶) for each unit in 

carbon steel can be calculated from Equation (2). 

  

𝐸𝐼𝐶𝐶𝑆 = 𝐹𝑇,𝐶𝑆 × 𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡𝐶𝑆  (2) 

 

Total plant cost is the sum of the total installation costs 

for each equipment unit and is calculated by Equation 

(3). In the case of calculating BEC, the factors for 

administration, commisionong and contingency is 

ommited in Equation (1).  

 

𝑇𝑃𝐶 (2019)  = ∑ 𝐸𝐼𝐶 (𝑎𝑙𝑙 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡))   (3)  

 

If the equipment is to be made of a material other than 

carbon steel, the installation factor must be adjusted 

accordingly. Equation (4) is used to make this correction: 

𝐹𝑇 = [𝐹𝑇,𝐶𝑆 + (𝑓𝑚𝑎𝑡 − 1) 𝑥 (1 + 𝑓𝑇,𝑝𝑝,𝐶𝑆)])]     (4) 

 

where 𝑓𝑚𝑎𝑡 is the material factor which is the ratio between the 

unit cost and the unit cost in carbon steel, and 𝑓𝑝𝑝,𝐶𝑆 is the piping 

factor (for carbon steel) in the EDF table sheet. 

 

The capital cost of the CO₂ capture plant is then escalated from 

2019 using a consumer cost index from Statistisk Sentralbyrå 

(SSB).  

During optimization or sensitivity analysis, where a parameter is 

varied, the capacities/sizes of some equipment will change.  

Therefore, there is a need to estimate new cost for the equipment 

units due to the resulting changes in size/capacity. This is 

automatically estimated based on the Power law using an 

exponent of typically 0.65 based on the previous cost obtained 

from Aspen In-Plant Cost Estimator as done in (Aromada et al., 

2022; Øi et al., 2022). 

 𝐶𝑜𝑠𝑡𝑁𝐸𝑊  = 𝐶𝑜𝑠𝑡𝑂𝐿𝐷  𝑥 (
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑁𝐸𝑊

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑂𝐿𝐷
)0.65       (5) 

3.2. Operating cost estimation and assumptions  

The annual operating cost in this work is the sum of the fixed 

operating cost and variable operating costs estimated as in Øi et 

al. (2022): 

Annual cost = Consumption x Unit cost    (6) 

The assumptions used for estimating the annual operating cost are 

presented in Table 2. The values are similar to values used in 

earlier work like Aromada et al. (2021). 

 

 Table 2: Annual operating cost assumptions  

Item Unit Value 

Operating lifetime [Year] 22(2+20) 

Annual hours of operation [h/year] 8000 

Electricity cost [€/kWh] 0.132 

Steam cost [€/kWh] 0.032 

MEA cost [€/ton] 1450 

Maintenance cost [€/year] 4% of CAPEX 

Operator cost (6 oper) [€/year] 85350(*6)              

Engineer cost (1 eng) [€/year] 166400            

   

3.3. CO₂ capture annualized cost 

An economic key performance indicator in this work is CO2 

captured cost. This was estimated using Equations (7) to 

(10), as shown in (Aromada et al., 2021): 

𝐶𝑂2 𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑 𝑐𝑜𝑠𝑡 =
𝑇𝑜𝑡𝑎𝑙 𝑎𝑛𝑛𝑢𝑎𝑙 𝑐𝑜𝑠𝑡

𝑀𝑎𝑠𝑠 𝑜𝑓 𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑑 𝐶𝑂2/𝑦𝑒𝑎𝑟
        (7) 
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𝑇𝑜𝑡𝑎𝑙 𝑎𝑛𝑛𝑢𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝐴𝑃𝐸𝑋 + 𝑌𝑒𝑎𝑟𝑙𝑦 𝑂𝑃𝐸𝑋 (8)                   

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝐴𝑃𝐸𝑋 =
𝐶𝐴𝑃𝐸𝑋

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟
                             (9) 

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 =  ∑ [
1

(1+𝑟)𝑛
]𝑛

𝑖=1                                   (10) 

where n is the plant lifetime, 22 years which includes 2 years 

for the plant’s construction. And r is the discount rate and 

was assumed to be 7.5 %. 

 

4. RESULTS AND DISCUSSION 

4.1. BEC and TPC for the base case  

Figure 4 shows the Bare Erective Cost (BEC) calculated with 

the EDF method and the Aspen Economic Analyzer.  The 

contribution from each equipment unit is also shown in the 

figure.  It shows that the absorber is the dominating part, and 

then the main heat exchanger. It also shows that the EDF 

method and the results from the Aspen Economic Analyzer 

(APEA) give reasonable close results (within 5-10 %).  

 
Fig. 4. BEC comparison for the Base Case applying the APEA and 

EDF method (Dehghanizadeh, 2023) 

 

Fig. 5. Total installation cost (TPC) applying the EDF method 

(Dehghanizadeh, 2023) 

Figures 5 and 6 show Total Project Cost (TPC) and OPEX 

for the base case.  The values for the TPC are higher, but the 

cost distribution is similar to the BEC values. For OPEX, 

steam for heating is as expected the most significant part. 

  

Fig. 6. OPEX estimated for the Base Case (Dehghanizadeh, 2023)

4.2. Results for doubled capacity

Figures 7 and 8 show a BEC comparison for the Base 

case and Doubled feed gas applying the EDF and

APEA methods. It shows that the absorber cost and total

cost increases a little less than to the double cost.

 

Fig. 7. BEC comparison for the Base case and Doubled feed gas 

applying the EDF method (Dehghanizadeh, 2023) 

 

Fig. 8. BEC comparison for the Base case and Doubled feed gas 

case applying the APEA method (Dehghanizadeh, 2023)  
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Figure 9 is showing the TPC for the Doubled feed gas by the 

EDF method. It shows that the increase is lower than the double 

of the TPC for the base case, 140.4 compared to 76 MEuro. 

 

Fig. 9. TPC for Doubled feed gas using thed EDF method 

(Dehghanizadeh, 2023) 

 

Figure 10 shows a comparison of TPC calculated by the EDF 

method, the Nazir-Amini method and use of the power law.  It 

shows that the EDF method and Nazir-Amini method are close, 

while applying the power law is considerably lower.  It is 

expected that the use of the EDF method is the most accurate 

because it is more detailed. 

 

Fig. 10. TPC for Doubled Feed gas applying the EDF method 

(Dehghanizadeh, 2023) 

 

4.3. Results for two-absorber scenario  

Figures 11 and 12 show calculated BEC for the Doubled feed 

case and the Two-absorber case calculated by the EDF method 

(Fig. 11) and the APEA method (Fig. 12).  Both methods show 

that the Two-Absorber case is slightly more costly. 

 

 

Fig. 11. Comparison of BEC for Doubled feed gas case and Two-

absorber case applying the EDF method (Dehghanizadeh, 2023) 

 

Fig. 12. Comparison of BEC for Doubled feed gas case and Two-

absorber case applying the APEA method (Dehghanizadeh, 2023)

Figure 13 shows the TPC calculated for the Two-absorber case.

Compared to the calculation for the Doubled feed case in Fig. 9, 

it is considerably more expensive (149.7 compared to 140.4).

 

Fig. 13. TPC for Doubled feed gas applying the EDF method 

(Dehghanizadeh, 2023) 
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Figure 14 shows a comparison of TPC calculated by the EDF 

method, the Nazir-Amini method and use of the power law.  It 

shows that the methods give close to the same results, but the 

Nazir-Amini method gives the highest value.  It is expected that 

the EDF method is most accurate for sensitivity calculations of 

different parameters because it is more detailed. The Nazir-

Amini additional factors are very general.  

 

Fig. 14. TPC for Two-absorber case calculated by different methods 

(Dehghanizadeh, 2023) 

Using the power law gives approximately the same result 

compared to the more detailed EDF method. The cost is as 

expected higher (about 8 %) than for the Doubled feed scenario.  

Figure 15 shows the TPC as a function of gas flow, using the 

EDF method. The sensitivity calculation is performed 

automatically by using a Case study function in Aspen HYSYS.  

It shows that the cost is increasing a little less than proportional 

to the gas flow. This is as expected because the power law is 

used, which specifically calculates a cost for the absorber less 

than proportional to the gas flow.  It shows that it is 

straightforward to use the EDF method using the power law for 

a fast and automatic sensitivity analysis.    

 

Fig. 15. Impact of flue gas increase on the TPC using the EDF method 

and the power law for equipment cost estimation at changed capacity 

(Dehghanizadeh, 2023) 

4.4. Uncertainties in the cost estimation and cost comparison  

The uncertainties in the absolute value of calculated CAPEX 

and OPEX for each case is large.  An uncertainty for the 

CAPEX of +/- 50 % has been suggested (Ali, 2019). The 

uncertainty of the OPEX is even larger, especially due to the 

high uncertainty in heat and electricity cost (Aromada et al,

2021).  However, in this work accurate absolute values of

CAPEX and OPEX was not the main aim.

The main aim in this work was to make efficient cost

comparisons of specific process alternatives using different

tools.  The results indicate that the results from the different

calculation methods, especially the EDF and APEA methods,

gave quite similar values. When comparing the process

alternatives, the EDF and the APEA methods estimate similar

cost differences between the double feed gas and two-absorber

case.  The higher cost of the two-absorber alternative is

regarded to be significant, even though the absolute values of

the cost estimates are inaccurate.

5. CONCLUSIONS

A base case was established in Aspen HYSYS with 15 m

absorber packing height, 6 m desorber packing height, removal

efficiency of 85 % and a heat exchanger minimum temperature

approach (ΔTmin) of 10 °C. In a first additional case the flue

gas flow rate was doubled and in the second case a new

absorber in parallel was added. Then dimensioning and cost

estimation was carried out using Aspen HYSYS spreadsheets

to automatically calculate CAPEX and OPEX and carbon

capture cost per ton CO2 captured. To estimate the Bare Erected

Cost (BEC), the Enhanced Detailed Factor (EDF) and the

Aspen Process Economic Analyzer (APEA) were employed.

The EDF method determines the installation cost of each piece

of equipment, while the Nazir-Amini method only offers the

TPC without calculating individual equipment. Applying the

EDF method, the TPC (CAPEX) for the base case, the doubled

feed gas case and the two-absorber case were calculated to 76,

141 and 150 MEuro respectively. This illustrates that the cost

increase may be less than proportional to the flow rate increase.

The estimated annual OPEX for the base case is about 42.5

MEuro, while for the two alternatives the OPEX was very close

to the double of the base case. The estimated carbon capture

costs for the base case, two-absorber case, and double feed gas

scenario were 52.4 €/ton, 51.8 €/ton, and 50.5 €/ton,

respectively. The study demonstrates that a combination of

Aspen HYSYS simulation, Aspen Process Economic Analyzer

and the EDF method is an effective method to evaluate different

alternatives for increasing the capacity.
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Abstract: Carbon capture and utilization (CCU) is a growing field in chemical engineering with high 

expectations to replace fossil carbon. This paper focuses on modeling and simulation of a CCU process 

chain utilizing biogenic CO2. A scenario with a pulp mill recovery boiler effluent is assumed. CO2 capture 

is performed with a membrane-based system. This is followed by methanol synthesis, and the majority of 

produced methanol is directed to dimethyl carbonate (DMC) synthesis. 

The process chain with fixed process design was simulated for different scenarios of the flue gas properties. 

The key process indicators were observed. Further, the flexibility of the processes was evaluated to mitigate 

the changes in process indicators due to fluctuating flue gas properties. Finally, model parameter 

uncertainties and modeling assumptions were discussed. The results indicate the level of uncertainties of 

CCU models and their key process indicators that should be considered when moving on to the system level 

simulations and techno-economic or life cycle analyses.  

Keywords: Process modeling, Membrane separation, Methanol synthesis, Dimethyl carbonate 

production, Sensitivity analysis

1. INTRODUCTION 

Carbon capture has been identified as an important tool for 

managing carbon emissions for a long time (Reichle et al., 

1999). Early studies have focused on CO2 capture from fossil-

based power generation and industrial point sources, such as 

steel mills. More recently, emphasis has also been given to 

CO2 sources with biogenic origin, such as from biogas 

upgrading processes, fermentation, pulp mills and biomass 

fueled power plants (Rodin et al., 2020). Future possibilities 

also involve direct carbon capture from air as the capture 

technologies are developing to be more feasible also with 

minimal CO2 contents and availability of green energy is 

increasing (Akimoto et al., 2021).  

There are many possibilities for utilizing the captured CO2 

with the highest market potential existing in oil and chemical 

industry sectors (Koytsoumpa et al., 2018). Methanol is of 

particular interest in this study due to its possible use as both a 

fuel and as a chemical feedstock. As a fuel, methanol has 

advantages over directly combusting hydrogen, due to 

methanol’s easier storability, better volumetric energy density, 

and compatibility to existing internal combustion engines and 

infrastructure (Gumber and Gurumoorthy, 2018). 

Methanol can be further refined into a multitude of different 

hydrocarbon products including formaldehyde, methyl tert-

butyl ether, acetic acid, methyl methacrylate, and dimethyl 

ether (Gumber and Gurumoorthy, 2018). Another derivative 

from methanol is dimethyl carbonate (DMC). DMC serves a 

multitude of purposes across diverse industries, such as a 

solvent for paints, coatings, and cleaning agents. DMC can be 

used as an additive in gasoline and diesel fuels, enhancing 

combustion efficiency. Moreover, DMC plays a pivotal role in 

the realm of energy storage, being utilized as an electrolyte 

component in advanced lithium-ion batteries (Kohli et al., 

2022). DMC also offers a non-carcinogenic alternative to 

commonly used chemicals like dichloromethane and dimethyl 

sulfate in carbonylation and transesterification reactions. (Wei 

et al., 2023) 

Stemming from the choice of methanol and DMC as products 

of interest, the modeled process chain in this work includes a 

membrane-based CO2 capture unit, methanol synthesis plant 

unit, and a DMC reactor unit. Membranes were chosen over 

the more popular amine-based approach, as it shows high 

energy efficiency and small physical and chemical footprint 

(Hou et al., 2022). High-level illustration of the process chain 

is visible in Fig. 1. The figure depicts that the process chain 

takes flue gas and hydrogen as raw material feeds, and outputs 

methanol and DMC as the main products. It is visible in Fig. 1 

that the captured CO2 stream is divided between methanol and 

DMC syntheses units and that some of the produced methanol 

is considered as direct product along with DMC. One 

advantage of this kind of synthesis chain is the ability to vary 

the ratio of selling methanol directly to refining it into DMC, 

depending on current market prices.  

 

Fig. 1. Simplified diagram of the modeled CCU process chain. 

The feasibility studies at system level are typically focusing on 

the economic profit of the production. Historical data is often 

available for estimating the market prices of raw materials, 
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products, heat, and especially the dynamical fluctuation of 

electricity (Karjunen et al., 2023). However, without 

incorporating unit level models, the system level modeling can 

often be limited to using constant estimates for product yield, 

net energy consumption, or side stream properties (Karjunen 

et al., 2023). Instead, these key process indicators (KPI) should 

preferably be treated as variables, with reasonable uncertainty 

ranges. 

In order to assess the process performance under varying feed 

properties, technological limitations and uncertainties, this 

research aims to develop a simulation tool for the studied CCU 

process chain and to indicate ranges for the KPIs that can be 

used in system level modeling and risk assessment of an 

integrated CCU process. Incorporating unit level models into 

the system level modeling can increase the accuracy of the 

economical assessment by considering the effect of operation 

point dependencies and other sources of uncertainty in process 

KPIs. 

2. MATERIAL AND METHODS 

2.1 CO2 capture 

For the membrane-based CO2 capture, the two-stage, pressure-

driven process configuration and membrane material reported 

in (Asadi and Kazempoor, 2021) is considered. Namely, 

Polaris gen 1 membrane is assumed with permeability of CO2 

of 1000 GPU (gas permeation units, 1 GPU = 3.35∙10−10 

mol/m2/s/Pa). The selectivity between CO2 and N2 is 50, and 

the selectivity between CO2 and O2 is 20 (Khalilpour et al., 

2012). Hollow-fiber membranes with constant dimensions are 

assumed, and they are operated in counter-current flow. The 

feed is introduced to the shell side of the membrane (outside 

of the fibers, retentate), and the permeate is collected from 

inside the membranes (bore side). The operating temperature 

(T), feed pressure (P), initial permeate pressure, inlet molar 

flowrate, recycle ratio between the membrane stages (RR), and 

the feed gas composition can be manipulated as well. 

The modeling approach follows the reported model in (Asadi 

and Kazempoor, 2021) with the following exceptions: 

• In addition to CO2 and N2, also O2 balance is modeled. 

• Feed (retentate) pressure is assumed to be constant. 

• The dynamic viscosity of the gas mixture is calculated 

following (Wilke, 1950) applying absolute viscosities of 

the gas components at the operation temperature. 

The process flow diagram is depicted in Fig. 2. The model also 

comprises the calculation of electricity consumption by the 

two compressors, which are modeled according to adiabatic 

compression equations in (Green and Southard, 2019). The 

process was sized by performing a constrained optimization 

with MATLAB® fmincon-function where the relative 

membrane area for the first stage, the recycle ratio of the 

second stage retentate to the first stage feed, and the operating 

pressure were determined. The second stage membrane area is 

assumed to be 3% of the first stage membrane area. The 

optimization objective was to minimize the specific energy 

consumption, with a penalty for deviating CO2 purity from 

target 98%. This objective balances the CO2 capture rate and 

energy consumption while keeping the CO2 quality deviation 

within a small tolerance.  

 

Fig. 2. Membrane-based CO2 capture process. 

2.2 Methanol synthesis 

Methanol (MeOH) is generally possible to be synthetized 

through two overall reactions, which are the hydrogenation of 

CO2 and CO (Poto et al., 2022), see (1) and (2). Reverse Water 

Gas Shift reaction (RWGS) is also present in the same reaction 

conditions (3). 

𝐶𝑂2 + 3𝐻2 ⇄ 𝐶𝐻3𝑂𝐻 + 𝐻2𝑂, Δ𝐻0 = −49.5 𝑘𝐽/𝑚𝑜𝑙 (1) 

𝐶𝑂 + 2𝐻2 ⇄ 𝐶𝐻3𝑂𝐻, Δ𝐻0 = −90.5 𝑘𝐽/𝑚𝑜𝑙 (2) 

𝐶𝑂2 + 𝐻2 ⇄ 𝐶𝑂 + 𝐻2𝑂, Δ𝐻0 = +41.2 𝑘𝐽/𝑚𝑜𝑙. (3) 

Heterogeneous catalysis using a Cu/ZnO/Al2O3 catalyst, in 

either adiabatic or isothermal reactors, is the predominately 

used MeOH production method in industry (Bozzano and 

Manenti, 2016). Due to its dominant role, Cu/ZnO/Al2O3 

catalyst was also chosen for the model of this study. Even 

though Cu/ZnO/Al2O3 catalyst has been researched for 

decades, the exact roles of different reaction pathways are still 

debated in the literature to this day (Azhari et al., 2022). 

Nevertheless, for this work, the kinetic model developed in 

(Bussche and Froment, 1996) was chosen, due to a 

recommendation in (Bozzano and Manenti, 2016). The chosen 

kinetic model dismisses CO hydrogenation (2) to form MeOH 

and does not include any side reactions besides RWGS 

(Bussche and Froment, 1996). 

For the model of this work, a Lurgi-type tube-and-shell reactor 

was chosen. The gas phase reactants flow through the reactor 

tubes that are filled with solid catalyst pellets. The shell side 

of the reactor has pressurized cooling water to control the 

reaction temperature. The purpose of cooling is to prevent the 

maximum temperature inside the reactor tubes from exceeding 

280 °C (553 K) as the catalyst deactivates faster at high 

temperatures (Hartig and Keil, 1993). A steady-state pseudo-

homogeneous reactor model based on mass fractions was 

chosen from (Manenti et al., 2011) with the following 

assumptions:  

• Ideal plug flow (constant axial velocity, negligible axial 

diffusion, perfect radial mixing) (Manenti et al., 2011). 

• Homogeneous gas and solid phases inside the tubes (no 

temperature, pressure, or composition gradient within a 

catalyst particle or in the surrounding gas in radial 

direction) (Manenti et al., 2011). 

• Catalyst particle efficiency modeled by the modified 

Thiele modulus (Lommerts et al., 2000). 
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• Pressure loss inside the reactor tube modeled by the Ergun 

equation (Manenti et al., 2011). 

• Shell side at constant bulk temperature (Manenti et al., 

2011). 

• Heat transfer between tube and shell modeled as in (Hartig 

and Keil, 1993). 

• Gas density inside the reactor tube given by the Peng-

Robinson equation of state (PR-EoS) (Peng and Robinson, 

1976). 

A process flow diagram of the modeled MeOH synthesis unit 

is presented in Fig. 3. In the figure, the sections surrounded by 

red dashed line representing the feed compression and crude 

methanol purification are not modeled in detail. Instead, 

results from (Van-Dal and Bouallou, 2013) are used to 

estimate the electrical and thermal energy consumptions of 

both unmodeled sections. Additionally, the compositions of 

exit streams from the crude methanol section are also 

estimated based on (Van-Dal and Bouallou, 2013). Most 

notably, this includes the product stream purity, which is 

assumed constant 99.9931 wt-% MeOH (Van-Dal and 

Bouallou, 2013). Further assumptions in the MeOH synthesis 

model are: 

• Mixer 1 (MX1) is assumed to achieve ideal and perfect 

mixing of streams. 

• Heat exchangers (HE) consist of bulk models, where the 

synthesis stream perfectly reaches the desired temperature 

setpoint and the model only considers the required amount 

of heat flow (kW). Thus, heating/cooling medium flows 

and temperatures are dismissed. Since sizing of heat 

exchangers is not considered, there are no pressure losses 

modeled in heat exchangers. (Parvasi et al., 2008) 

• Knock out drum separator 1 (KO1) is assumed to be sized 

so that thermodynamic equilibrium between the liquid and 

gas phases is always reached. Phase equilibrium is solved 

using PR-EoS (Peng and Robinson, 1976), and the 

Rachford-Rice method (Green and Southard, 2019). 

• Divisor 1 (DIV1) determines the recycle and purge stream 

flows based on the set maximum mass-based recycle ratio 

(mass flow of recycle stream divided by mass flow of feed 

stream). Any portion of KO1 gas effluent that exceeds the 

maximum recycle ratio is sent to purge stream. 

• Compressor 1 (CP1) outlet pressure is fixed to the feed 

stream pressure. The temperature rise and electrical 

energy consumption of CP1 are modeled by adiabatic 

compression equations in (Green and Southard, 2019). 

The methanol synthesis reactor was sized so that the number 

of reactor tubes would result the weight hourly space velocity 

(WHSV) to be equal to 4 h-1 at the nominal operation point, 

which is typical in the industry (Arab et al., 2014). In general, 

the model parameters were selected based on the previous 

studies described in the literature (Hartig and Keil, 1993; 

Lommerts et al., 2000; Manenti et al., 2011, 2014; Parvasi et 

al., 2008). The methanol synthesis model was programmed in 

MATLAB® and the model is publicly available at (Tiiro, 

2024). 

2.3 DMC synthesis 

Among the DMC synthesis routes, the direct synthesis of 

DMC from CO2 and methanol offers a compelling eco-friendly 

alternative to traditional methods. However, this pathway 

encounters thermodynamic hurdles stemming from the 

equilibrium constraints of the reaction (4):

 

 
Fig. 3. Methanol synthesis process flowchart. 
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2𝐶𝐻3𝑂𝐻 + 𝐶𝑂2 ⇄ (𝐶𝐻3𝑂)2𝑂 +  𝐻2𝑂. (4) 

In addition to thermodynamic limitations, the direct DMC 

synthesis possesses significant challenges due to the low 

reactivities of both MeOH and CO2. Consequently, catalysts 

play a crucial role in enhancing the efficiency of the process. 

In (Zheng et al., 2022), recent catalyst research is summarized, 

emphasizing the pivotal role of heterogeneous zirconia-based 

catalysts, including ZrO2 and solid solutions of ZrO2 with 

other metal oxides (M/ZrO2). 

Equations (5)–(8) detail the mass balances for each component 

involved in the DMC simulations. In this research, the kinetic 

parameters, k, were accurately fitted with the experimental 

data reported by (Camy et al., 2003). Differential Evolution 

optimization algorithm was used for the fitting. 

𝑑𝐶𝐶𝑂2

𝑑𝑡
= −𝑘1𝐶𝐶𝑂2

∙ 𝐶𝑀𝑒𝑂𝐻
2 + 𝑘2𝐶𝐷𝑀𝐶 ∙ 𝐶𝐻2𝑂 (5) 

𝑑𝐶𝑀𝑒𝑂𝐻

𝑑𝑡
= −𝑘3𝐶𝐶𝑂2

∙ 𝐶𝑀𝑒𝑂𝐻
2 + 𝑘4𝐶𝐷𝑀𝐶 ∙ 𝐶𝐻2𝑂 (6) 

𝑑𝐶𝐻2𝑂

𝑑𝑡
= 𝑘5𝐶𝐶𝑂2

∙ 𝐶𝑀𝑒𝑂𝐻
2 − 𝑘6𝐶𝐷𝑀𝐶 ∙ 𝐶𝐻2𝑂 (7) 

𝑑𝐶𝐷𝑀𝐶

𝑑𝑡
= 𝑘7𝐶𝐶𝑂2

∙ 𝐶𝑀𝑒𝑂𝐻
2 − 𝑘8𝐶𝐷𝑀𝐶 ∙ 𝐶𝐻2𝑂 (8) 

The reaction time for the assumed sizing of the reactor in 

nominal operation conditions was set to 2 h. The pressure was 

assumed being constant, and the temperature dependence of 

the kinetic parameters in (5)–(8) were assumed to follow the 

Arrhenius equation (9): 

𝑘 = 𝑘0𝑒−
𝐸𝐴
𝑅𝑇. 

(9) 

where k0 [1/s] is the pre-exponential factor, EA [J/mol] is the 

activation energy, R is the universal gas constant, and T is 

process temperature. The parameters are given in Table 1. The 

energy consumption of the direct DMC synthesis was not 

modeled. 

Table 1. Estimated kinetic parameters for DMC synthesis. 

 

3. SIMULATIONS, RESULTS, AND DISCUSSION 

3.1 Simulation scenarios 

For demonstrating the developed process model chain, the 

simulation scenarios feature CCU of pulp mill recovery boiler 

effluent based on (Gardarsdottir et al., 2014). In all simulation 

scenarios the flue gas is assumed to be first dehydrated (e.g. 

vapor-liquid separation, adsorption) from all water and cooled 

to 50 °C. The nominal simulation scenario (Case I), and two 

other scenarios to simulate the effect of feed variability to the 

process chain, are considered. For Case II, the flue gas has 

+10% molar flow and +5% CO2 fraction. For Case III the flue 

gas has −10% molar flow and -5% CO2 fraction. The flue gas 

flows of dried effluent, and CO2 contents for the three 

scenarios are presented in Table 2. 

The process designs and choices for dividing streams between 

units are determined and fixed based on the nominal 

simulation case (Case I). Fixing some of the flows in the 

process chain streams represents constraints that might be 

present in a plant due to fixed orders from customers, or due 

to instrument sizing. The higher flue gas flow and CO2 content 

in Case II represent an undersized process design for the 

process chain, and the opposite, Case III represents partial load 

circumstances. The KPIs of especial interest in the process 

chain are yields and specific energy consumptions (SEC) of 

the process units. 

Table 2. Flue gas properties for the different simulation scenarios. 

 

The process chain simulations assume the following: 

• CO2 capture is performed with a membrane-based process 

as described in Section 2.1. The total membrane area is 

2.12∙105 m2, the membrane fiber outer radius is 600 µm 

and the inner radius is 400 µm. The operation pressure is 

5 bar, temperature 50 °C and the recycle ratio is 1. 

• The CO2 rich permeate stream is divided into methanol 

and DMC syntheses so that 125 mol/s of permeate is 

always directed to the DMC synthesis and rest to the 

MeOH synthesis. 

• Hydrogen production is not simulated, and the hydrogen 

feed is assumed to be perfectly pure. If the permeate 

stream contains oxygen, excess hydrogen is included in 

the MeOH synthesis feed to convert all oxygen into water. 

Hydrogen flow is controlled so that the MeOH synthesis 

feed contains 3:1 molar ratio of H2 to CO2 and no free 

oxygen. 

• The MeOH synthesis is simulated as described in Section 

2.2. For design parameters, the reactor tube length is 7 m, 

the tube inner radius is 4.2 cm, and the number of tubes is 

1900. The catalyst is assumed to be fresh, and thus at 

100% activity. For operational variables, the reactor inlet 

temperature (Tinlet) is 510 K, the reactor inlet pressure is 

78 bar, the reactor shell side temperature (Tshell) is 533 K, 

temperature for the crude methanol separation at KO1 is 

308 K, and the mass based recycle ratio (RR) is 5. 

• Produced MeOH is divided into two streams. The first 

stream is a fixed product stream with a flow of 45 mol/s. 

The rest of MeOH flows to the DMC synthesis to combine 

with the dedicated portion of CO2-rich permeate stream.  

• The DMC synthesis is simulated according to the model 

in Section 2.3. The pressure is assumed to be 126 bar and 

the temperature 453.15 K. 

Forward reaction Reverse reaction 

k0_1=11.31 EA1=2.18∙104 k0_5=8.23 EA5=1.93∙104 

k0_2=3.50 EA2= 1.11∙106 k0_6=12.66 EA6=5.58∙104 

k0_3=4.05 EA3=1.57∙104 k0_7=1.70 EA7=1.37∙104 

k0_4=3.06 EA4= 7.09∙105 k0_8=1.44 EA8=2.41∙105 

 Case I Case II Case III 

Flue gas flow (mol/s) 3734 4107 3361 

CO2 content (mol-%) 16.4 17.2 15.6 

N2 content (mol-%) 78.2 77.6 79.0 

O2 content (mol-%) 5.4 5.2 5.4 
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3.2 Sensitivity to feed fluctuations 

The resulting molar flows of products and KPIs from the three 

different cases are reported in Table 3. In the table, the total 

CO2 efficiency is given (10): 

�̇�𝑀𝑒𝑂𝐻,𝑠𝑜𝑙𝑑 + 3 �̇�𝐷𝑀𝐶,𝑠𝑜𝑙𝑑 

�̇�𝐶𝑂2,𝑓𝑙𝑢𝑒 𝑔𝑎𝑠 

, (10) 

where �̇�𝑀𝑒𝑂𝐻,𝑠𝑜𝑙𝑑 combines the constant stream of 45 mol/s, 

and the flow of leftover MeOH after the DMC synthesis. 

�̇�𝐷𝑀𝐶,𝑠𝑜𝑙𝑑  represents the molar flow of produced DMC and is 

multiplied by 3 to account for reaction stoichiometry from 

CO2. �̇�𝐶𝑂2,𝑓𝑙𝑢𝑒 𝑔𝑎𝑠  is the molar flow of CO2 in flue gas stream. 

In the nominal case, membrane-based CO2 capture shows a 

capture efficiency of 70.1% while the CO2 content is increased 

from 16.4 mol-% to 97.8 mol-%. According to Table 3, the 

relative change in the quality of captured CO2 is small, less 

than 0.5 mol-%. The change in CO2 capture rate in Table 3 

corresponds approximately ±5% change with respect to the 

nominal case.  

From the perspective of the MeOH synthesis, the different 

simulation cases have similar captured CO2 qualities, while the 

permeate flowrates vary more significantly. Compared to Case 

I, the resulting changes to MeOH production rate in Case II 

and Case III are in-line with the changes to permeate flow rates 

(> ±10%), while changes to yield and SEC are much smaller 

(< ±1%, and < ±2%, respectively). The differences in MeOH 

yield and SEC between the cases can be explained by changes 

in WHSV. With less feed flow in Case III compared to Case I, 

the reactants have longer residence time in the reactor, and the 

pressure losses are smaller, thus allowing improved yield and 

SEC. The effects to yield and SEC are reversed for Case II, as 

WHSV increases compared to Case I. However, in general, it 

can be concluded that the MeOH production KPIs are not 

drastically affected by fluctuations in the feed conditions. 

Nominally, the DMC production feed ratio for MeOH and CO2 

is equal to 2. With this feed composition, the DMC process 

shows a yield of 53.4% (on MeOH basis). For DMC, the 

upstream changes cause the MeOH-to-CO2 ratio to change 

between 1.7 and 2.3. In addition, the fixed reactor size also 

means that the residence time changes due to fluctuations in 

the total feed flow. In Case II, the residence time is 1.83 h and 

in Case III 2.23 h instead of nominal value of 2 h (Case I). As 

presented in Table 3, longer residence time increases the DMC 

yield. 

With respect to the total CO2 efficiency, the partial load case 

represents 4% better relative efficiency than in the nominal 

case, as molar yields and CO2 capture rate are all improved. 

On the contrary, in Case II, the overall efficiency is decreased 

by 5.2%. 

3.3 Process chain flexibility 

To study the flexibility of the process chain, it is examined if 

modifying the operational variables of CO2 capture and MeOH 

synthesis units can compensate the lower flue gas flow and 

quality in Case III. The aim is to maintain the process chain 

throughput at the same level as in Case I, while the process 

design parameters remain fixed. For CO2 capture, the goal is 

to provide an equal amount of CO2 flow to downstream 

processes as in the nominal case, while achieving as high 

purity as possible. For MeOH synthesis unit, the aim is to 

produce an equal flow of methanol as in Case I. 

The membrane-based CO2 capture can be operated at different 

pressures and 2nd stage retentate recycle ratios. The increment 

of 1st stage operation pressure would have a significant 

negative effect on the SEC due to the very large amount of gas 

(flue gas and recycle) needed to be elevated into higher 

pressure. Thus, adjusting only the 2nd stage operation pressure, 

and recycle ratio are considered in this work.

Table 3. Resulting molar flows and key performance indicators in cases I to III. 

 Case I Case II Case III 

Molar flow of captured CO2 (molCO2 / s) 430 470 388 

Captured CO2 quality (mol-%) 97.8 98.2 97.4 

CO2 capture rate (mol-%) 70.1 66.4 74.0 

SEC, CO2 capture (kJel / molCO2) 78.4 79.0 78.4 

Ratio of captured CO2 flowing to MeOH feed and to DMC feed (-) 2.5 2.8 2.2 

Molar flow of captured CO2 to MeOH synthesis (molCO2 / s) 308 347 266 

Molar flow of produced MeOH (molMeOH / s) 289 324 251 

Molar yield of MeOH from CO2 (mol-%) 94.1 93.3 94.3 

SEC, MeOH synthesis (kJel / molMeOH) 33.9 34.4 33.6 

Molar flow of MeOH to DMC synthesis (molMeOH / s) 245 279 206 

Molar ratio of MeOH and CO2 in DMC feed (-) 2 2.3 1.7 

Molar flow of produced DMC (molDMC / s) 65 69 60 

Molar yield of DMC from MeOH (mol-%) 53.4 49.2 58.6 

Molar flow of unreacted MeOH from DMC synthesis (molMeOH / s) 81 99 61 

Total CO2 efficiency (mol-%) 52.4 49.7 54.5 
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A set of simulations were performed to assess the flexibility of 

CO2 capture in Case III by altering the recycle ratio and 2nd 

stage operation pressure. High recycle ratio is preferred to 

increase both the CO2 purity and recovery. Recycle increases 

the feed CO2 content and thus generates a higher driving force 

for the membrane separation. However, the operation pressure 

has opposite effects to the two KPIs, as can be seen in Fig. 4. 

Increasing the pressure leads to a higher recovery, but due to 

improved overall permeation, the quality of permeate 

decreases linearly. In terms of energy consumption, the higher 

2nd stage pressure, and thus capture rate, results in lower SEC 

(in 9 bar, 73.6 kW/molCO2). Finally, in the partial load case, 

the target CO2 flow (equal to Case I) could be achieved with 

the 2nd stage operation pressure of 11.5 bar (extending from 

the range seen in Fig. 4). In these conditions, the CO2 purity 

was only 91.3 mol-%, the CO2 recovery 82.0%, and the total 

molar flow rate 471 mol/s. The resulting total flow rate would 

be 7.2% higher than in Case I, meaning that the downstream 

processes will need to handle a larger amount of gas than 

expected by the nominal design, requiring more flexibility 

from them. 

 

Fig. 4. The effect of operation pressure on the CO2 capture 

performance. The recycle ratio is 1. 

Thus, it can be concluded that the selected operation variables 

in the CO2 capture cannot solely compensate for the flue gas 

variations in the partial load case. The disturbances are partly 

propagated to the downstream processes resulting in 337 mol/s 

of permeate flowing to MeOH synthesis and 134 mol/s of 

permeate to the DMC synthesis with decreased purity as 

described earlier. It should be noted that the gas membrane 

systems can be designed as modular units. Thus, increased 

flexibility can be achieved by altering the effective membrane 

area (number of active modules) to maintain the performance 

characteristics.  

For flexibility in MeOH synthesis unit, it was seen that there 

are three operational variables, that can be most easily 

manipulated to adjust the production rate: Reactor inlet 

temperature (Tinlet), reactor shell side temperature (Tshell), and 

recycle ratio (RR). There were no constraints set to the 

operational variables, other than that the resulting temperature 

should not exceed the earlier mentioned temperature limit of 

553 K at any point along the reactor tubes. 

By performing global optimization using differential evolution 

algorithm from (Buehren, 2024), a set of operational variables 

was found that results in practically equal MeOH production 

rate (289 mol/s) as in the nominal case: Tinlet = 505.2 K, Tshell 

= 534.1 K, and RR = 11.19. Expectedly, with such a high 

recycle stream, SEC is noticeably higher (40.0 kJel / molMeOH) 

compared to the nominal case (33.9 kJel / molMeOH). The found 

operational point does demonstrate that the MeOH synthesis 

plant can be operated flexibly to compensate even for major 

changes in the captured CO2 purity. Thus, the membrane-

based CO2 capture unit and the MeOH synthesis unit combined 

can fully compensate for the feed variability of the studied 

scenarios, so that the DMC production and the overall 

productivity of the process chain is unaffected. 

However, it is worth mentioning that the operational variable 

values for the MeOH synthesis in the flexibility case are 

considerably above their normal ranges that can be found in 

the literature. The reason why using so large temperatures and 

a recycle ratio does not cause operational issues within the 

simulations, can likely be attributed to the simplifications 

present in the MeOH synthesis model. By including currently 

unmodeled phenomena, such as limitations to radial heat 

transfer inside reactor tubes (Hartig and Keil, 1993), or 

pressure losses taking place in heat exchangers, such an 

extreme operation point might become unviable. 

3.4 Implications to techno-economic analyses 

The ongoing debate in the scientific literature for the kinetics 

of methanol synthesis reactions is one major source of 

uncertainty for modeling the MeOH production. To examine 

sensitivity of the MeOH synthesis towards chosen reaction 

kinetics, Case I was simulated with an updated kinetic 

parameter set reported in (Mignard and Pritchard, 2008). The 

simulation resulted in the flow of produced methanol rising 

from 289 to 298 mol/s. Methanol yield from CO2 rose from 

94.1 to 96.7 mol-%. SEC decreased from 33.9 to 33.0 kJel / 

molMeOH. The changes in these KPIs are significant even 

though the update from (Mignard and Pritchard, 2008) is only 

altering two of the parameters in the kinetic model of (Bussche 

and Froment, 1996). It could be speculated that modeling the 

reaction kinetics after a completely different model structure, 

such as in (Graaf et al., 1988), could cause even more 

significant changes to the KPIs. In general, the same principle 

applies for the kinetics in the DMC production, and the 

permeabilities and selectivities of different membrane 

materials. 

As demonstrated by the flexibility simulations, the choice of 

operational variables carries a significant effect on the product 

purity, yield and SEC in the different unit processes, meaning 

that choosing an optimal operation point is also important at 

system level analyses. For example, methanol synthesis in 

Case I was simulated with the highest reactor inlet and shell 

side temperatures found from the used literature. If the same 

case is instead simulated with significantly lower temperatures 

(Tinlet = 484 K, Tshell = 520 K), from (Manenti et al., 2014), then 

the flow of produced methanol lowers by 5.5% to 273 mol/s, 

the methanol yield from CO2 drops to 88.7 mol-%, whilst SEC 

rises to 35.7 kJel / molMeOH. 

For the DMC production, the estimates are uncertain due to the 

low technology readiness level and lab-scale data. In general, 

the direct DMC synthesis is very energy intensive (e.g. 19.2 
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MJ/mol under process conditions T = 323.15 K and P = 150 

bar (Saavalainen et al., 2015)). To enhance the yield of DMC, 

Zheng et al. (2022) implemented a natural convection 

circulation system specifically to adsorb and remove water. 

Models can also give overly optimistic estimates due to their 

inability to account for uncertainties in geometry. For 

example, the hollow-fiber membrane model assumed a fixed 

inner and outer radius, although real systems with thousands 

or millions of fibers might have variability in their properties. 

It has been shown that the standard deviation over 10% in fiber 

geometry can have a significant impact on the CO2 recovery 

(Bocciardo, 2015). The sensitivity of the geometry parameters 

in CO2 capture was also observed in this study. For instance, 

simulating Case I with a 2.5% decrement in both membrane 

fiber radius values leads to CO2 purity lowering from 97.8 to 

97.6%, capture rate lowering from 70.1 to 69.2%, and SEC 

rising from 78.4 to 82.0 kJel / molCO2. Moreover, MeOH and 

DMC production efficiencies are also greatly dependent on the 

reactor dimensions. 

Yet another factor to be accounted for is the long-term stability 

of the processes. The membrane-based CO2 capture has shown 

good stability in extended periods of operation for coal-fired 

combustion flue gases (Cui et al., 2021). On the other hand, an 

industrial data-based study suggests that the activity of 

Cu/ZnO/Al2O3 catalyst in methanol synthesis can drop to 65% 

when the catalyst has operated for 100 days, and further reduce 

to 50% after a year of operation (Parvasi et al., 2008). Thus, 

focusing solely on the performance of fresh catalyst, as has 

been done in this study, can result in overly optimistic KPIs. If 

simulating Case I otherwise unchanged, but the catalyst 

activity is at 50%, the flow of produced methanol drops to 228 

mol/s. The methanol yield from CO2 lowers to 74.2 mol-%, 

and SEC rises to 42.6 kJel / molMeOH. The matter is relevant 

considering that the average lifetime of Cu/ZnO/Al2O3 catalyst 

is 3 to 4 years (Bozzano and Manenti, 2016). 

4. CONCLUSIONS 

In this work a CCU process chain involving membrane-based 

CO2 capture, MeOH synthesis and DMC synthesis was 

modeled. In simulations it was found that the studied CCU 

process chain is quite robust against feed fluctuations, and by 

operating the membrane-based CO2 capture unit and the 

MeOH synthesis flexibly together, it was possible to fully 

compensate the decrease in the production rate in the studied 

worst case feed conditions. More importantly for techno-

economic analysis, it was discovered that the CCU process 

chain is significantly more sensitive to model parameters than 

to feed variations.  

Furthermore, the significant changes to yields and specific 

electricity consumptions from varying operational variables 

and design parameters imply that considering their optimal 

choice should play a significant role also in system level 

studies. Thus, for techno-economic analyses of CCU processes 

it is crucial to find profit-wise optimum solutions that balance 

various factors, such as investment costs versus operating 

costs when sizing equipment, or yield versus catalyst life when 

choosing synthesis temperatures. Access to industrial data 

from relevant operation conditions would be highly valuable 

for increasing the reliability of the process models. 
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Abstract:  The amine-based CO2 capture rig at USN in Porsgrunn has been operating since 2007. In this 

study, the main aim was to develop predictive models in Aspen HYSYS and Aspen Plus for the CO2 test 

rig. The models accuracy were verified by comparing different test scenarios with results from the models. 

Aspen HYSYS and Aspen Plus have simulated eleven scenarios (test series) with varying process 

parameters.  In Aspen HYSYS, Murphree efficiencies (stage efficiences) were fitted, and in Aspen Plus 

two approaches were used, fitting the interfacial area or the holdup factor to minimize the deviation between 

the model and experimental data. The Aspen HYSYS model with the fitted Murphree efficiencies (from 

top to bottom 0.11, 0.1, 0.09 and 0.07) predicted seven scenarios with an average deviation of 12-24 % 

from experimental data. In the Aspen Plus rate-based model with interfacial area fitted, most of the 

scenarios were predicted by a model with correlation Brf-85 (mass transfer), Brf-85 (heat transfer) and an 

interfacial área factor of 0.5.  Minimum and maximum deviations for different scenarios were 2.1 and 9 %.  

In the approach with fitting of the holdup factor, the Brf-92 holdup method with a holdup factor of 0.5 gave 

the best fit, resulting in an average deviation of 1.4-9 % from the test results across all scenarios. 

Keywords: CO2, amine, rate-based, absorption, simulation  

1. INTRODUCTION 

The amine-based CO2 capture rig at the University of South-

Eastern Norway (USN) in Porsgrunn has been operating since 

2007.  It is a small-scale CO2 capture plant that includes an 

absorber, a desorber with reboiler and condenser, heat 

exchangers and pumps.  Performance data measuring 

especially CO2 capture rate at different conditions using 30 

weight-% MEA have been presented in several papers (Øi et 

al., 2013; Øi et al., 2015; Øi et al., 2017; Øi et al., 2021). 

 

There have been attempts to fit the experimental data from the 

CO2 capture rig to simulation models with limited success by 

fitting data series to a constant Murphree efficiency and using 

rate-based models. However, the models fitted to experimental 

data have shown poor predictive properties for conditions 

outside the experimental range (Karunarathne and Øi, 2019). 

 

Early work on comparing test data with different simulation 

tools was by Luo et al. (2009) who tested Aspen RadFrac, 

ProTreat, ProMax, Aspen RateSep, CHEMASIM from BASF 

and CO2SIM from SINTEF/NTNU using different pilot plant 

data. The conclusion was that all the models could fit the CO2 

capture rate, but the temperature and concentration profiles 

were not well predicted. 

 

Much work with fitting CO2 absorption performance data to 

Aspen HYSYS or Aspen Plus models have been performed 

with data from the Test Center Mongstad (TCM). In previous 

research at USN, data from TCM was used to fit equilibrium 

models (in Aspen Plus and Aspen HYSYS) to various 

scenarios by adjusting each stage’s Murphree efficiency (EM), 

and rate-based models (in Aspen Plus) were fitted by varying 

the interfacial area factor or the holdup factor (Øi et al., 2018; 

Øi and Fagerheim, 2020; Øi et al., 2022). Except for this work 

at TCM, there is very little published information about 

comparing different models in simulation tools to fit 

experimental data (Kvamsdal et al., 2011; Razi et al., 2012; 

Razi et al. 2013a). 

 

In rate-based models, it is traditional to adjust the interfacial 

area factor to fit the model to performance data, but to use the 

holdup factor (multiplied with the holdup estimated by in-built 

correlations) has been used for the same purpose (Øi et al., 

2022). Two of the estimation methods in Aspen Plus for 

several of the correlations, especially the liquid holdup, is Brf-

85 and Brf-92 which is short for the Bravo/Rocha/Fair model 

(Rocha et al., 1992). 

 

This work is based on the Master Thesis of Soudeh Shamshiri 

(2023) at USN which aims to fit different models in Aspen 

HYSYS and Aspen Plus to experimental data in the USN test 

rig.   The ultimate goal is to assess which models provide the 

most accurate predictions for different conditions, and giving 

the most accurate dependence on the varying process 

parameters. 

 

This paper starts with an introduction with background 

literature in section 1. In section 2 different correlations for 

fitting experimental CO2 absorption data to models and 

correlations are presented.  In section 3 specifications for the 

simulations and the data fitting to experimental data from the 

CO2 absorption rig are presented. In section 4 the deviations 

between the simulations and performance data are presented, 

and the different approaches for modelling and fitting are 

discussed.  
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2. METHODS FOR FITTING EXPERIMENTAL CO2 

ABSORPTION DATA TO MODELS 

2.1 Equilibrium-based models 

 

Simulation tools include column models for distillation and 

absorption, which assume equilibrium at each stage. Changing 

the number of simulation stages until the desired CO2 capture 

efficiency is achieved is an easy method of adjusting an 

absorption equilibrium model to match experimental CO2 

capture efficiency. 

 

Equilibrium based models can be refined by defining a 

Murphree efficiency at each column stage. This efficiency is 

calculated as the ratio of the change in mole fraction from a 

stage to the next divided by the change assuming equilibrium. 

An absorption column can be defined with a number of stages, 

e.g. equal to the packed column height, and the Murphree stage 

efficiency can be specified to be equal for each stage. The 

constant Murphree efficiency can be fitted to experimental 

CO2 efficiency in performance data.  

 

At USN equilibrium models in Aspen Plus and Aspen HYSYS 

have been fitted to different scenarios (experimental data) at 

Test Center Mongstad (TCM) by adjusting the Murphree 

efficiency (EM) for each stage (Øi et al., 2018; Øi and 

Fagerheim, 2020; Øi et al., 2022). 

 

2.2 Rate-based models 

 

The process simulation tool Aspen Plus has a rate-based model 

to describe the mechanisms in the absorption process. Rate-

based models calculate rate of mass transfer, rate of heat 

transfer, pressure drop and equilibrium. Unlike the equilibrium 

model, the rate-based approach assumes that separation is 

achieved through mass and energy transfer between gas and 

liquid which is in equilibrium at the interface. The rate-based 

modelling is increasingly accepted over traditional 

equilibrium-stage modelling for CO2 capture processes. 

 

A rate-based model for CO2 absorption in MEA is available in 

the Aspen Plus program.  This model was developed and fitted  

based on data from a CO2 capture pilot plant at the University 

of Texas (Zhang et al., 2009). The parameter values in this 

Aspen Plus model can be changed by the user.  

 

2.3 Correlations in rate-based models 

 

A rate-based model includes correlations (submodels) for 

mass transfer rates through the gas film and the liquid film, 

rate of heat transfer, pressure drop, interfacial area and liquid 

holdup. Aspen Plus has several available correlations for each 

of these quantities.  A review of mass transfer models for both 

random and packed columns is given by Wang et al. (2005).     

Reviews of rate-based models for CO2 capture are presented 

by Kvamsdal et al. (2011), Razi et al. (2012) and Amirkhosrow 

et al. (2021). Razi et al. (2013) have evaluated how different 

correlations in rate-based simulations work in Aspen Plus to 

predict performance from the Esbjerg pilot plant. The 

prediction of performance data is very dependent on the 

correlations used.  The models differ in accuracy and correct 

description of sensitivity of operating parameters like 

temperature, gas flow and liquid flow. 

 

In the Aspen Plus rate-based model, examples of mass transfer 

correlations are named Brf-85 (Bravo et al, 1985), Hanley 

(2012) and Brf-92 (Bravo et al, 1993) and interfacial area 

methods are named Brf-85, Hanley, Brf-92 and Mod-Tsai. 

Inaccuracy in one of the correlations can be compensated by 

adjusting that correlation or other correlations by adjusting 

model parameters. In Aspen Plus, it is possible to compensate 

in some of the correlations by adding an adjustment parameter.  

For the interfacial area, the interfacial area factor is used, and 

for the liquid holdup, the liquid holdup factor is used. 

 

These correlations normally require physical data (like 

densities and viscosities) as input.  The effect of this is 

discussed in Nookuea et al. (2015) and Karunarathne and Øi 

(2019).  In this work, the default property methods from the 

sample file from  Aspen Plus are used.  

 

2.4 Equilibrium models  

 

Both an equilibrium-based model and a rate-based model is 

dependent on the vapour/liquid equilibrium model. In earlier 

work, different equilibrium models have been used (Øi et al., 

2018). Both Aspen Plus and the new Aspen HYSYS acid gas 

model now use an Electrolyte-NRTL equilibrium model 

(Austgen et al., 1989). This is used in this work. 

3. DATA AND SPECIFICATIONS 

3.1. Performance data from test rig at USN 

 

Data were taken from experimental work that has been done 

for several years in the test rig at USN, a picture is shown in 

Fig. 1 and a simplified P&ID is shown in Fig. 2. Eleven 

scenarios have been defined in this work in which different 

process parameters like gas and liquid flow rate, solvent inlet 

temperature and CO2 inlet concentration were varying. Figures 

3, 4 and 6 are from Øi et al. (2017), Figure 5 is from Øi et al. 

(2013) and Figure 7 is from Øi et al. (2021).  

   

 

 

Fig. 1. Picture of CO2 test rig at USN.  
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Fig. 2.  Simplified P&ID for USN test rig. 

Figures 3 to 7 show data as a function of only one parameter.  

The CO2 capture rate is dependent on many parameters.  

Detailed information can be found and the exact numerical 

values for the data points can be found in the original 

references or in Shamshiri (2023). 

 

 
Fig. 3. Data for varying the gas flow at a high liquid flow in scenario 

1-1 and 1-2. The upper curve is for liquid flow 150 l/h and the lower 

curve is for 140 l/h.  There is 10 % CO2 in the inlet gas. 

 

 
Fig. 4. Data for varying liquid flow in scenario 2-1, 2-2 and 2-3. The 

upper curve is for 5 % CO2 in inlet gas, the middle curve for 10 % 

CO2 and the lower curve is for 15 % CO2.  

 
Fig. 5. Data for varying the temperature in scenario 3-1. The data are 

for constant gas flow 14 Nm3/h and liquid flow 50 kg/h. There is 10 

% CO2 in the inlet gas. 

 

 
Fig. 6. Data for varying the gas flow at a low liquid flow for scenario 

4-1. Liquid flow is 20 l/h and there is 10 % CO2 in inlet gas. 

 

The selection of scenarios is tried to be representative for the 

available data for the different variables and for the variable 

ranges.  The selection have not been systematical, and in this 

work there has not been any evaluation about which 

experimental data for the test rig which are of highest quality.  
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Fig. 7. Data for varying the liquid flow for scenario 5-1, 5-2, 5-3 and 

5-4.  The curves are from top to bottom for 2.5 % CO2 in inlet gas, 5 

%, 10 % and 15 %. Gas Flow is 30 Nm3/h. 

 

3.2. Specifications for the equilibrium-based simulation tools  

 

The input specifications in Table 1 for the Aspen HYSYS 

absorber model are similar to earlier simulations (Øi et al., 

2018; Øi and Fagerheim, 2020). A flowsheet of the process is 

shown in Fig. 8. 

 

Table 1. Specifications for equilibrium-based calculations. 
Specifications – Aspen HYSYS equilibrium 

Calculation Type equilibrium 

Property method Acid gas- Chemical 

solvents 

Valid phases Vapor-Liquid 

Number of stages 4 

Nominal pressure 110 kPa 

Uniform section yes 

Internal type Packed 

Solving method Modified HYSIM 

Inside-out 

 

3.3. Specifications for the rate-based tool 

 

The input specifications for the rate-based absorber 

calculations are given in Table 2. A flowsheet is shown in Fig. 

9. In the rate-based simulation in Aspen Plus, the local model 

example "ENRTL-RK_Rate_Based_MEA_Model" from the 

Aspen library was used. The Elec-NRTL thermodynamic 

package with Redlich-Kwong equation of state (RK) was 

chosen.  

 

 

Table 2. Specifications of the model for rate-based calculations 
Specifications – Aspen Plus rate-based 

Calculation Type Rate-based 

Property method ENRTL-RK 

Henry comp ID Global 

Chemistry ID MEA-CHEM 

Valid phases Vapor-Liquid 

Number of stages 4 

Hold up factor 0.5-1 

Reaction condition factor 0.9 

Packing type Mellapak 250Y 

Section diameter (m) 0.1 

Section packed height (m) 1.5 

Flow model VPlug* 

Interfacial area factor 0.5-1-1.3-1.6 

Film liquid phase Discretize film 

Film vapor phase Consider film 

Mass transfer coefficient 

method 

Brf-85/Hanley/Brf-92 

Heat transfer coefficient 

method 

Chilton and Colburn 

Interfacial area method Brf-85/Hanley/Brf-92/Mod-

Tsai 

Holdup method Brf-92 

Add. Discretize points liquid 5 

 

The specifications for the Aspen Plus model are mostly as in 

earlier work (Øi et al., 2021), but the chosen correlations, and 

especially the combination of correlations, are mostly a result 

of trial and error. A combination of correlations obtaining 

good prediction over a large range of the varied parameter is 

regarded as a useful method.  The choice of interfacial area is 

traditional (Zhang et al., 2009; Øi et al., 2018; Øi and 

Fagerheim, 2020), but the use of the holdup factor as fitting 

variable is only found in earlier work by Øi et al. (2022).  

 

 

 

 
Fig. 8.  Process simulation model of the CO2 capture rig in Aspen HYSYS. 
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Fig. 9.  Process simulation model of the CO2 capture rig in Aspen Plus. 

 

 

3.4. Simulations to fit experimental values 

 

The rate-based model developed in the simulation focused on 

the absorber column.  In Aspen HYSYS, the Murphree 

efficiency was adjusted to determine the experimental CO2 

removal efficiency for a given scenario. Using Aspen Plus, the 

interfacial area factor or the holdup factor were fitted to obtain 

the experimental CO2 removal efficiency. 

  

3.5. Simulations to predict performance 

 

Based on experimental data, the fitted models in Aspen 

HYSYS or Aspen Plus were used to predict conditions at 

different operating conditions The deviation between 

predicted and measured CO2 capture rate was calculated in %. 

 

4. SIMULATION RESULTS AND DISCUSSION 

4.1. General Results 

 

One fitted simulation case is the result for each data point in 

each of the eleven scenarios. The main result from each 

simulation is the CO2 removal rate which is found as the CO2 

amount in the gas feed to the absorber minus the CO2 amount 

in the gas from the absorber.  The deviation in this work is the 

simulated CO2 removal minus the experimental CO2 removal 

divided by the simulated value. 

 

4.2. Simulation model for equilibrium-based model  

 

The equilibrium-based model with defined parameters and

properties has been simulated for the eleven scenarios in the

test rig USN. The results in Fig. 10 show that the Aspen

HYSYS can predict the CO2 removal rate for the sets of 

scenarios 2-1, 2-2, 2-3, 5-1, 5-2, 5-3 and 5-4 where the 

deviation of predicted model from experimental data is 

between 12-24%. In these simulations the Murphree efficiency 

for all stages were defined to be 0.11, 0.1, 0.09 and 0.07 from 

top to bottom.  

  

 
Fig. 10. Deviation between the experimental data and the simulation 

results from Aspen HYSYS. 

 

 

4.3. Simulation model for rate-based model 

 

The model was used to simulate the performance data using 

various mass transfer and interfacial área correlations. Figure 

11 shows that the Brf-85 method for both mass and heat 

transfer and an interfacial area factor of 0.5 or 1.0 gives smaller 

deviation than when the Hanley method is used. When the 

interfacial area factor is changed from 1 to 0.5, most of the 

experimental data will be reasonably predicted when varying 

the process parameters. 
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Fig. 11. Deviation of simulated data in Aspen Plus/Interfacial area 

from experimental data with different correlations for scenario 2-1. 

 

4.4 Deviation results for rate-based model 

 

If the Brf-85 correlation could not predict all experimental

data, another method would have simulated all scenarios, such

as changing the liquid holdup factor. According to Fig. 12,

Brf-85 as a mass transfer and interfacial area method with

factor 1 beside Brf-92 as a holdup correlation with holdup

factor 0.5 provides results with less error tan the Hanley

method and the same holdup correlation and factor.

 

 
Fig. 12. Deviation of simulated data in Aspen Plus/Holdup from 

experimental data with different correlations for scenario 2-1. 

 

Figures 11 and 12 indicate that using the interfacial area or 

holdup factor as the variable parameter gives similar sum of 

deviations at least for this case. 

   

Only a limited number of different correlations and especially 

combination of correlations were tested. Evaluation of other 

correlations is discussed in the general discussion.  

 

4.5 Deviation results for rate-based model  with varying 

interfacial area 

 

In Fig. 13, the deviations are shown for all scenarios when

using a model with Brf-85 for both the heat transfer, mass

transfer and the interfacial área and an interfacial area factor

0.5, except for scenarios S3-1 and S4-1. In S3-1 the Hanley

model for interfacial área and an interfacial area factor of 1.3

was necessary to fit the data and in S4-1 the Brf-92 model for

heat and mass transfer, the ModTsai model for interfacial area

and an interfacial área factor of 1.0 were necessary to fit the

data satisfactory.

 

 
Fig. 13.  Deviation between the experimental data and the simulation 

results from Aspen Plus/Interfacial area method with different 

correlations for S3-1 and S4-1.  
 

 

For the scenarios S3-1 and S4-1, using the model with Brf-85 

and interfacial area = 0.5 the fit was not satisfactory.  Øi and 

Fagerheim (2020) and Øi et al. (2022) experienced that when 

fitting TCM data to a similar model, some experimental data 

was difficult to fit using the Brf-85 model for interfacial area, 

so the Brf-92 was used by Øi et al (2022). 

 

4.6 Deviation results for rate-based model with varying 

holdup factor 

 

Figure 14 shows the deviation results for all the eleven data 

sets or scenarios.  The same combination of correlations 

models were used in these simulations, with Brf-85 for heat 

and mass transfer, Brf-92 for holdup and h = 0.5. 

 
Fig. 14. Deviation between the experimental data and the simulation 

results from Aspen Plus/Holdup method with the same correlations 

also for S3-1 and S4-1. 
 

By running the simulation for all the experiments, the average 

deviation from all sets of scenarios is below 9 %. 

 

4.7 General discussion  

 

The results from this and earlier work show that it is possible 

to fit the CO2 removal rate for a performance data set using 

either a rate-based or an equilibrium-based model.  For most 

cases, it is enough to adjust only one parameter.  This can be 

the interfacial area factor or the liquid holdup factor in a rate-

based model or an EM-factor (adjusting all the stage 

efficiencies in an EM profile) for an equilibrium-based model. 
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In Luo et al. (2009), Øi et al. (2012) and in Øi and Fagerheim 

(2020) it was claimed that at their conditions (low inlet CO2 

concentration) the equilibrium-based models and rate-based 

models performed about equally well in fitting the available 

performance data.  This work indicates that for predicting 

performance at very different conditions, a rate-based model 

performs better than an equilibrium-based model. 

 

This work and the work by Øi et al. (2022) show that a 

promising approach to obtain a predictive model for a CO2 

capture plant based on performance data, is to vary the holdup 

factor to fit performance data. It is recommended for future 

work to compare the approach of fitting the interfacial area 

factor and the holdup factor in more detail. 

 

There is little in the literature about which combination of 

correlations for mass transfer, heat transfer, interfacial area 

and holdup that gives the most accurate prediction as a 

function of varied temperature, gas flow and liquid flow.  This 

topic is discussed by Kvamsdal et al. (2011), Kvamsdal and 

Hillestad (2012), Razi et al. (2012) and Reza et al. (2013b).  To 

find the most accurate or most convenient combination of 

correlations for rate-based simulation of amine-based CO2 

capture is a challenge for future work. One strategy is to test 

all (or most of) the possible combinations of models. Then it 

is a challenge to treat large amounts of experience data to 

obtain an optimum choice of models. Another strategy is to 

study the correlations more in detail to select the most accurate 

correlations.  Then it is a challenge whether to choose the most 

accurate correlations, or the correlations which give the most 

accurate dependence on the varying process parameters. 

 

 

5.  CONCLUSIONS  

In this study, the main aim was to develop predictive models 

in Aspen HYSYS and Aspen Plus for the CO2 test rig. Aspen 

HYSYS and Aspen Plus have been used to simulate eleven 

scenarios (test series) with varying process parameters. In 

Aspen Plus two approaches were used, fitting either the 

interfacial área factor or the holdup factor to minimize the 

deviation between model and experimental values. An Aspen 

HYSYS model could not predict all experimental data when 

varying liquid temperature, inlet gas temperature and flow 

rates. A fitted rate-based model in Aspen Plus gave less error 

than the equilibrium-based Aspen HYSYS model. In the rate-

based model with interfacial area fitted, most scenarios can be 

predicted by a model with correlation Brf-85 (mass transfer), 

Brf-85 (heat transfer) and an interfacial factor of 0.5.  

Minimum and maximum deviations for different scenarios 

were 2.1 and 9 %.  In the approach with fitting the holdup 

factor, the Brf-92 holdup method with a holdup factor of 0.5 

gave the best fit, resulting in an average deviation of 1.4-9 % 

from the test results for all scenarios. Testing and evaluation 

of combinations of correlations for rate-based models is a 

future challenge. 
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Abstract: In this study, a fluidized bed electrified calciner was designed, and various operating conditions 

were investigated by CPFD simulations. It was found that maintaining a constant fluidization velocity while 

increasing the temperature of hot cylinders or preheating the raw meal significantly enhances the calcination 

degree. Altering the fluidization velocity while keeping temperatures constant also greatly affects the 

calcination degree and particle entrainment. A fluidization velocity of 0.3 m/s appears to be optimal for the 

reactor, whereas 0.8 m/s resulted in complete entrainment of the bed. The maximum calcination degree 

achieved was 90% with preheated meal. The average meal residence time was found to be 24-26 s. 

Keywords: CO2 capture, Electrification, Fluidized bed, Calciner, CPFD 

1. INTRODUCTION

With an estimated 2600 million tons of CO2 emissions in 2020,

the cement industry holds the second-largest share of direct

industrial CO2 emissions worldwide (IEA, 2020) Furthermore,

because of urbanization and the growing global population,

cement production is predicted to increase by 12–23% by 2050

(IEA., 2018). By 2050, the European Union (EU) wants to cut

its greenhouse gas emissions by 80–95% from 1990 levels

(Dupont and Oberthür, 2015). Achieving this objective will

largely depend on decarbonizing the cement sector. About two

thirds of the CO2 emissions from the cement industry are from

calcination of limestone, whereas one third comes from the

burning of fuels (Nikolakopoulos et al., 2024). However, using

green electricity to calcine the raw materials and combining

this with storage of the pure CO2 generated in the calcination

process can vary significantly reduce CO2 emissions in the

cement industry (Tokheim et al., 2019).

By switching from fuel combustion to electrical energy for the

cement process both in calciner and in the rotary kiln, two

things happen at once. Firstly, the CO2 produced from burning

fuel in the calciner is eliminated, reducing the overall CO2

emissions from making clinker. Secondly, the exhaust gas

from the calciner is almost pure CO2, so it can go straight to a

CO2 processing unit without needing a separate CO2

separation plant. Having said that, if only the calciner uses the

clean electricity instead of burning fuels while the kiln still

uses the fuel combustion for providing heat, a significant

reduction (around 70%) in emissions can be achieved. This

happens while only one of the main equipment units in the kiln

system (the calciner) needs to be altered. (Tokheim et al.,

2019). An illustration of such a concept is shown in Fig. 1.

 

 
Fig. 1. Block flow diagram of a cement kiln system with

electrified calciner (Tokheim et al., 2019).

Insisting on the benefits of using an electrified calciner, the

question is which type of reactor is the best for designing an

electrified calciner? This has been investigated in previous

studies, and a fluidized bed (FB) calciner was found to be a

good candidate as it provides good mixing and high heat and

mass transfer (Samani et al., 2020). The raw meal feed is

usually a fine powder (median size less than 30 µm) which can

be classified as Geldart C particles. Geldart C particles are

difficult to fluidize due to large inter-particle forces in

comparison with the drag forces applied by the gas (Geldart,

1973). One way to tackle this problem is to improve the

fluidization properties by mixing the small particles with

coarse inert particles. After calcination of the meal, separation

and entrainment of Geldart C particles is obtained by a change

in the gas velocity. The reactor should be designed in such a

way that the coarse particles remain in the bed, whereas the

fine uncalcined particles are continuously fed close to the
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bottom of the bed and fine calcined particles are continuously 

discharged at top of the bed. The CO2 evolving from the 

calcination reaction will contribute in the entrainment of the 

calcined particles.  

The FB operating with a binary particle mixture has previously 

been studied in in several publications. Kato et al. (1991) 

investigated the residence time distribution of fine particles in 

a powder-particle FB. In another study, Tashimo et al. (1999) 

investigated the calcination of fine powder raw meal (Geldart 

C) in a powder-particle FB experimentally. Other studies and 

experiments have also been conducted in investigation of the 

fluidization conditions of binary particles FB (Kim et al., 

2014). More recently a study was conducted by Jacob et al. 

(2022), who made an experimental and numerical 

investigation of using coarse particles for fluidization of fine 

limestone in the calciner. That study found that a fluidization 

velocity of 0.3 m/s and a weight fraction of 25 % fine particles 

gave a stable bed (Jacob et al., 2022). 

A recent study by Jacob and Tokheim (2023) designed an 

electrified calciner with vertical heating channels and 

investigated this by CPFD simulations. While the designed 

calciner in that study showed promising results, in the industry 

it may be difficult to distribute the meal evenly between the 

heating channels, and therefore, there may be a risk that local 

overheating may occur. 

The current study investigates an alternative heater 

arrangement, in the form of horizontally immersed cylindrical 

heating elements, as this will likely not prevent transverse 

mixing of the raw meal. A lab-scale electrified unit of about 

100 kW is designed and simulated using the commercial CPFD 

software Barracuda. The main aims are to determine 

conditions for obtaining both fluidization, calcination, and 

separation in the designed reactor. Key process parameters, 

such as heater temperature, fluidization velocity and meal 

temperature are varied in different simulation cases. 

2. METHODS 

2.1 Design and sizing 

A binary particle FB reactor with electrically heated immersed 

horizontal cylinders should be designed. A heat and mass 

balance is made, and FB calculations are performed to ensure 

good mixing and entrainment of fine calcined particles while 

keeping other particles in the bed. A trial-and-error procedure 

is required to find an appropriate size for the reactor and 

cylinders as well as an appropriate cylinder arrangement. The 

design calculations are done based on the assumption that the 

bottom cross section of the reactor is rectangular, and the 

length of the cylinders are all the same equal to one side of the 

bottom cross section. This assumption is needed because the 

cylinders should be electrically heated. Also, it is assumed that 

the reactor wall temperature is constant and that there is no 

heat loss.  

The decomposition of calcium carbonate (𝐶𝑎𝐶𝑂3 → 𝐶𝑎𝑂 +

𝐶𝑂2) is an endothermic reaction requiring 1.7 
𝑀𝐽

𝑘𝑔𝐶𝑎𝐶𝑂3

 (Jacob, 

2023). Also, the raw meal should be heated up to reach the 

calcination temperature (𝑇𝑐𝑎𝑙) before the reaction happens. 

Equation (1) shows the energy balance of the reactor where the 

first part shows the heat needed for the reaction and the second 

part shows the sensible heat needed to heat up the meal. In the 

equation, 𝑚𝑟𝑚
. , 𝑤𝐶𝑎𝐶𝑂3

 and 𝐶𝑟𝑚 are the mass flow rate of 

feeding raw meal to the reactor, the weight fraction of 

limestone in the raw meal and the specific heat capacity of the 

raw meal, respectively. 𝜂 is the degree of calcination, 𝐻𝑐𝑎𝑙  is 

the enthalpy of calcination and �̇� is the electric energy supply. 

�̇�𝑟𝑚𝑤𝐶𝑎𝐶𝑂3
𝜂𝐻𝑐𝑎𝑙 + �̇�𝑟𝑚𝐶𝑟𝑚(𝑇𝑐𝑎𝑙 − 𝑇𝑖𝑛) = �̇�                  (1) 

Using the energy balance, the mass flow rate of the raw meal 

is calculated. So, the required heat transfer area for the 

calcination and for heating up the meal can be calculated using 

(2) and (3), respectively. In both equations, 𝑈 is the overall 

heat transfer coefficient which is assumed to be 0.3 
𝑘𝑊

𝑚2𝐾
. ∆𝑇 in 

(2) shows the temperature difference between the hot cylinder 

wall and the calcination temperature, whereas ∆𝑇𝐿𝑀𝑇𝐷 in (3) is 

the logarithmic mean temperature between the cylinder wall 

and the raw meal being heated. 

𝐴𝑐𝑎𝑙𝑈∆𝑇 = 𝑚𝑟𝑚
. 𝑤𝐶𝑎𝐶𝑂3

𝜂𝐻𝑐𝑎𝑙               (2) 

𝐴𝑠𝑒𝑛𝑠𝑖𝑏𝑙𝑒𝑈∆𝑇𝐿𝑀𝑇𝐷 = 𝑚𝑟𝑚
. 𝐶𝑟𝑚(𝑇𝑐𝑎𝑙 − 𝑇𝑖𝑛)  (3) 

The overall heat transfer area is the sum of the areas in the 

equations above and is used to calculate the number of 

cylinders. This will be calculated after some trial-and-error 

procedure for defining the size of the bottom cross section of 

the reactor. 

The procedure begins with the assumption of two values, L1 

and L2, for the rectangular bottom cross section of the reactor, 

aiming to keep the area as small as possible. The mass of gas 

required to achieve the fluidization velocity is then calculated 

using (4) where 𝑢𝐹 is the fluidization velocity. The produced 

CO2 is calculated based on a mass balance (5)-(8), where M 

shows the molecular weight, and �̇� and �̇� show the mass flow 

rate and molar flow rate, respectively.  

�̇�𝐶𝑂2,𝑖𝑛𝑗 = 𝜌𝐶𝑂2
𝑢𝐹(𝐿1𝐿2)  (4) 

�̇�𝐶𝑎𝐶𝑂3
= �̇�𝑟𝑚𝑤𝐶𝑎𝐶𝑂3 

  (5) 

�̇�𝐶𝑎𝐶𝑂3
=

�̇�𝐶𝑎𝐶𝑂3

𝑀𝐶𝑎𝐶𝑂3

   (6) 

�̇�𝐶𝑎𝐶𝑂3
= �̇�𝐶𝑂2

                     (7) 

�̇�𝐶𝑂2,𝑝𝑟𝑜𝑑 = �̇�𝐶𝑂2,𝑝𝑟𝑜𝑑𝑀𝐶𝑂2
                 (8) 

The total CO2, i.e., the sum of the injected and produced CO2, 

determines the outlet velocity. If this velocity is below the 

required entrainment velocity, the calculation is repeated. As a 

design constraint the exit is cylindrical with a fixed diameter. 

�̇�𝐶𝑂2,𝑜𝑢𝑡 = �̇�𝐶𝑂2,𝑖𝑛𝑗 + �̇�𝐶𝑂2,𝑝𝑟𝑜𝑑  (9) 

𝑢𝑜𝑢𝑡,𝐶𝑂2
=

�̇�𝐶𝑂2,𝑜𝑢𝑡

𝐴𝑡𝑜𝑝𝜌𝐶𝑂2
  (10) 
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Next, the length of each hot cylinder is set to L1, and the 

surface area for one cylinder is computed. Dividing the total 

heat transfer area (𝐴𝑐𝑎𝑙 + 𝐴𝑠𝑒𝑛𝑠𝑖𝑏𝑙𝑒) by the surface area of one 

cylinder (𝜋𝐷𝑐𝑦𝑙𝐿1) gives the number of cylinders. The number 

of rows of cylinders needed are calculated. The height of the 

area including cylinders should be almost equal to the height 

of the bed. Adjustments are made to the cross-section 

dimensions until the desired conditions are met. Finally, the 

total reactor height is ensured to be adequate to retain coarse 

particles but short enough for proper calcination and 

entrainment of fine particles.  

2.2 CPFD Simulation 

Barracuda version 21.1.1 is used for the CPFD simulations. 

The simulation is conducted to investigate different 

operational conditions. The investigated operating conditions 

include variation in the temperature of the raw meal feed to the 

reactor, the wall temperature of the hot cylinders and the 

fluidization gas velocity. The reaction rate, amount of particle 

entrainment, entrainment velocity and pressure drop in the 

reactor are then compared for different simulation cases.  

To do the simulations, after preparing the geometry and a 

proper grid the governing equations should be solved for the 

fluid and particle phases. Barracuda technology uses the 3D 

Multiphase Particle-in-Cell (3D-MP-PIC) method developed 

by CPFD Software. The MP-PIC method solves equations for 

both the gas and solids phases. It uses a Eulerian approach for 

the gas and a mix of the Eulerian and Lagrangian approach for 

the solids. Instead of tracking each physical particle, it groups 

similar ones into numerical parcels. This makes calculating 

properties like particle stresses faster in the gas phase. The 

method can handle various particle phases, sizes, and materials 

efficiently (Snider, 2001), (Jacob, 2023). 

To define the fluid behavior in a CPFD simulation, equations 

for continuity, momentum, energy and species transport 

should be solved. In the continuity equation (11), 𝜃𝑓, 𝜌𝑓 and 

𝑢𝑓 are volume fraction, density and velocity of the fluid. 

Equation (12) shows the momentum equation where 𝛻𝑝 

denotes the pressure gradient in the gas flow, 𝜏𝑓 symbolizes 

the stress exerted by the fluid, 𝐹 is the inter-phase momentum 

transfer rate per unit, and 𝑔 represents the gravity constant. 

Equation (13) is the species transport equation, where 𝑌𝑓,𝑖 and 

𝛿�̇�𝑖,𝑐ℎ𝑒𝑚 are the mass fraction of species 𝑖 in the fluid and the 

chemical source term, respectively. The term 𝐷𝑡  is the 

turbulent mass diffusivity, which can be related to the flow 

viscosity by the Schmidt number correlation (𝑆𝑐 =
𝜇

𝜌𝐷
). For a 

non-isothermal simulation, the energy equation (14) should 

also be solved. 𝐻𝑓 is the enthalpy of the fluid, 𝜙 is the viscous 

dissipation rate, �̇�𝑓
′′ is the fluid heat flux, �̇� represents the 

energy source and 𝑆ℎ is the energy exchange between fluid and 

particles (Snider et al., 2011), (Jacob, 2023). 

𝜕(𝜃𝑓𝜌𝑓)

𝜕𝑡
+ 𝛻 ∙  (𝜃𝑓𝑢𝑓𝜌𝑓) =  𝛿�̇�𝑝  (11) 

𝜕(𝜃𝑓𝜌𝑓𝑢𝑓)

𝜕𝑡
+ 𝛻 ∙  (𝜃𝑓𝜌𝑓𝑢𝑓𝑢𝑓) =  −𝛻𝑝 +  𝐹 +

 𝜃𝑓𝜌𝑓𝑔 +  𝛻 ∙  (𝜃𝑓𝜏𝑓)    

(12) 

𝜕(𝜃𝑓𝜌𝑓𝑌𝑓,𝑖)

𝜕𝑡
+  𝛻 ∙  (𝜃𝑓𝑢𝑓𝜌𝑓𝑌𝑓,𝑖) =  𝛻 ∙

 (𝜌𝑓𝐷𝑡𝜃𝑓𝛻𝑌𝑓,𝑖) +  𝛿�̇�𝑖,𝑐ℎ𝑒𝑚  

(13) 

𝜕(𝜃𝑓𝜌𝑓𝐻𝑓)

𝜕𝑡
+ 𝛻 ∙ (𝜃𝑓𝜌𝑓𝐻𝑓𝑢𝑓) = 𝜃𝑓 (

𝜕𝑝

𝜕𝑡
+ 𝑢𝑓𝛻𝑝) +

𝜙 − 𝛻 ∙  (𝜃𝑓�̇�𝑓
′′) + �̇� + 𝑆ℎ + �̇�𝐷 + �̇�𝑤  

(14) 

Following the particle movement equation the term 𝛿�̇�𝑝 in the 

fluid continuity equation can be calculated in (15), where 
𝑑𝑚𝑝

𝑑𝑡
 

is the rate of change of the particle mass producing gas through 

chemistry and 𝑓 is a function for particle movement, which 

depends on the particle spatial location 𝑥𝑝, velocity 𝑢𝑝, mass 

𝑚𝑝, temperature 𝑇𝑝 and time 𝑡. The particle volume fraction is 

defined in (16), which can also be used for calculating fluid 

volume fraction (𝜃𝑓) as the sum of particle volume fraction 

and fluid volume fraction is one. The particle acceleration is 

calculated using (17), where 𝜌𝑝 is the particle density, 𝐷𝑝 is 

the drag function, 𝜏𝑝 is the particle contact stress and 𝜏𝐷 is the 

particle collision damping time (Snider et al., 2011), (Jacob, 

2023). The drag function selected for the simulations is the 

Wen-Yu/Ergun model, which is a blend of two drag models 

from Wen-Yu and Ergun. The former is more appropriate for 

dilute flows, while the latter works better for dense flows 

(Jacob and Tokheim, 2023). The energy equation for the 

particle lumped heat transfer assumes that the temperature 

within a particle has no spatial gradients, further, there is no 

heat release from chemical reactions inside the particles, and 

any heat released from reactions on the particle surface does 

not significantly affect the surface energy balance shown in 

(18), where 𝐶𝑣 is the particle specific heat capacity, 𝜆𝑓 is the 

fluid thermal conductivity, 𝑁𝑢𝑓−𝑝 represents the Nusselt 

number of heat transfer between particle and fluid and 𝐴𝑠𝑝 is 

the particle surface area (Snider et al., 2011), (Jacob, 2023). 

𝛿�̇�𝑝 = − ∭ 𝑓
𝑑𝑚𝑝

𝑑𝑡
𝑑𝑚𝑝𝑑𝑢𝑝𝑑𝑇𝑝  (15) 

𝜃𝑝 = − ∭ 𝑓
𝑚𝑝

𝜌𝑝
𝑑𝑚𝑝𝑑𝑢𝑝𝑑𝑇𝑝  (16) 

𝑑𝑢𝑝

𝑑𝑝
= 𝐷𝑝(𝑢𝑓 − 𝑢𝑝) −

1

𝜌𝑝
∇𝑝 −

1

𝜃𝑝𝜌𝑝
∇𝜏𝑝 + 𝑔 +

𝑢𝑝̅̅ ̅̅ −𝑢𝑝

𝜏𝐷
  (17) 

𝐶𝑣 
𝑑𝑇𝑝

𝑑𝑡
=

1

𝑚𝑝

𝜆𝑓𝑁𝑢𝑓−𝑝

2𝑟𝑝
𝐴𝑠𝑝(𝑇𝑓 − 𝑇𝑝)   (18) 

Considering the heat transfer between fluid and particles, in 

CPFD simulation the heat transfer coefficient between the two 

phases can be calculated in (19) Where Re and Pr are the 

Reynolds and Prandtl number, respectively, 𝑘𝑓 is the fluid 

thermal conductivity and 𝑑𝑝 is the particle diameter. 

ℎ𝑝 = (0.37𝑅𝑒0.6 Pr
0.33

+ 0.1)
𝑘𝑓

𝑑𝑝
  

(19) 

The heat transfer between the fluid and the wall assuming 

isothermal wall can be calculated in (20) Where ℎ𝑓𝑤 shows the 

heat transfer coefficient between fluid and wall, ℎ𝑙 is the lean 

gas phase heat transfer coefficient and ℎ𝑑 represents the dense 

particle phase heat transfer coefficient. It is noted that 𝑓𝑑, 

which shows the fraction of contact time by the dense particle 

phase, depends on the particle volume fraction at the wall, θp, 
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and the close pack value fraction, θcp. (Barracuda-Virtual-

Reactor, 2022). 

ℎ𝑓𝑤 = ℎ𝑙 + 𝑓𝑑ℎ𝑑  (20) 

The radiation heat transfer from hot walls to the particles, 

which is calculated using “near wall model”, is shown in (21), 

(22), where 𝑇𝑤 and 𝑇𝑝 are the temperature of the wall and the 

particle, respectively. 𝜎 is the Stefan-Boltzmann constant, 𝜀𝑤𝑝 

is the (volume averaged) particle emissivity, 𝐹𝑤𝑝 represents the 

wall-particle view factor and 𝐴𝑤 is the wall area (Barracuda-

Virtual-Reactor, 2022). 

𝑞𝑤𝑝 = 𝐴𝑤𝐹𝑤𝑝𝜀𝑤𝑝𝜎(𝑇𝑤
4 − 𝑇𝑝

4)   (21) 

𝜀𝑤𝑝 = (
1

𝜀𝑝
+

1

𝜀𝑤
− 1)

−1

  
(22) 

The only reaction in this reactor is the CaCO3 decomposition 

(𝐶𝑎𝐶𝑂3 → 𝐶𝑎𝑂 + 𝐶𝑂2). Equations (23) to (25) show the 

reaction kinetics. In (23), 
𝑑𝑚𝑗

𝑑𝑡
 represents the rate of 

decomposition or formation of each component 𝑗 within the 

meal, 𝑀𝑗 denotes the molecular mass of component 𝑗, while 𝜗𝑗 

signifies the stoichiometric coefficient related to the 

calcination reaction. 𝑝𝐶𝑂2
stands for the partial pressure of CO2 

present in the calciner, Asp represents the surface area of the 

meal particles, and Aeff denotes the excess area fraction, 

accounting for voids present within the particles. kD is the rate 

kinetics and 𝑝𝑒𝑞  is the equilibrium pressure (Mikulčić et al., 

2012).  

𝑑𝑚𝑗

𝑑𝑡
= 𝑀𝑗𝜗𝑗𝑘𝐷(𝑝𝑒𝑞 − 𝑝𝐶𝑂2

)𝐴𝑠𝑝𝐴𝑒𝑓𝑓  (23) 

𝑘𝐷 = 1.22 × 10−5 exp (−
4026

𝑇𝑝
)      (24) 

𝑝𝑒𝑞 = 4.192 × 1012 exp (−
20474

𝑇𝑝
)      (25) 

 

3. SYSTEM DESCRIPTION

The designed FB reactor, which has a bottom cross section

area of 0.286 m² and a total height of 1.880 m, is shown in

Fig. 2. This geometry corresponds to the ‘Electrically heated

calciner’ shown in Fig. 1. The top cross section is

cylindrical, and a transition piece connects these two sections,

as shown in Fig. 2. Based on the design calculations the

number of required electrically heated cylinders is 17, and

each cylinder has a length of 0.65 m. The cylinders are

arranged as shown in Fig. 2, and the bed height before

expansion is about the same as the heigh level of the upper

cylinder row (0.61 m). Raw meal is injected via rectangular

inlets at the reactor sidewalls, below the first row of the hot

cylinders.

The designed electrified calciner has two main sections. In the

dense mixing section, at the bottom, fine raw meal particles are

mixed with coarse CaO particles. The latter are easily fluidized

and also act as a thermal reservoir for efficient heat transfer to

the fine meal particles. The hot cylinders, which are

electrically heated, heat up both the coarse particles and the 

raw meal. The fine particles are calcined mainly in this dense 

section of the FB.  

The CO2 resulting from the calcination and the injected 

fluidization gas is meant to entrain the calcined meal but leave 

the coarse particles in the dense bed. Hence, this upper dilute 

section is called the segregation section. 

 

Fig. 2. The designed reactor geometry.

4. MODELLING AND SIMULATION

The designed reactor is modeled and investigated using the

commercial software Barracuda, version 21.1.1.

The geometry of the modeled reactor is shown in Fig. 2. The

simulation is done in 3D and is dynamic (time dependent). It

includes flow particle interactions, CaCO3 decomposition and

heat transfer between fluid and particles, between wall and

particles and between fluid and wall.

A uniform grid was made in Barracuda as uniform cells will

help reaching a stable and efficient simulation (Barracuda-

Virtual-Reactor, 2022).

As a grid independence test, the pressure drop in the reactor

was compared for four different meshes, having 54000,

130680, 192510 and 250767 cells, respectively. The last three

meshes have less than 0.46 % difference in the result. The

mesh with 192510 cells was finally selected as it should be fine

enough for ensuring accuracy and coarse enough for not

requiring too much calculation time. The final mesh is shown

in Fig. 3. The design basis values are listed in Table 1. The

particle size distributions of the coarse and fine particles are

shown in Fig. 4.
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0.77 - 

(a) 3D mesh (b) Mesh in the mid plane

Fig. 3. Mesh of the reactor (a) 3-dimensional, (b) The mid plane.

Table 1: Design basis values

Parameter Description Value Unit

𝑤𝐶𝑎𝐶𝑂3
 Weight fraction of

CaCO3 in the raw meal

𝜂 Degree of calcination 0.94 - 

𝑇𝑖𝑛,𝐶𝑂2
 Inlet temperature of 

fluidization gas 

920 °C 

𝑇𝑐𝑜𝑎𝑟𝑠𝑒 Initial temperature of 

coarse particle 

920 °C 

�̇� Electrical energy input 100 kW 

𝑈 Overall heat transfer 

coefficient 

0.3 kJ/(m²·

K) 

𝐷𝑐𝑦𝑙  Cylinder diameter 0.055 m 

𝐷𝑡𝑜𝑝 Diameter at the reactor 

exit 

0.170 m 

𝑢𝑜𝑢𝑡 Required entrainment 

velocity 

1.7 m/s 

𝜌𝑐𝑜𝑎𝑟𝑠𝑒  Envelope density of 

coarse particles 

1600 kg/m³ 

𝜌𝑟𝑚 Envelope density of 

raw meal 

2700 kg/m³ 

 

 
Fig. 4. Particle size distribution of coarse and fine particles.

4.1 Simulation setup

The initial timestep was set to 0.001 s. However, to maintain

the accuracy, stability and calculation speed, the simulator

checks the Courant number to stay in the preferred range

(0.8 < 𝐶𝐹𝐿 < 1.5), and it adjusts the time step if needed

(Barracuda-Virtual-Reactor, 2022). The simulation data was

saved each 0.1 s.

To solve the fluid governing equations, an LES model was

selected as the turbulence model. The conversion criteria were

set to10-6 for the pressure and energy calculations, 10-7 for the

volume and velocity and 10-9 the radiation. These values were

suggested in Barracuda (Barracuda-Virtual-Reactor, 2022).

4.2 Boundary conditions and case definitions

Seven different cases were defined, see Table 2. In all cases,

the pressure at the outlet was set to 1 atm, a meal feed rate of

169 kg/h was applied, and the fluidization gas temperature was

set to 920 °C. The initial temperature was set to 920 °C for

both fluid and coarse particles in all cases. The initial height of

the bed (before expansion) was 0.61 m.

Table 2. Case definitions

Case 𝑻𝒊𝒏,𝒓𝒎 [°𝐂] 𝑻𝒄𝒚𝒍 [°C] 𝒖𝑭 [m/s]

1 20 1050 0.3

2 20 1150 0.3

3 720 1150 0.3

4 850 1050 0.3

5 850 1100 0.3

6 850 1100 0.4

7 850 1100 0.8

 

4.3 Calcination degree, particle entrainment and heat transfer 

coefficient 

The calcination degree, the fine particle entrainment, the 

coarse particle entrainment, and the heat overall heat transfer 

coefficient are four important factors in the evaluation of the 

FB performance.  

To calculate the calcination degree, a flux plane is defined at 

the outlet of the reactor, and the fluid mass flow rate exiting 

the reactor (�̇�𝐶𝑂2,𝑜𝑢𝑡) is found from the simulation results. 

This amount includes both the fluidization CO2 (�̇�𝐶𝑂2,𝑖𝑛) and 

the CO2 due to reaction. From design calculations it is known 

how much CO2 is injected and how much CO2 should be 

produced (�̇�𝐶𝑂2,𝑝𝑟𝑜𝑑,𝑑𝑒𝑠𝑖𝑔𝑛). So, the calculation of calcination 

degree is as follows: 

𝜂𝑐𝑎𝑙 =
�̇�𝐶𝑂2,𝑜𝑢𝑡−�̇�𝐶𝑂2,𝑖𝑛

�̇�𝐶𝑂2,𝑝𝑟𝑜𝑑,𝑑𝑒𝑠𝑖𝑔𝑛
× 100 %  (26) 

The flow rate of fine particles across the exit flux plane can be 

compared with the feed rate of particles. Sometime after 
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feeding is started, a pseudo-steady state should be reached

where there is a balance between the inlet and outlet of fine

particles (compensated for the calcination degree), cf.

equations (4)-(8).

The flow rate of coarse particles across the exit flux plane

should ideally be zero, but some entrainment is likely. The loss

rate must be compensated by a make-up stream of coarse

particles, and this make-up stream should be low compared

with the meal feed rate. A small make-up may be acceptable.

The overall heat transfer coefficient can also be calculated

based on the simulation results. This value can then later be

verified in experiments. The calculation of this coefficient can

be made reusing the energy balance in equations (1)-(3), but

now utilizing that the area is known (from the design

calculations) and treating the 𝑈 value as an unknown.

5. RESULT AND DISCUSSION

All the simulations are continued until a pseudo-steady state

has been reached, i.e., when the outlet mass flow rate remains

steady. The results show that the pseudo-steady state is

reached before 45 seconds for all the simulated cases. The

avoided CO2 emissions, when compared with a coal-fired

cement kiln system, have been calculated based on typical

operational settings for a full-scale system. There is a strong

correlation to calcination degree, and the reduction varies from

44 % to 79 %, the latter being a very significant reduction. An

example is shown in Fig. 5 for Case 2. Also, by injection of

the raw meal in a narrow long injection area below the first

row of hot cylinders a good mixing is reached in all the

simulation cases. As an example, the distribution of injected

raw meal particles just after 3 seconds is shown in Fig. 6 . It

shows that they are well distributed in the reactor. The particle

volume fraction at the 45th second after reaching the pseudo

steady state condition is shown in Fig. 7 which also reveals

a good mixing condition.

The calcination degree in Case 2 can be calculated to 69 %

using equation (23), noting that the mass flow of produced CO2

based on design for cases 1-5 is 57 kg/h.

The effect of different operating conditions on the calcination

degree is shown in Fig. 8. When the feed is not preheated

(20 °C), a big part of the energy supply is spent on heating the

raw meal (Case 1 and 2), and when the heater temperature is

low (1050 °C, as in Case 1) the driving force for heat transfer

is low, so, the calcination degree becomes low. The result is

50 % for Case 1 and 69 % for Case 2. Moreover, when the

calcination degree is very low, such as in Case 1, the fine

particles will not be properly entrained, and the system will not

work.

Using a high cylinder temperature (1150 ℃) and feeding raw

meal preheated to 720 ℃ (Case 3) significantly increases the

calcination degree from 69 % to 90 %, which is a very good

value for stable production.

If the heater temperature is kept at 1050 °C and the meal is

preheated to 850 °C (Case 4), the calcination degree reaches

81 %. However, if instead the heater temperature is increased

to 1150 °C and the meal is preheated to 720 °C (Case 5), the 

calcination degree reaches 90 %, i.e., the same as in Case 3. 

This shows the importance of being able to operate a high 

heater temperature in the bed. 

 
Fig. 5. Gas mass flow rate exiting the reactor (Case 2).

 
Fig. 6. The raw meal distribution after 3 seconds.

Apart from the calcination degree, particle entrainment is of

great importance. The particle entrainment for two cases with

low (Case 2) and high calcination degree (Case 3) is shown in

Figs. 9 and 10, respectively.

In both cases, there is a very low amount of particle

entrainment before 27 s. After this time, it appears that the

reaction has reached steady state as the fluid flow rate exiting

the reactor stopped increasing and only resonating around a

specific value (Fig. 5). Also, the time integrated particle

mass (Fig. 9) is increasing with a constant slope, showing

that pseudo steady conditions is reached.

To check the mass balance and ensure that the pseudo steady

condition is reached, the mass flow rate of raw meal injection

should be equal to sum of the mass flow rate of fine particle

entrainment and the produced CO2 exiting the reactor. The

total amount of fine particles injected into the reactor was 169

kg/h. Calculating from the 28th to the 45th second, the slope of

entrainment of fine particles in Case 2 is 133 kg/h. The fluid

mass flow rate exiting the reactor shows 175 kg/h, where 139

kg/h was the injected gas, so the production rate of CO2 is 36
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kg/h. The sum of 133 and 36 is 169, so there is a balance in the 

mass. Hence, the fine particles are entrained as expected.  

 

Fig. 7. Particle volume fraction in the 45th second (Case 2).

 

 
Fig. 8. Calcination degree and CO2 reduction for cases 1-5.

In Case 2, a cold raw meal (20 ℃) is injected, whereas in Case

3, the meal is preheated (720 ℃) as it would be in an industrial

system. The entrainment of coarse particles is about 0.9 % of

the meal feed rate in Case 2, and about 2.4 % in Case 3. The

entrainment of coarse particles is higher in the latter case due

to the higher calcination degree and thereby a higher flow rate

gas leaving the reactor. Anyway, both values are quite low,

indicating an acceptable reactor design.

The fluidization velocity has a significant effect on the particle

residence time in the bed and the entrainment of particles.

Figure 11 shows that increasing the fluidization velocity from

0.3 m/s to 0.4 m/s reduces the calcination degree from 90 % to

80 %. The reason might be the residence time of the particles

in the bed, which is reduced from 24.5 s to 20 s.

Increasing the velocity to 0.8 m/s gives a calcination degree of

only 56 % and the residence time is only 5 s. However, this is

not a stable value as the coarse particles are entrained from the

bed, as shown in Figure 12. The bed will be emptied of coarse 

particles in less than an hour, so operating at such a high 

velocity is not feasible. 

 
Fig. 9. Time integrated particle entrainment in Case 2. Species 1 is 

fine particles and species 2 is coarse particles.

 

 
Fig. 10. Time integrated particle entrainment in Case 3. Species 1 

is fine particles and species 2 is coarse particles.

 

 
Fig. 11. The effect of fluidization velocity on calcination degree

and particle residence time (Cases 5, 6 and 7).
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Fig. 12. Time integrated particle entrainment at a fluidization

velocity of 0.8 m/s.

6. CONCLUSIONS

The CPFD results indicate that keeping the fluidization

velocity constant but increasing the temperature of hot

cylinders in the bed and or preheating the meal before injection

can significantly increase the calcination degree. Moreover,

keeping the temperatures constant but changing the

fluidization velocity can significantly affect the calcination

degree and the particle entrainment. Increasing the fluidization

velocity to 0.8 m/s would give entrainment of all particles,

whereas a fluidization velocity of 0.3 m/s works well for the

designed reactor. The entrainment of coarse particles is in the

range 1-2 % of the meal feed rate, which can be seen as an

acceptable value for large-scale production. A high calcination

degree of 90 % was reached when the meal was preheated,

whereas no meal preheating gave a calcination degree of only

50%, which is due to more of the supplied energy being spent

on heating the meal. At 90 % calcination, the resulting CO2

reduction, compared to a coal-fired kiln system, is 79 %. The

average residence time of the fine particles in the dense bed

section after reaching the pseudo steady state condition was

found to be in the range 24-26 s in five different cases. There

was proper fluidization and good mixing of fine and coarse

particles in all cases. All in all, calcination of raw meal in the

designed electrified fluidized bed calciner appears to be

feasible when the gas velocity in the reactor is kept within the

specified operational limits.
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Abstract: Oil and gas will remain an important source of energy for years and it is crucial to improve oil 

recovery with less carbon footprint to meet the future energy demands. Carbon capture utilization and 

storage offers a potential solution to mitigate the effects of anthropogenic CO2 and to reduce the direct CO2 

emissions from stationary sources into the atmosphere. The captured CO2 can be utilized to enhanced oil 

recovery (EOR) and is injected into the depleted oil fields or saline aquifers, or into the oil fields for storage 

and/or EOR. However, the injected CO2 can be reproduced without contributing to EOR. This is due to the 

breakthrough of CO2 into the well. Also, the corrosive mixture of CO2 and water can be produced from the 

production well. This may cause damages to the pipeline and process equipment on the platform. 

Autonomous inflow control valves (AICVs) can mitigate these problems. They may reduce or stop the 

reproduction of CO2 from the zones with CO2 breakthrough and reduce the production of mixture of CO2 

and water. The main objective of this study is modelling and simulation of oil production in a heterogenous 

reservoir using CO2-EOR in combination with AICVs. The simulation models are developed using an 

industry standard software. The outcome of numerical simulations is analyzed to study the effect of various 

parameters on oil recovery. In addition, the impact of AICVs on EOR is assessed against perforated casing 

completion (without AICV). The results demonstrate that oil recovery factor, water cut, and cumulative gas 

production are better in the wells completed with AICVs than perforated casing completion. This will result 

into both increased oil production and a better CO2 storage potential. 

Keywords: CO2-EOR, Carbon capture utilization and storage, Autonomous inflow control valve, 

Advanced wells, Miscible injection, WAG

1. INTRODUCTION 

The global energy crisis has led to a movement towards the 

development of clean energy technologies to ensure energy 

security. The oil and gas industry accounts for more than 50% 

of the global energy supply with oil holding approximately 

one-third of the global energy supply (Supply – Key World 

Energy Statistics 2021 – Analysis, n.d.) According to the 

World Energy Outlook 2023 (World Energy Outlook 2023 – 

Analysis, n.d.) published by the International Energy Agency 

(IEA), the demand for oil is estimated to reach its peak in near 

future. In conjunction with growing energy demand, the 

carbon dioxide (CO2) emission from oil production is 

escalating. Thus, it is essential to improve the production of 

oil, simultaneously reducing the carbon footprint. In this 

prospect, CO2 Enhanced Oil Recovery (EOR) has emerged as 

the prospective solution to support Carbon Capture, 

Utilization, and Storage (CCUS) by ensuring permanent 

storage of CO2 in geological formation while offering 

commercial opportunities to oil industries.  

CO2 EOR is the process of injecting CO2 into the depleted oil 

reservoirs to improve oil recovery. It is a proven method and 

has been in commercial practice for several decades. Based on 

the miscibility of injected CO2 with oil at reservoir conditions, 

the process is divided into miscible and immiscible. In 

miscible flooding, the CO2 is injected at operating pressure 

above Minimum Miscibility Pressure (MMP). MMP is the 

minimum pressure necessary for CO2 to be miscible in the oil 

at reservoir conditions. The injection of CO2 is carried out at 

operating pressure below MMP in immiscible flooding. 

Miscible flooding has higher efficiency than immiscible 

flooding due to greater sweep efficiencies. The CO2 flooding 

process often faces the challenges of viscous fingering, 

channeling, and gravity override; therefore, the water is 

injected alternating with gas referred to as the Water 

Alternating Gas (WAG) process. The injection of water 

reduces the problem associated with gas flooding and assists 

in maintaining reservoir pressure above MMP (A. Khan et al., 

2021). Even though the miscible CO2 WAG process is very 

effective in recovering residual oil, the injected CO2 can break 

through into the production well without affecting in EOR 

process, and the corrosive mixture of CO2 and water can 

damage the production facility. Often these problems lead to 

the permanent shutting down of the reservoir.  

By utilizing advanced wells in combination with Flow Control 

Devices (FCDs), the performance of CO2 EOR processes can 

significantly be improved. The FCDs like Autonomous Inflow 

Control Valves (AICVs) have the potential to solve the issues 

of early breakthroughs, production of unwanted fluids, gas and 

water conning, and non-uniform pressure distribution in 

horizontal wells. Therefore, the implementation of AICVs in 
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CO2 WAG EOR, can enhance the oil recovery, and reduce the 

cost associated with handling unwanted fluids. 

The objective of this paper is to study the performance of 

AICVs integrated in the reservoir subjected to the miscible 

WAG EOR utilizing CO2. This aim is realized by 

implementing and analyzing the benefits and constraints of 

AICVs against the standard well perforations through 

numerical simulations for various WAG operating parameters. 

The experimental data presented by (Taghavi et al., 2022) is 

utilized to numerically simulate the functional behavior of 

AICVs in CMG STARS simulator.  

2. CO2 ENHANCED OIL RECOVERY 

Enhanced oil recovery with the injection of CO2 has played 

significant role in the tertiary recovery of residual oil since its 

first pilot project at Mead Strawn Field in 1964 (Holm and 

O’Brien, 1971). The idea was patented by Whorton 

Brownscombe in 1952 (Whorton et al., 1952) and the method 

was successfully implemented in commercial project at the 

Kelly-Snyder Field in 1972. 

The CO2 EOR is classified primarily into two types of miscible 

and immiscible, based on the solubility of injected CO2 in the 

reservoir oil. The reservoir conditions, composition of injected 

gas, and interaction of CO2 with reservoir fluid are the 

parameters that determine whether the CO2 EOR is miscible or 

immiscible. The miscible and immiscible processes differ in 

the mechanism and subsequently, in the recovery factor 

(Haynes and Alston, 1990).  

2.1 Miscible CO2 EOR 

The miscibility criterion is attained at the reservoir pressure 

higher than MMP. The MMP is determined based on the 

temperature and composition of the oil in the reservoir 

(Haynes and Alston, 1990). At supercritical condition, CO2 

possesses the density close to liquid phase (0.6 – 0.8 g/cm3) 

while viscosity remains low close to gas viscosity. The 

supercritical CO2 dissolves into oil causing oil to swell and a 

reduction in the viscosity thereby improving the mobility of oil 

(Mansour et al., 2019).  

Miscibility in the reservoir is achieved through two processes 

of First Contact Miscibility (FCM) and Multiple Contact 

Miscibility (MCM). In FCM, the injected CO2 mixes with oil 

in reservoir in different proportions on first contact to generate 

a homogeneous (single-phase) solution (Clark et al., 2013). In 

MCM process, miscibility is attained through the vaporization 

of hydrocarbons into CO2, and diffusion of CO2 into reservoir 

oil. The former MCM process is termed as vaporizing gas 

drive while later is called condensing gas drive (Green and 

Willhite, 1998). In theory, the miscible CO2 EOR can have 

recovery factor up to 90%.  

Oil swelling, viscosity reduction, mobility ratio reduction, 

interfacial tension reduction, vaporization of light oil, and 

wettability change are the mechanisms contributing towards 

the improvement of oil recovery in miscible CO2 EOR.  

2.2 Miscible CO2 WAG EOR 

Water Alternating Gas (WAG) is an EOR technique that 

involves injection of water and gas in a cyclic manner. The aim 

of WAG technique is to improve oil production utilizing 

microscopic displacement of the oil with injection of gas and 

macroscopic sweep with injection of water simultaneously (J. 

Wang et al., 2008).  

The WAG process is affected by several factors. WAG ratio is 

the volumetric ratio of the injected water to the injected gas at 

reservoir condition (M. Y. Khan and Mandal, 2022). The 

WAG ratio strongly affects the oil recovery. At low WAG 

ratios the system works like a gas flood as the volume of 

injected water is low. This results in a poor vertical sweep 

associated with gas fingering, channeling, and early 

breakthrough. At high WAG ratios, the waterfront travels 

faster and blocks the gas from contacting the oil, consequently 

reducing the microscopic displacement (Belazreg et al., 2019). 

Designing the WAG ratio to its optimum value is important as 

it ensures a higher economic oil recovery by controlling the 

water cut, mobility ratio, and gas production (S. Chen et al., 

2010). The optimum WAG ratio depends on the impacts of 

gravity overrides, reservoir heterogeneity, capacity of 

injection wells, economic constraints, etc. (Rogers and Grigg, 

2000). 

The WAG cycle time refers to the total duration of gas or water 

injection during an injection cycle in the WAG process. The 

cycle time directly affects the economy of EOR projects. 

Zhang et al., (2010) showed that shorter cycle time i.e., higher 

number of cycles, increases the oil production. According to 

(B. Chen and Reynolds, 2016) and (Abdullah and Hasan, 

2021), decreasing cycle time increases the oil recovery. Araujo 

Cavalcante Filho et al., (2020) assumed that the shorter cycle 

time discourages the gravity segregation thus improving the oil 

recovery. The WAG process can be started at the beginning 

(initial WAG) and at the later phase (post WAG) of reservoir 

development. Initial WAG provides better incremental oil 

recovery than post WAG. However, the overall economics of 

the project will be affected. Initial WAG accelerates the oil 

production in both heterogeneous and homogeneous reservoirs 

(M. Y. Khan and Mandal, 2022). 

The distance between injector and producer wells is termed as 

well spacing. According to (Christensen et al., 2001), well 

spacing directly affects the sweep efficiency and average 

reservoir pressure in the WAG process. The gravity 

segregation dominates if the well spacing is high causing a 

reduction in oil recovery. While, lower well spacing enhances 

the response time of WAG process. However, due to the short 

circuiting of injected gas, the oil recovery reduces.  

The heterogeneity and stratification strongly affect the sweep 

patterns. Highly porous and permeable rocks provide better 

sweep efficiency resulting in improved oil recovery (Li et al., 

2015).   

The CO2 WAG EOR involves the process of injecting CO2 and 

water alternately. In the miscible CO2 WAG EOR, CO2 is 
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injected in the reservoir when the pressure is above MMP (Dai 

et al., 2014) as depicted in Fig. 1.   

 
Fig. 1. Schematic of miscible CO2 WAG EOR. 

According to (Han and Gu, 2014), the miscibility of CO2 with 

light oil is obtained at low MMP, at the same time, the injected 

water maintains the pressure above MMP, therefore CO2 

WAG has technical benefits. Skauge and Stensen (2003), in 

their review of 72 fields using WAG with hydrocarbon or non-

hydrocarbon gases, reported that the miscible CO2 WAG had 

highest average improved oil recovery of 10% of original oil 

in place (OOIP). 

In the experiment conducted by (Yan et al., 2017), 

supercritical CO2 played an important role and the authors 

found that the miscible CO2 WAG injection should improve 

the oil production better than either CO2 or water flooding. Lei 

et al., (2016) reported improvement in oil recovery factor 

between 12 -17%, and Q. Wang et al., (2020) found that the 

ultimate oil recovery reached to 73% from 52% due to the 

implementation of CO2 WAG EOR process. 

Miscible CO2 WAG EOR is associated with problems of 

gravity overrides, early breakthrough, and gas channeling. In 

addition, Wang et al., (2020) reported a reduction in the 

permeability of the core due to asphaltene deposition and 

reaction between CO2, rock, and brine (see Fig. 2). The 

formation of weak acid takes place when CO2 and water react 

with each other. The corrosive weak acid is damaging to 

production wells and the process equipment (Halland et al., 

2013).  

 
Fig. 2. Blockage of pore throat due to asphaltene deposition. 

3. ADVANCED WELLS WITH AICV 

Horizontal wells are a significant development to maximize 

the reservoir contact with oil in the reservoir. Increased 

interaction with the reservoir rock enables more effective fluid 

injection and drainage. The introduction of horizontal wells 

greatly raised the recovery factor (Behnoud et al., 2023).  

Long horizontal wells allow exposure to a lager reservoir area. 

However, this may result in a substantial pressure difference 

between the toe and the heel section of the production well. 

This is due to the reduction in pressure caused by friction 

between the fluid travelling through the pipe and the inner pipe 

surface. As a result, there is a higher pressure drop between the 

wellbore and the reservoir at the heel than at the toe. Thus, the 

heel of the well receives more reservoir fluid flow than other 

regions. This phenomenon is called heel to toe effect 

(Mahmood et al., 2016). The difference of drawdown between 

the heel and the toe results in early breakthrough at the heel of 

the reservoir. The breakthrough is also affected by the 

heterogeneity of the reservoir. The considerable pressure 

differences along the wellbore increases the likelihood of early 

gas and water breakthrough, lowering the recovery efficiency. 

Innovative solutions, such as the Autonomous Inflow Control 

Valve (AICV) technology, are required to address the 

challenges caused by early gas and /or water breakthrough.  

3.1 Role of AICVs in advanced wells 

AICVs are the flow control devices that work autonomously 

to restrict the flow of gas and water to the production wells. 

The valve distinguishes between fluids based on their viscosity 

and density. An AICV is shown in Fig. 3 (Ismail et al., 2021). 

 
Fig. 3. View of an AICV. 

AICVs are devices capable of preventing flow of unwanted 

fluids like gas and water, through annulus into the production 

wells. When gas or water flows into the production well, 

AICVs automatically shut off in the breakthrough zones, 

avoiding unwanted fluids from entering the production well. 

Furthermore, using AICVs eliminates the risks, costs, and 

logistical issues associated with removing, transporting, and 

handling the unwanted fluids (Aakre et al., 2014). 

4. MODELING OF RESERVOIR AND WELLBORE 

The reservoir simulation software CMG 2022.10 general 

release by Computer Modelling Group Ltd. is used for the 

modeling and simulation of CO2 WAG EOR. STARS, a 

reservoir simulator application included in CMG software, has 

been selected to simulate the recovery process. The wellbore 

model in STARS contains a Flexible Wellbore Model 

(FlexWell). FlexWell allows the integration of advanced well 

completions including AICVs and concentric wellbores. Even 
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though, Flexwell is solved independently in the CMG 

software, it is coupled with the STARS simulator. The dataset 

for the STARS simulator is created in the Builder module. The 

data of the reservoir model including porosity, permeability, 

grid distribution, properties of fluid components, rock fluid 

properties, and well model are obtained from (Taghavi et al., 

2023). The detailed descriptions of the reservoir and well 

models are presented in the following subsections. 

4.1 Construction of reservoir model in CMG  

A heterogeneous reservoir with a depth of 181 ft in k-direction 

(vertical) is considered for the simulation. The reservoir is 

divided into 9375 grid blocks with 25*25*15 grid blocks in i, 

j, and k-directions respectively. The size of each grid block in 

i and j-directions is 130 ft while the grid blocks along the k-

direction have variable thicknesses ranging from 4 to 33 ft. The 

porosity variation in the reservoir is between 0.234 and 0.317. 

The horizontal permeability along i and j-directions, ranges 

from 0 to 2588 mD, while permeability in the vertical (k) 

direction is half of the horizontal permeability varies from 0 to 

1294 mD. The distribution of permeability along the 

horizontal and vertical directions are presented in Figs. 4 and 

5, respectively. The initial pressure and temperature of the 

reservoir are 4200 psi and 186 0F, respectively.  

 

 
Fig. 4. Variation of horizontal permeability along the wells (i-j 

plane). 

 
Fig. 5. 3D view of the reservoir with distribution of vertical 

permeability. 

4.2 Description of well model 

The well model consists of approximately 2210 ft long three 

horizontal wells placed along j-direction. Two producer wells 

are placed on either side of central injector well as shown in 

Fig. 6. The producers and injector wells are placed at the same 

height in the region with higher permeabilities. The distance 

between the producer wells and injector well is 260 ft. 

 
Fig. 6. Placement of wells in the reservoir. 

The well constraints applied to all producer and injector wells 

are listed in Table 1. 

Table 1. Well constraints 

Wells Function Constraints 

Inj_CO2 CO2 Injector MAX BHP 5000 psi 

Variable based on WAG ratio 

Inj_Water Water 

Injector 

MAX BHP 5000 psi 

Variable based on WAG ratio 

Prod-01 Producer MIN BHP 700 psi 

MAX STL 2500 bbl/day 

Prod-01-

Tubing 

Producer MIN BHP 500 psi 

MAX STL 2500 bbl/day 

Prod-02-

Tubing 

Producer MIN BHP 500 psi 

MAX STL 2500 bbl/day 

Prod-02 Producer MIN BHP 700PSI 

MAX STL 2500 bbl/day 

To analyse the performance of AICVs, the producer wells are 

completed with two different settings. In the first completion 

setting, both producer wells have standard perforations i.e., 

without any flow control devices. In the second setting, the 

producer wells are completed with AICVs. In both cases, the 

production takes place from 18 zones and each production 

zone is isolated with packers. Each isolated production zone is 

completed with 12 AICVs in the second completion scenario. 

FlexWells are coupled with FCD tables developed by (Taghavi 

et al., 2023) to simulate the behaviour of AICVs so that, the 

flow of water and pure CO2 gas or supercritical CO2 can be 

restricted.  

The simulations are carried out for eight years starting from 1st 

of January 2023 to 1st of January 2031. The well events for 

injection of CO2 and water are setup to ensure that the injection 

of water and CO2 takes places in the cycle of three months, 

while production wells are operational throughout the 

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.019 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

141



simulation period. The timeline view of the CO2 WAG process 

is presented in Fig. 7.  

 

Fig. 7. Timeline view of the well events. 

5.  RESULTS AND DISCUSSION 

The performance of the WAG process is influenced by various 

parameters. The operational parameters of WAG ratio, well 

spacing, and permeability are selected for performance 

analysis of AICVs against standard well perforations. 

5.1 WAG ratio 

The total volume of water or gas injected in one cycle at a 

WAG ratio of 1:1 is approximately 0.45 hydrocarbon pore 

volume (HCPV). The injection rates of water and CO2 at 

different WAG ratios at standard conditions are presented in 

Table 2. 

Table 2. Injection rates at different WAG ratios 

WAG ratio Water injection 

rate (bbl/day) 

CO2 injection 

rate (ft3/day) 

1:1 1000 2650000 

2:1 2000 2650000 

3:1 3000 2650000 

4:1 4000 2650000 

1:1.5 1000 3980000 

1:2 1000 5310000 

1:3 1000 7950000 

 

Figure 8 to Figure 10 show the difference in oil recovery 

factor, cumulative GOR, and water cut at different WAG ratios 

between wells completed with AICVs and perforated casing. 

The wells completed with AICVs recovered on average 0.2% 

more oil than the perforated casing. The simulation case with 

AICVs has 25 ft3/bbl less cumulative GOR than the case with 

perforated casing at WAG ratio of 1:3.  

 

Fig. 8. Comparison of oil recovery factor between AICVs and 

perforated casing. 

 

Fig. 9. Comparison of cumulative GOR between AICVs and 

perforated casing. 

At the WAG ratio of 4:1, the water cut is 1.5% lower in the 

case of AICVs than perforated casing completion.  

 

 

Fig. 10. Comparison of water cut between AICVs and perforated 

casing. 

The GOR profile of AICVs and perforated casing along the 

well shown in Fig. 11 demonstrates that the GOR values at the 

heel section of the production well completed with perforated 

casing peaking at approximately 3000 ft3/bbl at the third 

production zone however, the GOR values are evenly 

distributed along the well completed with AICVs. 

1:3 1:2 1:1.5 1:1 2:1 3:1 4:1

14

15

16

17

18

WAG ratio

O
il

 R
ec

o
v
er

y
 F

ac
to

r

AICVs Perforated Casing

1:3 1:2 1:1.5 1:1 2:1 3:1 4:1

200

300

400

500

600

700

800

WAG ratioC
u
m

u
la

ti
v
e 

G
O

R
 (

ft
3

/b
b

l)

AICVs Perforated Casing

1:3 1:2 1:1.5 1:1 2:1 3:1 4:1

0

0.05

0.1

0.15

0.2

WAG ratio

W
at

er
 C

u
t 

(b
b

l/
b

b
l)

AICVs Perforated Casing

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.019 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

142



 
Fig. 11. Comparison of GOR profile along the well between AICVs 

and perforated casing 

The water flow rate along the well shown in Fig. 12 illustrates 

that water production rate is significantly high in the heel 

section of the well in perforated casing scenario while the 

AICVs have balanced the water rate along the well. 

 

 
Fig. 12. Comparison of water rate along the well between AICVs 

and perforated casing. 

5.2 Well spacing 

Apart from the original well spacing of 260 ft between 

producer and injector wells, the simulations are conducted for 

all the WAG ratios and both completion settings at well 

spacing of 130 ft and 390 ft. The well distance is changed by 

shifting the producer wells while keeping the injector well at 

the same position. However, the simulation period for these 

cases is reduced to 5 years. 

The plots displaying a comparison of the oil recovery factor 

and water cut of the AICVs and perforated casing completion 

scenarios at different WAG ratios for both well spacing of 130 

ft and 390 ft are presented in Fig. 13 to Fig. 16. The differences 

in the results of AICVs and perforated casing in both well 

spacings are very marginal as in the previous case. 

 

Fig. 13. Oil recovery factor at well spacing of 130 ft. 

 

Fig. 14. Oil recovery factor at well spacing of 390 ft. 

 

Fig. 15. Water cut at well spacing of 130 ft. 

 
Fig. 16. Water cut at well spacing of 390 ft. 
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However, a significant difference for well spacing of 130 ft at 

a WAG ratio of 1:3 is presented in Fig. 17. The peaks in the 

figure indicate the breakthrough of gas in the wells completed 

with perforated casing while AICVs restricted the 

breakthrough of gas.  

 
Fig. 17. Comparison of GOR at reservoir condition. 

5.3 Permeability 

The permeability of the reservoir is changed to twice of its 

original permeability and the simulation cases are developed 

at this changed permeability distribution for both completion 

settings of producer wells at all WAG ratios. 

Figure 18 shows the water cut for both well completion 

scenarios in the reservoir with doubled permeability. The plot 

shows that AICVs are better at resisting inflow of water in 

comparison to perforated casing completion.  

 
Fig. 18. Water cut in the reservoir with doubled permeability. 

The profile plots of GOR and water rate as shown in Figs. 19 

and 20, respectively, indicat that AICVs perform better in 

regulating inflow along the length of the well by mitigating the 

effect of reservoir heterogeneity and heel to toe effect 

associated with horizontal wells. The figures also show that the 

coning effect in the well with perforated casing completion is 

prevalent thus, the water rate is maximum at the heel section.    

 
Fig. 19. GOR along the well in the reservoir with doubled 

permeability. 

 

Fig. 20. Water rate along the well in the reservoir with doubled

permeability.

6. CONCLUSIONS

The performance of AICV in a miscible CO2 WAG EOR

process is investigated through numerical simulations using

the reservoir simulator CMG STARS. The outcome of this

study demonstrates that the oil recovery of the miscible CO2

WAG EOR in the horizontal well can be improved by utilizing

AICVs. AICVs restricts the production of unwanted fluids.

Besides, it is demonstrated that the WAG ratio, well spacing,

and permeability of reservoir influence the oil production

process. In overall, the miscible CO2 WAG EOR method has

significant potential to address the ever-growing energy

demand, at the same time, resolving the problems associated

with the increase of atmospheric CO2. Also, AICVs have

potential to contribute substantially to improve the miscible

CO2 EOR processes.
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Abstract: Injection of CO2 for enhanced oil recovery (CO2-EOR) is used in fields with high amount of residual

oil. CO2-EOR refers to a technology where supercritical CO2 is injected into an oil reservoir to increase the oil

production. CO2-EOR in combination with CO2-storage is an attractive method to increase the oil production

from mature oilfields, and at the same time reduce the carbon footprint from industrial sources. Utilizing

autonomous inflow control valves (AICVs) in CO2-EOR projects contributes to a better distribution of CO2 in the

reservoir, reduction in production of water and CO2 mixture, and thereby increased storage capacity of CO2. The

main objective of this study is modelling and simulation of oil production from an oil reservoir using CO2 water

alternating gas (CO2 WAG) injection in combination with advanced wells that are completed with AICVs.

Furthermore, performance evaluation of the AICV technology and sensitivity analysis of parameters affecting the

WAG process are completed. The results from the simulations indicate that well completion with AICV can

maintain good oil production while the production of water is decreased from 3e+06 m3 to 9.8e+04 m3 which

corresponds to 97% reduction in water production. The sensitivity analysis of the simulation results affirms that

permeability, well placement, and well spacing have impact on productivity in terms of both oil recovery and water

production in the WAG EOR method. The results indicate that permeability increase has a slight increment effect

on oil recovery. The well spacing analysis shows that increasing the distance between the wells will increase the

oil recovery and delay the water breakthrough. Lastly the well placement analysis shows that vertical injection of

miscible CO2 produces more oil than horizontal injection of miscible CO2. AICVs restrict the production of

mixture of CO2 and water, and thereby cause a better distribution of CO2 in the reservoir.

 

Keywords:  Miscible CO2, Enhanced Oil Recovery, Autonomous Inflow Control Valve, Water Alternating Gas, 

Computer Modelling Group, Minimum Miscible Pressure

1. INTRODUCTION

The oil and gas industry has played a pivotal role for the world

energy production for decades. The oil and gas will remain

important sources of energy in the future. Hence, improving

oil recovery with reduced carbon footprint is necessary to meet

the future energy demands. The CO2 water alternating gas

enhanced oil recovery (WAG EOR) is one of the methods used

in the tertiary stage of oil production. WAG is a process of

injecting CO2 in alternating sequence with water into the oil

field formation (Bahagio, 2013).

 

Studies suggest that the injection of CO2 into the oil field  

reservoirs is beneficial for both the oil recovery and the 

greenhouse gas emissions (Safi et al., 2020). One example of 

the application of WAG EOR, is the commercial project at 

Lula offshore oil field, Brazil. Compared with CO2-EOR, the 

CO2-WAG EOR gives improved oil displacement and sweep 

efficiencies (Bahagio, 2013). Norway has technical potential 

for CO2-WAG EOR on the North Sea oil fields. However, one 

problem is that the CO2 injected can be recirculated into the 

producer well leading to poor distribution of CO2 in the 

reservoir and thereby damage the process equipment due to the 

corrosive mixture of CO2 and water (E. K. Halland et al., 

2019). Advanced wells or smart wells are used to avoid the 

problems with recirculation of CO2, thus forcing CO2 to 

distribute over a larger area in the reservoir. Examples of 

advanced well completion technologies are the autonomous 

inflow control valve (AICV) developed by InflowControl AS 

and the passive inflow control device (ICD) (Aakre et al., 

2018). Restricting CO2 recirculated using AICV may 

potentially lead to higher drawdown in high-oil saturation 

zones. There is also a broader contact between CO2 and the 

residual oil in the reservoir, all of which will boost oil 

production and recovery. CO2-WAG can be either miscible or 

immiscible depending on the minimum miscibility pressure, 

however this study will solely investigate the miscible process. 

The producer and injector wells can either be vertical or 

horizontal. The CO2-WAG performance depends on well 

spacing, well placing, CO2 and water injection rates, 

permeability, and porosity differences in the reservoir 

(Taghavi et al., 2023). 

 

This study aims at modelling and simulation of enhanced oil 

recovery for miscible CO2 injection with advanced wells 

completed with AICV. Further performance evaluation of the 

AICV technology and sensitivity analysis of parameters 

affecting the WAG process are completed. The Miscible CO2-

WAG with advanced wells model was developed using the 

commercial software Computer Modelling Group (CMG). In 

this study, different available modules such as Builder, 

FlexWell, and STARS are used to achieve the modelling and 

simulations. The collected data from different simulation cases 

are used to perform sensitivity analysis on parameters that 

impact the EOR process. 
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2. CO2 EOR 

2.1 EOR method of CO2 water alternating gas (WAG) 

CO2-WAG is an improvement of the gas injection methods. 

CO2, when dissolved in oil, reduces the oil viscosity which 

helps to increase the mobility of the oil hence improving the 

oil recovery. The CO2 injection alone often results in low 

sweep efficiency because of unstable displacement due to 

gravity segregation and viscous fingering caused by early gas 

breakthrough. (Cherian et al., 2012) 

Figure 1 illustrates the principle of the CO2-WAG EOR 

process and shows how the miscibility between CO2 and oil 

happens in the miscible zones after flooding. 

 

Fig. 1. The diagram of CO2 WAG process (E. Halland et al., 2012).

When CO2 EOR takes place at a pressure equal to or higher

than the minimum miscibility pressure (MMP) it is called

miscible CO2 EOR, while CO2 EOR at pressures lower than

MMP is called immiscible CO2 EOR. The advantage of the

miscible CO2 EOR process is that the oil volume is increased,

and the oil viscosity is lowered causing oil to travel easier

towards the producing wells (Chathurangani and Halvorsen,

2015). The MMP is the reservoir pressure above which CO2

and oil can combine into a single-phase fluid.

 

CO2-WAG can help to control the mobility of the gas because 

the water will limit fractional flow of gas which will lead to 

improved sweep efficiency as well as displacement efficiency. 

The parameters which can affect the result of CO2-WAG are 

injection rates and WAG cycle length for each injection phases 

(Bahagio, 2013). 

 

A problem with CO2-WAG is that CO2 dissolved in water can 

form corrosive acid with calcite component presence in the 

rock (Oomole and Osoba, 1983):  

𝐻2𝑂 + 𝐶𝑂2 + 𝐶𝑎𝐶𝑂3 → 𝐶𝑎(𝐻𝐶𝑂3)2 

This phenomenon can lead to economic challenges after 

breakthrough if this corrosive mixture reaches the producer 

wells. 

2.2 Advanced wells and their impact on increased EOR 

Advanced well completion might be necessary in maximizing 

the efficiency of the EOR process in order to avoid the 

common challenge of early CO2 and water breakthrough. 

Presently in the oil and gas industry advanced wells can be 

achieved with flow control devices, annular flow isolation, and 

sand control screens (Moradi et al., 2022). 

 

The ICD (Fig. 2) is an example of a passive flow control device 

with no moving parts inside. ICD was innovated to solve the 

phenomena of the heel-to-toe effect along the well because it 

can provide additional pressure drop, and by that balance the 

pressure variation from the toe to the heel along the well. The 

installation of ICD in the wells can delay gas and water 

breakthrough in an EOR process, but it cannot restrict the flow 

of unwanted effluents once a breakthrough of these fluids 

occurs (Kais et al., 2016). 

 
Fig. 2. The picture of the nozzle type ICD technology (Kais et al.,

2016).

The AICV (Fig. 3) is an example of a reactive flow control

device.  The AICV responds with a contrary course of action

without direct human control when present in the well. It is a

modern technology with a movable piston which acts after

water breakthrough in EOR. The operating procedure of the

AICV device is governed by viscosity and density differences

which determines the pressure drop for different reservoir

fluids (Aakre et al., 2018).

 
Fig. 3. The picture of the modern AICV technology (InflowControl,

2024).

If high viscous fluids like oil is around the valve, the piston

acts downwards which opens the valve.  If low viscous fluids

like CO2 or water is around the valve, the piston acts upwards

which closes the valve.

 

Taghavi et al. (2023) compared the ICD with the AICV 

performance. With both devices having the same oil flow rate 

at a specific differential pressure, the results from the study 

showed that there is a significant gas and water reduction by 

using AICV under the same conditions, see Fig. 4.  
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Fig. 4. The performance curves of pressure and volumetric flow rate

for AICV and ICD (Taghavi et al., 2023).

3. MODEL DEVELOPMENT ON CMG

3.1 Reservoir fluid components and characterization

The WinProp package is capable of fluid characterization,

matching experimental data, and constructing phase diagrams.

WinProp uses equation of states such as Peng-Robinson

combined with data obtained from laboratory analysis of

reservoir samples. However, the aim of the created fluid model

in this work is to calculate the MMP required to achieve

miscibility between oil and CO2 injected. It was determined to

be 15284 kPa at reservoir temperature of 85.5°C. Figure 5

shows the pressure-temperature phase envelope of CO2

generated by WinProp. The two-phase boundary is the green

curve, and the critical temperature and pressure are

approximately 6500kPa and 425°C.

 
Fig. 5. The P-T phase envelope of CO2 created in WinProp.

3.2 The reservoir

One homogeneous reservoir and one heterogeneous reservoir

were built in builder suite package with cartesian plane. For

both reservoirs, there are ten grids in the I-J direction, and

fifteen in the K direction. The length, width and height

dimensions of the reservoir are 300 m, 500 m, and 150 m,

respectively. The top of the reservoir is at a depth of 1000 m

and the bottom of the reservoir is at depth 1150 m. Most

properties of the reservoirs were left in the original preset 

initial values specified by CMG, however both reservoirs 

porosity was modified to 0.35. The initial reservoir 

temperature is constant at 85.5°C. The reference pressure is 

20684.3 kPa, which is much higher than the MMP, to ensure 

the process remains a miscible CO2 process. The surface 

pressure condition was 101 kPa and the surface temperature 

condition was 16.85°C. 

 

Figure 6 shows the pictorial view of the homogeneous 

reservoir (left-hand-side) and the heterogeneous reservoir 

(right-hand-side). The homogeneous reservoir permeability is 

constant all through the layers at 2500 mD. The heterogeneous 

reservoir permeability varies from 2500 mD (blue color) to 

10000 mD (red color). The highest permeability region for the 

heterogeneous reservoir was placed at the heel section of the 

producer wells. 

LHS                                                 RHS

Fig. 6. The 3-D view of the homogeneous (LHS) and

heterogeneous reservoir (RHS).

The wettability state of the rock is water wet. The relative

permeability curves datasets were calculated based on the

Stone II model for two-phase. The oil is immobile below 0.25

saturation, and the water maximum saturation is 0.78.

3.3 The simulation cases

The developed simulation cases were based on the

homogeneous reservoir labelled Case-A and the

heterogeneous reservoir labelled Case-B. The simulation cases

were investigated with different injection methods (water-

EOR and WAG-EOR), different wellbore placement

(horizontal and vertical wells), and different wellbore

completion (with AICV and without AICV). Additional

simulations were performed in order to investigate the effect

of parameters such as well spacing and permeability.

 

The timeline of the simulated cases was for 10 years from the 

period of 2024-01-01 to 2034-01-01. The base case is defined 

as the water injection mode with two producer wells open for 

continuous production all year, and one injector well 

perforated in the middle between the two producer wells. The 

injector well is open all year during these periods to inject 

water into the reservoirs. The WAG-EOR case involves the 

same wells and the same perforation location as the base case, 

but the injection cycle period was modified to injection period 

for both water and CO2. Figure 7 shows an illustration of the 

timeline for the water injected alternately with CO2 with all 

year continuous production. The annulus of the producer well 

is shut, but the tubing is open. 

J 

I

 

< 

K 
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Fig. 7. The timeline of the WAG cycle periods.

The wall inner and outer diameters were modified to 0.3 m and

0.35 m respectively. Table 1 shows the type of constraint and

the specified values for the simulations. Both the injector well,

the producer well-1 and the producer well-2 which are

installed in the horizontal and vertical perforations have the

same constraints values specified, except STL surface liquid

rate.

 Table 1. The constraint specification for both the injector well

and producer wells

 

Figure 8 shows the picture of the horizontally placement 

producer well-1 from the J-k direction view. 

 

Fig. 8. The J-K direction view of the horizontal producer well-1.

Figure 9 shows the picture of the vertically placement wells

from the I-k direction view of the producer well-1 to the left,

the injector well in the middle, and the producer well-2 to the

right.

 

Fig. 9. The I-K direction view of the vertical placement of the

injector and producer wells.

4. RESULTS AND DISCUSSION

4.1 Comparison of WAG and water injection

Figure 10 shows the field oil rate of the two producer wells at

standard condition. The thick green line represents the oil rate

for water injection, and the dash green line represents Case-A-

1 which is the WAG.

 

Fig. 10. The field oil rate of the two producer wells at standard

condition for case-A-1 and case-A5.

The field oil rate in the figure illustrates that both WAG and

water injection can promote oil productivity. The case-A-1 has

an oscillating curve because the highest peaks in the oil

production appear during the CO2 injection period. This is

because if CO2 is well circulated around the reservoir region

of high oil saturation, the mobility of the oil toward the

producer wells increases. 

In year 2034, the cumulative oil production for the WAG is 

2.7e+06 m3, represented with the thin green line in Fig. 11. 

This is approximately 12.5 % more oil than the cumulative oil 

production for water injection (Thick green line in Fig. 11), of 

which the oil cumulative production is 2.4e+06 m3.  

 

Fig. 11. The field cumulative oil of the two producer wells at

standard condition for case-A-1 and case-A-5.

Constraint Type Limit Value 

BHP bottom hole pressure MAX 22000 kPa 

BHP bottom hole pressure MIN 15000 kPa 

STG surface gas rate MAX 50000 m3/day 

STW surface water rate MAX 10000 m3/day 

STL surface liquid rate MAX 840 m3/day 
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Oil saturation is an important parameter to observe when 

comparing WAG and water injection. Figure 12 indicates that 

WAG produces more oil than water injection. In Fig. 12 the 

green color zones in the reservoir are where oil has been 

produced and replaced with water. The scaling shows that the 

red color zone is the high oil saturation zone and has a mole 

fraction of 1 which means oil is the only component present. 

The orange and yellow color indicates two-phase zone of oil 

and water.  

 

Fig. 12. The reservoir oil saturation for the WAG (LHS) and the

water injection (RHS).

4.2 The performance of AICV

Figure 13 shows the graph of the field cumulative oil of the

two producer wells at standard condition. The solid green line

represents Case-A-1 i.e. with AICV completion, and the dash

green line represents Case-A-2 which is without AICV

completion.  From the figure it is seen that the cumulative oil

production without AICV corresponds to around 3.3e+06 m3

for the entire production period, while the cumulative oil

production with AICV corresponds to 2.7e+06 m3.

 

 

Fig. 13. The field cumulative oil of the two producer wells at

standard condition for case-A-1 and case-A-2.

As water can form corrosive mixture with CO2 (Oomole and

Osoba, 1983), the goal is to produce as little water as possible.

This is, among other things, to prevent the corrosive mixture

from entering the top side facilities where it can cause major

damage.  Figure 14 compares the cumulative water production

with and without AICV completion in the wells. The figure

shows that by installing AICVs in the well, the cumulative

water production can be reduced from 3e+06 m3 to 9.8e+04 m3

during the production period, which corresponds to

approximately 97% less water production with AICV.

 

Fig. 14. The field cumulative water of the two producer wells at

standard condition for case-A-1 and case-A-2.

4.2 Comparison of homogeneous and heterogeneous

reservoir

Figure 15 and Figure 16 illustrate that permeability of the

reservoir plays an important role in oil and water production.

In Fig. 15 the heterogeneous reservoir is represented by the

thin green line, while the homogenous reservoir is represented

by the thick green line. The heterogenous reservoir, which has

a higher permeability (10000 mD) around the heel section of

the well has a slightly higher cumulative oil production in the

year 2034 compared to the homogenous reservoir, of which the

oil production has increased from 2.65e+06 m3 to 2.7e+06 m3

respectively.

 

Fig. 15. The field cumulative oil at standard condition for case-A-1

(homogeneous) and case-B-1(heterogeneous).

However, the heterogeneous reservoir produces considerably

less water than the homogenous reservoir.  During the entire

production period the heterogenous reservoir produces

5.2e+04 m3, which is around 50% reduction compared to the

homogeneous reservoir that produces 9.8e+04 m3.

 

Fig. 16. The field cumulative water at standard condition for case A-

1 (homogeneous) and case-B-1(heterogeneous).

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.020 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

150



have a shorter distance from the injector well, as shown in Fig. 

17. 

 

Fig. 17. The modified case-A-2 with less well spacing distances.

It is important to avoid that the producer wells are too close to

the injector well, this is because an early water breakthrough

at the start of the WAG is observed. Possibly because the

injected fluid (water) at the start of every year is produced

directly in the producer well instead of being distributed in the

reservoir. This effect reduces the oil rate, as shown in Fig. 18

where the production drops towards zero at the start of the

years which corresponds to the periods when water was

injected.

 

Fig. 18. The field oil rate for the modified case-A-2 with less well

spacing distance.

At year 2034, the cumulative water production has increased

from 3e+06 m3 (Fig. 14) to 3.5e+06 m3, this is because of

early breakthrough at the beginning of year 2024, see Fig. 19.

 

Fig. 19. The field cumulative water volume for the modified case-A-

2 with less well spacing distance.

4.5 Comparison of horizontal and vertical wells

The impact of well placement on miscible CO2 injection was

investigated by comparing a vertical injector well with vertical

producer wells, to a horizontal injector well with horizontal

producer wells. This comparison was done for cases with

AICV and cases without AICV.

 

The vertical injection (thick green line) of miscible CO2 

injection gives a higher cumulative oil production than the 

horizontal injection (thin green line), producing 3.3e+06 m3 

and 3e+06 m3 respectively, see Fig. 20. 

 

Fig. 20. Cumulative oil production without AICV for the horizontal

case (A-2) and the vertical case (A-4).

The vertical injection (thick blue line) of miscible CO2

injection gives less cumulative water production than the

horizontal injection (thin blue line), producing around 2.7e+06

m3 and 3e+06 m3 respectively, see Fig. 21.

 

Fig. 21. Cumulative water production without AICV for the

horizontal case (A-2) and the vertical case (A-4).

Another important observation is the oil saturation from the

injector for both vertical and horizontal well with time. Figure
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4.2 The impact of well spacing and position on production

 To investigate the impact of well spacing and position on the

oil and water production, the producer wells were modified to



22 illustrates the sweeping of oil because of the miscible CO2 

injection at the end of the production period (year 2034).  

The figure shows that at the end of the production period at 

year 2034, the vertical miscible CO2 injection has better sweep 

of the oil resulting in less oil saturation (light green) compared 

to horizontal miscible CO2 injection. 

 

Fig. 22. The oil saturation at year 2034 of case-A-4 and case-A-1 for

the vertical (LHS) and horizontal (RHS) CO2 injection.

6. CONCLUSIONS

The objective of this study was modelling of the miscible CO2

injection for WAG process and evaluation of the performance

of the AICV including sensitivity analysis of the parameters

affecting the EOR process.

 

The results show that the production wells completed with 

AICVs maintain good oil production while the production of 

water is decreased from 3e+06 m3 to 9.8e+04 m3 which 

corresponds to 97% reduction in water production.  

The sensitivity analysis of the simulation results affirms that 

permeability, well placement, and well spacing have impact on 

productivity in terms of both oil recovery and water production 

in the WAG EOR method. The results indicate that 

permeability increase has a slight increment effect on oil 

recovery and 50% decrease in water production. The well 

spacing analysis shows that increasing the distance between 

the wells will increase the oil recovery and delay the water 

breakthrough. Also, if the wells are too close, recirculation of 

injected water and CO2 in the producer wells occurs at the start 

date. Lastly the well placement analysis shows that vertical 

injection of miscible CO2 produces more oil than horizontal 

injection of miscible CO2. 

 

As future study, it is recommended to investigate the optimum 

perforation location and distance for the CO2 injector from the 

producer well which favors maximum oil recovery, reduced 

operational cost and economic challenges.  
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Abstract: Carbon capture utilization and storage (CCUS) offers a potential solution to mitigate the effects 

of anthropogenic CO2 and to reduce the direct CO2 emissions from stationary sources into the atmosphere. 

The captured CO2 is injected into deep saline-water saturated formations or in depleted oil and gas fields, 

or into the oil fields for storage and/or enhanced oil recovery (EOR). The primary objective of this study is 

to identify and analyze the critical parameters affecting CO2 plume development in the reservoir. 

Understanding the subsurface dynamics of carbon sequestration will facilitate to plan the subsurface 

process better. The simulation models are developed using the commercial software Computer Modelling 

Group, CMG. The plume dynamics that include plume volume and plume geometry over 30 years of 

injection and 170 years of post-injection period is investigated. Additionally, the contribution of different 

trapping mechanisms over the time horizon in the storage process is assessed. Moreover, a sensitivity 

analysis is done for evaluating the impact of variables including porosity, permeability, injection rate, and 

injector bottom hole pressure. The simulation results show that CO2 plume propagates at an increased rate 

during the injection period and continues to disperse at a comparatively reduced rate after the injection 

ends. The horizontal spread of plume is significantly greater than the vertical propagation when the 

horizontal permeability is larger than the vertical. Additionally, the plume volume shows a linear 

relationship with the injected CO2 amount. In terms of storage efficiency, the most prevalent CO2 is free 

phase super critical CO2 that contributes around 80% of the stored CO2 whereas the rest are structurally or 

residually trapped and dissolved CO2. From the sensitivity analysis in a homogenous reservoir, it can be 

concluded that the horizontal permeability is impacting the most (42%) for structural and residual trapping 

of CO2 whereas porosity impacts the most (38%) for dissolution of CO2 contributing to solubility trapping 

mechanism.  

Keywords: CCUS, Plume dynamics, CO2 Storage, CO2 trapping mechanism, Sensitivity 

 

1. INTRODUCTION 

Carbon dioxide (CO2) reduction from the atmosphere has 

become a global attention from last decade which resulted in 

imposing several laws against emitting CO2 in the atmosphere. 

However, CO2 production is inevitable in lot of processes 

which compelled the industries and researchers to draw more 

attention in capturing the produced CO2 and storing them to a 

safe place. In the storage purpose, depleted oil reservoirs or 

aquifers has a good potential to be used for storage of CO2. 

According to a study, there is approximately 139 giga tones of 

CO2 storage potential in worldwide oil reservoirs (Godec et al., 

2011). Geological sequestration of CO2 is presently the most 

viable, and probably the sole, short-to-medium term strategy 

for substantially increasing CO2 sinks and thereby decreasing 

overall carbon emissions into the atmosphere (Bachu, 2008). 

So, CO2 storage in oil reservoirs, coupled with enhanced oil 

recovery (EOR), has gained attention as a strategy for both 

mitigating climate change and improving oil recovery. 

Currently, CO2 storage in geological formations such as oil and 

gas reservoirs and deep saline aquifers is not a new technology. 

The extensive history of natural gas storage in North America 

and Europe and CO2-EOR practices primarily in the U.S 

(Moritis, 2006) provide some evidences of this fact. 

 

Additionally, numerous commercial-scale projects worldwide 

engage in CO2 injection for various purposes, ultimately 

contributing to the mitigation of greenhouse gas emissions, 

such as, in Canada, the Weyburn CO2-EOR project uses CO2 

obtained from coal gasification (Whittaker et al., 2004). In the 

North Sea, the Sleipner project injects CO2 stripped from 

natural gas into the Utsira formation (Torp and Gale, 2003). 

Over in Algeria, the In Salah project pumps CO2 back into an 

aquifer underneath the gas field it came from (Riddiford et al., 

2003) and some examples in Western Canada, show that CO2 

storage is often implemented for economic or regulatory 

reasons, not just for addressing climate change (Bachu, 2008) 

but resulted in the mitigation of diverse impact on climate 

change. 

 

However, the success of CO2 storage is highly dependent on 

the behavior of the CO2 plume within the reservoir, which is 

influenced by reservoir characteristics (Birkholzer et al., 

2015). The study by Luo et. al. (2022)  suggests that studies on 

structural sequestration should take into account all relevant 

factors, and that the capacity of structural sequestration should 

be assessed in light of the characteristics of the caprock, the 

rate of CO2 injection, and the saline aquifer actual geological 
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conditions. Current research in the field of CO2 plume 

evolution and the impact of reservoir parameters on storage 

efficiency emphasizes the complexity and variability of 

geological storage environments. Al-Khdheeawi et al. (2018) 

discusses the effects of heterogeneity, reservoir temperature, 

and wettability on CO2 migration and trapping mechanisms. 

Myshakin et al. (2023) explores the impact of reservoir 

heterogeneity on fluid displacement and volumetric efficiency. 

But these studies underscore the critical role of physical 

reservoir characteristics in determining CO2 storage 

efficiency. Moreover, Zapata et al. (2020) and Luo et al. 

(2022) contribute to this topic by investigating CO2 plume 

dynamics over long-term injection periods and the effects of 

key parameters on gas recovery and storage efficiency, 

respectively. However, there remains a significant gap in 

comprehensive analyses integrating multiple reservoir 

parameters under varied operational conditions, particularly 

understanding the simultaneous effects of the reservoir 

parameters and dynamic injection scenarios on CO2 storage 

efficiency. 

The primary objective of this work is to observe plume 

evolution and analyze the reservoir parameters affecting CO2 

plume, and storage efficiency in the reservoir. These 

parameters include, reservoir permeability, porosity, pressure 

and temperature conditions, and fluid properties as well as the 

injection rate and injection bottom hole pressure. CO2 storage 

model is developed in the commercial software Computer 

Modelling Group, CMG to investigate the CO2 migration after 

a 30-year injection period and 170-year post-injection period. 

Sensitivity analysis is done among corresponding variables to 

understand the impact of different parameters on storage 

capacity. The simulation models are developed using CMG, 

by utilizing its five modules. 

2. CO2 STORAGE IN GEOLOGICAL MEDIA 

Under normal atmospheric conditions, CO2 exists as gas. 

However, when subjected to pressures exceeding 7.39 Mpa 

and temperatures above 31.1°C, reaching what is termed its 

critical point, it transitions into a supercritical fluid state (Zhi 

et al., 2019). In this form, CO2 exhibits properties of both gases 

and liquids, making it ideal for underground storage. It 

becomes as dense as a liquid, which allows it to hold more CO2 

in the pore spaces of rock formations. At the same time, it 

maintains a gas-like viscosity, facilitating its movement 

through the rock layers. Reservoirs suitable for CO2 storage 

are typically found deeper than 1 km, have a thickness of 

around 10500 m, and may extend for hundreds of kilometers 

across (Szulczewski, 2013). At these depths, CO2 is kept in its 

supercritical condition, where it is somewhat lighter (∼700 

kg/m3) than the brine, oil, or any other existing fluids, leading 

it to migrate upwards due to buoyant forces (Verma et al., 

2021). The upward movement of CO2 ceases when it meets the 

caprock, effectively sealing it within the subsurface. 

 

CO2 has an influence on the relative permeability curve. CO2 

injection influences the wettability of the reservoir, causing the 

rock to become somewhat more water-wet, which promotes 

better oil displacement efficiency and optimizes the reservoir 

capacity to trap CO2 effectively (Kułynycz, 2015). This 

process alters the endpoint relative permeabilities as well as 

modifying the shape of the corresponding relative 

permeability curves (Taghavi et al., 2023).  

 

This indicates that CO2 injection reduces the mobility ratio, M, 

between oil and water. Mobility, 𝜆, is characterized as the ratio 

of the endpoint relative permeability, 𝐾𝑟 , to dynamic viscosity, 

μ. 

   𝜆 =
𝐾𝑟

𝜇
      (1) 

As defined by Ahmed (2010), the mobility ratio is the ratio of 

the mobility of the fluid causing displacement, such as 𝜆𝑤 to 

the mobility of the fluid being displaced, such as 𝜆𝑜 where the 

subscripts denote the water for w and oil for o. 

𝑀 =
𝜆𝑤

𝜆𝑜
=

𝑘𝑟𝑤

𝑘𝑟𝑜
∙

𝜇𝑜

𝜇𝑤
               (2) 

Enhancing the water-wetness of the rock decreases the residual 

oil saturation while increasing the irreducible water saturation 

(Taghavi et al., 2023). Consequently, the oil relative 

permeability is increased. Moreover, there is a decrease in oil 

viscosity, collectively leading to a lower mobility ratio (Aakre 

et al., 2018). 

2.1 Geological media 

Potential CO2 storage options include deep saline aquifers, 

operational or depleted oil and gas fields, unmineable deep 

coal beds, and mined salt caverns. According to Saeedi (2012), 

deep saline aquifers have the advantage of extensive capacity 

and wide availability but face the disadvantage of unproven 

storage reliability. Active or depleted oil and gas reservoirs 

offer demonstrated storage security, established infrastructure, 

and enhanced hydrocarbon recovery, yet they are not available 

in all regions and may not be available for immediate use 

(Saeedi, 2012). Unminable coal seams can potentially enhance 

methane recovery but are limited by uncertain storage capacity 

and regional availability. Basalt formations provide a 

permanent trapping mechanism for CO2, although they are 

constrained by slow reaction rates and limited field 

experiences (Saeedi, 2012). CO2 is stored safely without 

risking the contamination of underground resources. 

Historically, they have effectively contained oil and gas under 

high pressure and temperature, thereby reducing the likelihood 

of CO2 leakage over extended periods. Furthermore, these 

abandoned hydrocarbon storage sites can maintain the 

necessary temperature and pressure for CO2 to reach 

supercritical condition (Van Der Meer, 2005). 

2.2 CO2 Trapping Mechanism 

At least six mechanisms exist that can secure CO2 within a 

storage complex over extended duration. Among the most 

recognized are structural trapping, capillary trapping, 

solubility trapping, and mineral trapping. Table 1 presents a 

comparative analysis of the trapping mechanisms. 
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Table 1. Comparison of different trapping mechanism (Ketzer 

et al., 2012; Raza et al., 2015) 

Trapping 

Mechanism 
Description Advantages Considerations 

Structural 

and 

Stratigraphic 

Trapping 

CO2 is 

trapped 

beneath an 

impermeable 

cap rock, 

similar to 

how oil and 

gas are 

trapped in 

petroleum 

fields. 

-Direct and 

immediate 

trapping  

- Utilizes 

existing 

geological 

structures 

- Dependent 

on the 

integrity of 

the cap rock 

- Limited by 

the structure's 

capacity and 

closure. 

 

Capillary 

Trapping 

CO2 

becomes 

immobilized 

as a residual 

phase within 

the pore 

spaces of the 

storage 

medium. 

- Rapid and 

efficient 

entrapment of  

CO2 

- Enhanced 

storage security 

through 

immobilization. 

- Higher 

capillary force 

than buoyant 

force, leading 

to pore-scale 

CO2 bubbles 

- Efficiency 

varies with 

rock 

properties and 

fluid 

characteristics 

- Requires 

sophisticated 

understanding 

of pore space 

interactions 

 

Solubility 

Trapping 

CO2 

dissolves in 

brine, and 

the denser 

CO2-

saturated 

brine sinks 

within the 

storage 

medium. 

- Contributes to 

long-term 

storage stability 

- Reduces risk 

of leakage by 

dissolving CO2 

- Dependent 

on diffusion 

rates and 

storage 

medium 

properties 

- Slower 

process 

compared to 

capillary 

trapping 

 

Mineral 

Trapping 

Dissolved 

CO2 reacts 

with 

minerals in 

the storage 

medium to 

form stable 

carbonate 

minerals. 

- Provides the 

most 

permanent 

form of CO2 

storage.                                                                                                                                                                                                                                                                

- Enhances 

storage security 

by chemically 

binding CO2 

- Slowest 

trapping 

mechanism. 

- Dependent 

on 

geochemical 

conditions and 

mineral 

availability 

3. METHODOLOGY AND SIMULATION SETUP 

CMG (Computer Modelling Group Ltd., 2023) is used for this 

study. Among 13 of its products, GEM, Builder, cEdit, 

CMOST, and Results have been used to simulation setup, 

solving the system and analysis of result. 

3.1 Structural and Petrophysical Modeling of Reservoir 

Initially two reservoirs were modeled for the simulation. One 

is homogenous and the other is heterogenous. Both reservoirs 

are defined within a 3D Cartesian grid, delineating its 

structural and petrophysical attributes essential for CO2 storage 

simulation. The model is structured into a 20×20×24 grid, 

translating into 9600 cells, with a uniform lateral cell 

dimension of 150 meters across both the X- and Y-axes which 

resulted in 3000 m × 3000 m reservoir dimensions. Vertically, 

each cell exhibits a consistent thickness of 8.8 m, summing up 

to a reservoir thickness of approximately 211 m. The reservoir 

top boundary is placed at a depth of 1200 m below the surface, 

establishing the initial conditions for simulation purposes. The 

other properties and initial conditions of the homogenous 

reservoir are shown in Table 2. 

Table 2. Data used in the reservoir model 

Property Values 

Porosity 12% 

Permeability (Layers 1-3) 0 millidarcies (mD) 

Permeability (Horizontal) 1000 millidarcies (mD) 

Permeability (Vertical) 100 millidarcies (mD) 

Initial Reservoir Pressure 11800 kpa 

Initial Reservoir 

Temperature 

70ºC

Compressibility Factor 5.5E-7 1/psi

Water saturation 25%

Reference depth 1200 m

Water-oil contact depth 1300 m

Porosity and permeability data of the grid cells in the

heterogenous reservoir are presented in Fig. 1 which is the 

3D grid view of a heterogenous reservoir.

 
Fig. 1. Heterogenous reservoir showing a) porosity b) vertical

relativity c) horizontal permeability d) water saturation.

The relative permeability data used for the study is presented

in Fig. 2.

3.2 Well (CO2 Injector) Modeling

A well is characterized as an injection well, with the purpose

of injecting a solvent composed entirely of pure CO2. The

operational parameters are governed by constraints

implemented through a continuous repeat command to

maintain stability and control over the injection process. These

constraints are defined as follows: a maximum surface gas

injection rate (STG) of 50,000 m3/day, a maximum allowable

bottom hole pressure (BHP) of 30,000 kPa, an injection period

set to continue for 30 years, and a total simulation period of

200 years. Perforations have been done through three cells

with coordinates (1,1,18), (1,1,19), and (1,1,20).
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Fig. 2. Water-oil relative permeability curve. 

3.3 Simulation Cases 

Two types of reservoirs, homogenous and heterogenous, were 

studied for achieving the objective of this study. Table 3 

presents the parameters used in all case studies done in the 

homogenous reservoir. The other properties will follow the 

base case described until this chapter.  

Table 3. Simulation cases for homogenous reservoir 

Case 

No. 

Injection 

rate 

m3/d 

Permeability 

X axis (mD) 

Permeability 

Y axis (mD) 

Permeability 

Z axis (mD) 

5 50000 1000 1000 100 

6 60000 1000 1000 100 

7 70000 1000 1000 100 

8 50000 1500 1500 50 

9 50000 600 600 600 

10 50000 100 100 100 

In contrast, heterogenous reservoir have less freedom to 

change the parameters as the reservoir was considered as a 

predetermined property as it naturally is. This study, however, 

conducted some simulations by changing injection rate which 

are shown in Table 4.  

Table 4. Simulation cases for heterogenous reservoir 

Case No. Injection rate (m3/d) 

1 50000 

2 60000 

3 70000 

4 80000 

Sensitivity analysis was done with CMOST which performs 

effect estimation by using Design of Experiments (DoE) to 

systematically vary input parameters and run multiple 

simulations. It constructs a response surface to model the 

relationship between inputs and outputs, and conducts 

sensitivity analysis to quantify the impact of each parameter 

on the results (Wang et al., 2023). The range of parameter 

values used in the CMOST sensitivity analysis for the 

homogenous reservoir are shown in Table 5. In total 36 

experiments were selected by CMOST AI within these 

parameter ranges. The objective function taken in the CMOST 

study are as follows: 

1) Trapped CO2 (due to structural and residual trapping). 

2) Dissolved CO2 mol (solubility trapping). 

 

Table 5. Range of parameter values for sensitivity analysis 

Parameter Name Lower Limit Upper Limit 

Injection Rate 50000 m3/day 100000 m3/day 

Bottom Hole Pressure 25000 KPa 37500 KPa 

Horizontal Permeability 300 mD 1500 mD 

Vertical Permeability 100 mD 1000 mD 

Porosity 9% 15% 

4 . RESULTS AND DISCUSSION 

The primary objective of the study is to analyze the dynamics 

of CO2 plume and to assess the roles played by various 

trapping mechanisms, along with investigating the influence 

of various reservoir characteristics on the plume development 

and storage efficiency. The primary objective is achieved 

through the following objectives: investigating the size of the 

CO2 plume under different conditions, examining how the 

plume develops over time with continuous extended CO2 

injection, evaluating the effect of different CO2 trapping 

methods in terms of storage, and conducting a sensitivity 

analysis to determine the impact of various reservoir 

parameters on the stored CO2. 

4.1 Plume Dynamics 

An important element of CO2 storage in an aquifer involves 

identifying the area of the aquifer surrounding the injection 

well that is affected by CO2 injection. This affected region is 

referred to as the CO2 plume. In this work, the criterion used 

to define the plume is based on the molality of CO2 (Zapata et 

al., 2020). Because among all other criterion that generally 

used to define plume, CO2 in aqueous phase spread across the 

aquifer region most, resulting in the maximum possible plume 

volume (Zapata et al., 2020). Cells exhibiting a CO2 molality 

greater than the threshold of 0.4 are considered active within 

the plume. 

 

In this study, plume volume is defined based on the pore 

volume of affected cells which are satisfying the threshold 

values of molality. So, the plume volume is not referring to 

pure CO2 volume. Figure 3 is a plot of plume volume with 

respect to the time for both heterogenous and homogenous 

reservoirs. In the heterogeneous reservoir, the plume volume 

initially increases rapidly, indicative of varied pathways that 

facilitate quicker CO2 spread through regions of higher 

permeability. In contrast, the plume in the homogeneous 

reservoir expands more gradually and uniformly, reflecting the 

consistent geological properties that regulate a steadier CO2 

migration. Despite these initial differences in growth rates, 

both scenarios eventually start to stabilize after the injection 

period ends. Additionally, Figure 4 is a graphical 

representation of the development of plume in a consistent 

CO2 injection where the plume is defined based on the aqueous 

phase CO2 as a function of total CO2 injected with an injection 

rate of 50000 m3/day in standard condition. In both cases it can 

be observed that the plume develops almost in a linear trend 

with the injected CO2 and the development continues even 

after the injection stops. This continuation generally occurred 

by the buoyancy force or molecular diffusion. But these 

stabilized quickly after the injection period ended. 
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Fig. 3. Plume volume with time (years) in (a) homogenous 

reservoir (b) heterogenous reservoir. 

 

 
Fig. 4.  Volume of CO2 plume with total CO2 injected in (a) 

homogenous (b) heterogenous reservoir where plume is defined 

based on CO2 in aqueous phase. 

Studying plume geometry and its evolution is another 

objective in this study. Figure 5 illustrates how the plume 

shape changes over time in different scenarios cases in a 

homogenous reservoir. The development of the plume is 

influenced by the structural and layered composition of the 

formation. The irregular plume shape of a heterogenous 

reservoir with various injection rates is presented in Fig. 6. It 

can be stated from the figures that in case 7 with high injection 

rate (70000 m3/day), the plume spread cross vertical direction 

is larger than the other case. Additionally, in case 10, the case 

of low permeability (100 mD in each direction), shows almost 

a very small but dense CO2 plume as gas cannot move freely 

due to very low permeability. 

 
Fig. 5. Plume evolution after different time for several cases in a 

homogenous reservoir. 

 
Fig. 6. Plume evolution after different time for different cases in a 

heterogenous reservoir. 

It can be implied that CO2 plume is developing quickly in both 

vertical and horizontal direction during the injection period, 

then horizontal expansion rate becomes larger than the 

vertical. The permeability of the reservoir plays a critical role 

for the behavior of the plume evolution. At the very beginning 

of the injection period the injected CO2 spreads vertically due 

to buoyancy-driven flow and initial pressure gradient with 

reservoir depth. Eventually, the horizontal propagation rate 

starts to increase as the horizontal permeability is 10 times 

larger than the vertical permeability. However, the 

propagation rate varies with the injection rate and permeability 

values. For example, plume evolution in case 10, with 

permeability value of 100 mD in each direction, has almost 

equal rate of propagation in both horizontal and vertical 

direction and the molality variation across the plume cells 

tends to be very low.  

 

The heterogenous reservoir also shows a similar trend of 

plume propagation. As the reservoir has larger permeability 

 

Case No. 2 Years 30 Years 100 Years 200 Years 
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value in horizontal direction, the plume propagates mostly 

horizontally. So, the radial expansion will prevail over the 

vertical expansion. As a result, a larger plume volume is 

generated after 200 years where the average CO2 molality is 

reduced but the spreader plume volume results in a larger 

surface area of the CO2-brine and interaction between CO2 and 

rock. 

4.2 Storage Efficiency 

This chapter is focused on the impact of various trapping 

mechanisms in the geological storage of CO2 in the aquifers. 

CO2 is stored in two forms of super critical CO2 and aqueous 

phase CO2 due to solubility trapping mechanism. However, 

super critical CO2 can be found in two different conditions of 

mobile free phase CO2 and immobilized CO2 by structural and 

residual trapping mechanism. 

 

To compare the contributions of various trapping mechanisms 

over a period of 200 years, a metric known as the "storage 

ratio" has been established. The storage ratio is defined as the 

proportion of stored CO2 (in moles) to the total injected CO2 

(in moles) expressed by: (Zapata et al., 2020).  

𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑜 =

 
𝐶𝑂2 𝑠𝑡𝑜𝑟𝑒𝑑 𝑑𝑢𝑒 𝑡𝑜 𝑡ℎ𝑎𝑡 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑡𝑟𝑎𝑝𝑝𝑖𝑛𝑔 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚 (𝑚𝑜𝑙𝑒𝑠)

𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝐶𝑂2 (𝑚𝑜𝑙)
       (3)  

The storage ratios for each mechanism across both type of 

reservoirs (case 1 and case 5) is presented in Fig. 7 At the 

initial stage, structural, residual, and solubility trapping shows 

a huge storage ratio which drastically falls as the injection of 

CO2 continues and the system allows the CO2 to move. On the 

other hand, mobile free phase CO2 drastically increased and 

stabilized at the storage ratio around 0.9.  

 

The scenario is elaborated in Fig. 8. It is visible that the amount 

of structurally and residually trapped CO2 (red color) increases 

rapidly until the injection period ends, then it gets eclipsed by 

the solubility trapping (orange color). Because more CO2 can 

move through the reservoir freely and get chance to be 

dissolved more in the aquifer. Moreover, some mobile free 

phase super critical CO2 is also being dissolved over time 

which makes a negative slope in mobile free phase CO2 curve 

too. As a result, even if the slope of solubility trapping curve 

is not too steep at the beginning but that positive slope holds 

with a close value throughout the long-term period. 

 

The contribution of different trapping mechanisms in both 

homogenous and heterogenous reservoirs (case 1 and case 5) 

is presented in Fig. 9 as a stacked area diagram. It can be 

observed that the largest portion of CO2 is retained as mobile 

CO2 in the free phase. The ratio of mobile CO2 rises rapidly 

throughout the injection phase; nonetheless, upon 

discontinuation of injection, the significance of alternative 

trapping mechanisms is amplified, leading to a decline in the 

mobile CO2 fraction. 

 

 
Fig. 7. Contribution of (a) mobile free phase CO2 (b) residual and

structural trapping and (c) solubility trapping in a homogenous

and heterogenous reservoir in terms of storage ratio with time.

 
Fig. 8. Injected and stored CO2 amount (mol) in (a) homogenous 

and (b) heterogenous case. 

4.3 Sensitivity Analysis 

CMOST AI, an updated module was used in the sensitivity 

analysis. Response Surface Methodology (RSM) was 

employed to evaluate the effects of various operational 

parameters on the amount of trapped and dissolved CO2. RSM 

comprises statistical and mathematical techniques for 

exploratory experiments aimed at developing, analyzing, and 

optimizing various processes (Bauer Jr. et al., 1999). RSM is 

particularly useful and efficient in performing sensitivity 
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analyses for decision-making problems, offering a way to 

notably shorten the time required to conduct these analyses 

(Bauer Jr. et al., 1999). In this study, the parameters considered 

include bottom hole pressure (kPa), injection rate (m³/day), 

horizontal permeability (mD), vertical permeability (mD), and 

porosity. The objective functions considered are trapped CO2  

and dissolved CO2.  

 

 

 
Fig. 9. Contribution of different trapping mechanism in (a)

homogenous reservoir (b) heterogenous reservoir.

The charts displayed in Figs. 10 and 11 show the normalized

impact of each parameter against the maximum effect value

observed in our models.

From the analysis, it is evident that certain parameters are

particularly influential, which are described in the following.

The sensitivity analysis for trapped CO2 reveals several key

insights:

 

1) The horizontal permeability shows the most substantial 

positive quadratic effect, indicating that higher horizontal 

permeability increases CO2 trapping significantly. 

2) Although injection rate is positively impacting the trapped 

CO2 amount, it has a negative quadratic impact which 

shows that after a certain level, the trapped CO2 will 

decrease with the increase in injection rate. 

3) The squared term of bottom hole pressure also positively 

affects CO2 trapping. 

4) Porosity and its squared value moderately influence CO2 

trapping, indicating that more porous formations tend to 

trap more CO2. 

 

The analysis of dissolved CO2 presented in Fig. 11 indicates 

that porosity exhibits the strongest positive effect on the 

dissolution of CO2 into the reservoir fluids. Higher porosity 

levels enhance the capacity for CO2 dissolution, due to the 

increased fluid interactions within porous media. Then both 

injection rate and horizontal permeability positively impact 

CO2 dissolution. 

 
Fig. 10. Relative impact of different parameters on structural and 

residually trapped CO2. 

 
Fig. 11. Relative impact of different parameters on dissolved CO2 

amount (moles). 

5 . CONCLUSIONS 

CO2 plume dynamics, storage capacity, and impact of different 

reservoir properties and parameters were explored in this 

study. The results show that horizontal plume spread exceeds 

vertical due to higher horizontal permeability. Case studies 

showed that permeability and injection rate significantly 

influence plume volume, with higher rates and permeabilities 

resulting in larger plumes. Additionally, the plume volume 

shows a linear relationship with the injected CO2 amount. In 

terms of storage efficiency, the most prevalent CO2 is free 

phase super critical CO2 that contributes around 80% of the 

stored CO2 whereas the rest are structurally or residually 

trapped and dissolved CO2. Initially, trapped CO2 contributed 

almost 15%. Over time, some of the trapped CO2 dissolved 

into the reservoir or aquifer fluid. This led to a reduction in the 

percentage contribution to structural and residual trapping 

mechanisms, decreasing to 5% in homogeneous reservoirs and 

0% in heterogeneous reservoirs. At the same time, the 

percentage contributed to solubility trapping increased to 15% 

in homogeneous reservoirs and 20% in heterogeneous 

reservoirs. Sensitivity analyses revealed that horizontal 

permeability and injection rate significantly affect trapped 

CO2, while porosity impacts CO2 dissolution. The Future 

research should incorporate more realistic reservoir models, 

explore mineral trapping, and conduct further sensitivity 

analyses. 
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Equilibrium analysis for methanation
focusing on CO2 derived substitute natural

gas
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Abstract: In this study the methanation of synthesis gas (syngas) is investigated with a
focus on achieving maximum methane and minimum CO by full methanation of CO2. For this
study, we have considered a comprehensive thermodynamics analysis of CO2 hydrogenation.
This will help us to understand the thermodynamic behaviour of the reactions involved in the
methanation process. We have discussed the behavior of the species, CO2, H2, CH4, and H2O at
the equilibrium with temperature, pressure, and fuel ratio variation in order to get the desired
output. The preliminary study will focus on selecting the optimum conditions (temperature,
pressure, and H2/CO2 ratio) for performing the experiments and for catalyst development.

Keywords: Equilibrium calculations, Thermodynamic analysis, CO2 methanation, Gibbs free
energy minimization

1. INTRODUCTION

It is assumed that the main element for the increase
in atmospheric temperature is the increase of the CO2

concentration. The greenhouse gas CO2, therefore, needs
to be reduced in the scope of the energy transition from
fossil to renewable sources. This needs new concepts for
the sustainable energy supply and also for energy storage.
Hence, it is essential to reintegrate the secondary products
like H2 and CO2 into the energy supply in order to reduce
the direct CO2 emission discussed by Kopyscinski et al.
(2010); Seemann et al. (2010).

The conversion of CO2 into methane is a promising ap-
proach for a CO2 neutral production circle and this process
is commonly known as methanation. The excess energy
produced in methanation by renewable energies is con-
verted into chemical energy. There is a possibility to feed
the produced CH4 into the existing network of natural gas
referred as ‘power-to-gas’ approach (PtG) (Müller et al.
(2013, 2019)).

The sufficient supply of H2 required for the hydrogenation
of CO2 is generated by some kind of renewable energy.
This ensures a CO2 neutral process (Ursua et al. (2012);
Razzaq. et al. (2013); Müller et al. (2019)). The exhaust
CO2 can be used as a CO2 source to fully convert the
hydrogen/CO2 to methane by the Sabatier reaction:

CO2+4H2 → CH4+2H2O,∆H◦
298 = −165.0 kJ/mol. (1)

This reaction is thermodynamically favoured and catalysts
can be useful to achieve acceptable conversion from CO2

into CH4 (Du et al. (2007); Ma et al. (2009); Müller et al.
(2017); Rachow (2017)). In this study, we want to com-
prehend the thermodynamics involved in the methanation
processes.

Other than the Sabatier reaction, the following main
competitive reactions depending on the fuel composition
also needs to be considered:

CO + 3H2 → CH4 +H2O,∆H◦
298 = −206.1 kJ/mol. (2)

2CO+2H2 → CH4+CO2,∆H◦
298 = −247.3 kJ/mol. (3)

CO +H2O → CO2 +H2,∆H◦
298 = −41.2 kJ/mol. (4)

2CO → CO2 +C,∆H◦
298 = −172.4 kJ/mol. (5)

CH4 → 2H2 +C,∆H◦
298 = 74.8 kJ/mol. (6)

The above listed reactions are some of the important
reactions expected to happen in a methanation process.
However, in this study our focus is only to consider the
thermodynamic point of view by using the thermochem-
istry of all the species which are used in the system.
Some of the thermodynamic investigations of methanation
reactions are discussed by Greyson et al. (1955); Anderson
(1986); Gao et al. (2012); Jia et al. (2016) and catalytic
studies are conducted by Beuls et al. (2012); Ocampo et al.
(2009); Hu et al. (2012).

Although there are some thermodynamic investigations
available in literature, we still need a further compre-
hension of the complex methanation reactions. Hence, in
this work, we discuss the thermodynamic impact of CO2

methanation on formation of products. The main species
considered for the study are CH4, CO2, H2 CO, and H2O
with a focus to maximize the methane formation and
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minimize the CO formation for the considered conditions
for investigation.

2. METHODOLOGY

Apart from the LOGEcat model for catalyst investiga-
tions used by Rakhi et al. (2022b,a, 2023); Rakhi and
Mauss (2024) from the LOGEsoft software suite (LOGE-
soft (2008)), there is also an Equilibrium Reactor model in
the software package. We have used the equilibrium reactor
model to perform the simulations discussed in this paper.
We only need the thermodynamic data for all the species
involved in the methanation process in each phase for the
equilibrium reactor model and this allows to determine the
chemical state of a mixture under equilibrium conditions
including any number of gas-phase or bulk species for the
thermodynamic equilibrium calculations.

The equilibrium composition of a reactive system is cal-
culated using the Gibbs free energy minimization method
which is based on the principle that the total Gibbs energy
of the system has its minimum value at chemical equilib-
rium without considering the individual equilibrium con-
stants (Adhikari et al. (2007); Ozkara-Aydinoglu (2010);
Rossi et al. (2009)). The distribution of the products
under a minimum free energy is achieved by utilizing a
general mathematical technique which does not require
the knowledge of the chemistry of the reactions. However,
all the species in a reaction system including reactants
as well as the products needs to be given. Then the Gibbs
energy is calculated using the Gibbs energy under standard
conditions and the law of the mass action:

∆rG = ∆rG
θ +RTln

∏
i

aνi
i (7)

The meaning of the symbols, ∆rG, ∆rG
θ, R, T,

∏
, a,

and ν are the change in the Gibbs free energy, standard
Gibbs free energy for the reaction r, universal gas con-
stant, temperature, product across all i-indexed variables,
activity coefficient, and stoichiometric coefficient of species
i, respectively. Since the change in the free energy at
equilibrium is zero, the equilibrium constant (Keq) is given
as:

Keq = exp
(−∆rG

θ

RT

)
(8)

This equations determines the direction of the reaction.
The change in the standard free energy, ∆rG

θ can be
calculated using the Gibbs-Helmholtz equation given as:

∆rG
θ = ∆Hθ − T∆Sθ (9)

The symbols, ∆Hθ and ∆Sθ represent the change in the
reaction enthalpy and the change in the reaction entropy,
respectively. The polynomial functions of temperature are
used to determine the state functions and heat capacity
in the equilibrium reactor model. The polynomial coef-
ficients for all the species available in the methanation
process can then be provided in the state function in-
put file using a standard format for NASA coefficients.
These polynomials can be used to drive all the other

thermodynamic properties needed for the thermodynamic
equilibrium calculations. The Gibbs free energy for the
Sabatier reaction (Equation 1) can be calculated using the
equations (t=T[K]/1000):

∆Hθ(t) = ∆H0
298.15K + dHCH4 + 2 ∗ dHH2O

− dHCO2
− 4 ∗ dHH2

(10)

∆Sθ(t) = S0CH4
+ 2 ∗ S0H2O − S0CO2

− 4 ∗ S0H2
(11)

∆rG
θ(T ) = ∆Hθ(t)− T ∗ ∆Sθ(t)

1000
(12)

The equilibrium constant, Keq, is expected to be reduced
with increasing temperature for the Sabatier reaction
(Equation 1) due to its exothermic nature. While solving
all the above equations, a system of linear simultaneous
equations is achieved containing many unknowns and it
yields a new composition representing new approximation
of the composition giving minimum free energy. The infor-
mation achieved with these thermodynamic equilibrium
calculations can be useful to develop a catalyst for the
methanation process by providing a background in select-
ing the most favourable conditions for the experiments and
catalytic simulations.

A detailed summary of the possible reactions involved in
the methanation of carbon oxides is given by Mills and
Steffgen (1974); Nahar and Madhani (2010). We have
used the gaseous compounds, CO, H2O, CO2, H2, O2,
and CH4 for the equilibrium calculations. The high hydro-
carbons, solid carbon, and oxygen-containing compounds
(methanol, methanoic acid, acetic acid etc.) are ignored
because they are available in very small amount in the
equilibrium gas mixture.

3. VALIDATION

The validation of the equilibrium solver is done against the
literature results from Gao et al. (2012). The validation
is done for one inlet condition, i.e., H2/CO2=4 at 1
atm in a temperature range of 200-800◦C. Note that the
equilibrium calculations provided in literature are also
simulations and these simulations are performed using
the CHEMCAD solver. Therefore, we have taken the
reference data simulated with CHEMCAD and compared
with the calculations from our equilibrium reactor model
from LOGEsoft software package.

For the considered inlet condition for validation, we have
compared the product fraction of CO2 methanation at
equilibrium for all the species, CO2, H2, CH4, H2O, and
CO before exploring the new conditions. The equilibrium
calculations with our solver matched with the reference
very well (not shown here). After a successful validation,
the solver is further used for equilibrium calculations
at various unexplored conditions to select the optimum
parameters for the methanation process and the the inlet
conditions considered for the simulations are given in Table
1.
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Table 1. Summary of the inlet fuel composition on which the investigation is performed.

Simulation H2/CO2 H2 CO2

Run (vol. %) (vol. %)

R1 2 66.6 33.4
R2 4 80.0 20.0
R3 6 85.7 14.3

Fig. 1. Products fractions at the reactor outlet for species, CO2, H2, CH4, and H2O varying with the pressure and
temperature for H2/CO2=2.

4. RESULTS

After validating the equilibrium reactor model using the
methodology explained in the previous sections, the model
is further applied to investigate the effect of CO2 methana-
tion. The simulations performed with the inlet conditions
given in Table 1 are discussed in this section to select the
H2/CO2 fuel composition for catalytic simulations. Note
that the temperature used to perform the simulations is
varied in the range 200-500◦C and pressure from 1 atm to
30 atm for all the inlet conditions given in the table.

Starting with the low fuel ratio, i.e., H2/CO2=2, where
the amount of hydrogen is double the amount of CO2 at
the inlet, the measurement of the species, CO2, H2, CH4,
and H2O varying with the pressure and temperature is
presented in Fig. 1. With this inlet composition, the CO2

is mostly unused in the entire temperature and pressure
range considered for the study.

However, hydrogen is fully used as indicated in the lower
panel of Fig. 1. The H2 mole fraction at the reactor
outlet is zero or close to zero up to 400 ◦C in the entire
pressure range, i.e., up to 30 atm shown in the figure with
blue colour. The figure also depicts that with increasing
temperature and pressure, more unreacted hydrogen is
expected at the reactor outlet for the methanation process.

Hence, low temperatures and low pressures are recom-
mended for better conversion of hydrogen for this fuel com-
position. However, for H2/CO2=2, the low temperatures
and low pressures are not favourable for CO2 conversion.
The CO2 conversion is expected to be good for high tem-
peratures.
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Fig. 2. Products fractions at the reactor outlet for species, CO2, H2, CH4, and H2O varying with the pressure and
temperature for H2/CO2=4.

CH4 and H2O product fractions shown in the right side of
Fig. 1 indicates that methane as well as water formation
at low temperature in the entire pressure range considered
for the investigation is very high shown with the yellow
colour in the figure. So, in order to maximise the methane
formation, it may be useful to operate the reactor at the
condition with fuel ratio, H2/CO2=2 at low temperature.
However, this fuel ratio is not favourable considering the
conversion of CO2. Therefore, we considered also the other
fuel compositions for the investigation.

Next, we computed the thermodynamic equilibrium by
increasing the hydrogen mole fraction and reducing the
CO2 mole fraction at the inlet condition, i.e, H2/CO2=4
and the product fraction of all the species at the considered
temperature and pressure range is shown in Fig. 2. The
species CO2 and H2 mole fractions are on the left side and
for CH4 and H2O on the right side of the figure.

Note that by reducing the CO2 mole fraction in the fuel
composition leads to almost 100% conversion of CO2. This
is indicated in the figure by the blue colour showing zero
unreacted CO2 at low temperatures. For operation at high
temperatures, high pressures are recommended. From the

H2 mole fraction scale, we note that the conversion for this
species is very good even after increasing hydrogen for this
fuel composition, i.e., H2/CO2=4.

From right side of the figure, we note the the formation
of methane and water is good for this fuel ratio as well,
however, both the species mole fraction at the reactor
outlet in equilibrium for H2/CO2=4 are slightly reduced.

The hydrogen is further increased and CO2 is reduced to
analyse the influence for another fuel ratio, i.e., H2/CO2=6
on all the species at thermodynamic equilibrium. The
results for this fuel ratio are shown in Fig. 3 for CO2 and
H2 mole fractions on the left side and for CH4 and H2O
on the right side of the figure.

By comparing the scales for CO2 in Fig. 2 and 3, the
CO2 consumption is improved more by further reducing
the CO2 mole fraction in the initial fuel composition. This
behaviour is seen in the complete range of temperature
and pressure considered for the calculation. However, with
the increase in the hydrogen for H2/CO2=6, a lot of
unreacted hydrogen is noted at the equilibrium. For im-
proving the hydrogen conversion for this fuel composition,
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Fig. 3. Products fractions at the reactor outlet for species, CO2, H2, CH4, and H2O varying with the pressure and
temperature for H2/CO2=6.

high temperatures and pressures can be investigated. This
indicated that this fuel composition is not favourable for
hydrogen conversion.

Not only hydrogen is unreacted but also the formation
of methane at equilibrium for this fuel composition is
reduced. This can be seen by comparing the scales for
methane from Fig. 2 and 3. Similar to methane, water
formation is also reduced for this fuel composition.

Considering the conversion of CO2, H2/CO2=2 is not
favourable and for conversion of H2, H2/CO2=6 is not
favourable. H2/CO2=4 is the most favourable fuel com-
position for conversion of H2 as well as CO2 along with
maximum formation of methane for this ratio.

5. CONCLUSIONS

The thermodynamic equilibrium composition for CO2

methanation of the species, CO2, H2, CH4, and H2O are
shown at the reactor outlet for the Sabatier temperature
range, i.e., approximately 250-450◦C in the pressure range
from 1 atm to 30 atm.

For the equilibrium calculations for the methanation pro-
cess, fuel composition plays very important role in the
entire pressure and temperature range considered for the
investigation. For the low range of temperature, H2/CO2

should be more than 2 to achieve good conversion of CO2,
however, this ratio should be less than 6 for good conver-
sion of H2. For maximum methane formation, H2/CO2=4
is the most favourable fuel composition.
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Abstract: The amount of CO2 in the atmosphere is continuously increasing, resulting in climate change

and global warming. Industrial processes contribute a substantial share in the amount of CO2 released to

the atmosphere. On the other hand, different types of wastes and by-products are being produced by

different industries which are deemed pollutants and require energy and capital to be safely managed

through a circular economy perspective. A solution to simultaneously tackle both the CO2 emission and

waste pollution problems would be of high value. CO2 sequestration by mineralization of CaO-rich

industrial wastes is one potential solution. In such a process, CO2 reacts with the CaO in the waste and

CaCO3 is produced. This product is thermodynamically stable and has multiple uses. Many studies in the

literature have reported use of various CaO-rich wastes to capture CO2, but they are mostly based on lab-

scale experiments, and mostly the focus is on the chemistry of the suggested processes. Hence, there is a
need to study the technical and economic feasibility of up-scaled industrial versions of such processes.

In this study, four different aqueous indirect mineralization processes applying different chemicals, all with

a relatively high performance documented from laboratory experiments, are scaled up to industrial size

with a CO2 capturing capacity of 400 t/y using an in-house-made process simulation tool. Furthermore, an

economic analysis and environmental assessment are conducted for all processes, and the results are

compared. Finally, parameters impacting the techno-economic feasibility of each process are evaluated

through a sensitivity study. The results indicate that the potential of capturing CO2 and producing CaCO3

can be as high as 530 kg and 1200 kg per ton of the waste while the yearly energy consumption can be as
low as 0.7 kWh per kilogram of captured CO2. The aqueous indirect mineralization of CO2 can be

profitable and the emitted CO2 by the process can be so low as 6% of the captured amount.

Keywords: CO2 sequestration, CO2 capture, Mineralization, Aqueous indirect mineralization, Industrial

wastes, Process simulation, Techno-economic analysis, Mass and energy balance, Environmental

assessment

1. INTRODUCTION 

Mineralization of silicates (Seifritz, 1990) is a direct process 

for carbonation and mineralization of natural alkaline 

minerals, such as olivine, serpentine and basalt, or industrial 

alkaline wastes like ashes and slags. This, due to the slow 

kinetics of mineral carbonation, needs a large energy demand 

to accelerate, or a long reaction time under ambient conditions. 

In addition, directly carbonating alkaline minerals usually 

produces low-quality products (Zhang et al., 2019). 

On the other hand, there is the indirect carbonation process, 

which makes it possible to produce higher-value goods such as 

pure precipitated calcium carbonate (PCC) (Zhang et al., 

2019). Indirect carbonation can be separated into aqueous 

indirect carbonation and stepwise gas-solid reactions. Prior to 

starting the mineral carbonation reaction, an indirect reaction 

must be used to extract alkaline earth metal ions from silicates 

using the appropriate organic or inorganic acids or salts. 

Because the reactions usually occur in ambient conditions, this 

method may save energy in the mineral carbonation step. 

However, the extraction step (also known as the enrichment or 

separation step) may be uneconomical due to expensive 

reagents, reagent recovery, and energy consuming equipment 

(Zhang et al., 2019).  

To determine which processes that have the lowest energy and 

cost intensity and the greatest amount of CO2 captured, 

reaction modelling, process simulation, environmental impact 

assessment, energy analysis, and economic evaluation should 

be conducted. This will help determine the most promising 

options for scale-up (Zhang et al., 2020). Figure 1 shows a 

schematic overview of an indirect mineralization process. 

Compared to solid phase mineralization methods, aqueous 

phase mineralization has demonstrated advantages in terms of 
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process operational parameters which are not under harsh 

conditions. Promising benefits of aqueous phase 

mineralization include the potential to speed up the process 

and the viability of large-scale implementation (Zhang et al., 

2020). 

 

 

Fig. 1. A schematic overview of indirect mineralization process 

The aqueous indirect mineralization of industrial wastes 

usually consists of two main steps. The first one is leaching, 

where the earth metal ions are separated from the waste. The 

second one is mineralization, where CO2 is introduced to the 

earth metal ions to be mineralized. Different wastes and 

methods based on literature have been used to perform the 

mentioned two steps. The waste can originate from various 

sources and the extracted earth metal could be different.  

To extract the earth metal ions in the leaching process, an 

aqueous solution of acids or salts (reagents) with a specific 

concentration (C) is prepared. Then, the solution is mixed with 

solids at a certain solid-to-liquid ratio (S:L) at a specific 

leaching temperature (LT) for a certain leaching time (TL). 

The extraction efficiency (EF) is defined as the part of the 

primary content of the earth metal ions which is extracted. 

After the extraction, the CO2 is introduced to the solution, 

which is now rich in earth metal ions, at a specific 

mineralization temperature (MT) for a certain mineralization 

time (TM). In this way, CO2 is sequestered, and carbonates 

(mostly CaCO3) are produced. Appendix A gives details from 

the literature review done in this work. 

In this study, the viability of aqueous indirect mineralization 

of CO2 by utilizing CaO-rich wastes for a plant in Norway with 

a CO2 capturing capacity of 400 t/y is investigated. The first 

step is, based on a literature study, to choose four processes 

with comparably good results. The second step is to model and 

simulate the chosen processes using an in-house-customized 

simulation tool (using MS Excel®) to solve mass and energy 

balances and do economic calculations. The third and final 

step is to define key performance indicators (KPI) and use 

these to compare the four processes in a sensitivity analysis. 

The work is based on a master’s thesis work at USN (Ghazi, 

2024). 

2. PROCESS SELECTION 

From the reviewed literature, the process using converter slag 

(CS) and NH4Cl (Kodama et al., 2008) will be referred to as 

process 1, the process using recycled concrete fines (RCF) and 

NH4Cl (Mehdizadeh et al., 2023) will be referred to as process 

2, the process using blast furnace slag (BFS) and HCl (Liu et 

al., 2023) will be referred to as process 3, and the process using 

BFS and CH3COOH (Teir et al., 2007) will be referred to as 

process 4. These processes are chosen due to their comparably 

high CaO content in the wastes and high leaching efficiencies 

and because they use different reagents and apply different 

leaching and mineralization temperatures. For process 4, the 

MT and TM are not mentioned in the literature. Hence, the 

same values for LT and TL are assumed for these. 

3. MODELLING AND SIMULATION 

To be able to model and simulate the processes, first the 

processes are designed, and process flow diagrams (PFD) are 

prepared based on the details of the laboratory work in the 

papers. Then, using the PFDs, the mass and energy balance 

calculations can be conducted. Finally, based on mass and 

energy calculations, the economic and environmental 

assessment can be performed. 

3.1 Process flow diagrams and descriptions 

Figure 2 shows the PFD for process 1 and 4, and Table 1 

provides the definitions of the streams in the PFD. 

 
 

Fig. 2. Suggested PFD for process 1 and 4. 

Table 1. Definition of streams in Fig. 2. 

Stream Definition 

a Reagent make-up 

b Water make-up 

c1 and c2 Leaching solution 

c4 and c5 Cooling water from chiller 

c3 Cooled leaching solution 

d Industrial waste 

e1 and e2 Leachate solution 

f Solid residues 

g1, g2, and g3 Filtrate solution 

h CO2 

i Mineralization solution 

j Precipitated CaCO3 

k Recovered leaching solution 

l Purge 

m1 and m2 Recovered leaching solution 

Q1 Heat extracted from the process 

Q2 Heat generated in the reactor 
 

The water (b) and reagent (a and m2) are mixed in mixer 1, 

and the leaching solution (c1 and c2) is then pumped (P) 

through the heat exchanger (HE), where the stream is cooled 

down (Q1) to the leaching and mineralization temperature 
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using cooling water (c4 and c5) from a chiller. The leaching 

and mineralization temperatures are the same in process 1 and 

4. After that, the industrial waste (d) is added to the leaching 

solution (c3) in mixer 2, where the leaching process happens 

in the leaching time. After leaching, the leachate (e1 and e2) is 

pumped (P) into centrifuge 1, where the solid residues (f) are 

separated, and the filtrate solution (rich in Ca) accumulates in 

the storage tank. Then the filtrate solution (g1, g2 and g3) is 

pumped (P) to the plug flow reactor (PFR), where CO2 (h) is 

introduced to be mineralized, generating heat (Q2) due to 

exothermic nature of the reaction. After the PFR, the 

mineralization solution (i), containing CaCO3, passes through 

centrifuge 2, where the precipitated CaCO3 (j) is separated 

from the stream. The recovered reagent (k) then accumulates 

in the purge tank, and a part of it (l) is purged out of the process 

to prevent accumulation of heavy metals and undesired 

materials. Finally, the recovered reagent (m1) is pumped (P) 

to mixer 1 to repeat the cycle. 

Figure 3 depicts the suggested PFD for processes 2 and 3, and 

Table 2 provides the definition of streams that are different 

from those in Fig. 2. Processes 2 and 3 are quite similar to 

processes 1 and 4, but the operational temperatures are 

different. The leaching temperature is much higher than the 

mineralization temperature in processes 2 and 3. This requires 

the heat to be added to the stream before leaching to increase 

the temperature to the leaching temperature. Meanwhile, the 

heat must be removed from the stream before mineralization 

to reach the mineralization temperature. To reduce the heating 

and cooling demands, a heat recovery line using heat 

exchangers 1 (HE1) and 3 (HE3) is established to recover a 

part of the heat. The rest of the heat will be added to and will 

be removed from the stream using heat exchangers 2 (HE2) 

and 4 (HE4), respectively. 

 

Fig. 3. Suggested PFD for process 2 and 3. 

Table 2. Definition of streams in Fig. 3 that are new or different 

from those in Fig. 2. 

Stream Definition 

c3 and c4 Cooled leaching solution 

g5 and g6 Heat recovery line 

g4 and g9 Cooled filtrate solution 

g7 and g8 Cooling water from chiller 

Q1 Recovered heat in the process 

Q2 Heat added to the process 

Q3 Heat extracted from the process 

Q4 Heat generated in the reactor 

 

3.2 Mass balance calculations 

In the mineralization process, 1 mol of CO2 reacts with 1 mol 

of CaO to produce 1 mol of CaCO3. Laboratory data from the 

literature, such as calcium content in the waste, reagent 

concentration, and solid-to-liquid ratio, are used to calculate 

flow rates, extraction efficiency and plant capacity for all the 

processes.  

3.3 Energy balance calculations 

The energy consumption of the four chosen processes is the 

sum of mechanical work (in pumps, agitators, mixers and 

centrifuges) and thermal energy related to heating and cooling 

demands. By knowing the mass flow rates, the power of 

agitators and centrifuges, the enthalpy of mineralization, and 

the specific heat capacity of the streams, the yearly energy 

consumption is calculated. Since the heat transfer area of the 

mixers, tanks, and pipes is not specified at this level, the heat 

loss from these equipment units is not calculated. Instead, the 

system is treated as well insulated, and heat loss is neglected. 

3.4 Economic calculations 

The economic calculations in this study are limited to material 

(reagent and process water) costs, energy cost, and revenue 

from sales of CaCO3. The mass flow rates of the required 

materials, the energy consumption, the energy price in 

Norway, and the reagent price (assuming three different 

origins; East Asia, the European Union, and the US) are used 

as inputs, see Appendix B for details. Then the revenue from 

sales of CaCO3, the yearly cost and the revenue of the 

processes are calculated. The economic assessment in terms of 

checking the profitability is then conducted. 

3.5 CO2 footprint 

Although the CO2 footprint of a process depends on numerous 

factors and aspects, in this study, the CO2 footprint calculated 

based on the electrical energy consumption, assumed to be 

only electricity from grid. The CO2 emission factors of 

electricity in the country where the plants are located are given 

in Appendix B.  

3.6 Simulation tool and simulation settings 

Laboratory data from the literature are used as inputs to the 

mass and energy balance equations. Assumptions are made 

where sufficient data are not available. Then a simulation tool 

is implemented in MS Excel® to calculate and scale up the 

unknowns, such as mass flow rates, energy consumption, etc. 

This tool is also used to perform the sensitivity analysis. The 

simulation settings are shown in appendix B. 

4. KEY PERFORMANCE INDICATORS 

To illustrate and compare the performance of the processes, 

eight KPIs are defined in Table 3 based on the results of mass, 

energy, economic, and environmental calculations.  

KPIs 1 to 3 are mass-based and can be used to compare how 

much CO2 that can be captured, how much waste that can be 

handled and how much make-up reagents that are required. 

KPI1 and KPI2 should be high, whereas KPI3 should be low. 
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Table 3. KPIs and their definitions. 

KPI Definition 

KPI1 Mass of captured CO2 per mass of waste 

KPI2 Mass of produced CaCO3 per mass of waste 

KPI3 
Mass of make-up reagent per mass of captured 

CO2 

KPI4 Energy consumption per mass of captured CO2 

KPI5 Mass of produced CO2 per mass of captured CO2 

KPI6 
Yearly profit per mass of captured CO2 if the 

reagent is supplied from East Asia 

KPI7 
Yearly profit per mass of captured CO2 if the 

reagent is supplied from the EU 

KPI8 
Yearly profit per mass of captured CO2 if the 

reagent is supplied from the US 

 

KPI4 is energy-based and can be used to compare how much 

energy that must be supplied to the different processes. This 

value should be low.  

KPI5 is also mass-based, but the main aim of this parameter is 

to show the environmental impact of the processes; the lower 

the better. KPIs 6 to 8 are used to compare the economic 

performance of the processes, the higher values the better. 

5.  RESULTS AND DISCUSSION 

5.1 Mass balance results 

The calculated mass flow results for the streams in the four 

processes are shown in Table 4.  

Although the CO2 and CaCO3 streams (h and j) are the same 

in all four processes, other streams are different. Taking g1 as 

for comparison, process 4 has the highest flow rate of 159 

kg/min, which is the double of the flow rate in process 1 with 

81 kg/min. The lowest flow rate is for process 2 with 24 

kg/min. This will result in a higher energy consumption of the 

pumps and centrifuges. Considering stream a, process 4 has 

the highest consumption of reagent followed by processes 3, 

1, and 2. The higher the reagent consumption, the higher the 

process costs. 

5.2 Energy balance 

The energy consumption results for the four processes are 

shown in Table 5. Compared to other rotary equipment, the 

pump energy consumption is negligible in all four processes. 

For process 4, the energy consumption of the centrifuges is 

almost twice as high as in process 1. This is due to a higher 

flow rate in process 4. Heating and cooling, with more than 70 

% of the whole energy consumption, are the main role-players 

in the energy consumption of processes 2 and 3. 

 

Table 4. Mass flow rates (kg/min) (– = Not applicable) 

Stream  

Process 

1 2 3 4 

a 0.6 0.4 0.8 2.4 

b 8 2.3 3.7 16 

c1 and c2 80 23 37 158 

c3 80 23 37 158 

c4 22 23 37 67 

c5 22 – – 67 

d 5.0 2.3 3.0 2.7 

e1 and e2 85 25 40 161 

f 4.3 1.5 2.2 1.9 

g1, g2, and g3 81 24 38 159 

g5 and g6 – 25 39 – 

g4 and g9 – 24 38 – 

g7 and g8 – 123 151 – 

h 0.8 0.8 0.8 0.8 

i 82 25 39 160 

j 1.7 1.7 1.7 1.7 

k 80 23 37 158 

l 8 2.3 3.7 16 

m1 and m2 72 21 33 142 

 

Table 5. Energy streams (kW) (– = Not applicable) 

Utility 
Process 

1 2 3 4 

Agitation 15 15 15 15 

Pumps 0.06 0.02 0.03 0.12 

Centrifuges 14 4 6 26 

Heating – 31 49 – 

Cooling 

(Chiller) 
10 17 20 10 

Total energy 39 67 91 51 

 

5.3 KPI results 

The mass and energy balance results are used, along with cost 

and environmental calculations, in the calculation of KPIs. 

Figure 4 shows KPIs 1 to 3 and 5. 

  

 

Fig. 4. KPIs 1, 2, 3, and 5 
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As shown in Fig. 4, process 2 has the highest capacity of 

capturing CO2 per mass of used waste (KPI1) with 0.37 kg/kg. 

Process 4 and 3 follow with values of 0.32 kg/kg and 0.29 

kg/kg, respectively. Process 1 has the lowest potential of 

capturing CO2 with only 0.17 kg/kg.  

The trend for KPI2 is similar to that of KPI1; process 2 has the 

highest amount of produced CaCO3 per mass of waste (0.83 

kg/kg) followed by processes 4, 3, and 1 (0.73, 0.65, and 0.38 

kg/kg, respectively).  

The reasons for the higher capacity for CO2 capture and CaCO3 

production of process 2 is the higher content of CaO in the 

waste, a higher solid-to-liquid ratio, and a higher extraction 

efficiency. Although the waste CaO content of process 1 is 

almost the same as in processes 3 and 4, the lower extraction 

efficiency results in a lower capture capacity. 

When it comes to KPI3, the lower mass of make-up reagent 

per mass of captured CO2, the better in terms of economic 

assessment. Hence, process 2 is still the better process, with a 

reagent consumption of 0.44 kg/kg, followed by process 1 with 

0.51 kg/kg and process 3 with 0.96 kg/kg. Process 4 has a 

staggeringly high reagent consumption of 2.8 kg/kg. Although 

the concentration of reagent for this process is not high 

compared to the other three processes, the comparably lower 

solid-to-liquid ratio results in a higher volume of leaching 

solution which increases the reagent consumption. 

KPI5 is an indicator of the emitted mass of CO2 per mass of 

captured CO2. This KPI is of high importance and should be 

calculated in the early stages of a scale-up project since it can 

be a showstopper. If KPI5 shows 1 kg/kg or more, it means 

that the plant is emitting more CO2 than it captures. This 

depends on the CO2 emission factor of electricity generation. 

Figure 4 shows KPI5 for power production in Norway, which 

has a very low CO2 emission factor. Accordingly, all four 

processes emit negligibly low amounts of CO2 per unit of 

captured CO2 with 0.02 kg/kg, 0.03 kg/kg, 0.04 kg/kg, and 

0.06 kg/kg for processes 1, 4, 2, and 3, respectively. 

Based on Fig. 5, processes 1 and 4 are the most efficient ones 

in terms of energy consumption per mass of captured CO2 with 

0.86 kWh/kg and 1.13 kWh/kg followed by process 2 (1.47 

kWh/kg) and process 3 (1.98 kWh/kg). 

 

  
 

Fig. 5. KPI4 for all processes 

Interestingly, despite higher mass flow rates for processes 1 

and 4, which result in a higher energy consumption of pumps 

and centrifuges, the total energy consumption of these two 

processes is lower than processes 2 and 3. This is due to 

different operational temperatures of leaching and 

mineralization in processes 2 and 3, which require heating and 

cooling at the same time, resulting in a higher overall energy 

consumption for these two processes. 

The mass of captured CO2 and produced CaCO3 are the same 

for all four processes. Therefore, the revenue from sales of 

CaCO3 is also the same for all. Figure 6 shows the yearly profit 

of all four processes per mass of captured CO2 if the reagents 

are supplied from East Asia (KPI6), the EU (KPI7), and the 

US (KPI8).  

 

 
 

Fig. 6. KPIs 6 to 8, economic assessment

Process 4 shows negative numbers for all three KPIs, meaning

that the costs are higher than the revenue, and the process is

not profitable. For KPIs 6 to 8, process 1, 2, and 3 are all

profitable. The profitability is highest if the reagent is supplied

from East Asia (0.59 USD/kg for process 2), and lowest if it is

supplied from the EU (0.31 USD/kg for process 1). This can

be explained by different chemical prices (see Appendix B).

5.4 Sensitivity analysis

The reactants in the mineralization reaction are CO2 and CaO.

Since the amount of CO2 to be captured is a design basis value

(400 kt/y) in this study, the amount of CaO plays the main role

in the mass and energy balance calculations. The amount of

CaO, or better Ca2+ ions in the reaction, is dependent on the

extraction efficiency at a given solid-to-liquid ratio. Due to the

importance of the extraction efficincy, a sensitivity analysis

was conducted to find the impact of this parameter on KPIs 1-

4. The extraction efficieny was varied from 8 to 98 %, and the

results are shown in Figs. 7 to 10. (The reported efficiencies 

from the laboratory work are indicated with * on the 

horizontal axis in the figures.)

As seen from all four figures, KPIs 1 and 2 have a linearly

increasing trend with an increase in the extraction efficiency.

This means that the extraction efficiency has a direct impact

on the capturing capacity of each process. This trend is

reasonable since the extracted Ca is directly reacting with CO2.

KPIs 3 and 4, on the other hand, show an exponential decay

behavior with an increase in the extraction efficiency. The

non-linear behavior is seen because there is more than one

role-player in the calculation of make-up reagent and the
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energy consumption, and these two KPIs are sum of different 

parameters. The decreasing trend occurs because the reagent 

and energy consumption are reduced when the extraction 

efficiency is increased. 

Looking into KPIs 1 and 2 for the whole range of extraction 

efficiencies, process 2 is the more promising one. Doing the 

same for KPIs 3 and 4, process 1 is the preferred process. 

 
 

Fig. 7. Sensitivity analysis of process 1 

 
 

Fig. 8. Sensitivity analysis of process 2 

 
 

Fig. 9. Sensitivity analysis of process 3 

 
 

Fig. 10. Sensitivity analysis of process 4 

In Fig. 11, the processes are compared at an extraction 

efficiency of 50 %. While process 2 has a better performance 

for KPIs 1 and 2, process 1 is better for KPIs 3 and 4. 

 
 

Fig. 11. KPIs 1 to 4 at EF=50% for all processes

6. CONCLUSIONS

Many methods to mineralize CO2 by industrial CaO-rich waste

streams have been described in the literature, mainly based on

laboratory experiments. In this study, four different processes

were selected, scaled up to industrial scale and compared.

The results indicate that a process using recycled concrete

fines (RCF) and NH4Cl as a solvent (process 2) has the highest

specific CO2 capture (KPI1) and CaCO3 production (KPI2)

and the lowest chemical make-up requirement (KPI3).

However, a process using converter slag (CS) and NH4Cl as

solvent (process 1) has the lowest specific energy consumption

(KPI4).

The two other processes considered were using blast furnace

slag (BFS) and either HCl (process 3) or CH3COOH as a

solvent (process 4). All four processes will generate less than

6 % of the CO2 that is captured (KPI5), meaning that they are

all viable from net CO2 capture point of view.

The analysis indicated that process 4 is not economically

viable, not matter if the chemicals are supplied from East Asia

(KPI6), the EU (KPI7) or the US (KPI8). Processes 1-3 all

appear to be economically viable, irrespective of where the

chemical reagent is purchased.

This study indicates that CO2 mineralization using industrial

by-products may be part of a solution going towards a more

circular economy. However, as only operational costs were

included in the present analysis, the impact of including

investment costs could be investigated in a future study.
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Appendix B: Simulation inputs 
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Phase Transformations in Steelmaking Slags: A Thermodynamic Approach 

Tuomas Alatarvas, Rita Kallio, Eetu-Pekka Heikkinen, Qifeng Shu 

Process Metallurgy Research Unit, Centre for Advanced Steel Research, 

University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland  

Abstract: In addition to solidification, steelmaking slags may undergo phase transformations in solid state 

during their cooling process. The mineralogy of these oxide slags is significantly influenced by the chemical 

composition and cooling rate. For the phases forming, two distinct solidification modes can be assumed, 

depending on the cooling rate: equilibrium cooling and Scheil–Gulliver cooling. Characterization methods, 

such as scanning electron microscopy (SEM) and electron probe microanalyzer (EPMA) allow analyzing 

the elemental composition of individual phases. Here, computational thermodynamics were applied in 

phase identification of crystallized electric arc furnace (EAF) slags. FactSage 8.3 thermodynamic 

calculation software was used to estimate the composition of stable phases as a function of temperature. 

Solid solutions with varying compositions were considered in this study. The calculation results from two 

solidification modes, i.e., equilibrium cooling and Scheil-Gulliver cooling, were saved in Excel 

spreadsheets. A MATLAB script was developed to go through the results and find the phase with a 

composition closest to the input values. For both solidification modes, the composition and temperature 

best fitting the input analysis was determined. The input is the elemental composition of the phase of 

interest, acquired using EPMA. After the data processing, the results are visualized in graphs, illustrating 

the analyzed and estimated compositions of the identified solid solution phase and its occurrence 

temperature. 

Keywords: computational thermodynamics, mineralogy, slag, solidification 

1. INTRODUCTION 

Various types of ferrous slags are generated as by-products of 

steel industry. During the melting and reduction of iron ore to 

produce pig iron in a blast furnace, the most voluminous of 

these, Blast Furnace Slag (BFS) is produced, whereas steel 

slag is generated either by converting pig iron to steel in a 

Basic Oxygen Furnace (BOF) or from the melting of scrap to 

produce steel in Electric Arc Furnace (EAF). According to 

EUROSLAG data (European Association representing 

metallurgical slag producers and processors), 37 million tons 

of slag were produced in 2018, of which 20.7 million tons are 

BFS and 16.3 million tons are various types of steelmaking 

slags. EAF slags from carbon steel production represent 26.2% 

of the steelmaking slags (Euroslag Statistics, 2018). The main 

applications of steelmaking slags include production of 

aggregates for road construction, cement or concrete addition, 

fertilizer, hydraulic engineering, and internal use for 

metallurgical purposes (Bru et al., 2021). 

The physical and chemical characteristics of the EAF slags are 

dictated by the raw materials used, the constraints of the 

production process and the cooling method. The main oxide 

components of EAF slags are iron oxides (FeOn), lime (CaO), 

silica (SiO2), magnesia (MgO) and alumina (Al2O3), in 

addition to minor components such as chromium, manganese 

and phosphorus oxides (Bru et al., 2021). These components 

form minerals such as dicalciumsilicates (commonly as 

monoclinic β form, larnite) monoxide solid solution 

(Mg,Fe)O, (Mg,Cr,Fe,Al)-spinel, calcium ferrites, calcium 

aluminates and melilite group members such as gehlenite 

(Mombelli et al., 2014, Li et al., 2022). 

In addition to solidification, steelmaking slags may undergo 

phase transformations in solid state during their cooling 

process. The stability of phases in the oxide system can be 

assessed with computational thermodynamics software such as 

FactSage (Bale et al. 2002). For a given total composition of 

the system, the equilibrium composition can be calculated, for 

instance as a function of temperature. For the phases forming 

during solidification of molten slags, two distinct solidification 

modes can be assumed, depending on the cooling rate: 

equilibrium cooling and Scheil–Gulliver cooling. Equilibrium 

cooling assumes that the whole system is in equilibrium during 

the cooling process. On the other hand, the Scheil–Gulliver 

model, as described by Durinck et al. (2007), assumes no 

diffusion in the solid phases, infinitely rapid diffusion in the 

liquid phase, and local equilibrium at the solid/liquid interface. 

This means that the solidified phases are considered inert, and 

the final phase structure is reached when the system has 

completely solidified. Andersson et al. (2024) utilized 

FactSage for assessing the Scheil–Gulliver solidification 

sequence of EAF slags with varying composition. The authors 

reported that for the unmodified slag, with basicity (CaO/SiO2 

ratio) of 2.0, the primary crystallizing phase is monoxide. 

Modification of the slag by decreasing the basicity to 1.5 and 

1.0 promoted the formation of spinel type phases. 

The current study presents a method to compare the 

thermodynamic calculation results with the elemental analysis 

obtained from steelmaking slags. Interpreting the results 
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allows the estimation of the formation sequence and 

temperature for the identified phases. 

2. MATERIALS AND METHODS 

2.1 Investigated materials 

The samples (Slag#1 and Slag#2) provided for this study were 

produced in two scrap-based EAF steelmaking sites, which 

manufacture advanced steels for the automotive and 

engineering industries. Slags are air-cooled with moderate 

irrigation and processed according to conventional slag-

handling procedures including crushing, sieving and magnetic 

separation stages. 

Representative samples from the two sites were delivered to 

Raahe Research Centre, which conducted the bulk XRF 

analyses using Malvern Panalytical equipment with Rh X-ray 

tube and MsDecipher 2.4.17 calculation program. The 

composition data of the studied slags is presented in Table 1. 

Table 1. Chemical composition of the studied slags, in wt.%. 

 Slag#1 Slag#2 

SiO2 12.13 12.96 

Al2O3 7.30 8.81 

MgO 3.80 8.71 

CaO 39.58 32.41 

FeO 29.53 30.21 

MnO 5.44 4.96 

Cr2O3 2.22 1.93 

 

2.2 Electron probe microanalyzer 

Polished blocks (Ø 25 mm) of the slag samples were prepared 

for electron probe microanalyzer (EPMA) analysis, which was 

conducted at the Centre for Material Analysis, University of 

Oulu. The blocks were coated with carbon prior to analyses. 

A JEOL JXA-8530FPlus electron probe microanalyzer (JEOL 

Ltd., Tokyo, Japan) equipped with X-ray Wavelength 

Dispersive Spectrometer (WDS) was employed to characterize 

mineral chemical compositions in slags, with the analytical 

conditions including an accelerating voltage of 15 kV, a beam 

current of 15 nA, and a beam diameter of 1–10 µm. The peak 

and background counting times were set at 10 s and 5 s, 

respectively, for all components. The matrix correction with 

the ZAF method (atomic number—absorption—fluorescence) 

was applied. Backscattered electron (BSE) detector was used 

for imaging of the samples. 

2.3 Computational thermodynamics 

Computational thermodynamics software FactSage 8.3 and its 

FToxid database were used to estimate the stable phases in the 

studied materials. In addition to liquid oxide slag, 29 solid 

solutions from the FToxid database were selected for the 

calculations. Table 2 lists the selected solutions with 

explanatory composition or mineralogical name. 

Stoichiometric, pure compounds were not included in the 

system. For the studied materials, the phase fractions and their 

compositions were calculated as a function of temperature. 

In the equilibrium solidification mode, phase stability was 

calculated in the temperature range of 1800–300 °C. For the 

Scheil–Gulliver solidification mode, the starting temperature 

was defined as 1800 °C, where both studied compositions are 

fully liquid. Here, the cooling step was defined as 25 °C. The 

results were saved as Excel spreadsheet files. 

Table 2. Selected solutions for the calculations. 

Solution name Example composition or 

mineralogical name 

A-slag Liquid oxide slag 

B-spinel Magnetite (Fe3O4), 

Manganoferrite (MnFe2O4),  

Manganochromite (MnCr2O4), 

Chromite (FeCr2O4),  

Galaxite (MnAl2O4). 

A-monoxide Wüstite (FexO), Lime (CaO), 

Periclase (MgO), 

Magnesiowüstite (MgO-FexO), 

Manganowüstite (Mn-Fe)xO, 

Manganosite (MnxO). 

A-Clinopyroxene Clino-enstatite (MgSiO3), 

(Metastable) clino-ferrosilite 

(FeSiO3) 

A-Orthopyroxene Ortho-enstatite (MgSiO3), 

(Metastable) ortho-ferrosilite 

(FeSiO3) 

A-Protopyroxene Proto-enstatite (MgSiO3) 

LowClinopyroxene CaMgSi2O6 - Mg2Si2O6 solid 

solution 

A-Wollastonite CaSiO3 

Bredigite Ca3(Ca,Mg)4Mg(SiO4)4 

bC2SA Ca2SiO4 

aC2SA Ca2SiO4 

A-Melilite Akermanite (Ca2MgSi2O7) 

A-Olivine Forsterite (Mg2SiO4), Fayalite 

(Fe2SiO4), 

Cordierite Al4Fe2Si5O18 - Al4Mg2Si5O18 

solution 

Mullite [Al,Fe]2[Al,Si,B,Fe][O,Va]5 

CAFS Ca2(Al,Fe)8SiO16 

CAF6 Ca(Al, Fe)12O19 

CAF3 Ca(Al,Fe)6O10 

CAF2 Ca(Al,Fe)4O7 

CAF1 Ca(Al,Fe)2O4 

C2AF Ca2(Al,Fe)2O5 

C3AF Ca3(Al,Fe)2O6 

Corundum Corundum (Al2O3) 

Garnets Grossularite (Ca3Al2Si3O12) 

CaSpinel CaCr2O4 - CaFe2O4 solid solution 

A-Tetragonal-

Spinel 

Low-temperature Mn3O4 dissolving 

Fe, Mg, Cr, Ti and Al 

Bixbyite Mn2O3 

Braunite Non-stoichiometric Mn7SiO12 

Rhodonite MnSiO3 

Pyroxmangite MnSiO3 - MgSiO3 solution 

2.4 Data processing 

The procedure for data processing is presented in Fig. 1. The 

Excel spreadsheet files must be generated once for a sample 
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with a specified composition. After that, the phase 

identification is carried out using MATLAB scripting. As 

input values, the WDS point analysis of Mg, Al, Si, Ca, Cr, 

Mn, and Fe is compared with the compositions of all existing 

phases at all temperatures, read from the Excel spreadsheets. 

The results are then visualized for a given point analysis, 

showing the best R2 fit for the calculated vs. analyzed 

Mg, Al, Si, Ca, Cr, Mn, and Fe contents, along with their 

occurrence temperature for both equilibrium cooling and 

Scheil–Gulliver solidification modes. 

 

Fig. 1. Flowsheet for the data processing. 

3. RESULTS AND DISCUSSION 

3.1 Slag#1 

The fractions of equilibrated phases according to equilibrium 

cooling in Slag#1 is presented in Fig. 2. At 1800 °C, the slag 

is fully liquid. As the temperature decreases to approx. 

1700 °C (liquidus temperature), tetragonal spinel is the first 

solid phase to form, followed by monoxide phase at around 

1500 °C. As the temperature further decreases to 1050 °C, the 

system is completely solid (solidus temperature). The results 

reveal solid state phase transformations of silicate phases 

bC2SA, bredigite and olivine. In addition, stable phases 

include calcium aluminate C3AF with Fe solubility, another 

monoxide phase, and a small amount of another spinel phase 

(B-spinel) below 400 °C. 

Scheil–Gulliver solidification results for Slag#1 are presented 

in Fig. 3. Tetragonal spinel is the first forming solid phase, 

followed by monoxide. Other phases to form during 

solidification are bC2SA and C3AF. In this case, the solidus 

temperature is comparable to the value with equilibrium 

cooling. By definition, solid state transformations do not occur 

in Scheil–Gulliver solidification. Therefore, bC2SA silicate 

exists in the final solidification phase structure. 

BSE image of Slag#1 sample is presented in Fig. 4, acquired 

with EPMA. The phase identification procedure results are 

presented for selected points of interest: A, B, and C with 

distinct grayscale brightness. 

 
Fig. 2. Phase fractions in Slag#1, equilibrium cooling. 

 
Fig. 3. Phase fractions in Slag#1, Scheil–Gulliver solidification. 

 

 

Fig. 4. BSE image of Slag#1. 
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The graphs presented in Fig. 5 present the WDS analyzed 

contents of Mg, Al, Si, Ca, Cr, Mn, and Fe for point A in Fig. 4. 

Comparing to the FactSage calculated values, it is found that 

the analyzed values correspond best to monoxide phase around 

1100–1150 °C both for equilibrium cooling and Scheil–

Gulliver solidification. According to the chemical 

composition, this appears to be a wüstite based solid solution 

(Fe,Mn,Mg,Cr)O. 

 

 

Fig. 5. Elemental composition of point A compared to the calculated 

stable phases in Slag#1. 

 

 

For point B observed in Fig. 4, the results are shown in Fig. 6. 

According to both cooling calculations, the composition is 

closest to tetragonal spinel occurring at high temperatures, 

with an R2 value of approx. 0.63. Noting the analyzed high 

chromium content, the phase composition is close to chromite 

(FeCr2O4), another spinel phase. 

 

 
Fig. 6. Elemental composition of point B compared to the 

calculated stable phases in Slag#1. 
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It is observed in Fig. 7 that the composition in point C contains 

mostly calcium and silicon, whereas other considered elements 

are close to zero, suggesting a silicate phase. The equilibrium 

cooling calculation indicates that the phase is olivine at the 

minimum calculation temperature. The Scheil–Gulliver 

solidification calculation shows another silicate phase, 

bC2SA. 

 

 
Fig. 7. Elemental composition of point C compared to the 

calculated stable phases in Slag#1. 

3.2 Slag#2 

The fractions of phases according to equilibrium cooling in 

Slag#2 is presented in Fig. 8. At 1800 °C, the slag is fully 

liquid. As the temperature decreases to approx. 1700 °C, 

monoxide is the first solid phase to form, followed by 

tetragonal spinel almost immediately. The system is 

completely solid at ~1100 °C. Similarly to Slag#1, silicate 

phases bC2SA, bredigite and olivine undergo solid state phase 

transformation. A stability region of calcium aluminates CAF1 

and C3AF is found, both with Fe solubility. Another monoxide 

phase and B-spinel appear at relatively low temperatures. 

The Scheil–Gulliver solidification results for Slag#2 are 

presented in Fig. 9. As expected from the equilibrium cooling 

results, the first forming solid phases are monoxide and 

tetragonal spinel. Other precipitating phases include bC2SA, 

CAF1, and C3AF. Contrary to equilibrium cooling, melilite 

phase exists in the results. Here, the solidus temperature is 

lower (~1050 °C) than in equilibrium cooling (~1100 °C).  

 
Fig. 8. Phase fractions in Slag#2, equilibrium cooling. 

 
Fig. 9. Phase fractions in Slag#2, Scheil–Gulliver solidification. 
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BSE image of Slag#2 sample is presented in Fig. 10. For the 

second slag sample, the procedure results are presented for 

selected points of interest: D, E, and F. 

 

 

Fig. 10. BSE image of Slag#2. 

 

For point D, the phase identification results are plotted on Fig. 

11. Here, the WDS analysis contains mostly calcium and 

aluminum, with near-zero amount of other considered 

elements. From both calculation results, the composition 

corresponds to calcium aluminate C3AF. The calculated 

composition is very close to stoichiometric 3CaO·Al2O3 in 

both cases, explaining the identical resulting R2 values. 

 

 
Fig. 11. Elemental composition of point D compared to the 

calculated stable phases in Slag#2. 
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It is observed in Fig. 12 that the composition in point E 

contains mostly calcium and silicon, whereas other considered 

elements are close to zero, suggesting a silicate phase. The 

equilibrium cooling calculation indicates that the phase is 

olivine occurring at low temperatures. The Scheil–Gulliver 

solidification calculation shows another silicate phase, bC2SA 

with a composition occurring at 1025 °C.  

 

 

Fig. 12. Elemental composition of point E compared to the 

calculated stable phases in Slag#2. 

 

 

 

 

Figure 13 shows the results for point F in Slag#2. Comparing 

to the calculated values, it is observed that the analyzed values 

match a monoxide phase both for equilibrium cooling and 

Scheil–Gulliver solidification. According to the WDS 

analysis, this appears to be a wüstite based solid solution 

(Fe,Mn,Mg,Cr)O. 

 

 

Fig. 13. Elemental composition of point F compared to the

calculated stable phases in Slag#2. 
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4. CONCLUSIONS

In addition to chemical composition, the cooling rate affects

the phases forming during solidification and cooling of oxide-

based steelmaking slags. The thermodynamic calculation

software FactSage was used to estimate the phase fractions and

their composition as a function of temperature, according to

equilibrium cooling and Scheil–Gulliver solidification. The

current study presents a method to compare the

thermodynamic calculation results with the elemental analysis

obtained from steelmaking slags. Interpreting the results

allows the estimation of the formation sequence and

temperature for the identified phases.

In this study, two EAF slag materials, samples Slag#1 and

Slag#2 were investigated. The thermodynamic calculations

show some similarities in the materials: the stable phases

include monoxide (wüstite), spinel, calcium silicates and

calcium aluminate phases. The equilibrium cooling results

illustrated solid state phase transformations of calcium

silicates, bC2SA–bredigite–olivine with decreasing

temperature. The presented phase identification procedure can

be used to visualize the elemental composition of the analyzed

points and confirm the mineralogical group. For monoxide

phases, calcium silicates, and calcium aluminates, the

FactSage calculated and WDS analyzed compositions

correspond with excellent R2 values (>0.9). However, the

FactSage calculated chromium content in spinel phase

(chromite FeCr2O4), was lower than analyzed, resulting in

moderate R2 value.

The presented approach can be used to visualize the results for

different experimental scenarios: altering the cooling rate of

the slag, effect of iron saturation in the system, or the

atmosphere effect. In addition, the results using different

databases in the FactSage calculations can be compared.

The procedure is not restricted to slag materials, instead, a

similar approach can be applied to other systems where

solidification and possible solid state phase transformations

take place. Besides EPMA, other analysis methods can be

employed, for instance Scanning Electron Microscope (SEM).
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Abstract: Non-metallic inclusions (NMIs) are micrometer-sized particles observed in all steel materials, 

often considered detrimental. In this study, NMIs in titanium-deoxidized steels were investigated, 

complemented with thermodynamic assessment for more accurate phase characterization. The NMIs were 

analyzed with a Jeol JSM-7900F FESEM-EDS (Field Emission Scanning Electron Microscope equipped 

with Energy Dispersive X-ray Spectroscope). For automated particle analyses on FESEM, Aztec Feature 

runs were carried out on polished steel samples, providing the elemental composition, in addition to 

morphological data, for each observed NMI. Utilizing the obtained EDS analyses, the fractions of oxides 

(Al2O3, MnO, TiOx), manganese sulfide (MnS), and titanium nitride (TiN) in each NMI are estimated with 

a MATLAB script. Based on the estimated phase contents, a composition-based classification method for 

the NMIs is presented. To visualize the phase contents of the observed NMIs, the calculated compositions 

are plotted on MnO–TiO2–Ti2O3 ternary diagrams. Computational thermodynamics software FactSage 8.3 

was firstly utilized to estimate the fully liquid NMI composition region at steelmaking temperatures in the 

considered ternary oxide system of MnO–TiO2–Ti2O3. Secondly, the thermodynamic stability of NMI 

phases in the steel was assessed with decreasing temperature during the solidification of steel. The current 

study demonstrates how computational thermodynamics can be utilized in characterization and 

classification of non-metallic inclusions and giving insight on their formation during solidification of steel.  

Keywords: computational thermodynamics, non-metallic inclusions, steel 

1. INTRODUCTION

The composition of non-metallic inclusions (NMIs) in steel is

mainly dependent on the total elemental composition of the

steel. To enhance steel cleanliness by decreasing the oxygen

content, the molten steel must be deoxidized by introducing

deoxidation agents. Conventional deoxidation agents include

aluminum and silicon, binding the oxygen to Al2O3 and SiO2

based NMIs. Titanium can be used as a deoxidation agent

when titanium oxide based NMIs are desired. These types of

NMIs are known to affect the microstructure in welded

structures, both in weld metal and in heat-affected zones by

inducing the formation of acicular ferrite (Tervo et al. 2020,

2021; Loder et al. 2016)

The titanium contents in Ti-deoxidized steels affect the phases

observed in NMIs. According to the presentation by Panda

et al. (2019), the MnO–TiO2–Ti2O3 oxide system includes

spinel, ilmenite, and pseudobrookite solid solutions with

varying compositions, as illustrated in Fig. 1. According to

Wang and Li (2021) and Wang et al. (2018), the higher 

Mn content in spinel and ilmenite – compared to 

pseudobrookite – promotes the formation of beneficial 

acicular ferrite by depleting the Mn content of the steel 

matrix in the vicinity of NMIs.

 

 

Fig. 1. MnO–TiO2–Ti2O3 ternary diagram with the main solid 

solutions. 
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In addition to the primary NMIs formed during the deoxidation 

process in the molten steel, other NMIs can form during further 

processing and solidification of the steel. The primary NMIs 

can act as nucleation sites for forming phases. To estimate the 

phases forming in the molten steel and during solidification of 

steel, thermodynamic assessment can be applied. While the 

rate of the reactions is not taken into account, the amount and 

composition of stable phases at a given temperature can be 

estimated. The assumption of thermodynamic equilibrium can 

be considered reasonable in molten steel (>1500 °C) with 

homogeneous composition. As the steel solidifies, kinetics 

constrain achieving the equilibrium. However, the 

thermodynamic equilibrium points the direction of possible 

NMI reactions also in the solid state. 

The current study demonstrates how computational 

thermodynamics and data processing can be utilized in 

characterization and classification of non-metallic inclusions 

and giving insight on their formation during solidification of 

steel. 

2. MATERIALS AND METHODS 

2.1 Investigated materials 

In this study, NMIs in two samples of titanium-deoxidized 

steels were investigated. The materials were denoted as TiLow 

and TiHigh, according to their titanium contents (Tervo et al. 

2020, 2021). The chemical compositions of the samples are 

presented in Table 1. The material was cast in a laboratory to 

20 kg ingots. After hot rolling of the ingots, polished cross 

section samples were prepared for NMI investigation. 

Table 1. Composition of the studied steels, in wt%. 

 TiLow TiHigh 

C 0.05 0.05 

Si 0.23 0.03 

Mn 1.7 1.7 

P 0.007 0.005 

S 0.003 0.003 

Al 0.003 0.002 

Nb 0.01 0.01 

V 0.07 0.07 

Ti 0.016 0.027 

N 0.008 0.006 

O 0.0047 0.0080 

2.2 Scanning electron microscopy 

Non-metallic inclusions were analyzed with a Jeol JSM-7900F 

FESEM-EDS (field emission scanning electron microscope 

with energy dispersive X-ray spectroscopy). The 

characteristics, including elemental composition and 

morphology, of particles larger than 2 µm in an equivalent 

circle diameter were analyzed with Aztec Feature automated 

particle analysis functionality. The scanned section in each 

sample covered an area of approximately 52 mm2, comprising 

of total 330 fields at 250x magnification. Figure 2 presents one 

of the fields imaged with backscattered electron (BSE) 

detector, illustrating gray NMI particles on light background, 

i.e., steel. 
 

 
Fig. 2. Single field imaged on FESEM, showing NMI particles in 

steel. 

After the Feature runs, representative NMIs were selected 

from the dataset. High-resolution BSE images and EDS point 

analyses were acquired after relocating the selected sites. 

2.3 Classification of non-metallic inclusions 

There are various ways to process the raw data acquired with 

the Feature particle analysis runs (Alatarvas et al 2019, 

Wartiainen et al. 2020). Here, all particles containing less than 

30 wt.% of Al, Mn, N, Ti and S in total were discarded. The 

remaining particles were considered true NMIs, comprising of 

components Al2O3, MnO, MnS, TiN, TiO2 and Ti2O3. To 

estimate the phase composition, the following stepwise 

procedure was applied, utilizing the EDS analyses of Al, Mn, 

Ti, N, S, and O of each NMI. 

1. All analyzed Al bound to Al2O3, 

2. All analyzed S bound to MnS, 

3. All analyzed N bound to TiN, 

4. Remaining Mn (from the 2nd step) bound to MnO, 

5. Remaining Ti (from the 3rd step) and O (from the 1st and 4th 

step) determine the proportions of TiO2 and Ti2O3. 

The total amount of components was scaled to 100 wt.%, after 

which the NMIs were classified into combinations of Al2O3, 

MnO, MnS, TiN, and TiOx with a 10 wt.% threshold, totaling 

31 combinations, i.e., inclusion classes. For plotting, the oxide 

system was considered MnO–TiO2–Ti2O3, allowing the 

construction of ternary diagrams.  

Executed with MATLAB scripts, the presented approach 

allows the data processing and visualization of the NMI 

characteristics in the scanned area, as well as for individual 

NMIs with point analyses. 

2.4 Computational thermodynamics 

Computational thermodynamics software FactSage 8.3 

(Bale et al. 2002) and its FToxid database was used to assess 

the composition region in the MnO–TiO2–Ti2O3 system, 

where oxides exist only as fully molten slag. Considering 

steelmaking temperatures (1500–1700 °C) and plotted into 

ternary MnO–TiO2–Ti2O3 diagram with the Phase Diagram 

module, the region is denoted as liquid window. Here, solid 
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solutions of monoxide, titania spinel, rutile, ilmenite, and 

pseudobrookite were considered as precipitating phases, 

included in the considered system. 

Further, FactSage was used to assess the stability of NMIs as 

a function of temperature with the steel compositions reported, 

with total mass of 100 g of material. Equilib module with the 

databases FSstel and FToxid were selected for the calculations, 

with the following solid solutions in addition to liquid steel and 

liquid slag: FCC (face-centered cubic, austenite), BCC (body-

centered cubic, ferrite), cementite (Fe3C), MS-c (MnS–FeS 

solid solution), A-monoxide, corundum, A-rutile, A-ilmenite, 

A-olivine, pseudobrookite, B-spinel, and titania spinel were 

considered. For plotting of the results, also TiN (as FCC 

phases) was included, known as a possible NMI type, whereas 

other nitrides and carbides were omitted. 

3. RESULTS AND DISCUSSION 

3.1 Sample-specific NMI characteristics 

The Feature particle analyses resulted in total of 2623 and 

1255 observed particles in TiLow and TiHigh samples, 

respectively. After applying the compositional criteria, the 

number of particles were decreased to 2210 and 1177, to 

represent the true NMIs in TiLow and TiHigh samples, 

respectively. The results according to the classification 

procedure are presented in Fig. 3. It can be seen that the 

number of particles per scanned area is in the range of 22–42 

particles per square millimeter. In TiLow sample, the most 

dominant NMI class is “MnO MnS TiN TiOx”, which 

translates to oxides in the MnO–TiOx system with precipitated 

sulfide (MnS) and nitride (TiN) phases. Both samples are also 

characterized by the occurrence of “MnO TiOx” type 

inclusions, i.e., oxides without sulfide and nitride phases. 

 

 
Fig. 3. Number of NMIs per unit area, by NMI classes. 

 

3.2 Selected NMIs with point analyses 

Selected NMIs were located from the Feature dataset after the 

run, saving high-resolution BSE images. The BSE images 

illustrate compositional contrast: high atomic number (heavy) 

elements show as brighter areas than low atomic number

(light) elements. Therefore, the images can aid in observing

the phase complexity of NMIs.

EDS analyses were manually acquired from certain points in

the NMIs. Further, the EDS analyses were used as an input in

a MATLAB script to visualize the oxide composition in a

ternary diagram. In this section, a total of five representative

oxide inclusions are presented, with corresponding

compositions plotted on ternary diagrams.

In Fig. 4, a BSE image of an oxide NMI in the TiLow sample is

presented. The structure of the NMI comprises of the primary

oxide phases (points 8 and 9) with precipitated phases on 

their surfaces (points 7 and 10). After the calculation 

procedure and plotting onto ternary diagram, shown in Fig. 

5, it is observed that the points 7–9 locate near the 

pseudobrookite solid solution line (Mn2TiO5–Ti3O5). On 

the other hand, the point 10 is closer to the spinel 

composition on the Mn2TiO4– MnTi2O4 line.

 

 
Fig. 4. BSE image of NMI#1, with EDS analyzed points. 

 
Fig. 5. Estimated oxide compositions of the analyzed points in 

NMI#1. 
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Figure 6 presents a BSE image of another oxide NMI in the

TiLow sample. A layered structure is observed, with

pseudobrookite phases in the core, found on points 23 and 

24, as shown in Fig. 7. The darker phase at point 22 is 

spinel, according to the phase identification procedure.

 

 
Fig. 6. BSE image of NMI#2, with EDS analyzed points. 

 
Fig. 7. Estimated oxide compositions of the analyzed points in 

NMI#2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A cross section of a spherical NMI is presented in Fig. 8, 

observed in TiHigh sample. The uniform gray shade and the 

roundness suggest that the NMI has been fully liquid in the 

molten steel, before solidification. As observed in Fig. 9, the 

variation in the calculated oxide composition is negligible, 

with points 1–3 located near the pseudobrookite solid solution 

line. 

 

 
Fig. 8. BSE image of NMI#3, with EDS analyzed points. 

 

 
Fig. 9. Estimated oxide compositions of the analyzed points in 

NMI#3. 
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In Fig. 10, BSE image of another spherical NMI in the TiHigh 

sample is presented. Comparing with the estimated 

compositions of points 8–10 in Fig. 11, it is concluded that the 

main phase is pseudobrookite, which has been most likely 

molten at steelmaking temperatures. The enclosed light phase 

has a composition higher in TiO2 content, closer to the rutile 

corner of the presented ternary diagram. 

 

 
Fig. 10. BSE image of NMI#4, with EDS analyzed points. 

 

 
Fig. 11. Estimated oxide compositions of the analyzed points in 

NMI#4. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some agglomerated NMIs were observed in the TiHigh sample. 

The NMI presented in Fig. 12 is separated by a crack, seen as 

a black stripe in the BSE image. The primary composition of 

the oxides (points 16–19) are located near the pseudobrookite 

line. The composition of point 20 is nearly all titanium nitride 

(TiN), thus it is not plotted in the oxide ternary diagram in Fig. 

13. Found on the periphery of the NMI, it can be concluded 

TiN has precipitated as a secondary phase on the surface of the 

primary oxide NMI during the solidification of the steel. 

 

 
Fig. 12. BSE image of NMI#5, with EDS analyzed points. 

 

 
Fig. 13. Estimated oxide compositions of the analyzed points in 

NMI#5. 
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3.3 Liquid window in the MnO–TiO2–Ti2O3 system 

Figure 14 presents the colored-line isotherms 1500 °C, 

1600 °C, and 1700 °C for all-liquid regions in the MnO–TiO2–

Ti2O3 oxide system. At 1500 °C, the liquid window is located 

between the MnO and TiO2 compositions, extending slightly 

towards the Ti2O3 corner. Increasing the temperature to 

1600 °C and 1700 °C, the all-liquid region expands notably. 

The univariant phase regions, separated by black lines, show 

the first-precipitating phases when an all-liquid slag with a 

certain composition starts to solidify. The chemical 

composition of the presented spherical NMIs corresponds to 

pseudobrookite phase, fully molten at 1600 °C. 

 

 
Fig. 14. All-liquid isotherms and univariant phases in the MnO–

TiO2–Ti2O3 oxide system.

3.4 Thermodynamic stability of NMIs

Figures 15 and 16 present the mass of thermodynamically 

stable phases as a function of decreasing temperature, 

depicting the solidification of steel. As the total mass of 

the system is constant 100 g, the mass corresponds to weight 

percentages in the system. The results show some similarities 

because of the comparable steel compositions. The slight 

variations originate from the differences in aluminum, 

titanium, oxygen, and nitrogen contents.

For both samples, all NMIs are as fully liquid slag until around

1650 °C. Excluding steel, the first solid solution to precipitate

is pseudobrookite in both cases. As the solidification of steel

progresses, titanium nitride TiN and manganese sulfide MnS

start to form as well. As the temperature further decreases, a

transformation of oxides can be observed: first pseudobrookite

to corundum and ilmenite, then towards spinel and olivine

stability.  In practice, kinetics constrain the reactions in the

solid state, thus the equilibrium at lower temperatures is never

achieved. Comparing the calculations to the observed NMI#2

presented in Fig. 6, the results are in line. The core of the NMI

is pseudobrookite, since it is the first precipitating solid phase

from the fully liquid oxide inclusions. On the periphery of

pseudobrookite, spinel phases are observed, further

precipitated during solidification.

 

 

Fig. 15. Mass of stable compounds in TiLow sample. 

 
Fig. 16. Mass of stable compounds in TiHigh sample. 

4. CONCLUSIONS 

A case study of classification and characterization of NMIs in 

titanium-deoxidized steel samples is presented. The analysis is 

coupled with computational thermodynamics. Data processing 

and visualization was executed by MATLAB scripts to 

automate the procedures. The presented approach allows the 

data processing and visualization of the total NMI 

characteristics in the scanned area, as well as for individual 

NMIs. 

Utilizing the presented methods, the sample-specific NMI 

types were presented, and for individual NMIs, oxide phases 

in the MnO–TiO2–Ti2O3 system were identified. The primary 

oxide phases were pseudobrookite, a finding supported by the 

thermodynamic calculations. The spherical shape and 

homogeneous composition of pseudobrookite NMIs suggest 

they have been completely liquid in the molten steel. Spinel 

and TiN phases were observed as precipitated phases on the 

surface of pseudobrookite NMIs. 
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Abstract: Understanding the steel microstructure formation during thermal treatments is
crucial for controlling the mechanical properties of a steel product. One of the important
factors affecting the subsequent microstructure development is the austenite grain size. To gain
understanding of the effect of temperature dependent nucleation and growth rates, as well as
providing the tools for quantitatively control the austenite grain size distribution, we have
implemented a cellular automata (CA) model for describing austenite nucleation and growth
during heating, as well as austenite grain growth during holding in temperatures above the
austenitization temperature. The model implementation is based on previous study of Sieradzki
and Madej for grain growth during recrystallization now augmetned with the relevant equations
for describing the austenite nucleation and growth. The model parameters and their effect
on austenite grain size distributions are tested with numerical experiments. The developed
computational tool will serve as a basis that can be parameterized with experimental data in
the future, which will then enable quantitative predictions for austenite phase transformation
and grain size development.

Keywords: cellular automata, austenization, numerical modeling, steel, grain size

1. INTRODUCTION

The mechanical properties of metals and alloys depend
on their chemical composition and microstructures. Dur-
ing processing, various mechanisms drive microstructural
changes, including recovery, recrystallization, and grain
growth. Accurately predicting and controlling these evolu-
tions is vital for achieving desired mechanical properties.
By using models, engineers and designers can optimize
processing parameters (e.g., temperature, deformation,
strain rate) to achieve desired microstructures. This op-
timization leads to improved mechanical properties, such
as strength, ductility, and toughness.

During processing of steel, there are several temperature
regimes, where different phenomena take place. Sometimes
it is of interest to simulate heating and austenization,
which is employed to produce suitable austenite grain
structure and to facilitate formation of suitable precipi-
tates to enhance the mechanical properties. Naturally, also
for forming operations it is also of interest to austenitize
the material, which is easier to deform at austenitic state.
During cooling, austenite decomposes to ferritic phases.
However, in the current study, we restrict to the forma-
tion of austenite during heating, and the grain growth of
austenite, indicated in Fig. 1.

Fig. 1. Schematic illustration of thermal treatment of
steel including austenite formation and grain growth
stages, which are examined in this work.

Different types of models can be used for simulating
microstructure evolution. For example mean field models
Pohjonen et al. (2018); Seppälä et al. (2023) provide
rapid calculation method which can be coupled with
macroscopic heat conduction calculations Pohjonen et al.
(2021). Full field models, such as phase field Loginova
(2003); Pohjonen (2023), level-set Hallberg (2011) and
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cellular automata Sieradzki and Madej (2013) allow for
simulating the actual microstructure topology evolution.

Cellular Automata (CA) is the method of choice in this
study due to its ability to simulate meso-scale simula-
tion areas with a relatively low computing cost. It is a
method which can be used to simulate microstructure evo-
lution during recrystallization. CA is capable of represent-
ing topological features and realistically reflecting grain
boundary migration. It allows for accurate predictions of
grain size distribution and texture evolution. Zhu et al.
(2020)

In previous studies by authors, CA has been used to
simulate phase transformation from austenite to bainite
and martensite. The base model for those phase trans-
formations has been described in Seppälä et al. (2018),
martensite growth has been studied in more detail in
Kaijalainen et al. (2019), bainite growth has been studied
in more detail in Seppälä et al. (2021) and the bainite
growth model has been utilized in Seppälä et al. (2023),
where in-situ SEM experiments were conducted to study
the growth of bainite during cooling.

In the current study, phase transformation from ferrite to
austenite during heating will be simulated with another
CA model. It is based on Sieradzki and Madej (2013),
where static recrystallization and grain growth are sim-
ulated. The equiaxial grain growth and grain boundary
development algorithms are utilized. The equations for nu-
cleus formation and driving force for growth are modified
to suit phase transformation instead of recrystallization.

2. THEORY, MODELLING AND SIMULATION

In this section we describe the theory and approximations
of the models for austenite nucleation from initial ferrite
during heating, the growth of the austenitic regions to
the surrounding ferrite and the evolution of the austenitic
grain structure due to interaction of the neighbouring
distinct austenitic grains. The nucleation model is based
on the classical nucleation theory Porter and Easterling
(2022) with using simplifications that allow the model to
be used with only few fitting parameters Kirkaldy (1983);
Luukkonen et al. (2023). The austenite growth is described
as a thermally activated process. In the current study the
diffusion effects are not explicitly included in the model,
but both the nucleation and growth rate are limited by
the equilibrium constraints, which dictate the temperature
where austenite can form and the maximum austenite
fraction.

2.1 Austenite nucleation and growth in ferrite

During heating, austenite regions nucleate in the initial fer-
ritic phase. Since it is energetically favourable for austenite
to nucleate at certain sites, such as defects, ferrite in-
terfaces, high-carbon regions, etc., the nucleation during
heating is heterogeneous. The heterogeneous nucleation
rate Nhet can be described by the following equation:

Nhet = ωCexp

(
−∆G∗

RT

)
exp

(
−∆Gm

RT

)
(1)

where R is the ideal gas constant, C is the concentration of
nucleation sites, ω is the attempt frequency for the nucle-

ation, ∆Gm is the activation energy per atom for atomic
migration between the austenitic and ferritic regions and
∆G∗ is the energy barrier for nucleation of austenite from
ferrite, which is strongly dependent on the temperature
relative to the austenite ferrite equilibrium temperature
Teq. Theoretically, the energy barrier ∆G∗ can be obtained
by calculating the total Gibbs energy change as a function
of nucleating austenite region size Porter and Easterling
(2022). Such a detailed approach could be viable, if the
energy values associated with the nucleus volume and
surface, as well as possible misfit strain energies and the
effect of local chemical inhomogeneities could be quanti-
tatively estimated. However, as it is difficult to estimate
all the effects, we take in the current study the widely

used pragmatic approach and replace ωCexp
(
−∆G∗

RT

)
in

Eq. (1) with the expression A(T − Teq)
a
(
1− χ

χmax(T )

)b

,

where χ is the transformed austenite fraction, χmax(T ) is
the temperature dependent maximum austenite fraction,
which can be obtained from thermodynamic databases.

The factor
(
1− χ

χmax(T )

)b

was added to limit the austen-

ite transformation to the maximum fraction that can be
transformed in temperature T . The parameters A, a and
b are kinetic fitting parameters that can be obtained by
fitting the model to experimental data. This expression
yields

Nhet = A(T − Teq)
a

(
1− χ

χmax(T )

)b

exp

(
−∆Gm

RT

)
(2)

which we have implemented in the CA model.

Austenite growth to the surrounding ferrite matrix is sim-
ulated as thermally activated process using the Arrhenius
type equation

v = F

(
1− χ

χmax(T )

)c

exp

(
−QG

RT

)
(3)

where F is a constant prefactor containing the attempt
frequency and average atomic sites per unit length as well
as the length of austenite interface progression due to one
transformation event, and QG is the activation energy for
growth.

2.2 Austenite-austenite grain interface evolution

The evolution of austenite-austenite interfaces, i.e. the
grain growth stage, is calculated based on the reference
Sieradzki and Madej (2013). When austenite grains have
impinged to each other, grain growth occurs to minimize
the surface energy. The effect of crystal orientations is
neglected in the current model, and in this case, the
surface energy minimization becomes dependent only on
the surface curvature κ. The speed of the interface between
the two austenite grains v is described by

v =
H

kT
exp

(
− Qb

RT

)
κ (4)

where H and Qb are parameters for fitting the thermally
activated, curvature dependent interface mobility.
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2.3 Cellular automata method

In Cellular Automata (CA), a simulation area is divided
into equal-sized, square-shaped cells. Each cell has an
individual value, which is manipulated using neighborhood
rules, which change the cell value based on user-defined
conditions. In this study, CA is used to simulate mi-
crostructural evolution of solid state steel, so the cell value
describes its phase instance. The CA model essentially
reshapes a graphical two-dimensional representation of the
steel microstructure.

The user-defined neighborhood rules are the main way
to customize the general CA solver. The neighborhood
rules, found in Sieradzki and Madej (2013), are applied
for ferrite-to-austenite phase transformation and austenite
grain growth. Phase transformation starts at nucleation,
which can occur anywhere on the simulation area, but
grain boundaries and similar high-energy areas have a
higher nucleation chance. From the point-of-view of the
CA algorithm, nucleation simply means that a single
cell of the simulation area is set to an austenitic phase
instance. A pseudo-hexagonal rule is used for equiaxial
grain growth. The rule works so that every cell checks
its neighboring cells for each time step, using the pseudo-
hexagonal pattern. Each neighboring cell that belongs to
an austenitic phase instance cumulatively increases the to-
tal phase transformation pressure of the checked cell, and
after the total transformation pressure increases higher
than a set level, the cell transforms to the neighboring
phase instance.

With this growth algorithm, the new austenitic grains
gradually grow freely into the old ferritic microstructure,
until the grains collide with each other. At this point,
the second neighborhood rule, which controls austenite
grain growth, activates. The basic principle for the rule
is that boundaries of two grains strive to be straight. For
each cell near a grain boundary, the amount of grain cells
are calculated in a long Moore (5x5 cells) neighborhood.
In a 2D case, this means that there are a total 25
cells in the neighborhood. If more than 15 of those cells
belong to the same grain as the checked cell, nothing
happens. Otherwise, the total pressure to change into the
neighboring grains cumulatively grows, which increases
according to the number of neighboring grain cells, and
after the total change pressure reaches a set level, the cell
transforms to the neighboring grain. when calculated for
all cells, this algorithm causes austenite grain boundaries
to gradually become more straight and some grains grow
at the expense of other, smaller grains, which gradually
disappear.

In a time-dependent simulation like CA, time-step is a
crucial parameter. The basic principle in choosing the
correct time-step is to use the largest possible time-step
that still keeps the simulation stable and produces correct
results. Using larger time-steps decreases total simulation
time, which obviously is a desirable outcome. On the other
hand, simulation stability is required to get reliable results,
so it becomes a key limiting factor for the time-step. In
this article, the main limitation comes from the relation
between austenite grain growth algorithm and cell size. if
the growth of austenite in a single time-step exceeds the
cell size, then the surplus growth goes to waste. In such

a case, the cell size of the simulation would become an
artificial limiter for grain growth. The initial time-step in
the following simulations has been chosen so that austenite
growth will not exceed cell size, and the solver includes a
safety check to decrease time-step size as necessary. This
makes sure that the growth rate in a single time-step will
not become too large.

3. SIMULATION EXAMPLES

To test the operation of the mathematical model, we
picked some parameter values in the order of magnitude
range, that could be expected in realistic cases. In the
current study, the parameter values are not fitted to
experimental data, but the aim is to demonstrate the
operation of the model and the relative effect of nucleation
and growth rates on the simulation outcome. We do not
consider specific steel in the current study, and the ther-
modynamic equilibrium temperatures were chosen based
on a textbook example Callister and Rethwisch (2000), p.
381. In that example, the equilibirium austenite formation
temperature is 727 oC, and the temperature dependent
maximum austenite fraction χmax was calculated using
the usual lever rule construction Callister and Rethwisch
(2000).

Four simulation test cases were performed, where the effect
of changing nucleation and growth rates was examined. In
all of the simulation cases, the heating rate was defined as
10 oC/s and initial temperature of the simulation was set
to 700 oC, which is well below assumed austenitization
temperature of 727 oC. Heating was continued for 25
seconds, until the maximum temperature of 950 oC was
reached. During the simulation, all the relevant mecha-
nisms operated, nucleation and growth primarily affected
the results until the austenite regions became more im-
pinged, and after this the grain growth phenomena had
more influence, and it became the dominating effect in the
later stages of the simulation.

To demonstrate the operation of the model, the following
parameters were used in the simulations: ∆Gm = 170
kJ/mol, QG = 140 kJ/mol, F = 25 × 10−5, a = 1, b = 1,
c = 1. Parameter A is dependent on the local probability
of nucleation in the initial ferritic microstructure, and it
was set to obtain reasonable effect within simulated times.
This approach is capable of taking in to account the fact
that the nucleation is heterogeneous, i.e. there usually are
sites that are more probable for nucleation, as well as
including the randomness to the simulation. In simulating
more realistic cases, the parameter values will be fitted
to data that can be obtained for example from simplified
laboratory experiments.

The model was tested for four different cases, scaling
the nucleation rate with factor of N and growth rate
with factor of G. This shows what kind of effect the
relative change in nucleation and growth rates have in the
formation of the microstructure.

Figure 2 shows overall transformed austenite fraction
as function of temperature during heating for the four
examined cases. The deflection of the curve at a range
of 50-70 % is mainly due to the temperature dependent
maximum austenite fraction χmax, which is a realistic
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Fig. 2. Overall transformed austenite fraction as function
of temperature during heating for the four examined
cases where the nucleation and growth rate were
scaled with parameters N and G respectively.

Fig. 3. The baseline simulation with scaling parameters
N = 1 and G = 1, where the other simulation cases
can be compared. Simulation snapshots where a) 25
%, b) 50 % and c) 75 % austenite has formed and d)
at the end of the heating stage 950 o

effect similar to that shown in Savran et al. (2010). Figure
3 shows the development of austenite grain structure
during heating for the case 1 (N=1, G=1). This case serves
as the baseline where the other simulation cases can be
compared.

Figure 4 shows the development of austenite grain struc-
ture during heating for the case 2 (N=1, G=0.5). This case
shows that when the growth rate is halved, there is much

Fig. 4. The development of austenite grain structure
during heating for the case 2 (N=1, G=0.5). a), b),
c), d) same fractions as in Fig. 3

more available nucleation sites at higher temperature, and
the resulting austenite structure becomes more refined.

Figure 5 shows the development of austenite grain struc-
ture during heating for the case 3 (N=0.5, G=1). This
case shows not much difference to the baseline case (case
1). The reason appears to be that the growth rate has
more effect to the nucleation by removal of the available
nucleation sites than actually halving the nucleation rate.

Figure 6 shows the development of austenite grain struc-
ture during heating for the case 4 (N=0.1, G=1). This
case shows that when the nucleation rate is more drasti-
cally diminished, it has significant effect to the resulting
austenite structure, as less austenite grains are formed and
they grow bigger.

4. CONCLUSIONS AND OUTLOOK

To form a basis for future research efforts relating to
austenite formation during heating and grain growth dur-
ing holding at high temperature, it was desired to con-
struct a model that includes the most important effects
pertaining to these processes.

The nucleation and growth rates for austenite formation
during heating are based on thermally activated processes,
taking account the temperature dependent variation of
the net energy gain due to the transformation, i.e. the
driving force, by using suitable parameterized functions.
The implemented model for grain growth during holding at
high temperature is based on the earlier article presented
in ref. Sieradzki and Madej (2013).

The model equations were used in the cellular automata
model implementation. The model operation was demon-
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Fig. 5. The development of austenite grain structure
during heating for the case 3 (N=0.5, G=1). a), b),
c), d) same fractions as in Fig. 3

Fig. 6. The development of austenite grain structure
during heating for the case 4 (N=0.1, G=1). a), b),
c), d) same fractions as in Fig. 3

strated with four examples by altering the nucleation and
growth rate. The purpose of the current article is to present
the theory and the numerical modelling aspects pertaining
to the examined phenomena. In future, the model will be
parameterized using experimental data and compared to
experimental microscopy results.
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Seppälä, O., Pohjonen, A., and Larkiola, J. (2021). Effect
of anisotropic growth and grain boundary impingement
on bainite transformation models. Proceedings of The
61st SIMS Conference on Simulation and Modelling
SIMS 2020, September 22-24, Virtual Conference,
Finland. doi:10.3384/ecp20176146.
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Abstract: To connect the molecular length scale phenomena to the macroscopic length scale in
diffusion controlled growth in solid state, there is need to consider the movement of individual
atoms in the crystal lattice and examine the length scale effect where the average density of the
atoms approaches to the continuum macro scale. For this purpose a lattice random walk model
has been constructed to represent the diffusion of atoms to form a precipitate. Once the atom
is in contact with the precipitate surface, the precipitate grows and the atom is not anymore
contributing to the random walk. Through the model, it is possible to evaluate the concentration
fluctuations at different length scales in diffusion controlled growth and connect the continuum
description of diffusion to the atomic level description. We connect the different length scales in
theoretical description from atomistic scale through random atom movements to macroscale. In
the current study, two-dimensional lattice random walks and growth are considered. The study
contributes to the modelling efforts of understanding diffusion controlled precipitate growth in
steels.

Keywords: Diffusion, random walk, scale bridging, atom level, continuum level, random
movement probability, neb method, saddle points.

1. INTRODUCTION

Diffusion is an important phenomenon, which affects dras-
tically the formation of several microstructural features
in materials, such as formation of precipitates (Pohjonen
et al., 2022), movement of phase boundaries (Pohjonen
2023), segregation of atoms to crystal defects (Cottrell

and Bilby, 1949; Macchi et al., 2024; Pohjonen et al.,
2022), etc. Therefore, it is of utmost practical importance
to obtain the highest possible level of thorough under-
standing of the phenomena that affects the diffusion in
atomic lattice in different conditions.

Traditionally, diffusion in macroscopic scales can be mod-
elled using the Fick’s laws of diffusion (Porter et al. ,
2022). The connection of the probability of molecular
movements and their macroscopic effects dates back to
Brownian motion and the theoretical explanation by Ein-
stein in ref. (Einstein (1905, 1906) and Smoluchowski
in ref. (von Smoluchowski 1906) as described in (Kac,
1947). Previously, the diffusional growth of a precipitate
in steels has been examined through random movements
of atoms in the atomic lattice. (Larsson and Ågren, 2003)
Also the activation energy that relates to the atomic
movement in steels has been calculated for austenitic and
ferritic/martensitic structures (Wang et al., 2021). In the
current study, we describe the theory connecting these
different length scales through the implementation of a

random walk algorithm for diffusional atom movement in
the atomic lattice. This approach provides initial step for
bridging the atomistic energy, length, and time scales to
macroscopic description, and it provides information on
the transition, where the inherent concentration fluctua-
tions in atomic scale diminish when increasing the length
scale.

2. THEORY

The basic connection between flux of atoms and the
random movement is reasonably straightforward. (Porter

et al., 2022) Consider neigbouring planes of atomic sites
containing diffusing atoms. If the diffusing atom on plane
1 has probability of px+ to move in positive x direction
to plane 2 and atom on plane 2 has probability px− to
move in the negative direction to plane 1, then the net
flux in x-direction fx = n̂x(px+n1 − px−n2)/A where n̂x

is the unit normal vector in x direction. For simplicity, let
us consider the movement of atoms in cubic lattice, where
the atom hops from one cube to another with probability
p. If the probability of the random atom movement is
independent of direction x, y, z, one obtains the Fick’s first
law of diffusion:

J = −D∇C (1)
where C is the concentration of atoms, and the tempera-
ture dependent diffusion coefficient D has the connection
to the atomic level probability of movement p through
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D =
1

2N
Γa2 (2)

where N is the dimension (for 2 dimensional diffusion
N = 2 and 3 dimensional diffusion N = 3) a is the lattice
constant and Γ is the frequency of atom movement, which
is related to the direction-independent probability p for
atom to move per unit time, and the number of dimensions

the atom can move during time-step.(Porter et al., 2022)
For example consider k timesteps. If atom has probability
px to move in x direction and probability py to move in
y-direction during one time-step ∆t, then the frequency of
the atom movement is Γ = pxk/(k∆t)+pyk/(k∆t) = (px+
py)/∆t. If probability px = py = p, then Γ = Np/∆t.
The equations (1) and (2) provide the connection between
average random atomic movement in bulk material and
the flux of atoms. The time evolution of the concentration
field can be obtained from the continuity equation by the
divergence of the flux, which yields the Fick’s 2nd law:

∂C

∂t
= −∇ · J = ∇ · (D∇C) (3)

At the atomistic scale, there is considerable fluctuation of
concentration about the average value due to the random
movement of atoms, which can be examined with random
walk simulations for different cases.

In case the probability of the random atomic movement p
is independent of the position x, the time evolution of the
concentration field is only affected by the gradient ∇C.
However, if the probability p(x) is function of position,
the drift (i.e. advection) of atoms occurs according to the
following equation:

∂C

∂t
= ∇ · (D∇C) = ∇D · ∇C +D∇2C (4)

which is the advection-diffusion equation, where the ad-

vection velocity v = −∇D = −∇Γa2

2N = −∇ pa2

2∆t . Consid-
ering the position dependent probability for random atom
movements p(x) and compression/tension of the lattice, it
becomes possible to link the atomistic phenomena to the
emergent macroscopic diffusion and advection phenomena

(Cottrell and Bilby, 1949).

An analytical solution is available for diffusion from point

concentration (MIT, 2024), which serves as a useful test
case for diffusion models (Pohjonen, 2024b,a), which
we shall compare to also in the current study. For two-
dimensions, the analytical solution is described by

C(x, y, t) =
M

4πDt
exp

(
−x2 + y2

4Dt

)
(5)

where M is the number of atoms.

The atom movement is thermally activated process, which
is caused by the random vibrations of atoms. If the
diffusing atom gains enough energy, it has high probability
of moving in the lattice. The probability for the atom
movement from a stable lattice site to another stable site
can be obtained from Arrhenius type equation:

p = Aexp

(
−EA

RT

)
(6)

where the activation energy barrier EA can be calculated
using atomistic simulations using the nudged elastic band

method (NEB) (Wang et al., 2021). NEB method is a
powerful tool to identify the microstructural evolution of a

system in which defects or impurity atoms are present and

they evolve interactively (Jónsson et al., 1998; Henkelman

et al.. 2000, 2002) The atomic scale information such as
the energies of the initial, final and transition states, can be
used to identify the energy barriers and can serve as inputs
to the description of mesoscale phenomena. Basically NEB
method can provide a minimum energy path that describe
the energy variaton of the atomic movement from an initial
to final state. It is a chain of states method, to determine
the minimum energy path on the potential energy surface.
Each atomic configuration will be at a potential energy of
0 K, represented by a point in the configuration space, and
can be determined either by empirical potentials or first
principles calculations. In the NEB method the initial and
final configurations will be calculated by minimizing the
energy and then a linear interpolation will be carried our
between the two end states to generate a finite number of
replicas. Two nearby replicas will be connected by a spring,
resembling an elastic band made of beads and springs.
To solve the corner cutting and sliding that can arise,
a force projection, such as ”nudging” is employed. This
procedure followed by proper optimization ensures that
the elastic band converges to the minimum energy path.
Further, after optimization, both the position and energy
information of the configurations can be obtained. There
are different variations of the basic NEB method, adapted
to suit the needs of the system in use, such as extended
three dimensional defects which requires a large model
system with a long reaction path. This is to ensure that
enough replicas are included to map the long trajectory

between the saddle point and final state (Zhu et al., 2007).

The effect of elastic lattice distortions can bias the ran-
dom movement of the atoms and give rise to net drift
of interstitial atoms towards tensile stress and away from
compression. The dependence of the random movement
probability on the local strain can be quantitatively exam-
ined with ab-initio based NEB methods, and the emerging
flux and the random fluctuations can be examined with
the random walk simulations.

In certain temperature range, it is energetically favourable
for the atoms to coalesce and form a precipitate, which
then grows due to diffusion of more atoms to the surface
of the precipitate (Larsson and Ågren, 2003; Pohjonen

et al., 2022).

3. NUMERICAL ALGORITHM

A random walk algorithm was implemented to simulate
the random movements of atoms in two-dimensional lat-
tice, and their coalescence to a precipitate, which is lo-
cated in the center of the simulation domain. When the
atom coalesces to the precipitate surface, the precipitate
radius will grow and the coalescing atoms are removed
from the random walk simulation. As a result of this, the
concentration is lowered near the precipitate, which then
implicitly causes net flux of atoms towards the negative
of the concentration gradient. Periodic boundaries were
applied in the simulation.

The random walk algorithm has two main stages. First,
it moves the atoms based on the random probability of
movement, and secondly, it will remove the atoms from
calculation when they are within the precipitate radius,
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Fig. 1. Flow chart depicting the operation of the random
walk and precipitate growth algorithm.

which grows each time an atom is located there within.
A flow chart depicting the operation of the algorithm is
shown in Fig. 1.

The local density of atoms was calculated by dividing
the simulation domain to rectangular subdomains and
calculating the number of atoms within each subdomain,
and dividing the number of atoms by the size of the
subdomain (area in 2D).

To speedup the simulations we accelerated the random
walk algorithm to run on GPUs by writing our algorithm
directly in CUDA. In the following, we refer readers
unfamiliar with CUDA and GPU terminology to

(NVIDIA, 2024). The random walk algorithm is
straightforward to parallelize and accelerate, because
except for growing the precipitate radius the atoms do
not affect each others. In the performed simulations it
was found that atoms coalescing to the precipitate
surface is rare enough that performance-wise the radius
expansion can be performed with GPU atomic
operations.

Atomic operations guarantee that no other atomic oper-
ations happen while the atomic operation is being per-
formed. Thus they prevent race conditions that would
otherwise happen when multiple threads try to write to
the same variable. Naturally atomic operations are more
costly than normal operations, especially if many of them
are being performed on the same memory address, since
the operations have to be synchronized in some manner.

To minimize the costs of the atomic operations we use a
common technique of first combining all atomic updates

inside a threadblock into a variable in shared memory and
make a single atomic update from the threadblock into
the variable in global memory that is shared across all
threads. This cuts down the amount of atomic operations
to variables in global memory significantly and atomic
operations to variables in shared memory are significantly
faster due to them being closer in memory and due to
the need of synchronizing only between the threads in the
current threadblock.

Due to this optimization and the radius updates being rare
we found the atomic operations to be a solution that is
easy to implement for growing the radius. This implemen-
tation did not have measurable effect on the performance
of the kernels. The rarity of the coalescing motivated
optimization, where instead of synchronizing between a
single update of each atom, we update each atom n steps
and then synchronize. This cuts down memory traffic by
a factor of n since we can reuse the values loaded to
local memory. The only difference between synchronizing
between each step and every n steps is that the radius size
lags after the first update done after synchronizing in the
second scheme, but if the number of radius updates is small
enough this difference is negligible. We found that on the
tested hardware, a single RTX A2000 8GB Laptop GPU,
synchronizing after every second step gave a performance
improvement of 30 percent.

4. NUMERICAL TEST CASES

4.1 Diffusion from initial point source

To test the connection between the random movements
and the macroscopic diffusion equation, we compared the
random walk simulation from initial point concentration
to corresponding diffusion calculation. Consider a two-
dimensional case where all atoms are initially located at
the origin. The random movement is assumed to occur in
two dimensional square lattice with lattice constant a = 1.
Also, timestep is chosen as ∆t = 1, i.e. dimensionless
units were used, as this is mathematical study, not directly
connected with physical properties. The atoms have 50
% probability to move within time-step in x-direction,
and the same probability for y-direction. If they move,
they have equal probability to move either in positive
or negative direction. Since the diffusing atom can move
both x and y direction within timestep with 50% chance
in each direction, the frequency for the atom movement
during timestep is Γ = (0.5 + 0.5)/∆t = 1/∆t, and
according to equation (2) the diffusion coefficient in this
case becomes D = Γ/(2N) = 1/4. The simulation results
and comparison to analytical continuum solution, equation
(5), are shown in Fig. 2. To see the effect of the random
fluctuations, the simulation was repeated ten times and the
standard deviation for each plotted datapoint was calcu-
lated. The standard deviations are indicated as error bars
in the figure. The small difference between the simulated
results and the analytical solution arises because of the dif-
ferences between the analytical continuum description and
the discrete random walk results, and also due to chosen
area where the atoms are averaged over when calculating
the results from the simulations.
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Fig. 2. Diffusion from initial point concentration. The lines show the simulation results averaged over 10 separate
simulations and the error bars indicate the standard deviation. The markers show the corresponding analytical
solution described by equation (5).

4.2 Concentration fluctuations as function of system size

Fluctuations in small systems are inherent due to random
movement of discrete particles. It was examined how the
concentration fluctuations in a two dimensional system
depend on the system size. To achieve this, the length
of the square domain and the number of atoms were
both scaled by scaling factor sf , which was altered in
the simulations. The atoms were initialized to random
positions and the random walk simulation was ran for 1000
timesteps. In each simulation the domain was divided in
to 40x40 square subdomains. The 2d concentration was
calculated as number of atoms/area for each subdomain.
Then standard deviation of the subdomain concentrations
was calculated. The standard deviation as function of
the scaling factor is shown in Fig. 3. The result shows
that the standard deviation depends on the scaling factor
approximately proportional to 1/sf . Increasing the system
size in the random walk simulations up to sf = 12 still
showed noticeable fluctuations, and was not much different
from the case sf = 6.

4.3 Diffusion controlled growth of precipitate

To test the random walk simulation in a more interesting
case, a coupled precipitate growth and diffusion simulation
was performed. The atoms, which were initially located
randomly at the domain, were moved randomly similar
to the previous case, but if they arrived within a radius,
the precipitate radius grew and the atom was removed
from the random walk. The simulation results from small
scale simulations are shown in Fig. 4, where a) shows
the concentration of atoms in the whole simulated two
dimensional domain and b) shows the plot of concentration
of atoms along the horizontal line which passes throught
the origin, where the growing precipitate is located. The
area increase of preciptate due to attachment of atom was
set as Aat = π(a/6)2.

Fig. 3. The standard deviation sd of the concentrations
of 40 by 40 subdomains as function of system scaling
factor sf

The result shows that the concentration near the precip-
itate becomes depleted as atoms are being removed from
the diffusion to increase the precipitate radius, which is a

realistic effect (Porter et al., 2022).
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Fig. 4. a) The concentration of atoms per subdomain area after 3 000 000 timesteps, b) Plot of concentration along

the horizontal line which passes the origin at several different time-steps.
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5. CONCLUSIONS

A theory linking random movement (i.e. random walk)
of atoms in crystalline material to the activation barrier
of atom hopping from stable lattice cite to another was
described and also the link between the diffusion equation
and the random movement probability was presented.
The random random walk model describing diffusional
movement of atoms in a lattice was constructed and
parallelized using GPU. The model was compared to a
continuum analytical solution for diffusion from an initial
point concentration, and it was applied for mathematical
calculation of diffusion controlled growth of a precipitate.

In future studies, the probabilities and their dependence
on different factors, such as local stress/strain state, can
be obtained from nudged elastic band (NEB) calculations
and the model can be parameterized using physical data.
The NEB calculations combined with atomistic ab-initio
density functional theory simulations have the capability
for providing the energy barriers for atomic mobility, and
hence they could be used in future for theoretic prediction
of the of atomic scale effects of diffusion, precipitation and
partitioning phenomena. Such effects are very difficult to
observe directly experimentally, which makes phenomeno-
logical parameterization of models difficult. The theoret-
ical calculations can also provide explanations connected
with these practically very important metallurgical phe-
nomena.
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Cao, W., et al. (2021). In-situ quantification and density
functional theory elucidation of phase transformation in
carbon steel during quenching and partitioning. Acta
Materialia, 221, 117361.

Zhu, T., Li, J., Samanta, A., Kim, H.G., and Suresh, S.
(2007). Interfacial plasticity governs strain rate sensitiv-
ity and ductility in nanostructured metals. Proceedings
of the National Academy of Sciences, 104(9), 3031–3036.

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.027 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

203



On the Growth Kinetics of Lamellar and Blocky Austenite during 
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Abstract: Metastable austenite significantly impacts the mechanical properties of Advanced High-Strength 
Steels (AHSS), especially Medium Mn Steel (MMnS), where its formation rate during intercritical 
annealing depends strongly on the initial microstructure. This study employs thermodynamic and diffusion-
controlled simulations to investigate the formation of two distinct morphologies of retained austenite–
lamellar and blocky known also as globular– commonly observed in an intercritically annealed hot-rolled 
MMnS. Utilizing Thermo-Calc software, coupled with its DIffusion-Controlled TRAnsformation module 
(DICTRA), phase equilibria are computed, and one-dimensional diffusion equations are solved. 
Characterization of the microstructure of a medium manganese steel (MMnS) with a nominal composition 
of Fe–0.4C–6Mn–2Al–1Si–0.05Nb (in wt. %), hot rolled and intercritically annealed for 1 hour at 680°C, 
was performed using Energy Dispersive Spectroscopy coupled with Transmission Electron Microscopy 
(EDS-TEM) and Transmission Kikuchi Diffraction (TKD). These techniques were used for experimental 
validation and verification of the simulations. 
Simulations explore the competition between cementite and austenite growth. Specifically, the growth of 
austenite starting on various interphase boundaries was examined using spherical and planar geometries. 
This approach resulted in the formation of blocky and lamellar austenite morphologies, respectively. The 
findings indicate that austenite first nucleates at the BCC/BCC interface and transforms 40% of the BCC 
phase within 1 second at 680°C. Cementite then starts to form, limiting further austenite transformation. 
Finally, cementite particles continue to grow to a size of about 100 nm. These simulation results align well 
with experimental findings. 
Keywords: Thermo-Calc, DICTRA, lamellar and blocky austenite, intercritical annealing, Medium Mn 
Steel. 

1. INTRODUCTION 

Over the last decade, the demand for strong yet formable steels 
using cost-efficient designing approaches, contributing to a 
more sustainable steel advancement, has driven the 
development of third-generation AHSS (Guo et al., 2022). 
Among them, MMnS containing 4-12wt% Mn (Han, 2023; Hu 
et al., 2024; Sun et al., 2023a), is considered the most 
promising candidate for future steel owing to its unique 
combination of strength and ductility (Han, 2023). Since its 
introduction by Miller (Miller, 1972), various alloy design 
concepts for MMnS have been developed (Han, 2023; Hu et 
al., 2024; Sun et al., 2023a). 

After hot rolling, MMnS exhibits mainly lath martensitic 
microstructure along with small amounts of retained austenite 
depending on the Mn content (Han, 2023). Lath martensite 
represents the predominant morphology in practical high-
strength steels. This structure comprises a hierarchical 
arrangement: martensite packets, blocks, and laths, (Luo et al., 
2020; X. Zhang, Miyamoto, Toji, et al., 2018). 

When the initial as-rolled martensitic structure undergoes 
Intercritical Annealing Treatment (IAT), the martensite shows 
minimal recrystallization throughout the applied thermal 

cycle. Instead, phase transformations predominantly involve 
formation of cementite or reversion of austenite (Han, 2023). 
Martensitic, prior austenitic and BCC/FCC boundaries may 
endure during intercritical annealing, resulting in several 
possible nucleation sites for new austenite to form. 
Additionally, in the tempered martensite microstructure, 
carbides, particularly cementite, can serve as austenite 
nucleation sites (Sun et al., 2023b). Austenitic nucleation at 
these boundaries might result from the co-segregation of C and 

Fig.  1. Illustration of the martensitic hierarchical microstructure 
and the corresponding preferential austenite nucleation sites.  
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Mn, which makes them thermodynamically preferred for 
nucleation (Luo et al., 2011). These nucleation sites can 
generally be categorized into two groups, as shown in Fig. 1 
and described below: 

Depending on the location of the nucleus and its orientation 
with the adjacent martensitic matrix interfaces, two distinct 
morphologies of austenite may emerge: lamellar and blocky. 
Lamellar-type austenite typically nucleates at martensite 
packet, block, or lath boundaries, whereas blocky-type 
austenite forms at prior austenite grain boundaries, as well as 
martensite packet and block boundaries (Zhang et al., 2018a). 
Lamellar austenite grains often display the same orientation as 
prior austenite grains, which originally form at high 
temperatures during hot rolling and later coalesce with each 
other, leading to the reconstitution of the prior austenite grain 
structure (Han, 2023; Zhang et al., 2018a, 2018b). 

Recent multiple-stages MMnS processing routes employ the 
potential of Mn-rich cementite particles to enhance 
mechanical properties by providing additional nucleation sites 
for austenite (Sadeghpour et al., 2021). This tailored austenite 
differs from conventional formed one, with higher Mn-
enrichment and finer size (Ye et al., 2024). Cementite plays 
complex roles in austenitic nucleation, competing with 
austenite formation and potentially acting as nucleation sites 
(Guo et al., 2022). However, not all cementite particles 
facilitate nucleation; preferential nucleation occurs at 
intergranular rather than intragranular cementite (Lai et al., 
2016). However, Enomoto and Hayashi (Enomoto and 
Hayashi, 2020) observed a higher fraction of austenite 
nucleated on cementite existing at prior austenite boundaries 
and martensite packet boundaries compared to inter-lath 
boundaries. Additionally, Zhang et al. (Zhang et al., 2021a) 
suggested that the nucleation potency of cementite particles 
may depend on their size, with coarser particles expected to 
have higher potency. 

During the IAT, the reverted austenite phase becomes enriched 
through the partitioning of Mn and C from the surrounding 
martensite. This gradual enrichment leads to a reduction in the 
alloy content of nearby martensite, ultimately resulting in its 
transformation into ferrite. Consequently, after quenching, a 
significant portion of austenite remains untransformed at 
ambient temperature (Bhattacharya et al., 2024). Extensive 
studies have been conducted on various heat treatment 
parameters such as IA temperature and time (Bansal et al., 
2018), as well as tailoring the characteristics of retained 
austenite (e.g., stability, volume fraction and morphology, 
etc.) by different IATs (Zhang et al., 2024). 

To better understand aspects relevant to intercritical annealing, 
thermodynamic and kinetic simulations for austenite growth 
during IAT in the Fe–C–Mn and Fe–C–Mn–Si systems have 
commonly been conducted. In most of the simulations, a 
diffusion couple of austenite and martensite was used (Huyan 
et al., 2018). In this context, the majority of simulations can be 
summarized into three systems. 

FCC/BCC System 
Assuming local equilibrium, moving-boundary simulations 
between austenite and ferrite can provide a simplified 

representation of austenite growth kinetics. In this system, the
diffusional mechanisms of the two phases govern distinct
stages of austenite growth. Initially, austenite transformation
undergoes rapid increase driven by C diffusion in both ferrite
and austenite under negligible partitioning local equilibrium
(NPLE) interfacial conditions, with minimal Mn partitioning.
Subsequently, a stage dominated by Mn diffusion in ferrite
ensues, transitioning from NPLE to partitioning local
equilibrium (PLE) interfacial conditions (Sun et al., 2023b).
Finally, a slow equilibration of Mn in austenite, controlled by
long-range Mn diffusion within austenite, completes the
process (Wu et al., 2020).

BCC/FCC/Cementite System
Considering cementite during austenite formation alters the
interfacial thermodynamics for austenite growth significantly
compared to considering only ferrite and austenite. According
to Sun et al. (Sun et al., 2023b), at relatively low intercritical
temperatures, when cementite is present in the initial
microstructure, austenite growth is primarily controlled by Mn
diffusion. Conversely, at higher temperatures, C diffusion
governs austenite growth. However, if the initial cementite is
enriched with more than 30% Mn, austenite growth remains
consistently controlled by Mn throughout the entire
intercritical range.

FCC/BCC/Cementite System
Within this system, austenite nucleates apart from the majority
of cementite, with the ferrite matrix serving as a pathway for
carbon diffusion. Enomoto and Hayashi (Enomoto and
Hayashi, 2018) simulated the growth of austenite during
continuous heating in plain low-carbon martensite and
reported that due to slow carbon diffusivity in austenite, the
cementite free of austenite tends to dissolve faster than the
cementite on which austenite was nucleated except when the
particle size of cementite and/or the number of austenite nuclei
is small.

Despite extensive studies on austenite growth and the
chemistry of austenite formation on various interfaces in
MMnS (e.g., (Dai et al., 2018; Huyan et al., 2018; Mehrabi et
al., 2024; Sun et al., 2023b; Zhang et al., 2018b, 2018a), there
remains a lack of comprehensive understanding the instance
when cementite, austenite and BCC phases are all present
during IAT. Hence, we investigated this coexisting scenario in
a hot-rolled sample subjected to IAT at 680°C for 1 hour,
where two austenite morphologies with cementite particles
were observed by microscopic means, by simulating the phase
changes by the DICTRA calculations. Further, this study aims
to simulate solute partitioning within these microstructures to
elucidate the initial source of cementite particles and compare
the growth rate of cementite as well as those of lamellar and
blocky austenite.

2. MATERIALS AND METHODS

The steel material with the nominal composition of 0.40C, 1Si,
6 Mn, 2Al and 0.05 Nb (wt.%) which employed in this study
was produced by OCAS (Onderzoeks Centrum voor de
Aanwending van Staal) using a vacuum induction furnace.
Following casting, the material underwent austenization at
1200°C for 2 hours, followed by hot rolling to 90 percent
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reduction in thickness. The resulting sheet, with a finish rolling 
temperature of 900°C, was cooled down in ambient air. 
Subsequently, the sheet underwent intercritical annealing at 
680°C for 1 hour. 

After standard metallographic sample preparation, the 
microstructural features of the sample were analyzed using a 
an TKD mappings using a JEOL JSM-7900F Field Emission 
Scanning Electron Microscope (FESEM) under an 
accelerating voltage of 30 kV, a working distance of 15 mm, 
and a step size of 6 nm. For more comprehensive 
characterization, elemental analysis of the specimens was 
carried out using Energy Dispersive x-ray Spectroscopy (EDS) 
integrated into a 200-kV Energy Filtered Scanning 
Transmission Electron Microscope (JEOL JEM-2200FS 
EFTEM/STEM). All of TKD and EDS observations were 
conducted on a thin lamella sample (8×10 μm) prepared using 
a Focused Ion Beam-Field Emission Scanning Electron 
Microscope (FIB-FESEM). 

In this study, the DICTRA module of Thermo-Calc 2024a was 
utilized to model the kinetics of austenite growth, 
encompassing both lamellar and blocky morphologies with 
various nucleation sites outlined in Fig.  1. For the simulations, 
thermodynamic (TCFE7) and mobility (MOBFE2) databases 
for one-dimensional analyses were used. Establishing the 
simulations necessitated specifications regarding morphology, 
compositions, and phase sizes. The diffusion of C, Mn, Si, and 
Al was factored into the simulation framework. The 
dimensions of the simulation system were determined based 
on observed length scales within TKD micrographs obtained 
from the intercritical annealed sample. The chemical 
composition of each microconstituent was estimated using 
EDS method excluding for C. 

For simulating lamellar and blocky type austenite, planar and 
cylindrical geometries were respectively adopted. As 
martensite is not treated as a distinct phase in DICTRA, it is 
represented similarly to other studies in the literature (Mehrabi 
et al., 2024), employing a BCC phase with high C and Mn 
levels. Different simulation configurations based on possible 

nucleation sites were considered for the DICTRA, as shown in
Fig. 2.

3. RESULTS AND DISCUSSION

To model the potential DICTRA systems shown in Fig. 2, the
microstructure of the studied steel after the soaking at 680°C
for 1 hour were analyzed. The selected timeframe was
determined based on our simulations, which suggested that
beyond this point, negligible changes in the chemical
composition of the solute atoms, particularly Mn, could
happen. EBSD-TKD method were employed to obtain the
phase map of the microstructure, aiming to discern the
distribution and shape of phases and cementite particles. The
outcomes of the TKD analysis are depicted in Fig.  2. In 
this figure, three regions of interest representing the 
entire microstructure were identified. Fig. 2(b) clearly 
shows a lamellar microstructure, with the austenite 
lamellae approximately 200 nm in width and the BCC 
phase lamella with widths of 300 nm. The half-width 
dimensions as a preliminary estimation of the system 
size were used. Additionally in Fig. 3(c), a typical 
illustration of blocky austenite morphology is 
depicted. This structure is encompassed by adjacent 
BCC grains, forming an outer circle with a radius of 500 nm 
and an inner circle with a radius of 300 nm. Essentially, 
around 60% of the BCC phase transforms
into austenite within this system.

In Fig. 3(d), two distinct configurations of cementite 
particles depending on their position with the BCC and 
austenite phases are highlighted. In one arrangement, 
austenite and cementite are juxtaposed, possibly indicating 
the nucleation of austenite on cementite surfaces. 
Additionally, isolated cementite particles are observable 
within the BCC matrix, some reaching diameters of several 
hundred nanometers. Close observation of the particles 
adjacent to austenite grains reveals that most of

Fig. 2. Schematic illustration of DICTRA simulation configurations 
based on potential austenite nucleation sites (symbols are described 
in Fig.  1). 

Fig. 3. a) TKD phase map with band contrast image highlighting 
three regions of interest (b, c, and d) used to define five different 
DICTRA systems introduced in Fig. 2. In (d), the numbers indicate 
the regions which their chemical composition determined by EDS 
(Table 1). 
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them have diameters less than 100 nm after the IAT, whereas
those farther from austenite regions generally have diameters
exceeding 200 nm.

The efficacy of cementite particles in promoting austenite
nucleation has been shown highly dependent on their size, with
maximum nucleation potency observed in particles with
diameters between 100 and 200 nm (Zhang et al., 2021b).
Particles larger or smaller than this range do not significantly
contribute to the nucleation process. This suggests that, at the
beginning of IAT, we might have had particles within the
nucleation size range, but they partially dissolved during IAT.
Conversely, the particles now larger than 200 nm and isolated
in the BCC matrix likely did not engage in the austenite
nucleation process.

Figure 4(a) illustrates the time-dependent variation in 
the fraction of transformed austenite under different 
scenarios by according to the DICTRA simulation. Curves 
b (red) and c (blue) depict results for lamellar and 
blocky austenite, respectively, which nucleated and grew 
at the BCC/BCC interface. Additionally, curves d (shown 
in solid and dashed black lines) indicates the growth kinetics 
of cementite particles that formed at the BCC/BCC interface 
but grew independently of austenite.

In curves b and c, the initial rapid increase in the fraction
transformed is attributed to the growth of austenite under
NPLE conditions. However, this NPLE stage is usually not
observed experimentally under typical intercritical annealing
conditions (Sun et al., 2023b). During this stage, growth is
governed by carbon diffusion in ferrite. Over time, the carbon
distribution in the ferrite matrix becomes progressively more
homogeneous (Wei et al., 2013). Consequently, the growth of
austenite becomes increasingly controlled by the carbon
diffusion within the austenite until the diffusion of
substitutional atoms, particularly Mn, begins to occur under
the PLE conditions. The later stage comprises three separate
steps (Luo et al., 2011). The corresponding interfacial
boundary position at this stage can be considered as the size of
the intercritical austenite observable experimentally.

Numerical simulations on the diffusion couples FCC/BCC
(Fig.  4(a), curves b and c) indicate that the phase fraction of 
the formed austenite (for both the lamellar and 
blocky morphologies) after 1 hour of annealing at 680°C 
should increase up to 0.7. However, this fraction is 
generally much higher than what is calculated based on Fig.  
3(a), showing about 0.38 area fraction.

 

 
  

   
Fig. 4. a) Comparison of simulated volume fractions of austenite and cementite using DICTRA. Concentration profiles of C and Mn are 
shown for different growth scenarios: (b) lamellar austenite growth from the BCC/BCC interface, (c) blocky austenite growth from the 
BCC/BCC interface, (d) comparison of cementite growth and Mn distribution in the BCC phase with two different carbon contents 0.4 and 
0.012 wt.%, (e) simultaneous growth of pre-existing austenite and cementite into the BCC matrix, and (f) growth of austenite at the 
Cementite/BCC interface based on chemical composition measured by EDS (Table 1). 

 

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.028 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

207



There could be two explanations for this deviation: the
interfacial dissipation energy due to finite interface mobility at
the austenite/martensite interface (Huyan et al., 2018), and
consumption of C and Mn due to formation of cementite after
one second of annealing.  the latter will be discussed in the
following sections.

Comparing the growth rates of lamellar and blocky austenite
during the NPLE stage, it is observed that lamellar austenite
grows more quickly than blocky austenite does, even when
simulations are conducted for both morphologies with the
same system size (250 nm). This difference in the growth rate
can be attributed to the larger surface area provided by the
lamellar structure, which facilitates more efficient carbon
diffusion and thereby accelerates the austenite growth.
However, both morphologies exhibit the same PLE stage due
to the sluggish diffusion of Mn, which cannot be compensated
for even with a higher diffusion area. This slow Mn diffusion
controls the overall transformation kinetics at this stage.

According to the simulation results, the concentration of Mn
should be highly non-uniform in the austenite, particularly in
the instance of the blocky morphology. Fig. 4(b) and (c) 
also indicate that the Mn flux into the austenite remains 
confined to the region near the boundary, with a maximum 
of 9.6 wt.%, even after a long holding time. However, the 
experimental results show a deviation in both Mn 
concentration and distribution profile. A comparison 
between chemical composition of different 
microconstituents, which are marked by numbers in Fig. 3(d), 
is shown in Table 1.

Table 1. Chemical composition of the regions defined in Fig. 3d

Point Region of interest Mn Al Si 

1 Lamellar austenite 12.13 1.21 0.56 
2 Blocky austenite 11.16 1.15 0.69 
3 austenite formed on cementite 11.12 1.11 0.71 
4 Cementie in BCC matrix 29.74 0.27 0.19 
5 Cementite in the vicinity of FCC 29.24 0.19 0.19 
6 BCC phase 3.91 1.79 0.98 

 

Figure 4(d) shows two different scenarios of cementite 
growth for 1 hour annealing. As shown in this figure, 
two initial carbon levels for the BCC matrix were 
considered for the simulation. First, we supposed cementite 
forms in a region far from austenite, where all alloying 
elements only engage in its growth. It can be seen that 
there is a very marginal concentration of Mn at the 
cementite/BCC interface. Consequently, a thickness of 10 to 
20 nm and a total cementite diameter of about 400 nm 
should be formed in the microstructure. However, in the 
experimental results, we could not find any cementite with 
such a large size and high Mn gradient.

On the other hand, Fig.  4(a) shows that from a BCC matrix 
with 0.4% C, cementite would start to grow after about 1 
second of annealing, during which most of the carbon in the 
BCC matrix carbon is consumed by austenite formation. At 
this point, the BCC carbon concentration lowers to about 
0.012 wt.%, but other elements still retain their nominal 
composition far from

the interface in both sides. For the second scenario, we used
0.012% C for the simulation of the growth of new cementite
simulation growth, assuming that at first 40 percent of the BCC
matrix transformed into austenite and then cementite
separately forms in the remaining matrix. In this scenario, the
austenite, cementite, and BCC phases seem to have their
chemical compositions closer to the experimental results
(Table 1), and also their sizes correspond to those depicted in
Fig. 3(a) and (d).

At this point (after 1 second of annealing), another scenario
could be considered: a competition between the formation of
cementite and the simultaneous growth of pre-existing
austenite. Fig. 4(e) illustrates the results for this co-
existing scenario and the corresponding system size. In this 
scenario, cementite and austenite are both forming and 
growing at the same time. The simulation reveals that after 1 
hour of holding at 680°C, cementite can only grow 10 
nanometers.

This limited growth could be due to the simultaneous 
consumption of carbon and other alloying elements by both 
cementite and austenite. As a result, the growth rate of 
austenite is also reduced compared to a system where only 
FCC/BCC transformations occur without the presence of 
cementite. Moreover, the simulation indicates that the Mn 
content in cementite, under these conditions, would be less 
than 20 wt.% in average. This is significantly lower than the 
Mn content measured by EDS, suggesting that the actual 
distribution of Mn is more complex than the simulation 
predicts. This discrepancy further implies that the interaction 
between cementite and austenite formation is more intricate, 
affecting the distribution and concentration of alloying 
elements. In summary, the co-existence scenario shown in Fig.  
4e suggests that while cementite formation limits its own 
growth and the growth of austenite, it does not fully account 
for the experimentally observed austenite sizes and Mn 
concentrations. The competition between cementite and 
austenite growth, along with the resultant elemental 
distributions, highlights the complexity of phase 
transformations in these materials. 

Fig. 5. EBSD-TKD phase map with band contrast image showing 
austenite, less than 50 nm in size, formed on a cementite particle with 
a 200 nm diameter after 1 hour of soaking at 680°C (austenite: blue, 
cementite: green and BCC in red color). 
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Additionally, Fig. 4f illustrates a scenario based on
experimental results where the cementite particle size and the
chemical composition of BCC and cementite were measured
directly using TKD and EDS methods. In this scenario, we
assumed that austenite would form at the Cementite/BCC
interface, as observed in Fig. 5. However, the simulation
results shown in Fig. 4f suggest that this scenario does not
account for the formation of large blocky austenite grains. The
simulation indicates that within holding for 1 hour, the
austenite can only grow to a size of 30 nm. In contrast, the
measured austenite diameter in Fig. 3d is approximately 700
nm, demonstrating a significant discrepancy. This discrepancy
suggests that the big austenite grain does not primarily form at
the Cementite/BCC interface. Instead, austenite likely forms
initially within the FCC/BCC system separately. Over time,
these austenite grains may coalesce with austenite that
nucleates at the Cementite/BCC interface, leading to the larger
blocky austenite grains observed experimentally.

5. CONCLUSIONS

In this study, various scenarios were simulated to better
understand the microstructure observed and analyzed using
EBSD-TKD and EDS methods after annealing of a hot-rolled
0.40C-6 Mn-1Si-2Al-0.05 Nb steel at 680°C for 1 hour. The
aim was to approximate the system size and chemical
composition of each microconstituent, including lamellar
austenite with a thickness of 100 to 200 nm, blocky austenite
with a radius of approximately 500 nm, and cementite
particles, either adjacent to austenite or dispersed in the BCC
matrix.

The DICTRA software was used to simulate five potential
systems to determine which of them could be responsible for
the existing microstructure. The following systems were
simulated:

• FCC/BCC system
• Cementite/BCC with 0.4% C in the matrix and

Cementite/BCC with 0.012% C in the matrix (both
assuming cementite growth without the influence of
austenite)

• Two co-existing austenite and cementite systems
(adjacent and separate from each other, considering
the competition between austenite and cementite).

Based on comparison of the results from the simulations and
experimental observations, it seems highly likely that austenite
nucleates first at the BCC/BCC interfaces and grows, leading
to the transformation of 40% of the BCC phase to austenite
within 1 s at 680°C.  Then, the cementite formation occurs,
which ceases the further growth of austenite as a competitor.
Following this, only cementite continues to grow under these
circumstances. Notably, after 1 hour of annealing at 680°C, the
experimental results show that 38% austenite exists in the
microstructure, and the size of cementite particles is about
100–200 nm, which align well with the above hypothesis.
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Abstract: Stainless steelmaking slags are, currently, one of the most common non-utilized slags in

steelmaking. Hence, in an integrated stainless steelmaking process with a ferrochrome submerged arc

furnace, this means not only losing iron to the slag but also valuable chrome. Hence, recovery of iron and

chrome have a business incentive and an important function for green industry initiative by reducing the

requirement of virgin material. However, one of the challenges of slag recycling can be the energy-

intensive nature of such a practice. Therefore, an energy efficient approach in material recovery could 

enhance the incentive of recycling of slag instead of the current practice of land field storage; one such 

approach is mixing the solid ferrochrome slag into liquid slag from the steelmaking production line. To 

that end, a static model of a suspended slag particle inside a melt has been developed to investigate the

effect of particle size on evolution of temperature within the solid particles. The simulation showed that

changes in the diameter of particle can have a significant effect on energy diffusion from the melt into the

slag particle. As an example, the simulation suggests that the temperature magnitude at the centre of a 

2mm-in-diameter particle reaches 1200 °C after 1s simulation time while, with 5mm particles the 

temperature magnitude is less than 200 °C. This behaviour is amplified further when the diameter of 

particle increases further showing a delaying behaviour of particle’s diameter on energy diffusion 

and, consequently, remelting of solid particles.

Keywords: Slag, Ferrochrome, remelting, modelling, solid particle.

1. INTRODUCTION 

As the European Green Deal has become a baseline to make 

the European Union (EU) climate neutral in 2050, the role of 

industries and more specifically iron- and steel-producers have 

become increasingly critical (European Commission. 

Directorate General for Research and Innovation. 2021). This 

is due to the fact that this industry is not only energy intensive 

but also produces a significant amount of by-product mainly 

in the form of slag which is larger than 1.1 tons of slag for each 

ton of ferrochrome (Kauppi 2007). 

The ferrochrome slag contains not only SiO2, Al2O3, MgO or 

CaO but also some sizable percentage of chrome and iron 

(Karhu et al. 2020). However, a portion of the slag produced 

by steelmakers will be stored in slag yard ( open space storage 

facility for unused by-product ) while some is used for road 

construction or by concrete producers (Gao et al. 2023). 

Considering the amount of slag produced for every ton of 

ferrochrome and the percentage of chrome and iron available 

in the slag ( 8 and 4, respectively ) (Karhu et al. 2020) it is not 

difficult to calculate the loss of valuable material to the slag. 

Obviously, improving the share of unused slag material would 

results in reduction of the virgin material requirement. This 

reduction in the raw material, then, would have a direct impact 

on reducing the carbon footprint by reducing the need for raw 

material mining. 

As an example, Karhu et. al. (Karhu et al. 2020) have shown 

the positive impact of the ferrochrome slag when used as an 

aggregate to produce refractories. It is shown that the 

refractory bricks produced using such a slag not only have an 

improved strength but also show better thermal insulation. 

With these considerations, the current study tries a new 

approach where the solid ferrochrome slag aggregate will be 

mixed and remelted using AOD-slag. This mixed melt, later 

on, can be used as a feed material to recover the chrome and 

iron deposit of solid slag material. To that end, a CFD model 

of single solid slag particle within a liquid slag is modelled to 

investigate the effect of particle density on heat diffusion 

within the particle and, consequently, remelting process of 

solid ferrochrome slag. 

2. MODEL SPECIFICATION 

2.1 Modelling Approach 

As mentioned, the project tries to melt the solid ferrochrome 

slag by pouring liquid AOD slag over a packed solid slag bed 

in a slag pot. However, the initial research question could be 

formulated as how the heat is transferred through a single 

pellet inside a melt and if the liquid temperature in the 
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immediate vicinity of the pellet could drop to the solidus 

temperature. 

With this objective in mind, the current model investigates the 

temperature evolution of single solid particle suspended in a 

liquid bath. Moreover, since the liquid assumed to be at rest, it 

is possible to further simplify the system by considering the 

liquid slag as a solid phase. This, of course, disregards the 

natural convection may occur around the pellet which in 

comparison to the liquid bath size could be of a minimal effect. 

The thermal properties used for the solid ferrochrome slag 

particle are derived from the work of (Karhu et al. 2020) as 

reported below: 

 

Fig. 1. Thermal properties of ferro chrome solid slag:

Castable 1 modified from (Karhu et al. 2020).

2.2 Geometry and Boundary Conditions

As explained, the model looked into practice of suspended

solid slag particle inside a liquid melt which is shown in Fig.

2. The domain is formed of a cubic box of 0.5 x 0.5 x 0.5 

m3 which is open to the atmosphere from the top while the 
sides and bottom faces were assumed to be adiabatic walls. 
This is to assume a solid particle inside a crucible in a 
controlled environment.

 

Fig. 2. Domain of calculation with suspended solid slag

particle.

3. RESULTS 

As mentioned, the objective of this work is to investigate the 

changes in the temperature profile of the solid slag particle 

where it is suspended in a liquid slag. Hence, to be able to paint 

a clear picture, it seems logical to not only look into changes 

in the magnitude of temperature within the solid particle but 

also evolution of temperature magnitude of the liquid bath 

surrounding the particle. This is due to the fact that if the liquid 

in contact with the solid particle freezes, this phenomenon 

could hamper the transfer of energy into the solid material. 

Naturally, the solid slag particles are produced as a result of 

crushing solid material hence, the particles do not have a 

uniform diameter and it can significantly vary from a small 

round particle to a solid lumpy material. Therefore, it is 

important to investigate the changes in the solid particle 

temperature profile due to changes in the particle size. 

3.1 Temperature Profile at and around the Solid Particle 

Figure 3 shows the evolution of temperature in time at 

different distance from the centre of the pellet. As can be seen, 

the x-axis range varies from zero to 5 mm while the particle 

diameter is equal to 2 mm. Hence, the figure shows the 

changes in the temperature magnitude of the liquid slag in 

contact with the pellet till 4 mm away from the surface. 

Moreover, the vertical dashed line in the figure shows the 

interface of solid particle to the liquid slag. 

 

Fig. 3. Contour plot of temperature evolution from the

centre of pellet till 4 mm in the liquid bath.

For the pellet, as the figure shows, the temperature at the centre

reaches 1200 °C where the liquid temperature in the vicinity

of the pellet is around 1400 °C. These values are around 800

and 1200 °C respectively, 0.5 s into the simulation. This

suggest that the energy diffuses faster within the particle in the

first 0.5 s of the simulation in comparison to the next.

Furthermore, Figure 5 shows the evolution of temperature

within the pellet and inside the liquid phase with respect to

time for 1 s,  similar to Fig. 3. It can be seen that the

temperature magnitude of pellet centre, when the diameter
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increases to 5 mm, drops to 200 °C, more than 80% drop in the 

magnitude. 

 

Fig. 4. Contour plot of temperature evolution from the centre

of pellet till 7.5 mm in the liquid bath.

Considering the significant change in the magnitude of

temperature, it seemed reasonable to try to run the simulation

for longer time interval to investigate the effect of particle size

on the evolution of temperature.

 

Fig. 5. Contour plot of temperature evolution from the

centre of pellet till 7.5 mm in the liquid bath for 10 s.

Figure 5 shows the changes in the temperature magnitude

within the pellet and inside the liquid phase for the extended

time interval of 10 s. As can be seen, by increasing the

diameter of particle to 5 mm, it will take 6 s till the centre of

the pellet registers the 1200 °C mark.

Considering such a significant change in the temperature

evolution in and around the solid slag pellet, the next logical

step was to investigate the temperature profile if the particle

size increases.

Figure 6 shows the evolution of the temperature within the

pellet and inside the liquid phase with respect to time. It can

be seen that the temperature magnitude of pellet centre, when 

the diameter increases to 10 mm and after 10 s simulation time, 

is below 700 °C. 

 

Fig. 6. Contour plot of temperature evolution from the centre

of pellet till 5 mm in the liquid bath for 10 s.

The figure also shows that the liquid temperature at the

beginning of the simulation is around 1000 °C and after 10 s

simulation time it reaches 1200 °C.

Figures 7 and 8 show the evolution of the temperature 

within the pellet and inside the liquid phase with respect to 

time for solid particles of 20 and 40 mm, respectively.

It can be seen that the temperature magnitude of pellet centre,

when the diameter increases to 20 mm and after 10 s

simulation time, has not even reached 100 °C. Moreover, it can

be seen that the liquid phase temperature in contact with the

particle is almost 1000 °C during the entire simulation time.

 

Fig. 7 Contour plot of temperature evolution from the

centre of pellet till 10 mm in the liquid bath.

Similarly, it can be seen that, even after 10 s and more than

50% away from the centre of pellet, the magnitude of

temperature has not even reached 40 °C and at the near surface
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region, the magnitude of temperature is hardly 900 °C. The 

figure also shows that the liquid phase temperature in the 

vicinity of solid particle registers a constant magnitude of 900 

°C. 

 

Fig. 8. Contour plot of temperature evolution from the

centre of pellet till 20 mm in the liquid bath

3.2 Temperature Magnitude 

Table 1 shows the changes in the minimum temperature of the 

liquid slag at the vicinity of the slag particle. This, in another 

word, the lowest magnitude of temperature the liquid slag in 

contact with the slag particle registers. 

Table 1 Minimum Liquid Film Temperature around the 

Particle 

Diameter time 𝑻𝒕
𝑭𝒊𝒍𝒎

 𝑻𝑭𝒊𝒏𝒂𝒍
𝑭𝒊𝒍𝒎

 

2 0.13 1013 1377 

5 0.20 930 1486 

10 0.25 881 1197 

20 0.78 884 1006 

40 3.07 885 914 

 

The importance of such a parameter is that if the liquid slag 

solidifies around the slag particle, then such a solid shell could 

hamper the transfer of energy from the melt to the cold 

particle. This is, of course, due to the fact that the solid slag 

has a very poor thermal properties and could act as an 

insolation layer around the solid particle. 

In the table, the first column shows the particle diameter, while 

the second column shows when the liquid file in contact with 

the solid particle register the lowest magnitude. Then, the third 

column shows such a magnitude i.e., the lowest magnitude the 

liquid file registers, and the final column shows the magnitude 

of the same variable at the end of the simulation. 

As can be seen, when the particle diameter increases, the 

lowest temperature magnitude drops while it occurs later in 

time. However, when the particle diameter increases from 10 

to 20 to 40 mm, the simulation suggests that the minimum 

magnitude would not drop but occurs significantly further in 

time ( 3.07 s compare to 0.78 s to 0.25 s ) 

The final column, on the other hand, shows the lowest 

magnitude of temperature at the end of simulation is 

significantly lower for particle of 40 mm diameter compare to 

the particle of 20 mm. 

4. DISCUSSION 

As it was seen, the temperature magnitude of solid particle 

with 2 mm diameter at the centre of pellet reached 1200 °C 

after only one second with average temperature magnitude 

larger than 1300 °C with liquid phase temperature magnitude 

around 1400 °C. Therefore, it can be concluded that the solid 

ferrochrome slag will be melted in such a condition. However, 

Figure 4 seems to suggest a drastic drop in the temperature 

magnitude when the diameter of particle is set to 5 mm. 

Figure 9  shows the temperature within the slag particle for two 

diameters of 2 and 5 mm. It can be seen that the minimum 

temperature magnitudes within the solid slag are 1200 and less 

than 200 °C for particles with diameters 2 ad 5 mm, 

respectively. 

 

Fig. 9. Minimum, average and maximum 

temperature magnitude of solid slag pellet at 1 s for 

diameters 2 and 5 mm.

As mentioned before, the drastic change in the magnitude of

temperature suggested the simulation should be run for longer

time interval where the particle diameter is larger than or equal

5 mm. Figure 10 shows the final magnitude of temperature for

particles diameters 5, 10, 20 and 40 mm within the solid slag

and the liquid phase after 10 s simulation time.
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Fig. 10 Minimum, average and maximum 

temperature magnitude of solid pellet at 10 s for 

diameters 5, 10, 20 and 40 mm.

It can be seen that the minimum temperature magnitude within

the particle drop from 1400 °C to 20 °C for particles diameters

of 5 to 40 mm (blue curve in Fig. 10). This, of course,

suggests that the temperature magnitude at the centre of

particles is not affected by the liquid phase energy even after

10 s simulation time when the particle diameter is equal 40

mm. The figure also shows that the gap between the average

temperature magnitude to the maximum increases with the

increment of solid particle diameter. This behaviour suggests

that a larger portion of the solid particle at larger diameter is

yet to be affected by the liquid phase energy.

 

Figure 11 Minimum and average temperature magnitude 

of liquid phase at 10 s for diameters 5, 10, 20 and 40 mm.

Moreover, Figure 10 shows that for the two cases of 20 and 40

mm diameters, the temperature magnitude of liquid phase in

the vicinity of the solid particle is around 1000 [°C].

Therefore, the probability of liquid slag to solidify at the

surface of the particle to form a shell increase which, in turn,

has the potential to hinder the energy diffusion from the liquid

phase into the solid particle.

The cause of such behaviour could be explained through

thermal properties of the solid slag. As mentioned, the solid

ferrochrome slag properties were reported by Karhu et.al.

(Karhu et al. 2020) and Figure 1 shows the thermal

conductivity and heat capacity of such a material.

As can be seen, the figure suggests an increase in the

temperature magnitude of such a material will lead to

decrement of thermal conductivity and increment of specific

heat, simultaneously. This, of course, imply that the solid

ferrochrome slag hampers the diffusion of energy at the higher

magnitude of temperature while it can absorb and store larger

amount of energy. These two actions together could be a likely

explanation as to why an increase in the size of the particle,

even only by a factor of 2.5 from 2 mm to 5, causes such a

slowdown in the transfer of energy from the environment

towards the centre of solid particle.

5.  CONCLUSIONS

The current study investigates the exchange of energy between

the solid ferrochrome slag and the liquid AOD slag. This

objective is to study the re-melting of the solid ferrochrome

slag using the liquid slag collected at the AOD station. To that

end, the thermal properties of the materials in use play a

significant role.

As shows, the simulation suggests that after 1 s simulation

time, the temperature magnitude at the centre of solid slag

particle reaches 1200 °C. However, an increase in the diameter

to 5 mm ( by 2.5 factor ) causes the temperature magnitude at

the centre drops significantly to the value of less than 200 °C

for a 1 s simulation.

Same behaviour can be observed with respect to increases in

the diameter of solid slag particle where for a particle of 40

mm diameter, the magnitude of temperature at the centre of the

particle is barely higher than initial temperature of 20 °C.

At the same time, it can be observed that the temperature

magnitude of the liquid phase in the vicinity of solid particle

drop to 1000 °C for a particle of diameter 40 mm. This, of

course, suggest that there is a higher probability for the liquid

AOD slag to solidify around the solid particle to form a shell

which then hampers the transfer of energy from the

environment into the solid ferrochrome slag to a larger degree.
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1. INTRODUCTION

Currently, more than 70% of the world's iron production is

derived from the integrated blast furnace (BF) and basic

oxygen furnace (BOF) process, which emits around 1.9 tons of

CO2 per ton of crude steel, as coke is the primary reducing

agent. Consequently, the iron and steel industries account for

about 7% of global CO2 emissions. Using hydrogen as a

reducing agent presents a solution to reduce CO2 emissions,

replacing CO2 with H2O as a by-product(Özgün et al., 2023;

Souza Filho et al., 2023; Spreitzer and Schenk, 2019).

Hydrogen can be employed in ironmaking through three

methods: hydrogen injection in blast furnaces, hydrogen direct

reduction, and hydrogen plasma reduction(Ahmed et al., 2020;

Raabe et al., 2023; Souza Filho et al., 2022, 2021,). Among

these, hydrogen direct reduction is closest to industrialization,

with several companies initiating the construction of their first

hydrogen direct reduction plants(Sun et al., 2023). The

schematic of process is shown in Fig. 1.

The thermodynamics and kinetics of hydrogen reduction of

iron ores have been extensively studied(Fradet et al., 2023;

Heidari et al., 2021). Unlike carbon monoxide reduction,

hydrogen reduction is entirely endothermic, making increased

temperatures thermodynamically favorable but requiring

additional energy input. Hydrogen reduction is faster than

carbon monoxide reduction due to hydrogen's smaller

molecule size, and higher mobility and diffusivity. However,

many factors, including feed characteristics (such as ore type,

mineralogy, and porosity) and system parameters (such as

Abstract: Iron ore pellet reduction in shaft furnaces represents a critical process in the steelmaking industry,

with energy consumption being a key factor influencing both economic viability and environmental

sustainability. This study employs HSC Chemistry software to model and simulate the energy consumption

of hydrogen reduction of iron ore pellets under varying water vapor content within the shaft furnace.

Thermodynamic modeling was carried out as the first step to analyze the effect of water vapor on the

thermodynamic equilibrium, determining the possible range of water vapor content. Subsequently, energy

consumption of the process was modeled based on heat and mass balance. Through comprehensive analysis,

we investigate the impact of water vapor on the overall energy efficiency of the process based on the two

scenarios of supplying the required heat by preheating the feed materials or injection of oxygen to the

furnace. Our findings reveal significant insights into optimizing energy consumption and operational

parameters to enhance the sustainability and cost-effectiveness of iron ore pellet reduction. This research

contributes to the ongoing efforts towards achieving greater efficiency and reduced environmental footprint

in the steelmaking industry.

Keywords: Hydrogen Reduction of Iron ore pellets, Shaft furnace, Energy consumption, HSC Chemistry

analysis

reduction temperature, gas flow rate, and pressure), influence

the process kinetics(Spreitzer and Schenk, 2019).

 

Fig. 1. The schematic of hydrogen-based fossil-free iron and steel

making.

Water vapor in the shaft furnace also affects the

thermodynamics, kinetics, and energy consumption of the

process(El-Zoka et al., 2023). Water vapor can originate from

various sources, including as a by-product of reduction

reactions, moisture in the pellets from the pelletizing process,

and oxygen injection for energy supply, which reacts with

hydrogen to produce water vapor. Moreover, hydrogen can be

produced through methods like steam methane reforming,
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electrolysis of water, and natural gas pyrolysis, all of which 

may introduce water vapor as an impurity. 

Given the presence of water vapor in the shaft furnace, it is 

essential to study its effects on the process from multiple 

perspectives. This study examines the energy consumption of 

the hydrogen reduction process in a shaft furnace with varying 

water vapor content using HSC Chemistry software.     

2. HEAT AND MASS BALANCE MODEL 

Hydrogen is currently utilized as a reducing agent in certain 

direct reduction processes like MIDREX and HYL, where 

hydrogen and carbon monoxide are produced by natural gas 

cracking in the reformer before being introduced to the shaft 

furnace. However, no shaft furnace operates with 100% 

hydrogen for real data application in our model. Thus, this 

study uses MIDREX process data, the leading direct reduction 

technology, and adapts it for the hydrogen reduction process. 

In this static model, system components are divided into gas 

and solid phases. The gas phase includes reducing gas and top 

gas, while the solid phase consists of feed material and 

produced sponge iron (DRI). The chemical compositions of 

these phases are detailed in Table 1. 

Table 1. Phases and chemical components considered in shaft 

furnace. 

Phases Chemical composition 

Gas H2, H2O, O2 

Solid 
Fe2O3, Fe3O4, Fe, SiO2, CaO, MgO, Al2O3, TiO2, 

MnO 

Hydrogen reduction process includes three stages of reduction 

of hematite to magnetite, magnetite to wüstite, and wüstite to 

metallic iron as it is presented by the reactions 1, 2, and 3 

respectively. 

3 𝐹𝑒2𝑂3 (𝑠) + 𝐻2 (𝑔) = 2 𝐹𝑒3𝑂4 (𝑠) + 𝐻2𝑂 (𝑔) (1) 

𝐹𝑒3𝑂4 (𝑠) + 𝐻2  (𝑔) = 3 𝐹𝑒𝑂 (𝑠) + 𝐻2𝑂 (𝑔) (2) 

𝐹𝑒𝑂 (𝑠) + 𝐻2  (𝑔) = 𝐹𝑒 (𝑠) + 𝐻2𝑂 (𝑔)  (3) 

Moreover, oxygen can be introduced to the shaft furnace and 

the combustion of hydrogen takes place through the reaction 4 

to supply the required heat of reduction reactions.  

𝐻2 +
1

2
𝑂2 = 𝐻2𝑂    (4) 

2.1 Mass balance 

The mas balance model that has been used in this study is 

based on the elemental distribution. It means that the amount 

of each element in input (Wi,input) should be equal to its amount 

in the output (Wi,output). 

𝑊𝑖,𝑖𝑛𝑝𝑢𝑡 = 𝑊𝑖,𝑜𝑢𝑡𝑝𝑢𝑡    (5) 

Since an element can exist in different phases, equation 5 can 

be rewritten as equation 6. 

𝑊𝑖,𝑓𝑒𝑒𝑑 + 𝑊𝑖,𝑟𝑒𝑑𝑢𝑐𝑖𝑛𝑔 𝑔𝑎𝑠 = 𝑊𝑖,𝐷𝑅𝐼 + 𝑊𝑖,𝑡𝑜𝑝 𝑔𝑎𝑠               (6) 

Where 𝑊𝑖,𝑓𝑒𝑒𝑑 is weight of element i in the feed, 

𝑊𝑖,𝑟𝑒𝑑𝑢𝑐𝑖𝑛𝑔 𝑔𝑎𝑠 is the weight of element i in the reducing gas, 

𝑊𝑖,𝐷𝑅𝐼 is the weight of element i in DRI, and 𝑊𝑖,𝑡𝑜𝑝 𝑔𝑎𝑠 is the 

weight of element i in the top gas. 

As it can be seen in Table 1, even in one phase an element can 

exist in several components. So, equation 6 can be expanded 

to equation 7. 

𝑊𝑓𝑒𝑒𝑑 × ∑ 𝑊𝑖𝑗𝑋𝑗 𝑖𝑛 𝑓𝑒𝑒𝑑𝑗 + 𝑊𝑟𝑒𝑑𝑢𝑐𝑖𝑛𝑔 𝑔𝑎𝑠 ×

∑ 𝑊𝑖𝑗𝑋𝑗 𝑖𝑛 𝑟𝑒𝑑𝑢𝑐𝑖𝑛𝑔 𝑔𝑎𝑠𝑗 = 𝑊𝐷𝑅𝐼 × ∑ 𝑊𝑖𝑗𝑋𝑗 𝑖𝑛 𝐷𝑅𝐼𝑗 +

𝑊𝑡𝑜𝑝 𝑔𝑎𝑠 × ∑ 𝑊𝑖𝑗𝑋𝑗 𝑖𝑛 𝑡𝑜𝑝 𝑔𝑎𝑠𝑗   

Where 𝑊𝑓𝑒𝑒𝑑  is weight of feed material, 𝑊𝑟𝑒𝑑𝑢𝑐𝑖𝑛𝑔 𝑔𝑎𝑠 is 

weight of reducing gas, 𝑊𝐷𝑅𝐼 is weight of DRI, 𝑊𝑡𝑜𝑝 𝑔𝑎𝑠 is 

weight of top gas, 𝑊𝑖𝑗 is weight of element i in component j, 

𝑋𝑗 𝑖𝑛 𝑓𝑒𝑒𝑑 is the weight fraction of component j in feed, 

𝑋𝑗 𝑖𝑛 𝑟𝑒𝑑𝑢𝑐𝑖𝑛𝑔 𝑔𝑎𝑠 is the weight fraction of component j in 

reducing gas, 𝑋𝑗 𝑖𝑛 𝐷𝑅𝐼 is the weight fraction of component j in 

DRI, and 𝑋𝑗 𝑖𝑛 𝑡𝑜𝑝 𝑔𝑎𝑠is the weight fraction of component j in 

top gas. 

2.2 Energy balance 

The general equation of heat balance can be written as 

equation 8. 

∆𝐻𝑖𝑛𝑝 + ∆𝐻𝑜𝑢𝑡 + ∆𝐻𝑒𝑥𝑜 + ∆𝐻𝑒𝑛𝑑 = 0  (8) 

Where ∆𝐻𝑖𝑛𝑝  is enthalpy of input components, ∆𝐻𝑜𝑢𝑡  is 

enthalpy of output components, ∆𝐻𝑒𝑥𝑜  is enthalpy of 

exothermic reactions, and ∆𝐻𝑒𝑛𝑑  is enthalpy of endothermic 

reactions. The heat of a reaction at temperature T can be 

calculated by equation 9. 

(∆𝐻𝑟)𝑇 = (∆𝐻𝑟)298 + ∑(𝐻298
𝑇 )𝑝𝑟𝑜𝑑 − ∑(𝐻298

𝑇 )𝑟𝑒𝑎𝑐𝑡      (9) 

Where is (∆𝐻𝑟)𝑇  is enthalpy of reaction at temperature T, 

(𝐻298
𝑇 )𝑝𝑟𝑜𝑑  is enthalpy of product components by changing 

temperature from 298 K to T, and (𝐻298
𝑇 )𝑟𝑒𝑎𝑐𝑡  is enthalpy of 

reactant components by changing temperature from 298 K to 

T. 𝐻298
𝑇  can be calculated using equation 10. 

𝐻298
𝑇 = 𝑛 ∫ 𝐶𝑝𝑑𝑇

𝑇

298
 (10)

Where n is the mole number, and 𝐶𝑝 is heat capacity or the

amount of heat energy released or absorbed by a mole of the

substance with the change in temperature at a constant

pressure. Cp is usually calculated using equation

11(Kubaschewski and Alcock, 1979).

𝐶𝑝 = 𝑎 + 𝑏𝑇 + 𝑐𝑇−2 + 𝑑𝑇−1 (11)

Where a, b, c, and d are thermodynamic coefficients which are

different for each substance.

2.3 Model assumptions and considerations

Figure 2 shows the schematic flowsheet of the model. As it can

be seen, the model consists of two input streams of reducing

gas at 900℃ and feed material which its temperature should

be calculated, and output stream of top gas at 400℃ and DRI

at 800℃(CHATTERJEE, 2012). In the real process,

temperature of shaft furnace can vary from 850℃ to 950℃.

So, three different temperatures of 850℃, 900℃, and 950℃

have been utilized in the model.

(7) 
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Iron ore pellet which is currently used in direct reduction 

process has been selected as feed material in this study. The 

chemical composition of the pellet can be found in Table 2. 

In the current MIDREX process, the top gas contains 

approximately 33-37% hydrogen and 21-24% water vapor and 

CO and CO2 as the rest, indicating an excess of inlet hydrogen 

compared to the stoichiometric amount, which is attributed to 

the process design and considerations(Liu et al., 2014). 

Consequently, a ratio of 1.7 between hydrogen and water 

vapor (H2/H2O = 1.7) has been employed in this model for the 

top gas. The characteristics of the top gas are detailed in Table 

3. 

Table 4 illustrates that the reducing gas comprises hydrogen. 

However, to assess the impact of water vapor on the energy 

consumption of the process, water vapor was incrementally 

added up to 10% to the system. 

Assuming a 100% metallization degree, the Direct Reduced 

Iron (DRI) consists of metallic iron and gangue materials, as 

depicted in Table 5. 

 

Fig. 2. Schematic flowsheet of model.

Table 2. Chemical composition of pellet (feed material).

Component Fe2O3 Fe3O4 SiO2 CaO MgO

Mass% 84.64 9.11 3.78 0.73 0.45

 Al2O3 TiO2 MnO

 0.64 0.23 0.028

Table 3. Chemical composition of top gas. 

Temperature (℃) 400 

H2 (%) 63 

H2O (%) 37 

Table 4. Chemical composition of reducing gas. 

Temperature (℃) 900 

H2 (%) 90-100 

H2O (%) 0-10 

Table 5. Chemical composition of DRI. 

Temperature (℃) 800    

Component Fe SiO2 CaO MgO 

Mass% 65.79 3.78 0.73 0.45 

 Al2O3 TiO2 MnO  

 0.64 0.23 0.028  

It should be noted that all calculations were carried out for one 

ton of feed material, and heat loss and mass loss have been 

neglected. Furthermore, kinetics and rate of reactions have not 

been considered in the calculations.   

3.  RESULTS AND DISSCUSIONS 

3.1 Thermodynamic studies 

Figure 3 illustrates the stability diagram of the Fe-O-H system, 

known as the Baur–Glässner diagram. Since hydrogen 

reduction is endothermic, increasing the temperature broadens 

the stability zone of iron in the diagram. From a 

thermodynamic perspective, hydrogen reduction should occur 

at the highest possible temperature, which is also advantageous 

for kinetics. However, supplying the necessary energy to 

achieve high temperatures is economically challenging. 

Furthermore, the diagram shows that in the temperature range 

of 850-950℃, with up to over 30% water vapor in the system, 

regardless of kinetics, reduction to metallic iron is still 

possible. So, in this model 0-10% water vapor considered in 

the input to be sure that with the produced water vapor from 

the reduction reactions, it will not exceed from the stable zone 

of iron. 

3.2 Model with preheating feed materials 

The heat and mass balance module of the HSC Chemistry 

software was utilized to model the system when heat is 

supplied by preheating the feed materials. Figure 4 illustrates 

the energy required to reduce one ton of pellets using reducing 

gas with varying water vapor contents. It shows that reduction 

with pure hydrogen demands 92 kWh at 850℃, 100 kWh at 

900℃, and 110 kWh at 950℃. Adding water vapor to the 

reducing gas consistently decreases the required energy at all 

temperatures. Figure 5 presents the model results as the 

preheating temperatures of the feed materials with reducing 
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gas compositions ranging from 0 to 10% water vapor at 

operating temperatures of 850℃, 900℃, and 950℃. At a 

furnace temperature of 850℃ with pure hydrogen as the 

reducing gas, the feed materials must be preheated to 428℃ to 

meet the heat requirements. Raising the operating temperature 

to 900℃ necessitates more energy, requiring the feed 

materials to be heated to 459℃. Although increasing the 

furnace temperature from 850℃ to 900℃ results in a 31℃ rise 

in feed material temperature, raising the furnace temperature 

to 950℃ requires a further increase of 37℃, bringing the feed 

material temperature to 496℃. This trend persists across 

different reducing gas compositions. 

 

Fig. 3. Baur–Glaessner diagram for Fe-O-H system (calculated

with HSC Chemistry version 10.4.1.1).

 

Fig. 4. The required energy to reduce one tone of pellet with

different water vapor content in the reducing gas composition.

Figure 5 also shows that at all three operating temperatures, 

increasing the water vapor content in the reducing gas results 

in a decrease in the required energy and consequently lowers 

the preheating temperature of the pellets. To understand this 

phenomenon, the volume of reducing gas was monitored. 

Figure 6 displays the volume of reducing gas needed to reduce 

one ton of pellets with varying water vapor contents. It is 

evident that increasing the water vapor content raises the 

volume of reducing gas. Since the top gas composition is 

maintained at a constant value, as shown in Table 3, increasing 

water vapor content necessitates an increase in the reducing 

gas volume to keep the H2/H2O ratio constant as per Table 3. 

Consequently, because the reducing gas is warmer than the 

pellets, an increase in its volume supplies more heat to the 

system, significantly reducing the preheating temperature of 

the feed materials. 

Furthermore, Figure 7 illustrates the heat capacity of hydrogen 

and water vapor at different temperatures ranging from 850℃ 

to 950℃, according to Equation 11. It is observed that the heat 

capacity of water vapor is higher than that of hydrogen, and 

for both components, the heat capacity increases with 

temperature. However, the increase in heat capacity is more 

pronounced for water vapor than for hydrogen. This indicates 

that adding water vapor to the reducing gas, even while 

keeping the gas volume constant, contributes additional energy 

to the system due to the high heat capacity of water vapor. 

 

Fig. 5. Temperature of preheated feed materials with different

water vapor content in the reducing gas composition.

3.3 Model with oxygen injection

In this model, the necessary heat for the hydrogen reduction

process is generated by injecting oxygen into the furnace,

facilitated through reaction 4. Figure 8 indicates that to achieve

the required reduction heat using pure hydrogen at 850℃,

13.25 Nm³ of oxygen must be injected. When the operating

temperature is increased to 900℃, the volume of oxygen

needed rises to 14.41 Nm³, and at 950℃, it further increases to

15.87 Nm³. This increase in required oxygen volume with

higher temperatures underscores the endothermic nature of the
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hydrogen reduction process, which demands more energy 

input as temperatures rise. 

 

 

Fig. 6. Volume of reducing gas to reduce one ton of pellet with

different water vapor content in the reducing gas composition.

 
Fig. 7. Heat capacity of hydrogen and water vapor at different

temperatures.

 

Fig. 8. Volume of injected oxygen with different water vapor

content in the reducing gas composition.

Figure 9 illustrates that the volume of reducing gas increases 

with higher water vapor content, consistent with the earlier 

discussed principles. However, due to the presence of oxygen 

in the system, the reducing gas volume also varies with the 

furnace temperature. As the water vapor content rises, the 

necessary heat—and consequently the amount of oxygen 

required—decreases significantly. This reduction in oxygen 

demand is particularly important because it highlights the 

interplay between water vapor and oxygen in the system. By 

optimizing the water vapor content, the process can achieve 

substantial energy savings and enhanced efficiency. 

An ironmaking plant with a capacity of 1 Mt DRI per year can 

be considered as a realistic example. With the same pellet and 

gas composition that used in this study, with the reduction 

temperature of 900°C and 5% H2O in the system, 65.12 GWh 

energy is needed for the reduction, which can be supplied by heating 

the feed material to 322°C or injecting 9.14×106 Nm3 oxygen to the 

system. Therefore, understanding the precise oxygen 

requirements at various temperatures and managing both the 

oxygen injection and water vapor levels are crucial for 

maintaining an optimal balance of heat supply, reducing 

overall energy consumption, and improving the economic and 

environmental performance of the hydrogen reduction process 

in ironmaking. 

 

Fig. 9. Volume of reducing gas to reduce one ton of pellet 

with different water vapor content in the reducing gas 

composition and the presence of oxygen in the system.

4. CONCLUSIONS

Energy consumption of hydrogen reduction process with the

presence of 0 to 10% water vapor was studied in this research.

Modeling has been done using the heat and mass module of

HSC Chemistry software and with MIDREX condition.

This study offers an in-depth examination of the energy

consumption and thermodynamic behavior of hydrogen

reduction of iron ore pellets in a shaft furnace. It particularly

focuses on the effects of varying water vapor content.

The study reveals that increasing the reduction temperature is

thermodynamically favorable for hydrogen reduction, but it

necessitates additional energy input, posing economic
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challenges. The volume of oxygen required to provide the

necessary heat rises with the operating temperature. For

instance, 13.25 Nm³ of oxygen is needed at 850℃, 14.41 Nm³

at 900℃, and 15.87 Nm³ at 950℃.

The study also finds that a higher water vapor content

augments the volume of reducing gas to keep the top gas

composition constant. However, the presence of oxygen in the

system also influences the volume of reducing gas to vary with

furnace temperature. An increase in water vapor content

reduces the heat required and, consequently, the amount of

oxygen needed.

By optimizing the water vapor content and operating

temperature, the study suggests that significant improvements

in energy efficiency and reduction kinetics can be achieved.

This enhances the sustainability and cost-effectiveness of the

process.

These findings contribute to the development of more efficient

and environmentally friendly methods for iron ore reduction in

the steelmaking industry. They support efforts to reduce the

carbon footprint associated with steel production.
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Abstract: Oxyfuel combustion complements decarbonization efforts by reducing the energy needs in high-

temperature industries. Steel reheating furnaces are good candidates for full oxyfuel operation since this 

can lead to up to 30% energy savings. Linde uses an in-house tool to simulate reheating furnaces for air-

fuel to oxyfuel conversion. This paper follows a real customer case, starting with an airfuel simulation setup 

used to analyze the furnace, followed by oxyfuel simulations for burner design and energy savings 

estimations. These simulations lead to a successful installation of oxyfuel burners for the reheating furnace 

located at Ovako Imatra site. After the commissioning is completed, performance evaluation is done by 

comparing a reference airfuel operation period with an oxyfuel combustion period. Full oxyfuel conversion 

results in 27% energy savings for hot charge and high production rate periods thanks to significantly lower 

flue gas losses. Removing nitrogen from the oxidizer decreases the flue gas volume, reducing the total heat 

capacity of the off-gas stream. The savings are around 30% for cold charge and average production rate 

periods. 

 

Keywords: oxyfuel combustion, energy savings, decarbonization, steel reheating. 

1. INTRODUCTION 

The decarbonization of electricity production, combined with 

increased electrification, has the potential to reduce the carbon 

footprint of low-temperature industries. However, high-

temperature industries such as steel and glass production have 

a greater demand for heat that cannot currently be met without 

combustion. It is essential to develop efficient burner 

technologies to save energy and complement efforts to 

decarbonize fuel. One promising method is oxyfuel 

combustion, which uses industrial oxygen as an oxidizer to 

eliminate nitrogen from the gas mixture. This approach offers 

several benefits, including increased production capacity, 

reduced heat losses through flue gases, lower NOx emissions, 

and lower CO2 emission levels due to fuel savings. Research 

on oxyfuel combustion has been conducted for the steel 

industry (Hu et al., 2019) and the aluminum industry (Paubel 

et al., 2019). 

Oxyfuel combustion has some inherent benefits. At a specific 

energy release, it creates low volumes of flue gas that has a 

higher fraction of highly radiating triatomic gas molecules. 

Any furnace designed for airfuel combustion can be fired more 

efficiently using oxygen as the oxidizer. The longer residence 

time of the highly radiating gases allows for a very efficient 

heat recuperation inside the furnace's dark zone. One potential 

drawback of traditional oxyfuel is the risk of forming high 

amounts of NOx due to the higher flame temperature. Linde 

has developed burners that overcome this problem by 

implementing semi-flameless and flameless combustion. The 

potential to efficiently supply more power than by using airfuel 

in any given furnace design also allows for the possibility to 

produce more if the material being heated allows for this. 

Linde, with over 40 years of experience in oxyfuel 

combustion, is a trusted leader in the field. From studying lab-

scale kinetics to converting large furnaces to 100% oxyfuel 

combustion, Linde has demonstrated its expertise. Reheating 

furnaces, being one of the most energy-demanding units in 

steel processing (Zhao et al., 2021), are excellent candidates 

for oxyfuel conversion. These furnaces, used to reheat blooms 

or billets to the rolling temperatures of around 1150 - 1300 ℃, 

constitute up to 67% of the total steel energy demand (Vögele 

et al., 2020).  

Ovako Group has been active in their decarbonization efforts 

since 1995 by switching reheating furnaces (Hofors, Sweden) 

into oxyfuel combustion as well as High-Level Lancing (HLL) 

of oxygen at other Ovako locations (Smedjebacken and 

Hällefors, Sweden). The following efforts included 

electrification of heat treatment furnaces and electrolyzer 

investments to use fossil-free hydrogen for combustion. This 

paper follows the conversion of Ovako Imatra's reheating 

furnace to full oxyfuel operation using simulations and real 

data for airfuel vs. oxyfuel comparisons regarding energy 

savings and capacity increase. These numerical simulations 
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allow a better understanding and an optimal design of the 

oxyfuel combustion system. Additionally, they predict the 

furnace performance with the suggested changes ensuring a 

more confident project execution. 

Another installation of oxyfuel technology is planned at their 

Boxholm plant in Sweden. The Imatra plant in Finland is 

making a major effort to decarbonize Ovako’s steel 

production, and the conversion of the bloom furnace is the first 

major leap. The converted furnace, the first large-scale 

reheating furnace in Finland using solely flameless oxyfuel 

technology, is a testament to the potential of oxyfuel 

conversion. This successful conversion not only enables the 

use of hydrogen as a fuel, but also allows Ovako’s to move 

towards its goal of zero-carbon production. 

Conversion to full oxyfuel lowers the total flue gas volume and 

can cause difficulties in furnace pressure control depending on 

the flue gas system sizing. Maintaining the furnace pressure is 

essential to prevent air ingress, and slight positive pressure is 

preferred for industrial furnaces. Therefore, some furnaces 

may have a minimum power limitation to generate enough flue 

gas volume. The flue gas system is often redesigned during the 

conversion, and the furnace pressure control damper is rebuilt. 

The target furnace of this work is a walking beam furnace used 

to heat blooms. During airfuel operation, it had roof-mounted 

burners for the top zones and lateral burners for the bottom 

zones. For oxyfuel operation, the roof burners are repositioned 

as lateral burners. The baffles between the recuperative and 

fired bottom zones were removed to accommodate two 

additional fired zones. No other major modifications were 

made. The furnace has an installed economizer in the stack, 

and it is kept in use after the oxyfuel conversion despite not 

using the hot combustion air anymore. Heat recovered by the 

economizer, as well as from cooling of walking beams, is used 

in district heating around the mill. The furnace pacing system 

stayed unchanged, and the heating control system was adapted 

to new zones and gas compositions.  

2. METHODOLOGY 

The simulation code used for this work is based on the blooms 

being evenly spaced in the furnace with no empty spaces. Even 

pacing of blooms is assumed for transportation through the 

furnace. One target condition is uniform temperature 

distribution within the material with less than 30 ℃ gradient 

between 10% under the top surface and the center of the bloom 

when it exits the furnace. Reference thermocouple 

measurements are taken from the furnace zones. The 

temperature-dependent emissivity of the furnace walls and the 

heated material are selected as inputs, as well as the chemical 

composition of the reference alloy. The model calculates the 

fired zone temperatures and the power used in the fired zones 

to achieve the material target temperatures at the selected 

production rate.  

The furnace model is divided into zones that can be used for 

heating or recuperation. While heating zones are fired, 

recuperation zones are not. These zones are adapted to the 

customer furnace and correspond to the control strategy. The 

furnace is, then, subdivided into computational cells, as shown 

in Fig. 1. Each cell has two energy balances that must be 

fulfilled, one on the cell wall and one for the gas volume in the 

cell. The cell is assumed to be an ideal continuous stirred-tank 

reactor, and the cell models include the radiation and 

convection energy fluxes from gas to wall, gas to material, 

wall to material, wall to surroundings, and cell to cell. The gas 

radiation is evaluated according to the method described in 

VDI-Wärmeatlas section KC (Stephan et al., 2021). The 

standard view factor methods compute the wall and material 

surface radiative interactions (Stephan et al., 2021). 

Convection constitutes a minor part of the heat transfer and 

uses the Juerges' standard forced convection equation 

(Mörtstedt and Hellsten, 1994). The simulation code sets up a 

system of differential equations based on the number of cells. 

The solver uses two input parameters for each cell and solves 

the equation system by finding the correct gas temperature or 

power input with wall temperatures that satisfies the set of 

equations with a minimum error. 

 
Fig. 1. Energy fluxes considered. (A: Gas to gas, B: Gas to wall, C:

Gas to material, D: Wall to material, E: Wall to wall, F: Material to

material, G: Cell to cell, H: Wall to surroundings.)

The material pieces are also divided into computational nodes,

and the transient response of the nodes is calculated by the very

efficient Thomas algorithm, modified to use non-constant

material properties (Lee, 2024).

The solver generates a steady-state solution to the particular

problem setup. This solution highly depends on the

temperature status of all the material surfaces in the furnace.

To generate this solution, the transient response of the material

transported through the furnace is recalculated many times

during the solution procedure. The KINSOL solver

(https://computing.llnl.gov/projects/sundials), with Broyden

root finder (Broyden, 1965), is used for the simulation.

For the Ovako Imatra case, 0.5 m furnace cells were selected,

which generated 37 cells for both the top and bottom zones.

This setup created 148 energy balance equations to be solved

simultaneously. For computational efficiency and desired

accuracy, the material node was selected to be 39 x 46 mm.

The selected material dimensions were 310 x 370 x 4400 mm.

 

Linde and Ovako agreed on the following simulation scenarios 

for airfuel vs. oxyfuel comparison. 

• Scenario 1: Cold charged blooms, 20 ℃, 38 tph pace, 

~4 hours in the furnace with target temperature of 

~1250 ℃ 

• Scenario 2: Hot charged blooms, 800 ℃ surface 

temperature, 900 ℃ core temperature, 75 tph pace, 

~2 hours in the furnace with target temperature of 

1250 ℃ 

These simulations represent ideal production scenarios; 

however, the reality is usually non-ideal. The production 

follows the demand. Therefore, material size, characteristics, 
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and heating requirements change during continuous operation. 

It is hard to simulate the real furnace, considering the 

temperature, power, and production rate changes. Ideal 

scenarios are used to demonstrate the differences between 

airfuel and oxyfuel operations. 

Before oxyfuel conversion, airfuel data is collected from the 

furnace, including fuel flow, bloom charge and discharge 

temperature, and production rate. Data is collected during a 

week and classified according to charge temperature to 

evaluate the energy requirements separately. The reference 

airfuel simulation is forced to match the reference airfuel data, 

and the furnace losses are calculated according to the energy 

balances. These losses are kept constant and used for the 

oxyfuel simulation to represent the furnace as close as possible 

to reality without expecting furnace improvements. 

 

 

Data sets are described below. 

 

• Data set 1: Cold charged blooms, below 100 ℃, 

above 25 t/h 

• Data set 2: Hot charged blooms, over 800 ℃, above 

55 t/h  

• Data set 3: Hot charged blooms, over 800 ℃, all 

production rates 

• Data set 4: Mixed temperature charges, between 100 

and 800 ℃, all production rates 

After the oxyfuel installation, performance evaluation data is 

collected for one week. Oxyfuel data is also classified as 

described above for comparison. 

Data sets 1 and 2 are similar to the simulation scenarios; 

however, values differ slightly due to the very limited number 

of data points that satisfy the simulation conditions. 

3. SIMULATION RESULTS 

Linde creates simulations during the project evaluation period 

using furnace design, burner equipment, fuel selection, 

material heating requirements, fuel consumption, production 

rate, combustion air temperatures, and material grade 

information supplied by Ovako. 

An image of the simulation interface for airfuel operation is 

given in Fig. 2. The fired top and bottom zones and flue gas 

flow direction are shown in this figure, in addition to the 

thermocouple locations. Material flows opposite the flue gas 

flow (pink arrows) direction. The furnace starts with two 

recuperation zones (left-hand side), followed by six fired zones 

(three top and three bottom). The off-gas duct is marked with 

red arrows, and potential air leakage is marked with blue 

arrows. Fired zones are shown with the yellow flame, and the 

thermometer indicates the location of the thermocouples.  

 
Fig. 2. Airfuel simulation setup.

 
Fig. 3: Oxyfuel simulation setup.

Oxyfuel simulation presents the availability for two additional

fired zones thanks to efficient recuperation of the heat in the

low flue gas volume. As shown in Fig. 3, one top and one

bottom fired zone are added to the furnace, shortening the

recuperation zone to start heating the blooms earlier and

allowing the material to distribute the heat for a longer time.

Table 1 shows the operating parameters and the resulting

energy consumption. The solver is restricted by the maximum

allowed wall temperature, available installed power, and the

temperature homogeneity requirements of the blooms at

discharge. Simulation results are reasonable with respect to the

acquired furnace data.

Table 1. Airfuel simulation results as reference points.

Case Charge

T (℃)

Discharge 

T (℃) 

Production 

rate (t/h) 

Energy 

Consumption 

(kWh/t) 

Sce. 

1 

20 1250 38 334 

Sce. 

2 

800 1250 75 144 

 

To achieve the target temperatures with oxyfuel installation, 

simulations are reset, and new power values are estimated 

using oxyfuel burners. The results of these simulations are 

used to calculate energy savings, as summarized in Table 2. 

 

Table 2. Results of the oxyfuel furnace simulations.

Case Charge

T (℃)

Discharge 

T (℃) 

Production 

rate (t/h) 

Energy 

Consumption 

(kWh/t) 

Sce. 

1 

20 1250 38 296 

Sce. 

2 

800 1250 75 119 

 

Based on the simulations, an 11% improvement is calculated 

for cold charging (Sce. 1), and a 17% improvement is expected 

for hot charging at high production rates (Sce. 2). Based on 

these simulations, Linde and Ovako agreed on full oxyfuel 

conversion of the selected furnace. 
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4. PERFORMANCE EVALUATION 

Performance comparison is based on the data obtained during 

the reference period prior to the oxyfuel installation and from 

a total production week using oxyfuel after the commissioning. 

Energy usage data is logged as hourly totals. For each hour, 

the number of tons of product discharged is evaluated to 

represent the production rate. The charge and discharge 

temperatures are averages of all the blooms extracted during 

the hour. Selected hours are consecutive in time to reflect 

continuous production and charging of blooms. 

 
Table 3. Airfuel reference data.

Case Charge

T (℃)
Discharge 

T (℃) 

Average 

Production 

Rate (t/h) 

Energy 

Consumption 

(kWh/t) 

Set1 41 1234 40 373 

Set2 849 1212 62 170 

Set3 835 1212 42 333 

Set4 576 1220 38 366 

 

Reference data from the airfuel operation is given in Table 3. 

The data shows the highest energy consumption for the cold-

charged blooms, as expected, represented as Set1. The 

simulation results given in Table 1 and Table 2 represent a 

fully continuous production. On the other hand, the actual 

scenarios in Table 3 and Table 4 are averages of hours with 

higher and lower production rates, possibly including minor 

stops between changing production parameters. It can be 

expected that the actual production has a higher energy 

consumption than the simulation. This explains the deviation 

between the simulation setups and the real data for both hot 

and cold-charged scenarios. Furthermore, Set2 has a 

significantly lower average production rate than the 

simulation, which also contributes to higher energy 

consumption than the simulation. 

Set3 and Set4 are not simulated but are used for performance 

evaluation. Set4 is a mix of higher and lower charge 

temperatures, and the energy consumption value lies between 

the cold (Set1) and the hot charge (Set3). As expected, and 

simulated, higher charge temperatures require lower energy 

consumption per ton of product to reach the target discharge 

temperature. Changing the production rate affects 

consumption significantly. The subset taken from Set3 is given 

as Set2, which includes only the highest production rates. The 

lowest energy consumption is achieved during these high 

throughput hours. This high efficiency has an upper limit 

defined by the combustion system, furnace design, charge 

material, and production requirements.  

The target furnace is converted to full oxyfuel operation by 

Linde according to the simulations with the additional fired 

zones. Oxyfuel-fired burners are shown in Fig. 4. After the 

commissioning, some blooms are charged with 

thermoelements installed on them to measure the temperature 

distribution in the material, as shown in Fig. 5. 

 

Fig. 4. Oxyfuel burners as installed with heated bloom in the

foreground.

 
Fig. 5. Bloom with thermoelements being discharged from the

furnace.

The oxyfuel performance data is presented in Table 4.

Table 4: Oxyfuel performance data.

Case Charge

T (℃)

Discharge 

T (℃) 

Average 

Production 

Rate (t/h) 

Energy 

Consumption 

(kWh/t) 

Set1 14 1247 36 261 

Set2 871 1236 61 123 

Set3 830 1244 43 163 

Set4 622 1237 33 241 

 

Oxyfuel and airfuel follow the same trend for all the scenarios. 

As expected, oxyfuel energy consumption is consistently 

lower than airfuel. The highest energy consumption belongs to 

the cold-charged material (Set1). Despite a 10% lower 

production rate, 25 ℃ lower average charge temperature, and 

10 ℃ higher discharge temperature of oxyfuel operation, 

energy savings of 30% are achieved for cold-charged blooms 

reheating. Simulation setup 1 represents a similar case to Set1. 

The simulation shows an improvement of only 11% in terms 
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of energy savings. As explained earlier, this value does not 

account for any furnace improvements. However, extensive 

commissioning maintenance carried out during the oxyfuel 

installation at the Imatra site should contribute to this 

deviation, together with the inherent ability of oxyfuel systems 

to quickly adapt to varying production scenarios. Oxyfuel 

systems are more agile than airfuel systems due to their higher 

heat transfer capability. Furnaces with varying production 

rates benefit oxyfuel combustion greatly. It shall also be noted 

that the simulation software is designed to be slightly 

conservative in its estimations of oxyfuel performance so as 

not to promise excessive energy savings. 

A considerable 27% energy saving is achieved by oxyfuel 

conversion for the high production rates of the hot-charged 

material (Set2). For hot charging, the high flue gas 

temperatures penalize airfuel systems more than oxyfuel 

systems due to the high flue gas volume of airfuel combustion. 

Simulation setup 2 represents this scenario best, and it 

estimated an improvement of 17%, which is lower than the 

actual performance improvement of 27%. This deviation can 

be explained by the same reasons described above. 

Additionally, the average charge temperature of the oxyfuel 

Set2 is 20 ℃ higher than the airfuel case. 

The highest energy savings are observed for the hot charge in 

Set3, at 51%. While the charge temperature and production 

rates are comparable for airfuel and oxyfuel Set3, the oxyfuel 

combustion data set has a 30 ℃ higher average discharge 

temperature. The possible explanation for the very high energy 

savings, in addition to the aforementioned furnace 

maintenance, is likely the higher variance in the production 

rates for the airfuel reference period compared to the oxyfuel 

period. 

Set4, with the mixed charge temperatures, shows a 34% 

improvement after the oxyfuel conversion. Oxyfuel data has 

the advantage of receiving a higher-temperature charge. 

However, it also has a higher discharge temperature and a 

lower average production rate, balancing the comparison.  

 

Fig. 6. Performance evaluation data for hot charge.

The hourly performance evaluation data for hot charge is

plotted against the production rate for both airfuel and oxyfuel

reference periods, given in Fig. 6. Percent improvement is

plotted based on the trendlines. The benefit of oxyfuel slightly

increases with the increasing production rate. If the airfuel-

fired furnace is run at a much higher production rate, the

furnace efficiency will drop. This effect can be seen in Fig. 6.

At rates above 70 t/h, all data points are found above the

trendline that best fits the data set.

Based on the overall performance evaluation data, total energy

savings for the reference period are estimated at 43%. It is

worth mentioning that the economizer and cooling water heat

recovery gains are not included in the efficiency calculations

of oxyfuel operation, which translates to a further 10% savings

of the total supplied energy.

5. CONCLUSIONS

Oxyfuel combustion is an efficient method to save energy in

steel reheating furnaces. Increasing the heat transfer capacity

and lowering the flue gas volume, hence the energy loss to the

atmosphere, these systems have a proven track record of

achieving higher performance against traditional airfuel

combustion. This work shows both simulation and

performance evaluation of oxyfuel and airfuel combustion at

Ovako Imatra blooms reheating furnace. The simulation

scenario showing a 17% improvement for high production

rates of hot-charged material is supported by the real data

showing a 27% improvement after complete oxyfuel

conversion. Finally, 43% energy savings is achieved during

the reference oxyfuel evaluation period.
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Abstract: Medium manganese steels (MMnS) are known as third-generation high-strength steels,
providing an excellent balance of high strength and ductility at a lower cost than those of the second-
generation steels. However, the increasing demand for steels with improved hydrogen embrittlement
resistance highlights the need for the effective development of new alloys. This study explores the
computational design of MMnS with a better combination of strength, ductility, and hydrogen
embrittlement resistance. Mechanical properties vary mainly due to changes in chemical composition and
processing routes. Computational approaches enable precise optimization of these parameters, avoiding the
inefficiencies of traditional trial-and-error. Therefore, CALPHAD-based thermodynamic calculations using
Thermo-Calc (TCFE12, MOBFE 7) and JMatPro 14.1 software were employed to design a novel MMnS
chemistry, increasing the fraction and stability of the retained austenite and providing efficient traps for
hydrogen. As a result, the optimised chemical compositions were determined to be (in wt.%): 0.35C, 9Mn,
1Si, 1Mo, 1 and 3 Al, 0.1Nb, and 0.35C, 9Mn, 1Si, 1Mo, 3Al, 0.05Nb and 0.3V. Thermo-Calc 
precipitation simulations identified 0.1% Nb as optimal since higher Nb contents reduce carbon in 
austenite, lowering its stability, and increase the size of the carbides. This Nb content results in NbC 
formation with an average size distribution around 1 nm, 36 nm, and a size distribution of 1.2 × 1030, and 
5.4 × 1027respectively. 3% Al promotes the delta ferrite formation and avoids the formation of 
kappa carbides, and 1% Mo compromises the volume fraction of NbC, strengthening the alloy and 
serving as an effective hydrogen deep trapping site. 0.3% V was chosen, compromising its effects on the 
size distribution of VC and available C for the austenitic phase, improving its mechanical stability.
Keywords: Medium Manganese Steels, Hydrogen Embrittlement Resistance, Computational Design,
CALPHAD-based Thermodynamic Calculations.

1. INTRODUCTION

Steels with high strength – high ductility, and improved
hydrogen embrittlement (HE) resistance have become
mandatory in the current era regarding energy applications.
The first- generation steels had a relatively high strength but
low ductility, which was enhanced in the second-generation
steels at the expense of high-cost alloying elements. The third-
generation steels, including medium manganese steels
(MMnS), compromise the drawbacks of the previous two
generations, having better ductility with lower costs (Sun et al.,
2023). The physical and mechanical properties of MMnS vary
widely depending on alloying elements as well as processing
routes (Suh and Kim, 2017). MMnS can have a wide range 
of chemical compositions (in the following, all concentrations 
are in wt.%): C 0.01~0.7 (Zhao et al., 2016), Mn 3~12 (Sun 
et al., 2023), Al 0~10  (Zhao et al., 2016), Si 0~3  (Sun et al., 
2018, 2019). Mn is the primary alloying element, and it 
mainly affects the phase fraction, stability, and 
morphology of the austenite, defining the mechanical 
properties and HE resistance. The critical parameter to 
achieve strength without

sacrificing the ductility is retained austenite; that is why it is 
vital to control its fraction, stability, and morphology achieved 
by optimal alloying elements, mainly C and Mn content, in 
addition to processing parameters. Carbon is an austenite 
stabilizer as it retards the martensitic transformation 
temperature and decreases the Ae1 and Ae3 temperatures. 
Increasing C content might be beneficial in stabilizing the 
austenitic phase, though it would deteriorate the weldability, 
form coarse precipitates, impair the mechanical properties, and 
lead to intergranular fracture. As indicated by Sun et al. (Sun 
et al., 2023) Mn serves as the main alloying element as it 
defines the deformation mechanism by controlling the 
stacking fault energy (SFE) of the alloys; below 18 mJ/m2, the 
transformation-induced plasticity (TRIP) mechanism will be 
dominating, and higher than 45 mJ/m2 will activate the 
dislocation slip, and in the range of 18 to 45 mJ/m2, will trigger 
the twinning induced plasticity (TWIP) deformation 
mechanism. Unlike C, Mn has low diffusivity inside austenite, 
achieving outstanding mechanical properties through 
controlling the microstructure via adequate processing 
parameters of intercritical annealing temperatures and soaking 
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times (Sun et al., 2016; Ding et al., 2020). Al stabilizes delta 
ferrite, which was reported to be beneficial for HE resistance 
for three reasons. First, Al atoms can reduce H diffusivity in 
austenite due to local expansion around them. Second, 
enriching the surface oxides prevents H permeation to the 
alloy. Third, delta ferrite, which Al mainly stabilizes, arrests 
the propagated cracks, thus retarding failure and enhancing the 
material toughness. It also has a critical role in controlling the 
deformation mechanism as it increases the SFE by 8.5 mJ/m2 
(Kang et al., 2012; Lehnhoff et al., 2014). Si addition like Al 
stabilizes delta ferrite. Wang et al. (Wang et al., 2022a) 
reported enhancing total elongation (TEL) from 38% to 68% 
after adding 0.6% Si to 0.2C-6Mn-3Al. Si inhibits cementite 
precipitation, thereby providing higher carbon content for 
austenite, enhancing its stability, and reducing dynamic 
recovery of ferrite, thus increasing the strain hardening rate. 
Microalloying elements, Mo, Nb, and V, contribute to yield 
strength and ultimate strength by grain refining and 
precipitation hardening. They also enhance hydrogen 
embrittlement resistance; Mo was reported to improve grain 
boundary cohesion (Yoo et al., 2021) and V and Nb act as 
active trapping sites for hydrogen (Bhadeshia, 2016).  

The traditional methods of achieving required steel properties 
have been both time-consuming and resource-intensive, 
underscoring the need for computational approaches in alloy 
design. Despite their critical importance, studies in this area 
have been limited, yet the existing research highlights 
significant benefits. Techniques such as CALPHAD have 
revolutionized the development of steels by allowing for 
precise simulations of alloy behaviour and accurate 
predictions of material outcomes (Patra et al., 2021). These 
computational methods enhance the efficiency of customizing 
steel properties, reducing the need for extensive experimental 
testing. They enable rapid alloy prototyping and optimization, 
achieving an ideal balance between ductility, strength and cost, 
and enhancing resistance to HE (Huang et al., 2022).  

Despite decades of research (Miller, 1972), industrial 
production of MMnS with 3–12 Mn still faces significant 
challenges. These challenges are primarily economic and 
technical, related to scaling up conventional blast furnace 
processes, as seen in Voestalpine's trials (Steineder et al., 
2019). Alternative electric arc furnaces with argon oxygen 
decarburizing or vacuum oxygen decarburizing units are 
necessary but costly. This method also struggles with low Mn 
recovery and high costs for essential additives such as low-
carbon ferromanganese. Processing challenges include 
maintaining precise control over casting to avoid defects and 
managing rolling processes to mitigate cracking and other 
deformities. Weldability issues further complicate MMnS 
adoption in the automotive industry, with solutions such as 
introducing nickel interlayers in welds proposed to enhance 
joint quality (DiGiovanni et al., 2021). Advancements in 
process optimization, cost efficiency, and microstructural 
control are crucial to moving MMnS toward commercial 
viability. Transitioning from pre-commercial stages to total 
industrial production may take about ten years. This process 
will require cooperation among steelmakers, automotive 
manufacturers, and researchers to create viable and cost-
effective solutions for broad implementation.  

The present study utilized different modules of Thermo-Calc
and JMatPro to optimize the alloy’s chemical composition.
The aim was to increase the fraction and stability of retained
austenite by optimizing annealing temperature and time,
thereby improving mechanical properties and enhancing HE
resistance.

2. METHODOLOGY

The CALPHAD methodology employs Thermo-Calc and
JMatPro to design steel alloys by optimizing the effects of
alloying elements such as C, Mn, Al, Si, Mo, Nb, and V.
Annealing temperatures ranged from 500–800°C, with a total
of 2,880 alloy compositions assessed, as detailed in Table 1.
Specifically, Thermo-Calc (TCFE 12, MOBFE 7) utilized the
TC and PRISMA modules. These modules facilitated the
simulation of the effect of alloying on the characteristics of the
austenitic phase, including the martensite start temperature Ms
and the austenite volume fraction. These parameters were
studied to obtain optimal retained austenite fraction and
stability as well. Moreover, the PRISMA module, which
employs the Langer-Schwartz theory (Langer and 
Schwartz, 1980) and the Kampmann-Wagner (Wagner et 
al., 2001) numerical method to simulate the nucleation, 
growth, and coarsening of precipitates in multi-component 
systems, was used to simulate the precipitation behaviour 
(Chen et al., 2014). This includes predictions of the 
mean size of precipitates, volume fraction, size 
distribution, and the contribution of precipitation 
strengthening to the yield strength, considering 
varying alloy compositions with temperature and time. 
This extension of classical nucleation theory enables 
accurate modelling of real system precipitations 
based on appropriate thermodynamic and kinetic 
databases. Furthermore, JMatPro was utilized to
investigate the alloy’s mechanical and physical properties
through the solidification, thermo-physical properties, and
phase transformation modules, thereby analysing the diffusion
of elements over time and the effect of cooling rates on phase
formation. This integrative approach underscores the pivotal
role of computational tools in advancing our understanding
and development of high-performance steel alloys. The
simulation graphs were made to study the effects of alloying
elements using 0.35C-9Mn-1Si-1Mo-3Al-0.1Nb (with
designated code 310) and 0.35C-9Mn-1Si-1Mo-3Al-0.05Nb-
0.3V (with designated code 353) where the numbers represent
Al, Nb, and V respectively.

3. RESULTS AND DISCUSSION

3.1 Carbon

Carbon is one of the main alloying elements in MMnS; it
affects the volume fraction and stability of austenite as well as
the formation temperature of precipitates and their fraction.
The effect of carbon on the austenite volume fraction, shown
in Fig. 1, can be divided into two distinct stages. In the first
stage, the austenite fraction exhibits a parabolic curve with
increasing temperature, indicating a progressive increase until
the cementite particles are completely dissolved, as seen from
Fig. 2. In the subsequent stage, the rate of increase in the
austenite volume fraction follows a linear relationship with
temperature, as seen in Fig. 1. Cementite formation greatly
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Table 1 Range of alloy compositions (wt.%) used in the simulation 
for optimizing the chemical composition. 

 Lower limit Upper limit Step 
Temperature (°C) 500 800 2 
C  0.1 0.4 0.1 
Mn  7 11 1 
Si  1 (constant) 
Al  1 3 1 
Mo  0.5 2 0.5 
Nb  0.05 0.2 0.05 
V  0.2 0.4 0.1 
Fe  balance 
Total number of 
alloys 

2880 

 

affects the austenite volume fraction due to the reduction of 
carbon and manganese contents. 

 

Fig. 1 Effect of carbon content on the austenite volume fraction in
the temperature range of 500-800ºC for alloy 310.

Increasing the carbon content to some extent not only enhances
the ultimate strength due to the transformed hard martensitic
phase and induces high dislocation density to the soft ferritic
phase through the TRIP effect (Ennis et al., 2017) but also
improves the material’s ductility by increasing the mechanical
stability of austenite, enabling it to accommodate more strain
during the progressive work hardening thereby retarding the
necking (localization of deformation) and enhancing
homogeneous deformation (Zou et al., 2021). Below 0.2% C, 
the carbon content is relatively low, and so is the austenite 
volume fraction, as shown in Fig. 1; above 0.40% C, it would 
negatively impact the toughness due to the formation of 
brittle phases like cementite. At these levels, there is also a
risk of reduced weldability and increased susceptibility to
cracking under stress (Bhattacharya et al., 2019). A range of
0.2–0.4% C was selected to compromise the austenite volume
fraction and stability. Regarding the studied effect of 0.2–0.4%
C on the ultimate tensile strength and martensite start
temperature Ms with annealing time that represents the
austenite stability shown in Fig. 3. It is seen that 0.35% C
shows a reliable austenite stability.

 

Fig. 2 Effect of carbon content on cementite´s formation 
temperature and fraction, alloy 310. 

 

Fig. 3 Effect of carbon content on Ms temperature of intercritically
annealed austenite at different annealing temperatures.

3.2 Manganese

Manganese is the key role element in MMnS stabilizing
austenite phase and controlling the deformation mechanism
through manipulating the SFE to activate both TRIP+TWIP
mechanisms so that the material can accommodate higher
strain levels without the deformation localization resulting in
material fracture and improving both yield strength through
grain refining of twinning effect and enhanced ultimate tensile
strength by the TRIP effect. Previous studies have shown
outstanding mechanical properties for Mn content 7–11%.
(Sun et al., 2023; Zhang et al., 2024), reaching a product of
strength and elongation (PSE) of 64 GPa% (Luo and
Dong, 2016) for 9% Mn. Increasing Mn content will 
increase the fraction of the austenitic phase, reducing C 
content due to the dilution effect and suppressing the 
formation of carbides such as cementite by preferentially 
stabilizing carbon in the austenite phase, as shown in Figs. 
4 and 5. 
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Fig. 4 Effect of Mn content on austenite volume fraction within the 
500–800 oC temperature range, alloy 310. 

 

Fig. 5 Effect of Mn content on Ms temperature, alloy 310.

This suppression is beneficial for retaining ductility and
toughness, as excessive cementite can embrittle the steel
(Kozłowska et al., 2019). Austenite stability is affected by both
C and Mn content; austenite stability is highest (lowest Ms
temperature) when C content reaches its maximum value, then
austenite stability increases (Ms decreases) to its minimum due
to the increased carbon content resulting from cementite
dissolution, then with increasing annealing temperature
stability decreases (Ms increases) due to dilution effect
(increased austenite volume fraction) till it is completely
austenite (Ac3) as shown in Figs. 5 and 6. Optimizing 
austenite volume fraction, stability (represented by Ms), 
and alloying addition cost; 9% Mn was chosen for the alloys.

3.3 Silicon and Aluminum

Previous studies showed that 1–3% Al does not form delta
ferrite, while 3–5% Al is high enough to obtain delta ferrite,
but more than 5% results in kappa-carbide formation as shown
in Fig. 7. Hence, it is critical to have the proper Al content for
obtaining delta ferrite and avoid formation of kappa-carbide,

which would deteriorate the mechanical properties (Zhang et 
al., 2024). Al stabilizes ferrite and increases SFE per 8.5 mJ/m2 

by 1%, which is beneficial for controlling the deformation 
mechanism (Sun et al., 2023), resulting in improved HE 
resistance through reducing the fraction of transformed 
martensite (Ryu et al., 2013). Al can affect the mechanical 
stability of austenite due to the heterogeneity of Mn content in 
austenite. This is explained by the slower velocity of interface 
movement, which decreases from (1.54 × 10−11 to 7.24 × 10−12 
m s–1), with the addition of (∼2% Al). Consequently, there is 
a successive austenite to martensite transformation from 
regions of a low Mn content to those of a higher Mn content. 
This transformation improves the material strength without 
losing material toughness (Ye et al., 2022). Al was reported to 
reduce HE (Koyama et al., 2017) through two possible 
mechanisms: first, the strain field around Al atoms, acting as 
weak trapping sites, reduces the diffusion of hydrogen atoms 
(Han et al., 2015; Song et al., 2014), and secondly, it reduces 
hydrogen permeation in the material by enriching surface 
oxides (Park et al., 2012). 

 

Fig. 6 Effect of Mn content on cementite fraction, formation
temperature, and C in austenitic phase, alloy 310.

Two levels of Al, 1% and 3%, were chosen to study their effect
on mechanical properties, the formation of delta ferrite, and
the HE resistance.

Si has a similar effect to Al as it restrains cementite formation,
thereby providing enough C content for austenite stabilization
(Kwok and Dye, 2023). The addition of Si also reduces 
the dynamic recovery of ferrite, thus increasing the 
strain-hardening rate (Ma, 2017). It was reported that adding 
0.6%Si enhanced TEL by 30% and enhanced the HE 
resistance as well (Wang et al., 2022b). In another study, 
effects of 0, 1, and 3 Si were studied in 0.2C-10Mn-3Al 
alloy, and it was found that 1% Si showed enhanced TEL, 
ultimate strength, and work hardening rate that can be 
attributed to the strain partitioning between austenite and 
ferrite. This was the main reason for the higher and uniform 
TEL and higher work hardening rate in 1 Si, unlike in 3 Si, 
where no strain partitioning was noticed. Regarding the 
literature survey, the alloys with 1% Si content was selected.
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Fig. 7 Effect of Al content on kappa carbide formation, alloy 310.

3.4 Niobium and Molybdenum

Niobium exists in steel in two forms: the first and most familiar
one is the carbide/carbonitride form, as Nb has a high affinity
for carbon, and the second one is as a solid solution in the
matrix, which can be achieved through proper processing
routes (Ali et al., 2024). Both forms improve steel mechanical
properties at high temperatures through the drag effect of Nb
by inhibiting grain growth. At relatively low temperatures,
grain growth is hindered, and hydrogen embrittlement
resistance is enhanced by the pinning effect of NbC particles,
which act as an active trapping site for hydrogen (Wei 
and Tsuzaki, 2012).

Wang et al. (Wang et al., 2010) investigated the influence of
Mo on the formation and morphology of NbC and VC
precipitates in steel. Their study revealed that the addition of
Mo led to a reduction in the size of NbC precipitates, attributed
to the segregation of Mo at the carbide/matrix interface. This
segregation impedes the diffusion of Nb and V atoms from the
matrix into the carbide phase and retards the diffusion kinetics
of carbon and the alloying elements within the matrix.
Consequently, the growth of the NbC and VC particles is
significantly suppressed. The hydrogen trapping capacity of
VC, NbC, and TiC was investigated through thermal
desorption spectroscopy, and NbC was reported to have the
largest trapping capacity (Wei and Tsuzaki, 2012). NbC 
was reported to have a beneficial effect on reducing the 
number of Σ3 boundaries, which reduces hydrogen-
induced cracking (HIC) resistance (Zhang et al., 2018), and 
increasing the Σ11 boundaries, which increases the HIC 
resistance  (Venegas et al., 2009). In an investigation on the 
effect of Nb and/or Mo addition on retained austenite 
volume fraction, stability, and hydrogen embrittlement 
resistance, the combined addition of Nb and Mo was found 
to result in the highest austenite volume fraction and stability 
(lowest Ms temperature) with the best HE resistance (Luo et 
al., 2022). Various empirical studies (Geng et al., 2000, 
2001) using first-principles full-potential

linearized augmented plane-wave method calculations were
performed to investigate the effect of elements on Fe Σ3 grain
boundary cohesion, revealing that Nb and Mo have embrittling
values ∆𝐸!"(eV) -1.24 and -0.96 (lower is better) respectively.
The effect of Mo on Σ3 boundary was experimentally
investigated (Yoo et al., 2021) to confirm the positive effect of
Mo on enhancing grain cohesion and HE resistance.
Precipitation of NbC was simulated using PRISMA. The
results showed that 0.10 Nb is the optimal content as 0.05 
and 0.2 have larger particle size and lower number density 
than 0.10 Nb as shown in Fig. 8. Increasing the Nb 
content increases the volume fraction of NbC as shown if Fig. 
9. It was reported that a larger number of carbides with 
smaller sizes is more effective for trapping hydrogen atoms 
(Liu et al., 2024). While increasing Mo content has a 
beneficial effect on increasing the volume fraction of NbC 
and lowering its size, as mentioned before, it also has a 
negative effect on the austenite as it reduces the 
austenite volume fraction by reducing the available carbon, 
which stabilizes the austenite as illustrated in Fig. 10.

 
Fig. 8 Effect of Nb content on size distribution on NbC, alloy 310. 

 
Fig. 9 Effect of Nb content on volume fraction of NbC, alloy 310. 
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3.5 Vanadium 

The effect of V content on austenite stability through its impact 
on C in the austenitic phase was simulated in Fig. 11, showing 
that increasing V content leads to a decrease in the available C 
of the austenitic phase, resulting in lower stability, thus 
deteriorating the HE resistance. On the other hand, increasing 
the V content from 0.2% to 0.4% increases the size distribution 
of VC from 4.8 × 1030 to 3.4 × 1031, as shown in Fig. 12, 
enhancing the HE resistance. Compromising the effects of V 
content on austenite stability and size distribution of VC, 0.3% 
V was chosen along with 0.05% Nb to obtain C content high 
enough to increase austenite stability and nano-carbide 
precipitates for improving both mechanical properties and HE 
resistance.  

 
Fig. 10 Effect of Mo on precipitation of NbC and austenite volume 

fraction, alloy 310. 

 
Fig. 11 Effect of V content on C concentration in austenite, alloy 

353. 

 
Fig. 12 Effect of V content on the size distribution of VC, alloy

353.

4. CONCLUSIONS

This study presents a comprehensive computational design
approach for medium manganese steels aimed at enhancing
mechanical properties and hydrogen embrittlement resistance.
Through CALPHAD-based thermodynamic calculations and
JMatPro simulations, we optimized the chemical composition
to achieve a balance of high strength, ductility, and resistance
to hydrogen embrittlement, as illustrated in the flow chart in
Fig. 13.

Key findings include:

Optimized Composition: The optimized chemical
compositions, consist of (in wt.%):

1. 0.35C, 9Mn, 1Si, 1Mo, with variations of 1 and 3 Al, 
and 0.1 Nb.

2. 0.35C, 9Mn, 1Si, 1Mo, 3 Al, 0.05 Nb and 0.3 V.

as optimal for enhancing mechanical properties and hydrogen
embrittlement resistance.

 
Fig. 13. Flow chart for computational designing approach for 

medium manganese steels with potential better hydrogen 
embrittlement resistance. 
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Role of Alloying Elements:

Carbon (C): A 0.35% C was found to provide a reliable
strengthening effect and austenite stability.

Manganese (Mn): 9% Mn stabilizes the austenitic phase,
enabling both TRIP and TWIP deformation mechanisms,
which enhances ductility and strength.

Silicon (Si) and Aluminum (Al): Both elements help to
stabilize the ferritic phase and control the deformation
mechanism, with 1% Si and 1 and 3% Al being 
particularly effective.

Niobium (Nb): 0.1% Nb was optimal for forming fine NbC
precipitates with high number density, which improve strength
and serve as hydrogen deep trapping sites.

Molybdenum (Mo): 1% Mo was effective in refining the NbC
precipitate size and increasing its volume fraction, further
enhancing strength and hydrogen embrittlement resistance.

Vanadium (V): 0.3% V provides a balanced austenite stability
and carbide size distribution, improving mechanical properties
and hydrogen embrittlement resistance.
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Abstract: Offshore steels are engineered to have an outstanding combination of high strength and 
toughness to withstand extreme conditions needed in offshore and marine applications. Multiple welding 
passes may be needed when welding thick steel sections. In this case, microstructures of pre-existing passes 
are affected by the thermo-cycles caused by the subsequent passes. These heat-affected zones (HAZ) in the 
weld metal are less studied than the HAZs in the base metal next to the weld. HAZs after real welding 
process are relatively narrow and that way challenging to study and test reliably. Physical simulation 
provides an opportunity to produce different kinds of HAZs on sufficiently large area for various types of 
microstructural and mechanical properties characterization. Moreover, the effect of different welding 
methods and parameters can be easily studied by adjusting the simulation settings. Therefore, the aim of 
this study was to produce the coarse-grained (CGHAZ-W), intercritical (ICHAZ-W) and intercritically 
reheated heat-affected zones of the weld metal (ICCGHAZ-W) using physical simulation. Submerged arc 
welding (SAW) method was used to produce the original weld. HAZs with 2 different cooling times from 
800 °C to 500 °C (t8/5 = 5 and 30 s) were simulated utilizing Gleeble 3500 thermomechanical simulator. 
Microstructures were characterized using a Zeiss Sigma field emission scanning electron microscope. The 
results indicated that the original weld metal contained acicular ferrite nucleated on oxide inclusions, and 
thermal cycles induced microstructural changes in the weld metal, with each simulation variant resulted in 
distinctive features. Microstructures obtained by the physical simulation were supported by the numerical 
simulation results carried out by JMatPro software. 
Keywords: simulation, steel, weld, microstructure, Gleeble, JMatPro, heat-affected zone 

1. INTRODUCTION 

High strength offshore steels are developed for demanding 
conditions where both high strength and toughness are 
required from the materials and structures manufactured of 
them. Some of the typical applications for such steels are 
offshore oil drilling platforms, wind power mills and ships 
body. For example, some parts of Valhall oil drilling platform 
in Norway were constructed using 500 MPa offshore steels 
(Willms, 2009). 

As a result of thermomechanically controlled hot rolling 
process, the microstructure of 500 MPa offshore steel usually 
consists of fine-grained bainite and ferrite. However, the 
original microstructure is altered when steel is welded. The 
thermal cycles originating from the welding process cause 
different types of heat-affected zones (HAZ) depending on the 
peak temperature and cooling rate of each location in the steel. 
Additionally, welding of thick steel sections may require 
multiple passes causing additional thermal cycles on already 
altered microstructure as well as on the weld metal produced 
during previous passes. 

The most important HAZs where the properties are expected 
to change are coarse-grained (CGHAZ), intercritical (ICHAZ) 
and intercritically reheated heat-affected zone (ICCGHAZ). 
Each of these zones is usually relatively narrow making it 
challenging to characterize their microstructures and 
mechanical properties reliably. 

Physical simulation provides a way to produce microstructures 
imitating those of the different types of HAZs on sufficiently 
large area for mechanical tests and microstructural 
examination. It also makes it possible to study the effect of 
different welding methods and parameters by adjusting 
simulation parameters. Consequently, physical simulation is 
nowadays rather common way to study the HAZ 
microstructures and properties (Afkhami et al., 2022; Gáspár, 
2019; Gáspár et al., 2019, 2015; Kovács et al., 2024; Laitinen 
et al., 2013; Mičian et al., 2020; Sisodia et al., 2019; Henri 
Tervo et al., 2020; H. Tervo et al., 2020; Tervo et al., 2021; 
Węglowski et al., 2013). However, there are less studies where 
the physical simulation has been applied on studying HAZs on 
weld metal caused by subsequent welding passes, referred as 
”reheated zones” there (Kang et al., 2018; Tezuka et al., 1995). 
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Therefore, the aim of this study was to simulate different types 
of HAZs on the weld metal for enabling further investigation 
of them. The microstructures obtained by the physical 
simulation were compared with the numerically simulated 
microstructures calculated by the JMatPro software. 

2. MATERIALS AND METHODS 

The studied base material is a 16 mm thick 500 MPa offshore 
steel that was welded by single-pass submerged arc welding 
(SAW) method. The filler material is ESAB OK 13.24, a Ni- 
and Mo-alloyed, Cu-coated wire for SAW. The flux used with 
the filler material is OK Flux 10.62. The chemical composition 
of the base material and the filler material are presented in 
Table 1. The following welding settings were applied: the root 
gap 3 mm, the edge width 4 mm, and the bevel angle 40°. 

Table 1. Chemical compositions of the studied base metal and 
filler metal. 

 C Si Mn Cu Cr Mo Ni 

Base ≤ 
0.14 

≤ 
0.6 

≤ 
1.7 

≤ 
0.55 

Cr+Mo ≤ 
0.65 

≤ 
2.00 

Filler 0.07 0.18 1.3 0.06 0.05 0.2 0.78 

 

70 × 10 × 10 mm3 specimens were machined keeping the 
welded joint nearly in the middle with 1 mm offset from the 
weld centerline in order to eliminate the effect of segregation. 
These specimens were used for the HAZ-W simulations. 
Example of the specimen is shown in Fig. 1. 

Thermomechanical simulator Gleeble 3500 was used to 
produce coarse-grained (CGHAZ-W), intercritical (ICHAZ-
W), and intercritically reheated heat-affected subzone on the 
weld metal (ICCGHAZ-W). The time and temperature points 
of thermal cycles were determined based on the Rykalin-3D 
model (Rykalin et al, 1971) and the GSL programs were 
manually written. This 3D model characterizes the 

temperature field generated by a moving point-like heat source 
on the surface of a semi-infinity body (Fig. 2). In this case 3D 
thermal conductivity is dominant while surface heat transfer is 
negligible. This model was selected considering the 
investigated 500 MPa steel is in the medium and heavy plate 
thickness (16 mm) where the Rykalin 3D model provides more 
precise result. Furthermore, this equation is independent from 
the plate thickness, therefore reduced number of variables 
needs to be considered. Each of the HAZ was simulated using 
two different cooling time from 800 °C to 500 °C (t8/5 = 5 and 
30 s) to represent the typical welding parameter variation. 
With regard to the selection of peak temperatures the 
motivation was to generate the most critical parts of the 
selected subzones, having the lowest toughness. Peak 
temperature of the CGHAZ-W simulations was 1350 °C, 
whereas in the ICHAZ-W simulations it was 815 °C defined 
by determining the Ac1 temperature of the steel by using a 
dummy sample and adding 50 °C to it. The ICCGHAZ-W 
simulations were performed by combining the previously 
mentioned simulations. Simulation was based on Rykalin-3D 
model. 

Microstructure of the simulated HAZ-Ws was characterized 
using field emission scanning electron microscope (FESEM, 
Zeiss Sigma). The acceleration voltage was 5 kV and the 
working distance varied approximately between 4 and 6 mm. 
The samples for microstructural characterization were cut 
from the Gleeble specimens keeping the simulation region in 
the middle. The samples were placed in specimen holders, 
grinded, polished and Nital-etched before the FESEM 
examination. 

Hardness (HV10) was measured using a Reicherter UH250 
universal macro-hardness tester according to the EN ISO 
15614-1 standard. 

Microstructures of the weld metal were also simulated 
numerically by calculating the continuous cooling 
transformation (CCT) and time-temperature transformation 
(TTT) diagrams using JMatPro (v12.2) software. The input for 

Fig. 1. Specimen for the physical simulation of the heat-affected zones with the original weld metal in the middle. 

Fig. 2. CGHAZ-W thermal cycle based on the Rykalin-3D model. 
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the calculation is the fraction of each element present in the 
chemical composition of the steel in wt.%, estimated grain size 
and austenitization temperature. Outputs include the 
microstructure and hardness of the steel after various cooling 
rates. 

3. RESULTS AND DISCUSSION 

The simulated heat-affected zones on the weld metal as well 
as the original weld metal were examined by the FESEM to 
observe the changes in the microstructure due to the thermal 
cycles. The original single-pass weld metal consisted of 
acicular ferrite (AF). AF is a type of intergranular ferrite 
nucleating on certain type of non-metallic inclusions inside the 
prior austenite grains. AF consists of chaotically oriented 
needle-like grains with the width and length of approximately 
1–3 µm and 5–15 µm, respectively. These grains form a 
complex interlocking structure, which efficiently prevents the 
fracture propagation, assisting to improve the toughness of the 
steel (Loder et al., 2016; Xiong et al., 2015). The original weld 
metal microstructure of the studied steel is presented in Fig. 3. 

Intercritical heat-affected zone of the weld metal (ICHAZ-W) 
was simulated using the peak temperature 815 °C. The steel is 
partly austenitized in this temperature, so some changes in the 
microstructure are expected. The applied cooling times from 
800 °C to 500 °C (t8/5) were 5 s and 30 s to simulate the 
practical heat input range of the arc welding processes. Figures 
4(a) and (b) show the ICHAZ-W microstructures.  

The peak temperature for the coarse-grained heat-affected 
zone of the weld metal (CGHAZ-W) simulation was 1350 °C. 
Therefore, the steel was fully austenitized. In this case, it is 
expected that the prior austenite grain growth occurs. The 
transformation microstructure depends on the cooling rate. 
Using high heat input, the cooling rate slows down (cooling 
time increases), and the resulting microstructure is less 
hardened than with low heat input welding. Therefore, a 
significant difference in the hardness values between the 
samples simulated with t8/5 = 5 s and 30 s was observed. The 
CGHAZ-W microstructures are presented in Figs. 4(c) and (d). 

Intercritically reheated coarse-grained heat-affected zone of 
the weld (ICCGHAZ-W) combines the thermal cycles of 
CGHAZ-W and ICHAZ-W, in this order. Firstly, the steel is 

fully austenitized at 1350 °C, prior austenite grain size 
increases and the transformation microstructure becomes more 
or less hardened depending on the cooling rate. Secondly, the 
heat-affected microstructure experiences another thermal 
cycle, this time peaking at 815 °C, partly austenitizing the 
steel. As a result, coarsened prior austenite grains together with 
other microstructural changes are expected. The ICCGHAZ-
W microstructures are shown in Figs. 4(e) and (f). 

Weld metal microstructures were also simulated numerically 
by JMatPro software. Continuous cooling transformation 
(CCT) and time-temperature transformation (TTT) diagrams 
are presented in Figs. 5(a) and (b), respectively. 

Based on the calculations from the CCT and TTT diagrams, it 
is evident that pearlite formation is highly unlikely, with ferrite 
and bainite being the predominant microstructures expected to 
form. Considering the cooling rates applied in this study, 
ferrite remains the primary microstructure. These results are in 
line with the obtained microstructures by the physical 
simulation. 

 

 

 

 

Fig. 3. FESEM images and the average hardness of the original weld metal taken with the magnification of 5000x (a) and 20000x 
(b). 95% interval for the mean hardness was determined using the student-t method. 
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  4. CONCLUSIONS 

Physical simulation was performed by Gleeble 3500 
thermomechanical simulator to produce heat-affected zones on 
the pre-existing weld metal bonding two pieces of a 500 MPa 
offshore steel. The aim was to simulate the effect of multiple 
welding passes on the original single-pass weld 
microstructure. Following conclusions were made: 

- Coarse-grained (CGHAZ-W), intercritical (ICHAZ-
W), and intercritically reheated coarse-grained heat-
affected zones (ICCGHAZ-W) were successfully 
simulated on the weld metal using two different 

cooling times (t8/5 = 5 and 30 s) to be able to study the 
microstructures in each variant. 

- The original weld metal consisted of acicular ferrite 
nucleated on oxide inclusions. 

- As a result of the thermal cycles of the physical 
simulation, changes in the weld metal microstructure 
were observed. CGHAZ-W, ICHAZ-W and 
ICCGHAZ-W simulations all were seen to cause their 
characteristic features in the microstructure. 

- Numerical simulation of the microstructures by 
JMatPro supported the results obtained by the 
physical simulation. 

Fig. 4. FESEM images and the average hardness of the simulated ICHAZ-W (a) and (b), CGHAZ-W (c) and (d), ICCGHAZ-W 
(e) and (f) using the t8/5 = 5 s and 30 s, respectively, taken with the magnification of 5000x. 95% intervals for the mean 

hardness’s were determined using the student-t method. 
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Abstract: The aim of this article is to develop and compare machine learning (ML) methods
with activated sludge models (ASM) for estimation of effluent nutrients in the Hias Process.
The Hias Process is a novel moving bed bioreactor with enhanced biological phosphorus removal
and simultaneous nitrification and denitrification (MBBR-EBPR-SND). As the main energy cost
of the nutrient removal process is aeration, it is necessary to design of energy-efficient control
strategies that ensure compliance with legal requirements for nutrient removal in real-time while
optimizing the aeration rates. The first step in control strategy design is development of models
that represent the main process dynamics.
The case study data set of four months was collected from a 192 000 PE municipal MBBR
process at Hias water resource recovery facility in Norway. The Hias Process consists of three
anaerobic and seven aerobic zones, where biomass carriers flow continuously submersed in the
used water and remove over 90 % of the phosphorus. The online measurements include used
water flowrate, aeration rates, dissolved oxygen, suspended solids, and soluble nutrients PO4,
COD, NO2 and NO3. Reduced ASM model, support vector regression (SVR) and long short-
term memory neural network (LSTM), with and without dynamic time-delay, were developed
to predict the effluent PO4 in the Hias process. The model prediction accuracies were compared
using correlation coefficients and trend figures. The SVR model with fine gaussian kernel gave
best results with strong R index of 0.9. The LSTM model reached a sufficient R index of 0.6 and
the reduced ASM2d model a weak R index of 0.2. Including the dynamic time-delay improved
the model accuracy. The machine learning models with dynamic time-delay will be developed
further for energy-efficient control strategy development.

Keywords: water resource recovery facility; activated sludge model; support vector regression;
long short-term memory network.

1. INTRODUCTION

As the water industry is responsible for approximately one
percent of the total energy consumption in the European
union, new legal requirements for energy neutrality are
underway EuropeanCommission (2021). Therefore, devel-
opment of energy-efficient control strategies is essential
to minimize the energy consumption and to meet the
strict nutrient recovery requirements at water resource
recovery facilities (WRRF). The Hias Process is a novel,
compact biological nutrient removal process that consists
of a continuous-flow moving bed bioreactor with enhanced
biological phosphorus removal and simultaneous nitrifica-
tion and denitrification (MBBR-EBPR-SND) Rudi et al.
(2019). As the main energy cost of the Hias Process
is aeration, energy-efficient control strategies need to be
developed to optimize the aeration rates and to ensure

⋆ RFF Innlandet, Norway, is gratefully acknowledged for funding
the PACBAL project (nr 337727).

compliance with legal requirements for nutrient removal
in real-time.

Development of energy-efficient control strategies requires
models that capture the main dynamic behaviour of the
nutrient removal phenomena. First principles models such
as the ASM2d model Henze et al. (1999) and its simplified
version the reduced ASM2d model Nair et al. (2019) can be
used as development and testing environment for control
strategies. However, it is time-consuming and sometimes
unfeasible to develop such models due to scarce instru-
mentation. Hence, machine learning models have gained
high research interest in the water industry, for example
for applications such as virtual/soft sensors Paepae et al.
(2021).

In our previous work, data-driven models were developed
to estimate the effluent nutrients in the Hias Process
Nermo (2023), Komulainen et al. (2023). Virtual sensors
were developed for estimation of PO4 and COD in the
Hias Process using additional electrical conductivity (EC)
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measurements Komulainen et al. (2024). In this work we
will use the virtual sensor estimating PO4 at inlet, develop
reduced ASM2d models, and refine two best performing
machine learning models from Baqeri (2024), Support
Vector Regression (SVR) and Long-Short Term Memory
(LSTM). In this study we answer the following research
questions: Can the reduced ASM2d model, SVR model
and LSTM model follow the dynamic trends of the effluent
PO4 data? Which model gives the highest prediction
accuracy?

2. MATERIALS AND METHODS

2.1 Software

Matlab software package version R2023a was used in the
work. The simulation method was ode23s with automatic
settings for the time step and error tolerance.

2.2 The Hias Process and instrumentation

The Hias Process is a biological nutrient removal process at
a 192 000 PE municipal water resource recovery facility in
Hamar, Norway. The Hias Process with instrumentation is
illustrated in Fig. 1. The clarified used water (influent)
and the recirculated biofilm carriers (from zone 10 via
a conveyor belt) enter the anaerobic zone. The Hias
Process consists of three anaerobic and seven aerobic
zones, where biomass carriers flow continuously submersed
in the used water and remove over 90 % of the phosphorus.
The three anaerobic basins are mixed to ensure sufficient
distribution of biofilm carriers in the water. Aeration in the
following seven basins ensures sufficient dissolved oxygen
concentrations for aerobic nutrient removal. Used water
and submerged biofilm carriers float through the process
with gravity.

The Hias Process instrumentation includes continuous
online measurements of flowrate, temperature, aeration,
dissolved oxygen, suspended solids, and nutrient compo-
sitions of PO4, COD, NO2 and NO3. Additional online
measurements of electrical conductivity at inlet and in
zone 3 were installed during the PACBAL research project
2022-2023. Soluble COD, NO2 and NO3 are measured
continuously at inlet and zone 7. Suspended solids SS
are measured at zone 10 and in the effluent after the disc
filter. Effluent PO4 is measured using an online-analyzer
with 10 minutes sampling time. The Hias Process online
measurements utilized in this study are listed in Table 1.
Hias laboratory assesses nutrient composition of PO4 and
soluble COD at inlet, zones 3,4,7,10, and outlet, and NH3

at inlet and outlet from daily grab samples five days a
week. Hence, there are 5 samples from laboratory and 1008
samples of online data for each variable per week.

2.3 Data collection and pre-processing

The Industrial IoT platform KYB, developed by Digitread
Connect, was used for uploading and standardizing oper-
ational data from SCADA system of municipal Hias water
resource recovery facility at Hamar, Norway. The online
data set was collected in .csv format and the laboratory
data set in .xlsx format.

Table 1. Online measurements.

Symbol Description Unit

F Water flowrate inlet m3/h

T Temperature inlet oC

CODIN COD inlet g/m3

NOIN NO2 and NO3 inlet g/m3

ECIN El.conductivity inlet mS/cm

FOi Aeration rate zones 4,5,6,7,8,9,10 m3/h

DOi Dissolved oxygen zones 4,5,6,8,9 m3/h

PO PO4 effluent g/m3

The inter-quartiles method was chosen for outlier removal.
The outliers are identified as measurements more than 1.5
inter-quartile range above the upper quartile (75 percent)
or below the lower quartile (25 percent). Missing and
removed values were replaced with previous feasible values.
Prior to ML modeling, the data is normalized to zero mean
and standard deviation of one.

2.4 Modeling methods

The aim of this study is to develop and compare modeling
methods that enable energy-efficient control strategy de-
sign for nutrient removal in the Hias Process. International
Water Association has led work in developing Activated
Sludge Models (ASM) that represent biological nutrient
removal Henze et al. (1999). The ASM models were re-
duced and developed for a sequential MBBR pilot plant
by Nair et al. (2019). In this study, these models were to
be adapted for the continuous large-scale operation of the
municipal Hias WRRF.

In the literature, Long-Short Term Memory (LSTM) neu-
ral network and Support Vector Regression (SVR) have
gained lots of attention, and hence these two data-driven
modeling methods are applied in this study. LSTM is a re-
current neural network suitable for modeling dependencies
in and forecasting of sequential or time-series data. LSTM
architecture includes memory cells and gates that regulate
the flow of sequential data. These gates can learn which
data in a sequence is important to keep or discard, enabling
the network to maintain a longer context of information
as described in Hochreiter and Schmidhuber (1997).

SVR is frequently used to predict relationship between
continuous input and output variables. SVR minimizes
error between the model prediction and the data by fitting
a hyperplane in a high-dimensional space of the input
variables and the output variables . The kernel trick
converts the dataset to higher dimensions by combining
the features using for example linear, quadratic, cubic,
or Gaussian functions as described in Cortes and Vapnik
(1995).

2.5 Model comparison

The Hias Process effluent PO4 measurements were used
as the output variable for the models. Both R2 index
and correlation coefficient R were used to compare the
modeling accuracy of the different methods. The model
prediction of the real data points is weak for index between
0-0.3, moderate for index between 0.3-0.5, sufficient for
index between 0.5-0.7, and strong for index between 0.7-1.
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Fig. 1. The Hias Process with instrumentation.

3. RESULTS

3.1 Data selection and pre-processing

The online data and laboratory data were collected for a
period of 21.3.-31.7.2023. During period of 1.4.-15.5.2023
many online measurements were missing, hence, the online
data set is for period 15.5.2023-31.7.2023. Period of 21.3.-
31.7.2023 is used for the laboratory data set.

The outliers in the data set were using inter-quartiles
method. The missing values were filled in with previous
feasible values. Prior to the machine learning model devel-
opment, the online data was normalized.

3.2 Dynamic time delay

The time delay through the ten zones of the Hias Process
has a mean of 6 hours (36 samples), a standard deviation
of 1 hour (6 samples), a minimum of 4.8 hours (29 samples)
and a maximum of 15 hours (90 samples). Hence, in
this study the effect of dynamic time delay on model
accuracy was analysed. For the reduced ASM2d models,
the varying time delay td is calculated for a lumped volume
V combining three real process zones (3 · 215m3) and
continuous measurement of used water flowrate F (t) in
[m3/h] according to Equation 1:

td(t) = V/F (t) = 645m3/F (t) (1)

As the sharp variations and small oscillations in the time
delay can cause numerical challenges in simulation, the
time-delay was smoothed with a moving-mean approach.
Time windows of 6 samples (1h), 12 samples (2h) and
18 samples (3h) were plotted against the calculated time-
delay. Varying time-delay with moving mean of 12 samples
(2h) was chosen for this study as it removes the fast
oscillations that are present in moving mean of 6 samples,
but follows the main trends more closely than moving
mean of 18 samples.

3.3 Virtual measurements of inlet PO4 and NH3

As the online data set does not include online measure-
ments of inlet PO4 and NH3, these were estimated from

the laboratory data and online measurements of electrical
conductivity and COD. In Komulainen et al. (2024) virtual
sensors were developed for estimation of PO4 at the Hias
Process inlet using additional electrical conductivity (EC)
measurement. Based on 32 unique laboratory data points,
a linear regression was fitted between ECIN , POIN and
CODIN , given in Equation 2. The parameter values were
c1 = 0.3488 and c2 = 0.6138 with strong modeling accu-
racy of R2 = 0.86.

ECIN = c1POIN + c2CODIN (2)

In this work we developed a simple estimation of NH at
the inlet. Based on 28 unique laboratory data points, a
linear regression was fitted between NHIN and CODIN ,
given in Equation 3. The parameter values were c3 =
0.1211 with strong modeling accuracy of R2 = 0.97.

NHIN = c3CODIN (3)

3.4 Reduced ASM2d model development

The activated sludge models (ASM) describe the dynamic
changes in the nutrient concentrations and dissolved oxy-
gen in the process zones. The simplified ASM2d models
developed for a pilot scale batch-MBBR process by Nair
et al. (2019) were further modified to fit the available mea-
surements in the continuous large-scale municipal WRRF
process that is the subject of this study. Significant simpli-
fications are necessary to match the model variables with
the available online measurements in the Hias process.
The simplified models included nutrient uptake and release
by the microbes in the biomass carriers. The following
assumptions were applied:

• Phosphate PO4, soluble organic substrate COD, am-
monia NH3, sum of nitrate NO2 and nitrite NO3,
and dissolved oxygen DO2 are the components in the
simplified models.

• Ready biodegradable substrate (SF ) and volatile
fatty acids (SA) presented in Nair et al. (2019) are
lumped together as soluble substrate (SS). In this
study, interpreted as the measured variable, soluble
COD.
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• Particulate biodegradable components (XS) are omit-
ted due to missing online measurement of influent
total suspended solids.

• The biomass variables of stored poly-phosphate
(XPP ) and stored organic compounds COD (XPHA)
are omitted to simplify the equations.

• Temperature effect is neglected, as it varies very little
between days. It increases slowly from 8.8 oC to 13.6
oC during the four months period.

• Plug flow is assumed for water movement between
zones. The time delay is dynamically time-delayed td.

• To match the model variables and real measurements,
the process volume is divided to three parts: one
lumped anaerobic volume, where V1 includes zones
1-3, two lumped aerobic volumes where V2 includes
zones 4-6 and V3 includes zones 7-9 as illustrated in
Figure 2. Zone 10, representing 10% of total process
volume is omitted to simplify the calculations.

Fig. 2. Above: The Hias Process with 10 zones. Below:
Modeling approach with 3 lumped zones.

Anaerobic volume V1 In anaerobic zones i, the biomass
consumes soluble COD and the component balance follows
Equation 4.

dCODi(t)

dt
=

F (t)

V
(CODi−1(t− td)− CODi(t))

− r3
CODi(t)

KA + CODi(t)

(4)

Simultaneously, the biomass releases PO to water with
stoichiometric relation YPO to COD uptake following
Equation 5.

dPOi(t)

dt
=

F (t)

V
(POi−1(t− td)− POi(t))

+ YPOr3
CODi(t)

KA + CODi(t)

(5)

It is assumed that concentrations of ammonia dNH(t)/dt =
0, nitrate/nitrite dNO(t)/dt = 0 and dissolved oxygen
dDO(t)/dt = 0 remain unchanged through the anaerobic
zone.

Aerobic volumes V2 and V3 In aerobic zones j, the
biomass takes up soluble COD and consume oxygen DO,
the component balance follows Equation 6.

dCODj(t)

dt
=

F (t)

V
(CODj−1(t− 3td)− CODj(t))

− r1
CODj(t)

KS + CODj(t)

DOj(t)

KO +DOj(t)

(6)

In aerobic zones, the biomass takes up phosphate PO
and consume oxygen DO, the component balance follows
Equation 7.

dPOj(t)

dt
=

F (t)

V
(POj−1(t− 3td)− POj(t))

− r4
POj(t)

KPS + POj(t)

DOj(t)

KO +DOj(t)

(7)

In aerobic zones, the biomass convert ammonia NH to
nitrite and nitrate NO, and consume oxygen DO. The
component balance follows Equation 8.

dNHj(t)

dt
=

F (t)

V
(NHj−1(t− 3td)−NHj(t))

− r5
NHj(t)

KNH +NHj(t)

DOj(t)

KOAOB +DOj(t)

(8)

Simultaneously in deeper layers of biofilm, biomass con-
verts nitrite and nitrate NO into nitrogen gas. The com-
ponent balance follows Equation 9.

dNOj(t)

dt
=

F (t)

V
(NOj−1(t− 3td)−NOj(t))

+ r5
NHj(t)

KNH +NHj(t)

DOj(t)

KOAOB +DOj(t)

− r6
NOj(t)

KNO +NOj(t)

KO(t)

KO +DOj(t)

(9)

In aerobic zones, the dissolved oxygen DO component
balance consists of mass transfer in and out of the zone,
mass transfer from aeration FO, the biomass consuming
oxygen for nutrient uptake. The oxygen component bal-
ance follows Equation 10.

dDOj(t)

dt
=

F (t)

V
(DOj−1(t− 3td)−DOj(t))

+KL
FO(t)

V
(DO∗

max(t)−DOj(t))

− r1
CODj(t)

KS + CODj(t)

DOj(t)

KO +DOj(t)

− YPAr4
POj(t)

KPS + POj(t)

DOj(t)

KO +DOj(t)

− YNHr5
NHj(t)

KNH +NHj(t)

DOj(t)

KAOB +DOj(t)

(10)

The saturation coefficients, stochiometric constants and
rate constants from Nair et al. (2019) were used in this
work, presented in Table 2. The initial conditions for
simulation models are calculated for aggregated laboratory
and online data set, presented in Table 3. The models were
implemented in Matlab and Simulink. The parameters
from Nair et al. (2019) did not give a reasonable fit
to Hias Process data, hence, the reaction rates r and
stoichiometric constant YPO were optimized further using
the Hias data set. The parameters were fitted to the initial
steady state data 3 by setting the ordinary differential

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.034 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

245



equations 4 - 10 to zero. The tuned reaction rates r and
constant YPO together with correlation coefficient R for
model fitness are presented in Table 4.

Table 2. Reduced ASM2d model parameter
values for saturation coefficients K, rate con-

stants r, and stochiometric constants Y .

Symbol Description Value Unit

KA COD anaerobic 2.20 gCOD/m3

KS COD aerobic 0.11 gCOD/m3

KPS PO aerobic 0.2 gP/m3

KO DO aerobic 2.96 gO2/m3

KOAOB DO aerobic 1.57 gO2/m3

nitrifiers

KNH NH aerobic 1 gN/m3

KNO NO aerobic 1.02 gN/m3

KL Aeration 38 gN/m3

r3 COD anaerobic 112 gCOD/(m3h)

r1 COD aerobic 20.8 gCOD/(m3h)

r4 PO aerobic 171 gP/(m3h)

r5 NH aerobic 17.9 gN/(m3h)

r6 NOX aerobic 12.9 gN/(m3h)

YPO P/COD anaerobic 0.577 gP/gCOD
P release

YPA DO/P aerobic 1.496 gO2/gP
P storage

YNH DO/NH aerobic 4.32 gO2/gNH
nitrification

Table 3. Initial conditions for nutrients,
flowrates and temperature dated 12.05.2023
at 12:00. Values marked with * are assumed

values.

Nutrient IN V1 V2 V3 unit

PO 5.56 36.4 3.83 0.14 gP/m3

COD 450 202 72 67.5 gCOD/m3

NH 53 53* 49* 45 gN/m3

NOX 3.63 3.63* 0.698 0.5* gN/m3

DO 0* 0* 8.75 5.92 gO2/m3

F 417.6 m3/h

T 8.3 oC

FOV 2 9571 m3/h

FOV 3 2897 m3/h

Table 4. Tuning of of the reduced ASM2d
model parameters and resulting correlation

coefficient R.

Param. Nair Tuned

KL 38 5.80 &0.18

r3 112 162

r1 20.8 113 & 4.34

r4 171 20.8& 6.09

r5 17.9 3.11&0.31

r6 12.9 72.7&48.4

YPO 0.577 0.125

R -0.0079 0.0735

3.5 Machine learning model results

The input variables were first dynamically time-delayed
using Simulink block ”variable time delay”. The variables
at inlet, including flow (F ), temperature (T ), sum of
nitrates and nitrites (NOXIN), soluble organic matter

(CODIN) and estimated phosphorus (POIN) in were
delayed using dynamic time delay Td3. The total aeration
rate in the lumped zone V2 (FOV 2) was delayed using
dynamic time delay Td2, and the total aeration rate in
lumped zone V3 (FOV 3) was delayed using dynamic time
delay Td1. The dynamically time-delayed input variables
were collected from Simulink. Both input variables and
the output variables were normalized and the data set was
divided into two, 50% training and 50% testing.

Support Vector Regression Different regression models
were fitted to the dynamically time-delayed training data
in Matlab Regression Learner toolbox. The models were
compared using the dynamically time-delayed test data
set. The results are presented in Table 5 with R2 model
accuracy index obtained from the toolbox. The best results
were achieved with support vector regression and gaussian
process regression with R2 values up to 0.9 indicating
excellent model fitness. In comparison, linear regression
and support vector regression with linear kernel function
results in R2 values around 0.4 indicating insufficient
model fitness. The models without time delay were also
developed, but these resulted in poorer model accuracy
as given in Table 5. On average the model accuracy
reduction was 5% for the best performing models, SVR
with fine gaussian kernel function and gaussian process.
The support vector regression model with fine gaussian
kernel function was chosen further for comparison with
other models.

Table 5. Regression model type, R2 model
accuracy for train and test data sets with and

without (w/o) dynamic time-delay.

Time delay with with w/o w/o

Model train test train test

SVR fine gaussian 0.87 0.86 0.80 0.83

SVR medium gaussian 0.62 0.59 0.58 0.56

SVR cubic 0.54 0.50 0.52 0.48

SVR quadratic 0.50 0.47 0.46 0.43

SVR linear 0.39 0.35 0.40 0.38

Linear regression 0.42 0.38 0.42 0.39

Gaussian process 0.92 0.92 0.86 0.87

quadratic

Long-short term memory network The LSTM neural
network was implemented in Matlab. The network archi-
tecture included: a sequence input layer with 7 features (in-
puts), 3 LSTM layers with different number of nodes, fully
connected layer with 1 response (output) and a regression
layer. The initial plant options of the model were chosen as
follows: optimizer-Adam, MaxEpochs-40, Mini Batch Size
of 1008, Sequence Length of 144, Gradient Threshold of 1,
Initial Learn Rate of 0.001, Learn Rate Schedule piecewise,
Learn Rate Drop Factor of 0.001, Learn Rate Drop Period
of 10. The LSTM model architecture was tested with 3
to 5 LSTM layers with 7-14-28-14-7 nodes. Increasing the
depth of the network from 3 LSTM layers to 4 and to 5
LSTM layers decreased the model fit. Increasing the depth
of an LSTM network, such as here, from 3 to 5 layers,
can lead to issues like overfitting, where the model learns
noise and details specific to the training data but fails to
generalize. Thus explaining, why the output prediction of
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the 5 layer LSTM gave a limited response in the trend
figure.

Further, the architecture with 3 LSTM layers was used
for testing of the number of nodes. Increasing the number
of nodes from 7-14-7 to 14-28-14 and futher to 28-56-28
improved the model fitness both numerically and visually
in the trend figure. However, increasing the size to 56-
112-56 and 112-224-112 decreased the modeling accuracy.
This is because as the model complexity increases, each
additional unit of complexity (in this case, more nodes)
contributes less to capturing useful, generalizable patterns,
and more to fitting random fluctuations in the data. Batch
and sequence size were chosen using the daily and weekly
patterns of the combined domestic and industrial used
water flowrate and nutrient composition. The measure-
ment interval was 6 samples per hour. The batch size
was chosen to represent the weekly pattern including 1008
samples and the sequence size was chosen to represent
the daily pattern including 144 samples. The batch size
was changed from 1008 down to 144 and sequence size
was changed from 144 down to 72 which did not improve
the results. Decreasing the sequence size further to 144-
36 showed limiting the predicted output values in the
trend figure. Increasing the learning rate from 0.001 to
0.1 decreased the model accuracy and predicted values
in the trend figures were limited over 0. Decreasing the
learning rate from 0.001 to 0.0001 decreased the model
accuracy. Role of dynamically time-delayed input variables
is significant. The model accuracy decreases from 0.71 to
0.49 for training data set and from 0.61 to 0.46 for test data
set when input variables are not delayed. This can indicate
that the LSTM model with the current architecture does
not manage to compensate for the time delays.

Table 6. LSTM parameters: Nodes per layer,
Mini Batch Size MBS, Sequence Lenght SL,
Initial Learning Rate ILR, correlation coeffi-
cients for train and test Rtrain and Rtest. B

bad fit to trend data.

Nodes MBS SL ILR R train R test

7-14-7 1008 144 0.001 0.61 0.52

7-14-28 1008 144 0.001 0.57B 0.48B
-14-7

7-14 1008 144 0.001 0.61 0.51
-14-7

14-28-14 1008 144 0.001 0.65 0.56

56-112 1008 144 0.001 0.66 0.48
-56

112-224 1008 144 0.001 0.61 0.49
-112

28-56-28 1008 144 0.001 0.71 0.61

28-56-28 1008 144 0.01 0.62 B 0.43 B

28-56-28 1008 144 0.0001 0.61 0.58

28-56-28 144 72 0.001 0.67 0.49B

28-56-28 144 36 0.001 0.68 0.47B

28-56-28 1008 144 0.001 0.49 0.46
w/o Td

3.6 Summary of results

The models are compared visually for training and test-
ing data sets in Figs. 3 and 4, and using the corre-
lation coefficient between the real data and the model
predictions in Table 7. The SVR model with highest

number of parameters and very little modeling efforts (1
hour) provided excellent modeling accuracy. The LSTM
model development and tuning required 10 hours of tuning
and provided satisfactory modeling accuracy. The reduced
ASM2d model development took over 100 hours of work
and resulted in inadequate modeling accuracy. While the
SVR model predictions very accurately follow the dynamic
trends in the data, the LSTM model gives conservative
predictions for a limited output range. SVR often provides
more accurate predictions than LSTM when working with
small datasets due to its ability to find a hyperplane in a
high-dimensional space that best fits the data, minimizing
overfitting. LSTMs, which are good in capturing long-
range dependencies within large datasets, may struggle
with overfitting and underperformance in scenarios with
limited data due to their complex architectures. Thus,
SVR is typically more suitable and reliable for small-scale
data modeling where the primary goal is generalization
over capturing sequential patterns.

Likewise, the reduced ASM2d model suffers from large os-
cillations related to the flowrate term in the mass-balance
equation of the nutrient removal. When time-delayed data
was used, both ML models improved prediction accuracy,
the LSTM for training data 22% and testing data 15%, the
SVR for training data 2% and testing data 0%. The ML
model prediction accuracy increased when time-delayed
data was used.

Table 7. Time consumption and correlation
coefficient R for different models.

Model Development R R

type time [h] Train Test

SVR fine gaussian 1 0.94 0.95

SVR f.g. w/o Td 1 0.92 0.95

LSTM 10 0.71 0.61

LSTM w/o Td 10 0.49 0.46

rASM2d 100+ 0.07 0.07

4. CONCLUSIONS AND FURTHER WORK

Answers to the research questions conclude the results of
this study: Can the reduced ASM2d model, SVR model
and LSTM model follow the dynamic trends of the effluent
PO4 data? The support vector regression with time de-
layed variables was very accurate in matching the dynamic
trends in the data. The LSTM model had a sufficient fit.
The time-delayed variables increased the ML model accu-
racy.The reduced ASM2d models require more tuning and
development to be able to match the dynamic trends in the
data. Which model gave the highest prediction accuracy?
The SVR model with fine gaussian kernel function and
dynamic time-delay gave the best modeling results.

Further work is suggested on control strategy design. The
next step is comparison of the unit step responses of the
reduced ASM2d model and ML models. If the dynamic
responses are similar, the SVR model with highest model
accuracy should be used further. If the ML model step
responses are not similar to the reduced ASM2d model, a
method of online-adaptation of the reduced ASM2d model
parameters is suggested to make the model more accurate
and suitable for control studies.
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Fig. 3. Training data set. Outlet PO4 data in black dots, and model predictions with SVR in green, LSTM in red and
rASM2d in blue. Time in samples.

Fig. 4. Testing data set. Outlet PO4 data in black dots, and model predictions with SVR in green, LSTM in red and
rASM2d in blue.Time in samples.
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Abstract: Pyrolysis of biosolids aims to reduce solid volumes and improve energy recovery; however, the 

pyrolysis liquid (PL) is a by-product that has no good direct application. One idea is to link pyrolysis and 

anaerobic digestion (AD), in which PL can be valorized for methane production. PL contains various 

compounds that potentially threaten the stability of AD. This study, therefore, aims to extend the current 

Anaerobic Digestion Model No.1 (ADM1) and evaluate the influence of phenol, furfural, 5-

hydroxymethylfurfural (5-HMF), styrene, and ammonia from PL on AD. Two lab-scale AD reactors were 

simulated and compared with experimental data: one fed with hydrolyzed sludge and the other fed with an 

additional stream of PL. The simulation accurately predicts hydrolyzed sludge as substrate, while the 

simulation of the reactor co-digesting hydrolyzed sludge and PL overestimates methane production. 

Ammonia, phenol, and styrene were identified as the most significant inhibitors. However, based on the 

overestimation of methane production, it is clear that the PL has more inhibitors present than those 

implemented in the model. Simulations further showed that an additional stream of PL increased methane 

production by 4.3%, even with significant inhibition by the compounds. 

Keywords: Pyrolysis Liquid, Anaerobic Digestion, ADM1, Inhibition, Phenol, Ammonia, Styrene, 

Hydrolyzed Sludge, Biosolids 

1. INTRODUCTION 

There is a need for waste management systems which address 

the world's growing population's energy demand and treat the 

enormous amount of waste produced in both an efficient and 

sustainable way (Tayibi et al., 2021). In recent years, coupling 

pyrolysis and anaerobic digestion (AD) as a waste 

management system has gained attention due to its possibility 

for energy recovery and economic value (Feng and Lin, 2017). 

Pyrolysis is a thermochemical process where organic matter is 

heated in the absence of oxygen to yield biochar and pyrolysis 

gas, where pyrolysis liquid (PL) is a by-product. Meanwhile, 

AD is the biochemical process in which organics biologically 

degrade to biogas, a mixture of methane and carbon dioxide. 

Hydrolysis is a rate-limiting step in the AD process, where 

organic matter is solubilized. Pretreatment methods such as the 

thermal hydrolysis process (THP) improve hydrolysis with the 

additional benefits of pathogens removal and enhanced 

digestate dewaterability (Han et al., 2017).   

Pyrolysis coupled with AD offers numerous synergies such as 

increased resource use by feeding biosolid-PL (PL from dried 

digestate), biomethanation of pyrolysis gas, and biochar for 

inhibition control and increased methane production (Tayibi et 

al., 2021). PL is a by-product of pyrolysis with no direct 

application and is a complex mixture of more than 400 

organics and inorganics (Giwa et al., 2019). Valorization of PL 

might be possible with AD, but the compounds in PL, such as 

phenols, furans derivatives, styrene, and ammonia, can inhibit 

and pose a threat to AD stability (Seyedi et al., 2019). There 

have been a few attempts to add PL to AD with an increase in 

methane production at low PL loadings (Hubner and Mumme, 

2015; Seyedi et al., 2020).  

Anaerobic Digestion Model nr.1 (ADM1) is a valuable and 

cost-effective simulation model for predicting an AD system's 

robustness and efficiency (Batstone et al., 2002). A simulation 

allows one to anticipate challenges such as inhibition before 

they arise in the system and predict the outcomes and 

implications of substrates and substrate combinations. Some 

previous simulation studies have focused on adding PL to AD. 

Raya et al. (2021) presented a simulation focusing on how 

phenol, furfural, and 5-hydroxymethylfurfural (5-HMF) from 

aqueous-PL from softwood affected AD. Flatabø and Bergland 

(2022) simulated a full-scale reactor co-digesting sludge from 

THP, biosolids-PL, and pyrolysis gas. Some studies have 

focused on the simulation of furfural inhibition from steam 

explosion pulping wastewater (Li et al., 2023) and phenol 

simulation from olive mill waste in AD (Fezzani and Ben 

Cheikh, 2009).  

Flatabø and Bergland (2022) only simulated ammonia toxicity, 

one of many inhibitors in the PL, but neglected the influence 

of other compounds. This study aims to extend the ADM1 

model to predict inhibition from multiple compounds in the PL 

and evaluate the effects of PL in AD. The objective of this 

study is to (i) establish an extended model with inhibiting 

compounds in PL co-digested with sludge from THP and 

compare the model data to experimental data, (ii) investigate 
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which compounds contribute to inhibition, and (iii) evaluate 

the effect of biosolid-PL in AD. 

2. METHODOLOGY 

2.1 Anaerobic Digestion System  

Substrate consisting of sewage sludge and food waste (60:40 

v/v) was collected after treatment in a THP at 155°C with a 

retention time of 20 minutes. The substrate is termed 

hydrolyzed sludge (HS) and is the substrate for two lab-scale 

mesophilic (38°C) semi-continuously stirred tank reactors 

(semi-CSTRs). Inoculum was sampled from an industrial 

mesophilic CSTR fed by the same substrate. One AD 

bioreactor was used as a control and fed HS termed "HS-

reactor", while the other was fed HS and PL termed "HSPL-

reactor". The PL was produced using the Biogreen® 

technology by VOW ASA, where dry pelletized biosolids 

from the industrial CSTR digestate were pyrolyzed at 600°C. 

More details about the pyrolysis process and PL sampling can 

be found in Flatabø et al. (2023). 

2.2 Analytical Characteristics 

Total COD (tCOD), soluble COD (sCOD), pH, alkalinity, total 

ammonia nitrogen (TAN), and volatile fatty acids (VFAs) 

were analyzed as previously described by Bergland et al. 

(2015). TAN, pH, and VFAs were analyzed in addition to 

elemental analysis for the PL; check Flatabø and Bergland 

(2022) for details. The concentration of phenols in the PL was 

determined with Supelco Phenol-Test Art.100856 after the 

sample was filtered (0.45 µm). 

2.3 Base Case Scenario and Data Collection 

The simulations of the lab-scale reactors were implemented in 

ADM1 in aquasim version 2.1. Both reactors were fed with the 

same amount of HS, but one was fed with an additional stream 

of PL. Digestate measurements and characterization were done 

1-2 times a week. Both reactors started with only HS as 

substrate, while the start of the simulation on day 0 was when 

the HSPL-reactor received PL. More details on the 

experimental part of the setup can be found in Flatabø et al. 

(2024). The HS reactor was simulated for 232 days (stopped 

early due to technical issues). The HSPL-reactor was 

simulated for 437 days, which was the entire period during 

which the reactor was fed PL. 

2.4 Hydrolyzed Sludge (HS) Composition 

Average experimental data and literature data were used to 

simulate both reactors. Both reactors experienced variations in 

inflow and concentration, and experimental effluent data was 

used to evaluate the accuracy of the model. The HSPL-reactor 

had a slightly higher inflow due to the addition of PL, resulting 

in a lower hydraulic retention time (HRT) than the HS-reactor.  

The COD concentration of HS was, on average, 101.1 kg 

tCOD/m3 and 21.6 kg sCOD/m3 at a TS of 5.5-10.8%; a more 

detailed composition is given in Tab. 1. VFAs were additional 

inputs and were based on experimental data. Sugars denotes 

the concentration of n-caproic acid, isocaproic acid and 

heptanoic acid. Amounts of soluble inert were estimated from 

effluent data (36.6% of sCOD), while the total inert was 

estimated on lab data (COD reduction) and data from the 

industrial plant (average yield), which on average estimates 

that 25% of tCOD is inert. For the HSPL-reactor, the total 

inerts were adjusted to 30% of tCOD after 248 days because 

of changes in the substrate. Protein composition was set to 9 

% of tCOD and lipids to 28% of tCOD based on data from 

Flatabø and Bergland (2022). Carbohydrates were used to 

achieve the summed total concentration of COD. The 

inorganic carbon was based on experimental data. To account 

for the high pH in the lab experiment, the cations were adjusted 

in the model by adding 0.15 M in the HS-reactor and 0.2 M in 

the HSPL-reactor to reach the targeted pH. 

 Table 1: Average input data for the hydrolyzed sludge (HS) 

with a tCOD of 101.1 kg COD/m3 and sCOD of 21.6 kg 

COD/m3. Lipids, carbohydrates, and proteins were based on 

data from Flatabø and Bergland (2022), while the other input 

data were estimated on experimental data. 

Input Unit Value 

Lipids kg COD/m3 28.6 

Carbohydrates kg COD/m3 16.6 

Protein kg COD/m3 9.1 

Sugars kg COD/m3 0.44 

Acetic acid kg COD/m3 1.35 

Propionic acid kg COD/m3 0.43 

Butyric acid kg COD/m3 0.85 

Valeric acid kg COD/m3 1.1 

Inert soluble kg COD/m3 7.9 

Inert particulate kg COD/m3 26.8 

TAN kmol N/m3 0.09 

Inorganic carbon kmol HCO3
-/m3 0.03 

2.4 Pyrolysis Liquid (PL) Composition

The PL composition was obtained from experimental data and

literature (see Tab. 2). tCOD and sCOD add up to 355 kg/m3

and 164 kg/m3, respectively. 60% of tCOD is totally inert, in

accordance with what Flatabø and Bergland (2022) estimated.

The concentration of phenols, 5-HMF, furfural, and styrene are

assumed to be soluble in the liquid phase and account for a part

of the inert concentration. The 5-HMF and furfural

concentrations were found in Hubner and Mumme (2015).

Meanwhile, the styrene concentration (0.06 wt.%) is found in

Seyedi et al. (2019).

2.5 Parameters in the modified ADM1

The hydrolysis constant, khyd, was determined to be 1 d-1 for

carbohydrates, lipids, and proteins for HS, which is in

accordance with Flatabø and Bergland (2022) and  Souza 

et al., 2013b). For the PL, the hydrolysis constant was

determined to be 0.3 d-1, as described by Flatabø and Bergland

(2022). The disintegration constant was kept at 0.5 d-1 in

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.035 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

250



accordance with Montecchio et al. (2017) and Flatabø and 

Bergland (2022). 

Table 2: Input data for biosolid pyrolysis liquid obtained at a 

process temperature of 600 °C. The concentrations are 355 kg 

tCOD/m3 and 164 kg sCOD/m3. 

Input Unit Value 

Lipids kg COD/m3 37.4a 

Carbohydrates kg COD/m3 9.53a 

Protein kg COD/m3 7.66a 

Sugars kg COD/m3 18.1a 

Acetic acid kg COD/m3 40.6a 

Propionic acid kg COD/m3 9.45a 

Butyric acid kg COD/m3 10.3a 

Valeric acid kg COD/m3 8.23a 

Inert soluble kg COD/m3 64.8a 

Inert particulate kg COD/m3 136a 

Phenols kg COD/m3 10.2b 

HMF kg COD/m3 0.003c 

Furfural kg COD/m3 0.375 

Styrene kg COD/m3 1.84d 

TAN kmol N/m3 1.09a 

Inorganic carbon kmol HCO3
-/m3 0.313b 

 

Phenol, furfural, 5-HMF, and styrene were extended in the 

ADM1 to describe the inhibition of PL in AD by using a non-

competitive form of inhibition control. Kinetic growth 

parameters of the phenol in AD were collected from Fezzani 

and Ben Cheikh (2009), where it is assumed that phenols 

degrade to hydrogen and benzoate. Inhibition data of phenol 

was taken from Raya et al. (2021). Phenol and benzoate are 

included in the charge balance equation to determine pH, as 

Fezzani and Ben Cheikh (2009) described. Kinetic parameters 

and inhibition data for furfural degradation are taken from 

Raya et al. (2021) and Li et al. (2023), where the latter made 

an extended ADM1 model which took account of the 

intermediate product furoic acid. Furoic acid is less inhibitory 

than its precursor, and therefore, inhibition from furoic acid 

was neglected. Data for growth kinetics and inhibition of 5-

HMF in AD was collected from Raya et al. (2021) and B. Liu 

et al. (2017). For styrene, the inhibition constant, Ki, on 

anaerobic mix culture was 145 mg/L (Araya et al., 2000). 

Anaerobes release 4 units acetic acid and 4 units of hydrogen 

 
a Flatabø and Bergland (2022) 
b Experimental data 

for each unit of styrene; thus, the yield of each compound is 

calculated by (1) and (2). 

𝑓𝑎𝑐,𝑠𝑡𝑦𝑟 = (1 − 𝑌𝑠𝑡𝑦𝑟) ∙
𝑡ℎ𝐶𝑂𝐷𝑎𝑐 ∙ 4

𝑡ℎ𝐶𝑂𝐷𝑎𝑐 ∙ 4 + 𝑡ℎ𝐶𝑂𝐷ℎ2 ∙ 4
    (1) 

𝑓ℎ2,𝑠𝑡𝑦𝑟 = (1 − 𝑌𝑠𝑡𝑦𝑟) ∙
𝑡ℎ𝐶𝑂𝐷ℎ2 ∙ 4

𝑡ℎ𝐶𝑂𝐷𝑎𝑐 ∙ 4 + 𝑡ℎ𝐶𝑂𝐷ℎ2 ∙ 4
    (2) 

Growth kinetics of styrene degradation under anaerobic 

conditions is scarce; however, some microbes have been 

identified to degrade styrene, such as Pseudomonas sp. E-

934846, which can survive in both anaerobic and aerobic 

environments (Arnold et al., 1997). Growth kinetics of 

Pseudomonas sp. E-934846 on styrene degradation in 

Gąszczak et al. (2012), where km and KS were measured to be 

3.96 d-1 and 0.018 kg CODs/m3. Y and Kdec are assumed to be 

0.01 and 0.02.  

Tab. 3 summarizes the kinetics and values of phenol, benzoate, 

styrene, 5-HMF, furfural, and furoic acid degradation. For 

ammonia, default data from ADM1 are used, where Ki is 0.018 

M. 

3. RESULTS AND DISCUSSION 

3.1 Hydrolyzed Sludge Reactor 

The experimental and simulated methane productions are 

shown in Fig. 1. 

 

Fig. 1. Experimental (blue dots) and simulated (red line) methane

production of reactor only treating hydrolyzed sludge (HS).

Experimental methane production is based on an average COD

reduction of 1 week. The model follows experimental values

well but overestimates methane production from day 37 to 56

due to changes in inflow in the experiment. After those days,

the model predicts methane production well until day 181. The

reason for this overestimation after day 181 is unclear.

However, according to experimental data, the methane yield

c Hubner and Mumme (2015) 
d Seyedi et al. (2019) 
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showed a decreasing trend, which is due to the substrate

variations that were not accounted for in the model.

The methane partial pressure in the biogas is 63.3% based on

simulated values, the same as the previously reported data

from Flatabø and Bergland (2022). The pH was slightly lower

in the simulation (7.6) than in the experimental results, an

average of 7.73. Moreover, the inhibition and inorganic

nitrogen concentration are shown in Fig. 2. Simulated TAN

and free ammonia (NH3) are well predicted compared to

experimental data; besides the first 40 days, the simulated

values are slightly overestimated. Overestimations of TAN can

be due to variations in the substrate composition or the fact that

the model is not robust enough to compute accurate data for

the first days (Souza et al., 2013b). The main

contributor to inhibition is NH3, which is 0.3 on average on a

scale where 0 is full inhibition and 1 is no inhibition. In the

initial days, NH3 was higher in experimental data compared to

simulated data. Thus, the simulated methane production 

should probably be more inhibited by NH3 than what the 

simulation shows.  

3.2 Hydrolyzed Sludge and Pyrolysis Liquid Reactor 

Simulated and experimental data (based on an average COD 

reduction for one week) for methane production and PL 

loading are plotted in Fig. 3. Methane production was 

underestimated from day 24 to 34 and was overestimated in 

the next 30 days when the reactor was fed with a reduced flow 

rate due to operational issues. The simulated values predict the 

experimental values much better after 266 days, where the PL 

loading is less than 0.01 L/d (0.14 kg tCOD/m3/d) and with 

long HRTs of 48.6 days compared to the 16.2 and 32.4 days in 

other periods.  

Table 3: Summary of kinetic parameters of phenol, benzoate, styrene, 5-HMF, furfural, and furoic acid degradation. CODs and 

CODx denoted substrate COD and biomass COD, respectively. f indicates the fraction of the compound that converts to another 

compound.  

Parameter Description Unit Phenol Benzonate Furfural Furoic 

acid 

5-

HMF 

Styrene Value 

C Carbon 

content 

kmole/kg 

COD 

0.0268a 0.0324a 0.0284a 0.0347a 0.0312a 0.025a  

km Maximum 

uptake rate 

d-1 15b 8 b 20.53d 3.71d 10e 3.96h  

Ks Half 

saturation 

constant for 

uptake 

kg 

CODs/m3 

30b 15.5b 9.59d 18.24d 10e 0.018h  

Y Yield of 

biomass 

uptake 

kg CODx/ 

kg CODs 

0.01b 0.013b 0.08g 0.08a 0.1e 0.01a  

Ki Inhibition on 

methanogens  

 1.12c  2.47d  2.05c 0.45f  

Kdec Biomass 

decay rate  

 0.02b  0.02c,g 0.02a 0.01e 0.02a  

Ki_bnz_h2 Inhibition on 

benzoate 

degraders 

  9.5∙10-5 c      

f_bnz_phe         0.87b 

f_h2_phe         0.13b 

f_ac_bnz         0.51b 

f_h2_bnz         0.49b 

f_ac_fua         0.82d 

f_h2_fua         0.10d 

f_ac_HMF         0.88e 

f_h2_HMF         0.12e 

________________ 
a Calculated/Estimated  c Raya et al. (2021) e  B. Liu et al. (2017) g Brune et al. (1983) 
b Fezzani and Ben Cheikh (2009) d Li et al. (2023)  f Araya et al. (2000) h Gąszczak et al. (2012) 
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Fig. 2. Simulated total ammonia nitrogen (TAN) (red line) and free

ammonia, NH3, (green line) are plotted against experimental data

(dots) for the HS-reactor. The inhibition of NH3 is also plotted,

(purple line) where 0 = full inhibition and 1 = no inhibition.

Moreover, the model had difficulty when there were sharp

changes in inflow. Simulated methane concentration is, on

average, 67.3% in the last 100 days, close to the experimental

methane concentration of 67.8% analyzed in that period.

 

Fig. 3. Simulated (red line) and experimental methane production

(black dots) of reactor treating hydrolyzed sludge (HS) and

biosolid pyrolysis liquid (PL). The PL loading (green line) is

added to visualize substrate load changes during the experiment.

Inorganic nitrogen and inhibitions of the HSPL-reactor are

plotted in Fig. 4, where the main contributor to inhibition is

NH3. TAN is underestimated in the model until day 65;

however, it is comparable to the experimental value until day

350, when the reactor effluent had an increase in TAN

concentration. This effect might be due to substrate variations,

such as more proteins entering the reactor or accumulation

inside the reactor. Inhibition from NH3 was 0.14, 0.85 for

phenol, and 0.93 for styrene, while furfural and HMF had no

significant contribution (0 – 0.1%). Also, in this case, NH3 is

underestimated in the first days, so inhibition was lower during

that period. NH3 is correlated to pH, where ammonium and

NH3 are in equilibrium, and an increase in pH shifts the

equilibrium toward NH3. pH was simulated to be 7.85, which

is slightly higher than the average experimental pH (7.7).

 

 

Fig. 4. (Top figure) Simulated total ammonia nitrogen (TAN) (red)

and free ammonia (NH3) (purple) are plotted against experimental

data (dots) for the HSPL-reactor. (Bottom figure) The inhibition

of NH3, styrene, phenol, furfural, and 5-HMF are plotted where

0=full inhibition and 1= no inhibition.

3.3 Discussion

Previous studies simulating digesters fed with HS in ADM1

showed good fits with experimental data, but VFAs were the

only parameter challenging to simulate (Donoso-Bravo et al.,

2020; Flatabø and Bergland, 2022). Similar problems occurred

in this simulation, where the experimental acetic acid

concentration was 170% higher than the simulated values.

Another study has shown that effluent COD has been

accurately predicted while methane production has been

overestimated (Souza et al., 2013a). The current study 

indicates that simulated methane production was

accurately predicted for HS-reactors with an average 10.1%

overestimation and sCOD concentrations (not shown) in the

effluent was 3.7% overestimated) while the tCOD

concentration (not shown) in the effluent was 12.6%

underestimated. For the HSPL-reactor, the methane

production in the period after 266 days is 14.8% higher, but

with significant deviations in the simulation, the simulated

tCOD in the effluent (not shown) had an underestimation of

30.4%, and sCOD (not shown) had an underestimation of

26.5%. A previous study of HS in continuous systems with an

over/underestimation of 15% was acceptable due to

operational variability (Souza et al., 2013b). This study, 

therefore, shows that the simulation predicts methane

production with acceptable accuracy for HS. For the

simulation of HS-PL, methane production was better predicted

at the end of the period but was not well predicted at high

loadings. Souza et al. (2013a) previously reported that 

methane production deviates in response to low HRTs and

consequent load changes. In this study, simulated methane

production was not well predicted at low (16.2 days) HRTs,
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the first 34 days and between 158 and 245 days, as seen in Fig. 

5. However, at high HRT (low mass loadings), the simulation 

predicts the methane production accurately.  

 

Fig. 5. Simulated (red) and experimental (blue) methane production

compared to hydraulic retention time (HRT) (black line).

Considering the operating variability, the simulation's

overestimation of 10.1% methane production for the HS-

reactor is acceptable. The difference between simulated and

experimental values is significantly higher for the HSPL-

reactor. Methane production is still overestimated in the stable

period with high HRT and low PL loading. The reason might

be that the PL consists of more inhibitors than those accounted

for in the modelling or that the inhibiting compounds have

higher concentrations than the literature has suggested.

3.4 Inhibition

Phenols are found in agricultural and industrial wastes and are

known to inhibit biodegradation, which makes biological

processes difficult to occur (Hernandez and Edyvean, 2008).

In AD, it has been indicated that the phenolic compounds

interfere with the chain of reactions prior to methanogenesis.

Therefore, hydrolysis and acetogenesis are inhibited more than

methanogenesis (Hernandez and Edyvean, 2008). Literature

suggests that there is some uncertainty regarding phenol

methanization where data varies considerably, and some also

report that methanization was not achieved (Hernandez and

Edyvean, 2008). Another concern is the inhibition constant,

which has varying data from 1.12 to 5 kg COD/m3 (Blum and

Speece, 1991; Hernandez and Edyvean, 2008; Raya et al.,

2021). Therefore, there is some uncertainty regarding the

inhibition constant (Ki) and phenols degradation to methane.

Styrene in typical AD reactors usually comes from synthetic

monomers for plastic production. Fractions of styrene will

volatilize, but some will be present in the liquid phase, which

can inhibit microbes (Araya et al., 2000). Previous studies

have reported styrene in PL (Kessas et al., 2021; Z. Liu et al.,

2017); however, the current study's concentration is unknown,

and data from the literature was used. Furfural and 5-HMF

inhibition were not significant, which was expected because

these inhibitors are mainly found in lignocellulosic material or

low-temperature pyrolysis (Leng et al., 2021). Phenols and

inorganic nitrogen were expected to be high because of the 

lignin and protein content (Leng et al., 2021).  

TAN (ammonium + NH3) is regarded as a nutrient for 

microbes, but too high concentrations (over 1700 mg/L) can 

lead to reactor failure (Yenigün and Demirel, 2013). However, 

microbes can acclimate to high TAN-concentrations when 

gradually exposed to higher loading over a long period. NH3 is 

a potent inhibitor and is in equilibrium with ammonium which 

increases with a rise in either temperature or pH. According to 

a previous study of HS-PL, the inhibition from NH3 was 0.19 

at an organic loading rate PL of 0.41 kg tCOD/m3/d (Flatabø 

and Bergland, 2022). In this study, the average inhibition 

(0.14) is slightly higher than what Flatabø and Bergland (2022) 

reported but is in the range (0.126-0.268). However, the 

inhibition of NH3 is correlated to the inflow of TAN, PL 

loading, HRT, and pH. Regarding pH, it was relatively stable 

during the entire period which means that pH did not 

significantly shift the equilibrium between ammonium and 

NH3. Therefore, this is not considered a major contributor to 

this simulation compared to the actual TAN concentration 

loaded. From day 143 to 246, there is less inhibition (see Fig. 

4), which can be explained by the lower TAN inflow (average 

0.067 M) and the low HRT. However, in the initial period, 

there was a high TAN (0.1464 M) with low HRT and less 

inhibition. Based on those findings, it can be seen that low 

HRT is beneficial for reducing the inhibition of NH3. A higher 

HRT allows more proteins to degrade to TAN. Another 

possibility is that a low HRT restrains the contact time between 

microbes and compounds, making the inhibitor less potent. 

Moreover, the lower HRT gives a more unstable digestion.   

Moreover, this article does not take into account the adsorption 

mechanisms of the different compounds onto the sludge. 

Phenols can adsorb onto the sludge with a saturation level of 

800-1600 mg/L (Hernandez and Edyvean, 2008). Also, 

microbial adaptation can reduce the effect inhibitors have on 

methane production over time, which is not taken into account 

in the model (Donoso-Bravo et al., 2022). Microbes will be 

selected in continuous reactors based on their adaptability to 

the substrate, making microbial adaptation an essential factor 

in the model. The inhibition data also differ from a batch 

reactor to a CSTR; for this study, the data is not calibrated to 

a semi-continuous system. Previously, Li et al. (2023) found 

that Ki was 2.47 kg COD/m3 for batch and 6.05 kg COD/m3 for 

a continuous system where some microbial kinetics were also 

changed. This suggests that inhibition and kinetic parameters 

could be calibrated for a better fit in the model. 

3.5 Effect of Pyrolysis Liquid addition 

The effects of PL addition were evaluated on the methane 

production of the simulated reactor with HS-PL and the reactor 

with the same inflow of HS but without PL (see Fig. 6). The 

difference is noticed as the additional methane production 

from PL. Based on the results, PL has a positive contribution 

even though it brings several inhibitors. However, at high PL 

loadings, it looks like the increased inhibition may lead to 

reduced methane production.  

0

10

20

30

40

50

60

70

0

0.01

0.02

0.03

0.04

0.05

0.06

0 50 100 150 200 250 300 350 400

H
R

T

M
et

h
an

e 
P

ro
d

u
ci

ti
o

n
 (

m
3
/d

))

Days

Sim_Methane Exp_Methane HRT

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.035 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

254



 

Fig. 6. Simulation of methane production of hydrolyzed sludge with

(blue line) or without PL (orange line). The green line shows the

difference in methane production between HS with or without PL.

Tab. 4 summarizes the most important parameters and how PL

affected them. According to the simulation, PL enhances

inhibition but also increases methane production. The methane

partial pressure in the biogas and the reactor pH also increased

slightly.

Table 4: Average data on PL's influence on AD.

Parameter PL's influence on AD 
St. dev

(%)

Methane production +4.3% 3.0

Inhibition +31.2% 7.2

pH +0.8 % 0.9

Methane partial pressure +1.3% 0.6

3. CONCLUSIONS

This study aimed to investigate the effect of PL in co-digestion

with HS in an extended ADM1 simulation. The results showed

that the model predicted AD of HS with a 10.1%

overestimation and that the model did not respond well to

sharp load changes. For the HS-PL simulation, the model

overpredicts methane production significantly, and the results

suggest that there are more inhibitors in the PL than those

implemented in the model. According to simulation results,

ammonia, phenol, and styrene contributed to most inhibition

and increased inhibition by 31%. However, due to the

additional COD in the PL, there was additional methane

production of 4.3%. Results showed that PL has a positive

impact at low loadings. For future work, it is recommended

that more studies be conducted on the inhibitor and

implementation of microbial adaptation in modelling.
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Abstract: Achieving “Climate-Neutral and Smart Cities” is now very high on the agenda
and the city of Oslo has set an even more ambitious goal of becoming a zero-emission city.
However, the promotion of more compact development may lead to some negative effects
such as the entrapment of polluted air, wind tunnel effects or urban heat islands. Green
infrastructure (GI) can be used as a mitigation measure, bringing many benefits such as
improving air quality, regulating thermal environment, reducing energy consumption, managing
storm water, or promoting urban biodiversity. In this work, we aim to map the existing green
roof infrastructure in Oslo and develop an evidence-base strategy for its further development,
and enhance the understanding and supplement the existing policies developed by the local
authorities. Interviews with stakeholders revealed the practical challenges such as structural
limitations, high installation and maintenance costs, and regulatory compliance issues. However,
they also recognized the significant environmental advantages that highlight the importance of
green roofs in urban sustainability strategies. Geographical information system (GIS) tools are
used to identify the potential areas for further green roof implementation, taking into account the
spatial, morphological and environmental conditions. 91 Priority green roof areas (PRIOGRAs)
and 13 Potential green roof areas (PGRAs) in Oslo are identified as the most suitable for green
roof installations after applying filters like roof surface area greater than 250 m2, and dominating
roof area and slope criteria, exclusion of cultural heritage buildings and existing green roofs, tree
density per person deficit, and building age. 2044 roofs can be considered as suitable without
the criteria of building age. These findings will potentially help providing actionable insights for
policymakers, urban planners, and the research community.

Keywords: Nature-based solutions, green infrastructure, green roofs, climate resilience, UHI,
water retention, GIS tools.

1. INTRODUCTION

Modern cities today face unprecedented challenges in
achieving sustainability goals due to the rapid growth of
urban populations worldwide. Experts from United Na-
tions estimate that by 2041, more than 6 billion peo-
ple on earth will be living in urban areas (Affairs and
Social, 2019). The higher population densities, increased
pollution, loss of green spaces, extensive use of heat-
absorbing materials like concrete and asphalt and strained
energy consumption for heating and cooling are the pri-
mary causes of heightened Urban Heat Island (UHI) ef-
fect, where temperatures in urban areas become higher
than surrounding non-urban areas. This, in turn, is as-
sociated with heat-stress-related public health issues and
contributes to changes in the local climate as well as global
warming effect (Deilami et al., 2018).

Nature-based solutions are recognized as the key response
to the challenges posed by the UHI effect, offering a
multifaceted approach to cooling urban landscape, at the

same time bringing many other environmental benefits.
According to a recent review, local green infrastructure
can reduce local peak surface temperatures even by several
degrees (Wong et al., 2021). However, due to the lack of
open space in many urban areas, sometimes it is chal-
lenging to implement the necessary greening solutions to
achieve such effects. For this reason, green roofs emerge
as a compelling solution that utilize existing roof areas to
address the shortage of ground-level green space. Green
roofs can mitigate UHI by up to 3 degrees, compensating
for the lack of green vegetation in cities, through sur-
face water evaporation, evapotranspiration and decreased
albedo effect (Bianchini and Hewage, 2012; Jamei et al.,
2021).

Apart from their role in reducing UHI, several other im-
portant ecosystem services provided by urban green roofs
are also noted in literature, related to energy, pollution or
water management. To begin with, they contribute to air
pollution control, enhancing local air quality, although this
process is more effective when combined with green walls
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and green screens, especially in terms of reducing pedes-
trian level pollution concentration (Viecco et al., 2021).
Another important aspect is the improvement of biodi-
versity, especially when proper design solutions, leading
to rich habitat conditions, are implemented (Wang et al.,
2022). In addition, existing buildings with retrofitted green
roofs can benefit from improved thermal performance,
especially during winter months in cold climates, leading
to energy savings (Berardi et al., 2014). Finally, in terms of
enhancement towards stormwater management, different
roof types provide different water retention capacity, and
extensive green roofs can reduce over 50% of the potential
water runoff from single buildings (Mentens et al., 2006).
More recent findings suggest that more technologically
advanced blue-green roofs can capture between 70% and
97% of rainfall water during extreme precipitation events,
which is considerably higher than that of conventional
green roofs (Busker et al., 2022).

The environmental potential of green roofs varies depend-
ing on the local conditions. For example, their reported
cooling potential is considerably higher in dry climates
than in hot-humid climates (Jamei et al., 2021). The same
applies to different urban form typologies—the higher
cooling potential is captured in compact high-density ur-
ban areas than in mid-rise and low-rise neighbourhoods
(Zuo et al., 2022). Similarly, the reduction in building en-
ergy consumption varies across different climates (Bevilac-
qua, 2021). The suitability of buildings for green roof
installation is influenced by several local factors, including
roof size, load capacity, building age, and design consid-
erations. The findings from various studies suggest that a
comprehensive evaluation of all of these factors is necessary
to optimize the benefits of green roofs in specific urban
contexts. It is evident that there is need for more accurate
and comprehensive studies of green roof suitability that
take into account required ecosystem services and local
conditions.

The climate in Nordic countries has been largely unaf-
fected by cooling needs in the summer. However, recent
extreme weather events, like the 2012 Copenhagen cloud-
burst, which resulted in costs of approximately EUR 1.6
billion (Evaluation, 2012), the Norwegian Hans or the
heavy snow during last winter in Oslo, underscore the
urgency for adopting more resilient urban planning and
design. These recent events call for more focus on green in-
frastructure strategies in the Scandinavian context, includ-
ing the more widespread implementation of urban green
roofs, in particular for more effective water management
(Nordh and Olafsson, 2021). The reported retention of
stormwater is even up to 58% of the annual precipitation
in the more warm and dry locations (Amorim et al., 2021).
Implementing green roofs in these climatic conditions,
however, comes with many risks and limitations, related to
e.g. to low vegetation survival rate and cover (Lönnqvist
et al., 2021).

In Norway, there are no explicit national legislation and
regulations dedicated to green roofs. They are often imple-
mented for aesthetic purposes, but there is an urgent need
to consider actual spatial and infrastructural conditions
and limitations more carefully to leverage their potential
environmental benefits. Several parameters of green roof
adoption and implementation fall under the broader leg-

islative frameworks related to urban planning, building
codes and environment protection and biodiversity con-
servation. The national standards NS-3840 and NS-3845
set guidelines on green roofs and the Blue green factor
(BGF) calculation method (NS-3845, 2020). According to
the NS3840 standard, the biggest driver for normaliza-
tion of green roofs in Norway is its stormwater retention
capability, rather than insulation, cooling or green space
provision. In addition, Byggforskserien includes technical
recommendations regarding Sedum roof and Terraces with
plants on load-bearing concrete decks (Byggforsk, 2009,
2013).

While the existing legal and regulatory framework pro-
vides avenues for potential integration of green roofs into
urban landscapes, there is limited guidance on specific
technical aspects on these parameters related to green
roofs construction and adoption, thus the on-going ef-
forts to refine and expand relevant national regulations
at the local level is needed. Oslo first had green roofs as
part of their objectives in their municipal plan strategy
towards 2030 to strengthen Oslo’s blue-green character
(Oslo-Municipality, 2015). An action plan for green roofs
and facades towards 2030 was approved in 2023 with three
focus areas; Learning, Sharing and Incentives, accompa-
nied by 11 measures (Planning and Building Agency,
2024). According to Helene Egeland, Climate Leader at
the Planning and Building Agency (PBA), half of the
buildings in Oslo that are larger than 250 square meters
have the potential suitability for green roofs (Planning and
Building Agency, 2024) but more careful analysis is needed
to validate this assumption.

This work aims to assess and enhance the effectiveness of
green infrastructure, particularly green roofs, planning in
Oslo, towards achieving climate resilience and combating
the impacts of extreme weather events. By analysing the
existing green roofs and developing evidence-based ap-
proach for further development strategies, the study seeks
to supplement existing policies and provide actionable
insights for policymakers, urban planners, and the research
community. Through interviews with key stakeholders and
the use of Geographical Information System (GIS) tools,
the research identifies suitable locations for more green
roofs, prioritising locations with more favourable spatial
and environmental conditions.

2. METHODOLOGY

2.1 Interviews

Semi-structured interviews conducted with experts work-
ing with green roof designing, researching, and planning
which provided practical experience and knowledge that
is relevant to Oslo´s GI strategy. These interviews aimed
at gathering nuanced insights into the practical experi-
ences, challenges, and opportunities associated with green
roof implementation, both for Oslo, Norway, and other
comparative Nordic contexts. The selection criteria for
interviewees focused on professionals with significant con-
tributions and experiences to GI, ensuring a diverse range
of perspectives. The interview process was structured into
three parts, with a predetermined set of 9 questions to
facilitate in-depth discussion on key topics such as their
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own background, green roof design considerations and
regulation guidelines, and the future trend of green roof de-
velopment. Ethical considerations, including informed con-
sent and confidentiality in accordance with the guidelines
of the Norwegian Agency for Shared Services in Education
and Research (Sikt), were strictly adhered to during the
entire interview process. Five stakeholders were selected
and interviewed to gain insights into the implementation
of green roofs in Oslo and its benefits and challenges, the
related maintenance and costs, and limitations were also
emphasized during the in-depth interviews. The panel of
interviewees included experts from academia, public sector
and industries as follows: i) Athenna Grindaker (AFRY
Norway, Landscape Architect, Private sector), ii) Bent
Chrisitan (Water and sewage agency, Chief Engineer, Mu-
nicipal planning), iii) David Barton (Norwegian Institute
for Natural Research, Senior Research Scientist, Nature re-
search), iv) David V. Brasfield (Norwegian Association for
GI, Chairperson, Policy Advocacy), and v) Tore Mauseth
(Planning and Building Agency, Environmental Consul-
tant, Municipal planning). Interview insights strengthen
the empirical basis of the study and ensures that the
conclusions drawn provide insight into the theoretical and
practical considerations of green roof design and imple-
mentation.

2.2 ArcGIS mapping strategy

The latest aerial photo mapping of existing green roofs
area in Oslo was conducted by Oslo PBE in 2017, accessing
the mapped geodata layer can give a realistic picture on
the status of green roofs in Oslo. Within the developed
zone of Oslo, the city’s first green roofs strategy proposal
identified 14 million m2 of existing flat roof space can
potentially be suited for green roofs retrofitting. Oslo’s
current built zone has 47% green space cover, with 60
m2 of regulated green space per inhabitant. Based on
surveys conducted by Oslo PBA, there is not strong
enough evidence to estimate the extent of existing green
roofs in square meters without incurring a large margin
of error (Planning and Building Agency, 2022a). The goal
of measuring green roofs implementation were therefore
identified as on the number of roofs suitable for greening,
while the results of total roof area was also presented. Oslo
Municipality locates in Eastern Norway on the Oslo fjord.
The city is the capital and the most populated city of
Norway with a city area of 454 km2. Oslo’s population is
projected to grow by more than 100,000 people by 2050,
reaching just under 813,000 people. As of January 1, 2024,
the city of Oslo had 717710 inhabitants (see (SSB, 2024)).

Oslo presents a unique urban environment for exploring
sustainable urban planning solutions. Oslo´s climate is
classified as Dfb under the Köppen system, characterized
by warm summers and cold winters, a classification of-
ten referred to as a Humid Continental Climate. This
climate type is relevant for the study of green roofs, as
it encompasses high temperatures variations and change
in precipitation patterns, thereby influencing the design,
functionality, and benefits of GI. The Marka peri-urban
forest greenbelt in Oslo serves as an ecological corridor
connecting various green spaces and habitats. We aim to
assess the suitability of green roofs across the city, with a
particular emphasis on developed areas. The methodology

for ArcGIS mapping leverages Oslo’s publicly accessible
geodata repositories, which include detailed urban plan-
ning records, highway traffic volume, main drainage lines,
and other important environmental data. The geodata
layers related to building attributes, roof attributes and
urban environments are obtained from Geonorge, Oslo
municipality and (Riksantikvaren, 2024). These geodata
layers were interpolated to analyze green roofs’ spatial
distribution and environmental impacts. Each step of the
ArcGIS workflow is designed to support the paper’s objec-
tives by providing a systematic approach to analyzing the
suitability of roofs areas for green roof implementation.
The workflow steps are i) Data collection, ii) Data pro-
cessing, iii) Spatial analysis, iv) Visualisation, v) Output
creation and vi) Sharing. This showcases the analytical
process which is suitable for reproducibility and validity
of the research findings.

2.3 The criteria for green roof suitability, urban parameters
and tree density per person mapping

As identified in the literature review, green roofs are
suitable for roofs that are large enough and flat enough, as
well as those with good enough structural integrity. Based
on the available geodata layers, the following criteria were
chosen to represent the spatial suitability for green roofs
(see Table 1). There is also no reliable data on the bearing
load capacity of mapped roofs in Oslo, and many other
factors like building technique and roofing material could
also come into play to determine the actual load capacity
of roof surfaces. Buildings built after 01/07/2017 must
follow (TEK17, 2017) which specifies the requirement of
20-25 cm of insulation in the wall and 30-35 cm in the
ceiling. These are generally considered to be enough to
withstand the weight of extensive sedum roofs in addition
to snow load, thus the consideration for load capacity is
simplified by assuming only buildings built after when
TEK17 come into effect can be easily retrofitted for green
roof implementation.

This study initially considered a comprehensive set of
urban environmental parameters to assess their correlation
with the mapping and management of green roofs in Oslo.
These parameters included population density, tree den-
sity, highway traffic, and public drainage lines. The focus
on tree density in this study was chosen due to its strong
relevance to various urban environmental parameters and
its comprehensive benefits for urban resilience. While other
forms of GI, such as grass fields, parks, and green facades,
also contribute to urban resilience, trees play a critical
role in improving air quality, providing shade and green
area, and regulating local urban temperature, thereby
mitigating the UHI effect. Additionally, trees enhance ur-
ban greenery and contribute to residents’ well-being. The
definition of forest areas in Norway are defined as area
with at least 6 trees per hectare that are or can grow 5
meters high, and these should be evenly distributed over
the area. Proximity to greenery can be difficult to measure
qualitatively without quantifiable metrics. Incorporation
of tree density layer can potentially provide a more reliable
and objective assessment of urban greenery quality.

Based on the point layer on nature info on trees, there
are totally 177055 trees in Oslo, divided by the total
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Table 1. Spatial analysis of green roofs suitability

Parameters PRIOGRA PGRA URA
(Priority green roof area) (Potential green roof area) (Unsuitable roof area)

Roof area Over 250 m2

Dominating roof angle Under 5◦ Between 5◦ and 30◦ Over 30◦

Building constraints Non-SEFRAK buildings
Building age After 01/07/2017

population of Oslo (717710), this resulted the average tree
density per person in Oslo to be 0.25 tree per person.
The population density of Oslo was distributed onto a 250
by 250 meter grid layer (see (SSB, 2023) This grid layer
was then imported into ArcGIS as the base for further
analysis. By combining this population density layer with
points layer data on tree distribution, the study aimed
to highlight areas where tree density per person was the
lowest as an indicator for the need for green area com-
pensation, providing a new perspective on urban greenery
and resilience. To achieve this, the nature info of all trees
in Oslo was retrieved and mapped onto the same grid. For
each grid cell, the total number of trees was divided by the
population within that grid cell, creating a new layer that
showed tree density per person. The high correlation of ES
deficits with population density is a pattern observed in
other cities as reported in (Langemeyer et al., 2020). Pre-
vious studies have also explored the presence of three trees
within a 15-meter distance of a building as an indicator
of access to greenery in urban environments (see (Venter
et al., 2020)). Incorporating population density into tree
density within the grid allows for a more detailed model of
tree replacement. This layer considers the population den-
sity factor, which provides a more nuanced understanding
of urban resilience by emphasizing areas where green roofs
could have the most significant impact.

3. RESULTS AND DISCUSSION

3.1 Interview insights

The outcome of the interviews essentially reveals the com-
mon themes concerning the environmental, social, and
economic aspects of green roofs. Interviewees unanimously
agreed on the benefits of green roofs, including mitigating
public health issues linked to rising urban temperatures,
improving air quality, reducing carbon footprints, and en-
hancing biodiversity. These findings align well with the
previous literature reviews. However, despite of Oslo’s
public green roof strategy, stakeholders still encounter
constraints in both the qualitative and quantitative imple-
mentation of green roofs. Regarding the spatial suitability
of roof areas, Bent Chrisitan mentioned that even small
roof areas contribute to urban sustainability. Athenna
Grindaker addressed the pressure to compensate for lack
of green surfaces on the ground with green roofs at first.
However, according to her, budgetary constraints often
lead to the elimination of green roofs during later con-
struction phases completely. The critical role of green roofs
in effective water management, especially during extreme
weather events, was emphasized. The three-step strategy
for storm-water management as well as BGF were men-
tioned as some prevailing guidelines that requires both
stringent enforcement and updates in terms of Scandi-
navian climates. In this aspect, David Barton suggests

their work (see (Barton et al., 2021)) on storm-water fees
as financial mechanisms in supporting climate readiness
through local storm-water management that could po-
tentially motivate property owners to adopt GI solutions
like green roofs and other GIs towards enhancing urban
resilience.

Apart from environmental benefits, adoption of green roofs
have increased land values for certain residential projects.
The interviews also revealed the common concerns such as
the cost and maintenance of green roofs, and the need
for clearer guidelines and supportive policies for their
adoption in both new constructions and retrofits. On the
other hand, for social side, enhanced aesthetics, improved
livability, and recreational spaces were highlighted as the
primary benefits. Note that long-term cost savings through
energy efficiency and potential increases in property values
can be realized as economic benefits. However, there is a
need to balance public and private costs, as often residents
bear the installation and maintenance costs without real-
izing potential added land value as mentioned by David
V. Brasfield.

Furthermore, added costs for retrofitting and unprofes-
sional conduct by builders could also be of concern. For
example, air-tightness should be checked via pressure tests
for a building before any installation of green roof. As
mentioned by Bent Chrisitan, it may become very un-
economical and difficult to deal with if roof leakages are
discovered after the installation of a green roof. Careful
consideration of keeping the prescribed temperature under
control during transportation and storage is necessary to
avoid irreversible damages (leading dead plant layers) of
green roof layers. Interviewees mentioned, stakeholders of-
ten come in too late in the building process and thereby in-
curs additional costs. According to Tore Mauseth, “There
currently lacks a sufficient method or system for determine
and accounting for the benefits for green roofs for not
only builders and users of the building but also the pub-
lic goods comes with it, the architectural implications of
green roof accounting has been underestimated.” Raising
public awareness and developing incentive programs are
identified as key strategies to encourage the adoption of
green roofs. David V. Brasfield also highlighted the need
for biophilic design aspects in urban environments for the
broader perspective on improving citizens health and well-
being.

Another concern is the competition for roof space with
other renewable solutions such as solar panels. Evidently
the combination of green roofs and solar panels improves
the environmental performance. Several interviewees men-
tioned about the same successful pilot projects in Oslo,
those may be considered as well documented examples
regarding this. Although these projects are valuable, there
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Fig 1. Existing green roofs by building type.

may be a lack of diversity in green roof implementations
to consider those as benchmarks.

3.2 ArcGIS mapping and anslysis

From an aerial photo mapping done by Oslo municipality
PBA in 2017, there were 957 green roofs in Oslo with the
majority being turf roofs or sedum roofs, many of the 400
green roofs in Vestre Aker district, as well as around 70
roofs from the folk museum on Bygdøy are traditional turf
roofs in this mapping. Of the existing green roofs mapped
in 2017, 270 were over 250 m2 with 49% of those being
categorized for low utilization for utilizing less than 30%
of available roof area. When it comes to building types,
59% of the green roofs were implemented on residential
buildings and building blocks (see Fig. 1).

The adoption of green roofs in Oslo has shown promising
growth trends over the past decade. Notably, from 2013
to 2017, the city experienced an increase of 75 new green
roofs annually, (Planning and Building Agency, 2022b).
Continuing from the period from 2017 to today (2024)
has likely witnessed another batch of growth in green roof
installations. While specific annual growth data from this
period are pending, it is reasonable to assume a positive
annual development trend over the past seven years well
beyond the initial numbers mentioned here. Interviews
with stakeholders also revealed that some successful pilot
projects like Vega Scene was not captured in our mapping
or analysis results, indicating that green roof projects has
been proactively implemented in Oslo without considering
spatial suitability or ES needs.

In the initial phase of our analysis, we examined the
distribution of roof areas across Oslo. Using the dataset of
189,601 roofs, the distribution of roof area size and suitable
roof area percentage for all mapped buildings were studied.
As depicted, a significant majority of the roofs have an area
of less than 250 square meters, this indicates that while

there is a substantial number of larger roofs, they represent
a smaller proportion (17077 or 9.01%) of the total number
of roofs in Oslo. Consequently, this highlights potential
challenges in implementing widespread green roof instal-
lations, as smaller roofs may have limited capacity to
support green roofs both structurally and economically.
Around 46% of the roofs have 100 percent of their existing
roof area available for green roofs retrofitting, although
this is highly unlikely due to various structural and prac-
tical constraints. Additionally, it is important to recognize
that this estimation includes a significant margin of er-
ror, as there is insufficient evidence to fully support the
suitability of all these roofs for green roof installation.

The spatial distribution of potential green roofs in Oslo
was analyzed using a series of filter parameters and steps
to determine the suitability of roofs for green roof instal-
lation. The suitability analysis identified a limited num-
ber of roofs in Oslo that fulfill all criteria for potential
green roof installations. The filtering process effectively
narrowed down the pool of potential roofs, emphasizing
the critical parameters that influence suitability. These
results, as summarized in Table 2, offer a comprehensive
overview of the spatial distribution of potential green roofs
in Oslo by outline the area most amenable to green roof
installations and the inherent challenges associated with
their implementation. Figure 2 illustrates the process of
filtering down roofs in Oslo to identify Priority green roof
area (PRIOGRA) and Potential green roof area (PGRA).
The figures depict the sequential results by filtering crite-
ria applied to determine roof suitability, with PRIOGRA
shaded in dark green and PGRA in light green. This series
of figures visually demonstrates the step-by-step process
of narrowing down the suitable roofs, providing a clear
understanding of the criteria and their impact on the
spatial distribution of potential green roof areas in Oslo.

The method involved in analyzing tree density per person
in 250m × 250m grids across Oslo were done by combining
two ArcGIS layers through spatial joining and intersect
and arcade code filtering. The results, as depicted in
Fig. 3, highlight the areas with the greatest need for
GI. The city’s average tree density per person is 0.25
tree per person. By categorizing the grids and applying
a threshold of less than 0.1 tree per person, the analysis
filtered out 90% of the grids with higher tree densities
than 0.1, identifying grids with the highest ES needs,
where the environmental benefits are the greatest. Figure 3
illustrates the tree density per person across Oslo, depicted
by 250m ×250m grids. This analysis categorizes grids
based on the number of trees per person, providing a
clear spatial representation of urban areas with varying
levels of tree density. The categorization into grids with
less than 0.1 tree per person was chosen as the critically
low tree density area since 90% of the grids in Oslo
have less than 1 tree per person. The symbology was
achieved through arcade coding filtering the tree density
per person per grid. This threshold was used to filter out
90% of the grids, thereby identifying the areas with the
highest ES needs, where green roof installations would
have the most significant impact. The results of the spatial
suitability analysis for potential green roofs in Oslo provide
a comprehensive understanding of the area most amenable
to green roof installations. The evaluation of these results
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Table 2. Summary of results for suitable green roof area

PRIOGRA PGRA Total
(Percentage of total roofs)

Filtered after roof area 27485 (14.5%) 73047 (38.5%) 100532 (53%)
Filter after roof dominating area and slope criteria 6278 (3.3%) 5383 (2.8%) 11661 (6.1%)
Filter after cultural heritage buildings and existing green roofs 6033 (3.2%) 1208 (0.6%) 7241 (3.8%)
Filter after tree density per person deficit 1208 (0.6%) 836 (0.4%) 2044 (1%)
Filter after building age 91 (0.05%) 13 (0.007%) 104 (0.057%)

Fig. 2. Spatial distribution of PRIOGRA and PGRA around ring roads in Oslo, PRIOGRA in dark green and PGRA
in light green, from left to right: filtered by area and slope requirement, excluding cultural heritage buildings and
existing green roofs, tree density per person deficit, and the overall filtered roofs together within existing green
roofs in purple.

Fig. 3. Tree density per person by 250m×250m grid.

can be broken down into several key observations and
implications:

The initial filtering based on roof surface area greater than
250 m2 and slope criteria identified 27485 roofs (14.5%) as
suitable candidates for green roofs. This number indicates
a significant potential for green roof installations in terms
of available space. However, the subsequent reduction to
6278 PRIOGRA (3.3%) and 5383 PGRA (2.8%) after
applying the slope criteria indicates the importance of
considering structural feasibility. Roofs with inappropriate
slopes are not conducive to effective green roof installa-
tions, highlighting a critical constraint.

The exclusion of cultural heritage buildings and existing
green roofs refined the pool of suitable roofs to 6033
PRIOGRA (3.2%) and 1208 PGRA (0.6%). This step
was necessary because including historical buildings would
pose significant challenges, such as low utilization of roof
area, extra costs, and complex installation procedures.This
step ensured the exclusion of historical buildings and
avoided redundant placement of new green roofs over
existing ones. Additionally, many non-historical buildings
are either too small in roof area or have sloped roof styles,
which already are difficult for green roof installation. The
relatively small reduction in the number of suitable roofs
suggests that most cultural heritage buildings were already
excluded by the roof area and slope criteria, indicating
that these three factors together are effective in filtering
out unsuitable candidates for green roof installation.

Considering tree density per person provided a more fo-
cused approach to identifying areas with the highest ES
needs. The significant reduction to 1208 PRIOGRA (0.6%)
and 836 PGRA (0.4%) after applying this criterion reveals
the limited number of roofs in areas with critically low tree
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density. This criterion is crucial for maximizing the envi-
ronmental benefits of green roofs, targeting urban areas
most in need of GI. The significant reduction in suitable
roofs when applying the tree density per person criterion
highlights the disparity in greenery across Oslo especially
when consider population density. Areas with low tree
density per person are typically urban zones with limited
green spaces, higher population density, and greater en-
vironmental stresses such as poor air quality and higher
temperatures due to the UHI effect. Implementing green
roofs in these areas can provide greater environmental
benefits where they are most needed.

The final criterion, focusing on buildings constructed after
July 1, 2017, further narrowed the pool to 91 PRIOGRA
(0.05%) and 13 PGRA (0.007%). This significant reduc-
tion highlights the challenge of retrofitting older buildings
with green roofs. Newer buildings, compliant with newer
standards, offer better structural support for green roofs,
but the small number indicates that recent construction
alone cannot meet the need for wider scale green roofs
adoption. While identifying 2044 roofs (1208 PRIOGRA
and 836 PGRA) in the earlier steps of the analysis seemed
promising, the final reduction to just 104 roofs (91 PRI-
OGRA and 13 PGRA) was unexpected. This drastic nar-
rowing down indicates that these 104 roofs represent the
highest priority areas for green roof installations. These
roofs should be able to enjoy the maximum benefits that
green roofs provide, making them the ideal candidates for
Oslo municipality.

Figure 4 illustrates the distribution of the final 104 roofs
(91 PRIOGRA and 13 PGRA) by building type. This
categorization helps evaluate the potential and focus areas
for green roof installations. The figure reveals that 88 out
of the 104 selected roofs are residential. This indicates that
residential buildings are likely the primary candidates for
retrofitting, but there is a need to encourage other building
types to consider green roof installations as well. Ensuring
that these residential buildings can structurally support
green roofs remains a challenge. While these roofs meet the
intended criteria, detailed structural assessments are re-
quired to confirm their suitability. The cost of retrofitting
and maintaining green roofs on residential buildings may
vary significantly based on their size and usage. Securing
funding and incentives will be crucial for successful imple-
mentation. Ensuring all selected roofs comply with local
regulations and building codes is essential. This includes
obtaining necessary permits and adhering to any specific
guidelines for green roof installations. Encouraging other
building types (e.g., commercial, industrial) to adopt green
roofs is necessary to diversify and optimize the environ-
mental benefits of green roof installations across different
sectors. Figure 4 also depicts the potential utilization rate
of green roofs relative to the total roof area for the final 104
selected roofs. This analysis was done by calculating the
sum of roof area under 5◦ and between 5◦ and 30◦ as a ratio
to the total available roof area, this can help evaluate the
efficiency and effectiveness of the selected roofs. Potential
high utilization rates for green roofs on these selected
roofs means higher chances of maximizing environmental
benefits. Smaller roofs may face difficulties in achieving
optimal utilization. Implementing green roofs on these
selected roofs, especially those with irregular shapes or

smaller sizes, poses technical challenges. Customized solu-
tions may be required to address these issues effectively.
This includes selecting appropriate plant species and de-
signing systems that support long-term ecological balance.

The findings of this study align with previous research that
emphasizes the potential of green roofs to mitigate UHI,
improve air quality, and enhance biodiversity. However,
the significant reduction in the number of potential green
roofs due to stringent suitability criteria is consistent with
challenges identified in other studies. Similar findings in
other cities highlight structural limitations and regulatory
barriers for historical buildings as critical factors affecting
green roof feasibility, (Silva et al., 2017).

4. CONCLUSIONS

The study aims to map and identify suitable locations
for green roofs in Oslo using GIS analysis. It seeks to
develop strategies to optimize the environmental benefits
of green roofs, considering local conditions and limitations.
Literature reviews highlighted several benefits of green
roofs, especially in densely populated areas. The GIS-
based suitability analysis identified 1% (1208 PRIOGRA
and 836 PGRA) of roofs in Oslo as suitable for green roof
installations based on roof area and slope criteria and tree
density per person criteria. 104 roofs (91 PRIOGRA and
13 PGRA) were considered as most suitable for green roof
installations after applying all relevant criteria. These cri-
teria included factors such as roof area and slope, exclusion
of cultural heritage buildings and existing green roofs, tree
density per person deficit and building age criteria. While
many other roofs did not meet all the criteria, they still
hold potential for green roof installations and can offer
substantial environmental and social benefits.

Stakeholder interviews highlighted practical challenges
such as structural limitations, high installation and main-
tenance costs, and regulatory issues. Despite these chal-
lenges, the environmental benefits of green roofs under-
score their value in urban sustainability strategies. The
findings of this study provide actionable insights for urban
planners and policymakers to optimize the environmental
gains from green roofs. The study contributes to the knowl-
edge on GI and offers guidance for future sustainable urban
development. Establishing standards for roof insulation
and load capacity can aid developers in quantifying the
associated costs to implement green roofs. Additionally,
financial incentives, potentially subsidies or reductions
in tax or lower interest on loans, should be introduced
to encourage adoption. Innovative funding mechanisms,
such as stormwater fees, could also provide additional
support. Integrating green roofs with other sustainable
technologies, such as solar panels, will optimize roof space
and enhance overall environmental performance. Further
research should focus on utilizing spatial data to develop
the strategies for developing green roof in conjunction with
other forms of GI and mapping their potential spatial
distribution. Investigating cost-effective installation and
maintenance solutions, as well as financial incentives to
overcome identified barriers, is crucial. Further inquiries,
including interviews with local architects, planning offi-
cers, and engineers, should be conducted to explore prac-
tical solutions. Long-term studies should evaluate the im-
pacts of green roofs on urban ecosystems and local climate

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.036 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

263



Fig. 4. Priority and potential green roofs area by building type and Potential utilization roof area vs total roof area.

conditions, including their role in mitigating UHI effects,
improving stormwater management, and enhancing urban
biodiversity. By addressing these areas, future research
can provide more evidence-based support and practical
solutions to achieve wider scale adoption and effective
implementation of green roofs in cities.
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Abstract: Microbial biofilm matrices offer numerous benefits in bioprocessing and are crucial in various 

industrial and remediation processes. They facilitate electron exchange from solid surfaces when they 

interact with the environment. Emerging technologies such as biofilm-containing trickle bed reactors (TBR) 

and bioelectrochemical systems (BESs) for carbon dioxide (CO2) utilization, mostly rely on microbial 

biofilm matrices. Metabolic modeling of biofilm-based reactors enables detailed analysis of CO2 reduction 

within microorganisms, enhancing reactor efficiency. This study employed simulation models to analyze 

biomethane synthesis within TBR and BES systems. AQUASIM simulation tool was used for conducting 

the simulation. Parameters such as non-stoichiometric and stoichiometric ratios of substrates, hydraulic 

retention time (HRT), biofilm surface area, and applied voltage in BES were varied to evaluate methane 

(CH4) production and microbial biomass growth in TBR and BES. Results demonstrated that 1 day HRT 

resulted in methanation process failure due to biomass development problem in both TBR and BES. The 

substrate ratio 1:4 of CO2 to H2 increased CH4 production in the investigated reactors. In BES, in-situ CO2 

and proton (H+) generation from oxidation reactions can increase CH4 production. Whereas in TBR, 

external H2 (hydrogen) should be supplied to consume higher amount of CO2. The lag phase in TBR was 

shorter than that in BES because of the greater surface area in TBR. In BES, higher voltage increased the 

current generation because of development of more biomass on the cathode. The simulation underlines the 

influence of different variables on biofilm-based reactors, offering critical insights for experimental process 

design.  

Keywords: Biofilms, Trickle bed reactor, Bioelectrochemical system, Methane, Carbon dioxide, and 

Hydrogen

1. INTRODUCTION 

In recent decades, bioreactors have gained significant interest 

for biofuel production, and water and soil remediation due to 

several environmental advantages. Trickle bed reactors (TBR) 

which are designed for gas-liquid-solid interaction, can be 

applied in anaerobic condition for biomethane (CH4) 

production (Germec et al., 2020). TBR offers high surface area 

from carrier materials that result higher mass transfer 

compared to conventional batch and continuous flow reactors 

(Orgill et al., 2013). Other types of advanced bioreactors are 

bioelectrochemical systems (BES) that take benefits from 

electrode-microbe interactions for wastewater treatment and 

biosynthesis of CH4 or biochemicals (Pant et al., 2012). 

Recently, TBR and BES has been intensively applied for CH4 

production from CO2 or organic waste from wastewater (Ayol 

et al., 2021).  

 

Hydrogenotrophic methanogenesis in TBR takes place with 

ex-situ source of H2. The process is less complicated, but the 

biggest limitation is the source of H2 that should be ecofriendly 

and economical. In BES, H2 or H+ is generated in-situ at 

response of external voltage to convert CO2 or organic carbon 

to CH4. The reactor design is more complicated and requires 

durable electrodes to be applicable in large scale. Despite of 

complexity of such system, the benefit is that electrons, H+ and 

CO2 are released from anodic oxidation of organic compounds  

 

existing in wastewater. Then two mechanisms can dominate 

according to the external voltage. R.1 refers to direct electron  

transfer (DET) mechanism and R.2 is the indirect electron 

transfer when the cathodic reaction 2𝐻+ + 2𝑒− →  H2 takes 

place prior to CH4 production (Eddy et al., 2014; Liu et al., 

2019; Nelabhotla and Dinamarca, 2019). R.2 is the governing 

reaction for CH4 production in TBR as well. 

 
𝐶𝑂2 + 8𝐻+ + 8𝑒− →  CH4 + 2𝐻2O                                             (R.1) 

𝐶𝑂2 +  4𝐻2 →  CH4 + 2𝐻2O                                           (R.2) 

 

During anaerobic digestion (AD), the organic matter is broken 

down by anaerobic microorganisms resulting in CH4 

evolution. However, it is not possible to digest the entire 

organic matter due to microbial limitations to degrade 

compounds such as lignocellulose mass and fibrous materials. 

This results in undigested biomass residues called sludge (Yan 

et al., 2022). It is not possible to use sludge as fertilizer if it is 

contaminated by toxic compounds. Therefore, the dried sludge 

can be utilized in thermal degradation process such as 

gasification to produce syngas that contains hydrogen (H2), 

CO2, CH4, carbon monoxide (CO), oxygen (O2), nitrogen (N2) 

and other hydrocarbons. H2, CO2 and CO are feasible 

intermediates which can be fed to TBR or BES reactors for 
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production of biochemicals or CH4 to upgrade biogas 

(Fericelli, 2011; Maj et al., 2017; Wang et al., 2023).   

Other part of the AD effluent is called reject water that comes 

after mechanical pressing of sludge/ digestate, and contains 

low organic content, but still has a significant amount of 

biomass, nitrogen (N) and phosphorus (P) compounds 

(Fericelli, 2011; Meyer and Wilderer, 2004). The reject water 

can be used further as nutrient in TBR and BES for biofilm 

growth. Moreover, it can be treated at anode in BES reactor for 

organic matter removal (Verma et al., 2023). Autotrophic 

methanogens which can consume CO2 along with H+ or H2 are 

dominant in the CH4 production process. CO in syngas is also 

a useful energy source and electron donor/acceptor for 

methanogens through specific pathways (Lim et al., 2022).   

 

Overall, bioprocesses are slow, and variable optimization by 

experimental studies can usually take from months to years. 

Process simulation can be a promising approach for process 

optimization without performing physical lab experiments. 

There are limited research reports which have done 

comparative investigation of different biofilm-based processes 

based on simulation. This work is a conceptual modelling and 

simulation study for comparison of TBR and BES reactors as 

different technologies in sludge and reject water management, 

for CH4 recovery. In TBR, CO2 to H2 ratio from utilizing 

syngas is typically less than 1:4 which is the theoretical ratio 

of CO2 to H2 for complete CO2 conversion to CH4 (Wang et al. 

2023; Eddy et al. 2014). Therefore, external H2 source is 

needed for consumption of the entire supplied CO2. In 

industrial perspective, if additional H2 is supplied from fossil 

fuels, TBR process may not be ecofriendly. H2 source will be 

sustainable if it is from green sources such as water electrolysis 

from renewable electricity (Chen et al., 2022). However, this 

may increase the cost of CH4 production in terms of space, 

energy efficiency, and process complexity.  

 

On the other hand, BES has the advantage of in-situ H2 or H+

evolution. Such reactors can be single chamber where anode

and cathode are placed in the same compartment, or dual

chamber where anode and cathode are separated by proton

exchange membrane. In double chamber BES, higher voltage

can be applied that leads to excessive H+ generation. If higher

voltage is applied in single chamber BES, it may result in O2

evolution that inhibits methanogens. This is not problematic in

dual chamber, since O2 forms in the anode chamber, and only

H+ transfers to cathode. The source of H+ in low voltage,

mostly come from short carbon chain VFAs, but at high

voltage, it can be organic nitrogen (NH4
+), long chain

carbohydrates, biomass, and water (Aryal et al., 2020; Batlle-

Vilanova et al., 2019). The capacity of CO2 conversion to CH4

is evaluated to have a comparison, and for better understanding

of BES and TBR in handling the CO2 according to the

availability of H2.

2. METHODOLOGY

The concept of this comparative simulation study is shown in

schematic diagrams in Figs. 1 and 2. Dried sludge

from wastewater treatment plant and AD enters the

gasification reactor. The reject water after centrifuge and

dryer units will enter to TBR or BES for treatment via

microbes. If the process is integrated with TBR (Fig. 1) 

CO2 and H2 from gasification enters to TBR for syngas 

upgrading into CH4. In the alternative of integrating the 

process with BES reactor (Fig. 2), one input is H2 and 

CO2 from gasification. In addition, excess CO2 and H+

will be available from anodic oxidation of organic 

compounds in the reject water.

 

The amount of organic carbon and biomass in the dry sludge 

was calculated based on the ADM1 Batstone model (Batstone 

et al., 2002). The model is based on a 28 m3 continuous stirred 

tank reactor with around 7 days HRT. The calculated biomass 

in AD effluent from the Batstone model was used to calculate 

the gaseous inputs into TBR and BES. In this stage, only H2 

and CO2 from gasification was used for biomethane 

production in TBR and BES. The reject water which contained 

biomass, was used for biofilm formation on the bed of the 

TBR, and on the electrodes in BES.  

 

AQUASIM (version 2.1) is used as the simulation software 

which comes with a one-dimensional multi-substrate and 

multispecies biofilm model. One-dimensional spatial profiles 

of the microbial species and substrates within the biofilm 

provides opportunity to forecast real conditions through 

simulation. Also, it is possible to predict the changes in 

substrate concentrations, microbial species, and biofilm 

thickness over time (Reichert, 1998; Wanner and Morgenroth, 

2004). 

 
Fig. 1. Schematic diagram of the downstream biogas recovery 

process with alternative1: trickle bed reactor (TBR) unit. The 

treated sludge from AD flows to gasification unit.  CO2 and H2 

from syngas are applied for simulation of the TBR. Reject water 

enters the TBR for biofilm formation. 

 
Fig. 2. Dual chamber BES reactor with proton exchange membrane. 

In case of BES, CO2 and H+ can be produced from oxidation of 

organic matter and water at anode. CO2 flows out and enters the 

cathode. H+ transfers to cathode through the membrane. 

2.1 Model assumptions  

- The reactors are operated at atmospheric pressure and pH 7.  

- In both reactors, the diffusion is considered only on biofilm.  
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- CO2 is the only carbon source for cathode which is soluble 

and in equilibrium with HCO3
−. 

- All the active biomass is attached. The detached biofilm does 

not interact with the biofilm reactions.   

- Initial biomass fraction is equal for all species.  

- In TBR, two types of methanogens grow on the biofilm that 

grow on CO2 and H2 with different yields. 

- In BES, two types of methanogens grow on biofilm. One 

can directly consume CO2 and H2. The other one consumes 

CO2 and H+ via DET mechanism.   

- In BES, a cathodic approach is followed, and only cathodic 

biofilm is involved in simulation of CH4 production. 

- Limitation of the process is the gaseous stream which can be 

enhanced by continuous flow and gas flow rate. The solubility 

of H2 and CO2 are not equal in atmospheric pressure. Diffusion 

coefficients can reflect these limitations in the biofilm. 

- Every species has the same initial biomass proportion. The 

yields are assumed as close as possible for the methanogens in 

TBR and BES. 

- Due to operating conditions, the detachment velocity in the 

simulation as described in Reichert (1998) is taken to be a 

measure of bacterial decay (Kd) and biofilm loss.  

 

2.2 Simulation approach, inputs, and parameters  

Two biofilm-based reactors with continuous flow of gases and 

biomass are stablished for the simulation. The flow gases are 

assumed to come from a gasification reactor which gasify 

around 1040 mol.m-3 of organic biomass. The syngas 

composition from gasification depends on various operating 

conditions such as temperature, pressure, feedstock and other 

factors. In this work, according to reported values for sewage 

sludge, the gasification reactor product is assumed to contain 

20% CH4, 15% CO2, 20% H2, 15% CO, 25% N2, and 5% trace 

elements (Wang et al., 2023). If the gasification input is 1040 

mol.m-3 of dry sludge with biomass structure formula of 

CH1.8O0.5N0.2 (Heijnen and Kleerebezem, 1999), 312 mol CO2 

and 416 mol H2 is obtained according to these considerations. 

This is assumed as the non-stoichiometric ratio of CO2 to H2 

flowing into the TBR, and into the cathode chamber of BES. 

 

Calculation of the concentration of excess CO2 and H+ in BES 

was done based on the oxidation half-reactions of organic 

compounds such as volatile fatty acids (VFAs), from the 

effluent of ADM1 model. Half-cell voltage inputs below -0.8 

V vs SHE, leads to oxidation of organic matter, while it is often 

not enough for water oxidation. Therefore, the amount of 

generated H+ is limited mostly by the organic matter such as 

short chain VFAs. Low voltage may not provide enough H+ 

for reduction of entire CO2 that flows to the cathode. Thus, 

higher voltage can be applied for providing more H+ from 

oxidation of long carbon chain organic matter and water 

splitting.  

 

Tab.1 gives the non-stoichiometric and stoichiometric ratios of 

CO2, H2 and H+ to the TBR and BES reactor. In TBR reactor, 

H2 was considered from external source. For BES, -0.8 and -

1.5 V vs SHE was assumed which the lower voltage provides 

limited H+, and the higher voltage can generate enough H+ for 

the complete reduction of CO2 input. 

 

Table 1. CO2, H2 and H+ inputs for TBR and BES 

CO2 to H2 

ratio from 

gasifier 

(mol.m-3) 

CO2 to H+ from 

oxidation of organics 

at -0.8 V vs SHE 

(mol.m-3) 

Excess H2 for TBR, 

and H+ generated from 

organics and water 

oxidation at -1.5 V vs 

SHE (mol.m-3) 

CO2: 312  

H2: 416 

CO2: 42  

H+: 246 

H2: 832 

H+: 1754 

 

Some of the parameters are contemplated equal for both TBR 

and BES as shown in Tab. 2. The inlet flow rate (Qin), initial 

biomass concentration, the initial biofilm thickness, and the 

reactor volume are equal in both reactors. It should be noted 

that the volume of cathode in BES is equal to the total volume 

of TBR. Since the inputs are of high quantity, lower than a 

specific volume is not possible to apply. The volume of dual 

chamber BES was two times greater than TBR. The typical 

TBR bed area to reactor volume ratio is assumed between 100-

1000 m2.m-3 (Manjrekar and Mills, 2022). The cathode size to 

reactor volume in BES is assumed between 10-100 m2.m-3 

(Rabaey and Verstraete, 2005). So, the surface area is adjusted 

according to these general ratios. 

 

For the autotrophic microbes in TBR, the biomass yield is 

0.05-0.3 (Eddy et al., 2014; Thauer et al., 2008). Thus, the 

yield was considered in the middle range between 0.1 and 0.15. 

For the BES reactor, the yield can be lower, because the 

imposed electricity can enhance microbial growth. So, yield of 

0.083 (Ahmadi and Aryal, 2024) was taken for electroactive 

microbes via DET which consume H+ and CO2, and 0.1 for H2 

and CO2 methanogens. Since the biomass yield has a big 

impact on CO2 reduction, both reactors must have close 

biomass yield to be comparable. The yields which fitted the 

simulation, were obtained by trial and error.  

2.3 Model expressions 

In TBR simulation, multiplicative Monod equation can be 

used for calculation of CH4 production and methanogenic 

biomass growth (
𝑑[𝑋𝐶𝐻4]

𝑑𝑡
). Here, H2 is the electron donor to the 

microbes, and CO2 is the only electron acceptor as shown in 

(1).  

 
𝑑[𝑋𝐶𝐻4]

𝑑𝑡
= 𝑋𝐶𝐻4

· (𝜇𝑋𝐶𝐻4

𝑚𝑎𝑥 ·
𝑆𝐶𝑂2

𝐾𝐶𝑂2+𝑆𝐶𝑂2

·
𝑆𝐻2

𝐾𝐻2+𝑆𝐻2

− 𝑘𝑑,𝐶𝐻4
)   (1)  

 

Where 𝑋𝐶𝐻4
 refers to methanogenic biomass content, 𝜇𝑋𝐶𝐻4

𝑚𝑎𝑥  is 

the maximum growth rate of methanogens, 𝑆𝐶𝑂2
 is the molar 

concentration of CO2, 𝐾𝐶𝑂2
 is the half-saturation constant of 

CO2, 𝑆𝐻2
 is the molar concentration of H2, 𝐾𝐻2

 is the half-

saturation constant of H2, and 𝑘𝑑,𝐶𝐻4
 is the decay rate of 

methanogens. The values of each parameter with units are 

given in Tab. 2.      

 

In BES simulation, methanogens can consume the in-situ 

generated H+ via DET. So, the electron acceptor in Monod 

expression is H+ together with CO2. Both components are 

limiting factors for CH4 production. Cathode performs as the 
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electron donor. The Nernst term in (2) presents the role of 

electron donor in electroactive CH4 production. In theory, 

cathodic reactions are the opposite of anode reactions in terms 

of the signs.  

 
Table 2. Parameters required for simulation of TBR and BES 

 

 

Therefore, the Nernst term which is originally obtained from 

anodic reactions and anode respiring bacteria (ARB), will be 

opposite sign in the cathodic approach (Ahmadi and 

Dinamarca, 2022; Eddy et al., 2014; Rittmann and McCarty, 

2020; Torres et al., 2008). The biomass growth rate of 

electroactive microbes (
𝑑[𝑋𝐶𝐻4,𝑒𝑙]

𝑑𝑡
) can be calculated via (2).  

 

 
𝑑[𝑋𝐶𝐻4,𝑒𝑙]

𝑑𝑡
= 𝑋𝐶𝐻4

· (𝜇𝑋𝐶𝐻4

𝑚𝑎𝑥 ·
1

1+𝑒𝑥𝑝⌈(𝐸𝑎𝑝𝑝−𝐸𝐾𝐴)
𝐹

𝑅𝑇
⌉

·
𝑆𝐶𝑂2

𝐾𝐶𝑂2+𝑆𝐶𝑂2

·

𝑆𝐻+

𝐾𝐻++𝑆𝐻+
− 𝑘𝑑,𝐶𝐻4

)                                                                              (2)  

 

Where 𝐸𝑎𝑝𝑝 is the cathodic voltage, 𝐹 is the Faraday constant 

(96485.3 C. mol-1), R is the gas constant (8.314 J. mol-1. K-1), 

T is the temperature (K), 𝑆𝐻+ is the molar concentration of H+, 

𝐾𝐻+ is the half-saturation concentration of H+.  

  

In the Nernst term in (2), the term EKA is the voltage when the 

growth rate of microbes is half of the maximum growth rate. 

For cathodic microbes, this value falls in the reductive voltage 

region between the open circuit voltage (OCV) of cathode, 

and the optimum voltage of biocathode. Various work 

reported that higher CH4 production takes place when the 

voltage is -0.8 and higher (Tremblay et al., 2019). This is due 

to H+ evolution from heavy chain organics, inorganic matter, 

and water oxidation. Assuming cathodic voltage -0.8 V and 

OCV of the cathode is -0.25, EKA can fall between -0.25 and -

0.8 V. In this work, EKA was taken as -0.4 V vs SHE (Torres 

et al., 2008). 

 

The calculated Nernst term (Fig. 3) shows that when Eapp is 

equal to EKA, the Nernst term becomes equal to 0.5. So, the 

growth rate is half of its maximum. The approach is according 

to the kinetic study carried on by Kato Marcus et al., (2007). 

At Eapp = -0.8 V, the Nernst term becomes equal to 1, giving 

the maximum growth rate. From -0.8 to -1.5 V, the Nernst 

term stays equal to 1. This means the maximum growth rate 

will be dependent on higher H+ evolution. In dual chamber 

BES reactors, -1.5 V vs SHE results in massive H+ generation 

which can be beneficial for higher CH4 production in the 

cathode chamber.  

 
Fig. 3. The resulted values for Nernst term (

1

1+𝑒𝑥𝑝⌈(𝐸𝑎𝑝𝑝−𝐸𝐾𝐴)
𝐹

𝑅𝑇
⌉
) at 

reductive applied voltage when EKA= -0.4 V. 

Parameter, Unit Value Ref 

Diffusivity of CH4, m2 ∙ d−1 1.296 ∙ 10−4 (Ahmadi and 
Dinamarca, 

2022) 

Diffusivity of CO2, m2 ∙ d−1 1. 658 ∙ 10−4 (Ahmadi and 
Dinamarca, 

2022) 

Diffusivity of H2, m2 ∙ d−1 4.43 ∙ 10−4 (Ahmadi and 
Dinamarca, 

2022) 

Diffusivity of H+, m2 ∙ d−1 8.04 ∙ 10−4 (Ahmadi and 
Dinamarca, 

2022) 

Diffusivity of biomass, m2 ∙ d−1 1 ∙ 10−7 (Ahmadi and 
Dinamarca, 

2022) 

Biomass density, mol ∙ m−3 222 (Ahmadi and 
Dinamarca, 

2022) 

Half-saturation constant of CO2, 

mol ∙ m−3 

1 (Eddy et al., 
2014) 

Half-saturation constant of H2, 

mol ∙ m−3 

0.02 (Eddy et al., 

2014) 

Half-saturation constant of H+, 

mol ∙ m−3 

1∙ 10−4 (Eddy et al., 

2014) 

Max growth rate of 

methanogens_1 in TBR, d−1 

1.15 Assumed* 

Max growth rate of 

methanogens_2 in TBR, d−1 

1.24 Assumed* 

Max growth rate of 

methanogens_1 in BES, d−1 

1.32 Assumed* 

Max growth rate of 

methanogens_2 in BES, d−1 

1.15 Assumed* 

Yield of methanogens_1 in TBR 0.15 Assumed* 

Yield of methanogens_2 in TBR 0.12 Assumed* 

Yield of methanogens_1 in BES 0.083 Assumed* 

Yield of methanogens_2 in BES 0.1 Assumed* 

Boundary layer resistance, m 1∙ 10−4 (Ahmadi and 
Dinamarca, 

2022) 

Initial biofilm thickness, m 1∙ 10−9 (Ahmadi and 
Dinamarca, 

2022) 

Half-maximum growth voltage, V -0.4 Assumed* 

Applied potential on cathode, V -0.8, -1.5  Assumed* 

Cell synthesis coefficient 0.54, 0.4  (Eddy et al., 
2014; Ahmadi 

and Aryal, 
2024)  

Cathode compartment volume of 

the BES, m3 

4 Assumed 

TBR reactor volume, m3 4 Assumed 

Cathodic biofilm surface area, m2 400, 2000, 

4000 

Assumed 

Trickle bed surface area, m2 40, 200, 400 Assumed 
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CH4 production (
𝑑[𝑆𝐶𝐻4]

𝑑𝑡
) in both TBR and BES was 

calculated according to (3). 

 

𝑑[𝑆𝐶𝐻4
]

𝑑𝑡
= (

𝑑[𝑋𝐶𝐻4
]

𝑑𝑡
) 𝑌𝐶𝐻4

⁄                                                     (3) 

 

Where 𝑌𝐶𝐻4
 refers to metahnogenic biomass yeild based on 

CO2 and H2 or H+ consumption. 

 

Change in current density, j (
𝑑𝑗

𝑑𝑡
 , A∙m-2) over time correlates to 

electroactive biomass concentration (
𝑑[𝑋]

𝑑𝑡
) and the biofilm 

thickness (𝐿𝑓) which can be calculated by (4) (Torres et al., 

2008). 

 
𝑑𝑗

𝑑𝑡
=

𝑑[𝑋]

𝑑𝑡
· 𝛾 · 𝐿𝑓 · (𝑓𝑠

0 − 1)                                                  (4)  

 

Where 𝛾 is 8 which is the number of electrons required for CH4 

generation. The term 𝑓𝑠
0 is the fraction of mol substrate per mol 

electron equivalent used for cell synthesis. At high voltage, the 

cell synthesis yield becomes lower. The relationship between 

𝑓𝑠
0 and voltage is assessed in another work considering the 

thermodynamics of the electrochemical reactions (Ahmadi and 

Aryal, 2024). Moreover, higher voltage increases the current 

density to the cathode (Aryal et al., 2016; Tremblay et al., 

2019). The share of the current density that is consumed for 

electroactive biofilm growth can be obtained from (4). 

3. RESULTS AND DISCUSSIONS 

For TBR with non-stoichiometric inputs of  1:1.33 CO2 to H2 

(Fig. 4), the plots are grouped for 3 surface areas with 3 

different HRTs. The HRT has a bigger impact than the surface 

area according to the chosen parameters. The simulation shows 

that CH4 production starts with a longer lag phase with 1 day 

HRT, then a steep methane production happens, but it ends 

with reactor failure that can be due to the detachment velocity. 

The corresponding lines for 1 day HRT are those with the 

highest methane production. Nevertheless, the process could 

not continue for 50 days, and collapses after 43 days. 4000 m2 

surface area helps reducing the startup time of CH4 production. 

Higher surface area can be a better choice when handing 

higher H2 inputs.  

 

 
Fig. 4. Methane production in TBR with non-stoichiometric CO2 to

H2 input. A: 4000 m2, B: 2000 m2, C: 400 m2.

Moreover, 10 days HRT has the shortest startup time, even 

shorter than 20 days HRT. Also, 10 days HRT leads to higher 

CH4 production compared to 20 days HRT. So, 20 days HRT 

is not efficient, and 1 day HRT is too short for the process. 

Therefore, to avoid process failure, and for high CO2 

conversion, 10 days HRT with 4000 m2 surface rea (1000 

m2.m-3) was taken as optimum design parameters for TBR with 

the defined process condition for further evaluation. 

For non-stoichiometric conditions in BES (Fig. 5), the 

oxidation of organics at -0.8 V vs SHE, provides H+ for the 

cathode which leads to higher CH4 production compared to 

TBR. In BES as well as in TBR, 1 day HRT leads to process 

failure. 10 days HRT in this reactor is better for the process 

with a reasonably short lag phase of 9 days. Also, the 

corresponding CH4 production indicates that all the H2 and H+ 

available for cathode is consumed for CO2 reduction. The 400 

m2 surface area (100 m2.m-3) is advantageous because of a 

faster startup time which can be reduced to 7 days. Thus, 10 

days HRT and 400 m2 surface area can be taken for cathode 

for further assessment of stoichiometric inputs.  
 

 
Fig. 5. Methene production in BES with non-stoichiometric CO2 to 

H2 or H+ input. A: 400 m2, B: 200 m2, C: 40 m2. 

Nevertheless, to point out the reason of process deficiency in 

1 day HRT for both TBR and BES, Figure 6 illustrates the 

biomass growth profiles in 1, 10, and 20 days HRT. As 

depicted in Fig. 6, in 1 day HRT, the biomass growth happens 

after 10 days with a fast slope, but a sharp decrement in 

biomass concentration occurs after 15 days in TBR, and after 

28 days in BES. This means that failure in CH4 production is 

relevant to biomass growth profile in 1 day HRT in both 

reactors. A possible biomass washout due to fast flow rate can 

be the reason for the loss of CH4 production in TBR and BES. 

Moreover, washout happens earlier in TBR compared to BES 

reactor. Therefore, 10 and 20 days HRT gives better stability 

in BES and TBR. In practical experiments also, washout due 

to fast HRT is reported to cause production failure (He et al., 

2024). 

 

The biomass growth for both reactors in 10 days HRT is stable,

and results in higher CH4 formation (Figs. 4 and 5). 

The biomass growth profile peaks at day 9 in TBR, and 

reaches the highest at day 14 in BES. In 10 days HRT, 

the amount of biomass on the biofilm is higher than that in 

20 days HRT, which results in higher CH4 production.
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Fig. 6. Biomass concentration in TBR reactor with 4000 m2 biofilm

surface area, and in BES reactor with 400 m2 biofilm surface area

in non-stoichiometric condition at 1, 10, and 20 days HRT.

For evaluating TBR and BES in CO2 reduction with

stoichiometric input values, Figure 7 shows the results for 10

days HRT with 4000 m2 biofilm area in TBR, and with 400 m2

biofilm area in BES reactor. In Fig. 7, CH4 production starts

faster in TBR than that in BES. The production starts at day 8

in TBR, and at day 11 in BES reactor. Nevertheless, the

amount of CH4 which can be obtained by BES is higher than

that in TBR. One reason is the surplus CO2 which is generated

from the oxidation of organic matter in BES. The other reason

is the lower biomass yield in BES. In BES, as explained

earlier, the biomass yield will be thermodynamically lower

because the external electrical energy assists the cathodic

biofilm to grow. So that, lower amount of CO2 is consumed for

cell synthesis. On the other hand, since the biomass yield and

the maximum growth rate of microbes are considered close

values, the biomass concentration reaches 22.88 mol.m-3 in

TBR, and 19.3 mol.m-3 in BES. With stoichiometric H2 input,

299 mol.m-3 CH4 will be produced, and the rest of CO2 will be

consumed for cell synthesis. In BES, 340.5 mol.m-3 CH4 will

be produced, and the remaining CO2 is consumed for cell

synthesis. As it is obvious, in the BES reactor, H+ is

responsible for utilizing a bigger share of the CO2 inlet. So,

CH4 that is generated from the electroactive methanogens is

higher than the methanogens which consume H2 for CO2

reduction to CH4.

 

 
Fig. 7. CH4 production and biomass concentration in TBR and BES 

reactor for stoichiometric values in 10 days HRT. 

The current density was calculated using the electroactive 

biomass concentration together with the biofilm thickness 

which was obtained from the simulation. In the dual chamber 

BES, the generated H+ at low and high voltage, is the result of 

current density and electron flow from anode to cathode. The 

amount of current density which correlates to electricity 

consumption for biomass growth can be calculated over time. 

However, at lower reductive voltage, lower biomass can 

aggregate on biofilm that corresponds to less CH4 formation. 

Figure 8 shows that the reductive voltage for organic matter 

oxidation corresponds to -0.03 mA.m-2 current density at -0.8 

V vs SHE. Nevertheless, CO2 reduction is low with respect to 

low H+ generation. To generate higher H+ to consume more 

CO2, -1.3 mA.m-2 current density is obtained. That means the 

amount of biomass which grows on biocathode, requires 

higher current density for complete CO2 reduction. In a double 

chamber reactor, higher voltage results in higher H+ generation 

(Pisciotta et al., 2012). 

 

 
Fig. 8. Current density of the BES reactor at -0.8 and -1.5 V vs SHE 

corresponding to the current generation for non-stoichiometric and 

stoichiometric H+ generation in the reactor. 

4. CONCLUSIONS 

This work carried on a preliminary study of the concept of 

TBR and BES reactors integrated with an AD reactor for 

downstream sludge treatment using gasifier and reject water 

treatment. The simulation showed that 4000 m2 surface area 

for TBR and 400 m2 cathode surface area for BES is beneficial 

for reducing the starting time of CH4 production. 1 day HRT 

leads to operation failure. Therefore, in the defined operating 

conditions in this simulation work, in both processes, 10 days 

HRT led to stable and optimum CH4 production. TBR is more 

straightforward than BES, however, greater amount of CH4 

can be achieved in BES reactor due to excess CO2 and H+ from 

BES process. The complexities of TBR are the source of 

excess H2 that should be provided from green sources. 

Therefore, economical aspects of in-situ and ex-situ H2 

production should be studied further. Overall, both processes 

seem to be promising in valorizing CO2 to CH4. Moreover, CO 

is an electron donor source. So, in the next step of the study, 

CO will be studied together with CO2 and H2 in the biofilm 

processes.   
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Abstract: Sequencing Batch Reactors (SBR) are effective for treating reject water and high-strength industrial wastewater. The 

Knardalstrand wastewater treatment plant in Porsgrunn recently upgraded the plant with two full-scale SBRs with volumes of 

115 m³ and 100.4 m³, focusing on simultaneous nitrification and denitrification. This project aimed to model and simulate these 

processes using GPS-X software to optimizes the municipal wastewater treatment. Two SBR models – simple and advanced – 

were developed for ammonia nitrogen (NH4-N) removal. Results indicated that the advanced model outperformed the simple 

model, achieving a 75% nitrogen removal efficiency at a dissolved oxygen (DO) setpoint of 1.5 mg/L through shortcut partial 

nitrification-denitrification. The advanced SBR model’s ammonia removal efficiency through nitrification increased with an 

increase in dissolved oxygen (DO) concentration. In all the simulations there was high nitrite (NO2
-) accumulation in the reactors, 

which could be due to the partial nitrification coupled with denitrification. The simulation has showed the presence of a 

simultaneous nitrification-denitrification process in the full-scale SBR plant. Enhancing model accuracy with quality data and 

optimizing DO levels can significantly reduce operational energy costs. 

 

Keywords: GPS-X, Sequential Bach Reactor, Nitrification, Denitrification, model, Simulation. 

 

1. INTRODUCTION

The need for efficient wastewater treatment systems is driven

by the rapid growth of world’s population, urban development

and industrialization (Naidoo and Olaniran, 2013; Singh et al.,

2023). Wastewater often has high organic, nitrogen and

phosphorus contents and when these wastewater constituents

are discharged to water bodies without efficient treatment the

consequences can have serious ecological effects (Kesari et al.,

2021; Singh et al., 2023). High concentrations of nitrogen and

phosphorus in discharged wastewater can lead to

eutrophication, resulting in significant blooms of planktonic

algae or phytoplankton. This algal blooming increases the

quantity of organic matter in the water body and result in

depletion of oxygen content in the water. The process of

eutrophication can have disastrous  impacts in the aquatic

ecosystem where certain species may perish because the

dissolved oxygen (DO) content in water drops below a critical

level (Bhagowati and Ahamad, 2019).

 

Wastewater treatment technologies have been developed to 

handle the complex organic and nutrient pollutants and meet 

the discharge regulatory requirements. The Sequential Batch 

Reactor (SBR) is one of these novel technologies that has 

shown to be an effective and flexible method to remove 

organics and nutrients from wastewater (Azeez et al., 2023). 

The broad use of SBR system in both municipal and industrial 

context has been driven by its flexibility to change influent 

characteristics, high treatment efficiency, small areal footprint, 

and low energy use (Fernandes et al., 2013).  

 

The SBR processes has mainly five phases (Fig. 1). The first 

is Fill phase where raw wastewater is the influent to SBR. The 

second is React phase where dissolved oxygen (DO) and 

mixing starts in SBR process. The third is Settle phase where 

the activated sludge is separated from the liquid by the process 

of settling. The fourth is Draw phase where clear supernatant 

is removed using a decanter, and fifth is Idle phase where a 

sludge wasting process.  

 

 
Fig. 1. The five phases of SBR operation for the one cycle periods of fill, react,

settle, draw and idle (Irvine and Ketchum, 2004).

 

Modeling and simulation of full-scale SBR is vital to 

understand the plant process and control of important process 

parameters. Several models have been applied in SBR process 

specially using the activated sludge model (ASM) (Man et al., 

2017; Zhou et al., 2013). However, few works have been done 

in SBR modeling and simulation using a GPS-X modeling 

platform. GPS-X is a modeling and simulation program, 

especially for planning and optimizing large-scale or full-scale 

treatment plants and processes. The biological, chemical, and 

physical unit activities of wastewater treatment processes can 

be built into sophisticated models by the software and 
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simulated under different operating situations. In addition, 

GPS-X provides an extensive library of pre-defined process 

models and kinetic equations that may greatly accelerate 

modeling and serve as a strong basis for dynamic simulation 

and real-time data integration.  

 

For modeling and simulation of full-scale wastewater 

treatment plants, GPS-X was applied in the simulation of 

nitrogen removal, to optimize textile wastewater decision 

support, for energy consumption and cost minimization of full-

scale wastewater treatment plants (Cao et al., 2021; Sadri 

Moghaddam and Pirali, 2021; Sean et al., 2020; Sid et al., 

2017; Wondim et al., 2023). The input data and parameters 

have significant impact on the accuracy of the simulation 

outcomes, even though the GPS-X program uses sophisticated 

mathematical methods and simulation techniques. Hence, 

validation of the model output with the actual data is vital (Cao 

et al., 2021; Dolatshah et al., 2024; Łagód et al., 2019). In 

general GPS-X is a useful tool with an intuitive interface and 

an extensive library of process models for modeling and 

simulating wastewater treatment processes in SBR.  

 

Therefore, the aim of this study was to model and simulate the

two full-scale SBR plant at Porsgrunn wastewater treatment

plant, Norway. The result of the modeling result aims to

support process control decisions system and treatment

efficiency of SBR for a robust wastewater treatment reactor

with small areal footprint and energy use.

2. MATERIALS AND METHODS

2.1 Simple SBR model setup in GPS-X

The model environment in GPS-X has several unit process

objects available for the SBR. The simple SBR model unit has

a fixed order of phases, and the user can determine the duration

of these phases. The model is simplified and focuses on the

side stream treatment using the SBR unit. Therefore, the model

only consists of the SBR unit and its inflows and outflows (Fig.

2). The influent flow of the real SBR was a combination of the

reject water and the water from thickener. The reject water and

its influent characteristics are listed below in table 1, together

with the default values in GPS-X. The physical characteristics

the full-scale SBR was working volume of 115 m3, a max

water filling height of 4.1 m and a reactor surface area of 28.05

m2. The simulation was set to simulate for 30 days by setting

the stopping time to 30.0 [d] in the GPS-X simulation setup,

with a communication interval set to 0.05 [d]. The wastewater

temperature was set to 28 °C with a set pH value to 7.7.

 
Fig. 2. The model environment of the SBR model in GPS-X with the

corresponding side streams reject water influent, effluent and model objects.

2.2 Advanced SBR model setup in GPS-X 

To implement a model that is more representative to the real 

SBR at Knarrdalstrand wastewater treatment plant (WWTP), 

the advanced SBR model unit in GPS-X was used. The 

advance model unit allows for more freedom in parameter 

setup, order and number of phases. Additionally, it allows to 

decide the phase conditions in terms of aeration, mixing, 

settling and flowrates. The physical characteristics of the 

advanced SBR model is identical to the simple SBR model. 

The aeration set up was using a dissolved oxygen (DO) 

controller with a proportional-integral-derivative 

(PID)controller type in velocity form having a derivative kick 

protection turned off. Fifteen operating phases different in 

duration (minutes), mixing and DO (mgO2/L) concentration 

were setup.  

 

The Knardalstrand WWTP includes more physical, chemical 

and biological process unit objects. The new process unit 

objects include a grit chamber, Ferric chloride addition for 

coagulation, sedimentation tank, thickener, anaerobic 

digestion (AD) reactor, centrifuge, and buffer tanks. The 

buffer tanks control the inflow rate since the full-scale SBR 

did not receive a continuous inflow. Hence, the advanced 

model environment was developed based on the real WWTP 

at Knarrdalstrand including the SBR, centrifuge and thickener 

(Fig. 3).  

 
Fig. 3. The model environment of the advanced SBR model in GPS-X with 

all physical, chemical and biological process unit objects in the main and 

side streams.

2.3 Equation for nitrogen removal efficiency

The nitrogen removal efficiency in the advanced SBR model

was calculated based on the total nitrogen mass balance. It

assumed nitrogen is only removed as nitrogen gas through

denitrification not other biological processes such as anaerobic

ammonium oxidation (ANAMMOX). Therefore, the nitrogen

removal efficiency was calculated using equations (1)-(3)

(Pathak et al., 2022).
 

Reject water from AD is commonly characterized for high 

ammonium nitrogen concentration (568 ±76.7 mg/L) due to 

mineralization of organic nitrogen, protein degradation, 

location of nitrification and concentration effect during 

dewatering. In equation 2 ammonium nitrogen considered as 

the primary nitrogen species entering to the SBR. In the SBR, 

nitrification is the major process for the biological oxidation of 

ammonia into nitrite and nitrate. Besides the ammonium 

nitrogen, nitrite nitrogen and nitrate nitrogen considered in 

equation 3 are major nitrogen species in the SBR effluent 

(Noutsopoulos et al., 2018;).  
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 𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 𝑅𝑒𝑚𝑜𝑣𝑎𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%)

=
𝐶𝑁𝑖𝑛

− 𝐶𝑁𝑜𝑢𝑡

𝐶𝑁𝑖𝑛

 

(1) 

 

Where: 

 𝐶𝑁𝑖𝑛
= 𝐶𝑁𝐻4

+
𝑖𝑛

 (2) 

   

 𝐶𝑁𝑜𝑢𝑡
= 𝐶𝑁𝐻4

+
𝑜𝑢𝑡

+ 𝐶𝑁𝑂3
−

𝑜𝑢𝑡

+ 𝐶𝑁𝑂2
−

𝑜𝑢𝑡
 

(3) 

 

Table 1. The influent reject water characteristics used for both simple and

advanced SBR model and simulation.

Parameter Default value  Measured value

Total COD 430 gCOD/m3 2500 gCOD/m3

Ammonia nitrogen 25 gN/m3 600 gN/m3

TKN* 40 gN/m3 685 gN/m3

Total phosphorus 10 gP/m3 13 gP/m3

pH 7 7.7

Temperature  20 oC 28 oC

*TKN is total Kjeldahl nitrogen which includes organic nitrogen and total

ammonia nitrogen

3.  RESULTS AND DISCUSSION

3.1 Simulating the Simple SBR model

The simple SBR model was used to simulate ammonia

removal from the reject water with influent characteristics

described in table 1. Figure 4 shows the SBR influent and

effluent flow balance for three cycles.

 

Fig. 4. The simulation environment in GPS-X with the influent and 

effluent flow balance of the simple SBR model. The plotted black line is the 

influent flow, the blue plotted line being the effluent (decant) flow and the 

red plotted line is the sludge waste flow. The green line is the hydraulic 
volume of the SRR.

The 30-days simulations of the simple SBR model have shown

that the average effluent concentrations ammonia nitrogen

concentration was 228 mgN/L and the average ammonia

removal efficiency found was 62% (Fig. 5). The accumulation

of nitrite in the effluent (Fig. 6)  could be due to the partial

nitrification (PN) where the ammonium oxidizing bacteria 

(AOB) are dominant over the nitrite oxidizing bacteria (NOB) 

and the nitrite concentration increases (Duan et al., 2020). The 

median growth rates for AOB and NOB at 20 °C are 0.74 and 

0.65 d−1, respectively. PN is common in SBR as well as  

operational parameters such as DO, temperature and pH 

significantly favors PN in SBR (Liu et al., 2020).   

 

 

Fig. 5. Simulation of ammonia removal in SBR. The constant 

influent concentration of ammonia (red line) and the effluent ammonia 

concentration (black). Simulation was done at DO setpoint of 2.0 mg/L.

 

Fig. 6. Simulation ammonia removal where the nitrite [mgN/L] concentration
in effluent. Simulation was done at DO setpoint of 2.0 mg/L.

3.2 Simulating the advanced SBR model

The flow balance in the SBR was setup in the simulation

environment in such a way that the advanced SBR model was

operating according to the cycle settings of fifteen phases

different in duration (minutes), mixing and DO (mgO2/L)

concentration were setup. Figure 7 depicts the influent,

effluent and sludge wasting flow balance simulated for 3

cycles.

 

The advanced SBR model was simulated for 30-days with 

influent ammonia concentration of 600 mgN/L. The average 

concentration effluent ammonia was 6 mgN/L with ammonia 

removal efficiency above 90% for all DO concentration 
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setpoints simulated (Fig. 8). Furthermore, the nitrite 

concentrations in the effluent reach the highest concentration 

during the third cycle at 222 mgN/L and then after it was 

decreased and stabilized (Fig. 9).  

 

The advanced SBR model was more accurate replication of the 

real SBR at Knarrdalstrand WWTP. Where in the model 

development in the flow balance was successfully set up in the 

simulation environment to match with the SBR at 

Knarrdalstrand WWTP with all phases of the cycle. The real 

plant has an average ammonia removal efficiency of 

approximately 85%. The simulation result of the advanced 

SBR model predicted higher with a small margin than the 

treatment efficiency of the real SBR at Knarrdalstrand WWTP. 

This was expected when the simulated environment has been 

considered without disturbance from external factors. 

However, the advanced SBR model can be improved to the 

real reactor by experimentally determining the physical 

characteristics of the reject wastewater and by calibration of 

the model key process parameters (Sadri Moghaddam and 

Pirali, 2021).  

 

 

Fig. 7. The flow balance of the advanced SBR model. The black line is 

the influent flow, the blue line is the decant flow and the red is the waste 

flow. The green plotted line shows the hydraulic volume of the reactor.

 

Fig. 8. Simulation of ammonia removal in advanced SBR model. The 

constant influent concentration of ammonia (red line) and the effluent 

ammonia concentration (black). Simulation was done at DO setpoint of 2.0 
mg/L.

The presence of high concentration of nitrite in the effluent has 

shown that there was partial nitrification. This indicates that 

not all of the nitrite has been converted to nitrate where the 

dominant species in the biological process were the ammonia 

oxidizing bacteria (AOB) (van Niel et al., 1992). 

 

Fig. 9. Simulation of the effluent concentration of nitrite [mgN/L] in the
advanced SBR model. Simulation was done at DO setpoint of 1.5 mg/L.

3.3 Simulation of different aeration setpoints in the advanced

SBR model

To investigate the impact of dissolved oxygen (DO)

concentration on nitrification and denitrification in the

advanced SBR model, simulations were done using three DO

setpoints. Optimizing the amount of DO required for ammonia

removal presents a significant opportunity to minimize

operational costs in wastewater treatment by reducing the

energy expenses (Sean et al., 2020; Sid et al., 2017).

 

Particularly, the advanced SBR model has greater flexibility in 

its aeration settings than the simple model. It allowed to aerate 

the model more closely to the real SBR at Knarrdalstrand 

WWTP. Hence, it was able alternate between aerating at 2.0 

mg/L DO during the aeration phases and 0.6 mg/L DO during 

mixing phases. This improved the ammonia removal 

efficiency from 62% in the simple SBR model to 95% in the 

advanced SBR model. 

The result of the advanced model was validated from the real 

data from the Knarrdalstrand WWTP. For instance, the 

ammonia concentration of influent reject water and the 

effluent decant flow of the real WWTP at Knarrdalstrand was 

367.3 mgN/L and 52.3 mgN/L, respectively. Based on these 

the average ammonia removal efficiency was approximately 

85% where the model predicted 10% higher efficiency. 

Furthermore, the advanced SBR model can be improved to the 

real reactor by experimentally determining more influent 

characteristics of the reject and thickener water as well as 

parameters related with the physical characteristics of the real 

reactor. 

 

Moreover, the average ammonia removal efficiency of the 

advanced SBR model simulation at 1.5 mg/L and 1.0 mg/L DO 

setpoints while maintaining 0.6 mg/L DO setpoint during 

mixing was 94% and 90%, respectively. Although these are 

averaged values of the ammonia removal efficiency, the 

overall trend for all these DO scenarios was reduced efficiency 
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in the first few cycles before it eventually stabilized at higher 

efficiencies. Our simulation shows that the main difference 

observed between the model running at the different DO 

setpoints were the amount of time the model needs to stabilize. 

The simulation at 2.0 mg/L DO had the lowest time needed for 

the model to stabilize with only two cycles. Whereas the 

simulation at 1.5 mg/L DO and 1 mg/L DO have taken three 

and five cycles to stabilize, respectively. Study reported that 

different DO concentrations have shown effect on the long-

term stability of partial nitrification process at room 

temperature. Where AOB activity was significantly higher 

than NOB activity at DO of 2.5 mg/L (Cui et al., 2020). Table 

2 summarizes the simulation results of the three DO setpoints 

in the advanced SBR model. 

 
Table 2 The simulation result in the three DO simulated with the advanced 

SBR model. The average ammonia concentration in the effluent, average 
ammonia removal efficiency, the average COD concentration in the effluent 

and the average COD removal efficiency for all scenarios. 

DO 

setpoint 

(mg/L) 

Av. 

Effluent 

ammonia 

(mg/L) 

Av. 

Ammonia 

removal 

efficiency 

(%) 

Av. Effluent 

COD 

(mgCOD/L) 

Av. COD 

removal 

efficiency 

2.0 5.9 95 123 95 

1.5 9.9 94 123 95 

1.0 19.9 91 123 95 

 

When compared with the influent ammonia concentration of 

600 mgN/L, the ammonia concentration in the effluent were 

significantly lower in all DO setpoint scenarios. Moreover, the 

presence of high nitrite concentration than nitrate in the 

effluent has shown there was partial nitrification. The 

simulation at 2.0 mg/L DO had an effluent with high 

concentration of nitrite and with small concentration of nitrate. 

The average concentration of nitrite and nitrate were 102 

mgN/L and 23 mgN/L, respectively. Hence, this indicates that 

not all of the nitrite has been being converted to nitrate through 

nitrification where the process was partial nitrification (Duan 

et al., 2020). Partial nitrification is common in SBR reactors 

when operation parameter such as DO, pH and temperature 

favors the process (Liu et al., 2020). Moreover, in the partial 

nitrification the dominant species in process are AOB that has 

higher bacterial growth rate (Liu et al., 2020; van Niel et al., 

1992). The growth of NOB was decreasing with each cycle, 

while the growth AOB as well as the denitrifies remained 

stable and dominated in the process. Studies shows that the 

NOB suppression occurring due to nitrite competition between 

NOB and denitrifiers instead of oxygen competition (Xu et al., 

2021).  

 

The analysis of nitrogen removal efficiency through 

denitrification based on the nitrogen mass balance (equation 1-

3) as well as the simulation result of nitrification and 

denitrification rates (Fig. 10) strongly confirm that 

denitrification process has occurred in the SBR. From the 

nitrogen mass balance analysis, the nitrogen removal 

efficiency through denitrification in the advanced SBR model 

simulated with 2.0 mg/L DO was 72%. Which means that 72% 

of the influent ammonia across the 30-day simulated period 

has been converted to nitrogen gas (N2) through the 

denitrification process. Comparatively, simulations conducted 

with 1.5 and 1.0 mg/L DO setpoints had the nitrogen removal 

efficiency of 75% and 72% through denitrification, 

respectively. The results were not significantly different, 

although simulations with the 1.5 mg/L DO setpoint had 

higher amount of nitrogen removed through denitrification. 

Since denitrification is anoxic process it is known that 

denitrifying bacteria (heterotrophs) thrive best in anoxic 

conditions (Song et al., 2021). 

 

Moreover, simultaneous nitrification and denitrification 

(SND) is an advantageous bioprocess that allows the complete 

removal of ammonia nitrogen (Di Capua et al., 2022; Janka et 

al., 2022). From the nitrogen mass balance study and the 

simulation result it can be concluded that nitrification and 

denitrification process occurred in the Knardalstrand WWTP 

SBR and the process is the SND process.  

 

 
 

Fig. 10. The simulation of denitrification and nitrification rates for 30-days

simulation period in the advanced SBR model at DO 2.0 mg/L
 

Hence, in the SND process, there is a huge possibility to reduce 

the carbon and energy consumption with a simultaneous 

removal of both nitrogen and phosphorus. In general, SND is 

cost-effective due to low DO and energy requirements (Di 

Capua et al., 2022; James and Vijayanandan, 2023).  

3.4 Energy cost reduction 

GPS-X allow for wastewater treatment plant operational cost 

estimation in the model and simulation environment (Sadri 

Moghaddam and Pirali, 2021; Sean et al., 2020; Sid et al., 

2017). Therefore, simulation was done at different DO 

setpoints to investigate the energy requirement of the SBR 

model. In full-scale wastewater treatment plant, the major cost 

of the treatment process is aeration, which occupies 49% the 

operational cost (Pryce et al., 2022). In our simulation, the cost 

estimation was based on the use of blower only. The study 

found that the cumulative energy required for the blower 

running at 2 mg/L DO setpoint over 30 days simulation period 

was 1641 kWh. In the model the energy cost of 1 kWh was 

assumed 0.1$ which resulted in the cumulative energy cost for 

the SBR blower was 164.1$. 

 

When further simulations were conducted with the DO 

setpoints 1.5 mg/L and 1 mg/L, respectively. The cumulative 

energy required for the blower operating at 1.5 mg/L DO 

setpoint for 30 days simulation period was 1512 kWh. With 
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the same energy cost the cumulative energy cost for the blower 

has reduced to 151.2$ which was 7.8 % energy cost reduction. 

For the blower operating at 1 mg/L DO setpoint for 30 days 

simulation period, the cumulative energy required was 1378 

kWh which has reduced the energy cost to 137.8$ which was 

16% energy cost reduction. 

 

Hence, the energy cost reduction simulated at different DO 

setpoint has shown that there is a substantial opportunity to 

reduce the energy cost of full-scale SBR plant. The overall 

operation cost can be minimized by optimizing the amount of 

DO used for the SBR process, while maintaining the treatment 

efficiency. Our simulation study showed that switching the 

blower operation from 2 mg/L to 1.5 mg/L DO saves 

approximately 12% energy cost, yearly. However, the choice 

should be compensated with the process efficiency in 

removing nitrogen and organics constituents in the 

wastewater. For instance in similar study optimization of the 

SBR model process parameters such as optimum air flow into 

the aeration tank saved 91.5% of energy in the process that  

enable decision makers for the best course of action (Wondim 

et al., 2023).  

 

4. CONCLUSIONS

The biological process in SBR can be model and simulated

using the GPS-X software. In this study SBR models have

been developed for ammonia removal of the reject water at

Knarrdalstrand WWTP. The advanced SBR model in GPS-X

was found to be the most robust and efficient model that

predicted the actual process condition of the real SBR at

treatment plant. However, the advanced SBR model with the

complete wastewater treatment process units needs more

validation work to improve the model accuracy. Even though,

the SBR model environment developed in GPS-X functions

properly regarding aeration cycle and phase operations.

 

The advanced SBR model simulation with a DO setpoint of 

2.0 mg/L has shown the highest average ammonia removal 

efficiency while the efficiency decreased slightly as the DO 

setpoint decreased. The simulated three DO setpoint scenarios 

and simulation of nitrification and denitrification in the 

advanced SBR model has shown that DO at 1.5 mg/L had the 

higher nitrogen removal efficiency through denitrification.  

 

Generally, the model validation shows that the advanced SBR 

model was more effective in ammonia removal with a little 

higher than the ammonia removal efficiency of the real full-

scale SBR plant at Knarrdalstrand. Hence, further research on 

sufficient data on reject waster physical and biochemical 

characteristics and accurate assumptions of the physical 

characteristics of the real SBR is vital to make the model more 

representative and robust in the predictive capability. 

Furthermore, sensitivity analysis of model parameters with 

different operational settings i.e. dissolved oxygen levels, pH, 

sludge retention time, and temperature are needed. Further 

work is also needed to optimize energy consumption. 
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Kinetic modelling and simulation of bioanode and biocathode in a 

bioelectrochemical cell for carbon dioxide reduction 
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Abstract: Bioelectrochemical systems (BESs) have garnered extensive research attention for their 

biosynthesis and environmental remediation applications. One of the challenges to upscaling BES for 

carbon dioxide (CO2) methanation is energy-efficient process development. Investigations are ongoing to 

determine the relationship between the yield of electroactive microorganisms, the key candidates for 

electrochemical reactions with external electricity input. Consequently, simulating processes, particularly 

with biocathode for biosynthesis and bioanode for remediation, gives crucial insights for designing efficient 

BESs. The framework for establishing Nernst-Monod equations for modelling BES, starts from bioanode, 

where anode respiring bacteria (ARB) oxidate organic carbon compounds to CO2, and generate the proton 

(H+). In this work, kinetic modelling was applied to calculate the biomass yield of ARBs corresponding to 

the applied anodic voltage. The generated CO2 and H+ from the anode determined the biomass yield of 

electroactive methanogens and acetogens on the cathode. Two biofilm models were established for anodic 

and cathodic biofilm growth in Aquasim simulation tool. Results showed that the concentration of organic 

carbon compound (acetate) available for ARB, had a significant impact on the biofilm thickness and 

biomass concentration on the biofilm, especially at + 0.3 V. The optimum anode voltage which released 

the highest CO2 and H+, was + 0.3 V. The anodic and cathodic biofilm thickness reached respectively 3 

mm and 55 µm at + 0.3V and 10 g.L-1 acetate input to the anode chamber. Moreover, methanogens 

surpassed acetogens on the biocathode for CO2 reduction to methane rather than acetate. In addition, acetate 

consumption rate by ARB at anode was remarkably faster than acetate production at cathode. 

Keywords: Carbon dioxide, Anode respiring bacteria, Methanogens, Acetogens, Biocathode, Bioanode, 

Methane and Acetate. 

1. INTRODUCTION 

Biomethane production from anaerobic digestion (AD) is one 

of the strong alternatives to fossil fuels. However, AD may 

face limitations due to multiple process-related factors, in 

particular high pH fluctuation, low productivity, or inhibition 

effect due to volatile fatty acids (VFA). Understanding the 

limitations of the process and the factors affecting microbial 

growth is essential for increasing biomethane production. 

Bioelectrochemical systems (BESs) are one of the emerging 

technologies that benefit from biofilms with electroactive 

microbes that consume electricity. BES is a promising 

technology to overcome the limitations of AD process. The 

electricity input aids the microbes and enhances the 

breakdown of organic matter. Meanwhile, it can stop 

unwanted side reactions which limit production. Therefore, the 

purity of target products such as methane (CH4), acetic acid or 

other valuable organic carbon compounds can be increased 

(Aryal et al., 2020). The methods currently available for the 

electrochemical reduction of CO2 need external overpotentials 

due to high energy demand, to overcome ohmic losses. If 

enough electric potential is provided, bacteria and archaea can 

overcome potential losses in BES, where CO2 can be reduced 

to valuable energy carriers  

 

 

 

 

such as CH4 or other biochemicals (Rittmann and McCarty 

2020).  

 

The anode potential (oxidation voltage) can be correlated with 

the metabolic activities of biocatalysts and the corresponding 

energy dissipation. In microbial electrochemical cells (MECs), 

the applied electricity can help microorganisms obtain 

electromotive forces for better growth and maintenance(Torres 

et al., 2008). In MEC, a dense biofilm on anode oxidizes the 

organic and inorganic molecules if enough energy is available 

(Rabaey and Verstraete, 2005). The external energy supports 

and enhances the microbial community of anode- oxidizing 

bacteria (ARB) due to the microbial selectivity process. 

Besides, the activity of methanogenic microbial biomass at 

cathode will be enhanced. Autotrophic methanogens will 

become more abundant in the biofilm matrix, and a mixture of 

autotrophic and heterotrophic microbial biomass communities 

will also increase in the suspended media of the reactor.  

 

Generally, direct electron transfer (DET) or mediated electron 

transfer is well accepted when abiotic electrodes and 

electroactive microbes interact with each other. In mediated 

electron transfer theories, the kinetics of electron transfer starts 

from ARB. These bacteria oxidize organic compounds, which 
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provide electrons for cathode. ARBs transfer electrons to the 

anode via anodic respiration. Like methanogens, ARBs have a 

constrained range of electron donors. The most popular and 

beneficial electron donor by far is acetate. Certain ARBs can 

also use hydrogen (H2), formate, ethanol, propionate, glucose, 

and other sugars as electron donors. Anode respiration is a 

novel and distinct kind of catabolism. A general electron donor 

is used, but the electron acceptor is substituted with a solid 

acceptor, completing the catabolic reaction. Geobacter 

sulfurreducens and Shewanella species are the two most well-

known ARBs. However, it is yet unclear how ARBs 

accomplish extracellular electron transfer (EET) 

biochemically (Rittmann and McCarty 2020).  

 

BES reactor configuration can be divided into multi-chamber 

and single-chamber reactors. In dual chamber reactors, the 

anode and cathode are separated by an ion exchange 

membrane, preventing possible anodic/cathodic reversible 

reactions. However, in membrane-less single-chamber 

reactors, the anode and cathode are in the same chamber (Aryal 

et al., 2022). Therefore, in the mixed microbial environment of 

the reactor, it is possible that an organic matter, such as acetate, 

is oxidized at the anode via electrochemical reactions or by 

ARB, and then reproduced at cathode by acetogenic microbes 

(May et al., 2016; Yates et al., 2017). The oxidation of acetate 

by ARBs at the anode can be faster than the reproduction of 

acetate at the cathode. Additionally, the competition between 

methanogens and acetogens in the cathode chamber is another 

important area of study. In dual-chamber reactors, it is possible 

to measure the acetate consumption rate by ARBs and the 

acetate production rate by autotrophic acetogens. The half-

reaction of acetate oxidation (R.1) shows that acetate is 

oxidized to CO2, HCO3
-, and H+ (Rittmann and McCarty 

2020): 

 
1

8
𝐶𝐻3𝐶𝑂𝑂− +

3

8
𝐻2𝑂 →

1

8
𝐶𝑂2 +

1

8
𝐻𝐶𝑂3

− + 𝐻+ + 𝑒−   𝐸𝑜𝑥
0  = +0.28 V     (R.1) 

 

The reproduction of acetate can occur at the cathode via (R.2).  

 
2𝐶𝑂2 + 8𝐻+ + 8𝑒− → 𝐶𝐻3𝐶𝑂𝑂− + 2𝐻2𝑂               𝐸𝑟𝑒𝑑

0 = -0.284 V       (R.2) 

 

Methanogens at the cathode produce CH4 via (R.3) through the 

DET mechanism:  
 

𝐶𝑂2 + 8𝐻+ + 8𝑒− → 𝐶𝐻4 + 2𝐻2𝑂                           𝐸𝑟𝑒𝑑
0 = -0.248 V     (R.3) 

 

This work simulates ARB growth based on acetate

consumption at different anodic voltages. The H+ and CO2

released from acetate oxidation by electroactive ARBs will be

used to calculate the growth of cathodic biofilm by autotrophic

methanogenic species for CH4 production. Furthermore, the

reproduction of acetate by acetogenic species has been studied

to compare the acetate consumption rate with the acetate

reproduction rate.

2. METHODOLOGY

The electron acceptor of the ARBs has no concentration

because it is a solid anode. Microorganisms are considered in

direct contact with the electrode (Rittmann and McCarty

2020). ARBs utilize the electron donor molecules, which in

this work is acetate. The activity of the electroactive cathodic 

biofilm is limited by the number of electrons and H+ flowing 

to the cathode for CH4 and acetate production (Fig. 1). The 

process scheme involves wastewater containing acetate and 

biomass flowing to the anode with 1 day hydraulic retention 

time (HRT) (Ahmadi and Dinamarca, 2022). Additionally, 

biomass-containing wastewater enters the cathode chamber 

with 1 day HRT. In the BES reactor illustrated in Fig. 1, 

voltage is applied to the anode. The anode potential creates an 

electron pull on the cathode, which absorbs the electrons 

flowing from bioanode to the biocathode.  

 
Fig. 1. Schematic diagram of the CO2 reduction with a dual-

chamber BES reactor separated by ion exchange membrane. The 

ARB bioanode oxidizes acetate. Then H+ and CO2 flow to 

biocathode for CH4 and acetate production. 

In a BES, the anode acts as the electron acceptor instead of an 

organic electron acceptor. The cathode serves as the electron 

donor instead of an organic electron donor. Therefore, it can 

be hypothesized that in a BES system, two complete biological 

redox reactions take place, as illustrated in Fig. 2.  

 
Fig. 2. Graphical view of catabolism and anabolism in a BES 

reactor. Anabolism refers to cell growth, while catabolism refers 

to product formation. OCV is the open circuit voltage of anode; 

any voltage higher than this will be relatively positive. 

 

2.1 Simulation parameters and inputs 

Tab. 1 provides all the parameters, expressions, and inputs for 

simulating the model. The biomass formula is considered to be 

CH1.8O0.5N0.2 (Heijnen and Kleerebezem, 1999). Aquasim 

version 2.1 (Reichert, 1998) was used to simulate the kinetics 

of the bioanode and biocathode for CO2 reduction. 

Furthermore, the acetate input (Sac) to the anode chamber is 

assumed to be 1, 5, and 10 g.L-1. The molar concentrations of 

acetate are 16.66, 83.33, and 160.66 mol.m-3, respectively. The 
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CO2 and H+ inputs to the cathode are obtained after simulating 

the anodic biofilm kinetics. Then, the CO2 and H+ produced 

during steady-state anodic oxidation will be used for CH4 and 

acetate production at cathode. 

2.2 Model assumptions  

-The model consists of two biofilms: one for ARB attachment 

in the anode chamber and the second, the cathodic  

biofilm (or biocathode), for the formation of methanogenic and 

acetogenic biofilms. 

- The substrate is acetate for organic-oxidizing bacteria, such 

as Acetobacter acetae (ARB1), and sulfate-reducing bacteria 

(SRB), assumed as ARB2, that grow on acetic acid (Tremblay 

et al., 2019). 

- The substrates for biocathode are CO2 and H+ from acetate 

oxidation at the anode. Sporomusa ovata can be considered as 

acetogens, and methanobacterium as methanogens on the 

cathode (Zhang et al., 2017).  

- pH is considered 7 and the pressure is 1 atm. 

- CO2 and HCO3
- are in equilibrium, so the input to the cathode 

is considered to be CO2.  

- The biofilm decay is accounted by considering a detachment 

velocity in the system. 

- BES oxidation and reduction are specifically emphasized.  

- No electrons are lost in other reactions, and potential losses 

in the system are ignored. 

- The impact of electrode material and the self-potential of the 

electrodes are not considered. 

2.3 Model expressions  

The simulation in this work started at the anode, where ARBs 

oxidize the chemical oxygen demand (COD) as acetate. The 

Nernst-Monod equation is used to calculate the ARB biomass 

growth rate (
𝑑[𝑋𝐴𝑅𝐵]

𝑑𝑡
) and the variation in the concentration of 

acetate (
𝑑[𝑆𝑎𝑐]

𝑑𝑡
), as well as the produced CO2 and H+. Equations 

1 and 2 illustrate the anodic model expressions (Korth et al. 

2015; Fischer 2017; Rittmann and McCarty 2020). 

 
𝑑[𝑋𝐴𝑅𝐵]

𝑑𝑡
= 𝑋𝐴𝑅𝐵 · (𝜇𝑋𝐴𝑅𝐵

𝑚𝑎𝑥 · Ø𝑎𝑛 ·
𝑆𝑎𝑐

𝐾𝑆𝑎𝑐+𝑆𝑎𝑐
·

1

1+𝑒𝑥𝑝⌈−(𝐸𝑎𝑝𝑝−𝐸𝐾𝐴)
𝐹

𝑅𝑇
⌉

− 𝑘𝑑,𝑎𝑐)    (1)  

𝑑[𝑆𝑎𝑐]

𝑑𝑡
= − (

𝑑[𝑋𝑎𝑐]

𝑑𝑡
) 𝑌𝑎𝑐⁄                                                                                   (2) 

 

Where 𝑋𝐴𝑅𝐵  is the ARB biomass concentration, 𝜇𝑋𝐴𝑅𝐵
𝑚𝑎𝑥  is the 

maximum growth rate of ARB, Ø𝑎𝑛 is the fraction of 

electroactive biomass in the biofilm, assumed 0.75, 𝑆𝑎𝑐  is the 

acetate molar concentration, 𝐾𝑆𝑎𝑐
 is the half-saturation 

constant of acetate, 𝐸𝑎𝑝𝑝 is the applied voltage, 𝐸𝐾𝐴 is the 

potential at which the biomass growth rate is half of its 

maximum, 𝑘𝑑,𝑎𝑐 is the ARB decay rate, F is the Faraday 

constant (96485.3 C. mol-1), R is the universal gas constant 

(8.314 J. mol-1. K-1), T is temperature (K), and 𝑌𝑎𝑐  is the ARB 

biomass yield based on acetate consumption. All the terms 

with values are given fully in Tab.1.  

 

In R1, the Nernst term is a critical factor for the electroactive 

biomass growth. Every electrode material has a natural voltage 

relative to its surrounding electrolyte, known as the open 

circuit voltage (OCV). 

 

Table 1. Model parameters for the simulation 

 

An applied voltage higher than OCV increases oxidation on

the electrode. Therefore, the applied voltage in this work is

relatively voltage with respect to OCV. The OCV of the anode

is crucial in determining the applied voltage and the potential

range within which EkA falls.

Figure 3 shows the calculated Nernst term with respect to the

anodic voltage. According to Rittmann and McCarty (2020),

when EKA is higher, more voltage is required to reach the

Parameter, unit Value Ref 

Diffusivity of acetate,  

m2 ∙ d−1 
9.41 ∙ 10−5 (Ahmadi and 

Dinamarca, 

2022) 

Diffusivity of CH4,  

m2 ∙ d−1 
1.296 ∙ 10−4 (Ahmadi and 

Dinamarca, 

2022) 

Diffusivity of CO2,  

m2 ∙ d−1 

1. 658 ∙ 10−4 (Ahmadi and 
Dinamarca, 

2022) 

Diffusivity of H+,  

m2 ∙ d−1 
8.04 ∙ 10−5 (Ahmadi and 

Dinamarca, 

2022) 

Diffusivity of biomass,  

m2 ∙ d−1 

1 ∙ 10−7 (Ahmadi and 

Dinamarca, 
2022) 

Biomass density,  

mol ∙ m−3 

220 (Ahmadi and 

Dinamarca, 
2022) 

Half saturation concentration of 

CO2, mol ∙ m−3 

3.8 (Eddy et al., 

2014) 

Half saturation concentration of 

H+, mol ∙ m−3 

0.0002 (Eddy et al., 

2014) 

Half saturation concentration of 

acetate, mol ∙ m−3 

0.03 (Eddy et al., 

2014) 

Max growth rate of ARB1, d−1 12 Assumed 

Max growth rate of ARB2, d−1 2.4 Assumed 

Max growth rate of methanogens, 

d−1 

2.28 Assumed 

Max growth rate of acetogens, 

d−1 

1.008 Assumed 

Acetogenic growth yield 0.02 Assumed 

Methanogenic growth yield 0.083 Assumed 

ARB1 growth yield 0.0384 Assumed 

ARB2 growth yield 0.28 Assumed 

Initial biofilm thickness, m 1 ∙ 10−10 This work 

Half maximum growth voltage of 

ARB1, V 

-0.2 (Heijnen and 

Kleerebezem, 

1999) 

Half maximum growth voltage of 

ARB2, V 

-0.1 (Heijnen and 

Kleerebezem, 

1999) 

Inflow, m3 ∙ d−1 0.1 This work 

Biofilm reactor volume, m3 0.1 This work 

Biofilm surface area, m2 10 This work 

Anode voltage, V -0.2, -0.1, 0.3 This work 

Acetic acid concentration, 

mol ∙ m−3 

16.66, 83.33, 
166.6 

This work 

CO2 concentration, mol ∙ m−3 Simulation 

results 

This work 

H+ concentration, mol ∙ m−3 Simulation 

results 

This work 
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maximum Nernst term of 1. Thus, lower EkA is more 

advantageous for the BES in terms of energy savings.  

 
Fig. 3. Variation of the Nernst term with respect to the anode voltage 

at different EKA values, ranging from -0.2 to +0.2 V. 

The dynamic current generation (
𝑑𝑗

𝑑𝑡
, A.m-2) via ARB biomass 

on anode (current density, A∙m-2) can be obtained by (6) 

(Torres et al., 2008). 

 
𝑑𝑗

𝑑𝑡
=

𝑑[𝑋𝐴𝑅𝐵]

𝑑𝑡
· 𝛾 · 𝐿𝑓 · (𝑓𝑠

0 − 1)                                                        (6)  

 

where, 𝛾 represents the equal electron production, which is 8

for acetate oxidation. 𝐿𝑓 is the biofilm thickness (m). The term 𝑓𝑠
0

refers to electron equivalent cell synthesis coefficient, which

can be obtained by thermodynamic equations as fully

described by Rittmann and McCarty (2020). At lower voltage,

𝑓𝑠
0 is reduced. At higher voltage, 𝑓𝑠

0 increases leading to a

higher biomass population on the anode. This concept is

explained in a thermodynamic evaluation of biomass growth

with respect to the voltage (Ahmadi and Aryal, 2024).

 

In BES, voltage is applied either to either the anode or cathode. 

This creates a potential difference between electrodes, 

enabling redox reactions. Therefore, to establish the 

methanogenic and acetogenic biomass growth rates on the 

cathode (
𝑑[𝑋𝐶𝐻4]

𝑑𝑡
 and 

𝑑[𝑋𝑎𝑐]

𝑑𝑡
, respectively), using the 

multiplicative Monod equation without the Nernst term is a 

more reasonable approach, as shown in equations (3), (4), and 

(5). The number of electrons and H+ from acetate oxidation is 

equal. Thus, when H+ is available, it indicates that enough 

electrons have been delivered to undergo CO2 reduction 

(Korth et al. 2015; Fischer 2017; Rittmann and McCarty 

2020).  

 
𝑑[𝑋𝐶𝐻4,]

𝑑𝑡
= 𝑋𝐶𝐻4

· (𝜇𝑋𝐶𝐻4

𝑚𝑎𝑥 ·  Ø𝑐𝑎𝑡 ·
𝑆𝐶𝑂2

𝐾𝐶𝑂2+𝑆𝐶𝑂2

·
𝑆𝐻+

𝐾𝐻++𝑆𝐻+
− 𝑘𝑑,𝐶𝐻4

)                   (3) 

𝑑[𝑋𝑎𝑐]

𝑑𝑡
= 𝑋𝑎𝑐 · (𝜇𝑋𝑎𝑐

𝑚𝑎𝑥 ·  Ø𝑐𝑎𝑡 ·
𝑆𝐶𝑂2

𝐾𝐶𝑂2+𝑆𝐶𝑂2

·
𝑆𝐻+

𝐾𝐻++𝑆𝐻+
− 𝑘𝑑,𝑎𝑐)                          (4)  

𝑑[𝑆𝐶𝐻4]

𝑑𝑡
= (

𝑑[𝑋𝐶𝐻4]

𝑑𝑡
) 𝑌𝐶𝐻4

⁄                                                                                (5) 

 

where 𝑋𝐶𝐻4
 is the methanogenic biomass content, 𝜇𝑋𝐶𝐻4

𝑚𝑎𝑥  is the 

maximum growth rate of methanogens, Ø𝑐𝑎𝑡 is the fraction of 

electroactive biomass on cathode, 𝑆𝐶𝑂2
 is the molar 

concentration of CO2, 𝐾𝐶𝑂2
 is the half-saturation constant of 

CO2, 𝑆𝐻+ is the molar concentration of H+, 𝐾𝐻+ is the half-

saturation constant of H+, 𝑘𝑑,𝐶𝐻4
 is the decay rate of 

methanogens, 𝑋𝑎𝑐 is the acetogenic biomass content, 𝜇𝑋𝑎𝑐
𝑚𝑎𝑥 is 

the maximum growth rate of acetogens, 𝑘𝑑,𝑎𝑐 is the decay rate 

of acetogens, 
𝑑[𝑆𝐶𝐻4]

𝑑𝑡
  is the methane production rate in molar 

concentration, 𝑌𝐶𝐻4
 is the methanogenic biomass yield based 

on CO2 and H+ consumption.   

3. RESULTS AND DISCUSSION 

3.1 Concentration profiles at anode 

Figure 4 shows the total acetate consumption by ARBs in the 

anode chamber at different concentrations. The concentration 

profiles show the relation between the anodic voltage and 

acetate consumption. When the anode voltage is equal to EkA 

of ARB, the growth rate of ARB is half of its maximum value. 

As a result, it takes approximately 17 days for ARB to 

consume all the acetate. By increasing the voltage to -0.1 V, 

acetate consumption accelerates, with all the acetate being 

consumed after 5 days. An even higher anodic voltage results 

in faster acetate consumption, completely depleting the acetate 

in 2 days. At higher acetate concentrations, the consumption 

profile follows the same order, but it takes longer to deplete 

the total acetate at -0.2 V. However, increasing the voltage 

helps reduce the acetate depletion time at higher 

concentrations. 

 

 
Fig. 4. Acetate consumption by ARB biofilm for different acetate 

concentration in anode chamber. The applied anode voltage is -

0.2, -0.1 and +0.3 V. 
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Fig. 5. The released CO2 from ARB oxidation of acetate. The 

applied anode voltage is -0.2, -0.1 and +0.3 V. 

The correspondence concentration profiles of CO2 (Fig. 5) and 

H+ (Fig. 6)   reflects the same trend as at higher concentration 

of acetate, higher amount of CO2 and H+ will be released that 

will flow to cathode to be consumed by acetogens and 

methanogens. Also, the graphs show that higher anode voltage 

helps shortening the H+ evolution.   

 

The ARB biofilm thickness (Fig. 7) at anode is more 

dependent on the availability of substrate for the ARB than the 

applied voltage at anode. Nevertheless, +0.3 V significantly 

increases the biofilm thickness to 3 mm while at -0.2 V, the 

biofilm thickness will be 1.5 mm where the applied voltage is 

equal to EKA of one ARB species. At -0.1 V, the thickness 

reaches 2.2 mm for 10 g.L-1 acetate input. The graphs show 

that at low substrate concentration, the effect of voltage on the 

biofilm thickness is not significant. For 1 g.L-1 acetate input, 

the biofilm thickness will be 55, 57, 59 µm at -0.2 V, -0.1 V 

and +0.3V respectively. For 5 g.L-1 acetate input, the biofilm 

thickness reaches 110, 117 and 121 µm correspondingly for      

-0.2, -01 and +0.3 V.     

 

 
Fig. 6. The released H+ from ARB oxidation of acetate. The applied 

anode voltage is -0.2, -0.1 and +0.3 V. 

Since 10 g.L-1 acetate input to anode resulted in the highest 

biofilm thickness, the ARB biomass concentration (Fig. 8) is 

provided for different voltages and 10 g.L-1 acetate 

concentration. Here in Fig. 8 also, 10 g.L-1 acetate input at 

higher voltage of 0.3 V, increases the biomass concentration 

on anode. The reason is the Nernst term in Eq.1 will be equal 

to 1 which gives the highest biomass concentration. 
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Fig. 7. ARB biofilm thickness at different acetate concentrations; 

(a) 1 g.L-1, (b) 5 g.L-1, (c) 10 g.L-1 acetate at bioanode. The 

applied anode voltage is -0.2, -0.1 and +0.3 V. 

 
Fig. 8. The anode respiring bacteria (ARB) concentration at -0.2, -

0.1, and 0.3V for 10 g.L-1 acetate input.

In the current density plots in Fig. 9, the bioelectrochemical

current density which can be generated directly by the ARB,

is the highest at +0.3V when the acetate input is 10 g.L-1 in the

anode chamber. The biomass concentration is also higher (Fig.

8); therefore, microbes can break down more substrate to

electrons, CO2 and H+. Also, in a bioanode, at the start of the

biofilm formation, the current density is very low in the micro

ampere levels, and after day 10, when the biomass starts to

form significantly, the current density increases faster. These

simulation results fit the experimental observations in other

research work. The bioelectrochemical current density is low

at the starting days and increases over time as a dense biofilm

is formed on the electrode surface (Li et al., 2020). Moreover,

Figure 9 indicates clearly that increasing the applied voltage 

to BES will not increase the bioelectrochemical current 

density if not enough substrate is available for bio-oxidation. 

This is one of the problems which happens in experimental 

research that high voltage at a low organic matter liquid, 

leads to many problems such as electrode failure, or the 

electron generation will not be mainly due to the oxidation 

of organic matter. In these conditions, increasing the 

voltage leads to the electrochemical oxidation of 

the buffer compounds, ammonium, salts, minerals, or 

water (Sivalingam et al., 2020; Wagner et al., 2010)

 
Fig. 9. Current generation by ARB from acetate consumption at 

0.3V anode voltage. 

3.2. Concentration profiles at cathode 

The corresponding CO2 consumption profiles via biocathode 

is presented in Fig. 10. The profiles show that the amount of 

CO2 consumed by the cathodic biofilm significantly depends 

on the activity of ARB. In addition to the dependence on the 

applied anodic voltage and acetate concentration in the anodic 

chamber, the methanogens and acetogens on the biofilm need 

more days before the biofilm gets saturated by CO2 and H+, 

and afterwards, CH4 and acetate production starts. Here, is the 

illustration of the reason for lag phase in BES reactors to reach 

stable and maximum CH4 production. The H+ consumption 

profile is also presented in Fig. 11. In the CO2 and H+ profiles, 

it is depicted that the availability of H+ and CO2 for cathode, 

depends both on the applied voltage and acetate concentration. 

So, lack of organic matter in the anode chamber can be a more 

significant reason than the applied voltage. Also, the profiles 

shift with respect to the applied voltage again shows that at 

higher anode voltage, the CO2 and H+ will be available faster 

for the cathodic microbes. Therefore, the biocathode becomes 

stable faster at +0.3 V vs SHE compared to lower voltage. 

   

 
Fig. 10. CO2 consumption via biocathode, in case of (a) 1 g.L-1, (b) 

5 g.L-1 and (c) 10 g.L-1 acetate for bioanode. The applied anode 

voltage is -0.2, -0.1 and +0.3 V. 

In the H+ consumption profiles in Fig. 11, the H+ will be 

completely consumed by the biocathode while CO2 remains in 

the system. This is because according to the acetate oxidation 

reaction, two moles CO2 and eight moles H+ will be available 

in case of assuming all the CO2 and H+ will be available for 

Doieight moles H+. That is why a part of the CO2 will remain 

unconsumed. For consumption of more CO2, H+ should be 

provided at a higher voltage from other sources such as water, 

phosphate, sulphate, or ammonium (Rabaey et al., 2009). 
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Fig. 11. H+ consumption via biocathode, in case of (a) 1 g.L-1, (b) 

5 g.L-1 and (c) 10 g.L-1 acetate for bioanode. The applied anode 

voltage is -0.2, -0.1 and +0.3 V. 

CH4 production profiles in Fig. 12 show that there is a direct 

relation between the acetate input to anode and the applied 

anodic voltage with CH4 production. CH4 will be higher and 

faster as a result of 10 g.L-1 acetate and +0.3 V applied voltage 

at anode. It should be noted that +0.3 V is a relative value with 

respect to the open circuit potential (OCV) of the anode. At 

+0.3 V at anode, the released CO2 from oxidation of 10 g.L-1 

acetate, the amount of CH4 will be the highest according to the 

parameters in this work, and CH4 production starts after 6 

days. The startup time of CH4 production is influenced by the 

voltage. At all acetate concentrations, +0.3 V at anode, leads 

to higher H+ and CO2 release, which reduces the startup time 

of the process.  

 

 
Fig. 12. CH4 production via biocathode, (a) in case of 1 g.L-1 

acetate, (b) 5 g.L-1 acetate and (c) 10 g.L-1 available acetate for 

bioanode. The applied anode voltage is -0.2, -0.1 V and +0.3. 

Figure 13 shows the amount of acetate production in the 

cathode is very insignificant compared to CH4 production. 

Also, acetate production reaches a peak of 0.007 mol.m-3, then 

it starts to decrease until reaching 0 until day 25. For acetate 

production, two moles of CO2 should be consumed. Another 

reason is the assumed yield and max growth rate of 

methanogens, which greatly impacts the results. However, in 

numerous experimental works, CH4 production surpasses 

acetate production in a BES reactor.  

  

The results clearly illustrate that acetate oxidation rate in Fig. 

4, is much faster than acetate production in Fig. 13. Acetate 

production is negligible compared to acetate consumption. In 

many research work, if acetate is the final product, 

methanogenic inhibitor is used to stop methanogens. 

Therefore, acetogens will not have competing species, and 

acetate content will increase in the system (Sivalingam et al., 

2022). 

 

Fig. 13. Acetate production via biocathode, in case of (a) 1 g.L1, 

(b) 5 g.L-1 and (c) 10 g.L-1 acetate input to anode. The applied 

anode voltage is -0.2, -0.1 and +0.3 V. 

The cathodic biofilm thickness (Fig. 14) shows that the higher 

concentration of acetate which is oxidized at anode leads to 

higher CO2 and H+ input to cathode. Therefore, the cathodic 

biofilm is thicker when the acetate input to anode is 10 g.L-1 

because it releases higher concentration of CO2 and H+. Also, 

+0.3 V anode voltage led to a thicker biofilm at all 

concentrations. Also, at +0.3 V anode voltage, the cathodic 

biofilm starts to grow faster compared to lower voltage.  Also, 

since the growth of autotrophic microbes which grow on 

inorganic carbon is slower than organic carbon consumption, 

the ARB biofilm at anode at 10 g.L-1 acetate input and +0.3V 

is 3 mm which is 5 times thicker than the cathodic biofilm 

55µm. This is reasonable because organic matter is easier to 

consume compared to inorganic carbon source (CO2) for 

microbes (Abreu et al. 2022; Rittmann and McCarty 2020). 

 

Fig. 14. The cathodic biofilm thickness at different CO2 and H+

concentrations resulted from acetate oxidation at anode at -0.2,

-0.1 and +0.3 V. (a): 1 g.L-1, (b): 5 g.L-1, (c): 10 g.L-1 acetate

input to anode.

4. CONCLUSIONS

 

This simulation work gives a critical insight on the kinetics of 

bioanode and biocathode in a dual chamber BES reactor. It 
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should be noted that the model in this work is made according

to a single electron donor acetate. In a BES, other sources of

electrons and H+ can take part in oxidation reactions which

could be bioelectrochemical or electrochemical. Assessment

of the effect of other electron donors on the kinetics of CH4

production can be considered for further work. The simulation

gives a clear vision about the importance of concentration of

electron donors and the relation between biomass growth and

voltage. Therefore, the simulation will be used for process

design and future validation of the results. The kinetic

simulation helps regulating the reactor conditions to obtain the

optimum biomass on anode and cathode to carry on

bioelectrochemical reactions.
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Abstract: The maritime industry contributes to 80-90% of global trade and is on an increasing trend. 

However, it is also responsible for substantial amounts of greenhouse gas (GHG) emissions such as carbon 

dioxide (CO2), nitrogen oxides (NOx), sulfur oxides (SOx), carbon monoxide (CO), and hydrocarbons 

(HC). Therefore, industries are searching for alternative solutions to reduce GHG emissions by using 

alternative fuels. This study presents a novel investigation exploring the performance of various alternative 

marine fuels such as liquefied natural gas (LNG), methanol (MeOH), ammonia (NH3), and hydrogen(H2) 

in terms of combustion and emissions. Such comprehensive evaluation is limited in literature, making this 

study uniquely valuable in contributing to the field. The study assesses the impact of different equivalence 

ratios on emissions for the studied fuel profiles using Cantera and Aspen HYSYS simulations. Results show 

that CO2 peaks at the stoichiometric ratio, with CO rising from 0.8 to 1.1. Non-carbon fuels like NH3 and 

H2 emit fewer GHGs than carbonaceous fuels such as LNG and MeOH. H2 has the highest energy release 

at 87.21 MJ per kg, while NH3 shows lower emission levels, suggesting its potential as a sustainable 

maritime fuel. This research emphasizes the significance of choosing the right fuel to mitigate maritime 

emissions, highlighting NH3 and H2 as promising alternatives. 

Keywords:  Fuel, Ammonia, Flue gas, Emissions, Aspen HYSYS, Python, Simulation, and Cantera. 

1. INTRODUCTION 

The global maritime sector is crucial in facilitating 

international transportation and trade. Maritime transportation, 

while efficient and relatively clean per unit of material 

transported, has gained attention due to its fuel efficiency and 

growth projections. It is expected to increase at an annual rate 

of 5.3% between 2010 and 2035. Nevertheless, it also 

significantly contributes to greenhouse gas (GHG) emissions, 

which are expected to double or triple by 2050 if no measures 

are taken. Other than environmental damage, these emissions 

can lead to health concerns, with shipping particulate matter 

(PM) emissions linked to thousands of cardiopulmonary and 

lung cancer deaths globally (Moirangthem and Baxter, 2016).  

According to the International Maritime Organization (IMO), 

maritime transport contributes nearly 2.5% of GHG emissions 

worldwide and generates one billion tons of carbon dioxide 

(CO2) annually. Consequently, maritime industry is actively 

seeking alternatives to mitigate GHG emissions.  

In April 2018, the IMO established ambitious targets through 

the Marine Environmental Protection Committee (MEPC) 

resolution MEPC.304(72) to decarbonize the global fleet. This 

strategy outlines initial goals to reduce the average CO2 

emissions per transport work by a minimum of 40% from 2008 

levels by 2030 and by 70% by 2050. Additionally, this target 

aims to decrease the total annual GHG emissions from 

shipping by at least 50 % by 2050. Achieving these objectives 

involves employing technical and operational approaches, as 

well as exploring alternative fuels (ABS, 2021).  

In the pursuit of deconcentrating the shipping industry before 

2050, advancements in ship technology primarily concentrate 

on newly constructed vessels. However, considering the 

extended operational lifespan of ships, it is evident that a 

substantial portion, approximately 20% of the global fleet 

according to certain projections, will continue to operate 

beyond 2050 despite being originally designed for fossil fuel 

propulsion as shown in Fig. 1. It is imperative to address the 

decarbonization of these existing vessels as a vital component 

of the broader maritime energy transition. One viable approach 

involves retrofitting these ships to operate on carbon-neutral 

or zero-carbon fuels. This retrofitting process may necessitate 

modifications to the vessel's engine, tanks, pipework, systems, 

and overall structure. This strategy acknowledges the 

importance of adapting existing vessels to align with 

sustainable and environmentally friendly energy sources, 

contributing significantly to the overall objective of reducing 

carbon emissions in the maritime sector (LR, 2023).  

The maritime industry is currently experiencing a notable 

transition in fuel technology. In 2023, half of the ordered 

tonnage is equipped to utilize LNG, LPG, or MeOH in dual-

fuel engines. This represents a significant increase compared 

to one-third of the tonnage on order in 2022. The shift towards 

alternative fuels is evident not only in new builds but also in 

existing vessels. Presently, 6.52% of the tonnage of 
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operational ships can operate on alternative fuels, reflecting an 

increase from 5.5% in the previous year (DNV, 2023). This 

trend underscores the industry's commitment to adopting more 

sustainable and eco-friendly fuel options across both new and 

existing maritime assets. 

 

Fig. 1. Predicted marine fuel use to 2050 (ABS, 2021).

Furthermore, the production of alternative fuels has been

rigorously investigated to meet the demands of the maritime

industry and other sectors (Aryal et al., 2021). Renewable-

based alternative fuels and chemicals are also recognized for

their environmental benefits (Gadkari et al., 2021). Recently,

simulation-based studies are considered to solve problems in

different sectors as they enable realistic exploration of real-

world problems in a safer, more cost-effective, and efficient

manner (Ghimire, et al., 2021a). Further, efficiency and

emissions estimation using various models for different ship

types using conventional fuels are discussed in (Ghimire, et al.,

2022) and (Ghimire, et al., 2024).
 

This study aims to investigate the emissions of LNG, MeOH, 

NH3, and H2 as alternative fuels in marine diesel engines. In 

this simulation-based study, the amount of NOx, CO, CO2 and 

GHGs are compared based on the same amount of energy 

produced by each fuel. Aspen HYSYS is used to model an 

internal combustion diesel engine, and parameter optimization 

is done for limiting the emissions for each fuel by changing the 

equivalence ratio. Cantera (Python Code) is also employed to 

model the combustion process and calculate the chemical 

potential of every element present in the flue gas. 

2.  CONCEPT AND GOVERNING EQUATIONS 

In this section, the process of production emissions in an 

internal combustion engine (ICE) is discussed theoretically, 

and the effective parameters of its reduction are explained 

through academic concepts. To create a base for evaluating 

and comparing the pollution of different fuels, scientific 

relationships are presented, and the most important emitted 

gases from a marine diesel engine are defined to compare 

alternative marine fuels. 

2.1 Chemical reactions in the combustion process 

The combustion process is a chemical reaction between a fuel 

and an oxidizing agent, typically the oxygen(O2), from the air. 

This reaction releases heat and produces combustion 

byproducts, such as CO2, water vapor, and other gases, 

depending on the composition of the fuel. The general 

chemical reaction of fuel and air is given by (1): 

𝐶𝛼𝐻𝛽𝑂𝛾 + (
1

𝜙
) (𝛼 +

𝛽

4
−

𝛾

2
) (𝑂2 + 3.76𝑁2) →

𝛼𝐶𝑂2 + (
𝛽

2
) 𝐻2𝑂 + (

3.76

𝜙
) (𝛼 +

𝛽

4
−

𝛾

2
) 𝑁2 +

(𝛼 +
𝛽

4
−

𝛾

2
) (

1

𝜙
− 1) 𝑂2 (1)

 

 In equation (1), 𝜙 is equivalence ratio, and it is defined as the 

actual FAR (fuel-air ratio) per stoichiometric FAR. When 𝜙 is 

one, it means that the mixture is in stoichiometric condition, 

but when 𝜙 is smaller than one, it means that there is more air 

available to burn the fuel and in common, the mixture is called 

a lean mixture in conditions where 𝜙 > 1 , the amount of fuel 

is more than the required air, and as a result, some fuels remain 

unburned after combustion. The mixture is called rich in the 

last situation (McAllister et al., 2011). The equivalence ratio 

plays a critical role in flame temperature as well as emission 

production. Hence, (1) is used to control the amount of feed 

(reactants) in an engine to control the flame temperature and 

flue gas concentrations. Although it shows the general 

chemical reaction, in practice, a series of sequential or 

simultaneous reactions are encountered. In hydrocarbons fuel, 

by increasing the number of carbons the species and steps of 

elementary reactions increased rapidly. For instance, 

combustion of CH4 has 53 species in reaction mechanism and 

C8H8 has 857 species (McAllister et al., 2011). In real-world 

scenarios, each of these reactions is time-dependent and is 

affected mainly by temperature, that will be discussed later. 

2.2 Chemical kinetics 

Chemical kinetics involves the study of the rates at which 

chemical reactions occur. The rate of reactions defines the 

speed of species consumption and production. Combustion 

chemistry exhibits two significant characteristics not typically 

seen in other chemical systems. Initially, the speed at which 

combustion reactions occur is highly influenced by 

temperature. Additionally, a considerable amount of heat is 

released during a chemical reaction, which affects the 

temperature. To elaborate it, consider (2) describe a general 

elementary reaction, and a, b, c and d are stoichiometry 

coefficient. 

𝑎𝐴 + 𝑏𝐵 →  𝑐𝐶 + 𝑑𝐷 (2) 

According to (2) the rate of reaction progress (�̇�𝑅𝑥𝑇) is 

calculated by equation (3) that in which the Arrhenius rate 

constant 𝑘 is the constant of proportionality and calculated 

from (4). The expression for the rate at consumption of 

reactant A, (�̂̇�𝐴) is then provided by (5). 

�̇�𝑅𝑥𝑇 = 𝑘[𝐴]𝑎[𝐵]𝑏 (3) 

𝑘 =  𝐴0𝑇𝑏 𝑒𝑥𝑝 (−
𝐸𝑎

�̂�𝑢𝑇
) = 𝐴0𝑇𝑏 𝑒𝑥𝑝 (−

𝑇𝑎

𝑇
) (4) 
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𝑑[𝐴]

𝑑𝑡
= �̂̇�𝐴 =  −𝑎 . �̇�𝑅𝑥𝑇 (5) 

In (3) the activation energy (𝐸𝑎 =  𝑇𝑎  �̂�𝑢) is the minimum 

energy that required to have successful collision to result in a 

successful reaction. Coefficient b is for collision. As it can be 

concluded the rate of reaction or in other way rate of 

consumption or production of species is directly related to 

temperature. In practice, 𝑘 is derived from experimental data. 

For instance, Figure 2 illustrates how someone can calculate 

the Arrhenius rate constant of some elementary reactions of 

burning CH4 by using (6) and plotting the test data. 

ln 𝑘 = ln 𝐴0 −
𝐸𝑎

�̂�𝑢𝑇
(6) 

 
Fig. 2. k value for different elementary reactions of burning

methane (CH4) (McAllister et al., 2011).

In equilibrium condition, reaction rate is calculated by forward

and backward reaction rate constants as kf and kb. In (7)

equilibrium constant is based on concentration or partial

pressure defined.

𝐾𝑐 =  
𝑘𝑓

𝑘𝑏

(7) 

For example, the following equilibrium reaction is taken for 

calculation: 

𝑎𝐴 + 𝑏𝐵 ↔  𝑐𝐶 + 𝑑𝐷 (8) 

In this way, the reaction progress is defined by the following 

relation: 

  �̇�𝑅𝑥𝑇 =  𝑘𝑓[𝐴]𝑎[𝐵]𝑏  −  𝑘𝑏[𝐶]𝑐[𝐷]𝑑 (9) 

Therefore, equilibrium constant can be derived based on 

thermodynamics properties in the reaction as follows: 

𝑘𝐶 =
𝑘𝑓

𝑘𝑏

=
[𝐶]𝐶 ⋅ [𝐷]𝑑

[𝐶]𝐶 ⋅ [𝐷]𝑑
= 𝐾𝑝(T) (

�̂�𝑢𝑇

101.3 𝑘𝑃𝑎
)

𝑎+𝑏−𝑐−𝑑

(10) 

In that (10) 𝐾𝑝(T) , is the equilibrium constant based on partial 

pressures and can be defined by the following equation: 

   𝐾𝑝(T) = 𝑒𝑥𝑝 {
𝑎�̂�𝐴

0 + 𝑏�̂�𝐵
0  −  𝑐�̂�𝐶 

0 −  𝑑�̂�𝐷
0

�̂�𝑢𝑇
} (11) 

Where �̂�𝐴
0  , is the Gibbs free energy and can be found in the 

thermodynamic tables. 𝐾𝑝(T) is unitless and temperature 

dependent.  

Therefore, in a combustion process of a general fuel, the rate 

of progress can be computed from activation energy, 

temperature, and concentration by the following (12): 

�̇�𝑅𝑥𝑇 = 𝐴0𝑒𝑥𝑝 (−
𝐸𝑎

�̂�𝑢𝑇
) [𝐹𝑢𝑒𝑙]𝑎[𝑂2]𝑏 =

= 𝐴0𝑒𝑥𝑝 (−
𝐸𝑎

�̂�𝑢𝑇
) 𝑥𝑓𝑢𝑒𝑙

𝑎 𝑥𝑂2
𝑏 (12)

 

To use these equations and calculate emissions for each fuel at 

different temperature and pressure condition, commercial and 

scientific tools such as Aspen HYSYS and Cantera (Python) 

are developed to ease the simulation of combustion processes. 

In this study, authors used both software to model the 

combustion process in a marine diesel engine. The methods 

and the results will be discussed in the next chapter. In the next 

section the emission from combusting fuels is discussed. 

2.3 Emissions 

Emissions in maritime industries refers to the release of GHG 

and air pollutants from ships that transport goods and 

passengers across the world’s oceans. Common types of 

emissions are CO2, NOx SOx, PM and CH4; They are 

dependent on the flame temperature. 

 
Fig. 3. NOx and CO concentration versus flame temperature

(Tf) (McAllister et al., 2011).

Figure 3 shows the challenges of achieving lean combustion,

emphasizing issues with flame stability at low temperatures. In

low temperatures, less NOx emissions is produced. Lean blow

off is the condition where the combustion flame transitions

from a lean to a condition where combustion cannot be

sustained (McAllister et al., 2011).

 

The calculated emissions are the results of emissions formed 

in the elementary reactions. Using the Arrhenius constant (k, 

K, A0, Ea) that is achieved from the chemical kinetics 

mechanism, and having pressure of chamber can calculate the 

combustion engine’s production rate or emission rate.  

2.4.1 Greenhouse gases (GHG) emissions 

CO2e, or CO2 equivalent, is a measurement unit used to 

quantify the impact of various GHG on global warming and 
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climate change. It allows scientists to standardize 

measurements of gases like CO2, CH4, nitrous oxide, and 

synthetic gases. CO2e helps in understanding the contributions 

of different gases to rising temperatures and environmental 

changes. The main GHG included in CO2e measurements are 

CO2, CH4, nitrous oxide, hydrofluorocarbons, 

perfluorocarbons, sulfur hexafluoride, and nitrogen trifluoride. 

CO2e is used to create a standardized metric that simplifies the 

comparison of the global warming potential of various gases. 

Table 1 shows the gases typically encompassed within the 

CO2e (carbon dioxide equivalent) measurement. (13) is total 

sum of this CO2e that is mostly reported in kg unit (US EPA, 

2023). 
𝐶𝑂2𝑒 = ∑(𝐺𝐻𝐺 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 × 𝐺𝑊𝑃) (13) 

 

Table 1: Global warming potential (GPW) for GHG. 

GHG  GPW 

Carbon dioxide (CO2) 

Methane (CH4) 

Nitrous oxide (N2O) 

1 

25 

298 

2.4.2 Alternative fuel selection 

According to the definition of this project, fuels - LNG, 

MeOH, NH3, and H2- in pure conditions were selected to 

model in the simulation. The chosen fuels are common fuels 

that researchers are working on as pure or mixture fuel for 

compression ignition (CI) engines and they are extensively 

expected to be utilized in marine applications (ABS, 2021). 

Their distinctive properties make them adaptable options for 

sustainable energy solutions. NH3, renowned for emissions 

reduction, aligns with green initiatives. LNG, a cleaner-

burning natural gas, is favored for its lower emissions profile. 

Biofuel, derived from renewable sources, offers an eco-

friendly alternative. MeOH, a liquid fuel, is valued for its 

versatility and low carbon footprint. H2, a clean energy carrier, 

stands out for its potential in fuel cell applications, promising 

a greener marine industry (Moirangthem and Baxter, 2016). 

LNG is a promising maritime fuel, reducing CO2 emissions by 

33.7%. Case studies reveal substantial environmental gains, 

with LNG leading in emissions, cost, and engine adaptability. 

However, high bunkering station costs hinder industry 

acceptance. Ongoing research focuses on optimizing 

infrastructure for improved viability (Wang et al., 2023). 

MeOH emerges as a promising alcohol fuel for maritime use, 

offering cleaner energy and reduced emissions. Its high-octane 

rating, compatibility with existing engines, and ease of 

integration make it a viable solution. Advanced engines, like 

MAN B&W LGIM, showcase its potential for improved 

performance and efficiency in maritime applications (MAN, 

2021; Tian et al., 2022; Ghimire et al., 2021b). NH3 has the 

potential use in maritime transport for decarbonization faces 

challenges such as regulatory changes and the absence of 

ready-to-sail NH3-fueled ships. NH3 engines, researched since 

1900, are costlier than conventional LNG and diesel engines. 

Storage, safety concerns, and emission control methods impact 

NH3 feasibility. Different NH3 grades and storage types exist, 

each with specific considerations. NH3 can serve as an energy 

carrier, particularly in fuel cells, offering advantages over H2. 

Combustion challenges include NH3's properties, 

flammability, and NOx emissions. Overall, NH3's adoption 

hinges on overcoming technological, safety, and regulatory 

hurdles (Reiter and Kong, 2008). 

H2 potential as a green marine fuel is evident, but challenges 

in emissions during production and low energy density 

complicate its viability. Grey H2, which is generated through 

the processing of alternative fossil fuels or natural gas, 

dominates production (75%), limiting emissions reduction by 

producing about 70-gram CO2 per MJ energy from H2. 

However, its exceptional energy content could enhance 

efficiency, but volume challenges and cryogenic storage 

requirements pose obstacles. H2 blends like HLNG or HCNG 

offer alternatives. Key concerns include safety, storage, and 

development costs (ABS, 2021). 

3. SIMULATION OF COMBUSTION CHAMBER 

In this simulation study utilizing Cantera, which is open-

source software, and Aspen HYSYS, the focus is on modeling 

the combustion chamber to assess the emissions of five 

alternative fuels – LNG, MeOH, NH3, H2, and Bioethanol. By 

considering optimal engine conditions for each fuel, the 

project delves into the intricate interplay of thermodynamic 

properties, combustion kinetics, and emissions. Cantera, with 

its open-source suite for chemical kinetics and 

thermodynamics, complements HYSYS, a widely used 

process simulation software. The examination of flue gas 

emissions provides valuable insights into the environmental 

impact of diverse maritime fuels, crucial for advancing 

sustainable and efficient combustion processes. 

3.1 Aspen HYSIS 

Aspen HYSYS is a process simulation software used to model 

and design chemical processes. It is widely used in the oil and 

gas industry to simulate various processes such as distillation, 

heat exchange, and chemical reactions. A built-in reactor was 

used to explore the scope of Aspen HYSYS for evaluating 

emissions from combustion. Figure 4 illustrates the set-up of 

the simulation, which was based on work done by (Suyitno et 

al., 2019). 

 
Fig. 4. Simulation of combustion in Aspen HYSYS.

3.2 Cantera

Cantera is an open-source suite of software tools for solving

problems involving chemical kinetics, thermodynamics, and

transport processes. It is designed to aid scientists and

engineers in modelling and simulating a wide range of

chemical phenomena, such as combustion, catalysis,
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atmospheric chemistry, and materials science. Cantera 

provides a comprehensive set of features, including a database 

of chemical species and reactions, thermodynamic and 

transport property calculations, a solver for kinetic equations, 

and support for various input and output formats. Cantera 

version 3.0.0 was used for this project in Python as interface 

of Cantera (Reiter and Kong, 2008). 

4. SIMULATIONS RESULTS 

In this section, the Cantera and Aspen HYSYS simulation 

results for all four alternative fuels are discussed. For the 

simulations, the initial combustion condition considered for 

the simulation was taken from state-of-the-art research papers, 

which are shown in Table 2. The composition of LNG is 

considered to be the same as LNG from Qatar: 89.87% CH4, 

6.65% Ethane, 2.30% Propane, and 0.98% Butane (Kanbur et 

al., 2017).  However, as GRI30 does not contain butane’s 

reaction mechanism and chemical kinetics, butane was not 

considered in the simulation; it was replaced by N2  

Table 2: Initial conditions of the fuel combustion in engine. 

Fuel 
Temperature 

(K) 

Initial 

Pressure 

(bar) 

Reference 

LNG 300 30 (Yao et al., 2022) 

MeOH 513 75 (Verhelst et al., 2019) 

NH3 563 39 (Reiter and Kong 2008) 

H2 300 16.5 (ABS, 2021) 

 

Moreover, as in this project the design of the engine is out of 

the scope of the project, the simulation considers the optimal 

engine conditions. In HYSYS, the reactor uses the Gibbs free 

energy method, but Cantera uses chemical kinetic mechanisms 

such as the GRI30 library database, which is based on 

experimental reaction rates developed by scientific institutes. 

 

4.1 LNG Simulation 

The CO2 and CO emissions of burning LNG is shown in Fig. 

5 in various equivalence ratios. The results of HYSYS and  

Cantera are similar, with small differences.  

 
Fig. 5. CO2 and CO from LNG in simulation.

Looking at the figures, the maximum CO2 emissions is about

90000 ppm in both simulations that produced in about

stoichiometric reaction. Additionally, it is obvious that by

increasing the equivalence ratio, CO concentration rises 

rapidly. Whereas Figure 6 compares the emission parts of 

NO2, NO, and N2O for LNG in two simulations with HYSYS 

and Cantera. In lean mixture, a major part of emission from 

LNG is NO. It peaks at the equivalence ratio of about 0.8, 

producing 3500 ppm and 8000 ppm emission in HYSYS and 

Cantera, respectively. N2O emission peaks at a fuel/air ratio 

of 0.6 N2O emission is very low in both simulations. 

 

Fig. 6. NOx and N2O from LNG in HYSYS and Cantera

simulation.

4.2 Methanol Simulation

Figure 7 illustrates CO2 and CO emission of MeOH in

various equivalence ratio.

 
Fig. 8. CO2 and CO from MeOH in HYSYS and Cantera.

The graphs are almost the same with negligible differences in

quantities that would be because of the concept of solving

chemical reactions in both utilized software. The maximum

amount of CO2 is 110000 ppm and 103000 ppm in HYSYS

and Cantera respectively. Whereas Figure 8 shows comparison

between NO2, NO, and N2O emissions for MeOH in two

simulations with HYSYS and Cantera. In lean mixture, the

NO2 has the highest peak at FAR of 0.5, but as the mixture gets

richer the NO, and N2O emissions increase up to the

equivalence ratio of 0.8, and after that they again decrease.
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The maximum NO emissions were calculated at about 5000 

ppm and 9000 ppm in Aspen HYSYS and Cantera, 

respectively. 

 

Fig. 8. NOx and N2O emissions from MeOH combustion in

HYSYS and Cantera simulation.

4.3 Ammonia Simulation

Simulation was based on an experiment where NH3 was used

in an two-stroke engine (Ichikawa et al., 2023). where initial

pressure is 39 bars and temperature are 563 K. The FAR is

changed from 0.1 to 1.1 to see how emissions depend on this

factor. Figure 9 shows that running in a lean mixture in needed

to reduce NH3 slip from combustion. The combustion of NH3

produces no carbon in the emissions and only NOX and N2O is

considered shown in Fig. 10. NO2 emissions are the highest

around the equivalent ratio of 0.5, and NO emissions are the

highest around FAR of 0.8, the same as the N2O emissions.

Similarities of results from Aspen HYSYS and Cantera

simulation are observed here, also like all other fuels. The

general trend that is seen for all fuels is that the CO2 emission

peaks at the stoichiometric ratio, where CO starts to increase

rapidly after that.

 

 
Fig. 9. NH3 slip from NH3 combustion in HYSYS and

Cantera simulation.

NO is the major part in NOX emission and usually peaks at 

about equivalence ratio of 0.8, while NO2 is usually 

maximized between 0.4 and 0.6 in all fuels. Generally, 

emissions decrease with reducing equivalence ratio. 

 
Fig. 10. NOx and N2O emissions from Ammonia combustion

in HYSYS and Cantera simulation.

4.4 Hydrogen Simulation

Figure 11 illustrates flue gas emission of burning H2 in various

equivalence ratio.

 
Fig. 11. NOx and N2O emissions from H2 combustion in

HYSYS and Cantera simulation.
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The similarities of graphs between Aspen HYSYS and Cantera 

show validation of the simulations. Generally, the emission 

concentrations are higher in Cantera’s results than HYSYS 

ones. At FAR of 0.8 NO emission is maximized with about 

5000 ppm in HYSYS simulation and 10000 ppm in Cantera 

modelling. NO2 emission is always below 55 ppm in both 

simulations, and N2O emission is negligible. However, clean 

H2 does not produce any CO or CO2, which is a great advantage 

of using H2 as a fuel instead of fossil fuels. Table 2 illustrates 

flue gas emissions from burning H2 in various equivalence 

ratios. The similarities of the graphs between Aspen HYSYS 

and Cantera show that the simulations are validated.  

5. COMPARING FUELS AND DISCUSSION 

The flue gas emissions produced by various fuels were 

investigated under the initial conditions specified in Table 2, 

with an equivalence ratio of 1 maintained for all fuels.  

 
Fig. 12. Emissions (g/MJ) to produce 1 MJ of energy.

By standardizing the energy output across different fuels, the

corresponding emissions were effectively compared.

 

Table 3. Emissions from fuels while producing 1 MJ energy.

Fuel 
Required fuel

(kg/MJ)

CO 

(g/MJ) 

CO2 

(g/MJ) 

CO2e 

(g/MJ) 

NOx 

(g/MJ) 

LNG 0.04 5.27 77.48 2157.18 2.35 

MeOH 0.06 9.64 51.64 1444.41 4.26 

NH3 0.08 0.00 0.00 11.91 1.25 

H2 0.01 0.00 0.00 35.14 1.72 

 

Figure 12 demonstrates that carbon-based fuels exhibit the 

highest emissions, with LNG having the greatest impact, 

followed by MeOH. The results of this analysis are also 

presented in Table 3. 

 
Fig. 13. CO2 equivalence for different fuels (g/ MJ).

Figure 13 presents a comparison of fuels based on their CO2 

equivalence. It is evident that carbon-containing fuels, such as 

LNG and MeOH, generate significantly higher CO2 

equivalence compared to NH3 and H2. However, fuel 

consumption also needs to be taken into consideration when 

suggesting fuel composition due to its effect on cost 

estimations. 

 
Fig. 14: Comparison of alternative marine fuels based on

required mass for producing 1 MJ energy (kg/MJ).

Figure 14 shows what amount (kg) of fuel is needed to produce

1 MJ of energy where it can be observed a quite opposite

scenario.  LNG overperforms other fuels in terms of fuel

consumption, H2 is the only exception which seems most

efficient in terms of fuel consumption too. However, fuel

consumption also needs to be taken into consideration when

suggesting fuel composition due to its effect on cost

estimations.

6. CONCLUSIONS

The study sheds light on emissions from various marine fuels,

contributing valuable data for sustainable energy choices in

maritime industries. The comparison of GHG levels shows

that when considering all the emissions, the non-carbon fuels

still release fewer emissions per unit of energy. Based on

different initial conditions of all the alternative maritime fuels,

H2 overperforms the other fuels in terms of fuel consumption.

Nonetheless, the infrastructure cost of using H2 should also be

considered as one of the decision factors. Although, among all

studied fuels, NH3 shows good potential as an alternative fuel

for the marine industries by producing the least emissions,

attention should be given to its safety issues. However, the

decision on fuel selection should also consider fuel

consumption. The research can be expanded to use complex

models of engines under different conditions, different ranges

of fuel mixtures, and infrastructure as a future work scope.

Fuel blends, for example, biofuel blends, can be explored with

different compositions and sources. Emissions during the

production process of the fuels need to be incorporated to

reduce the overall carbon footprint. Additionally, a multi-

criteria decision analysis study can be conducted for optimum

fuel selection based on criteria like emissions, cost, and

efficiency.
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Abstract: This study presents a kinetic reaction modeling method for direct air capture (DAC) process of 
CO2 adsorption using computational fluid dynamics (CFD). Here, CO2 is adsorbed by amine coated air-
surface contact area. The Langmuir model is employed to represent the kinetics of CO2 adsorption. Despite 
neglecting the diffusive phase of the adsorption, which is dominant only in the later stages of adsorption, 
the surface reaction model gives a satisfactory representation of the adsorption for a major part of the 
process. Honeycomb reactors with coated adsorbent may yield a better control of reaction rate and pressure 
drop compared to commonly used packed bed adsorption columns. Their enhanced performance in 
distributing the flow homogeneously between and within channels creates unique features for the reactor. 
In this study, we have analyzed mechanical and electrical energy demand for adsorbing CO2 per unit mass 
of adsorbed CO2 as a function of air flow rate. Adsorption performance of honeycomb structure is 
anticipated to significantly improve in comparison to the packed beds. 
Keywords: CFD, Hexagonal channel, adsorption, Direct Air Capture, surface reaction

1. INTRODUCTION 

From scientific viewpoints, excess amount of CO2 in 
atmosphere causes climate change with making oceans more 
acidic (Wang et al., 2011). As the solution for this problem, we 
need to replace fossil primary energy sources with CO2 neutral 
energy sources. However, there is still a significant release of 
CO2 (33 billion tons per year in 2021) which indicates great 
challenges ahead of fixing global warming (Zhongming et al., 
2021). The negative consequences of CO2 accumulation in the 
atmosphere will exist for thousands of years, even if emissions 
stop today (Solomon et al., 2009). So, there will be also needed 
to remove CO2 out of the atmospheric air, which is addressed 
as negative emissions. In this context, we should increase 
annual CO2 removals from the atmosphere to 10 billion tons 
of CO2 by 2050 (McQueen et al., 2021). It is a challenging 
objective, which makes scientists to explore different ways to 
find the most efficient method. One promising method is the 
Direct Air Capture (DAC), which removes CO2 directly from 
the air (Sanz-Pérez et al., 2016). 

In order to obtain a comprehensive and detailed analysis, 
computational fluid dynamics (CFD) simulations can be 
performed. In a series of studies (Deutschmann et al., 2001; 
Tischer and Deutschmann, 2005; Nejadseifi et al.,2024), a 
modern multi-dimensional approach to detailed modeling of 
fluid flow transfer processes and chemical kinetics have been 
developed. Specifically, there has been critical evaluation of 
plug flow, boundary layer, and general three-dimensional 
models for simulating steady-state transport processes and 
chemistry in a honeycomb channel flow (Klenov et al., 2009). 

In any gas-solid contact system, such as in CO2 capture 
processes, maximizing the interface between gas and solid 
surfaces while minimizing the pressure drop is a crucial goal. 
This enhances CO2 capture efficiency and reduces the energy 
required for blowing air in direct air capture (DAC) systems. 
Ceramic monoliths, due to their high surface area to volume 
ratio, have emerged as prime candidates for DAC contactors. 
They serve as excellent supports for CO2 sorbents, as 
demonstrated by several studies (Choi et al., 2011; Rodriguez 
-Mosqueda et al., 2018; Thakkar et al., 2016). Monoliths are 
also recognized for their minimal pressure drop (Thakkar et 
al., 2016). Recently, Fu and Davis (2023) demonstrated that 
employing monoliths as air contactors in DAC significantly 
reduces energy consumption compared to fixed beds. 
Verougstraete et al. (2020) have proposed the use of a carbon 
monolith for DAC to facilitate rapid heating and cooling, 
thereby achieving shorter adsorption-desorption cycles. 
Monoliths are comprised of straight channels with various 
cross-section shapes. Depending on their intended application, 
monoliths can adopt cylindrical, cubic, or hexagonal shapes. 
Sorbents are applied to the walls of these channels. In the case 
of CO2 capture, gaseous CO2 diffuses from the air stream to 
the walls of the monolith channels, where it is subsequently 
adsorbed by the sorbents. Improving the transfer of CO2 to the 
sorbent surface means a higher process efficiency and energy 
saving (Jiang et al., 2023). 

In this paper, simulations are carried out for monolithic 
contactor reactor with conventional straight channels. By 
changing the hexagonal channel flow rate, we promote the 
CO2 transport to the sorbent-gas interface and investigate its 
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effect on CO2 capture rate. Simulations are conducted under 
atmospheric pressure and isothermal conditions at 25 C. The 
computational CFD package of ANSYS-Fluent, V. 2021 R2 
has been used for the simulations. Upon solving the governing 
equations, steady flow profiles across the channel, local mass 
conversion between channel surface and gas, variation of CO2 
concentration at the channel outlet, pressure drop across the 
channel and power consumption per absorbed CO2 are 
investigated. 

 

2. METHODOLOGY

2.1 Sorbent coating and reactor model

In our simulations, a solid sorbent coat on an aluminum
support of hexagonal straight channels is constructed. Typical
samples of such hexagonal monoliths are presented in   Fig. 1
and cross section of meshed symmetrical view in Fig. 2. For
simplifying simulations, one sixth of the hexagonal cross
section is considered (triangular symmetrical channel). The
schematic of the single symmetrical hexagonal reactor is
shown Fig. 1, where the air flows through. Considering narrow
channel and lower flow velocities, the air flow can be assumed
confidently laminar.

 

2.2 Mathematical description of Transport Equations: 

The steady flow and transient reactive flow of air including 
CO2 is simulated in the hexagonal channel in which CO2 
reacts with the sorbent covering the walls of the hexagonal 
channel. First, steady flow is solved and only the reaction part 
is transient. Due to small amount of CO2 in the air flow, it is 
assumed that the reactions don’t have any effect on flow. The 
Navier–Stokes equations(1,2,3) for incompressible single-
phase fluid (air) solved. Mass transport equation (1) 
considered as time dependent, but momentum equation (2), 
which is taken as steady state are: 

 

 

∇. 𝒖 = 0 (1) 

 

(∇. 𝒖)𝒖 = −
∇𝑝

𝜌
+

µ

𝜌
∇ଶ𝒖 (2) 

 The inlet and outlet boundary conditions are velocity inlet and 
pressure outlet, respectively. No-slip wall boundary condition 
is applied over the sidewalls of the hexagonal channel. Flow is 
considered isothermal and energy equation is not taken into 
account, due to neglective share of adsorption heat to overall 
heat capacity of the flow. After solving steady Navier-Stokes 
equations for the velocity field, u, it is used in the transient 
CO2 species transport equation to solve it for CO2 
concentration C: 

 
𝜕𝐶

𝜕𝑡
+ 𝑢∇. 𝐶 = 𝐷∇ଶ𝐶 (3) 

Here, C represents the concentration of CO2 in the interstitial 
space, and D is the diffusion coefficient of CO2 in air. There 
is no source term in this equation since CO2 is not produced 
or consumed within the flow. However, CO2 adsorption 
occurs over the reactive surface of the channel. We apply a 
surface reaction model over the surface to consider CO2 
adsorption. At the inlet, C is known and remains constant over 
time. The outlet is governed by a zero diffusive flux condition 
for CO2. No mass flux is allowed through the sidewall except 
that made via reaction model. 

For reaction, only simple one-step reaction is considered. The 
reaction rate is calculated at the wall surface for the reaction of 
CO2 with amine. The following kinetic equations (4, 5) are 
taken as representative of several complex reactions:  

 

𝐶𝑂2 + 𝑅𝑁𝐻2 ⇌


𝑅𝑁𝐻ଶ
ା𝐶𝑂𝑂ି (4) 

 

𝑟 = 𝑘௨𝐶ை   𝐶ை (5) 

Fig. 1.  A. schematical view of the symmetric hexagonal
channel.

Fig. 2. Cross section mesh view of hexagonal channel cross
section prepared for simulations.
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Equation (4) is the simplified representation of reactions, 
where capture of CO2 occurs in the case of one primary amine 
group reacting with CO2. (Choi et al., 2009; Elfving and 
Sainio, 2021; Sanz-Pérez et al., 2016). In (4) R is the chain of 
atoms which is not participating in the reaction. In real physics, 
there is both forward and backward reactions, however, the 
model assumes that reaction occurs only in forward direction. 
Note that at moderate temperature of 25°C, assuming the 
irreversibility of the adsorption process is plausible if the 
sorbent has a strong affinity for CO2. Sorbent material 
properties used were same as in the adsorption modelling. Gas 
mixture inside the DAC-unit is estimated to contain only 
carbon dioxide (Elfving and Sainio, 2021). Equation (5) shows 
the relation between rection rate r and concentration of 
reaction mixture components CO2 (𝐶ைଶ). Also, r is the 
reaction rate based on Langmuir kinetic model and 𝑘௨  
is the reaction kinetic constant. The Langmuir equation 
assumes that the adsorption of the gas to the sorbent is a 
reversible process and occurs only on a homogeneous surface 
with a fixed number of adsorption sites without considering 
the effects of the water vapor (one-step process). Since the 
purpose is to focus mainly on the adsorption of CO2 during 
fast adsorption phase, selected single-step process model is 
considered to be sufficient for the analysis. Reaction kinetic 
constant 𝑘௨ is obtained from fitting simulation results 
to the experiments (Elfving and Sainio, 2021). The fitting 
results are specific to a given reaction and depend on 
temperature, humidity, and other reaction conditions. The unit 
of k depends on the order of the reaction, which can be 
determined experimentally. For the case of CO2 adsorption, 
the rate of reaction is directly proportional to the 
concentrations of both CO2 and the adsorbent. This means that 
increasing the concentration of sorbent or CO2 will increase 
the rate of reaction. 

 

3.RESULTS AND DISCUSSION

3.1 Fluid flow, pressure drop, concentration.

The calculation of pressure drop is performed in various mesh
sizes to verify the mesh independence. As seen from Fig. 2, we
have used 12 meshes per reactive side of the hexagon(wall). In
near wall, there is boundary layer and also surface reaction
occurrence; therefore, it’s necessary that meshes near wall is
in layered shape and structured (hexahedral), while in the other
regions only unstructured tetrahedral bigger meshes are
enough. Table 1 shows the dependence of pressure drop on
mesh resolution. For the coarse, fine and finer meshes, the
number of nodes are 136421, 431597, 647372, respectively.
The results for the pressure drop for different mesh sizes are
shown in Table 1, which reveal the discrepancy in the pressure
drop. The case with 12 mesh has the minimum difference with
the neighboring number of meshes, and it can be chosen
sufficient for the simulation. Flow is solved at steady state with
5000 iterations to ensure the convergence while the species
transport model is off.

Six different inlet velocities, 0.004 m/s, 0.007 m/s, 0.01 m/s,
0.02 m/s, 0.1 m/s, 0.3 m/s are set for fixed hexagonal channel.
The dependence of pressure drop-velocity is shown in Fig 3.

The results demonstrate a monotonic increase of pressure drop 
with velocity. Higher pressure drops mean a higher fan power 
requirement. In this work, length is kept constant although 
downsizing (shortening the channel length) can help with 
reducing the pressure drop. 

 

Table 1. Mesh independence study. 

 

 

 

To understand the adsorption phenomenon inside hexagonal 
channel and its efficiency, it is essential to compare the results 
with other geometries. In previous works, adsorption 
performance of honeycomb structure is compared to the 
packed beds for different sorbents and gases and also for CO2 
adsorption. (Jänchen et al., 2015; Querejeta et al., 2022; 
Sakwa-Novak et al., 2016; Wajima et al., 2011). To this end, a 
simulation has been conducted also for the cylindrical packed 
bed system by the length of 1.77 cm and the diameter of 0.9 
cm. This packed bed is consisted of particles with the diameter 
of 0.6 mm and particle volume fraction of 0.61. The working 
fluid temperature and humidity are taken as 25C and 2%. The 
hexagonal channel length is 1.77cm, but its side length is 
allowed to have different values. Figure 4 represents the time 
variation of CO2 concentration at the outlets of hexagonal unit 
and the packed bed during the adsorption process for the inlet 
velocity being as 0.13 m/s. Note that CO2 adsorption on an 

Mesh per hexagon 
side(X) 

Number of 
Nodes 

Pressure drops 
per length 

(Pa/m) 

8 136421(coarse) 0.5289 

12 431597(fine) 0.5309 

15 647372(finest) 0.5316 

Fig. 3. Variation of pressure drop per unit length (Pa/
m) with velocity(m/s). Hexagonal channel is 1 m. 
Air flow temperature is 25 °C and humidity is 2 vol-
%.
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amine-based sorbent is fast. A key benefit of using hexagonal 
channels in a DAC contactor is the lower pressure drop, in 
comparison to the packed beds or the channels with other 
shapes of cross sections, while keeping the reactive area still 
high. Surface reactions serve as the main transport mechanism 
at this study. For qualitative comparison between hexagonal 
channels and packed beds, several hexagonal channels with 
various side lengths are considered in this study. Variation of 
the side length of hexagons affects the rate of adsorption and 
as seen in Fig. 4, for hexagon side X=1.1 mm, the results for 
hexagonal channel and packed bed channel are pretty close. In 
future works, we will optimize the channel based on geometry 
and compare the system with similar-capacity packed bed 
systems. Figure 4 indicates that in an adsorption system 
whether open channels like the hexagonal one or a packed bed, 
the sorbent saturates after some time. For instance, for the 
hexagonal channel with hexagon side of X=1.1 mm, as time 
advances to around 5000 seconds, the adsorption site starts to 
saturate which is similar to what happens in our studied packed 
bed (Nejadseifi et al., under preparation). Following this 
comparative study, we will demonstrate a wider study on 
hexagonal units having the length of 1 m, where we investigate 
the effects of velocity on adsorption process of CO2. The 
purpose is to investigate the performance of hexagonal reactor 
for various flow rates.  At some point, since there is no 
experimental data for hexagonal cases, but for the packed bed 
with small size (length =1.77 cm) experiments results were 
available and CFD simulation for packed bed fitted to them, 
while deviation was below 5% (Nejadseifi et al., under 
preparation; Elfving and Sainio, 2021). Therefore, for small 
scale hexagon with length of L=1.77 cm, result of CFD 
simulations qualitatively compared with packed bed. And at 
the following, we have used the same reaction coefficients for 
big size hexagonal channel. 

Figure 5 shows the CO2 outlet concentration variation with 
time for large hexagonal channels with the length of 1 m for 
the hexagonal side of 0.58 cm at different velocities. As it is 
observed, increasing the velocity shortens the time to reach 
saturation. For the velocity of V=0.1 m/s, the outlet CO2 
concentration begins to rise between the time 0.5 × 10ସ and 

1.0 × 10ସ s. This is the time where system moves toward full 
saturation which is achieved around t~1.0 × 10ସ s. For V=0.3 
m/s, the outlet concentration rises almost from the beginning 
of the adsorption until it reaches full saturation around 
t~0.5 × 10ସ s.    

 

3.2 Techno-economics of CO2 capture in hexagonal channel

In designing a DAC system comprised of adsorption-
desorption cycle in a monolithic contactor, air flow rate, as
well as adsorption and desorption CO2 concentration cut-off
values (target CO2 capture) play prominent roles in the final
CO2 capture cost. It should be mentioned that the focus of the
current work is only on the adsorption stage. As the flow rate
increases, more CO2 is captured. However, higher flow rates
are also associated with larger pressure drops that impose
higher cost for consumed blowing power. Figures 6-8 present
capture rates, demanded blowing (fan) power, and electricity
consumption per ton of captured CO2 for hexagonal channel
contactor per unit length of channel at the side length of the
hexagon as 0.58 cm. Air velocity ranges from 0.004 m/s to 0.3
m/s.

Figure 6 shows the variation of adsorption completion time
(time for outlet concentration to reach 300 ppm) for a range of
velocities between 0.004 and 0.3 m/s. Smaller panel inside 
Figs. 6-8 showed detailed values within small ranges of
velocities. As it can be seen, increasing the velocity of air
decreases the time of adsorption. However, experimental
validations are required to confirm the performance of CO2
adsorption at higher velocities.

In this study, the sensitivity analysis is aimed to obtain how
the energy consumption related to air blow varies with air
velocity as part of adsorption process, where the desorption
stage is not considered. It can be noticed that in very small
velocities, the saturation time increases exponentially as
velocity decreases. Normally, very large saturation time

Fig. 4. CO2 Concentration(ppm) variation at the outlet
of hexagonal channel by time. Hexagonal channel and
packed bed length is 1.77 cm. Air flow temperature is 25
°C and humidity is 2 vol-%. Velocity=0.13m/s.

Fig. 5.  CO2 Concentration(ppm) change at the outlet 
of hexagonal channel by time. Hexagonal channel 
length is 1 m. Air flow temperature is 25 °C and 
humidity is 2 vol-%.
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characterizes the adsorption process of DAC as inefficient or 
expensive from the energy consumption point of view. 

The consumed blowing power cost per ton of captured CO2 is 
estimated based on the assumption that the cost is proportional 
to the energy required in adsorption process. Based on the 
design of our DAC system, we assume that the energy is all 
provided by electricity. In the adsorption cycle, air is blown 
through the contactor and the contactor is kept at constant 
temperature (~25 ◦C). The blowing(fan) power for adsorption  

is therefore estimated by (6): 
 

𝑃 =
𝑄. ∆𝑝

𝜂
(6) 

where P is the electrical power consumption during each 
adsorption cycle, ΔP is the air pressure drop for each hexagon, 
and Q is the volumetric flow rate of the air. The efficiency η is 

the effectiveness of the system in converting electrical energy 
into mechanical energy to move the air, which is considered as 
a fixed value of 0.8. Figure 7 shows the variation of consumed 
power by velocity. For both higher ranges of velocities 0.1 ≤ 
V ≤ 0.3 m/s and lower ranges 0.004 ≤ V ≤ 0.02 m/s, we see a 
non-linear relation between the blower (fan) power and 
Velocity. Then, the total electricity consumption per ton of 
adsorbed CO2 per each cycle is calculated by (7): 

 

𝐸 =
𝑃. 𝑡

1000. 𝑚ைଶ

(7) 

where P is the electrical power consumption, t is the adsorption 
time of each cycle (the time for CO2 concentration to reach 
300 ppm). Obviously, it is not efficient to run the system after 
saturation. Also, 𝑚ைଶ is the amount of CO2 adsorbed during 
each cycle. Figure 8 shows the electricity consumption per unit 
mass of CO2 for various velocities, which displays the same 
trend as in Fig. 7 except for the lower range of velocity that 
turns to be linear.  

 

4. CONCLUSIONS 

Recently, CO2 removal from air, also known as the Direct Air 
Capture (DAC), has attracted more attention due to its promise 
in reducing the greenhouse gas (GHG) emissions. However, 
costs associated with DAC have been the main obstacle for 
large-scale commercialization. Here, we presented a novel 
hexagonal shaped contactor and investigated performance of 
adsorption under various flow rates. Direct air flow inside 
straight channel is more commercialized with a higher demand 
because of its lower pressure drop, which makes it practical for 
large scale applications. Such a straight channel application is 
supposed to be more economic than non-straight channels or 
packed bed reactors. The techno-economic analysis showed 
how the adsorption stage is dependent of various air velocities. 
Focus of this work was on lower ranges of velocities (V ≤ 0.3 

Fig. 6. Variation of adsorption reaction time (Time to 
reach 300 ppm) by velocity. Hexagonal channel length is 1 
m. Air flow temperature is 25 °C and humidity is 2 vol-%.

 

Fig. 7. Consumed blowing (fan) power .vs. 
velocity. Hexagonal channel length is 1 m. Air flow 
temperature is 25 °C and humidity is 2 vol-%.

Fig. 8. Electricity consumption per / Adsorbed mass 
of CO2.vs. velocity. Hexagonal channel length is 1 m. Air 
flow temperature is 25 °C and humidity is 2 vol-%.
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m/s); where the flow regime remained laminar; This study 
could be repeated for higher ranges of velocities at the ranges 
of velocities (V ≥ 2 m/s) at the future.  As future work, we also 
perform experiments on the hexagonal channel contactor, and 
examine pressure drop, wall thickness effects, and hexagons 
side length. We will focus more on novel numerical methods 
and investigate using novel contactors shapes.  

This is a preliminary study to shed light on the issue. Existing 
set of results are not covering a broad range, and we know that. 
However, most of the previous works are laboratory-scale 
experimental study and maneuver on the different aspects 
including fluid mechanic parts or technoeconomic. However, 
since types of studied barely done earlier, there is big 
differences on data reported by different authors, especially 
when it comes to cost estimation.  Importance of these results 
are somehow can be shown on the cost dependence on pressure 
drop and air volume flow rate. At the future, if desorption 
phase is studied beside adsorption phase, this hexagonal 
geometry can be optimized for minimal consumption of 
electrical energy for unit of adsorbed CO2. 
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Abstract: The objective of this paper is to investigate the fluid flow and conjugate heat transfer in a 2D 
channel using lattice Boltzmann method (LBM). In this work, fluid flow and heat transfer are studied for 
the Reynolds numbers varying between 250 and 1000. The working fluid in the simulations is air with the 
Prandtl number of 0.72. At the Reynolds number of 600, the effect of different conductivity ratio (1, 10, 
100, 400) between solid and fluid are investigated. Furthermore, at this Reynolds number, the distance 
between obstacles for the conductivity ratio of 10 is evaluated. The results show that any increase in 
Reynolds number leads to a heat transfer improvement. Moreover, increase in the conductivity ratio leads 
to an isothermal surface and enhanced heat transfer. The more the distance between the obstacles, the better 
the heat transfer rate. The results obtained from LBM are in good agreement with experimental and 
conventional computational fluid dynamics methods. 
Keywords: Lattice Boltzmann Method (LBM), Conjugate heat transfer, Nusselt number, Prandtl number

1. INTRODUCTION 

In recent years, the computer technology and e-commerce 
have significantly progressed. Over time, electronic 
components have become more compact and occupy smaller 
space. As the components are more compact, the processing 
speed has increased considerably. Due to the smaller space 
occupied by the components, temperature resistance is 
increased against heat transfer and the performance has 
dropped with increasing temperatures in electronic equipment. 

In electronic cooling, forced convection is often the dominant 
heat transfer mode, with the cooling agent being either a 
common gas or a heat-transferring liquid. Various techniques 
have been proposed to enhance the heat transfer rate between 
the solid electronic devices and the adjacent cooling fluid, and 
their thermal performance has been evaluated. Among these 
techniques, the use of solid fins Chen et al. (1997) and blocks 
Sara et al. (2001) have proven to be efficient. Additionally, 
Ramesh et al. (2021) has done an extensive review of various 
numerical and experimental studies that have investigated 
methods for enhancing heat transfer in cooling devices. 

Chikh et al. (1998) conducted a numerical investigation on 
forced convection heat transfer within a partially heated 
channel, focusing on the impact of porous obstacles installed 
on the heated section to enhance the heat transfer rate. Their 
results demonstrated that using porous obstacles under certain 
flow and thermal conditions lead to a 90% drop in wall 
temperature. 

There have been many studies on the heat transfer of the 
extended surfaces in channels. Bhowmik et al. (2009) 

examined pressure loss and heat transfer in a channel with two 
bending blades, and provided connections for a laminar, 
transient and turbulent flow in a marginal geometry. 
Improvement of heat transfer for equally spaced plates was 
done experimentally by Leung et al. (1999). They examined 
the parameters including the diameter of the slopes, the 
geometry and height of the cavities, and the Reynolds number. 
They concluded that for the ducts, heat transfer decreases with 
increasing the diameter of the duct due to the decrease of the 
surface. The effect of cubic layout on turbulent flow was 
experimentally investigated by Meinders et al. (2002). They 
concluded that, with increasing flow velocity, fluid flow would 
be affected by the distance between extended surfaces. Nazari 
et al. (2013) investigated a heat transfer problem in a closed 
compartment with a vertical or horizontal porous layer using 
LBM.  

Numerical simulations that use conventional computational 
fluid dynamic (CFD) techniques, such as finite volume and 
finite difference methods, are difficult to apply in complex 
boundary conditions, for instance in heat transfer problems at 
the interface between the fluid and solid instead of a constant 
temperature or heat flux condition. Using such a conjugate 
boundary condition in CFD methods will increase the 
computational cost. Therefore, it is required to use a less 
expensive method. One of the most useful methods for this 
kind of problems is the Lattice Boltzmann Method (LBM). 

LBM is a reliable approach for studying numerous fluid and 
heat transfer issues, including multi-component and 
multiphase flows, microflows, turbulent flows, fluid-solid 
interactions, and both forced and natural convection in 
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complex geometries. Based on the kinetic theory of gases with
a mesoscopic approach, LBM is widely used due to its
effectiveness in handling physical problems with intricate
geometries and boundary conditions. Consequently, it is
frequently employed for solving fluid flow problems in porous
media. Ataei-Dadavi et al. (2019) studied fluid flow and heat
transfer in a porous cavity with side heating. Results showed
that heat transfer decreased with porous media compared to a
non-porous cavity. They developed a new method to predict
Nusselt numbers for such cavities. Nejadseifi et al. (2024) used
the lattice Boltzmann method to computationally study porous
media composed of monodisperse square obstacles within the
Darcy regime. Mirahsani et al. (2023) investigated heat
transfer enhancement in a partially heated channel with porous
obstacles. Using a lattice Boltzmann method, the flow and
temperature fields were analyzed. Optimal design parameters,
including the height, pitch, and permeability of the porous
blocks, were determined. Results showed that the optimal
block height and pitch depend on the Darcy number (Da). The
impact of obstacle geometry and porous material distribution
on thermal performance was also examined. Matsuda et al.
(2024) enhanced enthalpic lattice Boltzmann method (LBM)
to simulate conjugate heat transfer in non-homogeneous media
with time-dependent thermal properties. Their findings
highlighted the potential of the modified LBM for simulating
complex heat transfer in a non-homogeneous media and in
optimizing heat exchanger designs. Paknahad et al. (2023)
investigated pore-scale flow and conjugate heat transfer in
high-porosity open-cell metal foams. They showed that lower
porosity foams transition from the Darcy to non-Darcy flow
regime at lower Reynolds numbers, while pore density has
minimal impact on this transition. Heat transfer results
indicated that metal foams cool rapidly at high flow velocities,
with minimal temperature rise in the fluid.

Although LBM has been successfully applied to simulating
fluid flows in small-scale channels, there are few reports of
using LBM to simulate fluid-solid coupling heat transfer in
such channels. In this study, the fluid flow and heat transfer
within the channel with extended surfaces is investigated and
lattice Boltzmann equations are used for simulations. The
simulation setup is a channel with insulated internal surfaces,
wherein heat transfer occurs through extended surfaces; In this
setup, effects of changing parameters such as Reynolds
number, conduction coefficient ratio and obstacles distance are
investigated. It is assumed that there is a constant heat flux at
the bottom of the obstacles. Validation of the results shows a
good agreement with other works.

2. METHODOLOGY

2.1 Lattice Boltzmann Method

In recent years, LBM has been developed as a powerful
simulation method to simulate many fluid mechanic problems.
This method, based on the kinetics of gases theory, has been
considered as a powerful numerical technique for simulating
fluid flow and heat transfer (Paknahad et al., 2023, Ramesh et
al., 2021) Compared to the conventional CFD methods, this
method has several advantages. The conventional CFD
methods discretize mass, momentum, and energy equations,
and solve them based on macroscopic quantities such as

velocity and pressure. Unlike CFD, LBM uses the number of 
finite speeds created on a regular lattice to solve problems 
(Noble et al., 1996). 

2.2 Mathematical description of fluid flow and heat 
Transport Equations: 

In contrast with the conventional macroscopic Navier–Stokes 
approach, the lattice Boltzmann method utilizes a mesoscopic 
simulation model to represent fluid flow (Suss et al., 2023). 
This technique is based on modeling the movement of fluid 
particles in different directions to derive macroscopic fluid 
characteristics, such as velocity and pressure. In this method, 
the fluid domain is divided into uniform cells, each containing 
a set number of Distribution Functions that represent fluid 
particles movement in specific discrete directions. Various 
LBM models are available depending on the 
dimensionality(2D-3D) and the number of velocity directions. 
This study focuses on two-dimensional 2D flow using a 2D 
square lattice with nine velocities, known as the D2Q9 model. 
The velocity vectors of the D2Q9 model are labeled as c0 to 
c8. The discrete velocities of the D2Q9 model are: 
  

𝑒 = ቐ

(0,0)                                   𝑖 =  0                  
(±1,0)𝑐, (0, ±1)𝑐            𝑖 =  1, 2, 3, 4      
(±1, ±1)𝑐                         𝑖 =  5, 6,7, 8       

   (1) 

 

Under equilibrium conditions, macroscopic quantities can be 
measured before allowing the particles to move and collide in 
the next time step. In standard single relaxation time (SRT) 
lattice Boltzmann (LB) models, the BGK (Bhatnagar-Gross-
Krook) model (Zou and He, 1997) is used to represent 
collisions, as described in Eq. (2). In this equation, 𝑓 denotes 
the density distribution function in direction i, and 𝑒 
represents the discretization direction. Additionally, Δ𝑡 is the 
LBM time step, and 𝜏 is the dimensionless relaxation time 
provided in Eq. (3). 

 

𝑓(𝑥 + 𝑒𝛥𝑡, 𝑡 + 𝛥𝑡) = 𝑓(𝑥, 𝑡)

−
𝛥𝑡

𝜏
[𝑓(𝑥, 𝑡) − 𝑓

(𝑥, 𝑡)] (2)
 

where: 
 

𝜏 = 3𝜈 +
1

2
           (3) 

where 𝑐 =
௫

௧
 and i is an index for directions. The equilibrium 

distribution function 𝑓
(𝑥, 𝑡)is calculated as (4): 

 

𝑓
(𝑥, 𝑡) = 𝜔𝑖𝜌 ቆ1 +

𝑢. 𝑒

𝑐௦
ଶ

+
(𝑢. 𝑒)

ଶ

2𝑐௦
ସ −

𝑢ଶ

2𝑐௦
ଶቇ          (4) 

In the chosen D2Q9 model, the speed of sound 𝑐௦ is equal to 
√3 in the specified value. Additionally, ω is the weight 
function represented by (5) as: 
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𝜌 =  𝑓

଼

ୀ

    ,       𝑉 =
1

𝜌
 𝑓

଼

ୀ

𝑒          (5) 

 

𝜔𝑖 = ൝
4 9⁄                        𝑖 =  0                  
1 9⁄                       𝑖 =  1, 2, 3, 4      
1 36⁄                     𝑖 =  5, 6,7, 8       

   (6) 

In summary, the SRT-LBM process includes three main steps: 
(1) calculating the distribution function within the simulation 
domain, (2) computing collisions at each time step, and (3) 
streaming, or transferring the distribution function to 
neighboring nodes (Nejadseifi et al.,2024). 

The distribution function for the thermal LBM can be 
represented as: 

 

𝑔(𝑥 + 𝑒𝛥𝑡, 𝑡 + 𝛥𝑡) = 𝑔(𝑥, 𝑡)

−
𝛥𝑡

𝜏
[𝑔(𝑥, 𝑡) − 𝑔

(𝑥, 𝑡)] (7)
 

The corresponding equilibrium distribution functions for fluid 
and solid are defined as follows (Mohammad, 2007): 

 

𝑔
(𝑥, 𝑡) = 𝜔𝑖𝑇 ൬1 +

𝑢. 𝑒

𝑐௦
ଶ

൰                     (8) 

 

𝑔
(𝑥, 𝑡) = 𝜔𝑖𝑇                     (9) 

Finally, for both solid and fluid, the temperature field is 
computed as: 

 

𝑇 =  𝑔

ୀ

                     (10) 

 

 

3. RESULTS AND DISCUSSION
 
The physical geometry used for calculations is shown in Fig. 
1. The fluid flow is assumed laminar, incompressible, viscous, 
and Newtonian. The length of the entrance to the channel (Lin) 
before the obstacles is 6 times the obstacle’s height. The length 
of the outer part of the channel, which is extended after the 
second obstacle (Lout), has been selected to be long enough 
for vortices observation. For this reason, the length of the 
outlet portion of the channel, which is located after the second 
obstacle, is 8H where H is the height of the channel. 

The bounce back scheme is used for representing the wall 
boundary condition. In the bounce back scheme, it is assumed 
that the particles moving towards solid boundaries are returned 
into the fluid. Therefore, the distribution functions that are 
toward the wall bounced back in the opposite direction. The 
fully developed inlet velocity profile is set as  𝑢(𝑦) =
4𝑢௫(𝐻𝑦 − 𝑦ଶ)/𝐻ଶ, and a negligible compressible flow is 
assumed (the maximum velocity is 0.1 in the input current). 
The unknown distribution functions in the input and output 
sections of the channel are obtained using the Zou and He. 

(1997) boundary function. The adiabatic boundary condition 
is employed on the walls. However, for the parts of the walls 
which include obstacles, non-zero temperature gradient and 
constant heat flux boundary conditions govern at the bottom 
part of the obstacle (q=1). On the boundaries between solid 
obstacles and fluid, the equilibrium distribution function, as 
well as the conductivity values for the fluid and solid, is 
changed. At the interface of the solid obstacles and fluid, the 
continuity of heat flux and temperature is naturally satisfied. 

 

Fig 1. Schematic diagram of the problem geometry.

 

3.1 Grid independence test and code validation 

The numerical simulations are carried out by a FORTRAN in-
house code. To ensure the accuracy of the written code, a 
comparison is made between different studies to ensure a 
dimensionless reattachment study (Xr/L). These results are 
compared with the results of CFD(ANSYS-Fluent 2021 R2) 
software, (Korichi and Oufer, 2005; Pirouz et al., 2011). The 
fluid flow at the channel entrance has parabolic state and 
Reynolds number, which varies between 250 and 1000. Fig. 2 
shows the dimensionless reattachment length for Reynolds 
numbers below 1000. The results show good agreement with 
other studies. 
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Fig. 2. Dimensionless reattachment length comparison for various
Reynolds Number for a single obstacle.

The second validation is for grid independency. Validation is
done for Reynolds numbers 500 and 750. The number of
lattices required for code convergence is considered. (The
channel width is 96, 128, and 160 lattice). The mean Nusselt
number on the two obstacles for these lattices are compared
with each other. Table 1 shows that for the range of Re that
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have been studied, with 160 points across the channel, 
acceptable results are achieved. As Re increases, the lattice 
size needs to be finer: for example, when the Re reaches 500, 
the difference in the results for 96 lattice approaches 2% and 
this lattice is no longer suitable for such Re value, and that is 
why the number of grids needs to be higher (160 lattice). 

Table 1. Effect of resolution on the mean Nusselt Number at 
different Reynolds numbers 

Obstacle  Re Mean Nusselt number 

96 Grid  128 Grid 160 Grid 

1 500 9.82 
(1.44%) 

9.91(0.6%) 9.97 

2 500 8.08 
(1.92%) 

8.17(0.8%) 8.24 

1 750 11.25 
(1.83%) 

11.33 
(1.16%) 

11.5 

2 750 10.14 
(2.42%) 

10.23 
(1.52%) 

10.40 

 

The third validation is associated with the thermal part of the 
written code. The flow inside the channel with 3 obstacles 
within it is considered and compared with the results of 
Korichi and Oufer. (2005). These results are obtained for 
Re=400. The lattice considered is square and the channel's 
height is divided into 160 cells. Here, the Nusselt curve has 
been calculated and plotted on extended surfaces. As shown in 
Fig. 3, the results are in good agreement with Korichi’s work. 
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Fig. 3. Validation of the local Nusselt number distribution on
obstacle Surface (Re=400).

3.2 Fluid flow and heat transfer analysis

Conjugate heat transfer, especially in complex and small sized
geometries, strongly depends on the flow in the desired
location. In such cases, low Re is expected because of low
velocity and small dimensions of the channel. In the small

sized channels where laminar flow regime exists, the viscosity
leads to flow separation and circulation.

In this study, the effect of flow velocity and other parameters
on heat transfer have been investigated; the intensity of heat
transfer depends on the local Nu number based on the length
of the obstacle. The coefficient of heat transfer between solid
and fluid is equal to 1,10,100,400 W/m2K. The flow velocity
is proportional to Re number, which is based on the channel
height and varies between 250 and 1000. The fluid flow is in
the laminar regime. The inlet fluid velocity varies from 0.3 to
5 m / s which maintains forced convective heat transfer
(Anderson and Moffat, 1992).

3.2.1 Effect of Re number

The Re number is intended to be 250, 500,750 and 1000. At a
low Re, flow is stable, and the velocity fluctuations decrease
over a certain period of time to reach a constant velocity. In
Fig. 4(a), the velocity fluctuations are plotted over time at y =
0.5 and x = 9. When Re increases, the fluid enters a transient
state. When this happens, the fluctuation that occurs in the
fluid decreases over time to reach a stable value. The velocity
variations are shown in Fig. 4(b) for two values of Re.
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Fig. 4. Changes in the Horizontal component of velocity by time at
y = 0.5 and x = 9 for a) Re = 250 and b) Re = 1000.
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As fluid flows in the channel, vortices are generated behind the 
obstacles. At lower Reynolds number, these generated vortices 
remain fixed behind the obstacles.  When Reynolds number 
exceeds a certain value, due to the increase of the cross-section 
(which occurs after the second obstacle) at the downstream and 
due to a sudden expansion, a large vortex is generated and 
moves forward. In this case, the flow regime changes from 
laminar to transient. In transient flows, these small vortices 
that form behind the obstacles originate, grow, and move 
forward in the flow direction. The order of magnitude for the 
velocity inside these formed vortices is 2 or 3 times less than 
the flow in the center of the channel. These streamlines are 
shown in Fig. 5. Isotherm lines are presented for various 
Reynolds number in Fig. 5. The dimensions of the 
computational domain are very large in comparison with 
dimensions of the obstacles.  For this reason, in order to see 
the isothermal lines and streamlines around the obstacles, only 
part of the simulation domain which includes obstacles is 
shown in Fig. 5. 

 

(a) 

(b) 

(c) 

(d) 

 

Fig. 5. Snapshot of variations of Streamlines and isothermal lines in
terms of Reynolds number for ks / kf = 10 and Reynolds (a) 250.
(b) 500 (c) 750, (d) 1000.

The heat transfer rate is characterized by the local Nusselt
number based on the obstacle's outer layer dimensionless
length. Time-averaged dimensionless temperature and
velocity components are calculated over the simulation
domain. Local and mean Nusselt numbers and dimensionless
temperature are formulated as (11) and (12):

 

𝑁𝑢௫ =
−1

𝜃

𝜕𝜃

𝜕𝑛
(11) 

 

𝜃 =
𝑇 − 𝑇

𝑞𝐻 𝑘⁄
(12) 

 

Fig. 6 shows the variation of Nusselt number against the length 
of the outer surface of the obstacle for different Reynolds 
numbers. As seen in these figures, the Nusselt increases with 
increasing Re. In the lower left corner, due to the rotation of 
the flow and the proximity of the inlet heat flux, the Nusselt 
number has a relative maximal value. Near the upper left 
corner on the obstacle, the increases in the temperature 
gradient of the fluid (| ∂θf /∂n |) is due to the increase in 

momentum. For the obstacle left face (0.25> obstacle outer 
surface length> 0), and before the sudden increase of the 
Nusselt in the upper left corner, Nusselt has a minimum 
relative value. For the upper face of the obstacle (0.5> obstacle 
outer surface length > 0.25), the temperature gradient value is 
higher than the obstacle left and right face. This is due to the 
higher flux and, in turn, the reduction of the thickness of the 
boundary layer. For the obstacle right face (0.75> obstacle 
outer surface length > 0/5), the Nusselt increases slightly with 
the increase of the Reynolds number, and this increase is 
negligible compared to the increase in the Nusselt in the upper 
and left face. It is important to mention that the trend of Nusselt 
variation versus the length of the outer surface of the obstacle 
remains unchanged with Re within its range between 250 and 
1000. 
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Fig. 6. Time-averaged variation of the Nusselt number in terms 
of the outer surface of the obstacle for ks / kf = 10.  a) first 

obstacle b) second obstacle

3.2.2 Effect of conductivity ratio

One of the parameters that plays an important role in heat
transfer is the conductivity ratio between the solid and the fluid
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(b) 

(c) 

(d) 

 

Fig 7. Variation of time-averaged isotherms for different Solid-
Fluid thermal conductivity ratio for Re =600. a) ks / kf = 1 b) ks / 

kf = 10 c) ks / kf = 100 d) ks / kf = 400 
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Fig. 8. Time-averaged variation of Nusselt in terms of the outer
surface of the obstacle for the ratio of different Solid-Fluid
thermal conductivity ratio for Re =600.  a) first obstacle b)

second obstacle

(ks / kf). By increasing the conductivity ratio, the internal 
resistance against thermal flux decreases, which also reduces 
the maximum temperature and reduces the internal 
temperature gradient. When the conductivity order of 
magnitude for solid obstacles is 2 or 3 times larger than the 
conductivity of fluid, the obstacle behaves as an isothermal 
object. Fig. 7 shows the dimensionless isothermal curves. 
Here, Re is fixed and equal to 600. The thermal conductivity 
ratio between solid and fuel (ks / kf) is set to 1, 10, 100, and 
400. For (ks / kf )= 1, the density of the isothermal curves for 
both the solid and fluid is identical. When this ratio increases, 
gradually the temperature of the obstacle decreases, and the 
obstacle itself behaves as an isothermal object. 
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Fig. 9. Time-averaged variations of the average Nusselt number
with variation of the Reynolds number for ks /kf=10, 100, 400. a)

first obstacle b) second obstacle

 
 
Fig. 8 shows the distribution of local Nusselt on extended 
surfaces. When the ratio ks / kf = 1, the behavior of Nusselt is 
completely different from when this ratio is higher; and in this 
case, the obstacle behaves such as heat insulator. When the 
thermal conductivity ratio of the solid and the fluid increases, 

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.042 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

309



the difference in the surface temperature of the obstacle is 
almost negligible. For a situation in which this ratio is greater 
than 100, the distribution of Nusselt does not change, and solid 
obstacles behave as an isothermal object. 

The mean time-averaged variation of Nusselt in terms of Re 
for different conductivity ratios of solids and fluids is shown 
in Fig. 9. As Re increases, the magnitude of heat transfer from 
the obstacle surface increases. Also, increasing thermal 
conductivity ratio between solid and fluid causes reduction of 
the heat flux resistance in the solid obstacle. 

 

4. CONCLUSIONS 

In this paper, fluid flow and heat transfer in a two-dimensional 
channel with two obstacles located on its lower wall were 
investigated. A two-dimensional Lattice Boltzmann model 
was used to study the conjugate heat transfer between solid and 
fluid and the effect of many parameters on heat transfer was 
investigated. Compared to the commercial CFD methods, the 
use of the Lattice Boltzmann method has many advantages. 
One of the benefits of this is the simple application of the 
Boltzmann's method for complex geometries and the simple 
calculation process. In order to demonstrate the flexibility of 
this method, many parameters such as Reynolds number, 
thermal conductivity ratio between solid and fluid, and also 
distance between obstacles were investigated. The obstacle 
was assumed to heat up with constant heat flux, which actually 
simulates the heat transfer in electronic equipment. The results 
showed that with the increase of Reynolds number, the total 
heat transfer rate increases, and also the highest heat transfer 
occurs at the corners of the obstacles. The solid conductivity 
coefficient plays an important role in heat transfer. As 
conductivity ratio between solid and fluid increases, the 
resistance to heat transfer decreases and this means more heat 
transfer for extended surfaces. 
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Abstract: Circulating fluidized beds is one of the emerging technologies to convert waste to energy and an 

attractive method on a large scale. Key components such as the loop seal, gas distributor and cyclone 

separator play pivotal roles in facilitating solid recirculation and heat transfer within the system. This study 

focuses on the design and optimization of a CFB reactor using data derived from Barracuda Virtual Reactor 

software (CPFD). Initially, data from a small scale CFB reactor with main dimensions of 84 mm diameter 

and a loop seal diameter of 34 mm was utilized for simulation validation. By comparing simulation results 

with experimental data, the accuracy and reliability of the computational model were ensured. 

Subsequently, different reactor models were constructed and analyzed to explore various configurations 

and operating conditions. The results obtained from simulation based design and optimization provided 

valuable insights into achieving the optimal performance of the CFB system. By refining geometry, 

efficiency was increased by 32%. Overall, this study contributes to advancing the understanding, 

application and design modification of CFB technology in waste to energy conversion and large-scale 

industrial processes. 

Keywords: Circulating Fluidized Bed, Fluidization, Minimum fluidization velocity, CFB, simulation, 

CPFD, Grid Size 

.

1. INTRODUCTION 

In the contemporary energy landscape, the escalating demand 

for sustainable energy solutions has accelerated efforts to 

harness energy from renewable sources. Among various 

technologies, fluidized beds stand out for their efficiency in 

biomass gasification and combustion, attributed to superior 

mixing, enhanced heat transfer and uniform temperature 

distribution (Moradi et al., 2020).  

 

Fig. 1. Schematics of CFB (Pallarès, 2008).

Fluidization is a process wherein solid particles in a loosely 

packed bed exhibit fluid-like behavior when gas is blown 

upwards through them. In gas-solid systems, gas is introduced 

at the bottom of a column containing particles, causing them 

to vibrate and spread out to balance the drag force from the 

gas. As the gas velocity increases, this drag force equals the 

weight of the particles, resulting in a fluidized bed. Various 

flow patterns can emerge depending on the gas velocity, as 

illustrated in Fig. 2. 

 

Fig. 2. Schematic of fluidized bed in different regimes (Soomro et

al., 2012).
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These regimes include fixed, bubbling, slugging, turbulent and

pneumatic conveying. The transition from a fixed bed to a

fluidized bed occurs at the minimum fluidization velocity, the

gas velocity needed to suspend the solids in the gas stream. At

very high gas flow rates, a substantial portion of solid is

ejected into the space above the bed, leading to significant

particle loss through elutriation and entrainment (Huang,

2006).

To mitigate this issue, gas-solid separators are employed to

capture and return most particles to the bed (Soomro et al.,

2012). Maintaining stable and continuous solid circulation in

a gas-solid system has led to the development of Circulating

Fluidized Beds (CFB’s) as shown in Fig. 1, for large-scale

processes, particularly in the petroleum and power generation

industries (Huang, 2006). CFB’s function similarly to

bubbling beds but with substantially higher fluid flow

velocities, resulting in more intense mixing and enhanced gas-

solid contact. The high relative velocity between gas and solid

particles leads to exceptionally high rates of heat and mass

transfer. However, the increased gas velocities and

recirculation of solids make CFB systems more costly in terms

of power consumption and investment compared to

conventional fluidized bed reactors (Moradi et al., 2020).

The efficiency of CFBs is highly dependent on flow behavior

making it crucial to understand this behavior for scaling,

designing and optimization. Over the past decades,

Computational Fluid Dynamics (CFD) has emerged as a

valuable tool for predicting flow behavior in fluidized bed

processes. However, further model development and

validation are necessary (Pallarès, 2008).

The experiment utilized sand particles as the bed material and

air as the fluidizing fluid. Sand is commonly used in fluidized

bed reactors to enhance the mixing of fuel with the fluidizing

gas, improving mass and energy transfer. In a biomass CFB

reactor, biomass rapidly reacts with the gas to produce

synthesis gas and char. The unreacted char circulates with the

sand particles through the system and back to the reactor, with

sand primarily controlling the circulation behavior rather than

the char (Niven, 2002). Various design modifications were 

implemented on the cyclone, adjustments to the

recirculating pipe inlet angle and the height of the recirculating

pipe. Among the different design variants, the one exhibiting

the maximum particle recirculation rate was selected.

This work underscores the importance of precise modeling and

experimentation in optimizing fluidized bed reactors for

biomass gasification and combustion, paving the way for more

efficient and sustainable energy production.

2. MP PIC MODEL DESCRIPTION

The gas phase mass and momentum conservation can be

modelled by the volume averaged Navier-Strokes equation

and are used as a continuum on a Eulerian grid (Chutima 

Dechsiri, 2004).   

𝜕(𝜃𝑓𝜌𝑓)

𝜕𝑡
+ ∇. (𝜃𝑓𝜌𝑓𝑢𝑓) = 0 

(1) 

𝜕(𝜃𝑓𝜌𝑓𝑢𝑓)

𝜕𝑡
+  ∇. (𝜃𝑓𝜌𝑓𝑢𝑓)

=  ∇𝑝 − 𝐹 +  𝜃𝑓𝜌𝑓𝑔

+  ∇. (𝜃𝑓𝜏𝑓) 

(2)  

𝐹 =  ∬ 𝑓𝑚𝑠 [𝐷𝑠(𝑢𝑓 − 𝑢𝑠)

− 
1

𝜌𝑠

∇𝑝] 𝑑𝑚𝑠𝑑𝑢𝑠 

(3) 

where 𝜃𝑓, 𝜌𝑓, 𝑢𝑓, 𝜏𝑓 are fluid phase volume fraction, density, 

velocity and stress tensor and 𝑚𝑠, 𝑢𝑠 are the mass and velocity 

of the particle. F is the total momentum exchange with particle 

phase per volume, g is the acceleration due to gravity and p is 

the pressure. 

The solid phase can be modelled by a particle distribution 

function given by equation 4 (Snider, (2001)). Considering the 

time rate of change of above equation the Liouville equation is 

obtained. This equation assumes that there are no direct 

collisions or particle breakup. 

𝑓(𝑥, 𝑚𝑠, 𝑢𝑠, 𝑡)𝑑𝑚𝑠𝑑𝑢𝑠 

𝜕𝑓

𝜕𝑡
+ ∇𝑥 . (𝑓𝑢𝑠) + ∇𝑢𝑠. (𝑓𝐴) = 0 

(4) 

The particle acceleration, A as a function of aerodynamics 

drag, buoyancy, gravity and interparticle normal stresses can 

be expressed as, 

𝐴 =  𝐷𝑠(𝑢𝑓 − 𝑢𝑠) − 
1

𝜌𝑠

∇𝑝 + 𝑔 −
1

𝜃𝑠𝜌𝑠

∇𝜏𝑠 
(5) 

The particle volume fraction, 𝜃𝑠 and the particle stress 𝜏𝑠, 

which are used to calculate the interparticle collisions and are 

expressed as    

𝜃𝑠 =  ∬ 𝑓
𝑚𝑠

𝜌𝑠

 𝑑𝑚𝑠𝑑𝑢𝑠 
(6)

𝜏𝑠 =  
10𝑃𝑠𝜃𝑠

𝛽

𝑚𝑎𝑥[(𝜃𝑐𝑝 − 𝜃𝑠), 𝜖(1 − 𝜃𝑠)]
 (7) 

Here, 𝑃𝑠,  𝛽,  𝜃𝑐𝑝 are the constant term related with pressure, is 

a constant, particle volume fraction equals the close pack 

volume (Andrews et al., 1996).  
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3. METHOD AND COMPUTATIONAL MODEL 

3.1 Experimental Model 

The experiment was conducted at ambient temperature using 

sand particles with diameter ranging from 63 to 200 μm and 

density of 2650 kg/m³. Particle size distribution analysis was 

performed prior to the experiment revealed a mean particle 

size diameter of 116 μm. The gas flow rate was varied from 0 

to 650 SLPM in increments of 50 SLPM. Pressure transducers 

were installed at various locations, and data acquisition was 

facilitated using LabVIEW software. 

3.2 Computational Model: 

Following the measurement of the dimensions of the CFB at 

the University of South-Eastern Norway, a CAD geometry was 

created using SOLIDWORKS 2020. Various simulation 

models with different grid sizes were analyzed before 

finalizing the computational model. Experimental pressure 

transducer data were primarily used to validate the model 

(Figs. 4 and 5). The gas inlet of the riser and the loop seal were 

configured as flow boundary conditions, while the top of the 

cyclone was set up as a pressure boundary condition. The 

simulation time step was set to 0.0005 seconds (Bandara et al., 

2018), with a total simulation duration of 45 seconds. The 

maximum momentum from particle collision redirection was 

assumed to be 40%, and the default values of 0.85 were used 

for normal and tangential wall collisions.  

 

Fig. 3. (a) Grid (b) CAD Geometry (c) Flux Plane (d) Pressure

reading Points.

4. RESULT AND DISCUSSION.

4.1 Model Validation:

After conducting multiple simulations with varying grid sizes

and drag models, the Wen-Yu Ergun drag model was selected.

As illustrated in Figs. 4 and 5 (experiment with trim means first

180 sec data has been excluded on an experiment of 3600 sec),

the minimum deviation was observed for a grid size of 80,000

cells. Increasing the grid size beyond this point resulted in

deviations, as the grid size became smaller than the particle

size. The relationship between cells to computational particles

is shown in Table 1.

 

Table 1. Computational Particle to Cell Ratio 

Grid Cells Computational 

Particles 

Computational 

Particle to Cell 

Ratio 

01 40000 35640 0.891 

02 60000 56400 0.940 

03 80000 77792 0.972 

04 80000 77800 0.973 

05 100000 96768 0.968 

06 120000 111384 0.928 

 

Fig. 4. Pressure Variation with Pressure point (Different grid size).

 

Fig. 5. Pressure Variation with Pressure point (Different drag

model).
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4.2 Impact of changing the diameter of Cyclone Keeping

height constant

The diameter of the cyclone was varied while keeping the

height constant to investigate its impact on particle circulation

rate. Adjusting the diameter of a cyclone separator in a

circulating fluidized bed (CFB) yielded various outcomes in

particle circulation rate. In the design, with a height to

diameter (H/D) ratio of 2.78, it was observed a 1.6% increase

in particle circulation rate as shown in Figs. 7 and 8 and Table

2. The CAD models varying diameter is shown in Fig. 6.

 

Fig. 6. Variation in diameter keeping height constant.

 

Fig. 7. Time Integrated particle mass of all Species (Seventh

Plane).

 
Fig. 8. Time Integrated particle mass of all Species (Eighth Plane) 

Table 2. Change in circulation rate keeping height constant (305 

mm) 

 
 

4.3 Impact of changing the height of cyclone keeping 

diameter constant: 

 

Fig. 9. Variation in height keeping diameter constant.

Changing the height of a cyclone can have a direct impact on

both gas and particle residence times. The longer the residence

time, the more opportunity particles have to be separated from

the gas stream by centrifugal force. A taller cyclone can

enhance both the separation efficiency and the rate of

circulation, as particles have more time to move towards the

cyclone wall under the influence of centrifugal force.

 

Fig. 10. Time Integrated particle mass of all species (Seventh

Plane).
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Fig. 11. Time Integrated particle mass of all species (Eighth Plane).

Table 3. Change in circulation rate keeping diameter constant (118 

mm) 

 

In the design modification, with an H/D ratio of 2.68, it was 

observed a 16.39% increase in the particle circulation rate. 

Figs. 10 and 11 shows particle circulation rate for 45 sec on 

flux plane 7 and 8. Several factors influence the particle 

circulation rate, and a design optimized for a particular 

particle size may not be effective for a wide range of particle 

sizes. 

4.4 Impact of changing the angle of recirculation pipe 

(Return Leg /Downcomer) 

 

Fig. 12. Variation in inlet angle of return leg.

The angle of the recirculation pipe significantly affects particle

movement to the riser in a Circulating Fluidized Bed (CFB).

Typically, increasing the angle of the downcomer enhances

gravitational forces, aiding particle movement. This

improvement results in a higher particle recirculation rate, as

particles flow more smoothly and quickly to the riser.

Additionally, the risk of blockage decreases with steeper 

angles, as particles are more likely to settle and move smoothly 

within the downcomer. 

 

Fig. 13. Time Integrated particle mass of all species (Seventh

Plane).

 

Fig. 14. Time Integrated particle mass of all species (Eigth Plane).

To assess the impact on particle recirculation rate, 11 design

variations were implemented, altering the angle from 52.27° to

62.27°. The angle of the return pipe used in the experiment was

57.27°. In the observation, the maximum circulation rate

occurred at an angle of 52.27°. Although this result appears

unusual, it can be attributed to the backflow of particles from

the riser to the loop seal, causing blockages and pushing

particles backward towards the standpipe rather than the

downcomer. As long as there is backpressure from particles

inside the riser, the circulation rate will decrease. Therefore,

the optimal angle was found to be 52.27 degrees, despite it

being a shallower return angle. The circulation rate varying

return leg angle is shown in Figs. 13 and 14.
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Fig. 15. Final Design.

In the final design, each individual component was optimized

to maximize circulation rate, resulting in a 32% increase in

particle circulation rate as shown in Fig. 15.

5. CONCLUSIONS

This study examines the influence of design parameters on the

particle circulation rate in a circulating fluidized bed with a

mixture of Geldart A and B particles. Key design

modifications included varying the cyclone diameter while

keeping the height constant, varying the height while keeping

the diameter constant and adjusting the angle of the

recirculating pipe. An initial H/D ratio of 2.58 was optimized

to 2.78 (height same, diameter 109.7 mm) and 2.68 (diameter

same, height 316.2 mm) for improved particle circulation. The

optimal recirculation angle was found to be 52.27 degrees. The

results are influenced by multiple factors, including particle

size distribution, particle to particle and particle to wall

collisions, particle breakdown after collisions and velocity

profile irregularities. Consequently, a design suitable for one

particle size may not be valid for a wide range of particles.
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Abstract: Fluidized bed technology known for its efficient heat and mass transfer and controlled material 

handling, is widely used across industries. However, CFD simulation of fluidized beds presents challenges 

that require extensive validation. This study leverages the Multiphase Particle-In-Cell (MP-PIC) method, a 

recent Lagrangian modeling technique to improve computational efficiency and accuracy. The CAD model 

was developed using SolidWorks 2020 and simulation was carried out in the commercial CFD package 

Barracuda VR 21.1.0. The sensitivity of grid size, drag models and the impact of recirculating pipe height 

after loop seal was examined. Sand particles 63-200 μm and air were used as bed material and fluidization 

gas respectively achieving full flow circulation at 650 SL/min and 12 SL/min aeration in the riser and loop 

seal. A total of 19 different simulations were conducted, varying grid size and drag models each for a 

duration of 45 seconds with a time step of 0.0005 seconds. Pressure transducers along the CFB walls 

provided validation data. The Wen-Yu Ergun drag model showed a minimal error margin of 0.60%, 

followed by the Wen-Yu 80000 model at 0.62%, demonstrating high predictive accuracy. 

Keywords: Circulating Fluidized bed (CFB), Minimum fluidization velocity, CFD simulations, Time step, 

drag model, Multiphase particle-in-cell method, Grid size

1. INTRODUCTION 

Gas-solid fluidized bed technology is widely utilized in energy 

generation, pharmaceutical, chemical, petrochemical, 

electronic and metallurgical processing industries due to its 

distinct advantages of high heat and mass transfer and 

controlled material handling (Moradi et al., 2020). 

Computational fluid dynamic (CFD) modeling has been 

identified as an excellent tool to produce information during 

the scaling up of pilot scale circulating fluidized beds to 

industrial scale. Further, it is a fast and cost-effective method 

for system optimization (Jaiswal et al., 2022). CFD solves the 

conservation equations for mass, momentum, energy and 

species and this technique has been critically validated for 

accurate performance in gas or liquid single-phase flows. 

However, challenges remain related to interface coupling, 

solid-phase modeling and scale differences in gas-solid 

multiphase flow systems (Bandara et al., 2016). 

 

Fig. 1. Schematics of CFB (Pallarès, 2008).

Eulerian-Eulerian and Eulerian-Lagrangian are the two basic

approaches for CFD modeling of multiphase flows.

Multiphase Particle-In-Cell (MP PIC) modeling is a

development of Eulerian-Lagrangian modeling and aims to

reduce the computational cost in discrete modeling of the

particle phase (Andrews and O’Rourke, 1996). Instead of 

tracking individual particles, it considers packets containing 

a certain number of particles with similar properties. 

The packets are modeled in the discrete phase while the 

particle phase interactions are modeled in an Eulerian

frame (Snider et al., 2001). Therefore, particle properties are

calculated in both Eulerian and Lagrangian frames which are

correlated via interpolation functions.

Validated CFD models can be used to analyze circulating

fluidized beds in terms of particle circulation velocity, particle

mixing and segregation (Bandara et al., 2018). The

conservation equations of mass species, momentum and

energy are in partial differential form so the simulation

geometry is divided into small cells referred to as the

computational grid. The conservation equations are then

discretized in space and time to form a set of algebraic

equations (Bandara et al., 2018). Finite difference, finite

element and finite volume are the main techniques used with

the finite volume method being most common for 3D systems

involving mass, momentum and energy (Andrews and

O’Rourke, 1996).

Errors and uncertainties are integrated from the modeling stage

to the final computer simulations. The use of empirical

equations and model simplification leads to deviations during
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model development. Therefore, it is necessary to identify ways

to reduce errors in simulations with minimal computational

cost. This includes selecting the optimal drag model in gas-

solid multiphase flow systems and conducting mesh sensitivity

analysis to develop a grid independent model (Bandara et al.,

2018).

This paper investigates the impact of grid sensitivity and drag

models alongside the height of the recirculating pipe after loop

seal on the performance of cold flow circulating fluidized

beds. Barracuda VR 21.1.0 was used to compare pressure data,

varying grid size and drag model along with SolidWorks for

CAD design. Through comprehensive CFD analysis, this

study aims to enhance the accuracy and efficiency of

circulating fluidized bed modeling for industrial applications.

2. MP PIC MODEL DESCRIPTION

The gas phase mass and momentum conservation can be

modelled  by the volume averaged Navier-Strokes equation

and are used as a continuum on a Eulerian grid (Snider,

2001).

𝜕(𝜃𝑓𝜌𝑓)

𝜕𝑡
+ ∇. (𝜃𝑓𝜌𝑓𝑢𝑓) = 0

(1) 

𝜕(𝜃𝑓𝜌𝑓𝑢𝑓)

𝜕𝑡
+  ∇. (𝜃𝑓𝜌𝑓𝑢𝑓)

=  ∇𝑝 − 𝐹 +  𝜃𝑓𝜌𝑓𝑔

+  ∇. (𝜃𝑓𝜏𝑓) 

(2)  

𝐹 =  ∬ 𝑓𝑚𝑠 [𝐷𝑠(𝑢𝑓 − 𝑢𝑠)

− 
1

𝜌𝑠

∇𝑝] 𝑑𝑚𝑠𝑑𝑢𝑠 

(3) 

where 𝜃𝑓, 𝜌𝑓, 𝑢𝑓, 𝜏𝑓 are fluid phase volume fraction, density,

velocity and stress tensor and 𝑚𝑠, 𝑢𝑠 are the mass and velocity

of the particle. F is the total momentum exchange with particle

phase per volume, g is the acceleration due to gravity and p is

the pressure.

The solid phase can be modelled by a particle distribution

function given by equation 4 (O´Rourke et al.,2014). 

Considering the time rate of change of above equation 

the Liouville equation is obtained. This equation assumes 

that there are no direct collisions or particle breakup.

𝑓(𝑥, 𝑚𝑠, 𝑢𝑠, 𝑡)𝑑𝑚𝑠𝑑𝑢𝑠

𝜕𝑓

𝜕𝑡
+ ∇𝑥 . (𝑓𝑢𝑠) + ∇𝑢𝑠. (𝑓𝐴) = 0

(4) 

The particle acceleration, A as a function of aerodynamics 

drag, buoyancy, gravity and interparticle normal stresses can 

be expressed as, 

𝐴 =  𝐷𝑠(𝑢𝑓 − 𝑢𝑠) − 
1

𝜌𝑠

∇𝑝 + 𝑔 −
1

𝜃𝑠𝜌𝑠

∇𝜏𝑠 
(5) 

The particle volume fraction, 𝜃𝑠 and the particle stress 𝜏𝑠,  

which are used to calculate the interparticle collisions and are 

expressed as (Rourke et al., 2014) 

𝜃𝑠 =  ∬ 𝑓
𝑚𝑠

𝜌𝑠

 𝑑𝑚𝑠𝑑𝑢𝑠 
(6) 

𝜏𝑠 =  
10𝑃𝑠𝜃𝑠

𝛽

𝑚𝑎𝑥[(𝜃𝑐𝑝 − 𝜃𝑠), 𝜖(1 − 𝜃𝑠)]
 

(7) 

Here, 𝑃𝑠,  𝛽,  𝜃𝑐𝑝 are the constant term related with pressure 

and is a constant, particle volume fraction equals the close 

pack volume.  

3. METHOD AND COMPUTATIONAL MODEL 

3.1 Experimental Model 

The experiment was carried out at ambient temperature using 

sand particles with diameters ranging from 63 to 200 μm and 

a density of 2650 kg/m³. Prior to the experiment, particle size 

distribution analysis revealed a mean particle size of 116 μm. 

The gas flow rate in the riser was varied from 0 to 650 SLPM 

in increments of 50 SLPM and in the loop seal from 0 to 12 

SLPM in increments of 2 SLPM. Pressure transducers were 

installed at various locations, with data acquisition managed 

through LabVIEW. 

3.2 Computational Model: 

Following the measurement of the dimensions of the CFB at 

the University of South-Eastern Norway, a CAD geometry was 

created using SOLIDWORKS 2020. The gas inlet of the riser 

and the loop seal were configured as flow boundary 

conditions, while the top of the cyclone was set up as a 

pressure boundary condition. The simulation time step was set 

to 0.0005 seconds (Bandara et al., 2018), with a total 

simulation duration of 45 seconds. The maximum momentum 

from particle collision redirection was assumed to be 40%, and 

the default values of 0.85 were used for normal and tangential 

wall collisions.  

 

Fig. 2. (a) Grid (b) CAD Geometry (c) Flux Planes  (d) Pressure

reading Points.
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Fig. 3. Grid size with 40000, 60000, 80000, 120000, 240000,

300000 uniform grid size (Top left to bottom right).

 

Fig. 4. CAD model with 40000 and 30000 uniform grid size. 

4. RESULT AND DISCUSSION 

 

4.1 Drag Model 

Three different drag models Ergun, Wen-Yu and a combined 

Wen-Yu Ergun model were evaluated to accurately compare 

the computational results with the experimental data. 

 

 
Fig. 5. Ergun drag model with different grid size 

In the above study, the Ergun model was analyzed using 

different grid sizes. When increasing the grid size from 80,000 

to 150,000 cells it was observed that a grid size of 120,000 

cells resulted in greater deviation, whereas grid sizes of 80,000 

and 150,000 cells closely matched the experimental data. The 

average deviations for grid sizes of 80,000, 120,000 and 

150,000 cells were 0.69%, 8.12% and 0.67% respectively as 

shown in Fig. 5. These results clearly indicate that the Ergun 

model with grid sizes of 80,000 and 150,000 cells provides 

accurate predictions for our experimental model. 

 

 
Fig. 6. Wen-Yu drag model with different grid size.

In the above analysis, the Wen-Yu model was evaluated using

different grid sizes. As the grid size was increased from 80,000

to 150,000 cells, it was observed that the 120,000 cell

exhibited the highest deviation followed by the 150,000 cell

whereas the 80,000 cell provided accurate predictions

compared to the experimental data. The average deviations for

the 80,000, 120,000 and 150,000 grid cells were 0.62%,

11.15% and 2.88% respectively as shown in Fig. 6. These

results clearly indicate that the Wen-Yu model with a grid size

of 80,000 cells offers the best prediction accuracy for our

experimental model.

 

 
Fig. 7. Wen-Yu Ergun drag model with different grid size.

In the above study, the Wen-Yu Ergun model was evaluated

using various grid sizes. Increasing the grid size from 40,000

to 150,000 cells revealed that grids of 120,000 and 150,000

cells exhibited greater deviation, while grids of 40,000, 60,000

and 80,000 cells closely matched the experimental data. The

average deviations for grid sizes of 40,000, 60,000, 80,000,

120,000 and 150,000 cells were 0.71%, 0.62%, 0.60%,

10.25% and 3.09% respectively as shown in Fig. 7. These

result clearly indicates that the Wen-Yu Ergun model with a

grid size of 80,000 cells provides the most accurate predictions

for our experimental model.

4.2 Grid Size

Different grid sizes ranging from 40,000 to 300,000 were

tested for grid independence test with three different drag

models and the results are presented below.
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Fig. 8. Different drag model with 80000 grid size. 

In this study, the Wen-Yu Ergun drag model with an 80,000 

grid cells accurately predicted the experimental setup. The 

errors for the Ergun, Wen-Yu, and Wen-Yu Ergun models 

were 0.63%, 0.62% and 0.60%, respectively as shown in Fig. 

8. 

 

 
Fig. 9.  Different drag model with 150000 grid size. 

In the above study, increasing the grid size resulted in greater 

deviation. The deviation is smallest for the Ergun followed by 

the Wen-Yu Ergun and is highest for the Wen-Yu model. The 

errors for the Ergun, Wen-Yu and Wen-Yu Ergun model are 

8.12%, 11.15% and 10.25%  respectively as shown in Fig. 9. 

 

 
Fig. 10.  Different drag model with 300000 grid size. 

In the above study, increasing the grid size led to greater 

deviation. The Ergun model exhibited the least deviation 

followed by the Wen-Yu and Wen-Yu Ergun models. The 

deviation for these drag models with the specified grid sizes 

are 0.67%, 2.88% and 3.09% respectively as shown in Fig. 10. 

 

4.3 Impact of height of recirculating pipe after loop seal on 

recirculation rate 

Fig. 11. CAD model with varying recirculating pipe height.

Increasing the height of the recirculating pipe after the loop

seal in a circulating fluidized bed (CFB) system significantly

impacts particle recirculation rate and system performance.

The height affects gravitational forces, particle velocity and

settling behavior. A taller recirculating pipe increases pressure

drop and alters particle flow dynamics potentially reducing

velocities if not compensated for the increased gravitational

and pressure effects.

Table 1 Circulation rate vs length of recirculating pipe

 

 

In the design, nine modifications were made varying the 

recirculating height from 950 mm to 990 mm, with the original 

height being 970 mm. These changes also affect the height just 

after the loop seal. A greater height requires more pressure for 

sand transfer to the riser while a lower height facilitates 

particle flow from the riser to the loop seal. 

In nine simulations, the configuration with a 965 mm height 

and 58 mm height just after the loop seal achieved the highest 

recirculation rate as shown in Figs. 12 and 13. Initially the 950 

mm configuration had the highest rate up to 45 seconds, but 

the (965-58) mm configuration provided the best circulation 

rate over a 300 second simulation. 

 

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.044 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

321



 

Fig 13. Particle circulation rate with different height of

recirculating pipe (300 seconds).

5. CONCLUSION

This study investigates the impact of drag model and grid size

on the accuracy of experimental and computational models in

a cold flow circulating fluidized bed (CFB) system. Sand

particles ranging from 63-200 μm were used as the bed

material with air as the fluidizing agent. The minimum airflow

for particle circulation was determined experimentally and

was found to be 650 SLPM in the riser and 12 SLPM in the

loop seal.

Analysis reveals that the Wen-Yu Ergun model with a grid size

of 80,000 accurately represents the experimental model

computationally. Accuracy improves progressively from

40,000 to 80,000 grid size peaking at 80,000 before declining

beyond this threshold. Conversely, when the same model is

analyzed with a higher grid size of 300,000, the deviation

increases to 11.17%. This deviation is attributed to particle size

becoming smaller than the grid size beyond 80,000.

Furthermore, the circulation rate is observed to be highest for

the (965-58) mm configuration compared to the (970-63) mm

model used in the experiment. This is because greater height

necessitates more pressure for sand transfer to the riser, while

lesser height facilitates more particle flow from the riser to the

loop seal. Insufficient height leads to suboptimal particle

circulation due to pressure pushing particles from the loop seal

towards the standpipe.

In conclusion, drag model and grid size significantly impacts

computational accuracy, with no one particular model

applicable across all CFB models. Additionally, particle

characteristics play a crucial role in model validation with

uniform particle size essential for accurate predictions.

Moreover, the height of the recirculating pipe profoundly

influences particle circulation rate, emphasizing the

importance of designing an optimal height for efficient

operation of circulating fluidized beds.
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Abstract: Engine models developed for control purposes are often developed with a time
schedule in mind under the pressure of deadlines without reusability in mind and end up being
hard-coded with a single engine type usage in mind. This approach can lead to more work when a
new engine is created and a model is to be developed, as it usually takes less time than changing
or modifying the old one. To facilitate a more rapid development process, there is a desire to have
control-oriented models that can be adapted to new types of hardware with ease while at the
same time providing fundamental insights into the physics of the engine that limit the control
performance. The main idea is to use a component-based structure where the components are
designed to be reused for similar processes; when combined, it constitutes a generic engine model
with parametrization and compatibility with VVT/VVA and SI/CI combustion. An open-source
mean value engine model was created in MATLAB/Simulink to meet the objectives. The engine
model describes components such as the air filter, intercooler, and exhaust system components
as incompressible flow restrictions. Bypass, throttle, intake/exhaust valves, and wastegate are
modeled as compressible flow restrictions. Adiabatic control volumes are placed between each
component to keep track of masses, pressures, and temperatures. The remaining components are
modeled separately, with unique functions for each model, while integrated into the component-
based structure. To demonstrate the concept and the generality of the approach, two engines,
a 6-cylinder 12.7-liter Scania diesel engine, and a 4-cylinder 2.0-liter Volvo petrol engine, are
used as case studies. The generic simulation platform is parameterized and validated against
experimental data for both engines.

Keywords: Engine modeling, Parametrization, Mean value model, Component-based structure

1. INTRODUCTION

Engine models are often developed with a specific control
purpose, sometimes even hard-coded for a single engine
type. This approach presents a challenge when new engines
are developed, as creating a new model is usually quicker
than modifying an existing one. Control-oriented models
that can easily adapt to new hardware types are needed to
expedite development. These models should also provide
fundamental insights into the engine physics that limits
control performance. An open-source mean value MAT-
LAB/Simulink model is created to meet these objectives.
This generic engine model is parametrized and compatible
with VVT/VVA and SI/CI combustion.

The model is built on a component-based structure de-
signed for reusability. It includes components for the air
filter, intercooler, and exhaust system, modeled as incom-
pressible restrictions. Bypass, throttle, valves, and waste-
gate are modeled as compressible flow restrictions. Adia-
batic control volumes are placed between each component

⋆ This work was performed within the Competence Center SEDDIT-
Sensor Informatics and Decision making for the Digital Transforma-
tion, supported by Sweden’s Innovation Agency within the research
and innovation program Advanced digitalization.

to monitor pressures and temperatures. The additional
components are modeled separately with unique functions.
To demonstrate the generality of this approach, we’ve used
two engines as case studies: a 6-cylinder 12.7-liter Scania
diesel engine and a 4-cylinder 2.0-liter Volvo petrol engine.
The generic simulation platform was parameterized and
validated against experimental data for both engines. This
paper aims to create a generic engine model that captures
the dynamics in both SI and CI engines with VVA. The
goal is a model with a parameterizing structure that makes
it easy to fit for different engines. The model will simulate
the engine’s behavior from the air inlet to the exhaust
system.

This objective is then divided into three goals.

• Implement a model that can handle both SI and CI
combustion with VVA.

• Utilize the ability to change model equations simu-
lated easily.

• Structurally present equations, parameters, and vali-
dation.

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.045 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

324



1.1 Reason for Research

The primary motivation for developing a more generic
engine model is to facilitate the simulation of various
engine configurations and dependencies, eliminating the
need to create a new model each time. If a generic engine
model can demonstrate a strong correlation with real
engines across various engines and displacements. In that
case, it can be inferred that the model applies to various
engine configurations.

Such a model can be utilized in both engine simulations
and controller development. It could also be employed
in real-time applications, allowing for direct selection of
control parameters in the Engine Control Unit (ECU).

To validate this model, it will be tested using two distinct
engines: a 2.0-liter turbocharged petrol engine from Volvo
and a 12.7-liter turbocharged diesel engine from Scania.

1.2 Related Research

In engine modeling, various models are utilized, includ-
ing transfer function models, cycle mean value models
(MVEM), zero- or one-dimensional models, and compu-
tational fluid dynamic models Theotokatos et al. (2018).
MVEM compromises the simpler transfer function models
and the more detailed zero- or one-dimensional models.
These are particularly useful in the design of the engine
control system, where rapid simulation times are crucial
Theotokatos et al. (2018). This makes MVEM suitable
for Hardware-in-the-Loop (HIL) simulations, as the model
needs to capture engine behavior accurately Maroteaux
and Saad (2015).

The MVEM approach is favored in modeling due to its
low computational power requirements, stemming from
using nonlinear ordinary differential equations Eriksson
et al. (2002). This allows for faster-than-real-time simu-
lations Llamas and Eriksson (2019), making it ideal for
controller development and tuning. In 2001, a component-
based MVEM was developed in Modelica. This included a
detailed explanation of the model structures, the Modelica
Language, and the models’ validations. This methodol-
ogy provides a deeper understanding of the potential of
the component-based modeling approach Brug̊ard et al.
(2001). Component-based modeling involves utilizing de-
rived models from literature and building your model one
component at a time Eriksson (2003). In engine modeling,
components can include the air filter, throttle, intake man-
ifold, and cylinder. These models must then be validated
to capture the system dynamics accurately.

Different parts of the engine model assume different types
of flows, which can generally be categorized as compress-
ible or incompressible. Most gas flows in engine pipes
are incompressible and turbulent. However, a compressible
flow should be assumed over most types of valves. This
is particularly important for components like the throttle
and the opening of an intake/exhaust valve Eriksson and
Nielsen (2014).

Several open-source engine models are currently available.
One such model is a modified MVEM for Spark Ignition
(SI) engines with Exhaust Gas Recirculation (EGR) using
the Simulink environment. The modification involved re-

placing the usual isothermal models for manifolds with a
model for temperature dependency. The results found that
neglecting the instances that change the input regime in
the manifold air temperature is approximately constant
Mostofi et al. (2006).

MVEM can also be used to validate models for control
purposes, such as the validation of a control model for an
electronic throttle Chaing et al. (2007).

LiU-Diesel is a MATLAB/Simulink model simulating a
Diesel Engine with EGR and Variable Geometry Tur-
bocharger (VGT)Wahlström and Eriksson (2011). Further
development of the LiU-Diesel, called LiU-Diesel2, adds
compatibility of Throttle and Turbocharger with Waste-
gate Ekberg et al. (2018).

1.3 Description of Modelling Concept

The MVEM is utilized to analyze and design control
and diagnostic systems. This is due to the MVEM’s
ability to describe variations that occur faster than an
engine cycle. MVEM models are sometimes called control-
oriented models or filling and emptying models.

The process of averaging over one or several cycles in
MVEM modeling necessitates a thorough investigation of
physical sensor and actuator dynamics. These components
are crucial as they actuate and measure the actual engine
Eriksson and Nielsen (2014).

The MVEM will employ the ‘filling and emptying’ method
for the control volumes, including the intake and exhaust
manifold. This method divides volumes into sections, as
the manifolds are represented as finite volumes Heywood
(1988).

1.4 Model Limitations

Items that are outside the scope of this paper are:

• Fuel spray models
• Thermal stress and solid mechanics that affect geome-

tries
• Validation of EGR model
• Warm-up process of the engine
• Formation of emissions
• Implementation of control system
• Variable compression by varying stroke length
• Start-stop technology and functionality

2. ENGINE COMPONENTS

The engine consists of multiple components. The com-
ponents can be seen in Fig. 1, and the flow is positive
when flowing to the right. The engine components include
the air filter, compressor, intercooler, throttle, intake and
exhaust, EGR, WG, turbine, after-treatment, and the rest
of the exhaust system.

2.1 Parameter Estimation

There are three different types of measurement data

• Stationary (also called the engine map)
• Dynamic
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Air Filter

Compressor
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Intercooler

c

Throttle

Intake Exhaust

c

EGR

c

Wastegate

Turbine

After treatment

Exhaust System

Bypass

Cylinder

Fig. 1. The engine components include air filter, compres-
sor, intercooler, throttle, intake and exhaust, EGR,
WG, Turbine, after treatment, and the rest of the
exhaust system. In this paper, the after-treatment and
exhaust system is modeled as the ”Exhaust system.”

• Crankshaft based.

From that data, all the parameters can be found mainly
using the least-squares method. The least-squares method
can be divided into two categories: linear and non-
linear. For a more detailed description of the least-squares
method, see Björck (1996).

2.2 Incompressible Flow Model

There are different kinds of flow restrictions among the en-
gine components. The flow can be assumed incompressible
for the air filter, intercooler, and exhaust system (including
the catalyst and muffler). This means that the throttle and
cylinder flows will be modeled differently.

The model selected for the incompressible flow restrictions
is found in Eriksson and Nielsen (2014)

ṁ =


Ctu

√
pus
RTus

√
pus − pds, if pus − pds ⩾ ∆plin

Ctu

√
pus
RTus

pus − pds
∆plin

, otherwise

(1)

Tflow =Tus (2)

The parameters for this model are Ctu and ∆plin.

If p us = p ds the Lipschitz condition is not fulfilled as the
derivative goes towards infinity, which causes problems for
the ODE solver. In this paper, ODE15s were used. p li is
the linear pressure region, and it is assumed p li ≥ 1000
pa.

2.3 Control Volume Model

Control volumes can be divided into two different models.
One is the isothermal model, where it can be assumed that
the temperature is constant for the whole control volume.
The other one is the adiabatic model, which means the
heat transfer is often set to zero. All control volumes in the
implemented model are adiabatic also to see temperature
variations. The model implemented has pressure or mass
and temperature as states, p, m, and T .

dT

dt
=

RT

pV cv

[
ṁincv(Tin − T ) +R(Tinṁin − Tṁout)− Q̇

]
(3)

dp

dt
=

RT

V
(ṁin − ṁout) +

p

T

dT

dt
(4)

dm

dt
=
∑
i

ṁn (5)

The parameter for this model is V , the volume of each
control volume. ṁin is the sum of all positive flows into
the volume, and ṁout is the sum of all negative flows into
the volume. Tin is the temperature of the gas flowing into
the volume and is modeled as a mean value for all the
flow flowing into the volume, assuming the same cv for all
flowing fluids in the volume. This means

Tin =


ṁ1 · T1

ṁin
+

ṁ2 · T2

ṁin
+ ...+

ṁn · Tn

ṁin
ṁin > 0

0 otherwise

(6)
where n is the flow with the corresponding temperature
for inflows into the control volume.

when the mass state is used, pressure is determined using
the ideal gas law,

p =
mRT

V
. (7)

If the control volume is placed in the intake or exhaust
manifold, the gas composition, x, is modeled as the frac-
tional content of the specimens in the total gas mixture,

dx

dt
=

1

m

∑
j

(xj − x)ṁj (8)

where the index j indicates the contents of the specimen
in the respective flow.

For the isothermal model, the incompressible flow restric-
tion is

dp

dt
=
RT

V
(ṁin − ṁout) (9)

T =Tin = Tout (10)

where the only parameter is V , the volume of each control
volume.

2.4 Compressible Flow Model

The flow can be assumed to be compressible over the
throttle, bypass, wastegate, and valves. Validation for the
throttle can be found in Lind Jonsson (2021). The flow
model is based on a compressible flow approach Eriksson
and Nielsen (2014).

Π = max

(
pds
pus

,

(
2

γ + 1

) γ
γ−1

)
, (11)

ṁ =
pus√
RTus

AeffΨli(Π), (12)

Ψ0 =

√
2γ

γ − 1

(
Π

2
γ −Π

γ+1
γ

)
, (13)

Ψli =

Ψ0 if Π ≤ Πli

Ψ0
1−Π

1−Πli
otherwise,

(14)
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where the parameters are Πli that is defining the linear
region.

The effective area is

Aeff = A0 +A1αth +A2α
2
th for throttle, (15)

= CD
D2

vπ

4
f ([0..1]) for bypass/wastegate, (16)

= CD,in/ex
D2

vπ

4
for intake/exhaust valves. (17)

where CD for the intake and exhaust valves are

CD,in =flookup (Lin(θ)) (18)

CD,ex =flookup (Lex(θ), P r) Pr =
pcyl
pem

. (19)

2.5 Turbo

The compressor and turbine model is presented and val-
idated in Lind Jonsson (2021) for the Volvo engine. The
ellipse model tuned and validated in LiU CPgui Llamas
and Eriksson (2018) was used for the Scania engine.

2.6 Turbo Dynamics Model

The turboshaft friction is modeled according to

Tqtc,fric = ctcωtc (20)

where the friction is assumed to be low since the shaft is oil
lubricated, meaning ctc = 1 · 10−6 Nm/(rad/s). Newton’s
second law of rotation is then used to model the turbo
shaft speed

dωtc

dt
=

1

Jtc
(Tqt − Tqc − Tqtc,fric) (21)

The parameters for this model are Jtc, which is the inertia
of the shaft.

2.7 Intercooler Model

The Intercooler is modeled as an incompressible flow.What
differentiates the intercooler from the incompressible flow
model is the model for the temperature Eriksson and
Nielsen (2014).

To =Ti − ϵ (ṁcool, ṁic, ...) (Ti − Tcool) (22)

ϵ =a0 + a1

(
Ti + Tcool

2

)
+ a2ṁair (23)

where To is the temperature of the gas flowing out of
the intercooler, Ti is the temperature of the gas flowing
into the intercooler, Tcool is the temperature of the air
surrounding the intercooler, which in this model is set to
Tamb, ṁair is the mass flow of the gas flowing into the
intercooler and ṁcool is the mass flow of the gas cooling
the intercooler. The parameters for this model are a0, a1
and a2.

2.8 Cylinder Model

To fully capture the dynamics of the oxygen concentra-
tion, cylinder- temperature, and pressure using VVA, each
cylinder has to be simulated separately with full-cycle
cylinder states Johansson (2019).

Cylinder Flow Four different flows—intake, exhaust,
CRB, and blowby—are modeled as the compressible flow
restriction.

Combustion Modeling Combustion is affected by the
amount of available oxygen. Therefore, the oxygen con-
centration XO,cyl is a state. This also gives the Xburned =
1 − XO,cyl − Xfuel , which is the amount of oxygen that
has reacted in the combustion. A perfect stoichiometric
combustion is assumed, meaning particle formation has
been neglected. Combustion is assumed to be a reaction
between air and hydrocarbons.

As the most common element in the air is nitrogen, all
elements except oxygen are clumped together, creating a
common assumption Eriksson and Nielsen (2014)

Cair = O2 + 3.773N2 (24)

Exhaust composition depends on what fuel is assumed to
be burning during combustion. The fuel used is cetane
for CI combustion and isooctane for SI combustion. The
burned composition is.

Cburned = aCO2 + b/2H2O+ 3.773 (a + b/4N2) (25)

The chemical reaction in the combustion is

nfuelCaHb + nairCair + nburnedCburned −→
(nfuel + nburned)Cburned+

+ (nair − nfuel (a+ b/4))Cair (26)

where the fuel composition is CaHb.

The number of moles in the reaction is calculated at IVC.

ntot,air = 1 + 3.773 ntot,burned = a+
b

2
+ 3.773 (27)

nair =
mIV CXO,cyl

Mairntot,air
nfuel =

mfuel

Mfuel
(28)

nburned =
(1−XO,cyl)mIV C

Mburnedntot,burned
(29)

where mIV C is the mass in the cylinder at IVC. The mass
in the cylinder is calculated by

mcyl =
pcylVd

RcylTcyl
(30)

The XO,cyl state is modelled similarly as the fractions
x in the manifolds, with the stoichiometric combustion
assumption

dx

dt
=

1

mcyl

∑
i

(xi − x) ṁi − SAFs
C
dxb

dt
(31)

where the Vibe function in equation (33) gives dxb

dt =
dxbθ
dθ ωe, SAFs

scales the composition with regards to the
fraction burned, assuming (AFs-1) used air per 1 used fuel
and C is the scaling of the Vibe function to make the Vibe
function scale properly to equation (26).

xb(θ) =

{
0, θ < θSOC

1− e
−a
(

θ−θSOC
∆θ

)m+1

, θ ≥ θSOC

(32)

xb determines the fraction burned, from 0 to 1. ∆θ and
a are related to combustion duration, m affects the shape
and θSOC denotes the start of combustion.

For heat release calculations, the Vibe function is derived
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dxbθ

dθ
=

a(m+ 1)

∆θ

(
θ − θSOC

∆θ

)m

e
−a
(

θ−θSOC
∆θ

)m+1

(33)

The molar fraction xair is the amount of free air that has
not yet reacted in the combustion. The amount of free air
is directly correlated to the amount of oxygen according
to the air assumption in equation (24). The scaling factor
C is modeled as the amount of air at IVC and air left after
combustion.

ncomb = nair − nfuel (a+ b/4) (34)

x̃air =
ncombntot,air

ncombntot,air + ncombntot,Burned
(35)

xair =
x̃airMair

(1− x̃air)MBunrned + x̃airMair
(36)

This gives the scaling of the Vibe function

C = xair,IV C − xair,aC (37)

Since the gas constant and heat capacity change with oxy-
gen concentration and temperature, NASA polynomials
are used to decide the heat capacities cp,Burned and cp,air
according to equation (38).

The specific heat ratio depends on the temperature.
NASA polynomial is a database for how different chemical
species’ specific heat ratio changes with temperature. The
NASA polynomial can be read more in McBride (2002).

c̃p(T )

R̃
= a1 + a2T + a3T

2 + a4T
3 + a5T

4 (38)

The gas mass-specific constant and specific heat is calcu-
lated as

R =(1−Xo,cyl)RBurned +Xo,cylRair (39)

cp =(1−Xo,cyl)cp,Burned +Xo,cylcp,air (40)

The ideal gas assumption is used to get the specific heat
constant cv

cv = cp −R (41)

The parameters for the IVC event use intake temperature
from the engine map, but the rest of the measurements
are based on crankshaft measurements. The parameters
for the Vibe function use pressures and temperatures from
the crankshaft-based measurements.

Energy equations The energy flows in the cylinder are
heat release, heat transfer, the work carried out, and
internal energy. The heat release is calculated

dQHR(θ)

dθ
= mfQLHV ηco

dxb(θ)

dθ
(42)

The heat transfer is calculated using the Woschini method.
However, the model for the heat transfer coefficient is
taken from Eriksson and Nielsen (2014)

h = C0B
−0.2p0.8w0.8T−0.53 (43)

where C0 = 1.30 · 10−2, B is the cylinder bore, p is
the pressure in the cylinder, T is the temperature in the
cylinder and w is the characteristic velocity equation given
by

w = C1S̄p + C2
V TIV C

VIV CpIV C
(p− pm) (44)

where S̄p = 2aNe

60 is the mean piston speed, pm is the mo-
tored pressure, and the constants C1 and C2 are dependent

on what stroke the engine has, and can be seen in Table
1.

Table 1. Constants used in Woschini’s model
for the heat transfer coefficient.

Gas Compression Combustion and
Exchange Compression Expansion

C1 6.18 2.28 2.28
C2 0 0 0.00324

The motored pressure is modeled with a polytope, where
κ is the polytropic exponent.

pm(θ) =

p(θ), if θ ≤ θSOC

p (θSOC)

(
V (θSOC)

V (θ)

)κ

if θ > θSOC
(45)

where the polytropic exponent κ is set to a constant
value, optimized from a motored cycle. Another way to
get the motored pressure is to use the pressure from a
measurement in an engine test cell.

The power is calculated using Newton’s second law of
motion.

Ẇ = pcyl
dV

dt
(46)

and the internal energy is modeled

u = cvTcyl (47)

State equations The temperature and pressure states are
Tcyl and pcyl.

h = cpTus (48)

Ṫcyl =
RcylTcyl

pcylV cv,cyl

(
ṁintake (hintake − u)−

∑
i

ṁi (hi − u)

+
dQHR(θ)

dt
− Q̇HT −W

)
(49)

ṗcyl =
RcylTcyl

V

(
ṁintake −

∑
i

ṁi

)
+

pcyl
Tcyl

Ṫcyl −
W

V

(50)

where i is the flow for exhaust, CRB, and blowby.

Generated Engine Torque A simple instantaneous torque
model that neglects friction is used in this paper Eriksson
and Nielsen (2014)

Me,i(θ) =

ncyl∑
j=1

(
pcyl,j

(
θ − θoffsetj

)
− pamb

)
AL

(
θ − θoffsetj

)
(51)

where θoffsetj is the crank angle offset for cylinder j, A is
the area and L(θ) is the crank lever.

AL(θ) =
dV (θ)

dθ
=

dV (θ)

dt

1

ωe
(52)

For example, the average torque is of interest so that it
does not exceed any loads for the driveline. The average
torque is then calculated over four strokes Eriksson and
Nielsen (2014).

where Mf denotes the friction, neglected in this paper.
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2.9 Complete Model

The complete Simulink model can be seen in Fig. 2 and is
run by first running the init.m file setting up the necessary
model input and loading the parameter struct.

3. RESULTS

3.1 Validation Points

Stationary measurements are done after the engine has
stabilized, meaning all dynamic behavior has had time
to subside. Typically, measurements are taken over a
brief period, usually a few seconds, and then an average
value for that specific operating point is calculated and
recorded. The stationary measurements are systematically
conducted in a series, moving from one operating point
to the next, ensuring comprehensive data collection. An
example of a complete engine map can be seen in Fig. 3.
The middle point is presented in this paper, and the other
operating points are given in Lind Jonsson (2021).

During the validation, pressure is used instead of mass,
as it is easier to relate to pressures than masses. Some
components were not present on the Volvo and Scania
engines and were not simulated. This meant some inputs
were kept the same for each iteration. The inputs for
the Scania engine were kept the same: throttle angle,
wastegate, bypass, and EGR actuation, and they were set
to zero. The inputs for the Volvo engine that were kept
the same were bypass, EGR, and CRB actuation, which
were set to zero. Setting inputs to zero has the same effect
as if they were non-existent.

The middle operating point is presented here to validate
the model, while all are covered in Lind Jonsson (2021).
In Tables 3 to 4 below the parameters are pressure,
temperature, turbo shaft speed, engine torque, mass flows
and oxygen concentration. The parameters for pressure are
after the compressor, p c, in the intake manifold, p im,
and after the exhaust manifold, p em. The temperature
parameters are after the compressor, T c, in the intake
manifold, T im, after the exhaust manifold, T em, and
after the turbine, T t. The parameter for the turbo shaft
speed is w tc, and the parameter for the generated engine
torque is Tq e. The parameter for oxygen concentration is
after the exhaust manifold, Xo em, but a reference for this
measurement is only available for the Scania engine. The
units used to validate the model are bar for pressure, ◦C
for temperature, kRPM for turbo speed, Nm for generated
torque, g/s for mass flows and% for oxygen concentration.

Results are presented when the model has reached a steady
value. The simulation time was set to 10 seconds, ensuring
that all dynamics were gone at the end of the simulation.
Measured data was investigated on a cycle-to-cycle basis.
The simulation reached a steady state after about 50
cycles. The results presented below are taken at the 9.5-
second mark for the cycle data and a mean of the last
50 simulated cycles for the Volvo engine and the last 25
simulated cycles for the Scania engine for mean and max
error. This is due to the difference in engine speed between
the engines. The cycle data is over 720 degrees, a complete
cycle for the four-stroke engine.

3.2 Middle Operating Point

The non-constant parameters needed to run this opera-
tional point for the different engines are presented in Table
2. In Table 3 and 4, mean value data is presented for
different parameters, and in Figs. 6 and 7 cycle data
is presented for the Scania and Volvo engine respectively.

Table 2. Operating points run for Scania and
Volvo engines of the middle operating point.

Parameter Scania Volvo

Engine Speed [RPM] 1300 2250

Throttle Angle [Deg] - 8.42

Fuel Flow [mg/stroke] 126.49 17.97

SOI [Deg] -8.04 -8.00

Crank Angle Intake Offset [Deg] 15.06 -48.00

Crank Angle Exhaust Offset [Deg] -15.00 30.00

Table 3. Mean error and max error for different
parameters for the Scania engine on the mean

operating point.

Parameter Modelled Measured Units Mean
value value error [%]

p c 1.76 2.02 bar -13.00

p im 1.72 1.98 bar -13.02

p em 1.68 1.80 bar -7.14

T c 105.43 104.32 C 1.06

T im 27.83 26.56 C 4.77

T em 353.55 371.50 C -4.83

T t 310.33 330.88 C -6.21

w tc 65.28 70.50 kRPM -7.40

Tq e 857.17 1249.92 Nm -31.42

Lambda 1.85 2.24 - -17.20

W af 247.16 266.72 g/s -7.33

W c 247.16 266.72 g/s -7.33

W ic 247.13 266.72 g/s -7.34

W cyl in 247.12 266.72 g/s -7.35

W cyl out 262.29 348.93 g/s -24.83

W t 262.76 348.93 g/s -24.69

W es 262.84 348.93 g/s -24.67

Xo em 42.29 12.00 % 30.29

Table 4. Mean error and max error for different
parameters for the Volvo engine on the mean

operating point.

Parameter Modelled Measured Units Mean
value value error [%]

p c 1.03 1.03 bar 0.00

p im 0.77 0.76 bar 0.95

p em 1.06 1.03 bar 2.52

T c 37.92 37.79 C 0.35

T im 26.55 32.45 C -18.20

T em 883.79 665.21 C 32.86

T t 881.55 637.69 C 38.24

w tc 24.19 32.84 kRPM -26.34

Tq e 99.78 79.86 Nm 24.95

Lambda 1.04 0.99 - 4.60

W af 15.23 18.75 g/s -18.77

W c 15.23 18.75 g/s -18.77

W ic 15.23 18.75 g/s -18.77

W th 15.23 18.75 g/s -18.77

W cyl in 15.23 18.75 g/s -18.79

W cyl out 17.80 19.09 g/s -6.78

W t 17.80 19.09 g/s -6.77

W es 17.70 19.09 g/s -6.77
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Fig. 2. The layout of the Simulink model
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Fig. 3. A display of the different operating points of the
simulated engines, with the chosen operating points
marked with a red ring.

4. DISCUSSION

One can see the difference in combustion between SI and
CI combustion by looking at the oxygen concentration in
the cylinder in Figs. 6 to 7. Combustion in a CI is run
lean to decrease the chances of creating particles, which
also is a reason to use the EGR to reduce the available
oxygen Eriksson and Nielsen (2014). In these
simulations, the available oxygen is not combusted fully,
leading to free air levels not going down to zero after
combustion.All oxygen is combusted for SI, meaning the
available oxygen is 0% at the combustion’s end. The
fill-up of available oxygen also follows the effective area.
This proves the model can handle fresh air flow and
residual gasses.

As seen in the Tables 3 to 4, the simulated pressures are
closer for the Volvo model than the Scania model. This
is due to the throttle and wastegate regulators regulating
the pressures to the measured and desired value used in
the Volvo model. Still, temperatures are closer for the
Scania engine than the Volvo engine. The temperature
deviation is because there is no direct correlation between
pressure and temperature, so even if a regulator regulates
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Fig. 4. The air filter, intercooler, and exhaust system flow
validation, validating Ctu,af , Ctu,in and Ctu,ex for the
Scania engine.

the pressure, it does not mean the temperature deviation
will also improve.

Cylinder pressures are the only reference measurement
available with cycle-to-cycle variations. In Figs. 6 and 7,
they are used to validate combustion parameters. The vibe
parameters are set for one operating point and not changed
when the operating point is changed. As combustion
varies depending on load, the vibe parameters should also
change. This was, however, a simplification made.

Another aspect differing from measured data is the model
for the generated engine torque. This is due to the model
not simulating engine friction. Most engine torques are
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Fig. 5. The air filter, intercooler, and exhaust system flow
validation, validating Ctu,af , Ctu,in and Ctu,ex as well
as the intercooler effectiveness model, a0, a1 and a2
for the Volvo engine. The red line marks the perfect
model, meaning modeled equalling measured.

lower than measured because of how the model has been
simulated. As the model uses variable step lengths, the
cycle length in the measured data is often less than 720
degrees. However, if the cycle length were increased by
one step, it would be longer than 720 degrees. The mass
balance is fulfilled if the model is simulated with mass
instead of pressure as a state. Currently, the model is
tuned, focusing on the individual components. A better
agreement between the model and data can be achieved if
the total system model is fine-tuned with complete system
behavior, as in Ekberg et al. (2018).

5. CONCLUSIONS

This paper aims to propose a generic engine model with
VVA compatibility. Generic means the possibility of easily
changing the equations used for each component and
removing some components altogether and the possibility
of interchange between CI and SI combustion. This was
completed by making a separate MATLAB equation for
each component, as each component is represented by one
Simulink block. The generality is proven by the fact that
the Volvo engine is SI and the Scania engine is CI, as well
as by removing and exchanging components for the Scania
engine, which used a different compressor and turbine
function. That was fulfilled by changing the equations run
in MATLAB and rerouting some signals in Simulink. As
an added benefit of using this generic model, equations
can easily be changed to improve the performance of the
models used in this paper.
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3102, Linköping University, Vehicular Systems.

Llamas, X. and Eriksson, L. (2019). Control-oriented
modeling of two-stroke diesel engines with exhaust gas
recirculation for marine applications. Journal of Engi-
neering for the Maritime Environment, 223(2), 551–574.

Maroteaux, F. and Saad, C. (2015). Combined mean
value engine model and crank angle resolved in-cylinder
modeling with nox emissions model for real-time diesel
engine simulations at high engine speed. Energy, 88,
515–527.

McBride, B.J. (2002). NASA Glenn coefficients for cal-
culating thermodynamic properties of individual species.
National Aeronautics and Space Administration, John
H. Glenn Research Center . . . .

Mostofi, M., Shamekhi, A., and Gorji-Bandpy, M. (2006).
Modified mean value si engine modeling (egr included).
Fuel, 10, 5.

Theotokatos, G., Guan, C., Chen, H., and Lazakis, I.
(2018). Development of an extended mean value en-
gine model for predicting the marine two-stroke engine
operation at varying settings. Energy, 143(15).

Wahlström, J. and Eriksson, L. (2011). Modeling diesel
engines with a variable-geometry turbocharger and ex-
haust gas recirculation by optimization of model param-
eters for capturing non-linear system dynamics. Journal
of Automobile Engineering, 225(7).

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.045 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

331



-400 -300 -200 -100 0 100 200 300 400

CAD [deg]

0

20

40

60

80

100

120

140

160

180

P
re

s
s
u

re
 [

b
a

r]

Cylinder pressure 

Model

Measured

SOI

-400 -300 -200 -100 0 100 200 300 400

CAD [deg]

0

500

1000

1500

T
e

m
p

e
ra

tu
re

[d
e

g
]

Cylinder temperature, p=198 kPa, N=1299.86 RPM

Model

SOI

-400 -300 -200 -100 0 100 200 300 400

CAD [deg]

-50

0

50

100

150

200

250

300

350

400

F
lo

w
[g

/s
]

Cylinder Flows

Intake

Exhaust

CRB

Blowby

SOI

-400 -300 -200 -100 0 100 200 300 400

CAD [deg]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A
re

a
[m

2
]

10
-3 Effective Area

Intake

Exhaust

CRB

SOI

-400 -300 -200 -100 0 100 200 300 400

CAD [deg]

L
if
t

Valve Lifts

Intake

Exhaust

CRB

SOI

-400 -300 -200 -100 0 100 200 300 400

CAD [deg]

40

45

50

55

60

65

70

75

80

85

P
e

rc
e

n
ta

g
e

[-
]

Free air concentration

Model

SOI

Fig. 6. Cylinder pressure, temperature, oxygen concentration, valve lift, effective area for the valves, and the cylinder
flows over one complete cycle on the mean operating point for the Scania engine.
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Fig. 7. Cylinder pressure, temperature, oxygen concentration, valve lift, effective area for the valves, and the cylinder
flows over one complete cycle on the mean operating point for the Volvo engine.
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Modeling of a tire mounted energy
harvester using an inertial and analytical

tire deformation model

Mikko Leinonen Jaakko Palosaari Jari Juuti

Microelectronics research unit, University of Oulu, Finland (e-mail:
mikko.leinonen@oulu.fi).

Abstract: In this work, an analytical tire deformation model is created, which can be
parameterized using simple measurements. The model consists of three equations which are
solved to provide a shape function for the tire.
This model can be used to provide excitation input for energy harvesters embedded inside the
tire for example in FEM simulations. Additionally the model can be used in differential equation
based simulations for quick parameterized simulations. With this model it is possible to study
the effect of tyre inflation state to the energy harvesting performance of the system.
Two different simulation cases are presented in this work. First is a vibration energy harvester
simulation using the model with an inertial energy harvester. The second case illustrates an
energy harvester using the deformation of the tire as the excitation for the energy harvester as
opposed to inertial type harvester.

Keywords: piezoelectric, TPMS, energy harvester, tire, automotive, FEM

1. INTRODUCTION

Tire inflation sensors or TPMS (Tire Pressure Monitoring
System) sensors are currently widely used in the automo-
tive industry. These sensors monitor the pressure inside
the tire to improve fuel efficiency and to warn the driver of
a tire puncture. Nowadays the pressure sensors employed
in the tires use batteries that can last for years, however
the batteries add weight and volume to the sensor module
and the sensor uses 0.45mW of energy when active Yi
et al. (2021). Energy harvesting is a solution to minimize
battery usage of the sensor. Several different energy har-
vesting schemes have been studied. Kinetic energy of the
tire movement is converted into electrical energy mainly
in two ways - inertially and using strain. Inertial energy
harvesters usually couple a seismic mass to a piezoelectric
beam and convert the movement of the inertial mass into
electricity. In Kubba and Jiang (2014) simple cantilever
beams are used to obtain energy from the tire motion. In
Leinonen et al. (2017), however, a more general rotational
harvester is studied where the inertia of the seismic mass
is excited by the rotating gravitational vector. It has to be
noted, that inertial energy harvesters are highly sensitive
to frequency, as the harvesting is most efficient at the
resonant frequency of the piezo beam.

The second type of piezoelectric energy harvesters for the
TPMS sensors are the strain type energy harvesters. In
these harvesters the deformation of the tire is used to actu-
ate, for example, a piezo fiber patch Lee and Choi (2014).
Another example is a flexible PVDF patch used in Maurya
et al. (2018). It is also possible to use a more complicated
structure such as in Esmaeeli et al. (2019), where a cymbal
structure is embedded into a tire. This approach is also
studied in this work, with the exception that the cymbal in

this research has symmetrical endcaps whereas in Esmaeeli
et al. (2019) and Aliniagerdroudbari et al. (2019) only one
of the endcaps is typical cymbal endcap. In Al-Najati et al.
(2024) a strain energy harvester was presented and both
the tire and harvester were modeled using FEM software.
Furthermore, in Al-Najati et al. (2024) it is claimed that
double endcap structures cannot be used inside tire, but in
this study this is proved inaccurate. In Staaf et al. (2024)
tire mounted energy harvester is simulated in FEM by
modeling a section of a tire with rotating contact patch.

2. THEORY

2.1 A simple tire deformation model

A mathematical piecewise model was generated for a
tire mounted harvester. A mathematical expression was
developed for the shape of the tire.

The model for the local tire radius is as follows (for
0 ≤ θ ≤ 2π)

r(θ) =


0 ≤ |θ| ≤ θ1 , h/cos(|θ|)
θ1 ≤ |θ| ≤ θ2 , D + C|θ|+Bθ2 +A|θ|3
|θ| ≥ θ2 , 1

(1)

where θ is the rotation angle and A,B,C and D are the
coefficients to be determined according to the deformation
shape. The loaded tire height h is the fraction of the
radius of the tire. The tire radius is scaled to 1 in this
equation. The shape was varied by modifying the tire
height reduction under load and the length of the flat area
under the tire. The θ1 and θ2 are the angles between which
the transient equation is valid i.e. the space between the
flat area and the circular area. These result in a series
of equations which result in an analytical expression for
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Fig. 1. Tire shape

different cases. An example is shown in Fig. 1, where the
tire contact point is on the right (θ=0). The transient
equation between θ1 and θ2 is constructed by forcing the
function to be continuous and ”smooth” i.e. differentiable
over first derivative.

limθ→θ1− r(θ) = limθ→θ1+ r(θ)

limθ→θ2− r(θ) = limθ→θ2+ r(θ)

limθ→θ1− ṙ(θ) = limθ→θ1+ ṙ(θ)

limθ→θ2− ṙ(θ) = limθ→θ2+ ṙ(θ)

(2)

When these equations are solved, we get the coefficients
A,B,C and D for equation 1 as equations 3, 4, 5 and
6. This model provides a continuous and ”smooth” shape
curve for the tire. However it is not physically accurate,
for example, it does not keep the circumference of the tire
constant. However, it is possible to use more physically
accurate boundary conditions to obtain more accurate
functions. In our purpose to have a simple model for quick
initial estimates on energy harvester performance on more
”macroscopic” aspects of tire dynamics, the model is ade-
quate. This model is also easy to implement on numerical
simulations using differential equations for the energy har-
vester dynamics. This is also important when estimating
initial energy harvester performance using FEM modeling.
This model is easily incorporated into an FEM model as
opposed to more complex models.

The parameters of this model can be estimated using
simple measurements for the tire geometry. The length

of the contact patch can also be measured directly or by
using accelerometer or strain measurements. The strain
measurements can also be used to measure the lenght of
the transitional zone bounded by θ1 and θ2.

2.2 An inertial harvester inside a tire

An inertial harvester is shown in Fig. 2. The PZT beam
harvester is mounted in the inside of the tire and and
endmass is mounted at the tip. The beam is bending by the
rotating gravity vector as the tire turns (θ(t) = ωt) if the
tire is completely round. However, in practice the tire has
a flat contact area and therefore it is not perfectly round.
Furthermore, the harvester is subject to a centripetal force,
which in the harvesters own frame of reference acts as a
virtual gravity. In a case of a perfectly round tire’s case,
it’s magnitude is

avg = ω2r (7)

,where ω is the angular velocity and the r is the radius of
the circle.

In the case of a loaded tire, with a flat contact patch,
this equation 7, holds for the circular part of the tire, and
for the flat part, the virtual gravity is 0, and only the
actual gravity is in effect. This is easily proven, as the
velocity vector of the harvester stays constant in cartesian
coordinates as opposed to polar coordinates in equation
1. As the velocity vector does not change it’s direction,
the centripetal acceleration is zero. For the polynomial
part of the equation 1, the centripetal force could be
calculated, but the result is too verbose to reproduce here.
Furthermore, as is shown in the measurements a simple
linear or step approximation is enough for a simple model.

Fig. 2. Piezoelectric energy harvester inside a tire

2.3 3 point harvester

In a 3 point energy harvester a piezoelectric beam is
connected into the inside of the tire via three points (a, b
and c) as in Fig. 3. The displacement between these points
deforms the harvester and generates energy. The center

A =
tan (θ1)θ2h+ (2− θ1 tan (θ1))h− 2 cos (θ1)

cos (θ1)θ2
3 − 3θ1 cos (θ1)θ2

2 + 3θ1
2 cos (θ1)θ2 − θ1

3 cos (θ1)
(3)

B = −θ2 ((3− θ1 tan(θ1))h− 3 cos(θ1) ) + 2 tan(θ1) θ
2
2 h+ (3 θ1 − θ21 tan(θ1))h− 3 θ1 cos(θ1)

cos(θ1) θ32 − 3 θ1 cos(θ1) θ22 + 3 θ21 cos(θ1) θ2 − θ31 cos(θ1)
(4)

C =
θ2

((
6 θ1 − 2 θ21 tan(θ1)

)
h− 6 θ1 cos(θ1)

)
+ tan(θ1) θ

3
2 h+ θ1 tan(θ1) θ

2
2 h

cos(θ1) θ32 − 3 θ1 cos(θ1) θ22 + 3 θ21 cos(θ1) θ2 − θ31 cos(θ1)
(5)

D = −
(θ1 tan(θ1)− 1) θ32 h+

(
3 θ1 − θ21 tan(θ1)

)
θ22 h− 3 θ21 cos(θ1) θ2 + θ31 cos(θ1)

cos(θ1) θ32 − 3 θ1 cos(θ1) θ22 + 3 θ21 cos(θ1) θ2 − θ31 cos(θ1)
(6)
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Fig. 3. Harvester connected by 3 points into the tire
¨

(a) single point deviation

(b) center pole relative deviation

Fig. 4. 3 point harvester pole deviations

pole deviation is shown in Fig. 4(b), where the

displacement of the point B (Fig. 3) in relation to A and
B is shown. A single point deviation (A, B or C) is
shown in Fig. 4(a). As can be seen the center point
deviation, Fig. 4(b), can is a lot smaller than the single
point deviation and furthermore can be tuned by moving
the points A and C further from point B. This enables
the use of a ”stretching” type of harvester, where the
material is under stress and strain. It has to be noted,
that the center point deviation is similar to longitudal
strain measured in Kim et al. (2012). The 3 point
harvester acts as an indirect strain measurement on the
inner surface of the tire. In Kim et al. (2015), a strain
model for a tire deformation is developed utilizing strain
measurements and neural network. The resulting model
in Kim et al. (2015) produces similar shaped stain curves
as the model presented in this work. Where the models
differ most are the transition zones between the contact
patch and the circular section of the tire. This is due to
the simple ”smooth” transition between the regions that
was introduced to keep the model as simple as possible.

Fig. 5. Acceleration inside the tire

3. ACCELERATION MEASUREMENTS

As an experiment, the acceleration of the tire was mea-
sured in situ i.e. inside the tire. An accelerometer (kx-134,
sparkfun electronics, USA) was used as the sensor. A nut
(M6) was glued inside the tire onto which the sensor was
mounted (sensor was glued to a bolt). Adafruit Feather
nRF52 Bluefruit LE (Adafruit industries, USA) was used
as the data logging microcontroller. The I2C bus was used
as a datalink between the microcontroller and the sensor.
The power and signal wires were routed through the rim
and the microcontroller was placed outside the tire.

A mobile phone was used as an interface for the system.
A software called ”pfodApp V3” (Forward Computing
and Control Pty. Ltd. NSW Australia) was used as the
development platform. The microcontroller was used as a
server, which served a micropage as a user interface. A
mobile phone running the pfodApp was used as a client
for the server. A bluetooth LE link was used as the radio
link between the server and client. With this system it
was possible to start the logging of the acceleration data,
plot the data and save the data to the phone for post
processing.

The sampling rate of the system was 1 kHz and 1000
samples were recorded, which resulted in one second worth
of data sampled. The resolution of the samples were 16 bits
with ±8 g dynamic range.

An example acceleration measurement result is shown in
Fig. 5. As can be seen, when the sensor is at the ”flat”
spot of the tire the acceleration is a constant 1 g i.e. the
gravity. This is in agreement with the model. Furthermore,
it can be seen that the tire exhibits a lot of high frequency
vibration. The transition from a circular motion into the
linear motion in the contact area is very rapid and rather
linear as can be seen in Fig. 6. This would indicate that
the model presented in this work can also be used when
studying inertial type energy harvesters. Furthermore, the
simpler acceleration model presented in equation 8 can be
more suitable in some cases where the displacement input
is not needed.
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Fig. 6. Acceleration detail

4. SIMULATIONS

4.1 3 point harvester simulations

The simulation was carried out using Comsol Multiphysics
5.5 software. The simulated structure was a cymbal type
energy harvester shown in Fig. 7. A similar structure was
simulated in Leinonen et al. (2013). The width and length
of the harvester was 20 mm. The piezoelectric material was
PZT-5H and the endcap material was steel. The thickness
of the PZT was 300 µm and the thickness of the steel
endcap was 100 µm. At the center of the endcaps were
rectangular blocks which acted as the mounting points.
The bottom block was fixed and the top one was subject
to the prescribed displacement. The top block was assigned
to soft material (Youngs modulus of 10E4 Pa) to provide a
”cushioning” for the harvester. The bottom block material
was steel. The endcap height was 400 µm. The FEM model
was a 2D model with solid quadratic elements using plane
strain approximation.

The input signal for the simulation was obtained from the
Fig. 4(b) by scaling it to go from -20 µm to 80 µm
i.e. a total of 100 µm stroke. As can be seen from Fig.
4(b), the shape of the curve is preserved for greater
separation of the mounting points. This provides
flexibility for the harvester design, as proper stroke can
be chosen by moving the mounting points. In the case of
the cymbal harvester, the mounting through 3 points is
not trivial but could be realized by using a suitable
casing.

The bottom electrode of the PZT layer was connected
to a ground potential. The top layer was connected to a
terminal boundary condition, which in turn was coupled
to a SPICE circuit consisting of a resistor.

A transient simulation was used to simulate the time
responce of the system. At first a 1 Hz rotation speed was
used as the input and the output voltage of the harvester
is shown in Fig. 8. In this simulation the output resistor
was ∞. As can be seen, the voltage of the harvester has
enough amplitude for even a simple rectifier, and therefore
can be used as an energy harvester.

The load resistance was increased to 1 kΩ, and the result-
ing voltage is seen in Fig. 9. This figure is a closeup of the
first half of the circle (0 ≤ θ ≤ π). As can be seen, the
voltage quickly dissipates due to the load resistance.

Fig. 7. The simulated cymbal.

Fig. 8. Voltage of the cymbal harvester at 1 Hz rotation.

Fig. 9. The output voltage of the cymbal with a 1 kΩ

The energy generated can be calculated by integrating
the power of the signal for one period. The energy for
the one cycle was 0.54 nJ at 1 Hz rotation frequency.
This corresponds to 2 m/s speed. When extrapolated to
4 m/s the power is 1 nW and at 28 m/s (100 km/h) it is
7 nW. However, when simulated at 10 Hz rotation which
corresponds to 20 m/s speed, 70 nW of power is generated.
This is over ten times larger than the extrapolated value.
This is due to resonances induced by the higher frequency.
This resonating movement can be seen in Fig. 10. The
whole structure together with the PZT layer is vibrating.
This enhances the power generation of the harvester even
though it is not strictly speaking a vibration energy
harvester.

The maximum von mises stress in the PZT layer was
1.1 MPa at the 10 Hz simulation, which is well below the
tensile strength of the material (114 MPa) Anton et al.
(2012). This indicates that the cymbal could be stressed
further to provide better energy output. The 2D model was
extruded to 3D in order to visualise the geometry better,
this is shown with the stresses in Fig. 11.
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Fig. 10. The shape of the harvester under a resonance,
showing the von Mises stress

Fig. 11. The extruded 3D model with von mises stresses

4.2 Inertial harvester simulations

The simulations were carried out using Comsol Multi-
physics 5.5 software. The simulated geometry was a simple
piezoelectric unimorph with an endmass. The length of the
beam was 25 mm and the width was 10 mm. The thickness
of the PZT layer (PZT-5H) was 250 µm and the passive
steel layer was 100 µm thick. The endmass was 0.31 g.
The base of the harvester was fixed and the gravity i.e.
domain force was the input for the system. The gravity
was calculated as a sine wave with a 1 g amplitude and
a constant virtual gravity component. The sinusoidal AC
component for the force represents the rotating gravity
vector and the constant virtual gravity the centrifugal
force. To model the contact patch area, a constant 1 g
area is introduced to the force. The resulting acceleration
equation is

a(θ) =

{
0 ≤ θ ≤ θ1, G

θ1 < θ ≤ π,Gsin(θ) +Gv
(8)

,where G is the gravitation 9.81m
s2 and Gv is the virtual

gravity. This is a simplified model, since there is no rise
time for the acceleration change from the round area to
the contact patch area. However, as was seen in Fig. 6, the
change in acceleration is very sharp.

For the first simulation, the virtual acceleration was set
to 1 G. The rotating frequency was 2 Hz. The resulting
endmass displacement is shown in Fig. 12. The power
output of the harvester was 17 pW. When the virtual
gravity was increased to 5 G, the power output increased
to 3.4 nW.

For the 100 G input, the harvester produced 0.7 µW
of power. The maximum stress at the PZT layer was
31 MPa, which is well below the tensile strength of
the material. The rotation frequency stayed the same
for these simulations and only the virtual gravity was

Fig. 12. The displacement of the endmass at 1 G

increased. This equates to using a larger circumference
tire rather than rotating the tires faster. The increase in
tire rotation speed should also improve the power output
further similarly to the 3 point harvester’s case.

5. CONCLUSIONS

In this work, a minimal model for a rotating tire was
developed. The model was used as a tool to create input
signals for FEM models.

A 3 point energy harvester was studied, in which the
deformation of the tire is translated into a controlled
relative motion between the 3 points. A cymbal type
energy harvester was studied as a possible candidate for
a tire mounted energy harvester. The externally leveraged
structure of the cymbal proved advantageous, since the
structure can exhibit vibrations even in a displacement
driven case. This enhances the power generation, which
without the vibrations were considerably lower.

An inertial type harvester was also studied with different
centrifugal loading. As the model, and the acceleration
measurements showed, the energy harvester is subject to
alternating states of either very high virtual gravity or
the 1 G of natural gravity. This provides a strong inertial
input for the energy harvester. It is vital to design the
energy harvester to withstand the high acceleration forces
present in the system. For this task, the simple tire model
and the FEM modeling combined, provide a good tool for
harvester design.
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Abstract: Research and innovation in Vehicle-in-the-loop (VIL) testing is garnering more
attention than ever. Integrating cyber-physical systems (CPS) into the VIL setups further
enhances their functionality and hybridises the testing. Setting up any VIL infrastructure
involves substantial investments and thus requires critical analysis of the resources to achieve the
intended results. This study focuses on such a VIL testing infrastructure development at NUVE-
Lab, aiming to provide state-of-the-art facilities for hybrid automotive testing. The facility
includes physical components such as a heavy tractor (Valtra), dynamometers, an Actuators
power need generation system (APGS) system, and battery emulators (BE), complemented by
digital twins (DTs) of each physical machine, process, and environment to automate the testing
facilities. This research examines various interoperability challenges within the current VIL
framework. Three distinct testing scenarios are created to assess the overall functionalities of
the hybrid setup: dynamometer-in-the-loop, APGS-in-the-loop, and BE-in-the-loop. Analyzing
individual cases highlighted the need for different modeling and simulation (M/S) tools to
develop digital twins. Among the tools, SIMULINK is used to build and refine the models
of DTs, whereas MATLAB is used to develop control algorithms. The study also explores the
adoption of Functional Mock-up Interface (FMI) standards to facilitate seamless interoperability
among modeling and simulation tools. Additionally, the potential integration of the Eclipse
Arrowhead framework (EAF), an IoT-edge-based automation tool, is discussed to enhance
efficient data management, service interoperability, and the integration of various cyber-physical
system components. In conclusion, this paper outlines the interconnection of the digital and
physical platforms to evolve a hybrid VIL test laboratory, envisioning the future trajectory of
the NUVE-Lab.

Keywords: Digital Twin (DT), Interoperability, Vehicle-in-the-loop (VIL), Eclipse Arrowhead
Framework (EAF), MATLAB, SIMULINK.

1. INTRODUCTION

Vehicle-in-the-loop (VIL) is an automotive testing method
that combines real machines with virtual simulations
rather than conducting purely virtual tests. Advanced
levels of testing in the design phase with reasonable costs
and enhanced safety features have accelerated special re-
search attention to this field in recent years Cheng et al.
(2024). The focus of the traditional VIL setups was to
incorporate different hardware and software in the loop for
testing facilities. However, the inclusion of industry 4.0/5.0
complaint technologies has introduced hybrid VIL test se-
⋆ The financial support received from the European Union NextGen-
erationEU instrument, which is funded by the Research Council of
Finland under grant number 352726.

tups. State-of-the-art testings and validations with hybrid
setups are made possible by integrating cyber systems
with physical processes, digital twins (DTs), communica-
tion (5G/6G), internet of things (IoTs), augmented reality
(AR) and Virtual reality (VR) technologies, artificial intel-
ligence (AI), machine learning (ML) algorithms, cloud and
edge computing, and others Zhao et al. (2023). However,
the addition of diverse technologies increases complexity
and interoperability concerns for the interconnected sys-
tems Lv et al. (2024). One such cyber-physical-system-
based hybrid VIL research infrastructure at the NUVE
lab in Oulu, Finland, is discussed in this paper.

Cyber-Physical Systems (CPS) combine computational
and engineering fields to develop systems that connect the

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.047 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

339



physical and digital realms. These systems incorporate in-
tricate networks, control systems, information fusion, and
optimization techniques Su et al. (2022). These systems
have the potential to revolutionize various domains by
enabling advanced functionalities and automation. How-
ever, the implementation of CPS is accompanied by several
challenges. One significant challenge is the diverse nature
of technologies and standards, leading to interoperability
issues that hinder seamless communication and integration
among different subsystems within CPS Chaudhry et al.
(2019). Among others, digital twin technologies (DTTs)
have been observed as a core component of CPS for
creating the virtual representation of physical objects or
systems. The diverse nature of digital twin implementa-
tions, with various data structures and interfaces, hinders
the interoperability between different digital twins Wang
et al. (2023). Additionally, enabling real-time dynamic
interactions between the simulation world and the physical
world through digital twins introduces complexities in
ensuring consistent and reliable data exchange, posing a
challenge to achieving seamless interoperability. Therefore,
IoT-based automation tools are effective for interoperabil-
ity in such hybrid setups. Eclipse Arrowhead framework
(EAF) is one such potential tool for interoperability solu-
tions and is considered for NUVE’s VIL setup.

The creation and optimization of digital twins (DTs) in
VIL setups are dependent on various modeling and simu-
lation (M/S) tools. The test-bench-based hybrid testing
methods require the simulation of the environment in
order to provide realistic inputs for the device under test.
These simulation inputs need to be generated in real-
time, which narrows down the choice of simulation tools
and excludes all the software that needs heavy computing
(such as FEM tools). To keep the number of simula-
tion software reasonable, we are going to use Mevea and
MATLAB/SIMULINK as the main tools in this research
project. Mevea is a software for real-time simulation of me-
chanics, hydraulics, power transmission, and the operating
environment (Mevea (2024))). MATLAB/SIMULINK is a
software for modeling and simulating dynamic systems in
multiple domains (Mathworks (2024b)).

In this paper, we aim to study the hybrid VIL setup
in NUVE-Lab at the Oulu Applied Science Univer-
sity(OAMK), Oulu, Finland. The laboratory setup con-
sists of a Valtra tractor, 4 dynamometers, an APGS
system, and a battery emulator as physical components.
On the counter, the digital models of the tractor are
designed in the Mevea environment for simulation and
testing Oulu Univesity of Applied Science (OAMK) (2023).
A few digital counterparts are modeled using SIMULINK
as well. One of the primary objectives is to study the
interoperability challenges across various test scenarios.
Next, to analyze the usability of existing Internet of Things
(IoT) middleware and Open-source platforms as potential
candidates to overcome the hurdles. Thus, two important
research questions (RQs) are formulated:

RQ-1:What are the essential components to be considered
in setting up a hybrid VIL setup?

RQ-2:What are the key interoperability challenges in a
hybrid VIL environment?

The outline of the paper is as follows: background and key
enablers for the hybrid VIL are mentioned in section 2.
The research process and context followed are presented
in section 3. Section 4 illustrates the key findings of the
research work. Then, the results are discussed in section
5. Lastly, the conclusion and future scopes of the work are
presented in section 6.

2. BACKGROUND

In this section, a summary of the recent works related to
the vehicle-in-the-loop (VIL) testing is presented.

2.1 VIL Testbench Setup: SOTA and Concepts

The vehicle-in-the-loop technique is the combination of
real-world vehicles with virtual environments to perform
experiments in a cost-efficient way Park et al. (2020).
The experimental setups for the VIL testing vary with in-
frastructures based on specific research objectives, testing
precision, accuracy of experiments, available technologies,
and resources. However, there is a core set of basic require-
ments to establish a functional VIL testing environment,
including physical vehicles (hardware), simulation soft-
ware, data acquisition systems, computing infrastructure,
and safety measures Cheng et al. (2024). To validate the
results, there are 3 basic testing approaches: simulation,
hybrid (closed-field), and real (on-road) testing Solmaz
et al. (2020). Simulation tests are the most economical
and low in accuracy as they only involve digital twins
and software. On the other hand, real tests include the
physical vehicles in real-world scenarios, which are highly
expensive but most accurate. Therefore, hybrid tests are
often considered as optimal solution as they take both
hardware and software in the loop to perform experiments.

2.2 Challenges in VIL setup

VIL testing setups have proven their worth for automotive
research and development, but they face several challenges.
One of the complexities in setting up a VIL laboratory
involves a huge investment in infrastructure. Integration of
various hardware and software platforms, maintenance and
updates of the technologies, and scalability are among the
top challenges. However, in this study, we only investigate
and focus on the technical challenges associated with the
implementation of VIL. The list of challenges is as follows:

• System Integration and Compatibility
• Connectivity and V2X Communication
• Real-time processing
• Data Acquisition and Handling
• Scalability and Flexibility
• High-Fidelity Sensor Simulations
• Mixed Reality and Enhanced Immersion
• Standardization and Bench-marking

Integration of advanced technologies such as radar target
simulation and environment perception simulation in VIL
testing poses technical challenges Maier et al. (2018). The
integration phase is particularly complex due to the nu-
merous components in modern vehicles Rossi et al. (2017).
Additionally, the growing complexity of automotive cyber-
physical systems and the verification challenges posed by
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Fig. 1. Overview of the Vehicle-in-the-loop Testing in NUVE-Lab.

distributed software in vehicles create difficulties Raghu-
patruni et al. (2019). There is also a pressing need for
simulations that accurately reflect the complexity of real-
world testing environments Babić et al. (2020). Moreover,
thorough testing for autonomous vehicles remains a major
challenge Chen et al. (2020).

2.3 Role of Simulation and Modelling Platforms

Modeling, in general, requires a lot of modeling expertise
and is labor intensive, although in this project, we are
modifying the existing Valtra tractor model introduced by
Jaiswal et al. (2019). The real-time demand of the simu-
lation models also restricts the choices made in modeling
and reduces the details that can be applied to the model.

In this research, a setup will be made where the hydraulic
system of the tractor is modeled in Simscape, and the front
loader is modeled in Mevea. The simulation is performed as
a co-simulation where the Simscape model is exported as a
functional mock-up unit (FMU)to the Mevea environment
(FMI (2024)). The use of the FMU in co-simulation
requires a lot of adaptation of the models and can emerge
with various issues due to the varying modeling principles
in different software.

2.4 Role of CPS, DTs and IoT Platforms

IoT platforms and frameworks play a significant role in
enabling Vehicle-in-the-Loop (VIL) testing by offering the
necessary infrastructure for connecting and monitoring
all the components used in the testing procedure. These
platforms allow the seamless integration of IoT devices,
sensors, and communication technologies within the VIL

setup, enabling the exchange of real-time data and con-
trol functions. There are numerous IoT frameworks and
platforms currently being used by industries, including
the Eclipse Arrowhead Framework, AUTOSAR, BaSys,
FIWARE, OCF, IoTivity, and more (Paniagua and Dels-
ing (2020)). The Eclipse Arrowhead framework has been
selected for the GORI project to develop networked con-
nectivity between different VIL setups using local cloud
automation.

2.5 Industry Complaint Open-source IoT Framework

The Eclipse Arrowhead Framework (EAF) is an open-
source industrial IoT framework that provides interop-
erability solutions in Industry 4.0.Delsing (2017). This
framework is built on the principles of SOA (Service
Oriented Architecture) and leverages the concept of lo-
cal clouds. Here, a local cloud is a network of intercon-
nected systems and services that function within a lim-
ited environment, usually within a particular organiza-
tion, stakeholder, or region. This architecture emphasizes
Standardized communication, late binding, loose coupling,
cyber-security, scalability, Dynamic service Discovery, and
multi-stakeholder integration. The framework enables real-
time communication between different systems irrespec-
tive of the technology being used within a local cloud
or between systems registered in different local clouds.
The framework is compatible with several communication
protocols, including HTTP, COAP, MQTT, and OPC
UA, as well as transport protocols such as TCP, UDP,
and DTLS/TLS,Acharya et al. (2023). Three mandatory
core systems are provided to facilitate interaction between
systems. The mandatory core systems are:
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(1) the Service Registry system, which records the ser-
vices currently being offered,

(2) the Authorization system that controls system-to-
system authorization at a detailed level for secure
service exchange,

(3) the Orchestrator system that enables the consumer
application to discover the required service endpoint
at run time.

In addition to the core systems, there are client systems
that essentially function as application systems, either as
providers or consumers, that seek to establish communi-
cation with one another. Each core system and provider
system offers a set of services that are registered with the
Service-Registry and includes a specific set of interfaces,
metadata, and service paths. Any system that wishes to
utilize a service must request the service address from
the Orchestrator system during runtime. The Orchestrator
verifies with the Service Registry if the service is now
accessible and then consults the Authorization system to
determine if the exchange of the specific service is approved
between the two systems. After the verification process
is completed successfully, the Orchestrator provides the
relevant service endpoint in response. The consumer sys-
tem directly contacts the service-provider system. The
framework also employs the Gatekeeper and Gateway core
systems to provide inter-cloud communication.

2.6 NUVE-Lab Vision

In NUVE-Lab, the ongoing research is focused on building
a hybrid VIL testing platform that can accommodate
cutting-edge automotive research and development. The
current laboratory setup is shown in Fig. 1. Further op-
timization of digital twins by accurately replicating the
physical entities will enhance applications such as pre-
dictive maintenance, real-time monitoring, fault diagnosis,
etc. Different test scenarios will be developed further by
integrating sensors, actuators, programmable logic con-
trollers (PLCs), and Lidars. The longer-term goal is to
enable testing across a wide range of vehicles, both with
physical and digital prototypes. This will leverage facilities
to test all types of prototypes before the realization of
products.

3. RESEARCH PROCESS AND CONTEXT

This section explains the research process followed to an-
alyze the integration of physical and software components
of the current VIL setup at the NUVE lab. To carry
out a systematical investigation of the interconnectivity
and interoperability concerns, three test scenarios are de-
veloped (as shown in Fig. 2. In the first scenario (T1),
dynamometer is attached to the vehicle to perform tests,
testing setup is shown in Fig. 2. The second case (T2) is
for testing hydraulic systems by attaching an actuator’s
Power Need Generation System (APGS) to the vehicle. In
the third setup (T3), a battery emulator is connected to
the vehicle. All the test scenarios are explained in section
4.

3.1 Challenge Identification

To investigate the interoperability challenges, all the con-
nections are labeled (A, B, C, ..., J) in each test scenario.
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Fig. 2. Test Scenarios in NUVE’s VIL Setup: (T1) Dy-
namometer Testing with the Vehicle; (T2) Hydraulics
System testing with the Vehicle; (T3) Battery Emu-
lator testing with the Vehicle.
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Table 1. Challenges Identified for all the 3 Test Scenarios

Connection Type
Identified Challenge(s)

Dynos-in-the-loop (T1) APGS-in-the-loop (T2) BE-in-the-loop (T3)

A P-P
- Mechanical setup and configurations
- Version Maintenance and Upgradations
- Software Integration

- Electrical setups
- Control system integration
- Version Maintenance

- Electrical Compatibility
- Interface Management

B P-D
- Protocol Mismatch
- API Compatibility
-Maintenance and Upgradations

Not Available
- Protocol Mismatch
- API Compatibility
-Maintenance and Upgradations

C P-D
- Communication Protocols
- Latency

Not Available
- Protocol consistency
- Control system-software integration
- Latency

D D-D

- Data Exchange
- Protocol Mismatch
- Version compatibility
- Latency (better than connection ’F’)

Not Available

- Data Exchange
- Protocol Mismatch
- Version compatibility
- Latency

E D-D

- API compatibility
- Model Accuracy
- Version compatibility
- Data Format and representation

Not Available

- Creation of DTs
- API compatibility
- Model Accuracy
- Version compatibility
- Data Format and representation

F D-D

- Protocol Compatibility
- API compatibility
- Latency (UDP loop)
- Model Accuracy

Not Available

- Protocol Compatibility
- API compatibility
- Data format Compatibility
- Latency
- Model Accuracy

G P-P

- Protocol Mismatches (CAN to Mod-bus/
Ethernet/IP)
- Latency
- I/O Compatibility
-Integration with other systems

- Protocol Mismatches (CAN to Mod-bus/
Ethernet/IP)
- Latency
- I/O Compatibility
-Integration with other systems

Not Available

H P-D
- Data Exchange and Latency
- Digital Twin Accuracy
- Scalability

- Creation of Digital Twins (DTs)
- Data communication
- Integration with other systems
- Refinement of DTs

Not Available

I D-D
- Model Accuracy
- Data Format Compatibility
- Integration of Physics Simulators

Not Available Not Available

J P-P Not Available
- Protocol consistency
- Control system-software integration
- Latency

Not Available

Three main categories of the connections are shown in
Figure 2: physical to physical (P-P), physical to digital
(P-D), and digital to digital (D-D). Identified challenges
are mentioned in section 4.

4. RESULTS

4.1 Dynamometer-in-the-Loop Testing (T1)

In this test setup, the dynamometers are tested with the

vehicle, as shown in Fig. 2. All the connections and
iden-tified challenges are mentioned in table 1.
Dynamometers connected with the vehicle (Valtra
tractor) are controlled by STARS automation software
and exchange data with the digital twin setup. Digital
twins are created in the Mevea tool and updated in
real-time using SIMULINK models. Some of the
significant interoperability challenges faced in this VIL
testing are protocol compatibility, la-tency, API
compatibility, and software integration.
4.2 APGS-in-the-loop Testing (T2)

In the second test setup, an actuator power need gen-
eration (APGS) system was tested in the VIL. The test
setup is shown in Fig. 2, and the identified challenges are
mentioned in table 1. This test setup is optimized in terms
of the number of connections (compared to T1). One of
the crucial parts is to create digital twins with granular

information from their physical counterparts. Other chal-
lenges include protocol mismatching, input-output (I/O)
compatibility, latency and etc.

4.3 Battery Emulator-in-the-Loop Testing (T3)

The third setup is to test the battery in the hybrid VIL
setup. The experimental setup is presented in Fig. 2.
Most of the connections in this setup have familiarity with
the first test-case (T1). The identified challenges are listed
in table 1. Some essential interoperability barriers in this
testing are achieving real-time data and feeding into the
twin of the battery. Software integration with the control
systems is very crucial for this test setup and can possibly
need middleware solutions in the future.

5. DISCUSSIONS

5.1 Dynamometer-in-the-Loop Testing (T1)

In the dynamometer-in-the-loop test case, the Valta trac-
tor mounted on dynamometers interacts with Mevea soft-
ware, where the multi-body dynamics model of the tractor
and the virtual environment are modeled (as shown in Fig.
2). The purpose is to evaluate the performance and the
behavior of the tractor under realistic driving conditions
without the need for a physical test track. For example, in
one case, the Mevea software (DT setup) receives the wheel
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Table 2. Analysis of each connection and Possible Arrowhead Solutions

Connection Type (Test Case) EAF Mapping Feasibility

A, J P-P (T1, T2, T3) Creating individual Arrowhead applica-
tion systems for vehicles and dynamome-
ters that can connect to sensors and actu-
ators of the hardware. These systems can
then provide services that collect, store,
and manage these sensors and actuator’s
data.

The sensors and actuators’ information
from the hardware can be easily extracted
at the next connection levels. Hence, us-
ing Arrowhead at this point is not recom-
mended.

B P-D Creating individual Arrowhead applica-
tion systems for the vehicle and STAR
automation that can exchange information
with each other and control the actuators
in the vehicle through Arrowhead services.

Using Arrowhead at this point is not rec-
ommended to avoid latency.

C P-D Creating individual Arrowhead applica-
tion systems for the dynamometers and
STAR automation that can exchange in-
formation with each other and control the
actuators in the vehicle through Arrow-
head services.

This will create unnecessary latency.
Hence, using Arrowhead at this point is
not recommended.

D D-D Creating individual Arrowhead applica-
tion systems for STAR Automation and
SIMULINK/MATLAB, where informa-
tion exchange between the two systems
takes place via the Arrowhead service ex-
change process.

Arrowhead can be useful if it can avoid
additional latency.

E D-D Creating individual Arrowhead applica-
tion systems for SIMULINK/MATLAB
and Mevea. The SIMULINK system can
send the input(torque) values to the Me-
vea through the Arrowhead service ex-
change process. After testing the DT
against the input value at Mevea, the Me-
vea system can send the outputs (speed of
the tires) to the SIMULINK system.

Arrowhead can be used in this scenario as
it can be useful to store the test data in a
standardized way (senML) into the Data
Manager (DM), provided it avoids latency.

F D-D Creating individual Arrowhead applica-
tion systems for STAR automation and
Mevea that can exchange information like
torque and speed securely via the Arrow-
head service exchange process.

Arrowhead can be used to establish direct
communication between the two entities
if there are no SIMULINK models in the
loop for testing.

G P-P Creating individual Arrowhead applica-
tion system for the vehicle and PLC that
can connect to sensors and actuators of
the Vehicle to the PLC I/O ports. These
systems can then provide services that col-
lect, store, and manage these sensors and
actuators’ data.

The sensor and actuator information from
the vehicle can be easily extracted directly
from the PLC. Hence, using Arrowhead at
this point is not recommended.

H P-D Creating individual Arrowhead applica-
tion systems for the PLC and Mevea. The
PLC system can provide services to read
the input and output signals from the PLC
and send that information to the Mevea
system for testing. The Mevea system can
send the output values back to the PLC
via the Arrowhead service exchange pro-
cess.

Arrowhead can be utilized here in order to
exchange data in a secure way and also to
store the data in the Data Manager (DM).
Changes to the hardware (like sensors and
actuators) can be handled at run time
through the automatic discovery of new
services, resulting in reduced engineering
effort.

I D-D Creating individual Arrowhead applica-
tion systems for Unity and Mevea and
exchange information between the two sys-
tems using Arrowhead service exchange
process and TCP protocol.

Arrowhead can be utilized. Latency needs
to be tested. (Best suited when Mevea
and Unity operate in different networks or
locations.)

speed data from the dynamometers and uses it to calculate
the motion of the tractor’s simulation model in the virtual

environment. The Mevea software also calculates the driv-
ing resistance that the tractor model encounters in the
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virtual environment based on the position and velocity
of the simulation model and the characteristics of the
environment. Therefore, interoperability of data between
the physical and digital parts is a must.

The communication between Mevea software and the
Horiba system (STARS automation) has to be routed
through Matlab/SIMULINK because, at the moment,
Horiba and Mevea have no ability to communicate directly
with each other. This might cause extra latency, but the
current setup appears to be a working solution based on
the preliminary communication tests done in NUVE-Lab.

5.2 APGS-in-the-loop Testing (T2)

In the APGS-in-the-loop testing scene, the hydraulic sys-
tem of the Valtra tractor is connected to the APGS sys-
tem, which can control the hydraulic load of the main
hydraulic line and the pressure of the load-sensing line.
The performance of the tractor’s hydraulic system can be
evaluated without the need for any auxiliary equipment,
such as a front loader. Alternatively, we can also test how
the tractor reacts to the auxiliary equipment without ac-
tually mounting the equipment to the tractor. The Mevea
software is used to build a multi-body dynamics model of
the front loader and the model of the hydraulic system of
the Valtra tractor. The modeling can also be done by using
Simscape (Mathworks (2024a)), which is an extension for
the SIMULINK. The simulation model of the front loader
experiences different kinds of loads generated in the virtual
environment, such as lifting. The front loader movement
is controlled by giving control commands in the virtual
environment.

The simulation model provides the pressure and flow
information of the hydraulic fluid to the APGS system,
which in turn generates similar pressure and flow in the
real world in order to load the tractor’s hydraulic system
accordingly. The speed of the tractor’s hydraulic pump can
be measured and sent to the simulation model in order to
create a feedback loop. This way, a realistic system that
mimics the behavior of the tractor and the front loader in
different operating conditions can be created.

The FMU adaptation requires resolving several compati-
bility issues, such as data types, input/output variables,
initialization methods, and solver settings. The collabora-
tion with the software supplier is working exemplary, and
the raised questions have been resolved without delays,
although the fully working test model is still under con-
struction.

The APGS system communicates with Mevea through
Bechhoff/EtherCAT. This has been tested, and the ten-
tative results show that the solution works. This raises
the question of whether it would be possible for Mevea
to communicate with the Horiba system via Ether-CAT.
This would eliminate the need for the SIMULINK between
Mevea and Horiba and would possibly increase the com-
munication speed.

5.3 Battery Emulator-in-the-Loop Testing (T3)

In this testing case, the battery emulator is yet to be
fully integrated with the hybrid VIL setup. To ensure

seamless communication between the physical setup and
digital twin setup, compatibility across protocols and
data consistency is required. Another important aspect
at this moment is to create an accurate digital twin
that can simulate unforeseen conditions. To work on the
mentioned interoperability challenges, the adaptation of
IoT middleware solutions to the current VIL setup is
needed. One such framework is analyzed below.

5.4 Logical Reflections on AH Potential to NUVE-VIL
context

Utilizing the industry 4.0 IoT frameworks in VIL testing
offers several benefits. The benefits encompass ensuring
data quality management, efficient data processing, and
enhanced data security practices Javed et al. (2019)Mishra
et al. (2015). The EAF follows the principles of Industry
4.0, offering the same advantages outlined earlier. The
basic steps in utilizing EAF in any connection are to
create an Arrowhead application system for each end of
the connection and then establish communication through
the service exchange process of EAF explained earlier in
section 2.5. In order to gain a deeper understanding of how
EAF might be employed, Table 2 presents a comprehensive
list of the connections between the various components and
systems in NUVE Lab, as well as how EAF can optimize
the data exchange process.

One of the primary benefits of Arrowhead is its ability to
automatically discover new services during execution. This
feature is particularly valuable in the continuously evolv-
ing manufacturing landscape, characterized by frequent
hardware and software changes. Automatic service discov-
ery techniques minimize the effort needed to synchronize
changes in the physical world with the digital realm. For
instance, changes in the physical world, like switching
between sensors or PLCs, can be easily handled during
execution Tripathy et al. (2022). This will significantly
reduce the effort involved in re-engineering.

5.5 Threads to Validity

The hybrid VIL setup discussed in the paper is an ongoing
research work at the NUVE lab at OAMK, Oulu.

Internal validity This study is based on the practical
work at the laboratory. Therefore, a possible threat to
the study findings includes missing the relevant data. We
employed a thorough literature survey on the existing liter-
ature to analyze our findings. In external Validity, concerns
the generalizability of the findings and diversification of
technologies across different setups. To mitigate this all
the available industrial reports and gray literature were
refereed to validate the findings.

6. CONCLUSION AND FUTURE WORK

In this paper, a hybrid VIL setup of the NUVE lab is
demonstrated. This study is focused on building a hybrid
VIL environment to assess advanced automotive testing
capabilities. Interoperability is observed as a key factor in
building such setups while integrating CPS, DTs, software
components, and other industry-compliant technologies.
The study highlighted the requirements and challenges for
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transitioning from traditional VIL to a hybrid testing plat-
form. The physical infrastructure is integrated with cyber-
physical- systems to facilitate the advanced-level testing.
Three test scenarios, including dynamometer-in-the-loop,
APGS-in-the-loop, and Battery emulator-in-the-loop, have
been designed to investigate and explore the interoper-
ability challenges. The role of modeling and simulation
(M/S) platforms in developing and refining digital twins
is reviewed. In addition, the potential of the Arrowhead
framework to facilitate interoperability in a hybrid VIL
setup is examined. These insights from the NUVE lab also
lay a foundation for creating more innovative hybrid VIL
setups in the future.

This is an ongoing research project, and future work will
focus on finding engineering solutions to existing inter-
operability concerns. The Arrowhead framework will fur-
ther be tested to enhance interoperability among digital
twins, data management, scalability, and collaboration.
Furthermore, the creation and refinement of digital twins
to achieve better accuracy in mimicking physical compo-
nents and processes will be focused. The ultimate vision of
this hybrid VIL laboratory is to facilitate state-of-the-art
automotive testing and innovation.
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Abstract: Reactivity Controlled Compression Ignition (RCCI) stands out as a promising combustion 
method for the next wave of internal combustion engines, offering cleaner and more efficient operation, 
particularly in heavy-duty engines. A key approach within this strategy involves pairing diesel as the high 
reactivity fuel with natural gas (NG) as the low reactivity counterpart. Further optimization can be achieved 
by introducing hydrogen to replace portions of NG, thereby enhancing combustion quality while reducing 
greenhouse gas emissions. For accurate numerical simulation of engines employing this strategy, 
specialized chemical kinetics reaction mechanism tailored for internal combustion engines becomes 
essential. To facilitate computationally efficient 3-D Computational Fluid Dynamics (CFD) simulations, 
the mechanism has been reduced to include 60 species and 372 reactions, with N-heptane acting as a diesel 
fuel surrogate. This compact mechanism is optimized to align with experimental ignition delay time (IDT) 
data for N-heptane. The accuracy of the mechanism's predictions for IDT and laminar burning velocity 
(LBV) is validated using available experimental data. Furthermore, 3-D CFD and quasi-dimensional multi-
zone engine simulations are performed with the new mechanism to validate engine operating parameters 
against experimental data.  
Keywords: Diesel, Natural Gas, Simulation, Combustion, Engines, Mechanism 
 

1. INTRODUCTION

Low-temperature combustion (LTC) is an advanced
combustion concept for internal combustion engines that has
attracted global attention in recent years. Among the LTC
modes, Reactivity-Controlled Compression Ignition (RCCI),
in particular, has demonstrated promising results in terms of
reducing NOx emissions, brake thermal efficiency, and
combustion phasing control when operated under certain
conditions (Salahi et al., 2017). The unique operation of RCCI
engines involves the intake of a low-reactivity fuel and the
direct cylinder injection of a high-reactivity fuel (Hossein
Fakhari et al., 2024). This process creates reactivity
stratification, providing more control over the heat release rate.
Recent advancements in RCCI engines have explored the use
of alternative fuels and investigated combustion strategies to
extend RCCI mode to higher loads (Fakhari et al., 2023).
However, there is a recognized need for further enhancements
in simulation models for these engines (Dwarshala et al.,
2023).
Simulating combustion in internal combustion engines is
crucial due to its impact on engine performance,emissions,
and environmental regulations (Gössnitzer et al., 2022).
Engine simulation methods have evolved significantly, with
studies highlighting the use of simulation software to predict
engine performance accurately.

Reliable and practical chemical kinetics are essential for the 
accuracy of modeling internal combustion engines (Kakoee et 
al., 2022). Vasudev et al. (Vasudev, Mikulski, et al., 2022) 
provide a detailed examination of chemical kinetics within the 
context of multi-zone models for low-temperature combustion 
engines. The review emphasizes the difficulties in striking a 
balance between computational efficiency and model 
complexity, and it suggests that developments in methods such 
as tabulated chemistry will lead to significant gains in 
simulation speed. Aziz et al. (Aziz et al., 2022) provided a 
comprehensive review of the impact of various fuels on the 
performance and emissions of RCCI engines, highlighting the 
benefits of using low-reactivity fuels like gasoline, natural gas, 
and alcohol-based fuels, as well as high-reactivity fuels like 
diesel and biodiesel. They explored fuel management 
strategies and the use of additives to enhance Ammonia and 
hydrogen has also attracted a lot of attention in marine and 
power plant applications (Salahi et al., 2022). Natural gas, with 
its great fuel economy, clean combustion characteristics, 
abundance, and comparatively low cost, is one of the most 
potential alternative fuels to meet ever-tougher pollution 
regulations (Gharehghani et al., 2023). The analysis of dual-
fuel engines reveals that researchers need a more appropriate 
dual-fuel chemical kinetic mechanism involving diesel and 
natural gas (W. Zhang et al., 2019). 
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Optimizing the chemical kinetic mechanism for natural gas 
and diesel dual-fuel engines presents challenges, including the 
need for accurate prediction of combustion characteristics and 
emissions, understanding the impact of methane content on 
ignition delay, and ensuring mechanism accuracy across 
different fuel ratios (Aminian et al., 2023). Many researchers 
studied heavy substances as diesel fuel representatives. Guo et 
al. (Guo et al., 2021) generated a simplified mechanism (155 
species, 645 reactions) for a diesel and natural gas dual-fuel 
RCCI engine, assuming n-hexadecane as diesel fuel. Using 
cross-reaction analysis, Liu et al. (Liu et al., 2021) developed 
a reduced combustion mechanism (150 species, 847 reactions) 
for a multi-component fuel mixture consisting of toluene, n-
dodecane, methane, and methylcyclohexane. They validated it 
through testing against experimental ignition delay and flame 
speed data, ensuring its accuracy over a wide range of 
pressures, temperatures, and equivalence ratios. Zhou et al. 
(Zhou et al., 2023) introduced a new reduced mechanism (141 
species, 739 reactions) for diesel (represented by n-dedocane) 
and natural gas combustion in HCCI applications. To create a 
compact model, they used simplification techniques such as 
directed relation graphs (DRG), DRG with error propagation 
(DRGEP), and sensitivity analysis. 

It is generally acknowledged that the n-heptane oxidation 
processes accurately depict the properties of diesel fuel 
combustion in a simplified way (H. Wang et al., 2013). 
Recently, researchers have shown interest in utilizing reduced 
mechanisms in which n-heptane is the diesel fuel surrogate. 
Rahimi et al. (Rahimi et al., 2010) introduced a semi-detailed 
chemical kinetic mechanism (76 species, 464 reactions) for n-
heptane and methane, optimized by a genetic algorithm. The 
mechanism has been continuously employed to simulate 
multi-fuel engines (Yin et al., 2024).  Hockett et al. (Hockett 
et al., 2016) developed a reduced chemical mechanism (141 
species, 709 reactions) known as CSU141 by combining two 
detailed mechanisms of n-heptane and natural gas (represented 
by a combination of methane, ethane, and propane). De Bellis 
et al. (De Bellis et al., 2022) modified this mechanism by 
adding a NOx sub-mechanism to develop a multi-zone 
phenomenological combustion model for RCCI dual-fuel 
engines. 

Among the recent articles focusing on n-heptane as the 
chemical surrogate for the diesel fuel, Zhang et al. (W. Zhang 
et al., 2019) presented a diesel/natural gas dual fuel mechanism 
(79 species, 224 reactions), employing peak concentration 
analysis (PCA) and rate of production (ROP) methods to 
simplify the GRI-mech 3.0 natural gas mechanism, and then 
combined it with the 95/5 vv mechanism of diesel combustion 
(represented by n-heptane and aromatic combinations). They 
validated the reduced mechanism through chemical kinetics 
calculations and CFD simulations. Although it accurately 
predicts combustion characteristics and pollutant emissions, 
the scope is limited to medium-load conditions. Huang et al. 
(Huang et al., 2019) developed a reduced mechanism (143 
species, 746 reactions) based on detailed mechanisms for n-
heptane, n-butylbenzene, NG, and polycyclic aromatic 
hydrocarbons (PAH) using the methods of DRGEP, ROP, and 
sensitivity analysis. They validated their mechanism against 

various parameters such as ignition delay and laminar flame 
speed in the context of HCCI applications, demonstrating its 
accuracy at varying rates of natural gas substitution. However, 
the complexity of the mechanism might pose challenges for 
practical implementation in simulations. Schuh et al. (Schuh 
and Winter, 2020) proposed a dual fuel combustion 
mechanism (75 species, 344 reactions), specifically focusing 
on the ignition and combustion of methane/propane/n-heptane 
fuel blends in high-pressure environments. They analyzed and 
updated the Arrhenius parameters to extend the mechanism’s 
application range and included the San Diego nitrogen sub-
mechanism to allow for consideration of NOx formation. 

As discussed, NG/diesel is one of the most promising fueling 
strategies for RCCI combustion. Although some mechanisms 
exist to simulate combustion with these fuels, the present work 
aims to introduce a compact mechanism designed for high-
speed simulations, tailored specifically to the operating 
conditions of these engines. The mechanism is finally 
validated through simulations of some RCCI engine cases with 
both 3-D CFD and multi-zone methods and also fundamental 
ignition delay time (IDT) and laminar burning velocity (LBV) 
test data. 

2. MATERIALS AND METHODS 

The current work targets to develop a chemical kinetics 
mechanism capable of simulating combustion processes in 
engines employing multi-fuel low temperature combustion 
(LTC) strategies, such as RCCI. The targeted fuels include 
diesel fuel, chosen for its high reactivity, and low reactivity 
fuels can be a blend of natural gas and hydrogen (H2). It is 
assumed that n-heptane (C7H16) serves as the surrogate for 
diesel fuel, as demonstrated in numerous scientific 
investigations on light diesel fuel combustion in engines. 
Additionally, methane (CH4) and ethane (C2H6) hydrocarbons 
are incorporated into the mechanism to simulate natural gas 
reactions. 
The mechanism is intended for use in 3-D Computational Fluid 
Dynamics (CFD) simulations and fast multi-zone models, 
necessitating a limited number of species and reactions to 
maintain computational affordability. Hence, skeletal and 
reduced base mechanisms are employed to construct a multi-
fuel mechanism. 

In the simulation of combustion processes like RCCI, the auto-
ignition of the high reactivity fuel (e.g., diesel) is pivotal in 
determining the onset of combustion. Unlike applications such 
as furnace burners, this process begins at relatively high 
pressures (above 20 bar) and low temperatures (below 900 K) 
in engine environments. Therefore, selecting a proper set of 
reactions that accurately predict the ignition of n-heptane 
under such conditions is crucial. To address this, the skeletal 
n-heptane mechanism developed by Chang et al. (Chang et al., 
2022) is chosen to provide the sub-mechanisms pertinent to n-
heptane combustion. This skeletal mechanism is based on the 
detailed n-heptane mechanism developed by Zhang et al. (K. 
Zhang et al., 2016), which has been validated against 
experimental IDT and LBV, establishing its efficacy for n-
heptane combustion simulation under engine-like conditions. 
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To consider reactions related to natural gas (NG) combustion, 
the GRI 3.0 mechanism (Smith et al., 2000), widely 
acknowledged as a comprehensive model for NG combustion, 
is merged with the n-heptane mechanism. To enable the 
mechanism to predict nitrogen oxide emissions, some 
corresponding species and reactions are added from the 
mechanism of Wang et al. (B. Wang et al., 2023).  

After merging base mechanisms and adding needed species 
and reactions, to result a compact mechanism, the DRGEP 
method with sensitivity analysis is employed to reduce the 
mechanism. In this, operation the IDT for n-heptane and 
methane/n-heptane blend mixtures and LBV for methane, 
methane/H2 and H2 cases are considered as the base cases. 

The resulting mechanism comprises 60 species and 372 
reactions, which makes it a really compact one comparing to 
other existing NG/diesel mechanisms. 

As previously mentioned, it is crucial for a mechanism 
intended for RCCI engine simulations to accurately capture the 
low-temperature auto-ignition of the highly reactive fuel. In 
this work, the ignition delay resulting from the n-heptane fuel 
mechanism is compared to the data presented in the study by 
Zhang et al. (K. Zhang et al., 2016), and adjustments are made 
to improve agreement with experimental data, particularly for 
elevated pressures (20 bar) and low temperatures. In RCCI 
engines, the auto-ignition initiates in mixtures with lower 
temperatures than 1000 K. Therefore, the combustion IDT 
should be predicted well by mechanism in this low temperature 
conditions.  

 This tuning process involves modifying certain reactions to 
enhance the mechanism's predictive capability for 
experimental data. 

All merging, reduction, simulations, and optimization 
processes are conducted using Converge CFD 3.1 software. In 
the tuning process, the most sensitive reactions under the 
specified conditions (n-heptane fuel, high pressure, low 
temperature) are first identified. The sensitivity to these 
reactions is illustrated in Fig. 1. 

In the subsequent stage, the 20 most sensitive reactions are 
selected, and their pre-exponential factors are optimized using 
the NLOPT optimization algorithm, which is integrated into 
the chemistry module of the Converge software. This 
optimization process aims to align the simulated IDT with the 
experimental data reported in (K. Zhang et al., 2016).  

To assess the effectiveness of the tuning process, a comparison 
between the IDT resulting from the initial merged mechanism 
(prior to tuning) and the tuned mechanism against 
experimental data is presented in Fig. 2. Accurate modeling of 
the start of combustion in RCCI engines hinges on the 
mechanism's ability to predict first-stage ignition delay times, 
which significantly impacts the low-temperature heat release 
during engine combustion. 

 
Fig. 1. Sensitivity analyzes for IDTs to identify the most sensitive

reactions

 
Fig. 2. Comparison of IDT for tuned and merged mechanism with

experimental data from Zhang et al. (K. Zhang et al., 2016)

Figure 2 illustrates that following tuning, the 
mechanism demonstrates improved precision in predicting 
IDT for n-heptane fuel, particularly within the low-
temperature zone. This enhancement renders the 
mechanism more suitable for simulating engines employing 
low temperature combustion (LTC) strategies.

3. VALIDATION OF THE NEW MECHANISM

In this section, the performance of the new mechanism is
evaluated through simulations compared against available
experimental test data. Initially, the IDT and LBV produced by
the mechanism are scrutinized against experimental data.
Subsequently, the applicability of the mechanism is explored
in simulating RCCI and dual-fuel engines with a 3-D CFD
software and also a multi-zone code.
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3.1 IDT and LBV simulations

In the context of applying a mechanism for simulation in CI
engines, precise prediction of ignition onset time is paramount.
Therefore, investigating the IDT resulting from the mechanism
across various scenarios is crucial. As the high reactivity fuel
in this work is n-heptane and its auto-ignition starts the
combustion process, the ability of the mechanism to predict the
IDT for n-heptane mixtures is studied in this part.

Figure 3 shows the comparison of IDT values predicted from 
the new mechanism and mechanisms from Hocket (Hockett 
et al., 2016) and Rahimi (Rahimi et al., 2010), which 
are two mechanisms that are widely used for simulation of 
dual fuel and RCCI combustion in NG/Diesel fueled 
engines, with experiments of Zhang for n-heptane fuel (K. 
Zhang et al., 2016). The initial pressure in the tests and 
simulations is 20 bar and 38 bar, for Fig. 3 (a) and (b) 
respectively.  Hocket mechanism has 150 species and 872 
reactions and Rahimi mechanism has 76 species and 483 
reactions. The proposed mechanism is seen to give better 
predictions than the two other mechanisms, although it has 
less number of species and reactions.

As stated earlier, in the target combustion strategies (RCCI and
dual fuel), the auto-ignition process starts from regions with
high concentration of the fuel with high reactivity and then the
flame propagates into the mixture containing the low reactivity
fuel (or fuel blend). Therefore, in the following, the LBV in
the mixtures containing target low reactivity fuels, i.e. NG and
hydrogen is investigated.

As the first evaluation of flame propagation properties, a 1-D
simulation of laminar flame speed in natural gas (NG) was
conducted using Converge CFD software. The test case
utilized experimental data as reported in (Rozenchan et al.,
2002). In this scenario, the initial temperature (pre-burning)
was set at 298 K, and initial pressures of 1 atm, 2 atm, and 5
atm were investigated. Figure 4 illustrates the 
comparison between simulated LBV values and the 
experimental data reported for different pressures in fuel 
equivalence ratio (φ) ranged from 0.6 to 1.4. The results 
indicate that the new mechanism reliably predicts flame 
propagation within NG mixtures across the investigated 
range.

The mechanism is supposed to have the potential to be used
for the cases of hydrogen addition to the NG fuel. Graphs of
Figure 5 shows the result of LBV simulation for H2/NG 
fuel blends in both air and O2/He oxidizer 
environment. Comparison to experimental cases reported by 
Donohoe et al. (Donohoe et al., 2014) shows that the new 
mechanism has a good ability to predict flame propagation 
in H2/NG blend mixtures, as well as mixtures of air and 
NG. Specially, it is seen that the simulations have a very 
good accuracy to predict the results close to experimental 
data, for lower equivalence ratios than 1 in the low 
reactivity mixture, which is the case that usually happens in 
the target dual fuel and RCCI engines.

3.2 Simulation of RCCI NG/diesel fueled engines 

To verify the mechanism ability in simulation of combustion 
in NG/diesel fueled engines, two marine engines with RCCI 
combustion mode are selected to be both experimentally and 
numerically investigated. First one is the 6L20CRDF research 
engine, a variant of the Wärtsilä 20 platform, featuring a 6-
cylinder inline dual fuel (DF) configuration (Kakoee et al., 
2023). The second investigated marine engine is a Wärtsilä 
single-cylinder research engine (SCRE), which adheres to the 
DF variant of Wärtsilä's W31 engine platform (Åstrand, 2016). 
Key specifications of both test engines are outlined in Table 1. 
 

 
(a) 

 
 (b)

Fig. 3. Comparison of IDT for the new mechanism with two other
mechanisms (Hockett (Hockett et al., 2016) and Rahimi (Rahimi et al.,
2010)) and also experimental data from Zhang et al. (K. Zhang et al.,

2016), for (a) pressure of 20 bar and (b) pressure of 38 bar
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Fig. 4. LBV for NG mixtures in different pressures, comparison of

simulations (lines with small marks) with experimental data (marks)
from Rozenchan et al. (Rozenchan et al., 2002)

 

 
Fig. 5. LBV for NG/H2 mixtures in different pressures and blend
ratios comparison of simulations (lines with small marks) with

experimental data (marks) (Donohoe et al., 2014)

3.4 3-D CFD simulation

In this part, 3-D CFD simulation of a closed cycle (IVC to
EVO) for Wärtsilä W20 engine with RCCI combustion is
performed using Converge CFD v3.1 software. The SAGE
solver, specializing in transient chemical kinetics, was used in
transient mode to compute species mass fractions at each time
step before solving the transport equation with the PISO
technique. Diesel fuel properties were represented by the
"DIESEL2" surrogate from the CONVERGE library for spray
and mixing modeling. Liquid injection was modeled using the
Blob injection sub-model, with parcel diameter set to the
nozzle hole size. Diesel spray was simulated with the KH-RT
model considering high injection pressure. Heat transfer was
modeled using the Standard Wall Function, while turbulence
was captured via the RNG k-ɛ model. Adaptive mesh
refinement was used for a base grid size of 0.002 m.

Computational runs are conducted to evaluate RCCI operation
of the engine using diesel and NG fuels under mid-load
conditions. For the simulated case, the energy share of diesel
and NG fuels were 7% and 93% respectively. In this scenario,
diesel fuel injection has commenced about 70° before piston
TDC, allowing for partial mixing of diesel fuel with the in-
cylinder mixture, facilitating RCCI combustion mode.
Figure 6 illustrates a comparison between simulated 
and measured in-cylinder pressure and heat release rate 
(HRR) to assess the performance of the mechanism in 
simulating diesel/NG combustion. Normalized values are 
presented in the figure, relative to their maximum values. The 
depicted results demonstrate a high level of agreement 
between simulation and measurement. Both the pressure 
trace and heat release processes are simulated with 
acceptable accuracy. Important operating parameters such 
as SOC, maximum pressure and maximum HRR are seen to 
be predicted with a good accuracy. The results prove the 
effectiveness of the new mechanism for simulating 
combustion processes in mixtures containing diesel fuel and 
NG under internal combustion engine conditions.

Table 1: Specification of the Wärtsilä test engines

Engine model Wärtsilä W20 Wärtsilä W31

Displacement 8.8 liter 32.45 liter
Stroke/Bore 1.4 1.39
Test Speed 1000 rpm 720 rpm

Air System 
Two-stage 

turbocharged 
(in series) 

External air compressor 
with air temperature and 

pressure control  
(up to 10 bar) 

High reactivity 
fuel system Common rail 

Common rail 2.0 with 
twin needle injector; 
and multi-injection 

capability 

Low reactivity 
fuel system 

Low-pressure; 
multi-point, 

upstream of the 
intake valve 

Low-pressure, multi-
point, upstream of the 

intake valves 

Valve train 

4 valves per 
cylinder, fully 

variable hydraulic 
valve train 

four valves with swirl + 
tumble ports; variable 
intake valve closure 
(VIC); fixed exhaust 
valve opening (EVO) 

 

3.5 Quasi-dimensional simulation  

In this section, simulations are conducted using the UVATZ 
code, a multizone model developed at Vaasa University 
specifically designed to model combustion in RCCI engines 
(Vasudev, Cafari, et al., 2022). UVATZ simulates low-
temperature combustion concepts driven by chemical kinetics 
and in the present study, is parameterized for natural gas and 
diesel RCCI combustion. The model accounts for fuel and 
thermal stratification, in-cylinder turbulence, IVC 
temperature, and residual gas composition. It consists of 12 
zones, two disc-shaped for the cylinder head and piston 
boundary layers, and 10 annular zones, with the outermost in 
contact with the liner, capturing bulk inhomogeneity. Heat and 
mass flows are modeled through gradient-based transport. 
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HRF stratification is simplified, with mass linearly distributed 
across the zones, and evaporation enthalpy proportional to 
HRF mass. 

 
Fig. 6. Comparison of in-cylinder pressure and HRR (normalized

values) between experiments and simulation for an NG/diesel RCCI
engine in CFD simulation

 The simulated engine under study is a Wärtsilä single-cylinder
research engine (SCRE), which adheres to the dual fuel (DF)
variant of Wärtsilä's W31 engine platform (Åstrand, 2016).

In the tests conducted for this segment, the load is about 25%
of the full load conditions. Liquified natural gas (LNG) with a
methane number of 80 serves as the low reactivity fuel, while
light fuel oil (LFO) acts as the high reactivity fuel. The start of
injection of LFO occurs 65° before top dead center (TDC) to
ensure the onset of RCCI combustion. Notably, 70% of the
total fuel energy is attributed to NG, while the remaining 30%
comes from LFO.

The 12-zone configuration of the UVATZ model, which is
employed in the present work, has the ability to represent the
subtleties of fuel and thermal stratification, in-cylinder
turbulence, intake valve closing (IVC) temperature, and the
composition of residual burned gas. These zones interact with
one another through the transfer of heat, mass, and work,
making them dynamic entities in the simulation world. The
model also accounts for heat loss to the walls, which is
modeled using a specific correlation (Kakoee et al., 2023).

For simulations, n-heptane serves as a surrogate for LFO,
whereas a mixture of methane and ethane is employed to
represent NG. A 13-zone model is utilized for quasi-
dimensional modeling of the RCCI combustion process.

Figure 7 presents a comparison between measured and 
simulated in-cylinder pressure curves and heat release 
rate. The simulation process, executed on a PC with an 
i7-13700H processor, required 219 seconds for a full-cycle 
simulation to converge. For the presented engine test case, it 
took 4 cycles for the model to converge. It is evident that 
certain parameters, like SOC and peak pressure, have been 
accurately predicted. This comparison highlights the 
mechanism's suitability for integration into multi-zone

model codes to simulate the RCCI combustion process.

 
Fig. 7. Comparison of in-cylinder pressure for experiments and

simulation for an NG/diesel RCCI engine with MZM code

4. CONCLUSION

A reduced chemical kinetics mechanism for NG, H2 / n-
heptane blends was proposed in this study. This mechanism
contained 60 species and 372 reactions, making it cost-
effective for simulation of combustion engine cases. The
mechanism was formed based on merging existing
mechanisms for n-heptane, and NG. The mechanism was
tuned for better resolving n-heptane auto-ignition in low
temperatures and elevated pressures. The mechanism's
accuracy was initially assessed using fundamental Induction
Delay Time (IDT) and Laminar Burning Velocity (LBV)
experimental data from the literature for the blended target
fuels. It was demonstrated that 0-D simulations employing the
new mechanism could accurately predict the IDT for n-
heptane fuel mixtures with acceptable precision, better than
some of other widely used mechanisms for NG/diesel fueled
engines. Furthermore, conducted 1-D simulations
substantiated the mechanism's capability to predict LBV in
mixtures of target low reactivity fuels, considering mixtures
with NG and NG/H2 blends. After verification with data from
fundamental tests, 3-D CFD simulation utilizing this new
mechanism were validated with real engine test data, for
NG/diesel cases. Good agreement between test results and
simulations demonstrates the mechanism's suitability for
simulating engines operating in multi-fuel modes such as
RCCI and dual fuel, with diesel as the high reactivity fuel and
a blend of NG and H2 as the low reactivity fuel.
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Abstract: The electrification of heavy vehicles and work machinery is developing rapidly. The main

motivators are green transition and requirements from the customers. In Finland, there are many high-

tech market-leading companies in this segment. Mass-produced equipment and machines are suitable

for general applications and thus tailoring design for specific conditions and/or needs results in better

productivity and efficiency. In heavy electric vehicle applications, the challenge is to make new

products economically viable and configure them to meet customer needs. In these applications, the

number of solutions is an order of magnitude higher than in traditional mechanical solutions. However,

electronic solutions enable new features and energy efficiency improvements to have measurable

benefits in the application. The research investigates the effects of electric axle solutions for

hybrid heavy duty vehicles. Modelling and simulations consider both the effects of engine and

usage of battery charge and surroundings of vehicle, for example road profile, traffic, outdoor

temperature, and friction. A system level model of a vehicle has been utilized to simulate its

longitudinal dynamics interacting with estimated surroundings followed by model-based control.

The planned route can be made further favorable by utilizing real-time model predictive control (MPC)

receiving online data from changing conditions. MPC gives new suggestions for optimal battery usage

based on deviations from the best matching model from a database. Control strategy is important when

considering economic benefits for a hybrid heavy duty vehicle with a high degree of freedom in system
design.

Keywords: Electrification, Green transition, Model Predictive Control, Model Based System Engineering,

Systematic Machine Design

1. INTRODUCTION

An example of promising solutions for pollution reduction

are electric and hybrid electric vehicles (EV/HEV), which

can be exploited for a safe environment and sustainable

transportation. Designing these vehicles requires different

optimization procedures, for example components,

systems, and controls (Ehsani et al. 2021). A review article

of path tracking strategies used in autonomous vehicle

control design discusses different elements of modelling

process including the criteria for evaluating the controller’s

performance (Ruslan et al. (2023). Extremely important

part for enabling the optimization of the battery usage

during the route is to have a competitive battery

management system. Advanced battery management,

which consists of three progressive layers. A

comprehensive overview of each layer is presented, and

future trends of next-generation battery management are

discussed (Dai et al. 2021). A broad review to optimize the

power flow in EV powertrains using multispeed discrete

transmission, continuously variable transmission and multi-

motor configurations. The potentials and challenges

regarding for example environmental issues are discussed. 

They can be applied to hybrid vehicles as well. As the 

overall development is proceeding rapidly, it is getting 

more and more challenging to be able to answer all 

demands. A key issue is to develop optimum vehicle 

fulfilling, for example tighter emission regulations. This 

leads to reduced emissions of new vehicles, more research 

of advanced materials for energy storage, better vehicle 

connectivity and more investments in autonomous 

technologies. However, it causes, for example 

sustainability issues in production and mining, higher 

electricity demand requires new electricity production and 

socio-economic issues on technology migration (Mazali et 

al. 2022). The EV vehicle inverse dynamics model was 

developed. Then vehicle states and kinematic constraints 

were used to formulate the servo constraints. Finally, a 

procedure for optimizing trajectories was developed. The 

results show that the optimal trajectory uses the least 

amount of energy (Min et al. 2023). Hybrid powertrains 

having two or more different energy sources, questions 

arise in terms of HEV structure selection, components 

sizing, and energy management control. Control variables 
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optimization is vital to find the set of optimal control rules 

for the minimum fuel consumption. The dynamic 

programming approach is a common method because of its 

unique ability to find the global optimum solution with a 

certain degree of precision. This computationally 

demanding optimization method combined with a gradient-

based optimization algorithm was used in a systematic way 

to reduce execution time and to increase the precision of the 

result (Cipek et al. 2020)/ The optimization of battery usage 

in a hybrid vehicle to minimize fuel consumption is a very 

complex problem. Basically, this means increasing the 

efficiency of the combustion engine efficiency and 

recovering electrical energy by charging the battery when 

driving or braking (Anselma 2022). In (Lei et al. 2018), four 

operating modes were used, and they were electric driving 

mode, driving and charging mode, combustion engine 

driving mode and hybrid driving mode. 

 

A review of architectures and control strategies for the dual-

motor coupling propulsion system used in battery electric 

vehicles is presented in this article. The article describes 

different architectures, reviews the means of mechanical 

coupling and transmission, electromechanical 

configurations, and summarizes approaches to the control 

of this emerging class of battery electric vehicles. 

Discussion comparing the advantages and disadvantages of 

dual-motor coupling propulsion system technology for 

battery electric vehicles is presented, as well as research 

challenges and prospects being discussed. (Wang et al. 

2022)  

 

The integrated energy management and engine control 

system for HEV is introduced. The synergy of artificial 

intelligent control and prior information, for example about 

route, can be exploited to boost the control performance 

together, with the engine being optimally controlled. 

(Zhang et al. 2022)  

 

Having as an objective to decrease fuel consumption, the 

implementation of an adaptive, optimal neuro-fuzzy 

inference control was introduced (Saju et al. 2022). When 

evaluating fuel and electrical energy capabilities, it is 

usually assumed that the route and velocity profiles are 

known (Anselma 2022). By applying models, an optimal 

battery usage plan can be developed. For example, 

nonlinear programming, genetic algorithms and dynamic 

programming have been used in such optimization tasks. 

The problem, however, is that the overall driving power 

demand must be approximated accurately, which is very 

difficult in practical cases. For real-time control, the 

equivalent consumption minimization strategy and model 

predictive control (MPC) have been used. For MPC to be 

efficient, the model used must be accurate for future driving 

information estimation, which is not necessarily the case 

(Peng et al. 2017). Being capable of managing multi-

variable problems and to consider constraints on states and 

control actions, with capability to predict future behavior of 

the process, MPC is widely used for trajectory tracking. 

This literature review discusses the research conducted 

from 2015 until 2021 on model predictive path tracking 

control (Stano et al. 2023).  

 

The design of a path tracking controller for autonomous 

vehicles is addressed in this paper. The Reference Aware 

MPC is reformulated to guarantee closed-loop stability, 

while maintaining a safe and comfortable ride, and 

minimizing wear and tear of vehicle components. For 

usability in online operation, a novel model for the 

nonlinear curvature response of the vehicle is proposed by 

means of Kalman filtering. (Pereira et al. 2023) 

 

Different technologies’ potential for fuel consumption

improvement of heavy-duty vehicle has been investigated

in literature (Dünnebeil and Keller Heidelberg 2015); 

Schade (unpublished). According to high interaction 

between different technology packages system-level 

simulation should be implemented to overcome the 

complexity of powertrain design (Delgado et al. 2017). 

Developing a hybrid powertrain, system-level 

simulations enable the possibility to calculate vehicle 

fuel consumption and battery state of the charge for 

which are the main control strategy objectives (Enang 

and Bannister 2017). 

The aim of this research is to develop a tool which could 

give a good platform to scheme suitable structures for 

electric axle. The goal of this paper is to first discuss shortly 

the concept of the planning process and then more in detail 

those parts, which concern the control strategy of vehicle 

environment and main variables effecting on it. This paper 

considers an approach where an approximation of the 

overall driving power is made with the simple driving force 

equation. 

2. SYSTEM MODELLING FOR OPTIMIZATION 

The optimization of battery usage of a hybrid vehicle 

requires a couple of models. First, it needs a model for the 

resistive forces acting on a vehicle that must be overcome 

with the force provided by either the combustion engine or 

battery. This overall force is called the driving force in (Lei 

et al. 2017) and (Koch et al. 2021). The optimization 

scheme also needs a model of the vehicle including the 

battery model describing the usage and charging of the 

battery. This paper concentrates on the model of the driving 

force while the vehicle model is described in (Banagar et al.  

2024). 

2.1 The driving force model 

The driving force model is described in literature for example 

in (Lei et al. 2017), (Koch et al. 2021), (Anselma 2022) and 

(Chu et al. 2022). The references use different notations and 

thus the notations in (Koch et al. 2021) are adopted here. The 

driving force denoted by 𝐹𝑊 is the sum of four forces which 

are functions of vehicle velocity (𝑣) or acceleration (𝑎). These 

forces are the resistance due to road slope with angle 𝛼, rolling 

friction, aerodynamic drag and the force to overcome vehicle  
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Fig. 2. The overall MPC-based control concept. 

inertia. The driving force is calculated in equation (1) from 

(Chu et al. 2022):  

 

𝐹𝑊 = 𝑚𝑔sin(𝛼) +𝑚𝑔𝑓𝑟cos(𝛼) +
𝑐𝑤𝐴𝑓𝑣

2

21.15
+𝑚𝑒𝑖𝑎.  (1) 

 

Above in equation (1), 𝑚 is the vehicle mass, 𝑔 is the 

gravitational constant, 𝑓𝑟 is the friction coefficient, 𝑐𝑤 is the 

drag coefficient, 𝐴𝑓 is the vehicle frontal area and 𝑒𝑖 is an 

equivalence factor. The torque required at wheels is given by 

equation (2):  

 

𝑇𝑊 = 𝐹𝑊𝑟𝑊.       (2) 

 

Above, 𝑟𝑊 is the radius of the wheels. 

2.2 Vehicle model 

The target vehicle is a rigid chassis heavy-duty truck with 

an 8x4 axle configuration and a gross weight of 33 tons. 

The plan is to replace one axle with an e-axle. The e-axle 

system includes for example a 15-kwh battery and an 

electric motor with a rated torque capacity of 880 N.m. The 

longitudinal dynamic model of the vehicle has been 

developed by implementing the AVL Cruise M vehicle 

module. AVL Cruise M /AVL Cruise M/ is a dedicated tool 

for vehicle and powertrain components simulation. 

Different powertrain components of the targeted vehicle 

have been modeled using an available dataset from the 

vehicle. A map-based model has been selected for the 

internal combustion engine and electric motor. The battery 

pack has been simulated implementing an Equivalent 

Circuit Model (ECM) component of AVL Cruise M. More 

detail about the parameters and simulation set up has been 

provided in (Banagar et al. 2024). The schematic of the 

vehicle powertrain architecture and the simulation set-up 

have been depicted in Fig

.

 1

.

 

 

Fig. 1. The schematic of the vehicle’s powertrain 

architecture. 

2.3 Definition of control concept 

The aim of this research is to develop a general approach to 

optimally use HEV’s electric axle and thus reduce fuel 

consumption. The approach is based on two models which 

describe the energy consumption and battery usage of HEV. 

This paper introduces the model for energy consumption 

and compares its results to real measured data. The overall 

control concept is presented in Fig. 2. The main idea is to 

plan the route beforehand. However, no model can describe 

that perfectly. Thus, a simple model that can capture the 

main trends is used here but the battery usage plan is 

updated online as the route proceeds. Also, the models can 
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be updated online because there are a lot of variables that 

are not considered with models. 

3. RESULTS AND DISCUSSION 

3.1 Data description 

The data used was from a real truck that drove a route from 

Tornio to Rovaniemi in Finland. The most important 

variables used for calculating the driving force according to 

(1) were speed and altitude. The data included also 

information about actual engine torque that was used for 

comparison to see if (1) and (2) can describe the torque 

needed with adequate accuracy. At this point, it is already 

worth mentioning that (1) and (2) give purely theoretical 

power requirement and thus a perfect correlation is neither 

expected nor needed. Instead, a rough estimate is enough 

because control actions are aimed to be updated 

continuously.   

 

Data included about 116000 data points sampled at 0.05 

second intervals. A moving average filtering without 

overlap was applied to lower the sampling time to 1 s. The 

computations are carried out with this data while for model 

validation the data is further filtered with a 2 min moving 

median filter. The altitude and speed measured are shown 

in Figs. 3 and 4, respectively.   

 

 
Fig. 3. The measured altitude.  

 

 
Fig. 4. The measured speed. 

 

Fig. 5. Simulink® implementation of the driving force model. 
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3.2 The Simulink model of the driving force 

The model described in 2.1 is implemented in Simulink® 

environment. The parameter values are taken from 

/Kinnunen (2023)/ and they are given in Table 1. The model 

is shown in Fig. 2. Also, the driving force is a function of 

distance. Thus, the overall driving force required is 

obtained as the sum of the model output in Fig. 5.  
 

Table 1. The parameter values used.  

𝑚 𝑓𝑟 𝑐𝑊 𝐴𝑓 𝑒𝑖 

33000 kg 0.014 1.055 9.96 m2 14.9 

 

3.3 Driving force model results 

Driving force was computed according to (1) with the 

simulator in Fig. 5. The 2 min median filter was applied to 

obtain the driving force shown in Fig. 6. The high peaks of 

the driving force are associated with accelerations while the 

low peaks are associated with decelerations observed in 

Fig. 4.   

 

 
Fig. 6. The simulated driving force.  

 

Figure 7 shows the driving force computed as a function of 

the actual engine percentage torque measured. The 

correlation between these is calculated to be 0.67. As 

expected, the theoretical model cannot explain the actual 

measurement data perfectly but only the trend is captured. 

This is, however, expected to be enough because the control 

actions will be continuously updated with MPC in the 

overall concept presented in Fig. 2. 

 

Figure 8 shows the fuel consumption as a function of actual 

engine percentage torque. The figure shows that they are 

highly correlated. This means that high fuel consumption is 

associated with high torque. This observation combined 

with the relationship in Fig. 7 tells us that driving force 

peaks observed in Fig. 6 should be avoided. This 

knowledge can be used when defining the optimal battery 

consumption trajectory for MPC. 

 

 
Fig. 7. The driving force computed as a function of actual 

engine percentage torque.   

 

 
Fig. 8. The fuel consumption as a function of actual engine 

percentage torque.   

use the e-axle for reducing the fuel consumption of the 

vehicle. In the future, the driving force model is further 

studied and further validated with more data. Of especial 

interest are the parameters of the model which are aimed to 

be defined automatically from the actual data. The driving 

force model is also complemented with the vehicle model 

to gain the information needed for making the battery usage 

plan. 

 

When the models mentioned above are linked to each other, 

MPC will be implemented into the control approach. It will 

first be tested in a simulator environment with the collected 

data. First implementations use constant model parameters, 

but the alternative to continuously update them and thus 

adapt the models to current situation will be studied. This is 

because many variables have an influence on the vehicle’s 

energy consumption and battery operation, and these are 

not readily included in the models. Such variables are for 

example the purpose of transport, constraints of battery 

usage, environmental temperature, tires, road conditions, 

speed limits, traffic and so on. 

3.4 Control concept 

The first steps towards the control concept introduced in 

Fig. 2 are presented in this paper. The driving force model 

is based on physics, and it is expected to give adequate 

information for identifying the most promising instances to 

4. CONCLUSIONS 

In this work the concept of planning process for e-axle used 

in heavy-duty vehicle was presented. The control approach 

using driving force and vehicle models was introduced. By 

choosing to use a widely accepted driving force model for 
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The data used in this study was from a real truck. Future

includes the usage of data collected from a truck in which a

prototype of an e-axle is implemented to validate the model. A

more distant goal for the future is the implementation of

MPC to the prototype truck. As the model will be utilizing

online data, the approach is going towards digital twin. This

kind of tool can also be seen as a useful asset for several parties

of industry branch in question to render the digitalization and

green transition.
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Abstract: This paper investigates the integration of photovoltaic (PV) systems and proton
exchange membrane (PEM) electrolysers to advance clean energy production and mitigate
carbon emissions. The integration of PEM electrolysers with PV systems presents a promising
solution for sustainable hydrogen production. This study utilizes Model Predictive Control
(MPC) algorithms to manage the temperature of PEM electrolysers, crucial for enhancing
performance and longevity. Temperature management is vital as lower temperatures increase
overpotential, reducing efficiency, while higher temperatures improve performance but can
accelerate membrane degradation. The paper simulates the PV-PEM electrolyser system using
existing models to identify key parameters affecting system performance, employing MPC for
efficient temperature regulation. The methodology involves modeling the integrated PV system,
which includes Maximum Power Point Tracke (MPPT) algorithms, a DC-DC converter, and
a PEM electrolyser. The MPPT algorithm ensures maximum power output from PV panels
under varying irradiance levels, while buck-boost converters regulate voltage to meet electrolyser
requirements. The electrolyser model considers mass and energy balance equations to understand
the dynamics of hydrogen production and temperature control. Results from simulations indicate
that the PV system’s power generation is directly influenced by solar radiation and temperature.
The study confirms that higher irradiance leads to greater power output, emphasizing the
need for feasibility studies. The implementation of MPC algorithms demonstrates effective
temperature control, ensuring stable operation and reduced membrane degradation. The
integration of PV systems with PEM electrolysers, coupled with advanced control strategies
like MPC, offers a viable pathway for enhancing renewable hydrogen production. This approach
addresses the intermittency challenges of renewable energy sources and optimizes system
performance.

Keywords: Advance process control, Process simulation, Renewable energy systems

1. INTRODUCTION

The transition to clean energy is critical for reducing fossil
fuel dependence and minimizing carbon emissions. The
International Energy Agency’s annual outlook highlights
various scenarios to address these challenges, notably the
NetZero Emissions by 2050 pathway, which aims to stabi-
lize global temperatures at 1.5°C and provide universal
modern energy access by 2030 World Energy Outlook
2023. Central to this effort are photovoltaic (PV) systems
and electrolysers, with solar PV projected to account for
over half of new renewable power capacity by 2030 World
Energy Outlook 2023. In 2022 alone, solar PV generation
surged by 26% to 1293 TWh, underscoring its pivotal role
in decarbonization World Energy Outlook 2023. In addi-

⋆ We gratefully acknowledge the financial support from the De-
partment of Electrical Engineering, Information Technology and
Cybernetics at the University of South-eastern Norway (USN). cor-
responding author’s e-mail: gaurav.mirlekar@usn.no

tion to solar energy, hydrogen-based fuels are considered
a clean energy source for decarbonization. Hydrogen pro-
duction methods include both fossil fuels and renewable
sources. Conventional methods like steam reforming and
coal gasification dominate current production, accounting
for about 96% of the total Arsad et al. (2023) Hydrogen
forecast to 2050. Renewable-based methods, particularly
electrolysis, are gaining traction due to their clean energy
potential Arsad et al. (2023). Proton Exchange Membrane
(PEM) and Alkaline electrolysers are the most efficient
and commercially available technologies Hydrogen forecast
to 2050. Integrating PEM electrolysers with photovoltaic
(PV) systems presents a promising solution for reducing
emissions and achieving sustainability. However, electroly-
sers currently contribute only 4% to hydrogen production
from renewable energies, primarily due to their higher
average costs. Forecasts from DNV Hydrogen forecast to
2050 suggest that the average costs of electrolysers are
expected to decrease by 25% by 2030 and by 50% by 2050,
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based on current market insights. Water electrolysis stands
as a leading industrial method for producing nearly pure
hydrogen, highlighting its future significance. Moreover,
electrolysers play a pivotal role in converting energy into
gas within Power-to-Gas (P2G) systems, which transform
renewable energy sources such as wind, solar, geothermal,
and hydro into gas. Although currently underutilized, this
approach is projected to grow significantly, with hydro-
gen production via electrolysis expected to reach 22% by
2050Arsad et al. (2023).

Renewable energy sources, however, face intermittency
challenges due to varying climatic conditions. This in-
stability necessitates auxiliary energy systems to ensure
consistent hydrogen production, as electrolysers require
a minimum current density for safe operation Afshari
et al. (2021). A grid-connected setup, leveraging Maxi-
mum Power Point Tracker (MPPT) controllers, can op-
timize power from PV panels to electrolysers Gutiérrez-
Mart́ın et al. (2024). Enhancing system performance fur-
ther, buck-boost converters can regulate voltage from PV
arrays to meet electrolyser requirements Ruuskanen et al.
(2020). In this study, the simulation of PEM electrolysers
is conducted using existing models Abdin et al. (2015),
Marangio et al. (2009), Cavaliere (2023), and Falcão and
Pinto (2020) to identify and analyze the key parameters
affecting the system.

Furthermore, Model Predictive Control (MPC), offer effi-
cient temperature management, critical for enhancing sys-
tem performance and longevity Scheepers et al. (2021) Ma-
jumdar et al. (2023). Simplified control models, like those
using piece-wise affine and multi-parametric approaches,
have shown promise in minimizing hydrogen production
costs and managing operational constraints Flamm et al.
(2021) Ogumerem and Pistikopoulos (2020). This paper
utilizes an energy balance equation and a state-space
model for temperature control in PEM water electrolysers,
adapting MPC techniques for improved efficiency. It has
been done by regulating water flow rate in to the system
as the manipulating variable to stable the cell tempera-
ture and leads lower membrane degradation of the PEM
electrolyser.

2. PROCESS DESCRIPTION

The objective of this study is to model a PV system,
incorporating MPPT algorithms, a DC-DC converter, and
a PEM electrolyser, and to apply model predictive control
(MPC) algorithms to manage the electrolyser’s tempera-
ture. As illustrated in Fig.1, electricity generated by photo-
voltaic panels is regulated by DC-DC converters, primarily
buck-boost types, to stabilize the output current, which is
then supplied to the PEM electrolyser. This process splits
water into hydrogen and oxygen, which are collected in
separate containers for drying and further use or storage.
MPC are crucial due to the operational conditions of the
electrolysers. PEM electrolysers typically operate at tem-
peratures between 60-90°C and pressures around 30 bar
Arsad et al. (2023). In terms of temperature of the electrol-
yser, lower temperatures increase overpotential, reducing
efficiency, while higher temperatures enhance performance
by improving membrane ionic conductivity and reaction
kinetics, thus reducing overpotentials Cavaliere (2023).

Fig. 1. Process schematic of integrated PV and PEM
Electrolyser System.

However, higher temperatures can accelerate the degra-
dation of polymer membranes, primarily due to thermal,
chemical, and mechanical stresses, leading to thinning,
unzipping, loss of functional groups, or membrane rupture
Babic et al. (2017). Monitoring and controlling the tem-
perature is therefore essential to prevent degradation and
maintain efficiency.

The increase in electrolyser temperature results from en-
dothermic reactions during water electrolysis and Joule
heating, where electric current generates heat as it passes
through the conductor Ogumerem and Pistikopoulos
(2020). Sudden increases in hydrogen production can raise
temperatures, affecting membrane stability and lifespan.
Typical methods to maintain the desired temperature
range include cooling airflow or adjusting the cooling water
flow rate. In the system depicted in Fig.1, a water reser-
voir, temperature sensor, and heat exchanger keeps the
water temperature constant. Water is pumped through an
ion filter to reduce resistance and manage flow rates before
being directed to the electrolyser. Temperature sensors at
the inlet and outlet monitor changes. MPC algorithms,
based on Ogumerem and Pistikopoulos (2020), control
temperature fluctuations by adjusting the water flow rate,
acting as a coolant. The manipulated variable is the water
flow rate, and the state variable is the temperature derived
from the energy balance equation. The MPC algorithms
are based on a linear state-space model derived from solv-
ing the energy balance and mass balance equations for each
part of the electrolyser, simplifying system modeling.

3. METHODOLOGY

Mathematical modeling and governing equation of the
integrated system including photovoltaic (PV) system
with MPPT, DC-DC converter, PEM electrolyser and
MPC algorithms has been presented in this section.

3.1 Photovoltaic system

In PV systems solar radiation, containing photons, excites
electrons upon contact with PV panels, creating a P-N
junction in semiconductors and generating current. The
more photons that hit the PV panels, the greater the
current produced. Therefore, irradiance information based

on the system’s location is critical for calculations. Fig.
2 demonstrates, the irradiance data for the University
of South-East Norway (USN) in Porsgrunn, Norway
(latitude 59.138, longitude 9.672) for June 2020.
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Fig. 2. Hourly solar irradiance W
m2 .

3.2 Modeling of photovoltaic Modules

The current voltage equation for modeling the PV system
can be represented as follows:

Ipv = Iph − I0

[
exp

(
q
Vpv + Ipv ·Rs

AKTj

)
− 1

]
(1)

Iph = Iph G · (1 + αsc ·∆T ) (2)

Iph G = Isc ·
(

G

Gref

)
(3)

∆T = Tj − Tj ref (4)

In which, Ipv(A) is the photovoltaic current, Iph (A) is
the photo-current, I0 (A) is the reverse saturation current
of the diode, q is the electron charge which is equal to
1.602 × 10−19 (C), K is the Botzman’s constant which is
equal to 1.381 × 10−23( J

K ), A is diode ideality factor, Tj

is junction temperature of the panels (◦)K, Rs is series of
resistance and Vpv is the voltage across PV cell (V). Also
in the Eq.2 to Eq.4, Iph G represent current depending on
short circuit current, reference irradiance of Gref = 1000
W
m2 and reference temperature of Tj ref = 25◦C. Also αsc

is the temperature coefficient of short-current (◦K) found
on the datasheet. For finding reverse saturation current at
any temperature (I0), the Eq.5 can be obtained as follow:

I0 =
Isc[

exp

(
Voc

Vth Tj ref

)
− 1

] ·

[
exp

(
−q · Eg

AK
1
Tj

− 1
Tj ref

)]
·
(

Tj

Tj ref

) 3
A

(5)

In which Eg represents the band gap energy considered
as 1.12 electron volt (eV)Chander et al. (2015). So by
substituting Eqs. 2 and 5 in the Eq.1, the final photovoltaic
current is obtained. Also in order to find Rs in the Eq.1,
term ”-1” added to the exponential equation:

Rs = −dVpv

dIpv

∣∣∣
Vpv=Voc

− 1

W
(6)

and:

W = q · Isc
AKTj

(7)

The term of −dVpv

dIpv
, obtained by experiment or by

Ipv − Vpvcharacteristic of the manufacturer mentioned on
datasheets. Also, for solving Eq.1, Newton’s method has
been used.

3.3 Maximum Power Point Tracker algorithm

According to Afshari et al. (2021), maintaining minimum
current density levels is crucial for safety at varying pres-
sures, as hydrogen concentration decreases relative to oxy-
gen at the anode at lower current densities. To address this,

the Maximum Power Point Tracking (MPPT) algorithm
ensures maximum power output from PV panels under
different irradiance levels. As defined by Zhou et al. (2010),
MPPT, combined with a DC-DC converter, allows a pho-
tovoltaic generator to produce optimal power consistently,
regardless of changes in irradiance and temperature, by
operating at the optimal voltage and current (Vopt, Iopt).
Various MPPT algorithms exist, with the Perturb and
Observe (P&O) method being used in this study. The P&O
method iteratively seeks the maximum power point by
continuously evaluating the PV module’s current and volt-
age. The MPPT algorithm based on the P&O method il-
lustrates how the algorithm identifies the maximum power
point and corresponding voltage under different hourly
irradiance conditions. This algorithm is repeated for each
hourly irradiance to maximize the daily power output.

3.4 DC-DC converters

The governing equation of the DC-DC converter is pre-
sented. Three main types of converters—boost, buck, and
buck-boost—are commonly employed in integrated photo-
voltaic and electrolyser systems to adjust the final voltage.
Average modeling methods are typically utilized for simu-
lating these converters. Ruuskanen et al. (2020) highlights
that current ripple reduces the efficiency of alkaline elec-
trolyzers, necessitating better power electronics control,
potentially applicable to PEM electrolyzers as well. Energy
suppliers using photovoltaic systems and batteries require
DC-DC converters to adjust voltage and current levels,
as these converters are essential for modifying electrical
voltage levels between generators and loads Mohan (2012).
Simulations show that solar power output and voltage fluc-
tuate throughout the day due to irradiance changes, while
electrolyzers require a steady 320V. Buck-Boost converters
adjust output voltage above or below the input based on
the switch duty ratio D. The output voltage of a Buck-
Boost converter, determined by the duty cycle D, is given
by Vout

Vin
= D

1−D Hart (2011). With D > 0.5, it operates
as a boost converter; with D < 0.5, as a buck converter.
This hybrid model combines boost behavior when the
IGBT is on and buck behavior when off. By implementing
average model methodologies, the final model representing
the converter is given by the following equations:

diL
dt

=
1

L
(DVin − (1−D)vC) (8)

dvC
dt

=
1

C

(
(1−D)iL − vC

R

)
(9)

3.5 Modeling of electrolyser system

The electrolyser cell consists of a pair of conductive elec-
trodes immersed in an electrolyte that facilitates ionic
conduction. Upon the application of voltage across these
electrodes, oxidative processes occur at the anode, while
reduction reactions occur at the cathode. The anode and
cathode are connected through the flow of current. In this
study, PEM electrolyser model is employed for simulation
purposes. A detailed explanation of operating character-
istics of PEM electrolysers presented in Table.1. To accu-
rately determine the total voltage of an electrolyzer, it is
essential to understand the governing equations derived
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from the mass balance in each part of the electrolyzer
(Rabascall and Mirlekar (2023)). Accordingly, three con-
trol volumes have been defined within the electrolyzer,
including the anode, cathode, and membrane sections.
The overall water flow across the membrane can be de-
scribed through three processes: diffusion, electro-osmotic
drag, and hydraulic pressure effects representing mem-
brane mass transfer dynamics. Additionally, energy bal-
ance equation is chosen from the literature to represent
electrolyser temperature (Ogumerem and Pistikopoulos
(2020)).

Table 1. Standard Characteristics of Polymer
Electrolyte Membrane (PEM).

PEM electrolyser characteristics

Technology

maturity

Commercial Anode IrO2, RuO2

Electrolyte Polymer

(Solid)

Cathode Pt, Pt-Pd

Cell temperature,
◦C

60 - 90 System energy

consumption,

kWh/Nm3

4.5 - 7.0

Operating

Pressure (bar)

15 - 30 H2 Capacity

(Nm3/h)

<40

Cell Voltage (V) 1.8 - 2.2 H2 purity 99.9

Current Density

(A/cm2)

0.6 - 2 Stack lifetime,

hr

<20,000

Power density

(W/cm2)

Up to 4.4 System

lifetime, yr

10 - 20

Voltage

Efficiency (%)

67 - 82 Charge carrier H+

The anode mass transfer module computes the flows of
oxygen and water, as well as their respective partial
pressures. At the anode, water undergoes oxidation to
yield oxygen, electrons, and protons. The cathode mass
transfer dynamics module computes the partial pressures
and flow rates of hydrogen and water at the cathode,
where protons undergo reduction. The objective of these
calculations is to determine the partial pressures of each
species at both the cathode and anode sides. It is essential
to note that the calculated partial pressures are utilized in
subsequent calculations to determine the total potential of
the electrolyzer and the energy balance equation.

3.6 Model predictive control

We utilize a derived model based on the energy balance
of the electrolyser, as discussed in previous section. This
model captures the temperature dynamics of the electrol-
yser and can be manipulated by adjusting the water flow
rate into the system. In MPC, the process of forecasting
future states and outputs, formulating, and solving an
optimization problem is iterated at each time step. This
iterative approach, known as a sliding horizon strategy,
ensures continuous feedback and control adaptation. A
linear state space model has been employed for MPC
algorithms. A brief description of the linear state space
model presented as follow. The general form of linear state
space model can be written as,

xk+1 = Axk +Buk + vk → State equation (10)

yk = Cxk +Duk + wk →Measurment equation (11)

Here, A, B, C, and D represent system matrices. A ∈
Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx , and D ∈ Rny×nu .
Additionally, vk ∈ Rnx and wk ∈ Rny are zero-mean
random variables with specific variances. vk represents

process noise, while wk denotes measurement noise. It is
assumed that vk and wk are uncorrelated (stochastically
independent), i.e., corr[vk, wj ] = 0 for all k and j. This
implies that random disturbances affecting measurements
are unrelated to the randomness in the system states or
processes themselves.

For designing linear MPC, the nonlinear derived model is
linearized to obtain a continuous time linear state space
model, that is, the derivation of energy balance balance
equation on PEM electrolyser has been implemented. It is
important to note that the MPC algorithm has been im-
plemeted on electrolyser to control operating temperature
based on the energy balance equation as follows:

cpM
dT

dt
= ncellI(Voc−V0)+Ṁan

H2O,incpH2O (T−Tan
in )−Hrad (12)

Where cp is the specific heat capacity (J/kg.K), V0

is the thermoneutral voltage expressed as a function of
temperature anode pressure and Hrad is the the heat loss
from radiation.

Finally, MPC is designed using the discrete time linear
state space model. The initial step in linearizing a non-
linear model involves establishing an equilibrium point to
derive a linear model around it. It is assumed that the
actual system dynamics approximate the nominal trajec-
tories, that is, they are near the defined operating points.
Also the cost function can be used in order to implement
the optimization. So:

min
u

J =

N−1∑
k=1

(
(yk − yRk )TQR(yk − yRk )

)
+

M−1∑
k=0

(∆uT
k R∆uk) (13)

By understanding the MPC concepts and fundamentals,
the implementation of this algorithms on integrated sys-
tem has been done in Simulink by use of MPC block. While
the mpcDesigner command used to set the mentioned
values for the model. Finally, the MPC block used with
the designed plant of electrolyser to set the temperature
at the set point value. It is also of the essence to mention
that the reference value for the electrolyser operating point
considered as 63◦C while weighting matrices in the MPC
controller considered on the error between the actual alti-
tude and the target to be in the range of 5◦C and positive
water flow rate based on the pump operation.

4. SIMULATION RESULTS

In this section simulation results of an integrated dynamic
system, encompassing photovoltaic panels with an MPPT
algorithm, a DC-DC converter, a PEM electrolyser, and
MPC implementation are presented.

4.1 Photovoltaic system simulation results

Power generation is directly influenced by solar radiation
as discussed in Sections 2 and 3. The solar irradiance is
illustrated in Fig. 2. Additionally, temperature affects the
current-voltage produced by the PV system, with a stan-
dardized temperature of 25°C assumed for all simulations.
Fig. 3 illustrates the current-voltage and power-voltage
diagrams at a different radiation levels and a temperature
of 25°C, based on MATLAB mathematical simulations.

As depicted in Fig. 3, the maximum power output of
the PV system is approximately 200 watts, aligning with
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Fig. 3. Current-voltage and power-voltage simulation of
photovoltaic panel.

Fig. 4. Simulation of PV system‘s power during a day.

the findings of Ma et al. (2013) under similar
conditions of 1000 (m

W
2 ) and a temperature of 25(◦)C.

The behavior of these curves closely mirrors those

presented in the cited study. Due to the inherent
characteristics of photovoltaic systems, the current-
voltage and power-voltage profiles vary with different
levels of irradiance. It is typical for manufacturers to
display these curves at various standard irradiances such
as 200, 400, 600, 800, and 1000 (m

W
2 ). The KC200GT PV

module, utilized in the study by Ma et al. (2013),
demonstrates how PV characteristics are impacted under
various irradiance levels, maintaining a constant
temperature of 25◦C. Fig.3 shows that the behavior of
these curves is consistent with those found in PV pan-
eldatasheet 1 , further validating the model’s accuracy.

As shown in Fig. 3, higher solar irradiance results in
greater power output from photovoltaic panels due to
increased photon absorption. As this study primarily fo-
cuses on the electrolyser and the implementation of MPC
algorithms for temperature control, the photovoltaic sys-
tem is treated solely as a renewable energy source, with
simulation and modeling efforts emphasizing accurate rep-
resentation and validation against existing literature.

From Fig. 3, it is evident that the system yields maximum
power output around 25 volts per radiation level. To
achieve this maximum power, the Maximum Power Point

1 https://www.energymatters.com.au/images/kyocera/KC200GT.pdf

Fig. 5. Simulation of buck-boost converter with output
voltage of 320(V).

algorithm is integrated into the PV system, ensuring
that the output is optimized for peak power generation.
Simulation of the system over 24 hours, based on hourly
irradiance data (Fig. 2), reveals a correlation between
power production and irradiance fluctuations, as shown
in Fig. 4. However, since the location lacks a radiation
level of 1000 W

m2 , the system operates below its maximum
potential, peaking at approximately 148 W at noon.

The power generated by the PV system needs to be
transmitted to the electrolyser to meet the energy demand.
This necessitates the use of a DC-DC converter to regulate
the fluctuating power output from the PV panels, ensuring
stable energy supply to the system.

4.2 DC-DC converter simulation results

The simulations of buck-boost converters are conducted to
validate the methodology employed in this study against
existing literature. A buck-boost converter, ideal for re-
newable energy systems with inherent power fluctuations,
ensures a stable 320-volt supply to the electrolyser, as
demonstrated in simulations based on Eqs. 8 and 9, is
depicted in Fig. 5. The design parameters, including induc-
tor, resistor, and capacitor values are calculated accord-
ingly to achieve desired output voltage, operating at the
lowest irradiance. This was accomplished with a frequency
of 20kHz and a voltage deviation of ∆Vout = 0.05 · Vin to
reach the final voltage of 320V. The decision to design the
buck-boost converter to achieve an output voltage of 320
volts was driven primarily by the need to align with grid
specifications (for the scenarios where can be combined
PV system with the grid), particularly the root mean
square voltage typical in many grid systems. This voltage
level ensures that the power produced by the PV system
is compatible with the grid infrastructure, facilitating a
seamless integration of the renewable energy source with
the existing power network. Ensuring compatibility with
the grid voltage is crucial for efficient energy transfer, min-
imizing losses, and ensuring stability in the power system,
which ultimately enhances the reliability and effectiveness
of both the renewable integration and the grid operation.

The simulation of a single input voltage from the PV

panels is shown in Fig. 5. We now proceed to depict
the
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Fig. 6. Simulation of buck-boost converter with an inlet
capacitor.

(a) (b)

(c) (d)

Fig. 7. Hydrogen, oxygen and water produced flow rate
from cathode and anode part of electrolyser with
different inlet water flow rate.

the comprehensive simulation and modeling of a DC-DC
converter, which adjusts various hourly changing voltage
ar-rays from the PV panels to a desired voltage level.
It is crucial to highlight that in this mathematical
simulation, the duty cycle is adjusted on an hourly basis in
response to changes in solar radiation. This adjustment
ensures that the output voltage from the PV system
aligns with the required 320V for the DC bus.
Adjustments in the duty cycle are managed by an
appropriate controller within the circuit, as discussed in
Safari and Mekhilef (2010). Over-shooting fluctuations
can be mitigated by integrating a capacitor at the
input of the buck-boost converter circuit. This capacitor
functions by storing excess voltage and charging, thus
smoothing out the overshoots in the circuit. Xiao (2017)
have provided models that demonstrate this effect.
Implementation of these models shows that initial
fluctuations are effectively eliminated from the system, as
illustrated in Fig.6 under the same conditions mentioned
in Fig.5.

4.3 Electrolyser simulation results

The simulation results of the PEM electrolyser are pre-
sented in the following section. Figure 7 presents the
simulation modeling results of the different water flow
rate into the cathode side of the electrolyser. Notably,
increasing the water flow rate does not enhance hydrogen
production, which is primarily dependent on the amount
of electric current supplied to the electrolyser. According
to Ogumerem and Pistikopoulos (2020), increasing the
current flow directly boosts hydrogen output. While the
water flow rate may not influence hydrogen production, as
illustrated in Figure 7, it plays a critical role in cooling the
electrolyser. Figure 7 uses water flow rates of 70×10−4 and
70 × 10−3 moles per second for comparison. The analysis
shows that hydrogen production remains unaffected by
changes in the water flow rate but is expected to increase
with higher current. Additionally, the study indicates that
a water flow rate below 50×10−4 mole per second can lead
to abnormal outcomes, such as negative water production
at the anode with simulated specifications. The system
also can be faced with upper limits on the water flow
rate due to the capacities of the pump and ion filter
components.

Temperature and pressure significantly influence electrol-
yser performance, making their accurate measurement and
control crucial for effective system modeling. To accurately
model these systems, it is essential to understand the
pressures at the anode and cathode, which influence sev-
eral critical parameters. Additionally, the differential pres-
sure (∆P ) across the membrane (used for pressure effect
based on the Darcy’s law) is fundamental for accurately
predicting water transport through it. The dependency
of the electro-osmotic drag coefficient (nd) on pressure
underscores the complexity of electrolyser dynamics un-
der varying operational pressures. The thermal sensitiv-
ity of the electrolyser also poses significant challenges.
Fluctuations in temperature can compromise membrane
integrity and, in extreme cases, could lead to hazardous
conditions if hydrogen and oxygen mix explosively. This
study, therefore, adheres to operating temperatures for
PEM electrolysers typically between 60°C and 90°C with
the pressure of 30 bar, aligning with industry standards to
minimize risks and optimize performance. The membrane,
assumed fully hydrated, exhibits conductivity solely de-
pendent on temperature. The polarisation curve comprises
various potentials, including Voc, Vact, Vcon, and Vohm. The
contribution of each potential to the polarisation curve is
depicted in Fig. 8. Simulations conducted at a symmetric
pressure of 1 bar for the cell demonstrate that higher
temperatures correlate with reduced overpotential in the
electrolyser (Fig. 9(a)). Conversely, as depicted in Fig.
9(b), maintaining a constant temperature of 60°C while
increasing pressure leads to heightened overpotential in
the electrolyser. Understanding these dynamics is essential
for optimizing electrolyser performance and guiding design
decisions.

4.4 Model predictive control implementation results

The system description of the PEM electrolyser has been
elucidated thus far. Modeling is a crucial precursor to
implementing advanced control systems like MPC algo-
rithms, as they rely heavily on accurate simulation models.
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Fig. 8. Share of each potential to the final polarisation
curve of the PEM electrolyser.

(a) Influence of cell temperature. (b) Influence of cell pressure.

Fig. 9. Influence of cell temperature and pressure on the
electrolyser.

Commencing with MPC algorithms, as discussed in Sec-
tion 3.6, it is crucial to comprehend the model governing
the system, derived from the energy balance equation
elucidated by Ogumerem and Pistikopoulos (2020). To
maintain consistency with the referenced study, a linear
state-space form was chosen. To determine matrices A and
B, it is essential to derive the derivation form of the energy
balance formula based on the states and control variables.
The state variable considered as the temperature in the
Eq.12 while the control variable is the water flow rate
into the system by which the cell temperature can be con-
trolled. This involves selecting state, control, and output
parameters, with the electrolyser temperature chosen as
the state variable to be controlled by the water flow rate.
Additionally, the temperature difference from the set point
temperature could serve as the output variable. Choosing
an operating point around 60°C for the electrolyser facili-
tates the derivation of A and B matrices as follows which
will be gain as the derivation form of Eq.12 based on state
variable wich is temperature and control variable that is
water flow rate effecting in reducing cell temperature with
following equation form:

A =


(

d(ncellI(Voc−V0)+Ṁan
H2O,incpH2O

(T−Tan
in )−Hrad)

dT

)
CpMH2O

 (14)

B =


(

d(ncellI(Voc−V0)+Ṁan
H2O,incpH2O

(T−Tan
in )−Hrad)

dṀan
H2O,in

)
CpMH2O

 (15)

To determine the A matrix, it is essential to define the
control operating point. This parameter can be determined
by setting the energy balance equation to zero and substi-
tuting the set temperature of the operating point.

Fig. 10. Simulink result of simulated energy balance model
of the PEM electrolyser.

Fig. 11. MPC block implementation in Simulink.

Ṁan
H2O,in =

1

cpH2O (Top − Tan
in )

(−ncellI(Voc − V0) +Hrad) (16)

To simulate the model in state space form, a sampling
time of 0.1 seconds was specified, and the system was
named ’plant’ using the ’ss’ function in MATLAB. Addi-
tionally, the model was discretized using the ’c2d’ function.
Following the implementation of the state space model,
simulation was conducted using the Simulink environment
in MATLAB. Fig. 10 highlights the need for implement-
ing MPC algorithms to regulate the setpoint temperature
within the range of 60-65◦C. To achieve this, the MPC
block was integrated into the Simulink diagram alongside
the designed system labeled ’plant.’ Fig. 11 illustrates the
schematic of the interconnected blocks within the Simulink
environment, including the MPC block.

In Fig. 11, the output of the simulation generated by the
linear state space model is fed back to the MPC block
for comparison with the predetermined reference setpoint.
This feedback loop enables the system to dynamically
adjust the flow rate to regulate the temperature at the
desired value. Expanding upon this concept, the MPC
block continuously receives feedback from the simulation
results and compares it with the target setpoint tempera-
ture of 63◦C. By analyzing this feedback, the MPC algo-
rithm calculates the necessary adjustments to the control
inputs, ensuring that the system maintains the tempera-
ture within the specified range. Moreover, the simulation
output, depicted in Fig.10, provides a visual representa-
tion of how effectively the MPC algorithm controls the
system. It showcases the temperature response over time,
demonstrating the system’s ability to track and stabilize
the temperature around the desired setpoint. Utilizing the
‘mpcDesigner‘ tool in the MATLAB workspace enables
users to configure and fine-tune the controller settings ef-
fectively. In summary, the simulation results encapsulated
in the series of figures, indicate successful temperature reg-
ulation by the MPC algorithm. This was achieved through
system modeling, controller design, and feedback mecha-
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nisms that adjust the flow rate to stabilize temperature.
The results validate the robustness and precision of the
designed MPC system in achieving and maintaining the
desired operational conditions within the electrolyser.

5. CONCLUSIONS

The study reviewed extensive literature on hydrogen pro-
duction, particularly focusing on solar-powered proton ex-
change membrane (PEM) electrolysers, which were iden-
tified as effective but requiring stable operation. Model
Predictive Control (MPC) was chosen for its capabil-
ity to regulate electrolyser temperature, enhancing op-
erational efficiency. Simulations were performed for in-
tegrated system, including photovoltaic (PV) panels and
PEM electrolysers. MPC was tested, proving successful in
maintaining desired electrolyser temperatures. The system
incorporated Maximum Power Point Tracking (MPPT)
to optimize power output from PV panels, and DC-DC
converters were evaluated, with the buck-boost converter
providing stable power adjustments suitable for renewable
energies. The simulations, which also considered various
operational parameters, demonstrated the potential for
high efficiency and detailed system behavior under varying
conditions. The study achieved successful system modeling
and simulation, demonstrating a stable adjustment time
that was approximately 10 minutes faster to the selected
set point with MPC algorithms compared to without. Ad-
ditionally, the findings suggest that more detailed models
are necessary for practical application and scaling up the
project.
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Babic, U., Suermann, M., Büchi, F.N., Gubler, L., and
Schmidt, T.J. (2017). Critical review—identifying criti-
cal gaps for polymer electrolyte water electrolysis devel-
opment. Journal of The Electrochemical Society, 164(4),
F387.

Cavaliere, P. (2023). Water Electrolysis for Hydrogen
Production. Springer Nature Switzerland AG, Gewerbe-
strasse 11, 6330 Cham, Switzerland.

Chander, S., Purohit, A., Nehra, A., Nehra, S., and Dhaka,
M. (2015). A study on spectral response and external
quantum efficiency of mono-crystalline silicon solar cell.
International journal of renewable energy research, 5(1),
41–44.

Falcão, D. and Pinto, A. (2020). A review on pem
electrolyzer modelling: Guidelines for beginners. Journal
of cleaner production, 261, 121184.

uchi, F.N., and Lygeros, J. (2021).
Electrolyzer modeling and real-time control for opti-
mized production of hydrogen gas. Applied Energy, 281,
116031.

Gutiérrez-Mart́ın, F., Dı́az-López, J., Caravaca, A., and
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Abstract: Valorisation hemicellulose into furans chemicals is of great interest to create sustainable furan 

alternatives to fossil-derived products. A route of particular interest is acid-catalysed dehydration of the 

hemicellulose pentoses in aqueous medium, with simultaneous extraction of furfural using organic solvent. 

Agitated Cell Reactor (ACR) could be effectively used to intensify this process and decouple mixing from 

the long reaction time. This study presents a mathematical model for dehydration of C5 sugars to produce 

furfural in an ACR. The model can be used to study the effect of feed concentration to the product 

properties, the concentration profiles along the reactor length, and the dynamic behaviour of the system 

under feed disturbances or flow rate adjustments. The model was successfully fitted to the experimental 

data of a laboratory scale ACR for the target product. A simulation study was conducted to analyse the 

controllability of the process. Operability analysis with the nominal input space and the design space was 

used for mapping the most feasible region for the process design to meet the flexibility or controllability 

already at the design phase of the reactor system. 

Keywords: Simulation, Controllability, Process intensification, Agitated cell reactor, Furfural. 

1. INTRODUCTION 

In order to minimise impact on climate change and reduce 

dependency of non-renewable fossil resources, it is necessary 

to convert fuels and chemical production to more sustainable 

synthesis routes using renewable and circular feedstocks, such 

as biomass. Lignocellulose biomass is the most abundant type 

of biomass worldwide, being a valuable resource with efficient 

conversion routes for production of biorenewable chemicals 

being developed. The biorefining processes being engineered, 

fractionate lignocellulose into cellulose, hemicellulose and 

lignin using a range of technologies. The majority of the 

processes create relatively pure streams of cellulose fibres 

and/or lignin. However, hemicellulose (HMC), a branched 

heteropolymer composed mostly of pentoses and some hexose 

sugars, often ends partially hydrolysed in very diluted aqueous 

streams, often contaminated with other soluble species such as 

inorganics, acids and extractives (Wan Azelee et al., 2023). To 

increase the usage of lignocellulose as a renewable raw 

material, it is therefore required to be able to convert HMC 

sugars effectively and overcome the issues associated with 

diluted streams, and consequent difficulty and cost of 

separation. 

A promising strategy is to dehydrate the HMC sugars into 

furans using an acid catalyst, where all C5 sugars are converted 

into furfural (FUR) and all C6 sugars are converted into 5-

hydroxymethylfurfural (5-HMF) (Esteban et al., 2020; 

Ricciardi et al., 2021). This eliminates the need to purify the 

individual sugars, and creates product convergence, reducing 

downstream separation requirements. Simultaneously, it 

produces two high-value platform compounds for fuels and 

chemicals, with furfural being recently investigated for 

production of sustainable aviation fuels, and 5-HMF being 

used in production of renewable monomers (Mariscal et al., 

2016). 

Nevertheless, due to the diluted nature of the HMC 

hydrolysates, it is necessary to process these efficiently in 

aqueous medium, as water cannot be removed without paying 

a large energy penalty. This creates challenges since furans are 

reactive intermediates and, in aqueous medium, can easily 

undergo self-condensation into humins. Additionally, in the 

case of 5-HMF, it can also decompose by rehydration into 

levulinic and formic acid (Esteban et al., 2020; Tong et al., 

2010).  

To improve product yields, process intensification techniques 

can be employed. In particular, extractive-reaction technology 

(Trambouze and Piret, 1960) can significantly enhance the 

yields as it prevents furan decomposition by carrying out in 

situ extraction of the furan products from the aqueous reaction 

medium using an immiscible organic solvent (Esteban et al., 

2020; Ricciardi et al., 2021).  

To ensure the mass transfer of furans between the aqueous and 

organic solvent media is efficient, good mixing is required. 

Nevertheless, the required reaction times are in the order of 

several minutes to a couple of hours, and tubular reactors are 

not able to offer good mixing for such slow flow conditions. 

Continuous stirred tank reactors (CSTRs) can offer good 

mixing at longer residence times, but typically operate at low 

concentrations of reactants and high concentrations of 

products, with such conditions promoting furan degradation. It 
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is therefore important to select appropriate reactor technology 

capable of decoupling mixing from reaction time. A good 

compromise between good mixing and long residence times is 

achieved by using a cascade of CSTRs, where the reaction 

progresses fractionally in each tank, and where there is good 

mixing in each stage of the cascade. For small scale production 

and process development, setting a cascade of CSTRs can be 

costly due to the number of reactors and agitators required, and 

difficult to control. Alternatively, mixing intensification and 

decoupling between mixing and residence time can be achieve 

using an Agitated Cell Reactor (ACR). 

The ACR is suitable for both homogeneous and multiphase 

reactions. In (Toftgaard Pedersen et al., 2017), several 

applications are listed, where the ACR has been used including 

continuous processing of slurries (Browne et al., 2011), 

hydrodechlorination of organic waste (Gómez-Quero et al., 

2011), functionalization of carbon nanotubes (Salice et al., 

2012), and biocatalytic oxidation reactions (Gasparini et al., 

2012; Jones et al., 2012). Specific to the furan production in 

this work, the ACR is expected to intensify mixing and 

increase the liquid-liquid interfacial area. Consequently, this 

will enhance mass transfer rates, allowing the reduction of the 

amount of extraction solvent used, and resulting in small 

reaction vessels and lower separation costs downstream. This 

will also help to control the reaction system selectivity. 

To achieve an holistic view on process intensification and a 

fully integrated process with optimal performance, it is also 

necessary to account for the process operability, controllability 

and safety during the conceptual process design (Tian et al., 

2018). The operability analysis was casted into process 

intensification in (Carrasco and Lima, 2017). An operability-

based algorithm was presented and used for input–output 

analysis of nonlinear systems comprising the process 

intensification goals in the calculation. Furthermore, an 

optimisation-based approach was applied to determine the 

feasible operating envelope (desired input set satisfying the 

design constraints and the desired output set). 

This study aims to develop the necessary mathematical tools 

for optimizing the design of a novel, intensified reactor while 

taking into account the process operability. Therefore, a 

dynamic model was developed to simulate the response of the 

ACR during dehydration of xylose, the most representative 

sugar in HMC hydrolysate streams produced in biorefining 

processes. A validation of the model was performed for 

experimental data representing different feed properties and 

reactor conditions. The model was then used to analyse the 

operability of the ACR system for this biorefining application 

to gain insight on the effect of foreseen process disturbances 

to the process performance, and thus to support the process 

design already at the conceptual design phase. 

The rest of the article is structured as follows: Section 2 

presents the laboratory-scale ACR reactor and the developed 

dynamic model, as well as the applied methodology for the 

operability analysis. In Section 3, the model identification and 

validation are performed. Section 4 presents the case for the 

operability study, followed by conclusions in Section 5.  

2. MATERIALS AND METHODS 

2.1 System description 

ACRs make use of a reactor block with multiple cylindrical 

horizontal cells in series, with each cell containing a 

cylindrical agitator positioned loosely inside. The entire 

reactor block is then oscillated horizontally, causing the 

agitators to move freely inside the cells, rolling back and forth 

and disrupting the flow through each cell. Each cell in the 

reactor then replicates a CSTR, with the entire reactor block 

constituting the cascade. Different agitator sizes with different 

material densities and cylindrical geometries (e.g. solid, 

hollow tube, coil) can be chosen depending on what is more 

beneficial for each application. 

An ACR with a total volume of 100 mL (10 mL per cell × 10 

cells) is modelled. The reactor is fed with an aqueous mixture 

of xylose and sulphuric acid catalyst and pure MIBK (methyl 

isobutyl ketone) as the organic solvent for extractive phase.  

Five components were considered in the models: xylose (Xyl), 

furfural in aqueous phase (Faq), furfural in organic phase 

(Forg), degradation products (DG), and intermediate products 

(Int). It is assumed that only furfural would transfer between 

the aqueous and organic phase, while other components 

remained in the aqueous phase. The degradation products 

describe a variety of organic compounds, particularly humins, 

formed during self-condensation reactions of the xylose, 

intermediates and furan products. Finally, the intermediate 

products can be various carbohydrate-based compounds 

resulting from partial reaction of xylose, and which react 

further to produce furfural or degradation products. 

At the initial state, it is assumed that the entire reactor volume 

is filled with reactants and MIBK solvent at a volumetric ratio 

of 1:1, and the operation pressure is achieved. The temperature 

at which reactions starts is assumed to be 90 °C at t = 0 min, 

from which point the temperature increases until it reaches the 

final operation temperature.  

The agitation frequency of the ACR is assumed to be fixed at 

5 Hz. Thus, the mixing intensity and its effects to the mass 

transfer are omitted in modelling. 

2.2 Model structure 

The model structure here consists of a cascade of continuous 

stirred tank reactors (CSTRs) connected in series with forward 

flow and an optional backflow term (Roemer and Durbin, 

1967). A similar approach for ACR modelling has been 

proposed in (Toftgaard Pedersen et al., 2017). 

The component balances were defined for the mentioned 

components 𝐶𝑖,𝑋𝑦𝑙 , 𝐶𝑖,𝐹𝑎𝑞 , 𝐶𝑖,𝐹𝑜𝑟𝑔 , 𝐶𝑖,𝐷𝑒𝑔 and 𝐶𝑖,𝐼𝑛𝑡 in each 

reactor i resulting in a set of ordinary differential equations 

(ODEs), represented by (1).  

𝑑𝐶𝑖,𝑗

𝑑𝑡
= 𝑟𝑖,𝑗 +  

𝑣𝑎𝑞

𝑉𝑎𝑞

(𝐶𝑖−1,𝑗 − 𝐶𝑖,𝑗)

+
𝑣𝐵

𝑉𝑎𝑞

(𝐶𝑖+1,𝑗 + 𝐶𝑖−1,𝑗 − 2𝐶𝑖,𝑗) 

(1) 
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In (1), the 𝑣𝑎𝑞 is the flow rate of aqueous phase, 𝑉𝑎𝑞 is the

volume of aqueous phase in reactor cell, 𝑣𝐵 is the backflow

rate, and 𝑟𝑖,𝑗 is the formation or consumption of component j

due to reactions or mass transfer between phases. There is no

backflow stream leaving from the first unit, thus the term

2𝐶𝑖,𝑗 = 0 for i = 1. Similarly, with the last unit, there is no

incoming backflow term from the next unit and the backflow

term is (𝐶𝑖−1,𝑗 − 𝐶𝑖,𝑗). For furfural in the organic phase, the

flow term in the balance equation uses the flow rate and

volume of organic phase (𝑣𝑜𝑟𝑔 and 𝑉𝑜𝑟𝑔, respectively), instead

of 𝑣𝑎𝑞 and 𝑉𝑎𝑞. The model was implemented to MATLAB®

and a variable-step, variable-order method ‘ode15s’ was used

to solve the ODEs.

2.3 Kinetics for xylose dehydration to furfural

The reaction mechanism is assumed to follow the pathways

presented by (Jakob et al., 2022). The studied reaction pathway

can be seen in Fig. 1. The reaction rates are first order (2—

6) and follow an Arrehenius temperature dependence (7). The

acid catalyst concentration (𝐶𝐶𝑎𝑡) is accounted by multiplying

the intrinsic reaction rates (𝑘𝑥0) with the ion concentration of

H2SO4 catalyst (8). The temperature dependency of the

dissociation constant 𝐾𝐴 and the ion concentration 𝐶𝐻+ are

calculated as in (9) and (10), respectively (Guo et al., 2021).

 

Fig. 1. Reaction mechanism.

In Fig. 1, and Figs. 2 to 6, the 𝑘𝑥 are the apparent rate

constants, 𝑘𝑚 is the mass transfer rate constant for furfural

from aqueous phase to organic phase, and 𝑘𝑚− is the mass

transfer rate constant for furfural from organic phase to

aqueous phase. 𝑇 is the operation temperature and 𝑇𝑟𝑒𝑓 the

reference temperature, 𝐸𝑎,𝑥0 the activation energy and 𝑅 is he

ideal gas constant.

𝑟𝑖.𝑋𝑦𝑙 = −𝑘1𝐶𝑖.𝑋𝑦𝑙−𝑘3𝐶𝑖.𝑋𝑦𝑙−𝑘4𝐶𝑖.𝑋𝑦𝑙+𝑘7𝐶𝑖.𝐼𝑛𝑡  (2)

𝑟𝑖.𝐹𝑎𝑞 = 𝑘1𝐶𝑖.𝑋𝑦𝑙−𝑘2𝐶𝑖.𝐹𝑎𝑞+𝑘5𝐶𝑖.𝐼𝑛𝑡−𝑘𝑚𝐶𝑖.𝐹𝑎𝑞

+ 𝑘𝑚−𝐶𝑖.𝐹𝑜𝑟𝑔 
(3)

𝑟𝑖.𝐹𝑜𝑟𝑔 = 𝑘𝑚𝐶𝑖.𝐹𝑎𝑞 − 𝑘𝑚−𝐶𝑖.𝐹𝑜𝑟𝑔 (4)

𝑟𝑖.𝐷𝑒𝑔 = 𝑘3𝐶𝑖.𝑋𝑦𝑙+𝑘2𝐶𝑖.𝐹𝑎𝑞+𝑘6𝐶𝑖.𝐼𝑛𝑡 (5)

𝑟𝑖.𝐼𝑛𝑡 = 𝑘4𝐶𝑖.𝑋𝑦𝑙−𝑘7𝐶𝑖.𝐼𝑛𝑡−𝑘5𝐶𝑖.𝐼𝑛𝑡−𝑘6𝐶𝑖.𝐼𝑛𝑡 (6)

𝑘𝑥0(𝑇) = 𝑘𝑥0(𝑇𝑟𝑒𝑓)𝑒𝑥𝑝
𝐸𝑎,𝑥0

𝑅
(

1

𝑇𝑟𝑒𝑓

−
1

𝑇
) (7) 

𝑘𝑥 = 𝐶𝐻+ × 𝑘𝑥0 (8) 

𝐾𝐴 = exp (0.0152 × 𝑇 + 2.636) (9) 

𝐶𝐻+ = 𝐶𝐶𝑎𝑡 +
1

2
(−𝐾𝐴 − 𝐶𝐶𝑎𝑡

+ √(𝐾𝐴 + 𝐶𝐶𝑎𝑡)2 + 4𝐶𝐶𝑎𝑡𝐾𝐴) 
(10) 

The rate constants and activation energies are given in (Jakob 

et al., 2024). In addition, the mass transfer coefficient value 

and partition coefficient value were based on (Weingarten et 

al., 2010). 

2.4 Intensification factor and temperature profile 

In order to simulate the intensified reactor with improved 

mixing, and thus mass transfer, an intensification factor 𝐹 was 

applied to the model. For simplificity, a single lumped value 

was assumed that multiplies the rate constants and the forward 

mass transfer constant, as in (11). The value for 𝐹 was 

estimated using the experimental data. 

In addition to the intensification factor, the model fitting 

comprises an unknown, transient temperature profile for the 

reactor start-up. The temperature increment to the target 

operation temperature was assumed to follow an exponential 

function seen in (12). The value for time constant ℎ was 

estimated using experimental data. 

𝑘𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑓𝑖𝑒𝑑 = 𝑘𝑥 × 𝐹 (11) 

𝑇(𝑡) = 𝑇(0) − (𝑇(𝑡) − 𝑇(0))exp (−ℎ × 𝑡) (12) 

2.5 Operability analysis 

Process operability analysis focuses on evaluating in what 

extent the desired process outputs (controlled variables, 

desired output space) can be achieved with the assumed range 

of input variables (manipulated variables, available input 

space) and expected disturbances. The analysis does not 

assume any specific control structure. The same analysis can 

also be conducted to evaluate whether the process design 

satisfy the desired intensification targets and constraints 

(Carrasco and Lima, 2017). 

An open-source MATLAB® tool ‘Operability App’ was 

applied for the operability study in this work. The operability 

index (OI) for a design region is used to evaluate the feasible 

process design in terms of operability. OI calculation uses the 

desired outputs set (DOS) and achievable output set (AOS) 

divided into subregions and applies computational geometry 

tools to determine the ratio of achieved DOS subregions and 

the total number of DOS subregions (13).  

𝑂𝐼 =
𝜇(𝐴𝑂𝑆 ∩ 𝐷𝑂𝑆)

𝜇(𝐷𝑂𝑆)
 (13) 

AOS is the set of controlled variables that the process design 

can achieve for the available input set (operational and design 

variable space) and disturbance set. Process model is used to 
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describe the process behaviour and, thus, to define AOS. The 

applicability of the software tool for process achievability 

analysis, intensification, and modularization has been 

demonstrated in (Gazzaneo et al., 2020) and (Gazzaneo, 2021), 

where also further details of the method can be found. 

3. MODEL IDENTIFICATION AND VALIDATION 

3.1 Model fitting 

The model performance was qualitatively evaluated against 

the experimental data acquired from a synthetic feed stream 

with xylose monosaccharides as a starting compound. The feed 

concentration was 42.3 g/L, operation temperature at 125 °C, 

and catalyst concentration 0.2 M. The volumetric ratio of the 

phases was 1:1. The feed rates of both phases are calculated 

based on the target residence time of aqueous phase in the 

reactor. The nominal residence time is 120 min, corresponding 

a feed rate of 0.42 mL/min of both phases. 

The model was simulated with different values of 𝐹 and ℎ. 

Figure 2 presents the fitted concentration values at the reactor 

exit with 𝐹 = 12 and ℎ = 0.015 min-1. It can be seen that the 

xylose consumption and total furfural formation are in a good 

agreement between the model and experimental data. The 

experimental results for furfural in aqueous phase show very 

small concentrations (<0.2 g/L). However, the simulation 

shows higher concentration of furfural in aqueous phase 

comparatively to the experiment. This implies that the mass 

transfer of furfural from aqueous phase to organic phase is 

underestimated in the model. 

 

Fig. 2. Evolution of concentration as a function of time. Lines 

represent the simulation. Tick marks represent the experimental 

data. 

3.2 Transfer to real hemicellulose streams 

The model input parameters (𝐶1,𝑋𝑦𝑙, 𝑇, 𝑣𝑎𝑞 , 𝑣𝑜𝑟𝑔, 𝐶𝐶𝑎𝑡) were 

then changed to represent three other experimental cases: one 

with the same synthetic stream but a different residence time, 

and two experimental campaigns with real HMC streams.  

In Table 1, the error between the predicted and experimental 

total furfural concentrations (organic + aqueous) at steady-

state for the four experimental data sets are shown, when the 

simulations were run with fixed values of 𝐹 and ℎ. As 

expected, the error is higher for the three cases, where the 

model was extrapolated to. For the synthetic stream with lower 

residence time (RT), the model overestimates the furfural 

concentration. For the first real HMC stream, the direction of 

the modelling error is the same. However, for the second real 

HMC stream, the model slightly underestimated the furfural 

concentration. Taking into account the complexity of the 

modelled system and simplicity of the fitting approaches, the 

proposed modelling approach was effective and provided 

acceptable results with respect to the target compound furfural. 

Table 1. Error in steady-state furfural concentration. 

Case Absolute 

error 

Relative 

error 

Synthetic, RT=120 min −0.77 g/L −4.3 % 

Synthetic, RT=60 min 2.75 g/L 36.8 % 

Real HMC #1 2.22 g/L 25.2 % 

Real HMC #2 −1.46 g/L −10.6 % 

3.3 Implications

Sugar dehydration reactions are complex networks (Dussan et

al., 2015), making analysis of hemicellulose streams

dehydration challenging due to the wide range of sugars

present. Moreover, it is often difficult to find available kinetic

data for all sugars using the same catalyst, reactor type (which

can mask mixing, mass transfer and other limitations) and

process conditions. Nevertheless, the high potential for

valorisation of these streams, and the appeal of using

dehydration reactions as a route to product convergence and

reduction of downstream processing requirements, highlights

the importance of developing the understanding of these

systems and be able to simulate them in simple and effective

ways.

The models developed demonstrate that transferability of

kinetic data between batch and intensified flow reactor

systems is possible by employing a simple Intensification

Factor, whilst still retaining the overall system behaviour, and

providing practical tools to model the system dynamic

behaviour of intensified ACRs. This is expected to notably

speed up modelling, design and preliminary optimisation

calculations, contributing to the overall sustainability of the

biorefinery.

When looking at the concentration values at the reactor exit for

the real HMC stream #1, depicted in Fig. 3, the modelled

predictions for xylose concentration deviate remarkably from

the experimental observations. The model suggests that the

concentration of monosaccharide xylose should evolve to

substantially lower values than what was observed in the

experiments. There is indeed a natural explanation to this

model-data mismatch: the real HMC streams can contain a

significant amount of oligosaccharides that undergo hydrolysis

to the corresponding monosaccharides at similar reaction

conditions. Therefore, while some of the xylose is converted,

some more monomeric xylose is formed. Thus, for HMC

hydrolysate stream where the amount of oligomers is
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significant, oligomers hydrolysis should also be accounted for 

in future model developments, incorporating literature 

hydrolysis kinetic models and validation against 

experimentation which includes analysis of oligomers 

concentration over time. 

 

Fig. 3. Concentration (normalised) as a function of time for real 

HMC stream. Lines represent the simulation. Tick marks represent 

the experimental data. 

4. OPERABILITY STUDY 

4.1 Simulation scenario 

Due to the heterogeneity of the biomass properties, and the 

disturbances in upstream processes, the concentration of 

xylose in the feed stream has natural variability. In the 

operability study, a simulation scenario is built, where 

different transients take place during the continuous 

processing. Namely, it is assumed that the feed concentration 

is subject to a sudden +25% change after the first steady-state 

is reached. After that, a second change takes place with -25% 

xylose concentration with respect to the nominal value. Again, 

after the steady-state, a third change occur with the feed 

concentration returning its nominal value. 

The desired output space is determined by two process 

performance variables dependent on the dynamic performance 

of the system; The cumulative amount furfural production (y1) 

and the cumulative amount of degradation and intermediate 

products (y2) during the simulated period. The rationale for the 

first is obvious, as furfural is the target product. For the second 

output variable, production should be minimized in order to 

avoid excessive carbon (e.g. humins) formation that can 

possibly lead to reactor fouling. The ranges are given in Table 

2. 

The available input space is also presented in Table 2. For the 

design variables, the reactor size (udes,1) and the catalyst 

loading (udes,2) are used as available inputs. The volume of 

ACR reactor can be altered by changing the mixing elements. 

The operational inputs are assumed to be the aqueous phase 

feed flow rate (uop,1) and the feed ratio of aqueous and organic 

phases (uop,2). Higher value for the feed ratio corresponds to 

larger volume of reacting phase (aqueous) in the reactor. 

 

Table 2. Variable ranges in the operability study. 

 Nominal Minimum Maximum 

udes,1 (mL) 100 60 100 

udes,2 (mol/L) 0.2 0.1 0.3 

uop,1 (mL/min) 0.42 0.30 0.60 

uop,2 (-) 0.5 0.4 0.6 

y1 (kmol)  6 10 

y2 (kmol)  0 2 

 

4.2 Results 

For the nominal process design, Figure 4 presents the furfural 

production rate at the reactor exit as a function of time, when 

a 25% stepwise increment in xylose feed concentration takes 

place at t=0. It can be seen that the due to the long residence 

time, the new steady-state is achieved after a period of 216 min 

(2% settling time). Naturally, this prevents establishing an 

efficient feedback control of ACR system with the studied 

reactions and a careful design of the system is needed to 

establish feedforward control for feed disturbances entering 

the system. 

 

Fig. 4. Simulated dynamic response of the furfural production in

nominal conditions to +25% increment of xylose feed at 0 min.

OI for a design region was evaluated for nine different process

design (udes,1, udes,2), as presented in Table 3. OI is a scalar

number describing the proportion of subregions in the desired

output space that can be achieved with the available

operational inputs in each process design. From Table 3, it can

be seen that the process design with reactor size (udes,1) of 80

mL and catalyst concentration of 0.2 mol/L shows the best

operability (OI = 67%).

Each design can also be interpreted with the achievable output

space, as depicted in Fig. 5. There, the desired output space is 

given as the light grey shaded area divided into nine

subregions. Three examples of process designs are given and

illustrated as the dark grey polyhedrons. Design 4 shows a
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narrow range of obtained outputs, which all lie outside the 

desired output space. Thus, also OI is equal to zero (see Table 

3). This is due to the combination of limited residence time and 

low catalyst concentration, contributing to moderate 

production of both the target furfural and the degradation 

products.  

Table 3. Operability indices for the different designs. 

Design udes,1 udes,2 OI 

1 60 0.1 0 

2 60 0.2 22 

3 60 0.3 56 

4 80 0.1 0 

5 80 0.2 67 

6 80 0.3 33 

7 100 0.1 11 

8 100 0.2 33 

9 100 0.3 33 

 

 

Fig. 5. Achievable output space (represented by the dark grey areas) 

for designs 4, 5 and 9. The desired output space is given in light 

grey colour.  

Design 9 suggests that the system can achieve cumulative 

furfural production (y1) under feed disturbances up to 12.7 

kmol. However, this design also contributes to substantial 

degradation product formation, thus most of the operational 

space lying outside the desired region. According to Table 3, 

the design 9 can achieve 33% of the design space, but Figure 

5 reveals that only small part of those design regions can be 

reached with this input space. Finally, design 5 seems to have 

the highest OI (67%) as it can reach at least a small portion of 

six different regions in the desired output space. This process 

design shows the best performance in terms of operability. 

4.3 Implications 

In comparison, a different process design optimisation target 

could be based on the xylose conversion and furfural yield (to 

the organic phase) in steady-state conditions. By looking at the 

simulation results from the operability study, the maximum 

conversion (96.9%) would be attained for the process design 

with maximal residence time, i.e. udes,1 = 100 mL and uop,1 = 

0.3 mL/min, with udes,2 = 0.3 and uop,2 = 0.6. Also, yield is 

preferred by long residence time, with maximum (60.0%) seen 

in udes,1 = 100 mL, uop,1 = 0.45 mL/min, udes,2 = 0.3 and uop,2 = 

0.6.  

However, with respect to y1 and y2, these designs and operation 

conditions would provide dynamic behaviour (y1: 3.13 and 

4.87 kmol) and excessive degradation products formation (y2: 

2.51 and 2.79 kmol) outside the expected output range of the 

operability study. This example highlights the need of 

dynamic analysis and incorporation of dynamic performance 

as a part of process design, especially in processes where 

considerable feed disturbances cannot be avoided, or the 

process dynamics are slow mitigating the feedback control 

possibilities.   

From the operability analysis results, it can be observed that 

the desired output space is somewhat optimistic, and most of 

the process states cannot be achieved by changing the selected 

design and operational variables. The degradation product 

formation and furfural production are affected to the same 

direction by the different inputs, and thus the degradation 

product formation cannot be pushed down without negative 

effect on the furfural production. 

The operability could be improved by allowing larger ranges 

for the operational inputs. However, as both inputs affect the 

residence time of reaction phase, the extension of ranges can 

have a competing effect to the residence time. There are also 

limits with the ratio (y2) as both phases need to flow through 

the reactor, and the high amount of organic phase would result 

in higher capacity demand for the downstream separation steps 

of furfural and MIBK.  

As a future work, the model should be developed to comprise 

also the temperature balance. This would allow to simulate the 

operation temperature as an operational input and use in 

control design to compensate the feed variations. Temperature 

balance would also allow more accurate predictions of 

concentrations along the reactor length as the temperature 

gradient affect to the reactions rates, ion concentration, and 

mass transfer coefficients. Addition of catalyst mass balance 

would also establish using the catalyst concentration as an 

operational variable instead of (fixed) design variable.  

Finally, the operability analysis could also involve the ACR 

mixing intensity as an input. This has been modelled for 

example in (Miller, 2021), where its effect to the mass transfer 

was studied. The mixing intensity can then be linked to the 

furfural mass transfer between the phases, and to the 
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intensification factor coefficient. However, additional 

experimental work would be needed to identify these 

interactions. 

5. CONCLUSIONS 

Mathematical model aiming to describe the xylose 

dehydration to furfural using an extractive-reaction process in 

an agitated cell reactor was presented. A lumped 

intensification factor was found useful to transfer the kinetic 

data between batch and intensified flow reactor systems. The 

proposed modelling approach was effective and provided 

acceptable validation to experimental data. Operability of the 

ACR system was studied with the model. The demonstration 

highlighted how most of the process states cannot be achieved 

by changing the selected design and operational variables 

within their ranges. Instead, the desired output space needs to 

be reconsidered. This implies that the operability measures 

should be seen as inputs already at the conceptual process 

design.  
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Abstract: We developed the data connection via ROS (Robot Operating System) between a
mobile robot and its digital twin in a CARLA-based autonomous driving simulator, which sim-
ulates realistic arctic winter weather conditions for safer, faster and less expensive autonomous
vehicles testing. In our test setup we tested the hybrid case, where both robot twins were moving
in the simulation and the real-world test area at the same time. Verifying our digital twin in
regards to delays and applicability proved the communication via ROS to be occurring in almost
real-time and the digital testing ground to profit from additional inbuilt reference points.

Keywords: Simulation, Robotics, digital twin, CARLA, ROS, multimaster fkie, winter
conditions, arctic, mobile robot, ATV

1. INTRODUCTION

Autonomously driving vehicles and robots that drive in
public environments need to be safe and reliable under
all weather conditions, including arctic winter conditions.
Digital twins provide an opportunity to test autonomous
vehicles in a safer, faster, and less expensive environment
than carrying out tests in real-life conditions.

To our knowledge, the CARLA simulator for autonomous
driving research is seldom, if at all, used for vehicles types
not commonly found on public streets and for mobile
robots other than autonomous cars. Mobile work robots,
for example for deliveries, cleaning the sidewalks or for
snow work, have to navigate public urban environments
with pedestrians, bicycles or occasional traffic and can
profit from digital twins that are capable to simulate those.

A data connection via ROS (Robot Operating System)
between a mobile robot and its digital twin was developed.
This allows for almost real-time exchange of commands, in-
formation, and sensor data between the twins. The digital
twins of the robot and the testing ground are constructed
in the WinterSIM, a CARLA-based autonomous driving
simulator, which adds realistic arctic winter weather con-
ditions to the simulation (Tepsa et al. (2021), Dosovitskiy
et al. (2017)).

The digital twin design was informed by the intended
future use cases: Testing, optimizing, controlling, and mon-
itoring autonomous driving and snow cleaning functions
first with the digital twin, then in hybrid approaches. We
explored the applicability of our digital twin for those use
cases in experiments assessing delays, verifying our digital
twin setup and trying a hybrid obstacle avoidance scenario.

The backdrop for this research is the idea to use one or
multiple mobile robots for autonomous snow cleaning of
⋆ Lapland Robotics and AI.R projects, Lapland University of Ap-
plied Sciences

the public outside areas of the campus. One of the robots
build from scratch for this purpose is the small mobile
robot called miniATV, shown in Fig. 1 with its sensors
and actuators. It has proven to be able to clean off freshly
fallen snow with a snow blower attachment on the front
while manually controlled.

Fig. 1. The equipment, sensors and actuators of the
miniATV

Automating the snow cleaning robot requires safe driving
in the public outdoor spaces of the campus based on
autonomous way-finding algorithms and robust obstacle
avoidance algorithms, which is safer and more efficient to
train within or in combination with a simulation. Simu-
lations specifically for training autonomous snow cleaning
robots have not been yet developed to our knowledge, so
we used a simulation for autonomous driving for our pur-
pose instead, which is described more in the next section
on related work.

2. RELATED WORK

In the development of intelligent and automated traffic, it
is particularly important to consider the impact of weather

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.052 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

378



conditions, especially in Finland and northern conditions.
The goal of the WinterSIM project was to produce research
and data on the performance of the most common vehicle
sensors in winter conditions (FrostBit). In the WinterSIM
project, a virtual reality (VR) simulation environment
was implemented using a game engine, where weather
conditions can be changed to demonstrate the impact
of changing conditions on sensor data, particularly Lidar
(Tepsa et al. (2021)). Generally, the produced simulation
environments are utilized first, and then the driving data
is transferred to the real world (Hu et al. (2023)).

The difference between the real world and its virtual
counterpart is described by the concept of the ”reality
gap” (RG). This has been addressed in the publication
by Hu et al. (2023). The study presents three different
ways to reduce this gap: 1) transferring knowledge from
simulation to reality, 2) learning in digital twins, and 3)
learning by parallel intelligence technologies. (Hu et al.
(2023)). The publication presents typical sim2real models
for autonomous driving. In connection with the CARLA
simulator, the KITTI vision benchmark suite is commonly
used to bring features such as Lidar sensor data into
the VR implementation. The KITTI benchmark suite was
produced at the Karlsruhe Institute of Technology (KIT)
and is freely available under a CC license. The problem
of images produced by depth cameras in mixed-reality
environments is particularly addressed by Argui et al. in
their two publications (Argui et al. (2023) and Imane
et al. (2023)). These publications present a method for
combining depth camera images from the virtual world
and the real world into a single view. The final conclusion
of the publications is that this combination is potentially
useful, but issues such as delays in combining camera data
with the virtual world realistically could be problematic.

Bai et al. (2023) present an article on the Cyber mobility
mirror architecture (CMM) to support Cooperative Driv-
ing Automation (CDA) research and development, and de-
velop a CARLA-based co-simulation platform prototype.
Additionally, it provides CARLA-based 3D object detec-
tion data and presents a case study demonstrating the
necessity and functionality of lidar-based vehicle detection
for CDA algorithm development.

The problem of accurately perceiving the environment is
a very essential part of autonomous vehicles moving on
public roads and in traffic systems. Cooperative perception
(CP) and Vehicle-to-Everything (V2X) involve the sharing
of data between autonomous vehicles and other road users,
thereby extending traffic awareness beyond the sensory
range of a single vehicle. This improves traffic flow and
safety. Development towards this goal has been rapid in
recent years, and a good overview can be found in the
publication by Huang et al. (2024).

Deep and machine learning for decision-making and route
planning in autonomous vehicles have benefited from de-
velopments in mapping and sensor technology. Exam-
ples of demanding decision-making include lane changing,
where location data and lane markings, as well as tracking
the movements of other vehicles, are utilized. Wang et al.
(2023) present in their publication a deep learning method
that improves the average success rate of lane changes
compared to traditional planning control algorithms and

reinforcement learning methods. Practical tests were con-
ducted using the CARLA simulator. The reinforcement
learning method and its decision-making architecture are
addressed by Al-Sharman et al. (2023) in their publication.

The unreliability of simulators in Autonomous Driving
Systems (ADS) can lead to inconsistent test results. This
is addressed by Amini et al. (2024) in their publication.
The publication seeks to answer two research questions:
(1) How do flaky ADS simulations affect automated test-
ing based on random algorithms? and (2) Can machine
learning (ML) effectively identify flaky ADS tests while
reducing the number of required test repetitions? The pub-
lication concludes that unreliability is common and poses
a real problem, but the presented method can effectively
identify flaky ADS tests.

To minimize the influence of the reality gap in testing
of autonomous vehicles and to take their real-life physics
better into account, X-in-the-Loop testing as presented
by Moten et al. (2018) is now considered state of the
art. Drechsler et al. (2022) propose a similar approach
called Dynamic Vehicle-in-the-Loop for testing automated
driving functions. They feed a automated vehicle on a test
track with simulated sensor information from the same
track in the CARLA simulator that includes obstacles and
pedestrians crossing the street. Our future robot testing
use case is inspired by those approaches and lead is to
explore the suitability of our digital twin setup for such
robot testing approaches in an experiment described in
the next section.

3. METHODOLOGY

3.1 Software Architecture

The software architecture connects the digital and phys-
ical twins via ROS and in consequence ensuring updates
from both sides fast enough for safety and to allow for
deployment in use cases where both twins are used in
parallel. Figure 2 shows the components of the software
architecture and their interaction.

Fig. 2. Software architecture of the connection between the
WinterSIM (in the PC or laptop) and the physical
miniATV. The figure is explained from left to right.

Due to constraints in computation power, the simulation
does not run on the robot itself, but on a separate

machine, depicted in Fig. 2 as two black frames. Also
any path-finding algorithm, object detection or test script
is operating on the PC. This separation allows for cheaper,
more compact and lightweight hardware architecture of
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the robot, makes the robot easily interchangeable and the
setup scalable to multiple robots.

Central to the software architecture is themultimaster fkie
ROS package developed by the Fraunhofer FKIE (Tiderko
et al. (2016)), here depicted in green. It allows to run
separate ROS masters on each machine while being able to
publish and subscribe to the topics of the other machine.
The more common approach to run one ROS master for
both machines was discouraged by the robot’s rosserial
not transmitting and receiving messages on the ROS
simulation time the simulation requires.

In the PC, the carla ros bridge (CARLA Simulator) al-
lows the two-way communication of the CARLA-based
WinterSIM simulation with ROS over ROS topics. The
WinterSIM contains a model of the robot and a map of the
campus area which is used as digital and physical testing
ground. On top of the weather simulated in carla, it offers
a simulation of realistic arctic winter conditions and its
influence on the sensor output (Tepsa et al. (2021)).

The mobile robot ”miniATV” runs its own ROS master to
which the sensor data of the robots sensors is published.
Any incoming command is first filtered through the robot’s
lidar based emergency stop which checks if any obstacle
is closer than a threshold. If an obstacle is detected, the
original command is replaced with a stop command, if
no obstacle is detected too close, the steering command
is waved through. This improves safety in testing of the
physical robot. Over rosserial, the command is sent to
a micro controller controlling the motors for driving and
steering.

Since the software architecture consists of a variety of
different components, it was necessary to automate the
startup of those in the right order.

Fig. 3. The order of starting the software components for
the digital twin

The components often rely on other software to be already
running and cause errors if that is not the case. Especially
for testing the setup it is important to have reliability
and consistency in the startup process to minimize the
human error. The startup script in the PC triggers the
mobile robot’s own startup sequence and starts first the
WinterSIM and the carla ros bridge which also starts a
roscore. Only after a ROS master is running in both the
robot and the PC, the multimaster fkie can be started on
each, discover the other rosmaster in the same network
and synchronize the topics between both machines. In

the robot, the sensors and functionally necessary scripts
are started then. After those are running and the data
exchange via the multimaster fkie is established between
the physical robot and the simulation, any testing scripts
or path-finding algorithms can be started.

3.2 Experiments

Delays: The usability of the setup as a digital twin for
testing the digital and physical twins in parallel testing
scenarios like Dynamic Vehicle-in-the Loop testing (Drech-
sler et al. (2022)) depends highly on the communication
happening in almost real-time.

In a test, both the real and the digital mobile robot
receive the same steering commands. The ROS topics are
recorded and then the time of arrival of the command in
the robots’ steering command topic and the reaction time
of the robots are tracked. The rosbag time is the point
in time, when the ROS node for the recording became
aware of a ROS message and recorded it. It can vary from
the individual timestamp that is solidified when the ROS
message is sent out. Since the rosmaster in the PC is
running on ROS simulation time and the robot on non-
simulation time due to the rosserial connection to the
motor controlling micro controller, using the rosbag time
instead simplifies the timestamp evaluation. To identify if
the network connection quality has a noticeable influence
on delays in the system, the connection was changed from
a mobile phone hotspot to a WiFi router after half the
test runs. Measurements on the network speed were taken
before each half with iperf3.

A testing script was developed to give the same commands
to both twins at the same points in time in each test
run, see Fig. 4. First, a zero speed command is sent
for 30 seconds to both the physical and the digital twin.
The long initial standstill was meant to improve the
GNSS positioning on the initial position, but since the
GNSS suffered from electric interference from the Lidar,
the GNSS data could not be evaluated. After the initial
standstill, a maximum speed command was given to both
twins for 10 seconds, followed again by a 30 seconds stop
command. This results in over 10 seconds where the speed
is greater than zero, since accelerating and decelerating are
both included. The measurement of delays utilizes those
points in time where the speed measurement in the ROS
messages of the robot’s status topic changes from or back
to zero.

Fourteen test runs have been conducted, each orchestrated
by the same commands from the test script. The net-
work connection was changed after half the test runs as
described above. Each test run was recorded as a ros-
bag recording with all ROS topics and messages. The
evaluation relies on the rosbag recording timestamps to
detect delays and their magnitude, since the robot and the
machine running the simulation require different clocks.

Alignment A pre-existing map of the testing area on
campus was used in the WinterSIM. It was created for
sensor research in the area of the campus where the
physical robot testing ground is located. Around the
robot testing area, the buildings and details are modeled
precisely because the sensor research also took place in
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Fig. 4. Timing and course of each test run

that area. Further from this area used in testing, the map
is sparse with details that were not conductive to the
original purpose. The map was created based on a scan by
a Leica BLK360 imaging laser scanner in winter and the
surface height, which was offset due to snow covering, was
later corrected with height data from the National Land
Survey of Finland (NLS). Still, inconsistencies between
the surface height of the real testing ground and the map
were noted. The spatial relationship between buildings and
details such as lampposts however is modeled realistically
for the original sensor research purpose of the map. This
test verifies the surface height of the digital map utilizing
pre-existing GNSS reference points as ground truth in
the physical space. Four exemplary points were chosen
where the mobile robots would be driving later during
tests. Since those reference points are not modeled in
the map, triangulation to landmarks consisting of the
precisely modeled details and buildings present in both
the physical space and the digital map of the space was
undertaken. Due to that, the number of reference points
is chosen that small because the overlap between the map
area detailed enough for triangulation, the area in which
the robots would be roaming and the available reference
points did not allow for more. The reference points are
not modeled in the map of the robot testing area. To
display them in the WinterSIM map, the coordinates of
the reference points are transformed from the ETRS-
TM35FIN/N2000 reference coordinate system to geodetic
coordinates with the Paikkatietoikkuna portal maintained
by the National Land Survey of Finland (NLS). The
geodetic coordinates are then translated into CARLA’s
own coordinate system and made visible in the map of
the CARLA-based WinterSIM with spawing a mark at
this location. The marks consist of three axis in x, y,
and z direction intersecting at the marked point for easy
visibility of the reference point and precise placement of
the mark at the landmarks’ locations.

Any discrepancy in surface level height is measured by
placing another mark on the projection of the reference
point onto the surface and calculating the distance. To
judge the alignment by triangulation, if the reference point
coordinate is located at a similar spot in the digital map
then in the real robot testing ground, the distance to the
chosen landmarks in the digital map is measured with a
mark similarly. Three landmarks were chosen per reference
point out of prominent details and structures existing both
in the digital and real map nearby the reference points.
In the real testing ground, the distance between reference
points and their landmarks was measured with a mea-
suring tape. Unevenness of the surface, overgrown edges

and even the grass on the lawn however added imprecision
that suggests that the millimeter accuracies that scans can
achieve will not be reflected in the comparison between the
tape measurements and the distances in the map.

Object Avoidance The digital twin was created for robot
testing and one of the intended use cases is a Robot-
in-the-Loop test after the Dynamic Vehicle-in-the-Loop
approach Drechsler et al. (2022) proposed. The digital
twin we created would be fit for application in such a way
if the real robot’s reactions can be made dependent on
the sensor input from the digital twin. If the sensors of
the digital twin show an obstacle being too close, both
the real robot and its digital twin should take action
not to hit the object only present in the simulation. A
prerequisite is a functioning communication between the
twins in almost real-time, which was tested in the first
experiment on delays above. This experiment examines
the applicability of our setup for hybrid Robot-in-the-Loop
testing scenarios.

Figure 5 shows the data flow for this experiment. In
order not to interfere with the mobile robot’s own internal
lidar-based emergency stop in case of unexpected physical
obstacles in the test area of the physical twin, the physical
twin is not using the digital sensor data directly instead
of its own sensor data. Instead, a similar lidar based
emergency stop is created which receives the only the
digital lidar data from the simulation and forwards the
steering commands only if no digital obstacle is too close
and otherwise sends a stop command. This forwarded
steering command is then input to both the digital and
physical robots. The physical robot then first checks in
its emergency stop if no real physical obstacle is too close
and only then puts this incoming command to action. The
experiment on delays examines if this extra step can cause
a delay.

Ten test runs have been conducted for this experiment
orchestrated by a test script. Both the digital and the
real robot are placed at the same location in the digital
and real testing ground at the start of each test run.
A digital obstacle is spawned at the same location for
each test run only in the simulation in the digital robot’s
way. No obstacle is in the physical robot’s way. The
initial command that is then filtered through the robots’
emergency stops according to Fig. 5 is then send out, the
command is for maximum speed for ten seconds. During
the execution of the command the simulated lidar data
in the digital twin will then show the obstacle that soon
is closer as the chosen threshold of 1.2 m. The digital
twins emergency stop should then send a stop command
instead of forwarding the maximum speed command to
itself and the physical robot. Both twins stop propelling
themselves forward and roll to a standstill since neither
twin has brakes.

4. RESULTS

4.1 Experiment on Delays

Table 1 shows the measured network connection band-
widths between the command giving machine where the
simulation and the test scripts were running and the real
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Fig. 5. How the cmd runs through the setup

Table 1. Bandwidth acquired with iperf3 for
both the phone hotspot and the WiFi box

Network From →To
Bandwidth
sender
[Mbits/sec]

Retry
Bandwidth
receiver
[Mbits/sec]

Phone hotspot PC →miniATV 21.0 7 18.2
Phone hotspot miniATV →PC 18.9 0 18.4
WiFi box PC →miniATV 66.6 74 63.8
WiFi box miniATV →PC 31.5 0 29.9

mobile robot after completing the automated startup se-
quence and before each half of the test runs. As expected,
the WiFi has a better bandwidth compared to the phone
hotspot, but an unexpected high number of retries of send-
ing data packages. The quality of the network connection
does not seem to have any noticeable influence on the
delays though.

Figure 6 depicts the average delays in the command flow,
both for the maximum speed command and the zero speed
command combined. Only in the last step the depiction of
the delays was divided since starting to drive after the
first maximum speed commands and rolling to a standstill
after the zero speed command are mechanically different
and produced different delays.

Fig. 6. Average over the delays in the command flow

The differences between the timestamps for each step in
the flow of commands has been computed for each of
the two commands (maximum speed and zero speed) for
each of the fourteen test runs and then averaged. The
only exception is delay number two (see Fig. 6). Only
when sending the maximum speed command, never the
zero speed command, the delay was up to 3.4 s. But the
next delay in the flow, delay number three then showed
a delay of over -3 s. This suggests that the delay was

not in the command flow itself, but in the recording of
the topic. The command on which the computation of
delay two is based has been recorded in the rosbag sooner
than the previous command. The delay calculation is based
not on the timestamp when the ROS message originated
since the simulation and the robot require vastly different
clocks, but on the timestamp of when the message became
available for the recording ROS node.

As a side note, no worsening of the delays has been found
over the course of the fourteen test runs, which indicates
that exposure of the equipment to temperatures around 0
°Celsius did not influence the delays.

4.2 Experiment on Alingment

Table 2. Difference in distances between the
reference points and the landmarks between

the digital and the physical twin

Reference
Point

Landmark
Absolute
difference
[m]

Landmark1 0.349
Landmark2 1.8521
Landmark3 0.151

Landmark1 3.195
Landmark2 5.2412
Landmark3 1.010

Landmark1 0.475
Landmark2 0.6893
Landmark3 2.132

Landmark1 1.533
Landmark2 0.8234
Landmark3 0.031

The surface height of 3 out of 4 reference points is aligning
within 10 cm. On the other reference point, the difference
between the map surface and the coordinates of the
reference point translated into a map position is 78 cm.
This occurs in an especially uneven area of the testing
ground.

For the x and y axis, the distances between the reference
points and the landmarks varies greatly between the real
testing ground and the digital map of the same area
and does not reflect the millimeter or centimeter level
accuracies that could be possible for a map based on a
scan with this technique and equipment. Only half of the
differences in distances to the 12 landmarks lie under one
meter with 0.031 m as the lowest difference and only one
under 10 cm. The highest difference is 5.241 m, suggesting
that either the detail used as landmark was placed wrongly
or a wrong detail has been taken for the landmark in the
evaluation.

Experiment on Obstacle Avoidance Out of the ten test
runs, the digital robot stopped propelling itself forward
in all of them once the obstacle came closer than the
threshold. Unfortunately, since neither the real nor the
digital robot possess breaks, the digital robot did not roll
to a standstill in time not to collide with the obstacle.
This behavior warrants an adjustment in parameters of the
digital twin model of the robot. CARLA offers a variety
of parameters to adjust a simulated vehicles behavior,
but they are tailored to vehicles typically found in public
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traffic, not to self-build smaller mobile robots. Therefore,
the adjustment is not something that could be done on
the fly once the problem became apparent in the test, but
needs multiple rounds of try and error.

The physical robot in the real testing ground only stopped
in eight out of ten test runs. In one of those, the real robot
stopped only after approximately ten seconds of driving
with maximum speed, in the other the real robot did not
even move from the starting position. Since the digital
robot drove and reacted to the obstacle in those two test
runs. One explanation for the first case would be that
the physical robot lost connection and regained it after
those approximately ten seconds. The test script would
have ended after ten seconds as well, but it is probably
a coincidence that the robot regained connection around
the same time. If the real robot had not regained the
connection to receive a stop command, it’s own emergency
stop would have prevented it from crashing into any
obstacles. In the second case, when the physical robot
would not start, the most likely explanation is that the
startup sequence was not yet fully finished and that the
test script was started by the experimenter before the
respective components were ready in the physical robot.
In the eight out of ten test runs in which the physical
robot stopped due to the digital obstacle perceived by its
digital twin, it almost immediately came to a standstill
without crashing into the digital object.

5. SUMMARY AND DISCUSSIONS

The Experiment on delays finds that the communication
via ROS between the digital twins is indeed in almost
real-time with delays under 0.4 seconds both for command
transmission and maximal speed changes, with the excep-
tion of the rolling to a standstill behaviour of the digital
robot that has to be adjusted to be realistic. Therefore
the setup is suitable for application in the intended robot
training and testing scenarios. This experiment also uncov-
ered a steep discrepancy between the rolling to a standstill
behaviour between the digital and physical robot twins,
which was discovered in the experiment on obstacles as
well.

The Alignment experiment shows that the surface height
of the map in the simulation is within 10 cm for three of
the four reference points. The triangulation to verify the
position of the reference points however did not provide
clear indications if the alignment in the x and y axis
is sufficient, half of the distances to landmarks differ
more than one meter from the measurements in the real
testing ground. Uneven ground, vegetation and differences
in the level of detail likely added to inaccuracies in the
measurement. Adding GNSS reference points to such maps
in the simulation in future, for example by using targets
measured with a GNSS total station on reference points,
would not just improve the accuracies of the simulation
but also make the verification process easier.

The Experiment on avoiding obstacles that exist only in
the simulation suggests adjustment of the rolling parame-
ters of the digital robot twin, so that the digital robot also
rolls to a standstill almost immediately like the physical
robot. Otherwise this difference in behavior could cause a

worsening of the reality gap between training algorithms
in the digital twin compared to the physical twin.

The physical robots behaviour during the test suggests
adding a check to the startup sequence if all required
components are running and responding before giving a
clear for starting further scripts. Also monitoring if the
connection to the command giving machine is still intact
(and stopping if the connection is lost) would prevent the
need to rely on the real robot’s emergency stop and thus
increasing safety in testing if the connection is lost.

With the described adjustments to the digital twin setup
and model parameters, the digital twin is ready to be
deployed in the intended robot training and testing sce-
narios. We will also introduce other robot into the digital
twin for testing, such as an autonomous car or robots for
heavier snow work. The testing ground will be equipped
with 5G for a faster and more stable connection. Following
the doubts about the sufficient accuracy of the map of the
campus area that our tests showed, the map is currently
remade from a drone scan with 1 - 2 cm accuracy and
GNSS data. Additionally, a second test ground has been
scanned with a Leica BLK 360 laser scanner and GNSS
reference points to create a map for robots to train in
an industrial environment with an overall accuracy of 5
mm. Since ROS 2 offers new features that are interesting
for autonomous vehicles, we are currently moving our
platforms to away from ROS 1.
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Abstract: In this paper we apply Augmented Extended Kalman filters (AEKFs) to perform
parameter estimation in two different biological controller motifs under both noise-free and
noisy conditions. Based on measurements of the two states of the controller motifs, we show
that under both noise conditions it is possible to estimate all 5 and 6 parameters, respectively,
which is in accordance with previously published results that investigated the theoretical concept
of structural identifiability. We further investigate how the level of process/measurement noise
and the initial estimates of both the parameters and states in the AEKFs affect the estimation
performance, and the results indicate that the degree of non-linearity affects filter performance.

Keywords: controller motifs, observability, identifiability, Augmented Extended Kalman filter

1. INTRODUCTION

Mathematical models are widely used to understand and
predict the behavior of real-world systems, both human-
engineered and natural. Within the field of systems bi-
ology, complex models of metabolic pathways and entire
cells have been created in recent years. In this context,
controller motifs are simple biomolecular reaction net-
works that can explain how regulatory function is achieved
through negative feedback, see e.g. Thorsen et al. (2013);
Briat et al. (2016); Tang and McMillen (2016), and thus,
they are useful as building blocks in larger biological mod-
els as shown in Agafonov et al. (2016).

One of the main purposes of a mathematical model is to
make predictions of the modeled system’s behavior. The
accuracy of model predictions is heavily reliant on param-
eter values, and finding accurate parameter values is often
a difficult and time-consuming process that requires ex-
periments. Identifiability and observability are two closely
related concepts that are helpful tools when evaluating
the usefulness of a model, as they provide information
on whether the model can be parameterized with the
available measurements. Identifiability describes whether
unknown model parameters can be determined based on
knowledge of the input and output of the model. On the
other hand, observability implies that it is possible to infer
the values of unmeasured states by combining together the
measurements and the available model.

In practice, the estimation of unmeasured states is
achieved by designing a special type of dynamical system
called state observer. Among several possible structures
proposed for models described by nonlinear differential
equations, the extended Kalman filter (EKF) is the de
facto standard in many applications, such as navigation
systems and GPS, see e.g. Huang et al. (2009); Loron and
Laliberte (1993); Böhler et al. (2021); Narayanan et al.

(2020). The EKF merges two sources of information: the
mathematical model, used to compute future prediction of
the state based on the current estimate, and the measure-
ments, which introduce a feedback mechanism for address-
ing possible model-reality mismatch and the presence of
unmodeled disturbances. This information fusion is done
by weighting the different sources of information according
to their reliability (for example, a noisy measurement is
weighted less than the data coming from a precise sen-
sor). The EKF addresses the inherent nonlinearities of
the model by applying a linearization based on first-order
Taylor expansions, thus approximating the nonlinearities
as linear functions in small regions around the current
state estimate. Although this linearization introduces some
error, motivating the search for more efficient estimators
(see, e.g., Julier and Uhlmann (1997); Huang et al. (2020);
Sarmavuori and Sarkka (2011); Liu and Guo (2021); Ro-
tondo (2023)), the EKF is still considered to be effective
in many practical scenarios.

In Haus et al. (2023), the structural identifiability of a
set of controller motifs was investigated using a symbolic
approach. Structural identifiability is a theoretical concept
that is fully determined by the structure of the model
and the chosen outputs, and assumes that measurements
are noise-free and sufficiently informative, see e.g. Ljung
and Glad (1994); Villaverde et al. (2018). As it is well
known that available measurements from biological sys-
tems are limited, practical identifiability limitations may
occur for models that have been found to be structurally
identifiable. In this paper, we investigate identifiability of
controller motifs in a practical setting using Augmented
Extended Kalman filters (AEKFs) with varying degree of
process/measurement noise. We further investigate how
the initial conditions of the parameters and state variables
in the filters affect the performance.
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2. CONTROLLER MOTIFS

Controller motifs are simple molecular reaction networks
where negative feedback is achieved through signaling
between the species. In this paper, we consider motif 1 and
3, shown in Fig. 1, from the set of 8 basic two component
controller motifs presented in Drengstig et al. (2012).

Motif 1 inflow/outflow
disturbances
A

+

+

E

A
+

−

E

inflow/outflow
disturbances

di

do
jc

di

do
jc

jdjs

jdjs

Motif 3

Fig. 1. Basic controller motif 1 and 3.

The general state equations for the motifs are given as:

Ȧ(t) = di(t)− do(t) + jc(t) (1)

Ė(t) = js(t)− jd(t), (2)

where A is the controlled species, E is the controller
species, di and do are input and output disturbances,
respectively, jc is the compensatory flow, and js and jd
are the synthesis and degradation flows of E, respectively.

The purpose of the compensatory flow jc is to maintain
the level of A by adding A in the presence of a dominating
outflow disturbance do, and both motifs are therefore
called inflow controllers. Moreover, jc is for both motifs
activated by E as increased level of E results in increased
inflow through jc (indicated by a ⊕ sign). The difference
between the two motifs is the signaling from A to E, where
motif 1 is activating and motif 3 is inhibiting (higher level
of A results in lesser flow). We assume that activation is
modeled as first order kinetics and inhibition as saturable
kinetics. Furthermore, inflows (synthesis) are modeled as
zero order, while outflows (degradation) are modeled as
first order with respect to its own state variable. The state
equations for motifs 1 and 3 are given in Eqs. (3)–(6):

Motif 1:

Ȧ(t) = ki − ko·A(t) + kc·E(t) (3)

Ė(t) = ks − kd·A(t)·E(t), (4)

Motif 3:

Ȧ(t) = ki − ko·A(t) + kc·E(t) (5)

Ė(t) = ks·
KA

i

KA
i +A(t)

− kd·E(t), (6)

where ki, ko, kc, ks, and kd are rate constants, and KA
i is

an inhibition constant.

3. OBSERVABILITY AND IDENTIFIABILITY

In order to introduce the concepts of observability and
identifiability we consider a general nonlinear state space
model:

ẋ(t) = f(x(t), p, u(t)) (7)

y(t) = g(x(t), p) + v(t) (8)

x0 = x(t0, p), (9)

where x(t)∈Rnx is the state vector, u(t)∈Rnu is the input
vector, y(t)∈Rny is the output vector, v(t)∈Rny is the
measurement noise vector, and p∈Rnp is a vector of system
parameters assumed to be constant. Furthermore, x0∈Rnx

denotes the initial conditions, and the nonlinear functions
f(·) and g(·) define the state and output equation, respec-
tively.

3.1 Observability

Biological systems are typically only partially observable
due to experimental limitations, and the available sys-
tem outputs may be a function of several states and/or
parameters (Raue et al., 2009). Thus, to determine the
unmeasurable states they must be be inferred from the
available system outputs, which is possible only if the
system is observable (Kalman, 1960).

”Observability: Given an initial state x0 and an admissible
control u(t), if the current system state x(t) can be deter-
mined only through the system output y(t) in a finite time,
the system is said to be observable. (Miao et al., 2011)”

Observability is a theoretical concept determined by the
system structure and the chosen outputs and typically as-
sumes noise-free measurements of the system output y and
that the parameters p of the model are known. However,
the parameters of a biological system are rarely known,
as these typically represent biochemical processes inside
the cells that are impossible to measure directly. Thus,
the parameter values must be estimated, typically based
on experiments, which often is associated with high cost.
In order to minimize the potential cost of experiments,
identifiability analysis is a useful tool in finding which
measurements are necessary to fully parameterize a model.

3.2 Identifiability

Identifiability: The dynamic system given by Eqs. (7)–(9)
is identifiable if p can be uniquely determined from the
given system input u(t) and the measurable system output
y(t); otherwise, it is said to be unidentifiable, (Miao et al.,
2011).

If a model is identifiable, it is possible to uniquely de-
termine the value of all its system parameters based on
the chosen model structure and outputs. Thus, through
performing identifiability analysis for different measure-
ment combinations, the smallest, or easiest to perform, set
of measurements that allows the model to be accurately
parameterized can be found. However, identifiability is, as
observability, a theoretical concept, and practical identifia-
bility limitations such as noisy measurements, restrictions
on admissible inputs, or limited time resolution of outputs
may occur.

Observability and identifiability both imply a strong con-
nection between inputs, states and outputs, and identifi-
ability can be considered a particular case of observabil-
ity where system parameters are treated as states with
zero dynamics, see e.g. Villaverde et al. (2016); Villaverde
(2019). Consequently, the parameters p are included as
part of the state vector x and methods originally developed
for investigating observability can also be used for parame-
ter identifiability as shown in Villaverde et al. (2016). This
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approach is similar to an Augmented Kalman filter, which
we introduce in the next section.

4. KALMAN FILTERING

Let us consider the discrete-time nonlinear system:

z(k + 1) = ϕ (z(k), u(k)) + w(k) (10)

y(k) = γ (z(k)) + v(k) (11)

where z(k)∈Rnz denotes the (unknown) state vector,
u(k)∈Rnu denotes the (known) input vector, y(k)∈Rny

denotes the (known) output vector, w(k)∈Rnx is the (un-
known) process noise, v(k)∈Rnv is the (unknown) mea-
surement noise, and ϕ(·) and γ(·) denote known functions
assumed to be differentiable with respect to z. It is also
assumed that w(k) and v(k) are zero mean multivariate
Gaussian noise with (known) covariance matrices Q∈Snz

and R∈Snh , respectively, where Sn denotes (real) symmet-
ric matrices of order n.

4.1 Extended Kalman filter (EKF)

The EKF comprises alternating phases of model-based
prediction and measurement-based update, forming an on-
going (theoretically infinite) cycle involving the following
variables and matrices, which are internal to the EKF:

• the a priori estimate z̄(k)∈Rnz ;
• the a priori covariance matrix

M(k) = E
[
(z(k)− z̄(k)) (z(k)− z̄(k))

T
]
∈Snz ;

• the a posteriori estimate ẑ(k)∈Rnz ;
• the a posteriori covariance matrix

P (k) = E
[
(z(k)− ẑ(k)) (z(k)− ẑ(k))

T
]
∈Snz ;

During the model-based prediction, the EKF computes the
a priori estimate based on the state equation, as follows:

z̄(k) = ϕ (ẑ(k − 1), u(k − 1)) (12)

At the same time, the a priori covariance matrix is
updated according to the following equation:

M(k) = A(k)P (k − 1)A(k)T +Q (13)

where the matrix A(k) is obtained through a first-order
Taylor approximation of the nonlinear function ϕ at the
most recent state estimate:

A(k) =
∂ϕ

∂z

∣∣∣∣
ẑ(k−1),u(k−1)

(14)

where the operator ∂/∂ is meant in the Jacobian matrix
sense.

During the measurement-based update, the EKF com-
putes the Kalman gain K(k) to be used to account for
the so-called innovation, i.e., the measurement-estimate
mismatch, according to:

K(k) = M(k)C(k)T
[
C(k)M(k)C(k)T +R

]−1
(15)

where the matrix C(k) is obtained through a first-order
Taylor approximation of the nonlinear function γ at the
most recent state estimate:

C(k) = ∂γ

∂z

∣∣∣∣
z̄(k)

(16)

The Kalman gain essentially determines how much weight
is given to the current measurement, and helps strike a

balance between trusting the model and incorporating new
measurements y(k), according to the following equation:

ẑ(k) = z̄(k) +K(k) [y(k)− γ (z̄(k))] (17)

Finally, the current value of the a posteriori covariance
matrix is computed using:

P (k) = [I −K(k)C(k)]M(k) (18)

4.2 Augmented Extended Kalman filter (AEKF)

Following an approach that is well consolidated in the field
of fault diagnosis, see e.g. Patton and Klinkhieo (2009);
Zhang et al. (2020); Rotondo et al. (2021), it is possible
to use state observers, such as the above described EKF,
to obtain a real-time estimate of the unknown parameter
vector p appearing in Eq. (7). The first required step is
a discretization of Eq. (7), which can be done using a
variety of methods (Franklin et al., 1998), with forward-
Euler being the most common due to its simplicity, thus
obtaining:

x(k + 1) = x(k) + Ts·f(x(k), p, u(k)) (19)

y(k) = g(x(k), p) + v(k) (20)

x0 = x(k0, p), (21)

where Ts denotes the sampling time. Then, a description of
the dynamical behavior of the parameters to be estimated
is introduced, which in the case of constant parameters
reads as follows:

p(k + 1) = p(k) (22)

At this point, it is possible to define an augmented state

vector as z(k) =
[
x(k)T , p(k)T

]T
=

[
z1(k)

T , z2(k)
T
]T

and, by combining together Eqs. (19)–(22), obtain an aug-
mented state-space model that fits the form of Eqs. (10)–
(11), with:

ϕ (z(k), u(k)) =

[
z1(k) + f (z1(k), z2(k), u(k))

z2(k)

]
(23)

γ (z(k)) = g (z1(k), z2(k)) (24)

Clearly, an EKF implemented on the augmented model
would return estimates z̄(k) and ẑ(k) which correspond to
the joint state-parameter estimates x̄(k), p̄(k) and x̂(k),
p̂(k), respectively.

To this end, one can define the matrix Q to account
for disturbances acting on the state x, the possible time-
varyingness of p, or to incorporate information about the
model uncertainty into the estimation.

4.3 Implementation

The models in Eqs. (3)–(4) and Eqs. (5)–(6), respectively,
are the basis for both the process and the AEKF for motif 1
and 3, where the augmented state vectors are given as

motif 1: z(k) = [A,E, ki, ko, kc, ks, kd] (25)

motif 3: z(k) = [A,E, ki, ko, kc, ks, kd,K
A
i ]. (26)

For easier reference to the parameters, we refer to them as

[ki, ko, kc, ks, kd,K
A
i ] = [k1, k2, k3, k4, k5, k6], (27)

or generally as kn∀ n∈{1, . . . , N} where N=5 for motif 1
and N=6 for motif 3. As there is no external input u(k),
the motifs are autonomous systems (Haus et al., 2023),
and the estimation is solely based on measurements of the
state variables.
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5. RESULTS

One of the main findings in Haus et al. (2023) was that
noise free measurements of the state variables A and E of
motif 1 and 3 proved sufficient for structural identifiability,
i.e. in theory it is possible to uniquely estimate all the
parameters. Hence, the results presented here are focused
on reproducing these results using AEKF, and also to
investigate the robustness with respect to noise level and
initial filter conditions of parameters and state variables.

5.1 Simulation setup

For simplicity, the values of all the parameters in the
process are set to 1, and we term these parameters as
kn,process. The steady state values of A and E for each
motif are calculated using Eqs. (3)–(4) and Eqs. (5)–(6),
respectively. As there are no external input to provide
excitation, the initial conditions of A and E in both the
process and the AEKF are increased with 30% from the
calculated steady state values. The initial conditions of
the unknown parameters in the AEKF are assigned a
uniformly distributed random number within 1% deviation
from the value of kn,process=1. This small deviation is
considered sufficient to demonstrate whether the AEKF
produce similar results as the structural identifiability
from Haus et al. (2023).

For the noisy conditions, both the process noise w(k) and
the measurement noise v(k) are modeled as bandwidth
limited zero mean white noise. Simulations are run for
10 seconds with a stepsize of Ts=0.0002 seconds. As the
AEKFs typically converge within 2 seconds, only the first
3 seconds are shown in Figs. 2–4. In order to quantitatively
compare the Kalman filter performances, we calculate
the following parameter error measure for each individual
parameter kn,

∆en =
1

5000

50000∑
i=45000

∣∣kn,process(i)− kn,est(i)
∣∣ (28)

where kn,est is the estimated parameter value. Thus, ∆en
is the mean of the difference between the process value
and the estimated value of parameter kn during the last
second of the simulation, i.e. the last 5000 samples. To get
a performance measure for the entire motif, we calculate
an overall motif error measure as follows,

∆emotif =
1

N

N∑
n=1

∆en (29)

where N=5 for motif 1 and N=6 for motif 3.

All state and parameter values are either in arbitrary units
or without units.

5.2 Motif 1

The simulation results for the noise free motif 1 are
shown in Fig. 2, where we observe that all parameters
quickly converge with an overall motif error measure of
∆emotif=0.0002. These results are in accordance with the
findings in Haus et al. (2023). In order to investigate the
effect of noise, we added both process and measurement
noise to A and E, and increased the noise power gradually.
A simulation example of this is shown in Fig. 3, where the

Fig. 2. Simulation results for motif 1 with no noise. The
upper panel shows the states A and E, whereas the
lower panel shows the parameter estimates.

noise power is 1·10−6 for both w(k) and v(k), and where
all parameters converge fairly quickly with an overall motif
error measure of ∆emotif=0.059.

Fig. 3. Simulation results for motif 1 with process and mea-
surement noise. The upper panel shows the states A
and E, whereas the lower panel shows the parameter
estimates.

The upper panel of Fig. 3 shows that the noise is quite sub-
stantial, whereas the lower panel demonstrate that even
though several parameters deviate up to 500% from the
initial condition during the first 0.5 seconds, all parameters
still converge to within 10% of the process value at steady
state. Note that negative parameter values implies that
the species flow in the motif is reversed. To summarize, we
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conclude that the AEKF for motif 1 is quite robust against
process and measurement noise.

5.3 Motif 3

Similarly to motif 1, we performed simulations with and
without noise for motif 3. The noise free simulations
(not shown) revealed slightly slower dynamics compared
to motif 1, but with the same overall motif error mea-
sure of ∆emotif=0.0002. On the other hand, when both
process noise and measurement noise were added, the
AEKF showed poor performance already at a noise power
level of 1·10−11, and estimation breaks down at a noise
power of 1·10−10 with an overall motif error measure of
∆emotif=0.5, see Fig. 4. Thus, the AEKF is more sensitive
to noise for motif 3 compared to motif 1, and we attribute
this to the increased non-linearity from the saturable in-

hibition term
KA

i

KA
i
+A

in Eq. (6).

Fig. 4. Simulation results for motif 3 with process and mea-
surement noise. The upper panel shows the states A
and E, whereas the lower panel shows the parameter
estimates.

5.4 Noise and initial condition of parameters

To investigate the effect of noise in the performance
of the AEKF in more detail, we simulated both motifs
while the noise power level was increased from 1·10−15

to 1·10−3, in steps of factor 10. To compensate for the
randomly chosen initial conditions for the parameters
(still within 1% deviation of kn,process), we averaged the
results over 10 simulations for each noise power value. We
performed simulations with i) only process noise, ii) only
measurement noise, and iii) both types of noise. As it
turned out that the results were more or less similar for
all three cases, we present in Fig. 5 the results for case iii)
only.

Panels A and B show the averaged parameter error mea-
sure for motif 1 and 3, respectively, calculated as

∆en =
1

10

10∑
i=1

∆en,i (30)

where ∆en,i ∀ i∈1, . . . , 10 is based on the parameter
error measure from Eq. (28) calculated during the 10
simulations. The results clearly show that motif 3 is more
sensitive to noise than motif 1. Moreover, the profile of
each ∆en curve (for each parameter) is more consistent for
motif 1, whereas the profiles for motif 3 are more diverse
where we see that the parameters ks, kd, and KA

i are more
prone to low noise levels, while kc and ko are more prone
to high noise levels.

We also investigated how the initial conditions of the pa-
rameter values in the AEKF affected the overall motif er-
ror measure∆emotif from Eq. (29) in noise free simulations.
Thus, we performed simulations where the initial condition
for each parameter kn in the AEKF were increased in steps
from the true value of 1 up to 10. These results are shown
in panels C and D in Fig. 5 for motif 1 and motif 3, respec-
tively, and we see that the AEKF for motif 1 is relatively
unaffected by the increasing initial conditions. Actually, an
initial condition 10 times the real parameter value results
in ∆en≈10−2 for most of the parameters. Interestingly, the
curve for parameter kc have a surprisingly odd shape where
∆en have a distinct decreased value for an initial condition
of 5 times the real parameter value. On the other hand,
and in accordance with panel B, the results for motif 3
show relatively poor performance for increased initial con-
ditions. The performance drops significantly already at a
small deviation of only a few percent from the real value
and becomes increasingly worse as the initial conditions
increase.

To summarize, the AEKF show better performance for
motif 1 compared to motif 3, both for increasing noise
levels and increasing initial conditions for the parameters.
The cause of this is likely that motif 3 is more non-linear
than motif 1, as although the added noise is initially zero-
mean white noise, it is not guaranteed to be zero-mean
after being processed through the nonlinear system. Thus,
the noise creates a bias which increases with the degree of
non-linearity. Furthermore, as the AEKF use a linearized
A(k) matrix based on the current state estimate together
with the parameter values with initial conditions far away
from the real values, it is most likely to introduce a bias
which the Kalman filter is unable to compensate for.

5.5 Initial conditions of A and E

Finally, we examined how the level of excitation of the
process affected the performance of the AEKF, i.e. the
level of the initial conditions of the states A and E in
both the process and the filter. We adjusted the initial
conditions for both states simultaneously with a factor
α between 0.2<α<2, and simulated both without noise
and with a noise power of 1·10−6 in both the process and
measurement noise. The results are shown in Fig. 6 for
motif 1, where ∆emotif is plotted as a function of α for
both noise free and noisy conditions.

The blue curve in Fig. 6 show that under noise-free
conditions only a small excitation in the initial conditions
of A and E is necessary to reduce the value of ∆emotif.

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.053 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

389



BA

C D

Noise power (logaritimic scale) Noise power (logaritimic scale)

Initial k  values in AEKFn Initial k  values in AEKFn

Averaged parameter error measure, motif 1 Averaged parameter error measure, motif 3 

Parameter error measure, motif 1 Parameter error measure, motif 3

Fig. 5. Panels A/B show the averaged parameter error measure∆en from Eq. (30) as a function of noise power for motif 1
/ motif 3. Panels C/D show the parameter error measure ∆en from Eq. (28) as a function of initial conditions for
the parameters in the AEKFs for motif 1 / motif 3.

No noise
10-6 power noise

Motif error measure, motif 1 

Initial condition factor, α

Fig. 6. Plot of the overall motif error measure ∆emotif as
a function of initial condition factor α for both noise
free and noisy conditions.

In fact, an increase in α from α=1 to α=1.02 reduces
∆emotif from 0.007 to approximately 0.0002. The noisy
situation illustrated by the red curve show the same un-
derlying mechanisms where increased excitation in initial
conditions of A and E reduces the value of ∆emotif, but the
decrease is not as prominent and the overall level is higher
than for the noise free situation. The results are reasonable
since decreased excitation decreases the dynamics of A and
E, leading to an increased noise-to-signal ratio. Thus, at
low degrees of excitation the information provided to the
Kalman filter by the measurements is predominantly noise.

6. CONCLUSIONS

We have implemented an Augmented and Extended
Kalman filter (AEKF) able to estimate all unknown pa-
rameters for the basic controller motifs 1 and 3 when both
states are measured. Under noise free conditions all the
parameters were accurately estimated, which corresponds
well with previous results showing that these motifs are
structurally identifiable with the same measurements. We
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also investigated the performance of the AEKF with re-
spect to noise in both the process and measurements,
initial conditions of the unknown parameters of AEKF,
and finally, the initial conditions of the states A and E. We
found that the Kalman filter generally performed better
on motif 1 than on the more nonlinear motif 3. This
suggests that a state observer better suited for nonlinear
models, such as the Unscented Kalman Filter (Julier and
Uhlmann, 1997), may be more appropriate to use for the
more nonlinear controller motifs.
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Abstract: Improving the efficiency of oil recovery is a crucial necessity in the current energy landscape.

The widespread adoption of advanced wells, equipped with Autonomous Inflow Control Devices (AICDs),

represents a leading strategy for this purpose.  However, the absence of a predefined and straightforward

option for modeling advanced wells in dynamic multiphase flow simulators like OLGA® poses a

significant challenge. To address the issue, this paper proposes a novel approach based on developing a

mathematical model derived from experimental data characterizing the AICD behavior. The Algebraic

Controller option in OLGA is then leveraged to integrate the AICD effects into the simulation seamlessly.

The proposed methodology undergoes rigorous testing on the PUNQ-S3 reservoir model as a benchmark

case study with Water Alternating Gas (WAG) injection. Results demonstrate that AICD has a better water

reduction rate of 36.3% and 3.7% compared to OPENHOLE and ICD. This result also indicates the accurate

modeling and simulation of AICD performance in the software, showcasing the effectiveness of the

developed mathematical model. Comparative analyses of advanced wells with different Flow Control

Devices (FCDs) underscore the conclusion that AICDs significantly enhance oil recovery efficiency,

thereby maximizing profit and minimizing the carbon footprint.

Keywords: OLGA, Near-well simulation, Advanced wells, AICD, Algebraic controller.

1. INTRODUCTION 

Oil has been the most consumed energy among all the energy 

sources. Oil recovery has to be maximized considering the 

economic and environmental effects. Preventing early water 

and gas breakthroughs in horizontal wells is a major challenge 

in the oil industry. Inflow control technology like inflow 

control devices (ICD) and autonomous inflow control devices 

(AICD) were invented to minimize the issue of breakthroughs 

of unwanted fluid. AICD valve opening control is based on the 

properties of different fluids. Accurate modeling of the AICD 

behavior using a dynamic multiphase flow simulator like 

OLGA is important but challenging. Previous researchers tried 

to use the PID controller and Table controller to model the 

behavior of AICD. PID controller acts on a fixed setpoint, and 

Table controller is applicable for two-phase fluid mixtures like 

oil with gas or oil with water. Another approach is needed to 

consider the three-phase fluid mixture, a solution is to use the 

algebraic controller feature in the OLGA simulator. A logical 

or mathematical equation can be used as an expression form to 

control the valve opening output of AICD. 

2. INFLOW CONTROL TECHNOLOGIES 

2.1 Inflow Control Devices (ICD) 

ICD was invented in early 1990 by Norsk Hydro on the 

horizontal well section in the Troll field (Al-Khelaiwi and 

D.R., 2007). Due to reservoir heterogeneity, early water or gas 

breakthroughs can occur in the heel section or in high 

permeability zones. ICDs are mounted on the production tube 

as shown in Fig. 1. ICDs minimize the fluid flow with an 

additional pressure drop to create an even flow distribution 

along the horizontal well. 

However, ICD has a disadvantage as it cannot choke back the 

water after a breakthrough into the production pipe has 

occurred. For this reason, the water cut rises more than the 

capacity of the separation facilities can handle. The whole well 

needs to be choked to avoid this higher water cut. Choking the 

well results in minimizing oil production (Moradi and 

Moldestad, 2020). Many ICDs are mounted on a horizontal 

well. The pressure drop is the function of the flow rate, ICD 

geometry, and fluid density. In most cases, the orifice-type 

ICD is used, and the mathematical equation is: 

    �̇� = 𝐶𝐷𝐴√
2∆𝑃

𝜌
, (1) 

Where �̇� is the volumetric flow rate of the fluid through the 

ICD, ∆𝑃 is the pressure drop over the ICD, 𝜌 is the fluid 

density, 𝐴 is the cross-sectional area of the ICD nozzle, 𝐶𝐷 is 

the discharge coefficient. 

Fig. 1. Orifice-type ICD setup and flow pattern of fluids

(Birchenko et al., 2010).
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2.2 Autonomous Inflow Control Devices (AICD) 

An uneven production flow can still be observed from the toe 

to the heel section of a horizontal well even when using ICDs. 

This occurs due to frictional pressure drop and permeability 

variations in different regions. ICD can delay the breakthrough 

of unwanted fluids but cannot stop the breakthrough. Among 

all types of AICD, the AICD developed by Statoil is the most 

commonly used. A schematic of an RCP version of AICD is 

shown in Fig 2. AICD is functional with the viscosity 

differentials of the fluids. The RCP valve reduces the flow of 

low-viscous fluids like water and gas and is fully open for 

high-viscous fluids like oil (Mathiesen et al., 2011). 

Taking the function of fluid properties and volume flow 

empirical equation of differential pressure is: 

  ∆𝑃 = 𝑓(𝜌, 𝜇) ∙ 𝑎𝐴𝐼𝐶𝐷 ∙ �̇�𝑥 ,                         (2) 

                           𝑓(𝜌, 𝜇) = (
𝜌𝑚𝑖𝑥

2

𝜌𝑐𝑎𝑙

) ∙ (
𝜇𝑐𝑎𝑙

𝜇𝑚𝑖𝑥

)
𝑦

,                     (3) 

Where, �̇� is the volumetric flow rate of the fluid through the 

RCP, ∆𝑃 is the pressure drop over the AICD. 𝑎𝐴𝐼𝐶𝐷, 𝑥, and 𝑦 

are the parameters specified by the user depending on the fluid 

properties and the RCP design criteria. 𝑓(𝜌, 𝜇) is the function 

of the density and viscosity in which 𝜌𝑐𝑎𝑙  and 𝜇𝑐𝑎𝑙  is the 

calibrated density and viscosity respectively. The equations for 

mixture density and viscosity are as follows: 

𝜌𝑚𝑖𝑥 = 𝛼𝑜𝑖𝑙𝜌𝑜𝑖𝑙 +  𝛼𝑤𝑎𝑡𝑒𝑟𝜌𝑤𝑎𝑡𝑒𝑟 + 𝛼𝑔𝑎𝑠, (4) 

𝜇𝑚𝑖𝑥 = 𝛼𝑜𝑖𝑙𝜇𝑜𝑖𝑙 +  𝛼𝑤𝑎𝑡𝑒𝑟𝜇𝑤𝑎𝑡𝑒𝑟 + 𝛼𝑔𝑎𝑠𝜇𝑔𝑎𝑠, (5) 

Where 𝛼𝑜𝑖𝑙 , 𝛼𝑤𝑎𝑡𝑒𝑟 , and 𝛼𝑔𝑎𝑠 is the volume fraction of oil, 

water, and gas in the mixture respectively. 

3. PUNQ-S3 RESERVOIR MODEL 

For this study, the PUNQ-S3 (Production forecasting with 

Uncertainty Quantification, variant 3) synthetic reservoir 

model is used and designed in ECLIPSE. Elf Exploration 

Production implemented this model in the real field according 

to the reservoir engineering study. It is a three-dimensional 

dome-shaped heterogeneous reservoir containing a total of 

2660 grid blocks, of which 1761 blocks are active. The 

dimensions of the reservoir are given in Table 1. Corner point 

geometry and the Carter-Tracey aquifer were used to design 

this reservoir (Hutahaean, 2017). It has a Bottom Hole 

Pressure (BHP) of 220 bar with a maximum liquid production 

rate of 4000 m3/day.  
Table 1: PUNQ-S3 reservoir grid dimensions. 

Direction No. of blocks Length (m)/dip angle 

x 19 19×180 

y 28 28×180 

z 5 2355/1.5° 

The production well and the four injectors are designed by 

trial-and-error method for more oil production and to minimize 

early water and gas breakthroughs. Water and CO2 are 

simultaneously injected by the four injectors at a regular time 

interval. Injectors 1, 2, 3, and 4 are placed at the depth of 2390 

m, 2375 m, 2370 m, and 2370 m respectively. Figure 3 

represents the positioning of the injectors and production pipe 

with top face depth. The length of the horizontal well is 3240 

m which is designed in the OLGA simulator. 

Table 2 shows the rock and fluid properties of the reservoir for 

the simulation cases and Figure 4 shows the porosity and 

permeability in different directions. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 2. Rock and fluid properties of the PUNQ-S3 reservoir

Parameter Value

Oil density 912 kg/m3

Water density 1000 kg/m3

Gas density 0.8266 kg/m3

GOR 74 Sm3/ Sm3

Reservoir pressure 234.5 bar

Temperature 105 0C

Water viscosity (reservoir condition) 0.5 cP

Oil viscosity (reservoir condition) 1.46 cP

Gas viscosity (reservoir condition) 0.0133 cP

Porosity 0.1 – 0.3

Mean porosity 0.14

Rock compressibility 0.000451/bar

Fig. 2. Schematic of the RCP valve developed by Statoil

(Mathiesen et al., 2011). 
Fig. 3. Production pipe and injectors topology.

Fig. 4. Porosity and permeability.
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4. WELL MODEL IN OLGA 

For the advanced horizontal well model, the length is specified 

as 3240 m in OLGA. The wellbore and production pipe have 

a diameter of 0.2159 m and 0.1397 m respectively. The 

production well has 18 valves to divide the production pipe 

into 18 zones. Each zone is 180 m long and separated by two 

packers. In reality, each section is about 12 m and consists of 

one flow control device (FCD). For 180 m 15 FCDs are 

required. In this study, each FCD is considered equivalent to 

15 real FCDs. The equivalent diameter is taken as 0.0078 m 

for both ICD and AICD considering the discharge coefficient 

(CD) as 0.85. Figure 5 shows a simplified sketch of a single 

production zone in a production pipe containing packers, a 

fluid flow path, and an inflow control device. Packers prevent 

fluid flow from an adjacent zone through the annulus. Near-

well source is the connecting component between OLGA and 

ECLIPSE. Through section I fluid enters into the wellbore and 

then passes through the inflow control devices. After that fluid 

passes through the Leak into the production pipe in section II. 

This method was proposed by Haavard Akre in 2012 and is 

much used in simulation studies (Moradi and Moldestad, 

2020). 

 

 

 

 

 

 

 

5. ALGEBRAIC CONTROLLER 

The algebraic controller is a feature of OLGA for 

implementing algebraic equations or logical expressions to 

manipulate input signals for a desired output. In this study, the 

algebraic controller is used to control the valve opening of 

AICD. A mathematical equation is derived as the input signal 

for the AICD valve considering the oil, water, and gas volume 

fractions. 

For ICD the pressure differential and flow rate can be written 

as: 

∆𝑃𝐼𝐶𝐷 = �́�𝑢

𝜌𝑚𝑖𝑥𝑄2̇
𝐼𝐶𝐷

2𝛾2𝐴2𝐶2
𝐷

, (6) 

�̇�𝐼𝐶𝐷 = 𝛾𝐴𝐶𝐷√
2∆𝑃𝐼𝐶𝐷

𝜌𝑚𝑖𝑥�́�𝑢

, (7) 

The pressure differential was derived from the available 

experimental data in (Halvorsen Martin et al., 2016) for AICD 

in the PUNQ-S3 reservoir model with similar fluid properties. 

Both linear and non-linear regression method was used to 

develop the mathematical model which is expressed by: 

 

∆𝑃𝐴𝐼𝐶𝐷 = 𝑎𝐴𝐼𝐶𝐷 .
𝜌2

𝑚𝑖𝑥

1000
∙ (

1

𝜇𝑚𝑖𝑥

)
𝑦

∙  𝑄𝑥̇
𝐴𝐼𝐶𝐷 , (8) 

 

 

For AICD flow rate can be expressed by: 

�̇�𝐴𝐼𝐶𝐷 = (
1000 ∙ ∆𝑃𝐴𝐼𝐶𝐷 ∙ 𝜇 𝑦

𝑚𝑖𝑥

𝑎𝐴𝐼𝐶𝐷 ∙ 𝜌2
𝑚𝑖𝑥

)

1
𝑥

, (9) 

 

Here �̇� is the volumetric flow rate, ∆𝑃 is the pressure drops, 𝐴 

is the cross-sectional area of the fluid flow, 𝐶𝐷 is the discharge 

coefficient, �́�𝑢 is the unit conversion value, and 𝛾 is the valve 

opening. Three-phase fluid mixture density and viscosity can 

be written as (4) and (5). 

𝛼𝑜𝑖𝑙 , 𝛼𝑤𝑎𝑡𝑒𝑟 , 𝛼𝑔𝑎𝑠 are the volume fractions of oil, water, and 

gas in the mixture and the sum of the fractions is: 

𝛼𝑜𝑖𝑙 + 𝛼𝑤𝑎𝑡𝑒𝑟 + 𝛼𝑔𝑎𝑠 = 1 

Now, matching ∆𝑃 − �̇� curves of ICD and AICD at ∆𝑃𝑚𝑎𝑡𝑐ℎ 

and �̇�𝑚𝑎𝑡𝑐ℎ it can be assumed that 

∆𝑃𝐼𝐶𝐷 = ∆𝑃𝐴𝐼𝐶𝐷 = ∆𝑃𝑚𝑖𝑥  and �̇�𝐼𝐶𝐷 = �̇�𝐴𝐼𝐶𝐷 

 

Considering �̇�𝐼𝐶𝐷 = �̇�𝐴𝐼𝐶𝐷 the valve opening can be expressed 

as: 

               𝛾 =
(

1000. ∆𝑃𝑚𝑖𝑥

𝑎𝐴𝐼𝐶𝐷
)

1
𝑥

𝐴𝐶𝐷√
2∆𝑃𝑚𝑖𝑥

�́�𝑢

∙ 𝜇
𝑦
𝑥

𝑚𝑖𝑥 ∙ 𝜌
𝑥−4
2𝑥

𝑚𝑖𝑥
,              (10) 

Alternately it can be expressed as: 

 

     𝛾 = 𝛽. {𝛼𝑜𝑖𝑙𝜇𝑜𝑖𝑙 + 𝛼𝑤𝑎𝑡𝑒𝑟𝜇𝑤𝑎𝑡𝑒𝑟 + 𝛼𝑔𝑎𝑠𝜇𝑔𝑎𝑠}
𝑦

𝑥 ∙

                     {𝛼𝑜𝑖𝑙𝜌𝑜𝑖𝑙 + 𝛼𝑤𝑎𝑡𝑒𝑟𝜌𝑤𝑎𝑡𝑒𝑟 + 𝛼𝑔𝑎𝑠𝜌𝑔𝑎𝑠}
𝑥−4

2𝑥 ,   (11)  

where        𝛽 =
(

1000.∆𝑃𝑚𝑖𝑥
𝑎𝐴𝐼𝐶𝐷

)

1
𝑥

𝐴𝐶𝐷√
2∆𝑃𝑚𝑖𝑥

�́�𝑢

 , (12) 

and 

{𝛼𝑜𝑖𝑙𝜇𝑜𝑖𝑙 + 𝛼𝑤𝑎𝑡𝑒𝑟𝜇𝑤𝑎𝑡𝑒𝑟 + 𝛼𝑔𝑎𝑠𝜇𝑔𝑎𝑠}
𝑦
𝑥 = 𝜇

𝑦
𝑥

𝑚𝑖𝑥 

{𝛼𝑜𝑖𝑙𝜌𝑜𝑖𝑙 + 𝛼𝑤𝑎𝑡𝑒𝑟𝜌𝑤𝑎𝑡𝑒𝑟 + 𝛼𝑔𝑎𝑠𝜌𝑔𝑎𝑠}
𝑥−4
2𝑥 = 𝜌

𝑥−4
2𝑥

𝑚𝑖𝑥
, (13) 

 

In the OLGA model, two transmitters are used to take the 

values of the volume fraction of oil (𝛼𝑜𝑖𝑙) and water (𝛼𝑤𝑎𝑡𝑒𝑟) 

as an input variable from the wellbore. Equation (8) is put as 

an expression option in the algebraic controller in OLGA. To 

implement 𝛼𝑜𝑖𝑙 ,  𝛼𝑤𝑎𝑡𝑒𝑟  as input variables into (14), they are 

introduced as unknown variables X1 and X2 in the algebraic 

controller. The expression in the algebraic controller is as 

follows: 

 

𝛾 =  𝛽. {𝑋1 ∙ 𝜇𝑜𝑖𝑙 + 𝑋2 ∙ 𝜇𝑤𝑎𝑡𝑒𝑟 + (1 − 𝑋1 − 𝑋2) ∙ 𝜇𝑔𝑎𝑠}
𝑦

𝑥 ∙

      {𝑋1 ∙ 𝜌𝑜𝑖𝑙 + 𝑋2 ∙ 𝜌𝑤𝑎𝑡𝑒𝑟 + (1 − 𝑋1 − 𝑋2) ∙ 𝜌𝑔𝑎𝑠}
𝑥−4

2𝑥 , (14)  

Here 𝛼𝑜𝑖𝑙= 𝑋1, 𝛼𝑤𝑎𝑡𝑒𝑟= 𝑋2 and 𝛼𝑔𝑎𝑠=1 − 𝑋1 − 𝑋2 

 

Experimental data were used to find the parameters in (12) 

using multivariable nonlinear regression. The values in 

Appendix A are based on that. Figure 6 shows the controller 

behavior as the valve opening control for AICD according to 

different phases of the fluids. 

Fig. 5. Schematic of a single zone in a production pipe (Moradi and

Moldestad, 2020).
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Fig. 6. Valve opening vs oil volume fraction for the algebraic

controller in different phases of fluid.

6. RESULTS AND DISCUSSION

In this chapter, the obtained simulation results from the

OLGA/ECLIPSE model are shown and discussed.

Performance analysis of ICD and AICD are shown and

compared to the OPENHOLE case for improving oil recovery

and reducing water cut. The functionality of the algebraic

controller controlling the valve opening of AICD is analyzed

considering water cut and gas volume fraction (GVF). The

pressure drop for the cases was considered 15 bar with a

constrained liquid production rate of 4000m3/day for ICD.

6.1 Total oil and water production

The total flow of oil and water are two of the most important

parameters to analyze for the performance of the FCDs. Figure

7 illustrates the total oil and water production for OPENHOLE

and FCDs. OPENHOLE has a larger cross-sectional inlet area

and there are no restrictions for liquid production so more

water and oil can be produced compared to FCDs. ICD and

AICD had the same amount of oil production, and both of the

curves overlapped (blue over black), and this can happen

because of the recovery of low viscous oil. The functionality

of AICD can be observed with higher oil production if the

simulation time was more than 3500 days. It is very important

to have less water production for a better economy and

environmental impact. In this case, FCDs showed better

performance producing less water than OPENHOLE. In the

cases of ICD and AICD, the water production is reduced by

33.8% and 36.3% respectively compared to the OPENHOLE

case. The AICD reduced the accumulated water production by

3.7% compared to the ICD. This indicates that AICD has a

better choking effect on low viscous fluid like water. Less

water production means less production cost in the oil

processing step after recovery.

 

 

6.2 Oil and water production rate 

OPENHOLE has a larger cross-sectional area to produce more 

liquid than FCDs. Figure 8 illustrates the oil and water 

production rate for 3500 days of simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

The OPENHOLE case has a larger cross-sectional area which 

is exposed to production. For this reason, OPENHOLE has a 

higher fluid production rate. In reality, there is a limitation for 

maximum fluid production with a regulating valve on topside, 

but this is not considered for this study. After 1000 days the oil 

production rate increased because of gas injection. It can be 

observed that after 3500 days FCDs are showing a tendency to 

produce more oil than OPENHOLE. So, simulation for more 

than 3500 days can result in a higher oil production rate for the 

FCDs. ICD and AICD almost have the exact amount of oil 

showing the blue curve overlapping over the black curve. But 

ICD has a higher production rate of water than AICD. This is 

because ICDs cannot prevent further production after the water 

enters the well whereas AICD is partially closed when water 

Fig. 7. Total oil and water production.

Fig. 8. Oil and water production rate.

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.054 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

395



enters through the inlet. This also proves the choking ability of 

AICD to the low viscous fluids. 

6.3 Algebraic controller behavior to WC 

In this study algebraic controller is used to control the valve 

opening of the AICD. Equation (12) was implemented by 

expression form in the algebraic controller. Figure 9 shows the 

valve opening control according to the WC. A total of 18 

controllers were used in the well model. Among those, 

controller 1 and controller 18 are chosen for the toe and heel 

respectively. A maximum water cut of 0.64 and 0.82 was 

found for the toe and heel sections. At the toe section, the 

minimum valve opening was 90% fully open and at the heel 

section, the minimum valve opening was 85%. It can be 

observed that the more the water cut increased the more the 

valve was closing. From this observation, it can be said that 

the algebraic controller is showing the choking effect on water 

production. 

6.4 Algebraic controller behavior to GVF 

To observe the functionality of valve opening of the algebraic 

controller according to the GVF, controllers 8 and 9 at the 

middle of the horizontal well were selected. Figure 10 shows 

the behavior of the algebraic controller for the GVF. 

A maximum GVF of 0.77 and 0.79 was found for the

controllers 8 and 9 respectively. For controller 8 the valve

opening was up to 0.93 and for controller 9 valve opening was

up to 0.92. It can be observed that the more the GVF increased

the more the valve was getting closed. From this observation,

it can be said that the algebraic controller is showing the

choking effect on gas volume fraction.

7. CONCLUSIONS

According to the findings from the simulations, it can be

concluded that FCDs show a better impact on the WAG

injection oil recovery process in heterogeneous reservoir. ICD

and AICD have reduced water production by 33.8% and 36.3%

respectively compared to OPENHOLE. The most important

part of this study was to implement and investigate the

performance of the algebraic controller in terms of controlling

the valve opening of AICD. Though the oil production rate was

the same for both ICD and AICD, water production was 3.7%.

lower for AICD compared to ICD. This satisfies the main

purpose of using AICD to minimize water production. It also

indicates the performance of the algebraic controller that can

be implemented for AICD valve opening in the OLGA

simulator. It showed better performance in controlling valve

opening with increasing WC and GVF. Using the transmitters

for getting input of oil and water volume fractions to the

controller and manipulating the valve opening from a logical

mathematical expression was also successful.
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Appendix A 

Parameter Value 

𝐶𝐷 0.85 

�́�𝑢 1.34∙ 𝑒−15 

𝑎𝐴𝐼𝐶𝐷  3.41∙ 𝑒−6 

∆𝑃𝑚𝑖𝑥 20 bar 

𝐴 =
𝜋

4
𝐷2 

𝜋

4
(0.002)2 = 3.2687 ∙ 𝑒−5 

𝑥 3.35 

𝑦 0.4 

𝜇𝑜𝑖𝑙  2.7 

𝜇𝑤𝑎𝑡𝑒𝑟  0.45 

𝜇𝑔𝑎𝑠 0.02 

𝜌𝑜𝑖𝑙 890 kg/m3 

 𝜌𝑤𝑎𝑡𝑒𝑟  1100 kg/m3 

𝜇𝑔𝑎𝑠
 150 kg/m3 
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Abstract: The utilization of advanced multilateral wells to enhance well-reservoir contact, coupled with 
water injection, stands out as a common approach to boost oil extraction efficiency. It is imperative to 
develop precise, fully integrated, dynamic, well-reservoir models tailored for this type of oil recovery to 
enhance the design of advanced multilateral well completions. This study addresses the challenge by 
constructing a well model using OLGA®, which is, a dynamic multiphase flow simulator, and a reservoir 
model using EclipseTM, a reservoir simulator. Subsequently, these models are seamlessly integrated to 
perform comprehensive simulations. The proposed approach is tested on a case study involving oil recovery 
through an advanced multilateral well completed with various Flow Control Devices (FCDs) supported by 
water injection. Results from the simulations demonstrate the success of the integration approach, offering 
a reliable method for accurately modelling oil recovery from advanced multilateral wells to improve oil 
recovery. Notably, according to this study, wells completed with Autonomous Inflow Control Valves 
(AICVs) exhibit superior performance, optimizing oil recovery with a reduced carbon footprint.  
 
Keywords: Advanced multilateral wells, Well-reservoir model, Autonomous Inflow Control Valve, 
Autonomous Inflow Control Devices, Inflow Control Devices. 
 

1. INTRODUCTION 

Even though the world is moving towards renewable energy, 
crude oil is still significantly contributing to the world's energy 
demand. Despite advances, a considerable portion of oil 
remains unrecovered due to traditional technologies. 

The multilateral well model can be implemented to increase 
the oil recovery, a well-completion technique more suitable for 
horizontal drilling. This method has several advantages, such 
as increased reservoir exposure, reduced water and gas coning, 
accelerated production, connecting high permeability areas, 
and lower capital costs than constructing single-well systems, 
although with disadvantages like early water and gas 
breakthrough (Elyasi, 2016). Figure 1 illustrates the main 
types of multilateral wells used in industry. 

 
Fig. 1. Types of different multilateral wells (Flatern, 2021).

Methods like polymer and zonal control with flow control
devices (FCDs) tackle early breakthroughs and increase oil
recovery. Inflow control devices (ICDs), Autonomous Inflow
Control Devices (AICDs), and Autonomous Inflow Control

Valves (AICVs) are mainly used as FCDs in the industry, 
which makes the oil well an advanced well (Aakre et al., 
2014).   

To design and maintain advanced multilateral wells, a proper 
simulation and modelling are to be done to decide the 
parameter values for optimum production. Oil recovery 
through advanced multilateral wells is a transient process, and 
the simulation model must capture the transient interaction 
between the reservoir and the well. Therefore, a dynamic, fully 
coupled, well-reservoir model is required to simulate oil 
recovery accurately through advanced wells. Researchers 
widely use the multisegmented well (MSW) model to simulate 
advanced wells, but it is a homogeneous model and is not very 
accurate due to simplifications. Coupling the well model in a 
dynamic multiphase simulator with a reservoir model can be 
used to overcome the inaccuracies. This study was conducted 
to study the coupling well model in the OLGA multiphase 
simulator with a reservoir model done in ECLIPSE.  

2. MULTISEGMENT WELL MODEL 

The multisegmented well model in ECLIPSE is an advanced 
extension for accurately modelling fluid behaviour in 
advanced wells. It divides the production tubing into multiple 
one-dimensional segments with independent variables to 
describe the conditions. These variables are determined by 
solving material balance equations for each phase and 
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component using different pressures. This approach allows for 
precisely modelling the relationship between pressure 
gradients and fluid composition changes in advanced wells 
(Anuththara et al., 2023). 

Figure 2 presents a schematic of an MSW model for an 
advanced horizontal well. This model treats the production 
tubing and wellbore as distinct branches of specific segments. 
Additionally, segments can be designed to simulate Flow 
Control Devices (FCDs). These FCDs connect the wellbore 
and production tubing, as depicted in Fig. 2. Fluids enter the 
wellbore through its segments, pass through FCD valve 
segments into the production tubing, and then flow to the 
production outlet via the production tubing segments 
(Anuththara et al., 2023). 

 
Fig. 2. Schematic of a multisegmented well model (Moradi et al.,

2022a).

3. FLOW CONTROL TECHNOLOGY

Flow control devices (FCDs) are applied to prevent early gas
and water breakthroughs in a well, making it an advanced well.
The inflow control technology is essential for improving oil
recovery and expanding reservoir lifespan, making oil
production economical.

3.1 Inflow control device (ICD)

ICD is a passive inflow control device without any active part
that can adjust the flow with the conditions. It limits the flow
by giving an additional pressure drop to achieve a distributed
flow profile along the horizontal well with the pre-determined
design, as shown in Fig. 3,

 
Fig. 3. Orifice-type ICD and its flow path (Mathiesen et al., 2014).

Several ICDs are usually placed along the well tubing, and
with an even production rate along the well, the water and gas
breakthroughs can be delayed. However, ICDs cannot control
the flow after the breakthrough and choke the low viscous

fluids into the production tubing. The governing equation for 
orifice-type ICD is mentioned as follows (Moradi et al., 
2022b), 

 
�̇�𝑄 =  𝐶𝐶𝐷𝐷𝐴𝐴�

1
1− 𝛽𝛽4 �

2∆𝑃𝑃
𝜌𝜌    , 

(1) 

Where,  
�̇�𝑄 is the volume flow rate of the fluid through the ICD 
∆𝑃𝑃 is the pressure drop over the ICD 
𝜌𝜌 is the fluid density 
𝐴𝐴 is the cross-sectional area of the ICD nozzle 
𝐶𝐶𝐷𝐷 is the discharge coefficient, which depends on the ICD 
design 

3.2 Autonomous inflow control device (AICD) 

AICD is an improved version of ICDs that can delay the water 
and gas breakthroughs and partially be close to low-viscosity 
fluids like water and gases. AICD has active and passive 
control elements to produce a pressure drop and control the 
flow autonomously.  

Figure 4 presents a schematic of the rate control production 
(RCP) type AICD, which consists of a free-floating disc, an 
outer seat, and an inner seat (Anuththara et al., 2023). 
According to the pressure, forces acting on the disc will move 
to control the flow accordingly.  

When a low viscous fluid compared to oil flows through the 
valve, a low pressure will be created in the inlet area due to 
low friction force, according to Bernoulli's equation. This 
pressure reduction creates a force that pulls the moving plate 
toward the inlet, partially closing the valve. This mechanism 
enables these valves to autonomously reduce the flow rate of 
unwanted fluids such as water or gas (Moradi et al., 2022b). 

 

𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐

Fig. 4. Schematic diagram of Statoil's RCP valve (Anuththara et al.,
2023).

The empirical equation pressure drop across an RCP-type
AICD is as follows,

 ∆𝑃𝑃 = 𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷 ∙ �
𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚

2
� ∙  �

𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐
𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑦𝑦
∙ �̇�𝑄𝑚𝑚    , (2) 

where,
�̇�𝑄 is the volume flow rate of the fluid through the AICD
∆𝑃𝑃 is the pressure drop over the AICD
𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 is the density of the fluid mixture
𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 is the viscosity of the fluid mixture

𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷 , 𝑥𝑥 and 𝑦𝑦 are user input parameters that depend on the
AICD design and the fluid properties, while 𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐 and 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐 are
calibrating parameters. 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 are calculated as
follows,

 𝜌𝜌𝑚𝑚𝑚𝑚𝑥𝑥 = 𝛼𝛼𝑜𝑜𝑚𝑚𝑜𝑜𝜌𝜌𝑜𝑜𝑚𝑚𝑜𝑜 +  𝛼𝛼𝑤𝑤𝑎𝑎𝑤𝑤𝑤𝑤𝑤𝑤𝜌𝜌𝑤𝑤𝑎𝑎𝑤𝑤𝑤𝑤𝑤𝑤 + 𝛼𝛼𝑔𝑔𝑎𝑎𝑔𝑔𝜌𝜌𝑔𝑔𝑎𝑎𝑔𝑔   , (3)
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 𝜇𝜇𝑚𝑚𝑚𝑚𝑥𝑥 = 𝛼𝛼𝑜𝑜𝑚𝑚𝑜𝑜𝜇𝜇𝑜𝑜𝑚𝑚𝑜𝑜 +  𝛼𝛼𝑤𝑤𝑎𝑎𝑤𝑤𝑤𝑤𝑤𝑤𝜇𝜇𝑤𝑤𝑎𝑎𝑤𝑤𝑤𝑤𝑤𝑤 + 𝛼𝛼𝑔𝑔𝑎𝑎𝑔𝑔𝜇𝜇𝑔𝑔𝑎𝑎𝑔𝑔  , (4)
where,
𝛼𝛼𝑜𝑜𝑚𝑚𝑜𝑜 is the volume fraction of oil in the mixture
𝛼𝛼𝑤𝑤𝑎𝑎𝑤𝑤𝑤𝑤𝑤𝑤 is the volume fraction of water in the mixture
𝛼𝛼𝑔𝑔𝑎𝑎𝑔𝑔 is the volume fraction of gas in the mixture

3.3 Autonomous inflow control valve (AICV)

AICV is the latest inflow control device developed by
InflowControl AS, which has been claimed to have better
choking performance than AICD and ICD. AICV can almost
entirely close its opening to unwanted fluids with low
viscosities, such as water and gas.

AICV consists of two restrictors where: one is a laminar
restrictor, and the other is a turbulent restrictor. Figure 5
illustrates a schematic diagram of an AICV and how the
pressure gradients stack where oil gets and lower pressure
drops, allowing it to pass while the valve chokes water and gas
(Moradi et al., 2022b).

The pressure drops in the laminar and turbulent restrictors are
calculated as follows,

 ∆𝑃𝑃𝐿𝐿𝑐𝑐𝑚𝑚𝑚𝑚𝐿𝐿𝑐𝑐𝐿𝐿 =  
32𝜇𝜇𝜌𝜌𝜇𝜇𝜇𝜇
𝐷𝐷2    , (5) 

 ∆𝑃𝑃𝑇𝑇𝑇𝑇𝐿𝐿𝑇𝑇𝑇𝑇𝑐𝑐𝑇𝑇𝐿𝐿𝑇𝑇 =
𝑘𝑘𝜌𝜌𝜇𝜇2

2   , (6) 

Where, 
∆𝑃𝑃 is the pressure drop over the restrictor 
𝜇𝜇 is the fluid viscosity 
𝜌𝜌 is the fluid density 
𝜇𝜇 is the fluid velocity 
𝜇𝜇 is the laminar restrictor length 
𝐷𝐷 is the laminar restrictor diameter 
𝑘𝑘 is the geometrical constant 

 
Fig. 5. A simplified sketch of the flow paths in AICV and pressure

changes inside for different fluids (Anuththara et al. 2023).

Equation 5 explains how the pressure drops in the laminar
restrictor depend on the fluid density and viscosity. Therefore,
when low viscous fluid like water and gases pass through the
restrictor, it gets a low-pressure drop compared to a high
viscous fluid such as heavy oil. Because of this low-pressure
drop, low viscous fluids have a higher pressure in the chamber
between the restrictors, leading to higher velocity before

passing through the turbulent restrictor. As Equation 6 
mentions, low viscous fluids experience a higher pressure drop 
than oil across the turbulent restrictor, which allows the AICV 
to remain open for oil while it is almost closed for water and 
gas (Moradi et al., 2022b). 

The performance criteria for AICV and AICD mentioned in 
Fig. 6 were used in this study where AICV closes its opening 
60% when the water cut reaches 1, while AICD can close 
nearly 20% of its opening. The plots in Fig. 6 were obtained 
based on the experimental results of AICD and AICV for a 
fluid with the properties discussed in Chapter 4.1. 

 
Fig. 6. Choking functionality comparison between AICV and

AICD.

4. RESERVOIR MODEL IN ECLIPSE

4.1 Reservoir fluid and rock properties

The reservoir conditions and fluid properties used in this study
were similar to the Troll field in the North sea which also used
to obtain AICV/AICD test data. Table 1 presents the reservoir
and fluid properties used for the simulations.(Anuththara et al.,
2023).

Table 1. Reservoir properties and rock properties

Parameter Value
Oil density 890 kg/m3

Water density 1000 kg/m3

Gas density 0.67 kg/m3

GOR 50 Sm3/ Sm3

Reservoir Pressure 130 bara
Water viscosity 0.45 cp

Oil viscosity 2.7 cp
Porosity 0.15 – 0.27

Temperature 68 0C

4.2 Reservoir grid

The dimensions of the reservoir are illustrated in Table 2.
Figure 7 presents the 3D image of the reservoir is presented.
The reservoir has two layers separated by a shale layer with a
thickness of 50 m. From the 10th cell, the water is injected into
the reservoir.
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Table 2: Dimensions of the reservoir 

 

 
Fig. 7. Topology of the reservoir.

4.3 Reservoir permeability

The reservoir is considered a homogeneous reservoir with the
same porosity and permeability. The long-normal absolute
permeability is assumed in the 100-500 mD range.

Figure 8 represents the relative permeability curves for water
(𝑘𝑘𝑤𝑤w) and oil (𝑘𝑘𝑤𝑤o) with the water saturation (𝑆𝑆𝑤𝑤) used in this
study, which was developed using Corey model.
 

 
Fig. 8. Relative permeability curves.

4.4 Initial conditions

The reservoir developed with ECLIPSE has three different
zones. Therefore, the pressure, oil, water, and gas saturation
change along the depth.

Initially, the reservoir pressure is 130 bar at 68oC, increasing
as the depth rises. The depth of oil-water contact (OWC) and
gas-oil contact (GOC) are 2300 m and 2010 m, respectively.
Therefore, the pressure increases as the depth increases per
hydrostatic pressure, as shown in Fig. 9.

 
Fig. 9. Initial (a) water, (b) oil, and (c) gas saturation.

5. WELL MODEL IN OLGA

Figure 10 illustrates the pipe in the horizontal annulus. The
annulus is the gap between the wellbore and the surface. Since
OLGA does not have a method to simulate the flow through
the annulus and inflow control devices, the OLGA model is
developed to separate pipelines called wellbore and production
tubing (Anuththara et al., 2023).
 

 
Fig. 10. Pipe in the horizontal annulus.

5.1 Compositional settings

The three black oil components (gas, oil, and water) are
defined for the simulations. No gas has been injected into the
reservoir; only oil and water feed rates are given.
Compositions of the feeds are as in Table 3.
 

Length of the reservoir (x) 1250 m 
Width of the reservoir (y) 500 m  
Height of the reservoir (z) 140 m 

Pipe 

Rock 

Annulus 

(b) 

(c) 

(a) 
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Table 3. Oil and water feed components.

Feed Gas fraction Water cut
Oil 50 Sm3/ Sm3 (GOR) 0.0001

Water 0.0001 Sm3/Sm3 (GLR) 0.99

5.3 Flow component settings

Since the three laterals are modelled and studied for oil
production, each lateral consists of a wellbore and production
tubing. The length and diameter of each wellbore are 625 m
and 0.2159 m, respectively. The top and bottom production
tubing are the same length as the wellbore, while the middle
length is 500 m. The junction node connects the three laterals
into one production pipe.

The description of each lateral is illustrated in Table 4 below.
 

Table 4: Technical description of the wellbore and production 
tubing 

SN Pipe name Diameter 
(m) 

Roughness 
(𝝁𝝁𝝁𝝁) 

Elevation 
(m) 

1 Wellbore top 0.2159 15  
10 Production tubing 0.1397 15 

2 Wellbore top 0.2159 15  
80 Production tubing 0.1397 15 

3 Wellbore top 0.2159 15  
110 Production tubing 0.1397 15 

4 Outlet production 
tubing 

0.1397 15  
10 

 
The oil is assumed to be produced from 5 zones with one 
inflow control device. Two packers isolate the wellbore to stop 
the fluid from flowing to different zones. Near well source uses 
the data given by ECLIPSE to connect OLGA with ECLIPSE. 
Then, the fluid enters the wellbore after passing the inflow 
control device in the first section. The reservoir fluids enter the 
production tubing through a leak in the second section, as 
shown in Fig. 11.  

 
Fig. 11. Layout for one production zone.

 

6. RESULTS AND DISCUSSION 

This chapter shows and discusses the results obtained from the 
OLGA-ECLIPSE model. The functionality of ICD, AICD, and 
AICV was discussed, and the results obtained for 500 days 
were compared. AICV showed better results within the given 
circumstances in this case, as expected. 

6.1 Oil production 

Figure 12 illustrates the oil production rates for the FCDs 
studied in this work for 500 days. Initially, oil production for 
all the FCDs showed similar rates because the water 

breakthrough had not yet occurred. However, the oil 
production rate decreased with the water breakthrough at 
around 160 - 180 days. As seen in Fig. 12, AICV shows a lower 
value for oil production, which is undesirable for AICV 
because AICV chokes the flow when it consists of low viscous 
fluids like water. However, the simulation was done for only 
500 days, insufficiently covering the whole lifetime of the 
reservoir. However, AICV obtained a better oil fraction 
despite low oil production. 

 
Fig. 12. Oil production rates for ICD, AICD, and AICV models.

Similarly, Figure 13 presents the accumulated oil production
for each device over 500 days. AICV showed low oil
production primarily due to its choking function when there is
more water.

 
Fig. 13. Accumulated oil production over 500 days for ICD, AICD,

and AICV.

6.2 Water production

The water production rates for 500 days for each control
device are illustrated in Fig. 14. A small amount of water is
produced even before the water breakthrough because of the
water from the bottom lateral. However, the water production
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increased significantly for each FCD with the water 
breakthrough. Nevertheless, after the water breaks through, the 
production rate increases significantly, and AICV showed a 
low water production rate increase compared to other FCDs.  

 
Fig. 14. Water production rates for 500 days for ICD, AICD, and

AICV.
 
Figure 15 illustrates water accumulation over 500 days, and 
AICV showed lower water accumulation than AICD and ICD. 

 
Fig. 15. Accumulated water production for ICD, AICD, and AICV

for 500 days.

6.3 Total liquid production

With no liquid production cap defined, AICV showed the
lowest liquid production, as shown in Fig. 16 and 17. Figure
16 represents the total liquid production rate, and Figure 17
shows the total accumulated liquid production. AICV shows
low production because, after the water breakthrough, the
water amount in the mixture is higher.

 
Fig. 16. Total liquid production rates for 500 days for ICD, AICD,

and AICV.

 
Fig. 17. Total accumulated liquid production for 500 days for ICD,

AICV, and AICV.

6.4 Water cut variations

Keeping the water cut at its minimum is essential in the oil and
gas industry as it impacts the overall economy and
environmental sustainability. Figure 18 illustrates the water
cut variation in the outlet for each FCD during 500 days of
production. According to the Fig. 18, AICV, represented by
solid colours, shows the lowest water cut along three laterals
at almost every point compared with other FCDs. AICD
represents continuous dotted lines showing the second lowest
water cut along the tubes, while the well with ICD shows the
highest water cut throughout all the production tubes because
AICV has a higher choking ability with the water cut than
AICD, while ICD does not have a choking ability.
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Fig. 18. Water cut (WC) variation along all the laterals for ICD,

AICD, and AICV.

6.5 Fluid saturations

Figure 19 shows the oil saturation after 500 days in the
reservoir simulated in ECLIPSE, while Fig. 20 shows the oil
saturation along the horizontal plain of the three laterals.
Compared to Fig. 9, the oil levels seem very low in the grid
cells after 500 days of operation due to oil recovery.

 

 
Fig. 19. Oil saturation in the reservoir after 500 days.

 

 

 
 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20. Oil saturation in the horizontal layer around the (a) top,
(b) middle, and (c) bottom laterals after 500 days.

Similarly, Figure 21 represents the water saturation after 500
days in the reservoir in three dimensions, while Fig. 22 shows
the water saturation along the horizontal plain of the three
laterals. Compared to Fig. 9, the water levels seem very high
in the grid cells after 500 days of operation, mainly because of
the water injection.
 

 
Fig. 21. Water saturation in the reservoir after 500 days.

 
 
 
 
 
 
 

 

 

 

(b) 

(c) 

(a) 
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Fig. 22. Water saturation in the horizontal layer around the (a) top,
(b) middle, and (c) bottom laterals after 500 days.

6.6 Chocking Effects of FCDs

 
Figure 23 shows how FCDs in similar locations at the top 
lateral (first and third FCD) for AICD and AICV perform with 
the water cut, and it shows that AICV has closed its opening 
up to 0.4 and AICD up to 0.12 for a water cut around 0.8 near 
third valve. Furthermore, near first valve, for a water cut 
around 0.67, AICD closed its opening up to 0.12 and AICV up 
to 0.35. As Fig. 5 mentions, AICV chokes its opening more 
than AICD does when more water is present. Therefore, the 
results obtained in Fig. 23 agree with the FCD functionalities.  

 

 
 

 
Fig. 23. Choking effect on (a) AICD and (b) AICV with the relevant

water cuts.

7. CONCLUSIONS

Water breakthroughs are a significant challenge in the oil and
gas industry, and various inflow control devices (ICDs,
AICDs, and AICVs) are designed to mitigate this issue. ICDs
balance drawdown pressure and fluid flow but cannot block
water once it enters the well. AICDs and AICVs can choke
water entry, reducing water production and delaying water
breakthrough. AICVs are more effective than AICDs in
choking low-viscosity fluids.

The study simulated a simple reservoir and multilateral well
for 500 days, observing the effects of ICDs, AICDs, and
AICVs on oil and water production rates and water cuts.
Results showed that AICV had the lowest water cut (0.539)
compared to AICD (0.566) and ICD (0.573) and the lowest
production rates with 2302 m³/day for oil and 2919 m³/day for
water. Although AICVs performed unexpectedly due to the

(a) 

(a) 

(b) 

(c) 

(b) 
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short simulation period, they are expected to perform better
over a more extended period with production limitations.

The study concluded that AICVs are the most effective in
reducing water production, making them economically and
environmentally viable. It recommended simulating reservoirs
for at least 2000-3000 days for better results and proposed
further work on gas injection and actual case simulations to
benefit the industry. The primary objective of coupling OLGA
and ECLIPSE was to model an advanced multilateral well and
simulate the reservoir, and the well was successfully achieved.
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Abstract: The manufacturing industry is in a strong transition towards digital, intelligent, and sustainable

manufacturing. However, small and medium-sized enterprises (SME) in the manufacturing industry often

lack the resources and know-how to utilize digital tools as part of their research and development (R&D)

activities. Thus, there is a need for concrete examples to show the benefits of these tools. This paper

discusses a demonstration of warehouse optimization where a genetic algorithm is applied to optimize pallet

transfers. The simulation model of a flexible manufacturing system (FMS) cell includes a warehouse with

nine Euro pallets and a stacker crane. Visual Components simulation software was used for the simulation

and an external Python application for the algorithm. As a result of the optimization, the total duration of

the transfers was reduced by approximately 20 seconds (8.1 %). The demonstration has been used to

showcase the integration of optimization methods into simulation technology and has ignited longer-term

collaboration with the local industry on the same theme.

Keywords: 3D simulation, genetic algorithms, high bay rack, optimization, discrete event simulation

1. INTRODUCTION 

Simulation and optimization are useful tools to understand, 

design, and develop production processes. For example, 

simulation can be used to model and analyze processes before 

they are implemented in the real production environment. 

Production processes can be optimized based on real-time or 

historical data. For example, several data analysis and 

computation models can be used to quickly locate equipment 

or quality problems and improve resource efficiency in 

production.  

The combination of simulation and optimization enables a 

comprehensive analysis of production processes and efficient 

production planning. They can save costs, reduce production 

risks, and enhance product quality. 

 

Bojic et al. (2023) did a case study using discrete-event 

simulation (DES) and genetic algorithm (GA) to assist 

operational production planning and optimization in the textile 

industry. A simulation model was created using Tecnomatix 

Plant Simulation software for a textile factory that produces 

over 300,000 shirts per year. The simulation model considered 

changes in customer demand, production times, available 

resources, and batch sizes. GA optimization improved 

production efficiency and reduced work in process (WIP) 

inventory levels. 

 

Ernst et al. (2017) developed an optimization tool called 

Adv:ProcessOptimizer for multi-objective chemical process 

optimization. A specific GA was customized and developed 

for this tool. The tool integrates established methods with new 

concepts that work with simulation tools like Aspen Plus and 

ChemCad. The effectiveness of the tool was validated by 

optimizing an industrial styrene process. The results showed a 

well-distributed Pareto front, leading to savings in investment 

and operating costs compared to traditional methods. This 

confirmed the capability of Adv-tool to improve process 

efficiency and its support for decision making in process 

design. 

 

Howard et al. (2023) developed a method to investigate energy 

flexibility in process cooling systems. A case study was 

performed on a Danish plant that uses process cooling for 

canned meat production. They used a combination of multi-

agent, discrete-event, and system dynamics simulations to 

model the process. The results showed that significant savings 

in operational costs and reduction in CO2 emissions can be 

achieved by optimizing the schedule of the refrigeration units 

based on forecasts of weather conditions, electricity prices and 

CO2 emissions. This method provided insights on how to 

improve the energy performance of process cooling systems in 

food production without compromising the product quality 

and the production rate, through a weeklong simulation 

scenario. 
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Xie et al. (2015) used the genetic algorithm to schedule the 

single overhead crane so that its transport and shuffling 

operations are completed in the shortest possible time. The 

study found that the developed genetic algorithm provided 

good and quick solutions to the crane scheduling problem. 

 

These case studies demonstrate how the integration of 

simulation and optimization tools works in various 

manufacturing industries. They can be useful for different 

kinds of applications, leading to more efficient, cost-effective, 

and high-quality production. However, SMEs in the 

manufacturing industry often lack resources and know-how to 

utilize these tools as part of their R&D activities or even 

information of their existence. Concrete pilots that 

demonstrate solving common problems in manufacturing 

industry are required to increase awareness of the possibilities 

of new simulation and optimization tools, and their 

integrations. 

 

Warehouse operations provide an ideal demonstration 

environment for manufacturing SMEs due to their complexity, 

scalability, and the critical need for efficiency. It has been 

estimated that approximately 55 % of warehouse operating 

costs are caused by picking tasks (Bartholdi and Hackman, 

2019, p. 25). Thus, increasing the picking and placing 

efficiency can generate remarkable savings. 

 

Genetic algorithms are often used in optimization problems 

due to their robust search capabilities and flexibility as shown 

by two of the examples mentioned earlier in this section. The 

interest in genetic algorithms in the field of logistics has as 

well increased in the recent years among the researchers, and 

the number of publications has doubled between the years 

2016 and 2020 (Grznár et al, 2021). In warehouse optimization 

problems reported in the literature, the goal often is to improve 

a forklift route in a warehouse described by a 2D layout 

consisting of shelves and corridors (e.g. Avdekins and 

Savrasovs, 2019; Kordos et al, 2020). Grznár et al (2021) 

worked with a 3D simulation of a conveyor system with 

workers sorting the goods coming to and leaving the 

warehouse. However, this work did not involve the actual 

warehouse structure. 

 

This paper discusses optimizing an automated warehouse of a 

flexible manufacturing cell by utilizing a genetic algorithm. 

The high-bay rack and the stacker crane of the model add 

complexity due to vertical space utilization and dynamic 

movement, which are not typically addressed in simpler, 2D 

warehouse models. Also, the 3D simulation provides a more 

realistic and comprehensive testbed for evaluating the 

performance of GAs. Moreover, the FMS cell as a sample 

environment makes the demonstration interesting and 

accessible for the metal industry companies that are locally 

abundant. Finally, the demonstration involves cooperation of 

simulation software and an external optimization library, 

which gives a good example of the expansion potential of the  

applicable tools. 

 

The paper is organized as follows: Section 2 describes the 

main methods applied in this study, discrete event-based 

simulation and genetic algorithms, and the software used.  

Section 3 discusses the experiments performed and the results 

gained. The conclusion is drawn in the last section. 

 

2. METHODS AND SOFTWARE

2.1 Discrete Event-Based Simulation

According to Banks et al (2019, p. 3) a simulation replicates

the functioning of a real-world process or system as it evolves

over time. Whether the simulation is conducted manually or

utilizing a computer, it entails creating an artificial history of

a system and observing that history to make inferences about

the real system’s operating characteristics. Shannon (1998, p.

1) defines simulation as a process of modeling a real system

and taking experiments with the model in order to gain insights

about the behavior of the real-world system and furthermore,

to evaluate different operational strategies for the system.

Banks et al (2019, p. 9) categorize systems as discrete or

continuous. Choi and Kang (2013, p. 8) adds quantum class 

to enhance the system’s classification. They agree together 

that rarely any process is purely a certain one, but more 

of a combination of two or more, however, some class 

describes more the system behavior than the other ones.  

Banks et al (2019, p. 9) define the discrete system in a way 

where state variable(s) change only at a discrete set of 

points in time. Furthermore, Choi and Kang (2013, p. 9) 

defines the discrete-event simulation as a computer 

evaluation of a discrete-event dynamic system model. In 

the model, the operation of the simulated system is 

defined as a chronological sequence of events. As the pilot 

case was a discrete manufacturing process, the simulation 

method was chosen accordingly.

 

 

Fig. 1. Flowchart of the genetic algorithm. 
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2.2 Genetic Algorithms

2.2.1 Basics

A genetic algorithm developed by John Holland (Holland,

1975) is an optimization and search technique that is based on

the principles of natural selection and genetics. In the genetic

algorithm, a population of chromosomes evolve towards a

better solution over each consecutive generation by using

parent selection, crossover, and mutation. The genetic

algorithms belong to the larger class of the evolutionary

algorithms (EA) (Townsend, 2003).

The basic flowchart of the genetic algorithm is presented in

Fig. 1.

 

2.2.2 Population

 

GA is an iterative process which starts with the creation of

randomly chosen initial population of individuals (solution

candidates for a given problem), which are represented by

finite linear string of symbols, known as chromosome. A gene

is an element in the chromosome, as shown in Fig. 2, and

the allele is the value of the gene (Townsend, 2003).
 

Determining the size of the population is important 

since choosing too small population might cause the GA to 
converge prematurely to a local minimum instead of global 
minimum due to lack of genetic variation in the population. 
On the other hand, too large population will require more 
computing time and thus makes the GA to run slower. 
The population size remains constant during the running of 
the genetic algorithm. 

2.2.3 Genotype Representation

Genotype is a genetic composition of the chromosome (Haupt

and Haupt, 2004).

A binary representation, where the chromosomes are

represented as bits (a string of 1s and 0s), is the simplest and

widely used representation. A floating-point representation is

used for the continuous GA, and permutation representation is

used for the cases where the order of genes matters (Fig. 3).

Perhaps the most well-known use case of the permutation

representation is the traveling salesman problem (TSP), where

each city can be visited just once in some order.

 

 

 
Parent selection operator selects the chromosomes in the 

population for reproduction. On every generation, the selected 

chromosomes are collected to a list known as mating pool. The 

better fitness value the chromosome has, the higher probability 

it has for being selected for the mating pool. Thus, the selection 

is based on the strategy of the survival-of-the-fittest 

(Townsend, 2003). 

 

There are several different selection methods used in the 

genetic algorithms such as fitness-proportional selection, 

ranked selection, stochastic universal sampling, roulette wheel 

selection, truncation selection, and tournament selection 

(Townsend, 2003). 

 

 

2.2.6 Crossover 

 

Crossover operator swaps the genetic material between two 

parent chromosomes to create new offspring for the next 

generation (Townsend, 2003). 

The crossover between two good chromosomes does not 

necessarily create as fit or better offspring. However, because 

the parents are good, the probability of the offspring to be good 

is high, If the offspring happens to be a poor solution 

candidate, it will be removed from the population during the 

next generation. 

 

Fig. 2. Example of population, chromosome, and gene.

Fig. 3. Example of genotype representations in GA. 

2.2.4 Fitness Function 

 

At every evolutionary step, also known as generation, the 

current population is evaluated according to a fitness function 

set for a given problem. Because the fitness function calculates 

the fitness value for every chromosome on every generation, it 

greatly impacts the run time of the GA. Too computing heavy 

fitness function increases the run time of the GA (Townsend, 

2003). 

 

2.2.5 Selection 

 

Parent selection operator selects the chromosomes in the 

population for reproduction. On every generation, the selected 

chromosomes are collected to a list known as mating pool. The 

better fitness value the chromosome has, the higher probability 

it has for being selected for the mating pool. Thus, the selection 

is based on the strategy of the survival-of-the-fittest 

(Townsend, 2003). 

 

There are several different selection methods used in the 

genetic algorithms such as fitness-proportional selection, 

ranked selection, stochastic universal sampling, roulette wheel 

selection, truncation selection, and tournament selection 

(Townsend, 2003). 

 

In tournament selection, a random number of individuals are 

selected from the population. Then, the best individual is 

selected from this group to be as a parent. This process is 

repeated until the mating pool is filled. Tournaments are often 

held between pairs of individuals (Goldberg & Deb, 1991). 

 

2.2.6 Crossover 

 

Crossover operator swaps the genetic material between two 

parent chromosomes to create new offspring for the next 

generation (Townsend, 2003). 

The crossover between two good chromosomes does not 

necessarily create as fit or better offspring. However, because 

the parents are good, the probability of the offspring to be good 

is high, If the offspring happens to be a poor solution 

candidate, it will be removed from the population during the 

next generation. 

 

In one-point or simple crossover, a random crossover point k

is selected uniformly between 1 and the length of the parent

chromosomes minus one [1, l – 1]. The genes after the

crossover point k are then swapped between the parent

chromosomes to create new offspring, as shown in Fig. 4

(Goldberg, 1989, p. 12).

In two-point crossover, two random crossover points are

selected uniformly among the length of the parent

chromosomes. The alternating segments of genes are then

swapped between the parent chromosomes, as shown in Fig. 5. 

In general, the two-point crossover is better than one-point

crossover to find solution more quickly (Townsend, 2003).
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In uniform crossover, a randomly generated crossover mask is 

used to decide from which parent the offspring gets its genes. 

If there is a value 1 or 0 in the mask, the gene is copied from 

the first parent or second parent, respectively (Fig. 6). This 

procedure is repeated for the second offspring (Townsend, 

2003). 

 
 

 

 

 

 

 

 

In permutation problems, standard crossover operators are not

appropriate since each gene should be represented once and

only once in the chromosome. One possible solution is to use

a partially matched crossover (PMX), Under PMX, two

random crossover points are chosen, and the genes are

exchanged between these two points. The exchanged genes

remain intact during the rest of the procedure. On the final step,

the doubles (marked as yellow color in Fig. 7) are

exchanged between the children to get correct permutations

(Haupt and Haupt, 2004). Each child chromosome 

contains ordering information partially determined by 

each of its parents.

 

 

 

 

 

 

 

 

Townsend (2003) gives a following summary of crossover 

methods: there is no more than 20 % difference in speed 

among the one-point, two-point, and uniform crossover. 

Uniform crossover or two-point crossover works better if the 

population is small or large, respectively, compared to the 

problem complexity. 

2.2.7 Mutation 

The mutation operator changes the value of one or more genes 

at randomly selected position in the chromosome. Mutation 

can take place at each position in the chromosome with some 

pre-defined probability, known as mutation rate, which is 

usually small. The mutation operator makes the GA to find a 

near optimal solution to a given problem more easily by 

maintaining the genetic diversity in the population (Townsend, 

2003). 

 

The most common mutation operators are binary mutation, 

random resetting, swap mutation, scramble mutation, and 

inversion mutation. 

 

In binary mutation, the value of the one or more genes is

altered with a probability equal to the mutation rate

(Larranaga, 1999). For example, the value of the third gene is

changed from 1 to 0 in Fig. 8.

 

 

In swap mutation (Fig. 9), the values of two randomly selected 

genes are interchanged. The swap mutation is commonly used 

in permutation-based representations (Larranaga, 1999). 

 

 

In scramble mutation (Fig. 10), a subset of the genes on the 

chromosome are selected and scrambled randomly (Larranaga, 

1999). 

 

 

In inversion mutation, two random points are chosen along the 

length of the chromosome. The genes between these points are 

then inverted as shown in Figure 11 (Goldberg, 1989, p. 166). 

 

 

 

2.2.8 Elitism 

 

Elitism means that the most fit chromosomes of the current 

generation are preserved for the next generation. Elitism 

prevents the population from losing its best solution due to 

crossover or mutation. The unwanted side effect is that there 

might be a super fit chromosome that causes the GA to 

converge prematurely (Townsend, 2003). 

 

The elite size means the number of fit chromosomes preserved 

for the next generation. 

 

2.2.9 Termination Condition 

 

The termination condition of a genetic algorithm defines when 

to stop running the algorithm. Usually, the GA run is 

terminated when one of the following conditions is met: there 

is no improvement in the population for given number of 

consecutive generations, the maximum number of generations 

Fig. 4. Example of one-point crossover. 

Fig. 5. Example of  two-point crossover. 

Fig. 6. Example of  uniform crossover. 

Fig. 7. Example of partially matched crossover (PMX). 

Fig. 8. Example of binary mutation. 

Fig. 9. Example of swap mutation. 

Fig. 10. Example of scramble mutation. 

Fig. 11. Example of inversion mutation. 
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is reached, or the objective function has reached a certain pre-

defined value. 

2.3 Visual Components 

Visual Components is a 3D simulation and offline 

programming software that can be used for layout planning, 

feasibility analysis, virtual commissioning, and robot 

programming. The software has an extensive library of 3D 

models with 3000+ pre-defined and ready-to-use components 

including robots, conveyors, machines, resources, robot tools, 

factory facilities, and more. The user can also import self-made 

3D models into the software (Visual Components, 2024). 

Python programming language (version 2.7) can be utilized in 

components scripts. It is possible to add 3rd party Python 

package to the Visual Components, but this depends on the 

package. Alternatively, the user can communicate with an 

external application by using the TCP/IP sockets. 

3. EXPERIMENTS AND RESULTS 

3.1 Flexible Manufacturing Cell 

There is a flexible manufacturing cell in the SeAMK’s 

laboratory of the Machine and Production Technology. The 

cell consists of two Fanuc R2000iB/165F industrial robots, 

Kitamura HX500i machining center, workpiece positioner, 

and the storage system made by Fastems. The storage system 

has following components: high bay rack for storing Euro 

pallets and machining pallets, stacker crane for moving the 

pallets between storage shelves and workstations, material 

station for inserting and retrieving pallets in and out of the 

storage, loading station for moving the machining pallets 

between the stacker crane and robot, and two pallet banks next 

to the robots for holding the Euro pallets. 

 

A simulation model (Figs. 12 and 13) of the FMS cell was 

made during one of the research and development 

projects. The robots, workpiece positioner, grill fences, 

storage selves, and Euro pallets are from the component 

library of the Visual Components. The stacker crane, pallet 

banks, loading station, material station, machining center, 

and machining pallet were designed in a 3D CAD software 

and imported into the Visual Components as STL files.

 

 
 

 

The simulation model of the FMS cell works as its real-world 

counterpart. The model does not, however, work together with 

the Fastems Manufacturing Management Software (MMS) 

that is used to control the real FMS cell. Instead, the simulation 

model relies on the component scripts to function properly. 

3.2 Goal 

The goal of the experiment was to utilize the genetic algorithm 

in the simulation model of the flexible manufacturing cell to 

minimize the time it takes to reshuffle the warehouse. In other 

words, the goal was to find the best permutation of Euro pallet 

transfers so that the stacker crane could move the pallets in the 

least amount of time. This kind of storage reshuffle process is 

common in the warehouses. 

 

As the number of transfers increases, the number of different 

combinations of transfers also increases. For example, in the 

case of just nine transfers, the number of different 

combinations is 9! = 362 880. 

 

Although the genetic algorithm can explore multiple solution 

candidates in parallel, it is not possible to compute the duration 

of every possible combination of transfers in a reasonable time 

frame. With the genetic algorithm, however, there is no need 

to go through every possible combination of transfers. 

3.3 Pallet Transfers 

The storage reshuffle process consists of nine transfers of Euro 

pallets. The transfers are randomly generated to eliminate the 

human bias for choosing transfers that one knows will benefit 

strongly from the optimization. 

In the simulation model, the transfer of the Euro pallet is 

represented by a dictionary which contains the pallet ID, stock 

keeping unit (SKU) of the pallet, and source and destination 

shelf positions. For example, {“pid”: 1, “sku”: “epallet”, “src”: 

3, “dst”: 20}, represents the transfer of the Euro pallet with id 

= 1 from a shelf position 3 to a shelf position 20. In the GA, 

these pallet transfers are represented as integers from 1 to 9, so 

when the fitness values are computed, one needs to decode the 

genes of the chromosomes into dictionaries. 

 

In this experiment, the fitness function computes the total 

duration of the nine pallet transfers. Because the goal is to find 

the minimum duration, a shorter duration yields to smaller 

fitness value. 

Fig. 12. Front view of the simulation model. 

Fig. 13. Back view of the simulation model. 
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To speed up the computation of the fitness function, the 

transfer time from any given shelf position to any other shelf 

position was measured programmatically by computing the 

time difference between the moment when the pallet was 

picked up from the shelf and the moment when the pallet was 

placed onto the shelf. The transfer times were then hard coded 

into the component script of the stacker crane. 

 

The process of measuring the transfer times was quite a tedious 

task. Alternatively, one could have made the simulation model 

so that the fitness value of the chromosome is computed by 

simulation. Based on some testing, the computation of fitness 

values by simulation took at least 30 minutes so it was decided 

to use hard coded transfer times instead. 

 

The Euro pallet components are created to the source positions 

of the pallet transfers when the user starts the simulation. 

3.4 Utilizing the GA in the Simulation Model 

The Python code for the genetic algorithm was written into the 

PythonScript object of the stacker crane component in the 

simulation model. The genetic algorithm was implemented as 

a Python class whose input arguments are the direction of the 

optimization as an integer (0 for minimum and 1 for 

maximum), genes as a list of pallet IDs from 1 to 9, size of the 

population as integer, number of generations as integer, fitness 

function as a callable function, size of elite parents in the 

population as integer, and the mutation rate as a float. 

The minimum direction was used since the goal was to find the 

order of the transfers in which the transfers are performed as 

quickly as possible, i.e. in minimum time. Based on some 

testing the population size was set to 1000 since with larger 

sizes the simulation ran significantly longer times without any 

major reduction in total transfer times of the pallets. The 

number of generations was set to 40 and the elite size to 10. 

According to Townsend (2003, p. 43) the probability of 

mutation is set to be inversely proportional to the size of the 

chromosome. Since each chromosome has 9 genes, the 

mutation rate was set to 11 % (1/9 = 0.111). The parents of the 

next generation were selected using a tournament selection of 

3 chromosomes. Because the goal was to find the best 

permutation of pallet transfers, PMX was used for the 

crossover operator. Finally, the swap mutation was used for 

the mutation operator. Below is a list of the values of the 

operators and input arguments of the GA. 

 

• Direction: minimum 

• Genes: [1, 2, 3, 4, 5, 6, 7, 8, 9]  

• Population size: 1000  

• Number of generations: 40  

• Elite size: 10  

• Mutation rate: 11 %  

• Selection: tournament of 3 chromosomes  

• Crossover: partially matched crossover (PMX)  

• Mutation: swap. 

3.5 Results 

The simulation was run 50 times with and without the genetic 

algorithm to see how much the genetic algorithm reduces the 

total transfer time. 

 

When the order of the transfers was optimized with the genetic

algorithm, the total duration of the transfers was reduced by

circa 20.5 seconds on average. This represents about an 8.1 %

reduction in transfer time. The time reduction achieved with

the GA in each run is shown in Fig. 14.

It was noticed that the fitness value did not improve that much 

between the first and last generation of the genetic algorithm. 

Figure 15 shows a typical progress of the fitness value during 

the generations of the GA. 

In many cases, the fitness value, i.e. the duration of the 

transfers, improved mere few seconds. The different 

combinations of input parameters of the genetic algorithm 

were tested but the results remained the same. 

 

One possible explanation is the small population size which 

covers about 0.002 % of all possible solutions (362 880). 

Increasing the population size would, however, make the 

simulation to run significantly longer. Thus, the population 

size of 1000 was chosen. 

 

Fig. 14. Histogram of the time reduction achieved with the GA. 

Fig. 15. The progress of the fitness value. 
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Other optimization methods than genetic algorithm were not 

tested in this experiment so it is hard to say if some of them 

could perform better than GA. 

4.  CONCLUSIONS 

Manufacturing systems are complex environments with many 

interacting parts and variables in dynamic processess. These 

complexities often lead to challenges that are difficult to solve 

with traditional methods, especially as the demand for 

efficiency grows. To address these issues, combining 

optimization techniques with 3D simulation has proven to be 

highly effective. This approach allows us to explore a wide 

range of potential solutions, helping to find the best ways to 

improve system performance. By integrating these methods, 

we can make manufacturing processes more efficient and 

better equipped to handle the complexities of modern 

production. 

 

This paper showed how to use an optimization method 

together with a simulation tool to find a solution that saves 

time and resources in production. The total time saving of 20 

seconds (8.1 %) that was achieved in the demonstration is a 

significant improvement to the process. The automated 

warehouse that was utilized as the testbed is a practical and 

familiar example of a suitable scale for SMEs and thus makes 

the demonstration more illustrative and easier to catch. The 3D 

environment is a descriptive surrounding that facilitates 

showing the process in practice and makes the simulation more 

realistic. In addition, the high-bay rack and the stacker crane 

increase complexity because they involve using vertical space 

and dynamic movement, aspects usually not considered in 

basic, two-dimensional warehouse models. 

 

The demonstration has been presented in one regional 

technology event and several smaller workshops for selected 

SMEs from the manufacturing industry. The reception has 

been good, and a closer collaboration on the same theme has 

started with one of the companies. Thus, the methods 

presented in this paper will be applied in other warehouses in 

real manufacturing surroundings shortly. Furthermore, the 

longer-term aim is to promote the integration possibilities of 

optimization methods and simulation technology from the 

product level to the development of production-level solutions. 

This supports the green transition as unnecessary work can be 

eliminated and processes can be streamlined. 
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Abstract: This study conducts a sensitivity analysis to evaluate the influence of varying data
volumes on model performance within multi-product batch processes in the iron and steel
industry. Nine machine learning models, encompassing both ensemble and parametric methods,
were rigorously tested using a data withholding approach. The results demonstrate that
ensemble models, particularly Random Forest and Gradient Boosting, consistently outperformed
parametric models across different data volumes, showcasing superior generalisation and
robustness to outliers. These findings underscore the importance of careful model selection and
comprehensive data preprocessing in enhancing model performance and suggest that ensemble
methods are particularly well-suited for complex industrial applications where data quality and
volume are critical.

Keywords: Machine Learning, Model selection, Performance evaluation, Data volume
sensitivity, Iron and steel industry, Industrial batch processes,

1. INTRODUCTION

The iron and steel industry, a cornerstone of global indus-
trial development, is responsible for approximately 7.2% of
global Green House Gas (GHG) emissions, highlighting its
significant contribution to climate change (Ritchie et al.,
2020). With global steel production anticipated to rise by
approximately 30% by 2050, the demand for innovation
and sustainable practices in this sector has become in-
creasingly urgent (Yoro and Daramola, 2020). Thus, the
advancement of more efficient production methods is not
only an environmental imperative but also essential for the
industry’s long-term viability. Moreover, the development
of accurate and reliable models can significantly contribute
to reducing waste, facilitating process control, and improv-
ing overall product quality. By optimising the predictive
capabilities of these models, industries can enhance their
operational efficiency and sustainability, thereby achieving
better outcomes both economically and environmentally.

In recent years, significant interest has been directed to-
wards the application of Machine Learning (ML) tech-
niques in industrial processes, driven by advancements in
data acquisition technologies and the increasing complex-
ity and volume of industrial data. These advancements
have enabled the development of sophisticated models
capable of processing vast amounts of data, thereby im-
proving decision-making and operational efficiency within
industrial contexts.

⋆ The authors gratefully acknowledge Kanthal AB, Automation
Region Research Academy (ARRAY), and the Swedish Knowledge
Foundation (KKS) for their support.

This study aims to systematically evaluate the impact of
data volume and complexity on the performance of ML
models in multi-product batch processes within the iron
and steel industry. A sensitivity analysis is conducted to
provide insights that will guide future model development
and applications in industrial batch processes.

A rigorous and systematic approach has been adopted
in this study, wherein the effect of varying data volumes
on model accuracy and complexity is analysed to ensure
a comprehensive examination of these critical factors. A
diverse range of ML models, with varying degrees of
complexity, has been selected to assess their performance
across different scenarios. These models include traditional
machine learning algorithms, which are recognised for their
efficacy in handling tabular data. Neural networks were
excluded from this analysis due to the tabular nature of
the dataset, which does not inherently suit such models, as
evidenced by Shwartz-Ziv and Armon’s findings that en-
semble models generally outperform deep neural networks
on tabular data (Shwartz-Ziv and Armon, 2022).

To explore the relationship between data volume and
model performance, a data withholding approach has been
implemented, enabling an assessment of how error scores
fluctuate with varying data volumes. The data volume in
this study ranges from 10 to 10,000 samples, distributed
across 10 logarithmically spaced steps. These steps include
10, 22, 46, 100, 215, 464, 1,000, 2,154, 4,642, and 10,000
samples. This logarithmic progression ensures that the
analysis covers a broad range of data volumes, providing
a nuanced understanding of how data availability impacts
model performance.
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Previous studies have also examined the impact of data
volume on model performance, albeit with differing scopes
and methodologies. For instance, Bailly et al. (2022)
investigated the effect of data volume on model metrics
using artificially generated datasets with volumes of 1,000,
10,000, and 100,000 samples. Their findings indicated
that, within the specific setup employed, data volume
did not significantly influence model metrics, suggesting
that the relationship between data volume and model
performance may be context-dependent and influenced by
factors such as data characteristics and model selection.
In another study, Ramezan et al. (2021) explored the
effects of training sample size on the performance of six
supervised ML algorithms in classifying a large-area high-
spatial-resolution remotely sensed dataset. Their work
demonstrated that, while larger training sets generally led
to better performance, there was considerable variation in
how different classifiers responded to changes in sample
size. These variations underscore the complexity of the
relationship between data volume and model performance,
highlighting the need for context-specific analyses.

The dataset employed in this study originates from the
production of thermocouple materials at Kanthal Hall-
stahammar, specifically from the key stages of melting
and hot rolling. Thermocouples are vital components in
temperature measurement and are among the most com-
mon methods used in industrial processes, including those
in the iron and steel industry. Their widespread use un-
derscores the practical significance of accurate and re-
liable temperature measurement in maintaining process
efficiency and product quality. The dataset comprises
measurements of chemical composition and Electromotive
Force (EMF), with the objective of predicting the final
properties after hot rolling based on initial measurements
taken after melting. A more detailed description of the
pre-processed dataset is provided in Section 3.1.

The overarching aim of this work is to enhance the mod-
elling of industrial processes by adhering to the principle
of Occam’s razor, which advocates for simplicity in model
design. While continuous advancements in research con-
tribute to increasingly complex models, it is crucial to
balance complexity with practical implementation. This
study builds upon previous work, such as Rendall et al.
(2019) and Mählkvist et al. (2023), which examines the
trade-offs between model complexity and performance.
Rendall et al. (2019) succinctly illustrated the relation-
ship between modelling complexity and implementation
challenges, providing a framework for assessing the practi-
cality of complex models in real-world applications. Simi-
larly, Mählkvist et al. (2023) evaluated the modelling com-
plexity of different classification models, including Logistic
Regression, Random Forest Classifier, and Support Vector
Classifier, to determine the most suitable model for the
specific data problem at hand. These studies underscore
the importance of balancing model sophistication with
practical considerations, such as ease of implementation
and computational efficiency.

Through a comparative analysis, it is intended to evaluate
whether models with specific characteristics offer superior
insights into the industrial processes under study. It is
hypothesised that some models will perform better with
larger data volumes and that a diverse range of model char-

acteristics will yield more comprehensive insights, particu-
larly under conditions of data saturation. Ultimately, this
research seeks to determine the optimal balance between
data volume and model performance within the context of
industrial batch process modelling.

2. METHODOLOGY

This section delineates the methodology employed in this
study, encompassing details about the development envi-
ronment, systematic data processing approaches, model
training, and evaluation techniques. The approach has
been designed to ensure robust and reproducible results
through meticulous dataset handling, model selection, and
hyperparameter tuning.

2.1 Coding and Dependencies

Python is the coding language used for this study. Besides
arbitrary dependencies on Pandas, NumPy, and other
common libraries, the package scikit-learn Pedregosa
et al. (2011) is employed for the implementation of the
ML models, as well as for hyperparameter tuning.

2.2 Systematic Approach for Datasets and Modelling

Dataset and Subset sampling

Dataset and Subset Sampling This study begins with the
product datasets, denoted as Px, where x ∈ LP and LP

represents a list of all product datasets, each identified by
a Greek letter, such as LP = [α, β, . . .].

A data withholding approach is employed to generate
increasingly larger datasets by sampling from the original
product datasets. These smaller datasets are referred to as
subsets. Each subset derived from a product dataset Px is
denoted by Sx

i,j , where Sx
i,j represents the i-th iteration of

sampling from the j-th subset of the x-th product dataset
Px.

In this notation, i varies from 1 to n, where n is the total
number of iterations performed for each subset size. This
allows the same volume to be sampled multiple times to
capture a more representative dataset. For instance, if the
sampling volume is 10 samples, n subsets of volume 10 are
generated by randomly selecting samples.

The index j corresponds to the position within a list of
predefined sampling sizes, denoted as LV = [v1, v2, . . . , vj ].
Each element vj in LV defines the size of the subset Sx

i,j ,
ensuring that Sx

i,j ⊆ Px.

Each iteration i of a subset Sx
i,j not only represents a

random sampling from Px but also retains all elements
from the previous smaller subset Sx

i,j−1. Consequently, as
j increases (i.e., as the subset size grows within the same
iteration x), each new subset includes all samples from the
preceding smaller subset for the same product dataset.
This approach ensures that as the dataset increases in
volume, it maintains the same reference samples, thereby
preserving consistency across different subset sizes.

Modelling A list of machine learning models of arbitrary
size is utilised for training. Each element in the list (LM =
[m1,m2, . . . ,mk]) denotes a model mk indexed by k.
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Table 1. Characteristics of Machine Learning Models Evaluated in the Study

Models
(Abbreviations)

Parametric/
Non-Parametric

Regularization
(None/L1/L2)

Linearity
(Linear/Non-linear)

Sensitivity to
Scaling/Outliers

Ordinary Least Squares Linear Regression (OLS) Parametric None Linear Sensitive
Ridge Regression (Ridge) Parametric L2 Linear Sensitive
Least absolute shrinkage and selection operator (Lasso) Parametric L1 Linear Sensitive
Decision Tree Regression (DTR) Non-parametric None Non-linear Robust
Random Forest Regression (RFR) Non-parametric None Non-linear Robust
Gradient Boosting Regression (GBR) Non-parametric None Non-linear Robust
Linear Support Vector Regression (LIN) Parametric L2 Linear Sensitive
Polynomial Support Vector Regression (POLY) Parametric L2 Non-linear Sensitive
Radial Basis Function Support Vector Regression (RBF) Parametric L2 Non-linear Sensitive

Each model in the list LM is trained individually on each
subset Sx

i,j derived from the product datasets.

The naming convention for a model trained on a specific
subset follows the format Mx

i,j,k. This indicates that the
model indexed k from the list LM has been trained on
subset Sx

i,j , where x refers to the originating product
dataset, i to the iteration, and j to the specific subset
volume as defined by its position in the list of sampling
sizes LV .

2.3 Model Description and Parameter Range

This section outlines the models to be implemented, detail-
ing each model in the subsequent subsections. Addition-
ally, it includes the parameters and their respective ranges
used for hyperparameter estimation, where applicable.

The model list (LM ) consists of 9 ML models, as shown in
the first column of Table 1. Thus, the length of the list of
models is |LM | = 9.

A log-uniform distribution is used to define the hyperpa-
rameter range for many of the parameters. This distribu-
tion is particularly useful for parameters that span several
orders of magnitude, as it facilitates the exploration of a
wide range of scales effectively. The log-uniform distribu-
tion is defined as:

U(x, y) (1)

where U is the log-uniform distribution, and x and y are
the lower and upper bounds, respectively.

In addition, a random integer distribution is employed to
define the range for integer-valued hyperparameters, such
as the number of estimators in ensemble models or the
depth of decision trees. This distribution is particularly
useful when the hyperparameter must take discrete values
within a specified range. The random integer distribution
is defined as:

I(a, b) (2)

where I is the random integer distribution, and a and
b are the lower and upper bounds, respectively. This
distribution uniformly samples integer values between a
and b, inclusive.

Ordinary Least Squares Linear Regression (OLS) The
OLS is a widely used approach to linear modelling that fits
coefficients for all dimensions in the datasets to minimise

the residual sum of squares between the observed values
and the values predicted by the model (James et al., 2013).

Ridge Regression (Ridge) The Ridge model, also known
as Tikhonov regularisation, extends linear methods such as
OLS by incorporating regularisation. This model addresses
a regression problem using the l2-norm.

The method was introduced by Hoerl and Kennard (1970a)
in their 1970a; 1970b works.

The primary parameter for the Ridge model is the regular-
isation parameter for the l2-norm. Details of the parameter
and the range of values used are provided in Table 2.

Least absolute shrinkage and selection operator (Lasso)
The Lasso, similar to Ridge, is a linear model trained with
regularisation, but it uses the l1-norm instead. The term
was introduced by Tibshirani (1996).

The parameters for the Lasso are similar to those of Ridge,
focusing on the regularisation parameter. However, in the
case of Lasso, the parameter regulates the l1-norm. Details
of the parameter and the range of values used are provided
in Table 2.

Table 2. Parameters for Ridge and Lasso Re-
gression Models

Model Parameter Scope

Ridge Alphaa U(0.01, 100)

Lasso Alphaa U(0.01, 100)

a The alpha parameter regulates the
regularisation strength of the model.

Decision Tree Regression (DTR) The DTR is the first of
the non-parametric methods and it infers simple decision
rules from the data James et al. (2013).

The key parameter for the DTR is the maximum number
of features, which determines the number of features
to consider when finding the best split. Selecting the
appropriate maximum number of features is crucial for
controlling the diversity of features considered at each
split. Refer to Table 3 for details.

Random Forest Regression (RFR) RFR, also known as
random decision forests, is an ensemble learning method
used for regression tasks. This technique constructs a
multitude of decision trees during the training phase. Each
tree in the forest relies on the values of a random vector,
which is sampled independently and follows the same
distribution across all trees (Breiman, 2001).
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The parameters for the RFR include the maximum num-
ber of features (as with DTR) and the number of estima-
tors, which represents the number of trees in the forest.
The choice of the number of trees is critical, as it impacts
both the model’s performance and the risk of over-fitting.

Refer to Table 3 for details.

Gradient Boosting Regression (GBR) GBR is an en-
semble learning method used for regression tasks. This
technique builds a series of decision trees sequentially, with
each tree aiming to correct the errors made by its predeces-
sor. The process involves fitting new models to the residual
errors of the previous models, thereby improving accuracy
with each iteration. The final model is a weighted sum
of all individual models, resulting in a robust predictive
model that minimises the overall prediction error (Hastie
et al., 2009).

The primary distinction between GBR and RFR lies in
their construction strategy: random forests build trees
independently and combine their results, whereas gradient
boosting builds trees iteratively, with each tree focused on
correcting the errors of the previous ones.

The parameters that GBR shares with the previous tree-
based models include the maximum number of features,
the number of estimators, and the maximum depth, which
defines how deep each tree can grow.

Refer to Table 3 for details.

Table 3. Parameters for Decision Tree, Ran-
dom Forest, and Gradient Boosting Models

Model Parameter Scope

Decision Tree Max Featuresa I(1, 100)

Random Max Featuresa I(1, 100)
Forest # Estimatorsb I(100, 1000)

Gradient Max Featuresa I(1, 100)
Boosting # Estimatorsb I(100, 1000)

Max Depthc I(1, 100)
a Max features determine the number of features

considered for each split.
b Number of estimators specifies the total number

of trees in the ensemble.
c Max depth controls the maximum depth of each

tree.

Linear Support Vector Regression (LIN) SVM enhances
the traditional support vector machine regressor by em-
ploying kernels to expand the feature space, thereby ac-
commodating non-linear characteristics (Boser et al., 1992;
James et al., 2013). Three different kernels are utilised:
linear (discussed in this section), polynomial, and Radial
Basis Function Support Vector Regression (RBF), which
are presented in the subsequent sections.

The linear kernel is the simplest form of kernel function.
It maps the input features directly without any trans-
formation, making it suitable for linearly separable data.
The decision boundary is a straight line (or hyperplane in
higher dimensions), which simplifies the computation and
interpretation.

The parameters for the LIN model include the choice of
kernel (in this case, linear), the regularisation parameter
C, and epsilon.

For details on the parameters and their ranges, see Table 4.

Polynomial Support Vector Regression (POLY) The
polynomial kernel maps the input features into a higher-
dimensional space using polynomial functions. This allows
it to capture non-linear relationships between the features.
The degree of the polynomial determines the model’s com-
plexity, enabling it to fit more intricate patterns in the
data (James et al., 2013).

For details on the parameters and their ranges, see Table 4.

Radial Basis Function Support Vector Regression (RBF)
The RBF kernel, also known as the Gaussian kernel,

maps the input features into an infinite-dimensional space.
It measures the similarity between data points based on
their distance, allowing it to capture complex, non-linear
relationships. The RBF kernel is particularly powerful for
handling data that is not linearly separable (James et al.,
2013).

For details on the parameters and their ranges, see Table 4.

Table 4. Parameters for SVM Models with
Different Kernels

Model Parameter Scope

Support C1 U(0.1, 1.1)
Vector Epsilon2 U(0.01, 1)
(Linear)

Support C1 U(0.1, 1.1)
Vector Epsilon2 U(0.01, 1)
(Polynomial) Gamma3 U(0.01, 100)

Degree4 I(1, 2)
Coef05 U(0.01, 10)

Support C1 U(0.1, 1.1)
Vector Epsilon2 U(0.1, 1)

(RBF*) Gamma3 U(0.01, 100)

1 Regularisation Parameter for SVM applies
uniformly across other SVM models to ensure
consistency in regularisation and sensitivity.

2 The epsilon parameter defines a margin of
tolerance around the regression line within
which no penalty is assigned for prediction
errors.

3 The gamma parameter controls the influence
of a single training example and determines
the spread of the kernel. This affects the
smoothness of the decision boundary; lower
values imply a broader spread, while higher
values imply a narrower spread.

4 The degree parameter specifies the degree of
the polynomial function used to transform
the data, determining the flexibility of the
decision boundary by defining the highest
power of the input features.

5 The coef0 parameter represents the indepen-
dent term in the kernel function and adjusts
the influence of higher-order versus lower-
order terms.
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Fig. 1. Modelling Result for an Element of Px Showing RMSE for All Models Over the LV
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2.4 Data Pre-processing

In this work, two product datasets were compiled, Pα and
Pβ , each representing different stages in the production
process. The goal during pre-processing was to maintain
at least 10,000 samples, which influenced the configuration
of pre-processing steps. The pre-processing involved two
key steps: feature selection and outlier removal.

Feature selection was conducted to identify and retain the
most relevant variables by discriminating against those
with low variance and high inter-correlation. A variance
and correlation threshold was carefully estimated to ensure
that the sample volume remained above 10,000, thus
preserving the dataset’s integrity while enhancing model
performance.

Outlier removal was performed using the Interquartile
Range (IQR) method. This method involved several steps:

1. Calculating the first quartile (Q1) and the third quartile
(Q3). 2. Computing the IQR as IQR = Q3−Q1. 3. Defining
the lower bound as Q1 − 1.5× IQR. 4. Defining the upper
bound as Q3 + 1.5 × IQR. 5. Removing any data points
that fell below the lower bound or above the upper bound.

Following the outlier removal, the dataset was scaled to
standardise the features, ensuring that all variables con-
tribute equally to the model’s performance. Standardis-
ation involved adjusting the features to have a mean of
zero and a standard deviation of one, which is particularly
important for machine learning models that are sensitive
to the scale of the input data.

After these pre-processing steps, the dataset was split into
training and testing sets for model evaluation. The sep-
aration between the training and test datasets effectively
prevents overfitting, as is standard practice. To address un-
derfitting, model parameters were allowed sufficient flexi-
bility, managed through a trial-and-error approach. This
approach was supported by a baseline guess informed by
experience and conventional practices, ensuring that the
models could adequately capture the underlying patterns
in the data. The training set was used to fit the models,
while the testing set was reserved for assessing the model’s
predictive performance on unseen data, thereby enhancing
the model’s ability to generalise and ensuring robust and
reliable predictions.

2.5 Hyperparameter Estimation

A train-test split is implemented to ensure that the train-
ing process is conducted without any data leakage. Hyper-
parameter estimation is performed using a random grid
search approach.

As demonstrated by Bergstra and Bengio (2012), the
random search method offers significant advantages over
conventional exhaustive grid search, particularly in terms
of computational efficiency. It achieves comparable or
even superior results while requiring fewer computational
resources.

In a random grid search, hyperparameters are randomly
sampled from a predefined list or distribution across a
set number of iterations. This approach allows for a more

effective exploration of the parameter space, increasing the
likelihood of identifying optimal hyperparameters.

2.6 Evaluation

The Root Mean Squared Error (RMSE) is employed to
evaluate the performance of each subset model mx

i,j,k

on both training and test datasets. The RMSE depends
on various factors, including the production database,
iteration, volume, and model (m(x, i, j, k)). The RMSE is
defined by Equation 3:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3)

where n is the number of observations, yi represents the
actual values, and ŷi represents the predicted values.

This metric provides a robust measure of the model’s
predictive accuracy, with lower RMSE values indicating
better model performance.

Grid-plot Evaluation To effectively interpret the com-
plex system created by multiple layers of iterations, a
structured framework for evaluating the results is neces-
sary. The following approach is implemented in this work.

For each product dataset, a grid plot is created, containing
one subplot for each model. Given that the number of
models is 9, a 3 by 3 grid plot is used.

Each subplot, representing a specific model, displays how
the train and test scores vary across the list of volumes.
The y-axis shows the training and test error scores, while
the x-axis represents the sampling volume. To enhance
clarity, the x-axis is displayed on a logarithmic scale.

Additionally, each subplot shows the result scores for
all iterations of the random grid search. The results are
depicted as an area plot, with the mean indicated by a line
(solid red for train data and dashed blue for test data).

To facilitate the comparison of model results within the
same product dataset, faint but discernible lines are drawn
in the background to represent other models. These back-
drop lines correspond to the score type. Consequently, the
x- and y-axes of all subplots are synchronised and shared.

Model Result Ranking To provide a comprehensive
overview of model performance, a heat map ranking plot
is created. This heat map shows which models achieve the
best test scores (lowest RMSE) for each volume.

Each model in LM is represented by an individual row on
the y-axis.

Each volume in LV has a corresponding column on the
x-axis, increasing incrementally. Each cell in the heat map
displays the rank of the model, ranging from 1 to |LM |.
The top three models are colour-coded individually, while
the remaining models share a single colour, as indicated
by the colour bar on the right.
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3. RESULTS AND DISCUSSION

The results and corresponding discussion are presented in
this section. First, the outcomes of the data pre-processing
stage are detailed in Section 3.1. This is followed by a
description of the subset sampling process in Section 3.2.
Next, the details of the hyperparameter search are pro-
vided in Section 3.3. The modelling scores are then pre-
sented in Section 3.4, followed by the analysis of the model
rankings in Section 3.5.

3.1 Preprocessing

The pre-processing stage resulted in two datasets, Pα

and Pβ , each ultimately containing an equal number of
features. However, only half of these features were shared
between the two datasets. During the feature selection
process, different subsets of features were identified as
relevant or superfluous for each dataset, leading to the
retention of distinct feature sets in Pα and Pβ . Given that
both datasets are derived from the same processes, it is
expected that they share some underlying characteristics,
which is reflected in the final selection of features.

The features retained after pre-processing for both Pα

and Pβ are summarised in Tables 5 and 6. To ensure
consistency in subsequent analyses, the features shared
between Pα and Pβ were ordered and enumerated in a
manner that aligns corresponding features representing the
same properties. Each feature was assigned a consistent
subscript across both datasets, allowing for direct com-
parison and facilitating the interpretation of the model
results.

Table 5. Features Selection Outcome for α and
β

Features α β

Initial 22 22
Removed 14 14
Kept 8 8
Missing Value Ratio* 0.96 0.95
* Constant value what ratio dictat-

ing the threshold for feature re-
moval due to missing values.

Table 6. Outlier Removal Results for α and β

Samples α β

Initial 12072 13597
Removed 1667 1543
Kept 10405 12054

3.2 Subset Sampling

Subsets Sx
i,j were extracted for each volume in the list LV

and sampled A times, resulting in |LV | ×A permutations
per product dataset. The process begins with 10 samples
and progresses to 10,000 samples in 10 steps, with the
sampling volumes defined as LV = [v1 = 10, v2 = 22, v3 =
46, v4 = 100, v5 = 215, v6 = 464, v7 = 1000, v8 =
2154, v9 = 4642, v10 = 10000].

Thus, |LV | = 10, states that the length of the list of
sampling volumes is 10.
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Fig. 2. Feature Distributions

3.3 Hyperparameter Estimation

For each element in the model list LM , the best fit was
determined for every dataset in S. Table 7 presents the
mean values of the hyperparameters selected by the search
process for the estimators.

3.4 Modelling Score

This subsection presents and discusses the variation in
model scores as the volume of data in the production
datasets increases. Figure 1 contains two sub-figures, 1a
and 1b, which illustrate how the scores of all models
change with increased data volume (see subsection 2.6.1
for details) for Pα and Pβ , respectively. In general, the
initial data volumes exhibit considerable volatility and
are not given significant weight in the overall analysis
of results. This volatility is reflected in the variation of
the scores. Unless explicitly stated, both Pα and Pβ are
discussed collectively in the following analysis.

Most models show convergence between training and test-
ing scores as data volume increases, with Lasso being a
notable exception. Thus, it can be concluded that gener-
alisation improves with an increase in data volume. How-
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Table 7. Hyperparameter Result

Model Parameter α β

101 102 103 104 101 102 103 104

Ridge Alpha 5.130 5.190 3.393 7.206 16.470 7.628 2.797 5.435

Lasso Alpha 0.026 0.017 0.012 0.033 0.171 0.018 0.018 0.019

Decision Tree Max Features 36.0 35.0 43.0 46.5 47.5 73.5 57.0 66.5

Random Forest Max Features 45.0 61.0 54.0 27.0 49.5 39.5 59.0 44.5

# Estimators 327.0 269.0 490.0 636.5 291.5 657.5 604.0 257.0

Gradient Boosting Max Depth 34.5 37.5 10.5 23.0 56.0 63.5 15.0 25.5

Max Features 39.5 6.5 25.5 50.5 42.5 4.5 34.0 61.5

# Estimators 563.5 599.5 513.5 215.0 605.0 579.0 588.0 693.5

Support Vector (Linear) C 0.047 0.032 0.071 0.154 0.082 0.088 0.057 0.101

Epsilon 0.024 0.016 0.022 0.028 0.049 0.022 0.029 0.027

Support Vector (Polynomial) C 0.614 0.281 0.254 0.443 0.145 0.346 0.208 0.289

Epsilon 0.512 0.119 0.114 0.123 0.636 0.117 0.107 0.130

Gamma 0.867 0.519 0.263 5.295 0.637 0.852 0.094 0.132

Degree 2.0 3.0 2.0 2.0 2.0 3.0 2.0 2.0

Coef0 0.187 0.197 1.117 0.607 0.091 0.644 0.570 0.461

Support Vector (RBF) C 0.145 0.134 0.168 0.185 0.028 0.103 0.477 0.166

Epsilon 0.017 0.021 0.024 0.019 0.034 0.031 0.033 0.017

Gamma 0.300 0.182 0.082 2.177 0.260 0.077 0.136 0.979

ever, a point of diminishing returns in generalisation is
discernible at different volumes and to varying degrees.

Lasso exhibits interesting behaviour, where training and
testing scores converge quickly but then fluctuate as data
volume increases, resulting in subpar overall performance.
To explain this atypical behaviour, it is worth considering
Table 1, which highlights Lasso’s unique use of l1 regular-
isation. Furthermore, as shown in Table 7, the Lasso hy-
perparameter (Alpha) remains relatively static as volume
increases, indicating that the method may be incompatible
with this data or that the parameter ranges need revision.

The training score generally increases monotonically for all
models except Lasso and RBF. The previous explanation
for Lasso is insufficient when considering RBF, but since
RBF shows significant improvement with larger volumes,
this is not a major concern.

Examining the score spread, it is clear that ensemble mod-
els outperform the other models. A noteworthy runner-
up is RBF, which, at larger volumes, approaches the
performance of the ensemble models. This suggests that
the data is well-suited for a non-parametric approach.
Additionally, since all non-linear models, except POLY,
show strong performance, it implies that the data has a
non-linear nature. Alternatively, it may also indicate that
the hyperparameter estimation and parameter ranges are
insufficient to fully capture the underlying data patterns.

Referencing Table 1, it is possible that the robustness of
ensemble methods to outliers gives them an advantage,
suggesting that the pre-processing approach may have
been inadequate for models sensitive to outliers.

3.5 Model Ranking

To make the overall performance of the models more
discernible, their rankings across different data volumes
are presented in Figs. 3 and 4 for Pα and Pβ ,
respectively (see subsection 2.6.2 for details).

The ranking for Pβ shows convergence earlier than for Pα,
meaning it stabilizes at a lower data volume. Specifically,
Pβ reaches saturation at a volume of approximately 102.3,
while Pα does not reach saturation until a volume of
around 103.

The differences between Pα and Pβ can be attributed to
the distinct sets of features retained after pre-processing,
even though both datasets originate from the same un-
derlying processes. Although each dataset contains ap-
proximately 10,000 samples and initially had an equal
number of features, the final set of features for Pα and Pβ

differs. This suggests that the selected features contribute
differently to the modelling process, with certain features
being more relevant or informative for one dataset than
the other.

The divergence in feature selection underscores the varying
impact of these features on the predictive models. Some
features may offer greater predictive power or relevance
depending on the specific context of each dataset, which
in turn influences the point at which the model rankings
stabilise

4. CONCLUSION

This study has demonstrated that most machine learning
models show consistent improvement in predictive per-
formance, as evidenced by a reduction in test RMSE,
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Fig. 3. Model Rank for Pα
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Fig. 4. Model Rank for Pβ

with increasing data volume. This finding underscores the
importance of larger datasets in enhancing model general-
isation, which is crucial in the context of industrial batch
process modelling.

Among the models evaluated, ensemble models such as
RFR and GBR consistently outperformed other models
across various data volumes. Their robustness to outliers
and ability to capture complex, non-linear relationships
make them particularly effective for the datasets used in
this study.

In contrast, non-ensemble models, especially those sen-
sitive to outliers, generally underperformed relative to
ensemble methods. Models employing L1 regularisation,
such as Lasso, exhibited less stability and improvement
in performance, suggesting that the chosen regularisation
method may not be optimal for this data.

The disparity in performance between ensemble and non-
ensemble models may be attributed to the latter’s greater
sensitivity to outliers. While stricter outlier removal could
potentially enhance the performance of non-ensemble
models, it would also reduce the number of available data
samples, potentially limiting the study’s scope.

The analysis of model rankings revealed a notable differ-
ence in the convergence times between models trained on

the Pβ and Pα datasets, despite both being derived from
the same type of product and processes. This disparity
illuminates the effectiveness of the introduced framework
in detecting subtle variations in dataset complexity, par-
ticularly in terms of the variation of selected features,
which significantly impacts the amount of data required
for models to achieve saturation.

These findings highlight the importance of careful model
selection and robust data pre-processing in industrial ap-
plications. Given the superior performance of ensemble
models, they should be prioritised in future research within
similar contexts. However, non-ensemble models may re-
quire more sophisticated pre-processing and parameter
tuning to achieve comparable performance. These con-
clusions provide a foundation for further work aimed at
improving model accuracy and robustness in industrial
settings, potentially through enhanced data handling tech-
niques and the inclusion of more complex models.

The findings of this study have broader implications be-
yond the iron and steel industry, extending to other sec-
tors that rely on industrial batch processes, such as the
chemical, pharmaceutical, and food processing industries.
These industries share common challenges in managing
complex, multi-product operations where model perfor-
mance is heavily influenced by data volume and qual-
ity. The demonstrated superiority of ensemble models in
handling non-linear relationships and their robustness to
outliers suggests that similar approaches could be highly
effective in these related industries. Moreover, the insights
gained from addressing model sensitivity to outliers and
the impact of dataset complexity can inform best practices
in these sectors, where optimising process efficiency and
product quality is equally critical. By adopting the strate-
gies outlined in this study, industries with comparable
batch processing challenges can enhance their predictive
modelling capabilities, leading to more sustainable and
efficient operations.
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Abstract: This research explores the feasibility of using excess heat from data centers for
biomass drying, enhancing the biomass energy value. A predictive model was developed to
estimate exhaust air humidity from the dryer, indirectly indicating biomass moisture. Machine
learning techniques, including linear regression model (LM), gradient boosting machines (GBM),
eXtreme gradient boosting (XGBoost), random forest (RF), and multilayer perceptron (MLP),
were used. Tree-based models GBM, RF, and XGBoost achieved a coefficient of determination
(R²) of 0.88–0.89. Methods were enhanced with transparency through explainable artificial
intelligence (XAI) techniques, which facilitated the analysis and visualization of humidity
fluctuations. Key factors affecting drying efficiency include weather conditions, supply air
humidity, and fan speed. The study provides actionable insights for optimizing the drying
process, improving system air tightness, and advancing sustainable energy utilization through
AI-driven solutions. The developed model enables future dynamic control of drying processes.

Keywords: process monitoring, explainable AI, predictive modeling, decision support, data
centers

1. INTRODUCTION

Excess heat utilization from data center is widely investi-
gated and is high interest of service provides as the climate
targets, questions and demands are also increasing around
the data center field. The utilization of data center excess
heat especially in Nordics is concentrated to utilization in
district heating (Wahlroos et al., 2018), as it is a well-
established heating method in the area. District heating
production in general still relays on fossil fuels and for
example in Finland largely also to wood-based bioenergy.
The use of wood-based bioenergy is increasing because of
climate actions and increased price of CO2 allowances. For
energy production the wood based raw materials like wood
chips are highly utilized. One option to utilize the waste
heat of data center could be drying of biomass. As very
even quality continuous heat flow is available from the
datacenter and the drying of biomass as such requires lots
of energy, but at the same time the energy value of the
dried material increase by drying. The biomass drying has
been considered earlier an option for waste utilization as
an external process (Wahlroos et al., 2018) and now it was
tested in the industrial scale.

In industrial settings, the challenges posed by demand-
ing measurement conditions can significantly impact on
quality of the data, and the data can come from several
different sources. This multi-source data, often varied in
format and structure, adds complexity to the analysis
process. Despite these challenges, machine learning (ML)

methods are widely employed to diagnose, optimize, and
enhance the quality and efficiency of complex manufactur-
ing processes. However, the volume of data generated in
industrial environments can be immense, further compli-
cating the analysis process. ML techniques offer a means
to extract valuable insights from these large and diverse
datasets, enabling the prediction of process outcomes and
the identification of relationships between different process
parameters (He et al., 2009).

Previously, wood drying processes have been successfully
optimized using ML methods across various applications.
Ascher et al. (2022) have shown that ML methods have
great potential towards modelling the biomass and waste
gasification and pyrolysis processes and predicting the
processes’ product yields and properties. Chai et al. (2019)
utilized feed forward neural network to simulate wood
moisture content during the high-frequency drying, while
Onsree and Tippayawong (2021) achieved accurate pre-
dictions of solid products yields from biomass torrefac-
tion processes using gradient boosting machines (GBM).
Studies have explored traditional physical methods in this
area as well. For example, Li et al. (2012) investigated
integrating a drying process into a power generation plant,
using waste energy from process industries. These sources
included low-grade heat, such as flue gas or hot cooling wa-
ter for superheated steam. Additionally, Gebreegziabher
et al. (2013) developed a physical model to determine the
optimum drying level of wood chips. Furthermore, Li et al.
(2022) examined using steel heat carriers for waste heat re-
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covery and drying of high-moisture biomass in direct-fired
power generation, achieving a 77.4% thermal efficiency in
waste heat recovery and reducing fuel moisture content.

To fully leverage data-driven process modeling, the model
results must be transparent to humans managing the
manufacturing process. Hence, employing explainable ma-
chine learning methods is advisable (Goebel et al., 2018).
Transparency should be increased, particularly when the
model structure fails to explain the root causes behind the
outcomes (Hagras, 2018). This transparency not only aids
in understanding but also facilitates the optimization of
the process, enabling humans to make informed decisions
based on the clear explanations.

In this research, first, a simple linear regression model
is trained to predict biomass moisture after the dry-
ing process using a small dataset. Then, a model for
predicting the absolute humidity of the air exhausted
from the dryer is developed using LM (James et al.,
2013), eXtreme gradient boosting (XGBoost) (Chen and
Guestrin, 2016), GBM (Hastie et al., 2001), random forest
(RF) (Breiman, 2001), and multilayer perceptron (MLP)
(Rosenblatt, 1958; Bishop, 1995) modeling methods, and
the root causes behind the undesirable humidity levels are
identified. The modeling results have been analysed and
visualized using XAI methods.

This study represents a pioneering effort in the field, to
our knowledge, being the first to utilize waste heat from
data centers for biomass drying and optimize the process
through exhaust air humidity prediction. The article is or-
ganized as follows: In Section 2, the biomass drying process
is described. Section 3 explains the data collection process.
The modeling and visualization methods are introduced
in Section 4, while Section 5 presents model training and
results. Finally, the discussion and conclusion are found in
Sections 6 and 7, respectively.

2. BIOMASS DRYING PROCESS

The biomass drying using waste heat from a small data
center, the Boden Type Data Center (BTDC) located
in Boden, Sweden, was tested by installing an industrial
scale dryer unit, ModHeat®, at the data center site. The
biomass drying test setup is depicted in Fig. 1. The drying
air, in this case waste heat from data center was taken
straight from the BTDC (from area of 60 m2) to the drier.
The dryer´s fan was used to suck the warm air from the
data center to the dryer. The dried test material was a
normal energy wood chip.

The wet wood chips were fed to the hopper where the
material was then fed by conveyer belt to the dryer´s
materials feeder. From the material feeder the biomass was
fed to dryer. Inside the dryer material was circulated from
drying level to another, as the dryer consist of five drying
levels. The drying air from the data center was in contact
with the material inside the dryer and was circulated in
the opposite direction with the material flow. The drying
air was circulated by the exhaust fan of the dryer and the
moist exhaust air was directed to atmosphere after drying.
The dried material discharged from the bottom level of the
dry to the conveyer and unloaded to the skip.

The main feature of the drying test campaign at the
data center end was the hot aisle temperature (30/42°C)
representing a traditional and high-performance comput-
ing data center, which was achieved by the varying the
operation modes for the cooling equipment. At the dryer
end, the main features were the air flow rate at inlet
(50/100%), which was adjusted with the dryer´s fan speed
and the material feeding rate (50/75/100 %), which was
adjusted to control the material flow volume to the dryer.
The material flow rates were 2, 2.7, and 3 m3/h.

Fig. 1. The layout of the biomass drying test setup.

3. DATA COLLECTION

The test campaign lasted about two weeks from September
14th to 24th, 2020, during which the test setup was
instrumented for a data collection. The data collection
consists of data from four different systems, of which three
were inputs. One of the systems was the internal system of
the data center (provided by EcoCooling), which collected
environmental data from the computer room evaporation
units (CREC). The CREC handles the server cooling and
kept the data center aisles at target temperatures. The
second data collection system was the ModHeat® dryer
data collection system gathering the information about
temperature, relative humidity, and air speed going in
and out of the dryer. The third system (provided by
RISE Research Institutes of Sweden) gathered the data
about temperature, relative humidity, air volume flows
entering and exhausting the dryer. As the inlet and outlet
temperatures and relative humidity of air were the main
data points for dryer´s efficiency evaluation both data
loggers were used to avoid data loss. The fourth system
collected the data related to electric power usage data of
the servers, the dryer, the CREC units and local weather
data at the datacenter site. The sensor placement of data
collection is depicted in Fig. 2. In addition to monitored
data, the moisture content of the material, initial moisture
content as wet and after drying, was measured sample
based manually in intervals during the test campaign.
However, the dataset was limited, comprising only 15 pairs
of values before and after drying.

4. METHODS

Several different machine learning methods have been used
in this research to find insights from the data. In addition,
to interpret these models, methods of XAI are used.

4.1 Machine learning models

In this research, first, a linear regression model based on
ordinary least square regression was used in biomass mois-
ture prediction and the model’s ability to generalize new
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Fig. 2. The data collection points and placement of the
sensors at the test site.

data have been inspected based on leave-one-out-cross-
validation (LOOCV) (Hastie et al., 2001). Subsequently,
five predictive ML methods - LM, GBM, RF, XGBoost
and MLP - were employed to predict the absolute humid-
ity of exhaust air, utilizing 10-fold cross-validation dur-
ing training. For each model except LM, hyperparameter
tuning was conducted using a grid-based approach. The
tuning process aimed to optimize the models’ performance
metrics, such as root mean squared error (RMSE), using
a cross-validation.

All of these methods are types of supervised machine
learning, where the algorithms are trained on labeled
data to predict the desired variable. These methods were
employed with the goal of identifying the factors that
affect biomass end moisture and predicting accurately the
exhaust air humidity after one and half hour, which can
aid in optimizing the initial settings for the drying process.

GBM, RF, and XGBoost are tree-based ensemble methods
(Zhou, 2014). They work by combining the predictions of
multiple individual models (trees in the case of RF and
GBM, and boosted trees in the case of XGBoost) to make
a final prediction. In RF, each tree is built independently
using a random subset of features and samples, and the
final prediction is made by averaging or voting over the
predictions of all trees (Breiman, 2001). In GBM and
XGBoost, trees are built sequentially, with each new
tree trained to correct the errors made by the previous
trees.(Hastie et al., 2001; Chen and Guestrin, 2016) MLP
is a type of artificial neural network (ANN) that consists
of multiple layers of interconnected neurons, including an
input layer, one or more hidden layers, and an output layer.
Each neuron in an MLP is connected to every neuron in the
adjacent layers, allowing for complex non-linear mappings
between input and output features (Bishop, 1995).

4.2 Visualization with XAI

Explainable artificial intelligence (XAI) methods have
been used to enhance the understandability of the model-
ing results (Goebel et al., 2018). With XAI methods, the
interpretation of the black box models can be increased
(Apley and Zhu, 2019). MLPs are generally considered to
be less interpretable compared to tree-based models like
RF, GBM, and XGBoost. This is because the internal
workings of a neural network are highly complex and
opaque, making it difficult to understand how individual
features contribute to the model’s predictions. In contrast,

decision trees are more transparent and can provide in-
sights into which features are important for making pre-
dictions.

Transparency can be increased by providing information
about the strength of the importance of each feature of
the model regardless of the modeling method used. In this
study, model-independent SHapley Additive exPlanations
(SHAP) (Lundberg and Lee, 2017) and Accumulated Lo-
cal Effects Plots (ALE) (Friedman, 2002) techniques are
used. SHAP based on the concept of Shapley values from
cooperative game theory to provide a unified approach for
explaining the predictions of any machine learning model.
They quantify the contribution of each feature by system-
atically varying its value while keeping others constant and
comparing the model’s prediction to a baseline. With ALE,
the average effect of features on the predictions of ML
model can be visualized. The interactions between features
are also important, and the strength of interactions can be
estimated.

5. RESULTS

In this research, there are two study cases, each with its
own dataset. The first study case focuses on predicting
biomass moisture, while the second study case focuses on
predicting the humidity of the exhaust air.

5.1 Dataset

In these two cases, about two weeks’ dataset were avail-
able, although with some limitations. In the biomass mois-
ture study case, the dataset comprises 15 pairs of biomass
moisture measurements, recorded manually as spot checks.
The pairs were selected with a minimum one-hour delay
between start and end moisture readings during the period
of time.

In the absolute humidity of exhaust air study case, the
data is divided iteratively into training and test sets using
10-fold cross-validation. The independent features used for
model training, are 5-minute average values and there are
12 features each containing 140 values. Features are listed
in Table 1. The dependent variable, exhaust air absolute
humidity, represents the absolute humidity after one and a
half hours, relative to the starting state, which corresponds
to the drying time of one portion of the biomass.

5.2 Study case: Biomass moisture

Rather than predicting end moisture directly, a linear
regression model was employed to predict the difference
between start and end moisture. Variable selection dur-
ing modeling resulted in a final model with 9 variables
predicting this moisture difference. Figure 3 displays the
actual versus predicted moisture differences, while Figure 4
provides detailed model results. Despite an 89% expla-
nation of variance (R2), the adjusted R2 (0.69) suggests
the presence of non-significant variables, notably POD2
supply temperature (p = 0.01), supply flow (p = 0.01), and
outdoor absolute humidity (p = 0.02), identified as signif-
icant based on p-values. The coefficient plot, with 95%
confidence intervals, indicates considerable uncertainty in
variables, with some intersecting the reference line at 0,
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Table 1. Description of the independent variables

Name Description

container supply hum incoming air humidity measured in the end of air pipe (%)
container supply temp incoming air temperature measured in the end of air pipe (°C)
dryier fan speed incoming air flow rate to dryer(%)
dryier feed rate material feeding rate to the dryer (%)
humidity outdoor absolute the absolute value of outdoor air humidity (g/m3)
humidity outdoor relative the relative value of outdoor air humidity (%)
POD2 supply hum incoming air humidity from the data center to air pipe (%)
POD2 supply temp incoming air temperature from the data center to air pipe (°C)
precipitation quantity absolute the absolute quantity of half on hour cumulative precipitation (mm)
Supply air temp incoming air temperature from pipe to dryer (°C)
Supply air relative humidity incoming relative air humidity from pipe to dryer (%)
supply flow Air flow from data center to dryer measured in the middle of the pipe (m3/s)

signifying insignificance in Fig. 5. Notably, absolute pre-
cipitation quantity and relative exhaust air humidity were
non-significant, while others influenced biomass moisture
differences. The model performance was evaluated using
LOOCV, yielding an R2 value of only 0.57. The general-
ization of this model appears to be quite poor.

Fig. 3. A comparison between observed and predicted
biomass moisture differences with LM.

Fig. 4. LM performance evaluation.

5.3 Study case: Absolute humidity of exhaust air

In this study, the absolute humidity of exhaust air is
predicted using five ML models: LM, GBM, RF, XGBoost,
and MLP. Each model was trained and evaluated using 10-
fold cross-validation, and all models except LM underwent
hyperparameter tuning via grid search. The LM achieved
an average RMSE of 0.468 and average R2 of 0.799. GBM

Fig. 5. A coefficient plot of LM with 95% confidence inter-
vals showing the significance of independent features.

Table 2. Comparison of modeling results.
Higher R2 values and smaller RMSE values

indicate higher predictive accuracy

Model R2 Mean ↑ (sd ↓) RMSE Mean ↓ (sd ↓)
LM 0.799 (0.079) 0.468 (0.113)
GBM 0.880 (0.070) 0.359 (0.107)
RF 0.894 (0.074) 0.345 (0.110)

XGBoost 0.894 (0.075) 0.345 (0.101)
MLP 0.726 (0.005) 0.738 (0.003)

showed the best results with a shrinkage of 0.1, interaction
depth of 6, and 200 trees, yielding an average RMSE of
0.359 and an average R2 of 0.880. RF achieved optimal
performance with the number of variables to randomly
sample as candidates at each split (mtry) of 4, resulting in
an average RMSE of 0.345 and an average R2 of 0.894.
XGBoost performed optimally with a learning rate of
0.3, maximum depth of 3, and 200 rounds, achieving an
average RMSE of 0.345 and an average R2 of 0.894. MLP
demonstrated its best performance with a single hidden
layer size of 10 and weight decay of 0.01, achieving an
average RMSE of 0.738 and an average R2 of 0.726. All the
modeling results, including mean and standard deviation
values of R2 and RMSE for each of five models, are shown
in Table 2. As can be seen, the most accurate models are
RF and XGBoost based on the RMSE and R2 values.

The SHAP feature importance plots for both models are
presented in Fig. 6 and Fig. 7. In the RF plot, the X-axis
values indicate the average absolute SHAP value across all
samples, representing the average impact of each feature
has on the model’s output across different data points. A
higher absolute SHAP value suggests that the feature has
a stronger influence on the model’s prediction. Conversely,
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In XGBoost, the X-axis labeled ”Gain” denotes the gain in
model performance achieved by splitting on each feature
during the training process. This gain is calculated based
on various metrics such as information gain or reduction
in impurity. Features with higher gain values indicate that
splitting on those features leads to greater improvements in
the model’s predictive accuracy. In both plots, the top four
features are the same but in a different order. The most im-
portant features are the amount of humidity expelled from
the data center (POD2 supply hum), absolute humidity
of outdoor (humidity outdoor absolute), absolute quantity
of precipitation (precipitation quantity absolute), and the
speed of the dryer fan (dryer fan speed). In other worlds,
these features exhibit the most significant influence on the
target variable, the exhaust air humidity from the dryer.

The correlation between features has been calculated and
is shown as a heatmap in Fig. 8. It can be seen that
the most correlated feature pairs are those measuring
the supply air humidity and temperature. Additionally,
the speed of the fan correlates quite strongly (0.80) with
the amount of humidity expelled from the data center
(POD2 supply hum), the relative outdoor humidity (0.89),
and the absolute precipitation quantity (0.87). The RF
model will be interpreted in more detail next.

Fig. 6. The SHAP feature importance for RF.

The effect of each feature on the dependent variable is
visualized with Accumulated Local Effects (ALE) plots.
Figure 9 presents the ALE plot illustrating the influence
of the input feature ’POD2 supply hum’ on the exhaust
air absolute humidity. ALE shows the main effect of the
feature at a certain value compared to the average pre-
diction of the exhaust air absolute humidity of RF and
also the distribution of data points. As can be seen, the
predicted exhaust air absolute humidity is higher when the
POD2 supply humidity is below 12.8%. Similarly, a clear
boundary can be observed where the feature begins to have
a negative effect on the exhaust air absolute humidity in

Figs. 10 to 13. These plots show that the exhaust air
absolute humidity is higher when the absolute humidity

of outdoor (humidity outdoor absolute) is below 6.7g/m3,
the container supply humidity is below

Fig. 7. The SHAP feature importance for XGBoost.

Fig. 8. Correlation heatmap of the independent features.

15.3%, the absolute quantity of precipitation is below
139mm (precipitation quantity absolute), and the speed
of the dryer fan (dryer fan speed) should be 50% instead
of 100%. The modeling results are influenced not only

Fig. 9. ALE of the POD2 supply humidity (%) on the
predicted humidity of RF (black solid line) are shown
on the Y-axis, with the distribution of data points
represented by black bars along the X-axis.

by individual features but also by their interactions. In
addition to analyzing features independently, it’s essential
to study their interactions. These interactions are depicted
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Fig. 10. ALE of the absolute humidity of outdoor (g/m3)
on the predicted humidity of RF.

Fig. 11. ALE of the container supply humidity (%) on the
predicted humidity of RF.

Fig. 12. ALE of the absolute quantity of precipitation
(mm) on the predicted humidity of RF.

in Fig. 14, illustrating the strength of interplay between
features. Each feature is assigned an interaction strength
value, ranging from 0 to 1, indicating the proportion of
explained variance of f(x). A value of zero denotes no
interaction, while one indicates complete dependence on
the interaction of the given feature. Notably, POD2 supply
humidity, container supply humidity, relative and absolute
humidity of outdoor, and absolute precipitation quantity
exhibit the highest interaction strengths. Moreover, Fig-
ure 15 visually identifies the strongest interaction partners
for each feature. For instance, the POD2 supply humidity’s
primary interaction partner is the absolute humidity of
outdoor. Furthermore, interactions between absolute pre-

Fig. 13. ALE of the speed of the fan (%) on the predicted
humidity of RF.

cipitation quantity, relative humidity of outdoor, container
supply air humidity, and the speed of fan are also observed.
But overall, the interaction rates are quite low, indicating
a relatively low interaction between the features.

Fig. 14. Overall interaction strengths for each feature
independently analyzed, derived from the RF model.

Fig. 15. The 2-way interaction strengths between the most
important feature, POD2 supply humidity, and the
other features, as determined by the RF model.

For individual predictions, SHAP summary plots provide
a visualization of the SHAP values for each feature. A
summary of SHAP values illustrates the impact of each
feature on the predicted exhaust air absolute humidity in
Fig. 16. A positive SHAP value for a feature indicates
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that its presence increases the prediction, while a nega-
tive SHAP value indicates that its presence decreases the
prediction. The length of the bar shows the magnitude
of the impact. Longer bars mean a greater impact on
the prediction. It’s evident that lower POD2 supply hu-
midity, absolute humidity outdoors, and container supply
humidity values correspond to higher predicted exhaust
air absolute humidity. Conversely, higher values result in
lower predicted humidity. As can be seen, with the low
POD2 supply humidity, absolute humidity of outdoors and
container supply humidity values, the predicted exhaust
air absolute humidity is higher. Similarly, with higher
values, the predicted humidity is lower.

Fig. 16. Summary of SHAP values illustrating the impact
of each feature on RF model predictions.

6. DISCUSSION

The prediction of biomass end moisture poses a significant
challenge due to the inherent difficulty indirectly mea-
suring this target variable. In this study, a small set of
initial measurements was measured both before and after
the drying process. However, the small size of the dataset
and the quality issues associated with the measurements
contribute to the overall low modeling accuracy. Conse-
quently, an alternative approach focusing on the exhaust
absolute humidity was adopted, as it proves to be more
easily measurable. To mitigate the challenges posed by the
limited datasets, cross-validation techniques were utilized
to enhance the robustness of model evaluation and mini-
mize the potential for overfitting.

The relationship between exhaust air humidity and mois-
ture captured from the material reveals valuable insights
in to the drying process. Specifically, in the absolute hu-
midity of exhaust air study case, it was assumed that
higher humidity levels in the exhaust air corresponded to
greater moisture extraction from the biomass, resulting in
a drier biomass output. Root cause analysis of exhaust air
humidity reveals underlying root causes affecting biomass
moisture, as well.

The most important factor behind the humidity expelled
from the dryer is the amount of humidity expelled from the

data center (referred to as the POD2 supply humidity), as
indicated by the RF feature importance analysis. Addi-
tionally, the absolute quantity of precipitation (referred
to as precipitation quantity absolute) emerges as another
crucial factor, as identified by the XGBoost analysis. Both
features rank in the top four in both analyses. Variations
in air humidity along the path from the data center to the
dryer, as well as the initial supply humidity (referred to
as the container supply humidity) at the onset of drying,
play significant roles in both feature analyses. In both
analyses, the top two most important features include the
absolute outdoor humidity and the absolute quantity of
precipitation, which are quite strongly correlated based on
the heatmap. Therefore, weather conditions, particularly
rainy weather, are found to reduce the effectiveness of the
biomass drying process due to alterations in the quality of
leaked air.

The SHAP summary plots provided valuable insights into
the impact of each feature on predicted exhaust air abso-
lute humidity. The analysis revealed that lower POD2 sup-
ply humidity, absolute humidity outdoors, and container
supply humidity were associated with higher predicted
exhaust air absolute humidity, as indicated by positive
SHAP values. Conversely, higher values of these features
were linked to lower predicted humidity, as evidenced
by negative SHAP values. These findings highlight the
significance of controlling and optimizing factors such as
POD2 supply humidity and outdoor humidity to manage
and regulate exhaust air absolute humidity levels during
the drying process.

Through data analysis, three threshold values were iden-
tified to increase the exhaust absolute humidity: POD2
supply humidity below 12.8%, container supply humidity
below 15.3%, and the speed of the dryer fan set at 50%
instead of 100%. Additionally, favorable weather condi-
tions related to air humidity were identified: the absolute
humidity outdoors should be below 6.7 g/m3, and the
absolute quantity of precipitation should be below 139
mm. If these thresholds are exceeded, process settings can
be adjusted to optimize biomass drying, resulting in a drier
biomass output.

Moreover, weather conditions interact with other indepen-
dent features, highlighting the importance of improving
system air tightness to enhance drying efficiency. Shorter
and more airtight pipes between the data center and dryer,
along with airtight design of air entry and output for the
dryer, can mitigate the adverse effects of humid weather
conditions, further optimizing biomass drying effective-
ness.

The developed model accurately predicts exhaust air ab-
solute humidity for one hour and a half into future with
present settings. Additionally, both the RF and XGBoost
models demonstrate strong generalization capabilities, as
evidenced by the metrics calculated on an independent
test dataset obtained through 10-fold cross-validation.
These models explain 89% of the variation in exhaust
air absolute humidity using the selected independent fea-
tures. Nonetheless, further research is needed to refine the
model’s ability to indirectly predict biomass end moisture.
With access to more data for model training, testing,
and validation, dynamic modeling could enable long-term
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predictions of end moisture and adaptive system control,
further optimizing the entire biomass drying process.

7. CONCLUSION

It has been shown that the developed models, even with a
small dataset, showcased the potential of ML and its ca-
pabilities in developing process control for biomass drying,
particularly through tree-based ML methods. As the test
campaign showed the ambient conditions effect strongly
to the dryer´s efficiency especially when low temperature
drying is done. And when operating a multivariant system
like drying in a changing environment there needs to be
possibilities to measure and react to the changes. The
machine learning could provide a tool for handling these
changes by predicting the upcoming changes based on the
history data or forecast data e.g. of weather conditions
or material initial moisture content changes. More exact
evaluation of process parameters variations enables more
accurate prediction of e.g., production capacities.
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Abstract: Gas turbines are vital in power generation and propulsion systems. However, these engines are 
exposed to complex and variable operating conditions, which makes early and accurate fault detection 
essential for predictive maintenance and minimizing unplanned downtime. This paper proposes a novel 
approach that combines convolutional neural networks (CNNs) with transformer architectures to address 
these challenges. The proposed Convolutional transformer model aims to enhance the accuracy and 
robustness of turbofan fault classification by integrating the feature extraction capabilities of CNNs with 
the contextual learning strengths of transformers. Through rigorous experiments, we seek to demonstrate 
our approach's performance in classification accuracy and generalization across different operating 
conditions. We utilize a comprehensive synthetic dataset, C- MAPSS, derived from multiple aircraft engine 
units as the benchmark for this study. The results for the proposed model show an accuracy of 99.6% on 
the test dataset. The outcome has the potential to be extended and fine-tuned for different types of gas 
turbines for diverse applications. 
Keywords: fault classification, gas turbine engines, attention mechanism, convolutional neural network, 
machine learning 

1. INTRODUCTION 

The reliable operation of turbofan gas turbines is crucial to 
ensuring the safety and efficiency of modern aviation. As these 
engines are exposed to complex and variable operating 
conditions, early and accurate fault detection is essential for 
predictive maintenance and minimizing unplanned downtime. 
Fault classification plays a pivotal role in identifying and 
rectifying potential issues before they become significant 
failures. 

The classification of faults in turbofan gas turbines is 
confronted with multiple significant challenges (Fentaye et al. 
(2019); X. Yang et al. (2023); Z. Yang et al. (2013)). Firstly, 
these engines are fitted with numerous sensors that monitor a 
range of parameters such as temperature, pressure, and 
vibration, leading to the generation of high-dimensional data 
streams that are challenging to process and analyze effectively. 
Secondly, the operational behavior of turbofan engines is 
characterized by complex temporal patterns, as faults often 
develop progressively over time, necessitating the capture of 
these temporal dependencies for accurate classification. 
Additionally, faults can progress at varying rates depending on 
operating conditions, complicating the development of models 
that can generalize across different scenarios. Moreover, many 
datasets exhibit an imbalance in fault classes, where some fault 
types are significantly more prevalent than others, potentially 
leading to biased classification models. Finally, for practical 
implementation, fault classification models must operate in 
real-time or near-real-time, necessitating the use of efficient 
algorithms capable of managing large volumes of streaming 
data. 

In recent years, various machine learning (ML) and deep 
learning approaches have been explored for turbofan gas 
turbine data exploration and fault classification. A study by 
Xie et al. (2023) shows that feature extraction is a vital step in 
the ML pipeline, involving the transformation of raw sensor 
readings into informative and discriminative features that can 
improve the performance of classification models. Barrera et 
al. (2022) combines gained information from clustering with 
an auto-encoder for anomaly detection. Traditional techniques 
like support vector machines (SVM) and random forests have 
been used with reasonable success. For instance, Zhou et al. 
(2015) applied SVMs to classify different fault conditions with 
reasonable accuracy. Losi et al. (2022) were utilized random 
forest (RF) to predict gas turbine trips based on the snapshot 
matrix of records. However, these methods often struggle to 
oversee the high dimensionality and complex temporal 
dependencies inherent in turbine data. 
The advent of deep learning has brought significant 
advancements in fault classification. CNNs have been highly 
effective due to their ability to extract hierarchical features 
from raw sensor data automatically Sateesh Babu et al. (2016) 
for remaining useful life (RUL) estimation. Long short-term 
memory (LSTM) networks have also been employed in 
research by Cao et al. (2021) to capture temporal 
dependencies, further improving classification performance. A 
study by Arpit et al. (2019)  suggests a variant of LSTM to 
overcome well-known limitations like the vanishing gradient 
discussed by Pascanu et al. (2012). Fentaye et al. (2021) 
implements a Deep CNN to detect and isolate multiple gas 
path faults with over 96% accuracy. Despite these advances, 
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existing models still face challenges balancing local feature 
extraction and capturing global dependencies within the data. 

This paper proposes a novel approach that combines CNNs 
with transformer architectures to address these challenges. 
Transformers, originally introduced by Vaswani et al. (2017) 
for natural language processing, have shown exceptional 
performance in capturing long-range dependencies and 
contextual information. By integrating the feature extraction 
capabilities of CNNs with the contextual learning strengths of 
transformers, our proposed convolutional transformer model 
aims to enhance the accuracy and robustness of turbofan gas 
turbine fault classification. 
We will conduct a comparative analysis of the Convolutional 
transformer model against other state-of-the-art models, 
including a feed-forward transformer and standalone CNN 
models. Through rigorous experiments, we seek to 
demonstrate our approach's superiority in classification 
accuracy and generalization across different operating 
conditions. The proposed model should be able to explore and 
learn imbalanced dataset with complex dynamics effectively. 
In addition, address common issues with recurrent neural 
networks and provide the possibility to extend into deep neural 
networks (DNNs). This research contributes to advancing fault 
classification methodologies and has significant implications 
for implementing predictive maintenance in real-world 
aviation scenarios. 

2. METHODOLOGY 

2.1 Data collection 

This study uses a comprehensive synthetic dataset published 
by Arias Chao et al. (2021) from multiple aircraft engine units, 
the NASA Commercial Modular Aero-Propulsion System 
Simulation (C-MAPSS). C-MAPSS is a turbofan engine 
degradation dataset which is a widely used dataset in the field 
of predictive maintenance and prognostics. 

It was developed to simulate realistic engine degradation 
scenarios under various operational conditions, providing 
researchers and practitioners with a valuable resource for 
developing and benchmarking fault detection and remaining 
useful life (RUL) prediction algorithms. The dataset comprises 
multiple sets of time-series data, capturing different 
degradation patterns across several turbofan engines. The C-
MAPSS dataset is instrumental for advancing ML and 
statistical methods in predictive maintenance, allowing for the 

creation and validation of models that can predict equipment 
failures, optimize maintenance schedules, and ultimately 
enhance the reliability and safety of aerospace systems. 
Nevertheless, there has been relatively limited research 
focused on fault diagnostics and classification in gas turbines, 
indicating a significant opportunity for further exploration of 
advanced ML methods in anomaly detection within this 
context. The variables in the dataset are categorized into 
scenario descriptors 𝜔𝜔, health parameters 𝜃𝜃, measurements 𝑥𝑥�𝑠𝑠, 
and virtual sensors 𝑥𝑥�𝑣𝑣. Figure 1 shows a schematic of turbofan 
engine gas turbine. 
This dataset consists of 9 units (2, 5, 10, 11, 14, 15, 16, 18, and 
20). The units 2, 5, and 10 are subject to degradation of the 
efficiency of the high-pressure turbine (HPT) (Fault 1). The 
units 11, 14, 15, 16, 18, and 20 are subject to the flow and 
efficiency of low-pressure turbine (LPT) in addition to HPT 
efficiency degradation (Fault 2). Figure 2 shows the health 
parameters corresponding to the faults occurring within the 
dataset. 

To eliminate the effects of ambient variables on the measure, 
the data goes through a correction process based on Volponi 
(2020). For example, the ambient temperature affects the 
system temperatures, pressure, and, consequently, shaft speed 
and fuel flow. Although the effect of the inlet temperature on 
the pressure is negligible, according to (1-3), the corrected 
values of temperatures, fuel flow, and shaft speed replaced the 
raw values to analyze the system's state during the operation. 

 𝜃𝜃 =
𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎

𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟
                 ,         𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 = 288.15 𝐾𝐾 (1) 

 𝑇𝑇𝑖𝑖𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑖𝑖/𝜃𝜃 (2) 

 𝑊𝑊𝑟𝑟
𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 =

𝑊𝑊𝑟𝑟

√𝜃𝜃
      ,        𝑁𝑁𝑖𝑖𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 =

𝑁𝑁𝑖𝑖
√𝜃𝜃

 (3) 

Figure 3 demonstrates the distribution of total pressure at LPT 
outlet pressure (P50) during cycles for different units in the 
dataset. 

 
Fig. 1. A schematic of a turbofan engine gas turbine 

  
Fig. 2. Health parameters for LPT and HPT during the cycles 
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Fig. 3. LPT outlet pressure distribution for the engine units in the 

dataset 

2.2 Attention mechanism 

The transformer model, initially introduced by Vaswani et al. 
(2017), has become a cornerstone in natural language 
processing and sequence modeling tasks. The standard 
transformer consists of an encoder and a decoder, comprising 
stacked self-attention and feedforward (FF) neural network 
layers. Self-attention layer takes key, query, and value as the 
input. On the other hand, convolutional neural networks 
(CNNs) are well-known for their ability to extract essential 
features effectively from local spatial hierarchies. This study 
proposes a combination of a multi-head attention (MHA) layer 
and a one-dimensional convolutional layer instead of FF for 
time-series data diagnostic. As the convolutional layer extracts 
essential features, the multi-head attention layer enhances the 
model's performance by directing each head to focus on 
distinct aspects of the data, thereby providing complementary 
information crucial for accurate fault classification. 

 
Fig. 4. A schematic of the transformer neural network structure 

including convolutional layers 

Figure 4 represents a schematic of the proposed transformer 
neural network. A SoftMax activation layer is implemented at 
the output layer to yield a probability that each fault occurs 
within the system. 

 

2.3 Training methodology 

CNNs are more likely to experience overfitting than traditional 
ML models or simpler neural network architectures. One way 
to tackle this issue is to include dropout layers in the CNN 
structure. This will disable some of the connections between 
layers in the training process to achieve a generalized model.  
Another way is to define loss value criteria to terminate the 
training if the model has not improved in multiple consequence 
epochs. This research applies a dropout rate of 10-20% to the 
neural network structure. The loss was calculated using the 
categorical cross-entropy function, as shown in (4). 

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑦𝑦,𝑦𝑦� ) =  −
1
𝑁𝑁
��𝑦𝑦𝑖𝑖,𝑗𝑗 log�𝑦𝑦�𝑖𝑖,𝑗𝑗�

𝐶𝐶

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 (4) 

Where N is the number of samples, C is the number of classes, 
𝑦𝑦 is a Boolean to show if the sample 𝑖𝑖 belongs to class 𝑗𝑗, and 
𝑦𝑦� is the predicted probability that the sample 𝑖𝑖 belongs to class 
𝑗𝑗. 

Classification accuracy, a fundamental performance metric in 
supervised learning, is calculated as the ratio of correctly 
predicted instances to the total number of instances evaluated. 
Formally, accuracy (𝐴𝐴) is defined as: 

 𝐴𝐴 =
1
𝑁𝑁
�𝑙𝑙(𝑦𝑦𝑖𝑖 = 𝑦𝑦�𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 (5) 

Where in (5),  𝑁𝑁 denotes the total number of predicted class 
labels, and 𝑙𝑙(∙) is an indicator function that returns 1 if the 
argument is true and 0 otherwise. This metric effectively 
quantifies the proportion of correct predictions made by the 
model, providing an intuitive measure of its performance. 

A batch size of 256 was selected to gain consistent training, 
testing, and validation results. Considering the batch size, a 
learning rate of 𝜂𝜂 =5e-5 is assumed for the training. The input 
data of the neural network is a window of input variables with 
the size 𝑤𝑤 = 10 and created using past and present records of 
measured values. 

Starting from epoch 70, an early stopping condition on the 
validation loss was applied to terminate the training process 
after 5-20 consecutive epochs without any improvement. The 
models were optimized by Adam optimizer. The Adam 
optimizer offers adaptive learning rates and efficient 
computation, which makes it suitable for large datasets and 
models with sparse gradients. Its bias correction, robustness to 
noisy gradients, and user-friendly hyperparameters ensure fast 
convergence and broad applicability in deep learning. 

A summary of the model structures studied in this research is 
shown in Table 1. 
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Table 1. Summary of the model structures of Vanilla CNN, CNN, FF Transformer, and Convolutional Transformer 

1. Vanilla CNN  2. CNN  3. FF Transformer  4. Convolutional Transformer 
# layer type unit/

filter 
activation 
function  # layer type unit/

filter 
activation 
function 

 # layer type unit/
filter 

activation 
function  # layer type unit/

filter 
activation 
function 

1 Conv1D 100 ReLU  1 Conv1D 100 ReLU  1 MHA 4 -  1 MHA 4 - 
2 Avg Pooling - -  2 Conv1D 100 ReLU  2 Dense** 100 ReLU  2 Conv1D 100 ReLU 
3 Dropout* 10% -  3 Dropout 10% -  3 Dropout 10% -  3 Dropout 20% - 
4 Conv1D 100 ReLU  4 Dense** 2 SoftMax  4 MHA 4 -  4 MHN 4 - 
5 Avg Pooling - -      5 Dense** 100 ReLU  5 Conv1D 100 ReLU 
6 Dense** 2 SoftMax       6 Dense 100 ReLU  6 Dense** 2 SoftMax 
          7 Dense 2 SoftMax      

* Dropout rate                
** A flattened layer is applied before the 
dense layer                

Table 2 provides an overview of the data split into train, 
validation, and test sets. The test data set uses units 10 and 16 
to ensure that the model evaluates with a balanced data set and 
that there is no data leakage between train/validation and test 
splits. Of the remaining units, 80% and 20% were utilized for 
training and validation, respectively. 

Table 2. An overview of the training, validation, and test datasets 

Dataset Unit Fault Mode 

training and 
validation 

2 HPT 5 
11 

HPT + LPT 
14 
15 
18 
20 

test 10 HPT 
16 HPT + LPT 

Data were normalized from 0 to 1 using a Min-Max scaler to 
avoid saturation in the activation function and achieve faster 
convergence. We used TensorFlow 2.13 for the 
implementation of our neural network models, running on a 
system with an AMD Ryzen 9 5950X CPU (16 cores, 32 
threads), an NVIDIA GeForce RTX 3090 GPU (24 GB of 
GDDR6X memory), and 128 GB of DDR4 RAM at 3200 
MHz. 

 

3. RESULTS AND DISCUSSION 

The K-Best feature selection was implemented to analyze the 
effect of each variable on fault classification. The K-Best score 
for each variable and the cumulative score are presented in Fig. 
5. The results indicate that P50 contributes the most to 
capturing the variance of the output, and the LPT outlet 
temperature (T50) has the most negligible effect on capturing 
the output. In other words, the impact of T50 on fault 
classification is insignificant, and 13 variables are enough to 
predict the output. Notably, 14 out of 45 variables were 
selected as the model's input. In this case, the effect of 
degradation on T50 was not considerable and resulted in a 
lower K-Best score. However, based on the physics of the 
problem, we decided to keep T50 as the model's input.  

 

Fig. 5. K-Best feature selection results: variable scores (left) 
and cumulative score (right) 

Figure 6 shows the result of the K-Means clustering. The 
optimal number of clusters was identified by the knee method. 
As shown, the input variables can be classified into 4 clusters. 
The variables in each cluster are expected to have a similar 
dynamic behavior. For example, the HPT outlet temperature 
(T48) and the T50 have similar dynamic behavior and can be 
assumed to be a cluster. Table 3 shows the selected features 
for the classification problem. 

 
Fig. 6. K-Means inertia value based on the number of clusters 

(left) and K-Means for 𝑛𝑛𝑐𝑐 = 4 (right) 

Figure 7 presents training and validation loss curves. Reducing 
the learning rate resulted in smoother training curves and 
stable results. The model reaches the best accuracy around 
epoch 120. Starting from epoch 90, the training loss starts to 
fluctuate around the local minimum. No significant 
improvements were observed after 120 epochs, and the 
training was terminated to avoid overfitting. In the presence of 
a dropout layer, a lower validation loss is expected compared 
to the training loss. 
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Table 3. Description and notation of variables within the dataset 
based on Arias Chao et al. (2021) 

# Symbol Description Units 
1 Wf Fuel flow kg/s 
2 Nf Physical fan speed rpm 
3 Nc Physical core speed rpm 
4 T24 Total temperature at LPC outlet K 
5 T30 Total temperature at HPC outlet K 
6 T48 Total temperature at HPT outlet K 
7 T50 Total temperature at LPT outlet K 
8 P15 Total pressure in bypass-duct kPa 
9 P21 Total pressure at fan outlet kPa 
10 P24 Total pressure at LPC outlet kPa 
11 Ps30 Statics pressure at HPC outlet kPa 
12 P40 Total pressure at burner outlet kPa 
13 P50 Total pressure at LPT outlet kPa 
14 P45 Total pressure at HPT outlet kPa 

 

 

 
Fig. 7. Convolutional Transformer loss (a) and accuracy (b) curves 

for the training and validation datasets 

Imbalanced classes in the training dataset cause a temporary 
increase in the validation loss at the preliminary stages of the 
training. The prediction results at the beginning are biased 
toward the class with a higher population. On the other hand, 
the categorical cross-entropy loss is sensitive to the 
probabilities assigned to the correct classes. If the model’s 
confidence in its predictions fluctuates (even if predictions are 
mostly correct), the loss can increase while accuracy improves. 
This behavior was observed across all the models studied 
during this research. Training and validation loss/accuracy 

curves for Vanilla CNN, CNN, and FF Transformer are 
presented in Appendix A. 

The validation and test accuracies prove these claims since 
both show remarkable results in fault classification. Figure 8 
shows the confusion matrix for the transformer model with 
convolutional layers. As shown, imbalanced data for fault 
classes resulted in a considerable gap between Fault 1 and 2 
accuracies for models 1-3. These models can identify Fault 1 
with higher accuracy despite a higher population of classes 
with Fault 2. As mentioned, it has simple features and only 
corresponds to HPT fault, while Fault 2 is a combination of 
HPT and LPT failures. 

Hence, a convolutional transformer (model 4) shows 
significant improvement in finding the complex correlation in 
the data considering the imbalance training/validation dataset. 
It is good to note that Fault 2 is a combination of Fault 1 and 
other faults and distinguishing one from another is 
challenging. 

 
Fig. 8. Convolutional transformer confusion matrix for training, 

validation, testing, and total dataset 

Interestingly, the accuracy gained from the test dataset is 
promising and higher than both training and validation in some 
cases. Considering that the test dataset is from separate 
turbofan engine units and was never used during the training 
season, it is another clue for the quality of training and 
evaluation. Implementing the dropout layer avoids overfitting 
and makes the model learn the pattern instead of overfitting the 
current dataset. In this case, the final model performs better in 
predicting the test dataset.  

Figure 9 summarizes the overall accuracy of the evaluated 
modes in this study. CNN model lacks MaxPooling layers and 
has higher parameters compared to Vanilla CNN. In this case, 
the CNN model performs slightly better in accuracy. The 
transformer model with feed-forward layers improved overall 
accuracy by 0.8%. 
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Fig. 9. Overall fault classification accuracy of Vanilla CNN, CNN, 

FF Transformer, and Convolutional Transformer neural networks 

What is interesting here is the accuracy of 98.89% achieved by 
substituting convolutional layers by feed-forward and adding 
the attention mechanism. A combination of multi-head 
attention and convolutional layers improves spatial pattern 
recognition and results in around 99.5% overall accuracy in 
fault classification. Despite the highest accuracy in the 
Convolutional transformer model, the FF transformer offers a 
simple model structure with fewer parameters and respectful 
accuracy. However, compared to the Convolutional 
transformer, this structure fails to handle an imbalanced 
dataset. 

 

4. CONCLUSIONS 

Gas turbines play a vital role in transportation and energy 
systems. Modern engineering considers optimal design, 
efficient operation, sustainability, and safety simultaneously 
when manufacturing turbofan engines, with the progress of 
ML and artificial intelligence process optimization and 
maintenance going toward automation to balance safety and 
diagnostics costs. This research investigated the application of 
recent developments in NLP and adopted a minimal structure 
to provide a fault classifier for the gas turbine. The final 
platform fulfills the needs of AI assistants to identify the faults 
within the turbofan engines based on a snapshot of measured 
data in real-time. The transformer takes advantage of the 
multi-head attention mechanism and convolutional layers to 
investigate a horizon of information and capture the essential 
information. The results for the proposed model show an 
accuracy of 99.6% on the test dataset. In future work, a 
complete dataset of faults will be investigated to analyze the 
effect of each measurement on anomaly detection. While 
proposing a general model for the gas turbine diagnostic is 
challenging, providing more information will help the model 
recognize more patterns and distinguish the system behavior 
under different conditions. The outcome can be fine-tuned for 
distinct types of gas turbines for various kinds of applications. 
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Appendix A: Confusion matrix and training/validation loss 
curves for Vanilla CNN, CNN, and FF transformer  

 
Fig. A1. Vanilla CNN confusion matrix for training, validation, 

testing, and total dataset 

  
Fig. A2. CNN confusion matrix for training, validation, testing, 

and total dataset 

 
Fig. A3. FF transformer confusion matrix for training, validation, 

testing, and total dataset 
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Fig. A4. Vanilla CNN loss (a) and accuracy (b) curves for the 

training and validation datasets 

 

 
Fig. A5. CNN loss (a) and accuracy (b) curves for the training and 

validation datasets 

 
Fig. A6. FF Transformer loss (a) and accuracy (b) curves for the 

training and validation datasets 
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Abstract: Reconfigurable intelligent surfaces (RISs) have emerged as a promising solution
that can provide dynamic control over the propagation of electromagnetic waves. The RIS
technology is envisioned as a key enabler of sixth-generation networks by offering the ability
to adaptively manipulate signal propagation through the smart configuration of its phase
shift coefficients, thereby optimizing signal strength, coverage, and capacity. However, the
realization of this technology’s full potential hinges on the accurate acquisition of channel state
information (CSI). In this paper, we propose an efficient CSI prediction framework for a RIS-
assisted communication system based on the machine learning (ML) transformer architecture.
Architectural modifications are introduced to the vanilla transformer for multivariate time series
forecasting to achieve high prediction accuracy. The predicted channel coefficients are then
used to optimize the RIS phase shifts. Simulation results present a comprehensive analysis of
key performance metrics, including data rate and outage probability. Our results confirm the
effectiveness of the proposed ML approach and demonstrate its superiority over other baseline
ML-based CSI prediction schemes such as conventional deep neural networks and long short-
term memory architectures, albeit at the cost of slightly increased complexity.

Keywords: Channel prediction, deep neural network, machine learning, reconfigurable
intelligent surface, transformer.

1. INTRODUCTION

Sixth-generation (6G) wireless networks will have the abil-
ity to push beyond the limits of today’s wireless systems
with their groundbreaking expected features such as very
low latency, ultra-high reliable connectivity, enhanced data
security, and integrated intelligence that leverages ma-
chine learning (ML) capabilities (Chowdhury et al., 2020).
Within this framework, reconfigurable intelligent surface
(RIS) has emerged as a potential game-changer. RIS in-
troduces a new layer of intelligence into the physical layer,
allowing the stochastic wireless propagation environment
to be somewhat controlled (Mahmood et al., 2023). This
technology holds the promise of substantial improvements
in signal strength, signal coverage, and network capacity
by offering advanced control over the properties of electro-
magnetic waves (Basar et al., 2019). RISs are composed
of passive reflecting elements that can be dynamically
configured to manipulate the way wireless signals propa-
gate toward receivers, enabling the achievement of diverse
goals.
⋆ The research leading to this paper was supported by the Re-
search Council of Finland (former Academy of Finland) 6G Flag-
ship program (Grant Number: 346208), and Business Finland’s
6GBridge program through the projects Local 6G (Grant Number
8002/31/2022) and 6CORE (Grant Number 8410/31/2022).

Since RISs typically comprise only nearly passive com-
ponents with no data processing capabilities, acquiring
RIS-associated channel state information (CSI) is a funda-
mental challenge (Yuan et al., 2021). Classical methods of
CSI estimation such as least squares and minimum mean-
squared error, as in the work in (Ardah et al., 2021), rely
on pilot signals, which incurs significant signaling over-
head and channel acquisition delay, especially when the
number of RIS elements is large. It is further exacerbated
under dynamic wireless environments when the channel
coherence time is short, thus requiring frequent CSI ac-
quisition. These issues can be mitigated via learning-based
approaches as they harness the power of ML to learn the
optimal RIS phase shifts, thereby eliminating the require-
ment of complex mathematical modeling or overwhelming
pilot training (Hashemi et al., 2023). However, such an
approach suffers from slow convergence, large training
overhead, and poor generalizability. A deep unfolding ap-
proach, where ML-based techniques are used to learn par-
tial system blocks while adhering to conventional optimiza-
tion approaches for the overall system design (Balatsoukas-
Stimming and Studer, 2019) can be adopted to address
these limitations. This results in improved performance at
a much lower complexity. More specifically, we propose to
replace the pilot-based CSI estimation procedure with an
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ML-based CSI prediction method, which is then used to
mathematically optimize the RIS phase shifts.

ML-assisted solutions have the potential to adapt and
learn the dynamics of the CSI autonomously. By train-
ing ML models with large data sets, unforeseen channel
characteristics can be captured, even in complex com-
munications environments assisted by RISs. Conventional
deep neural network (DNN) and recurrent neural network
(RNN) architectures can provide, to some extent, sat-
isfactory prediction results (Gao et al., 2021). However,
both DNNs and RNNs have limitations such as the van-
ishing gradient phenomenon. This occurs when training
DNNs with a large number of layers, including activation
functions. In such cases, the gradients used to update
the network become extremely small or even vanish as
they are backpropagated. As a result, the convergence of
the algorithm is substantially slowed. (Glorot and Bengio,
2010). Long short-term memory (LSTM) networks are an
evolution of RNNs that have been proposed to prevent the
vanishing gradient problem (Hochreiter and Schmidhuber,
1997), which enables the processing of longer data se-
quences. A recent architecture named transformers pushes
the boundaries further. Transformers have excelled across
various domains due to their superior characteristic perfor-
mance (Tay et al., 2022), significantly outperforming most
of the previous deep learning approaches.

Diverse ML-based strategies have been employed in the
literature to predict RIS-associated CSI. In (Elbir and Co-
leri, 2022), a federated learning strategy with distributed
convolution neural networks (CNNs) was used for channel
prediction in a RIS-assisted multi-antenna system em-
ploying orthogonal frequency-division multiplexing. A dis-
tributed CNN framework for downlink channel prediction
in a narrow-band multi-user system was proposed in (Dai
and Wei, 2022). A real-time reinforcement learning-aided
CSI measurement scheme for a RIS-assisted millimeter
wave (mmWave) system was considered in (Zhang et al.,
2022). The authors in (Zhang et al., 2021) developed
schemes based on CNNs and fully connected DNNs for
RIS channel extrapolation and beam searching in a single-
antenna system. A deep denoising CNN was used for aiding
RIS channel estimation in a mmWave system in (Liu et al.,
2020). In (Nguyen et al., 2023), a strategy based on CNNs
and LSTMs was proposed to predict the CSI of a RIS-
assisted system employing non-orthogonal multiple access,
and in (Xia et al., 2024), a transformer-aided scheme was
proposed for predicting the CSI of an uplink RIS-assisted
mmWave system.

To the best of our knowledge, only the work in (Xia
et al., 2024) has exploited the transformer architecture
for channel prediction in RIS-assisted networks. In this
paper, we propose a novel transformer-based approach to
predict the unknown CSI in a RIS-assisted communication
system. The predicted CSI is then used to optimize the RIS
phase shifts for downlink data transmission. We compare
our proposed prediction scheme with other state-of-the-art
learning-based approaches, evaluating the performance us-
ing metrics such as data rate and outage probability. Based
on the ML architectures we developed, it is shown that the
transformer outperforms LSTM and DNN architectures,
though the architecture is slightly more complex. Fur-
thermore, the DNN architecture shows the lowest perfor-

mance with the least complexity, while the LSTM method
demonstrates higher performance and greater complexity
than the DNN approach, yet lower performance and less
complexity compared to the transformer architecture.

The remainder of the article is organized as follows.
In Section 2, the system model is provided. Section 3
gives insights into the proposed ML-based CSI predictor.
Section 4 provides the results and discussion. Finally, the
conclusions are presented in Section 5.

2. SYSTEM MODEL

Consider a downlink RIS-aided single-input single-output
(SISO) communication system as in Fig. 1, where the
base station (BS) and the user equipment (UE) are each
equipped with a single antenna, and the RIS comprises
N reflecting elements. Let f ∈ C, h ∈ CN×1, g ∈
CN×1 be the fading channels between the BS and the
UE, the BS and the RIS, and the RIS and the UE,
respectively. The channel vectors h = [h1, . . . , hi, . . . , hN ]

T

and g = [g1, . . . , gi, . . . , gN ]
T , where hi (gi) is the channel

between the BS (UE) and ith RIS element. We assume
that the channel coefficients are Rayleigh distributed, i.e.,
f ∼ CN (0, LBS-UE), hi ∼ CN (0, LBS-RIS), and gi ∼
CN (0, LRIS-UE), for i = 1 · · · , N , where La denotes the
path loss coefficients in linear scale for the ath link with
a ∈ {BS-UE,BS-RIS,RIS-UE}. In this work, we consider
the log-distance path loss model, which can be given in dB
by

La,dB = L0,dB + 10ηa log10

(
da
d0

)
, (1)

where ηa and da represent the path loss exponent and
the distance for the link a respectively, and L0,dB is the
reference path loss in dB at a reference distance d0. Under
this model, the received signal at the UE can be expressed
as

y =
√
P
(
f + gTΦh

)
x+ n, (2)

where n ∼ CN (0, N0) is the additive white Gaussian
noise (AWGN), x is the transmitted symbol, P represents
the transmit power and Φ is the matrix comprising the
reflection coefficients of the RIS, which is a diagonal matrix
defined as (Basar et al., 2019)

Φ = diag(ϕϕϕ), (3)

where ϕϕϕ =
[
a1e

jϕ1 , a2e
jϕ2 , . . . , aNejϕN

]T is the RIS phase
shift vector, in which ai is the amplitude and, ϕi is the
adjustable phase induced by the the ith reflecting element.
Due to the passive nature of the RIS, we can assume
ai = 1,∀i = 1, · · · , N .

2.1 RIS Phase Shift Optimization

We wish to compute a phase shift matrix Φ that can
maximize the signal power propagating through the RIS at
the UE during downlink data transmission. To this end, we
assume that the direct link is non-dominant. This can be
the case when it is non-line of sight, while the BS-RIS and
RIS-UE links are in line of sight. Under this assumption,
we can recall the Cauchy-Schwartz inequality and achieved
(Björnson et al., 2024)
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Fig. 1. System model. An RIS comprising N elements
assists the communication between one single-antenna
BS and one single-antenna UE.

|gTΦh|2 = |(h⊙ g)Tϕϕϕ|2 ≤

(
N∑
i=1

|higie
jϕi |

)2

, (4)

where ⊙ denotes the Hadamard product. The inequality
in (4) provides an upper bound to the reflected power i.e.,
the maximum power that can be reflected by the RIS. The
equality can be achieved if and only if ϕi = −arg(higi). As
a result, the desired optimal RIS phase shift vector can be
given by

ϕϕϕ∗ = e−jarg(h⊙g). (5)
The optimum phase shift coefficients in (5) can be readily
computed after predicting the CSI through ML, as dis-
cussed in the subsequent sections.

2.2 Performance Metrics

In this subsection, we present the performance metrics
used to assess the effectiveness of the proposed ML-based
CSI prediction framework. To this end, we first provide
an expression for the signal-to-noise ratio (SNR). More
specifically, by using (2) and (4), the instantaneous SNR
observed at the UE, denoted as γ, can be computed by

γ =

∣∣(h⊙ g)Tϕϕϕ+ f
∣∣2 P

N0
. (6)

The outage probability, Pout, is the first important perfor-
mance metric used to assess the performance of the UE. It
is the probability of the instantaneous SNR falling below
a defined threshold γth, i.e.,

Pout = P(γ < γth), (7)
where P denotes probability.

Last, we consider the maximum data rate that can be
achieved when the BS is transmitting at a fixed rate Rth,
subject to a given outage probability Pout, which can be
obtained as

R = (1− Pout)Rth, (8)
where Rth represents the data rate threshold given by

Rth = log2(1 + γth). (9)

3. CSI PREDICTION AND DATA PREPARATION

This section presents the proposed architecture of our
transformer model which is used to make multivariate time

series predictions of the channel coefficients. Details on the
generation of the data sets used to train, validate, and test
the implemented ML models are also presented.

3.1 Transformer-Based CSI Prediction

In this subsection, we describe our proposed CSI predic-
tion approach based on the ML transformer architecture,
which we later exploit to optimize the RIS phase shifts.
Transformers are a deep learning architecture initially
introduced in (Vaswani et al., 2017) by a research group
in Google. The key feature of this architecture is its state-
of-the-art attention mechanism. The attention mechanism
is a computational method that focuses on specific parts
of the input data sequence, assigning varying degrees of
importance to the different parts. This mechanism helps
to inform the model where to pay attention when process-
ing data. The vanilla transformer architecture consists of
two parts, an encoder and a decoder, which consists of
a sequence-to-sequence architecture. In this method, the
model generates an output data sequence according to the
given input sequence.

In this work, we aim to predict the CSI at the next
time instance based on a given sequence of previous CSI
samples. Therefore, the original sequence-to-sequence ar-
chitecture is modified into a sequence-to-one architecture
using only one encoder. More specifically, the encoder
of our transformer model comprises an input embedding
module, a positional encoding module, and a transformer
encoder module, as shown in Fig. 2. The input embedding
module transforms the dimension of the input data to
the model dimension of the subsequent inner layer of
the transformer. Since the transformer lacks a recurrent
structure as in recurrent neural networks, it feeds the
positional information to the output of the embedding
layer separately. After that, using the acquired knowledge
from the input sequence, an abstract representation is gen-
erated by the transformer encoder. The encoder consists of
a multi-head attention block, layer normalization blocks,
and a feedforward layer, as illustrated in Fig. 2. Then,
the encoder output is sent through a fully connected (FC)
linear layer and an activation function. Figure 2 shows the
modified sequence-to-one transformer architecture used for
CSI prediction, where we feed samples of real and imag-
inary channel data separately to forecast the next time
instance of the channel coefficients as output.

The vanilla transformer architecture, originally introduced
for natural language processing applications, contains two
FC layers in the feedforward block and uses the rectified
linear unit (ReLU) as the activation function (Vaswani
et al., 2017). This setup is effective for capturing long-
term variations in the multi-head attention output. How-
ever, given the relatively small window size, our problem
requires observing and capturing short-term variations.
Therefore, as shown in Fig. 3, we modified the original
architecture by implementing two one-dimensional (1D)
CNN layers instead of the two FC layers, as CNNs effec-
tively capture local temporal patterns crucial for accurate
forecasting. Additionally, we replaced the ReLU activation
function with a hyperbolic tangent (Tanh) function. These
modifications result in better performance in our time
series forecasting problem.
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Fig. 2. Sequence-to-one transformer architecture with input and output.

Fig. 3. Feedforward layer in the vanilla transformer archi-
tecture (right) and the proposed model (left).

3.2 Data Preparation

Most of the cited works on CSI prediction assume inde-
pendent/uncorrelated fading, whereas real-world scenar-
ios often exhibit correlation. We incorporate this impor-
tant property in our work by considering time-correlated
Rayleigh-distributed fading channel coefficients. We first
generate uncorrelated Rayleigh-fading samples through
simulation with zero mean and unit variance, which are
then convoluted with a finite impulse response filter rep-
resenting the correlation function. Before feeding time-
correlated channel data to the ML models, the data is
normalized for efficient convergence. Out of the 2550 time-
correlated data samples, 80% is allocated for training,
while the remaining 20% are allocated for validation.
Another 50 samples are taken for testing per Monte Carlo
iteration. In all the architectures, a moving window is
deployed for iterative training, validation, and testing pro-
cesses. To learn the temporal patterns, consecutive 10 sam-
ples are taken. Using this learned knowledge, 11th sample
is predicted. A perfect CSI assumption is made for the
training data. Though this is a strong assumption, it helps
us to obtain useful information about the performance
upper bound.

4. RESULTS AND DISCUSSIONS

This section presents comprehensive simulation results
to verify the effectiveness of our proposed transformer-

based CSI prediction framework. The number of parame-
ters and other architectural details used by different ML
strategies are also put into perspective. To demonstrate
the performance advantages of our approach, we consider
two baseline ML architectures, namely DNN and LSTM,
where metrics such as data rate and outage probability are
compared.

We consider the path loss exponent for the BS-RIS and
the RIS-UE links to be 2.2, whereas the exponent for the
direct BS-UE link is assumed to be 4.2. The reference
path loss value and noise power are taken as −30 dB and
−100 dB, respectively. The distances from the transmitter
to the RIS, the RIS to the receiver, and the transmitter to
the receiver are set to 38m, 5m, and 40m. Here, the SNR
threshold γth = 1, correspondingly Rth = 1 too. Unless
stated otherwise, an RIS with eight elements is considered
and the transmit power is set to 0dB.

4.1 Comparison with ML Baseline Architectures

In this section, the performance of the proposed trans-
former approach is compared with the conventional DNN
and the LSTM baseline ML architectures. All ML models
are trained for 100 epochs employed with the Adam op-
timizer alongside the root mean square error (RMSE) as
the loss function. ReLU is used as the activation function
for DNN and LSTM architectures while Tanh is used for
the transformers. Architectures in all the models used a
window size of 10. In each encoder layer, four attention
heads and 20 feedforward layer dimensions are used across
all transformer models.

Variation of Transmit Power with Fixed RIS Elements

Let us consider the system model as mentioned in Fig. 1
with the number of RIS elements set to N = 8. There are
16 channels associated with the RIS model, eight each for
the BS-RIS and RIS-UE link, respectively. Since we are
predicting real and imaginary channel values separately,
32 features are required to predict at once. Since the
number of RIS elements remains constant in this scenario,
we can employ a single model for each architecture to
make predictions, as the input to each model remains
unchanged.
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Table 1. Optimized hyperparameters of DNN, LSTM, and Transformer models.

Hyperparameters
Values

DNN LSTM Transformer
Number of RIS elements 4 8 12 16 20 4 8 12 16 20 4 8 12 16 20

Input and Output features 16 32 48 64 80 16 32 48 64 80 16 32 48 64 80

Neurons in LSTM layer - - - - - 22 44 60 76 100 - - - - -
Neurons in FC layer 1 20 36 52 68 88 18 36 56 68 90 16 32 48 64 80

Neurons in FC layer 2 24 40 56 72 92 - - - - - - - - - -
Neurons in FC layer 3 24 44 56 68 94 - - - - - - - - - -
Neurons in FC layer 4 20 36 52 68 88 - - - - - - - - - -
Transformer model dimensions - - - - - - - - - - 24 48 60 80 120

Table 2. Summary of metrics associated with
DNN, LSTM, and Transformer models.

RIS Architecture Train Test P
Elements RMSE RMSE

DNN 0.0335 0.0271 2, 280

4 LSTM 0.0149 0.0172 3, 796

Transformer 0.0134 0.0158 6, 838

DNN 0.0364 0.023 6, 968

8 LSTM 0.0282 0.0191 16, 532

Transformer 0.0131 0.0142 26, 702

DNN 0.0413 0.0259 14, 216

12 LSTM 0.0329 0.0219 32, 552

Transformer 0.0159 0.0157 46, 818

DNN 0.0535 0.0317 24, 024

16 LSTM 0.0425 0.0266 52, 820

Transformer 0.0177 0.0165 82, 894

DNN 0.0555 0.0322 39, 538

20 LSTM 0.036 0.0228 89, 170

Transformer 0.0182 0.0166 164, 630

The transmit power is varied from 0 dBm to 50 dBm by
keeping other initial model parameters of the RIS the
same. Optimized hyperparameters of the ML models only
used for this scenario are tabulated under the columns
where the number of RIS elements is eight for each ap-
proach as in Table 1. To measure the effectiveness of the
architectures, a performance evaluation should be car-
ried out. In this study, we use RMSE as the prediction
evaluation criterion. It measures the RMSE between the
predicted feature sequence and the actual sequence values
in the test and training data sets separately. Apart from
that, we have obtained the number of model parameters P
associated with models which are calculated using weights
and biases. Metrics obtained through the above model
simulations are organized in Table 2. Moreover, when N is
fixed at 8 it is evident that the proposed transformer-based
approach significantly outperforms LSTM and DNN ar-
chitectures, thereby reducing the training RMSE approxi-
mately by 115% and 177% and test RMSE approximately
by 34% and 62%, respectively.

Variation of RIS Elements with Fixed Transmit Power

In this scenario, number of RIS elements is the variable.
Let us consider instances where the number of RIS ele-
ments is 4, 8, 12, 16, and 20 by keeping other initial model
parameters of the RIS the same. Therefore, the number of
channels associated with the RIS are 8, 16, 24, 32, and 40,
respectively. Then, according to our model configuration
(considering real and imaginary values separately as fea-

tures), the number of features we need to handle would be
16, 32, 48, 64, and 80, respectively. For each case, we need
to optimize the ML models separately since the number
of input features is changing. The optimized hyperparam-
eters for each architecture are summarized in Table 1. It
shows the number of neurons available in each layer of
the respective architecture, the number of neurons in the
LSTM layer, and the transformer model dimensions.

Table 2 presents the summary of metrics associated with
all three ML architectures such as the train RMSE, the test
RMSE, and the number of model parameters. According to
the observations, it is clear that the transformer architec-
ture has outperformed the DNN and LSTM architectures
in terms of performance when compared with both the
train and test RMSE values. This shows that the trans-
former architecture can significantly outperform the state-
of-the-art ML architectures, albeit at the cost of higher
complexity. Hence, the transformer architecture is prefer-
able in scenarios where the prediction accuracy is to be
prioritized over computational complexity. However, the
increased computational complexity can be easily handled
by using optimized hardware such as tensor processing
units.

4.2 RIS Phase Optimization with Predicted CSI

Using the prediction values obtained from the ML models,
we can calculate the optimal phase shift vector of the RIS
model as mentioned in (5). Then plugging the test data
(actual) channel values and the calculated RIS optimal
phase shift vector to (6), we can obtain the maximized
SNR values. From there onwards, (7) and (8) can be
obtained with respect to the maximized SNR values.
Therefore, we have shown that RIS could be optimized
by predicting the CSI in a RIS-assisted communication
system. Let us focus on the two major scenarios of our
research output. The generated results shown in Fig. 4 and
Fig. 5 compare key scenarios, including the outputs with
optimized-phase RIS, fixed-phase RIS, without the RIS,
and the integrated outputs predicted by the transformer,
LSTM, and DNN models. Additionally, in the fixed-phase
RIS scenario, Φ is set as an identity matrix.

The system performance for a fixed number of RIS ele-
ments with varying transmit power is illustrated in Fig. 4.
Specifically, Figure 4(a) demonstrates the variation in out-
age probability, while Figure 4(b) shows the variation in
average rate. As the transmit power increases, the outage
probability decreases, and the average rate increases. In
Fig. 4(a), the lowest outage probability is observed when
the RIS is optimized. It is the optimum scenario when
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Fig. 4. System performance for a fixed number of RIS reflecting elements (N = 8) in terms of (a) outage probability,
and (b) average rate, when the transmit power is varied.
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Fig. 5. System performance for fixed transmit power (30 dBm) in terms of (a) outage probability, and (b) average rate
when the number of RIS reflecting elements is varied.

the CSI is accurately known at the transmitter. This is
the performance upper/lower bound and is not possible
in practice. The transformer model closely approaches the
performance of the optimized RIS, outperforming both the
LSTM and DNN models. Furthermore, to achieve an out-
age probability of 0.01, the optimized RIS scenario requires
a transmit power of 39.79 dBm, compared to 46.66 dBm
for the scenario without RIS. In addition, to achieve the
same outage probability, the required transmit powers for
the transformer, LSTM, and DNN models are 40.67 dBm,
41.13 dBm, and 41.85 dBm, respectively. In Fig. 4(b), the
average rate is maximized when the RIS is optimized
and the transformer model gets very close to the upper
bound established by the optimized RIS. Moreover, it can
be observed that when the transmit power is 25 dBm,
the performance gap between the scenarios where the
transformer model and the system without RIS is approx-
imately 0.4 bits/s/Hz. The LSTM and DNN models also
demonstrate notable performance improvements, although
they fall short of the transformer model’s performance.

The system performance for a fixed transmit power, while
varying the number of RIS elements, is presented in Fig.

5. Figure 5(a) illustrates the variation in outage proba-
bility, whereas Figure 5(b) depicts the variation in av-
erage rate. Generally, as the number of RIS elements
increases, the outage probability decreases, and the aver-
age rate increases for scenarios incorporating RIS. Figure
5(a) shows that the outage probability is minimized when
the RIS is optimized. The transformer architecture yields
the closest results to the optimized RIS, followed by the
LSTM and DNN architectures. As per the observations,
for a 12-element RIS system, the optimized RIS scenario
achieves an outage probability of 0.03, while the trans-
former, LSTM, and DNN scenarios result in outage prob-
abilities of 0.037, 0.05, and 0.06, respectively. In Fig. 5(b),
the average rate is maximized when the RIS is optimized
and the transformer architecture again demonstrates the
closest prediction to the average rate achieved with the
optimized RIS. When the number of RIS elements reaches
eight, the performance gap between the scenario with
the transformer model and the scenario without RIS is
approximately 0.3 bits/s/Hz.

From the results, it is evident that the application of RIS
has increased the overall system performance noticeably
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and the best results are given when the phase is optimized.
In every graph, prediction curves lie between the optimum
phase and the system without RIS. Out of the three pre-
diction curves, the transformer prediction curve goes very
closely with the optimum phase RIS output showing that
the transformers have provided the most convincing results
compared to both the DNN and LSTM architectures.

5. CONCLUSIONS

Harnessing the full potential of RIS technology hinges
on accurate CSI estimation/prediction since the optimum
RIS phase shifts are a function of the corresponding com-
posite channel’s CSI. In this study, we proposed a novel
sequence-to-one transformer architecture to predict the
RIS-associated CSI, enabling the efficient and accurate op-
timization of the RIS phase shifts. For the CSI prediction
task, three architectures namely DNN, LSTM, and trans-
formers were utilized. For the time series channel sample
data set created, the transformer architecture provided
the lowest RMSE value outperforming DNN and LSTM
methods in the scenarios discussed above. After that, the
predicted CSI from ML models was fed into the RIS model
for phase optimization. According to the results obtained,
the transformer was the better multivariate time series
prediction architecture out of the three architectures in
terms of performance but at the cost of higher complexity.
Optimizing the RIS phase shift based on transformer-
predicted CSI was found to perform very close to the
optimum case when the CSI was assumed to be accu-
rately known. Conversely, the DNN architecture yielded
the lowest performance and was also the least complex
architecture. The LSTM architecture was positioned in
between the other two architectures, offering a middle
ground in terms of both performance and complexity.
Finally, this study concluded that the proposed sequence-
to-one transformer architecture provided promising results
for channel prediction regarding RIS phase optimization.
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Abstract: Energy efficiency, scalability, and reliability are increasingly important for sus-
tainable data centers. In this paper, we focus on forecasting real-world resource usage using
neural network time series models, specifically utilizing convolutional recurrent long short-term
Memory (LSTM) and gated recurrent unit (GRU) architectures. In our analysis, we compare
LSTM and GRU in terms of forecasting accuracy and computational complexity during model
training. We demonstrate that recurrent neural networks are more accurate and robust compared
to the traditional autoregressive integrated moving average (ARIMA) time series model in this
complex forecasting problem. GRU achieved a 9% reduction and LSTM a 5% reduction in
forecasting mean squared error (MSE) compared to ARIMA. Furthermore, the GRU architecture
with a 1D convolution layer outperforms LSTM architecture in both forecast accuracy and
training time. The proposed model can be effectively applied to load forecasting as part of a
data center computing cluster. In this application, the proposed GRU architecture has 25%
fewer trainable parameters in the recurrent layer than the commonly used LSTM.

Keywords: recurrent neural network, convolutional neural network, data center load
forecasting, energy efficiency, sustainability, control optimization, monitoring

1. INTRODUCTION

Energy consumption reduction and resource optimization
are becoming important in computational intensive data
center environments aiming towards more sustainable and
green systems (Bourhnane et al., 2020). World wide energy
consumption of data centers has been estimated rose to
205 TWh in 2018 from 153 TWh in 2005. This means
∼1% of global total electricity usage (Masanet et al., 2020;
Jones, 2018). The whole information and communications
ecosystem causes more than 2% of emissions. This is on
same level with aviation fuel emissions, and it is predicted
to be even higher in future (Jones, 2018).

Optimizing energy consumption of hardware in data cen-
ters is critical, as servers and other IT equipment can
typically take more than 40% of total energy-usage in data
center (Shehabi et al., 2016). To be able to optimize the
IT systems in proactive manner, intelligent and efficient
resource usage forecast is one subject to be solved. Several
different neural network architectures have been proposed
for the task, and many of the solutions use recurrent
neural network (RNN) based approaches (e.g in (Zhang
et al., 2016; Janardhanan and Barrett, 2017; Ouhame
et al., 2021; Yuan et al., 2024)) since it has been designed
to be used with sequential problems such as time series
forecasting. Also more traditional models such as autore-
gressive integrated moving average (ARIMA). ARIMA is
a common tool used by statisticians in time series fore-
casting (Hewamalage, 2020), and has been used to tackle
the problem, e.g. in (Kumar and Singh, 2020; Calheiros
et al., 2015). In this work, we are going to compare two

recurrent neural network architectures: long short-term
memory (LSTM) and gated recurrent unit (GRU) together
with traditional ARIMA model.

While several architectures leveraging recurrent neural
networks have emerged to address load forecasting, they
often overlook the critical attribute of efficiency. Notably,
many of these architectures do not utilize convolutional
or more efficient GRU recurrent layers. In a notable ad-
vancement, the architecture proposed by Ouhame et al.
(2021) focused on optimizing the convolutional layer of the
LSTM model for efficiency. Building upon this progress,
our work introduces a novel approach by integrating both
GRU and convolutional layers. This synergistic combina-
tion not only enhances forecast accuracy but also improves
model efficiency, a critical attribute essential for real-world
integration in data center scenarios.

Efficient and dependable resource usage forecasts are es-
sential for managing dynamic, scalable clusters, enabling
the adjustment of the number of powered-on physical
machines as needed. Such forecasts hold the potential to
significantly reduce energy consumption in data centers
(Bayati, 2018). Additionally, resource usage forecasts find
application in load balancing, particularly in virtual ma-
chine (VM)-based data centers where the allocation of
physical machines for VMs can be modified. This capabil-
ity facilitates the optimization of resource utilization and
enhances the overall efficiency of data center operations
(Shaw et al., 2017).
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2. METHODS FOR TIME SERIES FORECASTING

In this section, we explore the time series forecasting
methodologies employed in this study, with a focus on pre-
dicting data center resource usage efficiently. By leveraging
advanced predictive techniques, our aim is to provide a
robust and efficient framework for analyzing temporal data
patterns and enhancing the accuracy of our forecasts. The
forecasts can be used to optimize resource allocation and
improving operational adaptability in data centers.

2.1 Autoregressive Integrated Moving Average model

The autoregressive integrated moving average model is a
widely-used forecasting method that integrates autoregres-
sion, moving average, and differencing. In this study, we
employ the ARIMA model as a baseline for forecasting due
to its historical prevalence in data center resource usage
prediction tasks and its ability to effectively model various
types of time series data.

ARIMA model can be defined as

y
′

t =α+ ϕ1y
′

t−1 + ...+ ϕpy
′

t−p

+ θ1ϵt−1 + ...+ θqϵt−q + ϵt,
(1)

where α is the optional intercept of the model. ϕi is the
coefficient for the autoregressive part of the model, and
θi is the coefficient for the moving average part of the
model. y

′

t is the value of the differenced time series at
timestep t, and ϵi is the past forecast error (Hyndman
and Athanasopoulos, 2019).

ARIMA model uses hyperparameters p, d, q, and following
conclusions about ARIMA model hyperparameters p and
q can now be derived from the Equation 1: p can be seen
as the order of the autoregressive part of the model, and
q is the order of moving average part of the model. The
hyperparameter d is the order of differencing in time series
(Hyndman and Athanasopoulos, 2019).

2.2 Convolution on Time Series Data

Convolution can be seen as sliding a window over the
data. Due to the success of convolutional neural networks
(CNNs) in image and natural language processing, convo-
lution layers has been applied to time series analysis as
well.

In CNNs processing image data, convolution involves a
two-dimensional filter sliding over the width and height of
the image (Goodfellow et al., 2016). In contrast, for time
series data, the only dimension to slide over is time, which
requires the use of one-dimensional convolution.

Two dimensional convolution starting from point (i, j) can
be defined as:

C(i, j) =

h∑
m=0

w∑
n=0

Ii+m,j+nKm,n, (2)

where I is the input data,K is the kernel of the convolution
with dimensions h×w. Kernel contains weights w for the
convolution. Here, h is the height, and w is the width of
the convolution window. (Goodfellow et al., 2016)

Since the 1D convolution can only slide through one
dimension, w is always same as number of features in
input. Definition for 1D convolution can be derived from
Equation 2:

C(i) =

h∑
m=0

w∑
n=0

Ii+m,nKm,n, (3)

where i is the row of input where the convolution starts
and w is the number of features in dataset. In time series
context, w can be seen as a number of features recorded in
each time point. Again, in time series context this means
that kernel is slided over the time dimension.

Use of the 1D convolution reduces the computational com-
plexity from ∼ O(N2K2) to ∼ O(NK) when comparing
to 2D convolution, when input dimensions are N ×N and
kernel dimensions K ×K (Kiranyaz et al., 2021).

2.3 Long Short-Term Memory

Long short-term memory is a recurrent neural network,
which uses LSTM units and tries to solve vanishing gra-
dient problem of recurrent neural networks (Hochreiter
and Schmidhuber, 1997). This means that the architecture
can find more efficiently long term dependencies from time
series.

LSTM network with forget gate and biases consists of
LSTM cells, where each cell has three gates:

• Forget gate

ft = S(Wfxt + Ufht−1 + bf ). (4)

• Input Gate

it = S(Wixt + Uiht−1 + bi). (5)

• Output gate

ot = S(Woxt + Uoht−1 + bo). (6)

In Equations 4-6 S is an activation function. Often S is
a sigmoid function, as proposed in the original version of
LSTM (Hochreiter and Schmidhuber, 1997; Hewamalage,
2020; Dey and Salem, 2017). Now output / hidden state
ht of cell at timestep t can be defined as:

ht = ot ⊙ T (ct), (7)

where

ct = ft ⊙ ct−1 + it ⊙ c̃t
c̃t = T (Wcxt + Ucht−1 + bc).

(8)

In Equations 7 and 8 T is an activation function, and often
tanh function is used as proposed in the original architec-
ture (Hochreiter and Schmidhuber, 1997). In Equations 4
- 8 xt is the input vector for LSTM cell at timestep t.
Wx, Ux and bx are weights and biases to be tuned in the
training process. The operation symbol ⊙ is an element-
wise Hadamard product. (Hochreiter and Schmidhuber,
1997; Hewamalage, 2020; Dey and Salem, 2017)
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From Equations 4-8 we get that LSTM has total of 4(n2+
nm+ n) optimizable parameters. Here n is the dimension
of hidden state and m is the dimension of input vector.
(Dey and Salem, 2017)

2.4 Gated Recurrent Unit

Gated recurrent unit has been motivated by LSTM unit,
but it has a simpler design (Cho et al., 2014). Unlike
LSTM units, GRUs do not have an output gate as shown
in Equations 9-11. This more streamlined architecture
provides efficiency in both training and forecasting tasks.
Since it has fewer gates, it also has fewer weights to op-
timize, making the backpropagation through time faster.
Additionally, using the trained model to yield forecasts is
more efficient due to the reduced number of calculations
required.

GRU network consists of multiple GRU cells, where each
cell has two gates:

• Reset gate

rt = S(Wrxt + Urht−1 + br), (9)

• Update gate

ut = S(Wuxt + Uuht−1 + bu). (10)

By using these two gates the output / hidden state ht at
timestep t can be defined as:

ht = (1− ut)⊙ ht−1 + ut ⊙ h̃t

h̃t = T (Whxt + Uh(rt ⊙ ht−1) + bh),
(11)

where T is hyperbolic tangent and S is sigmoid activation
function.

All Wx are weight matrices, and all bx are bias vectors,
which constitute the learnable parameters of the model.
Again ⊙ is element-wise Hadamard product (Cho et al.,
2014; Hewamalage, 2020; Dey and Salem, 2017).

From Equations 9-11 we get that GRU has total of 3(n2+
nm+n) optimizable parameters. Again n is the dimension
of hidden state and m is the dimension of input vector as
in the LSTM. (Dey and Salem, 2017)

3. EXPERIMENTAL DESIGN

In this section, we present a detailed overview of the data,
the architecture of the model built using the methodologies
outlined in Section 2, and the comprehensive training
process. These elements form the foundation for the CPU
usage forecasting described in Section 4.

3.1 Dataset Description

The dataset contains resource usage traces of 1750 Virtual
Machines from Bitbrains distributed data center (Bit-
brains, 2013). The usage trace length is 1 month: from
August 12, 2013 to September 11, 2013. The dataset has
samples in 5 minute intervals. Bitbrains has customers
from various industries, resulting diverse use cases and
usage from one VM to another.

Table 1. Input variables from Bitbrains data

Name Description Unit

cpu usage Central processing unit usage %

memory usage Memory usage %

disk read Disk read throughput KB/s

disk write Disk write throughput KB/s

net receive Network received throughput KB/s

net transmit Network transmitted throughput KB/s

Dataset consists of two different sets. The first set contains
data for 1250 VMs in fast storage area network (SAN) and
second set contains data for 500 VMs from both SAN and
slower network attached storage devices. Only the traces
for VMs in fast storage area network were used in our
experiments.

Many of the VMs had low or nearly static load throughout
the trace period. This poses challenges for forecasting,
as static CPU usage is trivial to forecast and would not
accurately reflect the forecast accuracy. To address this
issue, a subset of machines which had average CPU usage
greater than 30% was selected. From this subset, five
random machines were chosen for model training and
forecasting to ensure a more representative evaluation of
the methods. The five selected machines were identified
by their ID numbers: 220, 242, 253, 269, and 283. All the
features together with descriptions which were used in the
forecasting models are defined in Table 1.

We also checked the correlations between all the variables
from the SAN dataset, excluding the five machines used for
forecasting to ensure no data leakage. These correlations
are shown in Fig. 1. The target variable, CPU usage,
had the strongest correlation with memory usage with
Pearson’s r = 0.69, while other input variables had
relatively low correlation values of r ≤ 0.12. There was
moderate correlation between some of the input variables:
Net transmit and net receive (r = 0.51), disk write
and disk read (r = 0.26), and net receive and disk
write (r = 0.27). These relationships are expected since
network traffic tends to happen in both directions when
communicating with the server, workloads can perform
writes followed by subsequent reads (or vice versa), and
in some applications, it makes sense to save the received
data on disk.

Although CPU usage did not exhibit strong correlation
with other input variables aside from memory usage, we
chose to include all available features in the model. This
decision was based on the understanding that correlations
only measure linear relationship between variables and do
not account for the time shifts essential in forecasting tasks
(Hyndman and Athanasopoulos, 2019). Additionally, while
there was some moderate correlation among a few input
variables (e.g., net transmit and net receive, disk write and
disk read), the level of multicollinearity was not substantial
enough to warrant feature exclusion.

The rationale for incorporating all available features as
input was to provide the model with diverse data, enabling
it to capture different workload patterns more effectively.
Consequently, we opted not to apply any feature selection
techniques (such as principal component analysis) to the
data. Instead, the correlation analysis served as an initial
sanity check to ensure the validity of the data.
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Fig. 1. Correlations between all input variables in the
Bitbrains fast storage area network data. Machines
used for forecasting have been excluded from the
correlation analysis.

3.2 Model Architecture

The model architecture is presented in Fig. 2. Input
consists of 90 timesteps of history data from 6 features
which are described in Table 1. The model’s output is
a forecast of CPU usage for the subsequent 6 timesteps,
which corresponds to a 30-minute forecast given the 5-
minute data collection intervals. The choice of a 30-minute
forecasting horizon was driven by a balance between oper-
ational practicality and predictive accuracy. In data center
management, it is crucial to have a sufficiently long fore-
casting period to enable proactive measures and resource
adjustments. A 30-minute horizon provides adequate lead
time to implement necessary actions such as load balancing
or resource allocation. Simultaneously, this period is short
enough to maintain a high level of forecast accuracy, which
tends to degrade over longer horizons. CPU usage was
selected as the resource to forecast because it is typically
regarded as the most critical resource in a data center due
to its limited availability and high demand (Zharikov et al.,
2020).

1D Convolution layer was used for enhanced temporal rep-
resentation of time series, thereby potentially enhancing
forecast accuracy. The convolution layer had kernel with
length of 6, and 35 filters. While employing a substantial
amount of filters can potentially diminish model efficiency,
it significantly aids in capturing diverse features inherent
in the time series data. This is discussed more in Section
4.2. Since kernel with length of 6 was used with 35 filters
and stride of 1 output of 1D convolution layer has dimen-
sions (85,35). This output is fed into the recurrent layer.

The recurrent layer in our model employs either GRU
or LSTM RNN units, both renowned for their ability to
capture temporal dependencies effectively. In both imple-
mentations the dimension of hidden state was deliberately
set to a relatively high value of 1024, and this is same as

the final output dimension of recurrent layer. This choice
ensures that a comprehensive comparison of efficiency
between the two RNN architectures can be conducted
accurately. The rationale behind this decision lies in the
understanding that a higher hidden state dimension neces-
sitates more calculations, thereby ensuring that the results
obtained are representative and robust. GRU implementa-
tion has less parameters to train than LSTM as described
in Sections 2.3 and 2.4. This should make the GRU archi-
tecture more efficient than LSTM and real training time
comparison between these two recurrent layers is presented
in Section 4.2.

The Dense layer within the architecture requires an equal
number of neurons as the desired forecast length. As
detailed at the outset of this section, the forecast is for
6 subsequent timesteps. This ensures that the output
dimensionality aligns precisely with the target forecast
length.

Since all the 6 features were fed into 1D convolutional layer
with kernel length of 6 it implies that each kernel had
6 × 6 = 36 weights to be optimized. 35 filters which each
had its own bias was used. This makes 36×35+35 = 1295
trainable parameters total in the 1D convolution layer.

The number of trainable parameters in recurrent layer
varies depending on the specific recurrent architecture
employed. As told in Section 2.3 the LSTM has 4(n2 +
nm+n) optimizable parameters. Again n is the dimension
of hidden state and m is the dimension of input vector. In

Fig. 2. Model architecture at timestep t. Dimension after
each layer is shown on the right side.
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this architecture this makes 4(10242+1024×35+1024) =
4341760 trainable parameters for the recurrent layer with
LSTM. Since Tensorflow’s CUDA implementation of GRU
uses two bias terms in the reset gate, the total number of
trainable parameters are 3(n2 + nm + 2n), which in this
architecture is 3(10242 +1024× 35+ 2× 1024) = 3259392
trainable parameters when using GRU on recurrent layer.

The dense layer of architecture has noutput(ninput + 1)
parameters to be optimized. In this architecture it means
6(1024 + 1) = 6150 trainable parameters.

All these layers combined makes ∼3.27M trainable param-
eters in architecture with GRU units in recurrent layer and
∼4.35M trainable parameters with LSTM units.

3.3 Model Training Process

All models (GRU, LSTM, and ARIMA) were trained on
data set consisting of the first 75% of data from each VM.
Example of train and test split can be seen in Fig. 3.

In the training process of RNN architectures TensorFlow
(Abadi et al., 2015) version 2.5 was used. 20% of the
training data was further split for the validation of model
and hyperparameter tuning during the training process.
The hyperparameter tuning for the RNN architectures
was conducted empirically through trial and error. We
experimented with various combinations of key hyperpa-
rameters, including the number of layers, number of units
per layer, and learning rate. The weights that yielded
the highest forecast accuracy on the validation set were
saved, and then later used to forecast the test in the model
comparison in Section 4.1.

For the RNN architectures, min-max normalization was
applied to scale all input variables to the [0, 1] range. Min-
imum and maximum values for each VM were calculated
from the training set, and these same values were used to
scale both training and test set.

The Adam optimizer combined with mean square error
(MSE) loss function was used to update the weights of the
RNN during the training process. Adam was chosen as
optimizer because it is well suited for architectures with
large amount of optimizable parameters (Kingma and Ba,
2014). The loss in both training and validation set was
monitored through the training process. Example of the
learning curve for the machine ID 283 can be seen in Fig.
4.

ARIMA model was optimized and trained using the pm-
darima (Smith et al., 2017) Python package. ARIMA
model parameters (p, d, q) were initially optimized us-
ing the algorithm specified in Hyndman and Khandakar
(2008). Subsequently, the model was trained for each VM
using its training data. The maximum depth for param-
eters were set to the default settings of the pmdarima
package, specifically (5, 2, 5). The detailed ARIMA model
parameters used for each VM are provided in Table 2.

For both recurrent neural networks and ARIMA model, a
distinct model was trained for each machine. In Section
4.1, the forecast experiments and results of the trained
models are evaluated using the held-out test set of future
time series points, as illustrated in Fig. 3.

Table 2. ARIMA model parameters for each
machine

Machine
ID

Parameters

p d q

220 5 1 3

242 3 1 2

253 2 1 3

269 2 1 3

283 3 1 3

Source codes and demonstration for dataset selection,
ARIMA model parameter optimization and fitting, as well
as GRU architecture training and forecasting are publicly
available (Malin, 2024).

Fig. 4. Learning curve for machine ID 283.

4. RESULTS

In this section, we will evaluate the performance of the
methods introduced in Section 2 using resource usage data
from real-world scenarios and training proces introduced in
Section 3. This analysis aims to demonstrate the efficiency
and practical applicability of the forecasting techniques in
a data center environment.

4.1 Forecast Accuracy

In our experiments, held out test set containing last 25%
of data as described in Section 3.3 was forecasted. Root
mean square error (RMSE), Mean Square Error and 95th
percentile of the absolute error (AE) were calculated over
the forecast results for the entire test set. The results for
forecast accuracy are shown in Fig. 5 and Table 3.

Prior analysis of the data provided critical insights into
the problem. During this process, we discovered that some
CPU usage values slightly exceeded 100%. Based on this
observation, we decided to clip the forecasts of all models
within the [0, 105] interval to eliminate unreasonable
forecasts.

The forecast results for each VM are presented in Table 3.
Error metrics were calculated from the forecast of future
CPU usage in the held out test set. For every error metric,
the GRU architecture achieved the best average forecast

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.061 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

452



Fig. 3. Data set split example with CPU data from machine ID 253. 75% of the data was used in the training process.
Last 20% of the training data was still used as a validation set to monitor metrics during training. Last 25 % of
the whole dataset was held out for test set as a comparison between LSTM, GRU, and ARIMA.

Table 3. Forecasting errors for the test set of each machine. The model with the best accuracy
(lowest error metric) is bolded, and the model with the lowest accuracy (highest error metric)

is italicized. The mean and standard deviation are highlighted in the same manner

Machine RMSE MSE 95th AE percentile

ID GRU LSTM ARIMA GRU LSTM ARIMA GRU LSTM ARIMA

220 28.72 29.09 30.80 825.05 846.21 948.46 66.38 71.95 84.16

242 25.49 26.74 26.81 650.11 714.90 718.69 62.75 65.16 71.29

253 23.14 23.42 24.92 535.55 548.49 621.13 64.84 62.63 71.60

269 20.04 19.37 19.78 401.71 375.11 391.31 48.21 44.48 47.13

283 20.06 21.00 20.34 402.47 441.01 413.75 48.94 49.14 53.30

Mean 23.49 23.92 24.53 562.98 585.14 618.67 58.22 58.67 65.50

Std 3.71 4.00 4.60 179.44 194.44 230.46 8.90 11.47 15.04

performance across all machines, with an RMSE of 23.49,
an MSE of 562.98 and a 95th percentile AE of 58.22.
Conversely, the ARIMA model had the worst average error
metrics, with an RMSE of 24.53, an MSE of 618.67 and
a 95th percentile AE of 65.50. The LSTM architecture’s
performance fell in between these two, with average error
metrics of 23.92, 585.14, and 58.67, respectively. Both
the LSTM and the GRU architectures outperformed the
baseline ARIMA model in forecast accuracy for every VM
and across all metrics, as shown in Table 3. Additionally,
when comparing the medians of the error metrics, the RNN
architectures outperform the baseline ARIMA model. This
can be seen from the boxplots of the error metrics in Fig.
5.

Considering all the calculated forecast error metrics in
Table 3, the GRU architecture provided the lowest error in
11 out of 15 cases. In the remaining four cases where the
GRU did not achieve the lowest forecasting error, the best-
performing model was still an RNN architecture, specifi-
cally the LSTM. This highlights the superior performance
of RNN-based models in our forecasting task.

4.2 Computational Efficiency

Both RNN architectures (GRU and LSTM) were trained
using the NVIDIA Tesla V100-SXM2-32GB in the super-
computer Puhti at CSC – IT Center for Science. Models
with architectures as described in Section 3.2 were trained
for 100 epochs.

Both RNN models were trained on the same data set from
machine id 357. 80% of the data was allocated for the
training process, while the remaining 20% was reserved
for calculating validation metrics. Although the results
gathered during validation were not applied in this setting,
the validation step was performed to accurately simulate
the real training process of neural networks.

The total training time for the architecture with GRU
units in the recurrent layer was 380.27 seconds, whereas for
the architecture with LSTM units in the recurrent layer, it
took 461.38 seconds. This observation supports the theory
presented in Section 2.4 that GRU should be more efficient
to train than LSTM.

Further improvements in efficiency could be achieved by
further optimizing the convolution layer of the architec-
ture. Methods such as max pooling in the convolution
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Fig. 5. Boxplot of all error metrics for the test set forecasts
across different model architectures. The boxplot data
holds results from all five machines used in the exper-
iments.

layer can significantly reduce the dimensionality between
the input and recurrent layers, thereby decreasing the
number of weights to be tuned in the recurrent layer.
However, despite initial optimization efforts, experimen-
tation revealed that additional dimensionality reduction
techniques resulted in a noticeable decrease in forecast
accuracy. Therefore, while acknowledging the potential
for further optimization, we decided not to pursue these
techniques in this study.

Employing computationally efficient models, such as GRU,
is crucial in data center load prediction. One key objective
in this setting is to reduce the overall energy consump-
tion of the computing cluster. Given that the forecasting
models themselves are integral components of the system,

using efficient models helps minimize their computational
overhead, thereby contributing to energy savings.

4.3 Combining Accuracy and Efficiency

Table 4.3 presents a summary of the accuracy and effi-
ciency results. The GRU model achieved a 9% reduction
in forecast error, as measured by MSE, compared to the
baseline ARIMAmodel. Additionally, the GRUmodel out-
performed the LSTM model in terms of accuracy, despite
having 25% fewer trainable parameters.

Table 4. Summary of all results. Average MSE
and computational complexity is compared to
the baseline ARIMA model. Rank takes both
accuracy and computational complexity into

account

Architecture
Average MSE

Computational
Complexity

Rank

ARIMA 618.67 (Baseline) Low 3.

LSTM 585.14 (-5.42%) High 2.

GRU 562.98 (-9.00%) Medium 1.

5. CONCLUSIONS

We have shown practical and accurate approach for fore-
casting IT resource usage in data centers using recurrent
neural networks. In our experiments, both the LSTM
and GRU architectures outperformed the baseline ARIMA
model in terms of forecast accuracy.

The architecture with GRU units in the recurrent layer
provided the best forecasting accuracy, as evidenced by the
lowest mean and median error metrics. The LSTM units
in the recurrent layer achieved the second-best forecast
accuracy based on mean error metrics for the test set.

Considering that the GRU architecture not only delivered
superior forecasting accuracy but also demonstrated ef-
ficient training times, we propose the use of GRU units
in the recurrent layer of neural network architectures for
resource usage forecasting. Reducing computational com-
plexity in data center operations has significant practical
implications. Improved forecasting accuracy and efficiency
can enhance resource management, reduce energy con-
sumption, allow dynamic scalability, and improve overall
operational efficiency. These advancements can lead to cost
savings and a lower environmental footprint, which are
critical considerations in the field of sustainable comput-
ing.

This study provides valuable insights into forecasting
data center load using RNN architectures. However, it is
important to note that this work is based on the dataset
from a single data center. Although the Bitbrains dataset
has diverse use cases, this may limit the generalizability
of the results. Future research should consider testing the
models on datasets from multiple data centers to validate
and potentially extend the applicability of the findings.

All the source codes for this work are publicly available
(Malin, 2024), ensuring that all results can be reproduced.
This will also enable future improvements to be built upon
this base convolution and RNN architecture.
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Abstract: Increasing demand for critical raw materials and energy transition metals sets new targets for the 

mineral processing, also resulting as higher requirements for the simulation tools during process design and 

optimization. This study presents a framework for global uncertainty evaluation of modelled plant-wide 

processes, where the propagation of uncertainty sources is addressed. The uncertainties exist, for example 

in operational and design parameters and in material properties. The approach was demonstrated with a 

typical mineral processing flowsheet simulated with commercial software. First, domain knowledge was 

adopted to screen the parameter space and then Monte Carlo simulation was performed. After this, the 

generated data set was used to identify surrogate models between the uncertain inputs and process 

performance indicators. Finally, a global sensitivity analysis was conducted to identify the effects of 

uncertainties to the decision-making in process design. The results were particularly used to locate the 

process points where accurate information is needed for the robust process design, or where on-line 

measurements would be preferred to establish on-line optimization.  

Keywords: Flowsheet simulation, Process design, Global sensitivity analysis, Surrogate model. 

1. INTRODUCTION 

As critical minerals have become more crucial for the 

operation of societies, the necessity to maximize the efficiency 

of all processes throughout the lifecycle, namely mining, 

refining, and recycling, is even more important than before. 

Increase in the demand of critical minerals opens new demand 

for circular economy system, in which the maximum 

efficiency is achieved by minimizing losses in all parts of the 

cycle (Whitworth et al., 2022). These developments increase 

the number of processes, where multiple minerals are present 

in the separation processes, which in turn increases the 

complexity of simulation models, and uncertainty of 

simulation and model-based decision making in process 

design and in process operation. 

Mineral processes aim to extract valuable minerals from ore. 

The process usually consists of multiple stages, which all of 

them have their unique properties, and thus described with 

different mathematical models and uncertainties related to 

them. The uncertainties need to be attributed to their sources 

through simulations to facilitate the process optimization 

(Sepúlveda et al., 2014). 

The lack of understanding that exists around inspected system 

creates a need to model the system, which itself holds inherent 

uncertainty, for example assumptions, process randomness 

and measurement errors (Caers, 2011a). Precisely, the 

definition of uncertainty is tied to the model uncertainty when 

it is quantified by sensitivity analysis (Sepúlveda et al., 2014, 

Arnst et al., 2021, Puy et al., 2022), although uncertainty is a 

wider concept itself. According to Campolongo et al., (2000),

sensitivity analysis complements uncertainty analysis.

The goal of extracting valid information is to reduce

uncertainty in an influential decision-making process. Because

collecting more information does not necessarily reduce

uncertainty, it is important to find the parameters that best

describe uncertainty (Caers, 2011b).

Sensitivity analysis is a method that can be also applied to

identify how the uncertainty in model output is divided in its

inputs. There, a local sensitivity analysis provides changes one

input parameter at a time. Global Sensitivity Analysis (GSA)

is a more robust solution compared to local sensitivity analysis

(Cisternas and Lucay, 2020). It can overcome the limitations 

of inspecting one variable at a time, and thus enables to 

find relationships between the variables that would be 

otherwise left undiscovered (Sepulveda et al., 2013).

GSA has been applied in mineral processing, for example,

improving the milling operation by (Lucay et al., 2019) as they

considered both the operational (epistemic) uncertainties and

stochastic uncertainties related to feed properties. Further, a

framework of deterministic process design, elimination of

non-influential process variables and recognition of critical

parameters through GSA was used in (Lucay et al., 2015) for

a mineral concentration process. Ohenoja et al. (2023) used

GSA to identify and to weight the most important process

measurements in the model adaptation problem of a flotation

circuit. Arancibia-Bravo et al (2022) similarly used GSA to

identify critical model input parameters of copper flotation in

saline systems, while (Sitorus and Brito-Parada, 2020) 

applied
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GSA for the selection of optimal crushing equipment in

multiple criteria decision-making model.

As mentioned, mineral processes are characterized by a

combination of multiple processing stages making the overall

flowsheet complex. The input parameter effect on the

uncertainty of the global output parameters of each separation

unit can be analyzed by dividing the inspected flowsheet into

stages (Montenegro et al., 2015). By doing this, the

propagation of the uncertainty can be analyzed. One approach

to gain insight on uncertainty propagation is Monte Carlo

(MC) simulation (Albert, 2020).

MC requires a sufficiently big sample size to produce

sufficient resolution for the intended purposes (Helton 

and Davis, 2003). Thus, complex flowsheets or detailed 

models may set limitations to the applicability of MC. 

Therefore, surrogate models are also used in uncertainty 

evaluation. Analytical solutions to uncertainty have 

been inspected utilizing surrogate models, for example in 

(Liu et al., 2024), where the presence of two or more 

uncertainty factors is the source of complexity. Lu et al. 

(2018) showed that generalized linear models can be used to 

get accurate sensitivity indices, by utilizing polynomial 

approximations of the data.

This study presents and demonstrates a framework for global

uncertainty evaluation of plant-wide processes, where the

propagation of uncertainty sources is addressed. The

uncertainty propagation results in this publication give insight

of the uncertainty factors and sources, that would be used

during the model-based process design or in operational

optimization. Thus, this work aims to extend from previous

GSA studies, such as (Lucay et al., 2012), where focus was on

one separation process model. The uncertainty evaluation

framework is demonstrated utilizing a typical mineral

processing flowsheet simulated with a commercial software.

The following sections of the paper are distributed as follows;

Section 2 outlines the constructed framework, and the software

and mathematical methods used. Section 3 details the selected

mineral processing case study, the performance of the

surrogate models identified, and the sensitivity analysis

results. The evaluation of the case study results, and discussion

of the proposed framework is described along Section 4.

Finally, Section 5 summarizes the main findings of the

research.

2. MATERIAL AND METHODS

2.1 Framework

The framework is described in Fig. 1. As a starting point, the

mineral processing flowsheet model was established to a

simulation software. Then, the possible input and output

parameters from the software used were listed with domain

knowledge and inspected through a screening step. This was

performed as a local sensitivity analysis by directly inspecting

the variation caused by each input to one output individually.

As a result of the screening step, the number of possible input

parameters for the global sensitivity analysis were reduced.

This is typically necessary to facilitate the MC simulation of

complex flowsheets.

The final selection of parameters, and their ranges, were 

confirmed from the forementioned list based on domain 

knowledge. After the parameters had been chosen, a MC 

simulation was performed in the flowsheet simulation 

software. The resulting data set was then utilized to train the 

surrogate models and to perform GSA with the identified 

models. To improve the performance of surrogate models, and 

the sensitivity analysis based on them, the flowsheet was 

considered as blocks, where the surrogate models of previous 

blocks can act as inputs for the following modelled blocks. 

In the demonstration of this study, the simulation software 

used was USIM PAC (See Section 2.2). The screening step 

was analyzed using spreadsheets and interviewing the experts. 

The MC was conducted with the embedded MC tool in the 

simulation software. The MC data set was then exported to 

Matlab® to identify surrogate models (See Section 2.3) and to 

perform sensitivity analysis (See Section 2.4). The studied 

flowsheet is presented in Section 3.1. 

 

Fig. 1. Approach for estimating uncertainty propagation in 

flowsheet simulation.  

2.2 Simulation software 

In active development since 1986, USIM PAC has been 

created by the BRGM´s (French geological survey) Process 

Simulation Group. Since 2004, CASPEO, a spin-off of 

BRGM, has been the company behind its development and 

distribution. Although it has been used in several industries, 

USIM PAC is a process simulation software primarily 

intended for mineral processing and hydrometallurgical 

operations, where it can be used for design or optimization 

purposes. 

The Supervisor, which is one of the optimization algorithms 

available in USIM PAC (Guillaneau et al., 1995) was the main 

calculation tool used to generate the simulation results in this 

work. The Supervisor algorithm can be used either as a 

sensitivity analysis tool or for visual optimization. It calculates 

user-defined parameters (soft-sensors, outputs) when some 
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input parameters (actuators) vary. The variation of the 

actuators can be defined using different methods: (1) 

Scanning, which generates a set of vectors by the combination 

of different values of each parameter in a given research 

domain; (2) Sensitivity Analysis, which evaluates each 

parameter using a user-defined range and step; (3) Monte-

Carlo, which generates as many parameter values as required 

using a random procedure with the selected statistical 

distribution (Gauss, Uniform, or other) to constitute a point. 

A screenshot of the Supervisor tool is depicted in Fig. 2. The 

output of the Supervisor tool is a file displaying the list of the 

values of the user-defined soft-sensors resulting from the 

simulations performed for each random value of the actuator 

or combination of actuators. As this file can be exported as a 

spreadsheet, the results can be easily exploited using statistical 

analysis tools. 

 

Fig. 2. Selection of actuators in USIM PAC Supervisor. 

2.3 Surrogate modeling 

The data acquisition from USIM PAC to the surrogate 

modeling was performed using the MC simulation property in 

USIM PAC. The resulted *.csv was read in Matlab®, where the 

surrogate models were fitted using Regression Learner 

application. The selected modelling approach here was linear 

stepwise regression. The performance of the final model 

structure was evaluated with two different metrics: mean 

absolute percentage error (MAPE) and coefficient of 

determination (R2). 

2.4 Sensitivity analysis 

According to (Campolongo et al., 2000), sensitivity analysis is 

an integral part of the modeling process. As a quantitative 

method, it can decompose the variance of output variable Y. It 

can be used as a tool to identify noninfluential parameters, and 

thus be used to simplify and/or improve the uncertainty 

modeling. 

The total sensitivity index takes into consideration all the input 

parameters (Xi) and their possible combinations (Xij) and 

displays the average effect of the inspected input variable 

(Lucay et al., 2019). According to (Saltelli et al., 2007), the 

first order sensitivity being similar in magnitude to the total 

effect index, means that there is no interaction between the 

inspected parameter and the rest of the parameters. Otherwise, 

the first order sensitivity index is always smaller than the total 

order index, if there is even a small interaction between the 

inspected parameter and other parameters. 

The GSA approach was originally proposed in (Saltelli

and Homma, 1996). The refined method in (Saltelli, 2002),

gives a pathway to circumvent the curse of

dimensionality when dealing with high factor count

models, turning 𝑛2𝑘 into 𝑛(2𝑘 + 2), where k is a term of

order and n is the sample size used to estimate one

individual effect. They noted that the computation of the

sensitivity indices is more straightforward in the higher

order terms. The advantages of the method are the

flexibility concerning the utilized models in the sensitivity

analysis and the computational inexpensiveness. Thus, the

method from (Saltelli, 2002) is more attractive tool for

engineering applications, and was also selected to this study.

The total order index, STi, is formed by following formula

(Saltelli et al., 2007, p.164):

where i refers to the input parameter, V(Y) is the variance of

the inspected output Y, and E[Y|X~i] is the estimated

conditional mean of output Y in relation to input X~i.

V(E[Y|X~i]) is the conditional variance of output Y in relation

to input X~i.

The sensitivity analysis was done in Matlab® utilizing Latin

hypercube (LHS) sampled data based on the utilized parameter

ranges. The used functions for the sensitivity analysis can be

found in (Vandy, 2016).

3. RESULTS 

3.1 Input screening and the studied flowsheet 

The flowsheet used in simulations is presented in Fig. 3. The 

grinding circuit (GC) comprises a ball mill and a hydrocyclone 

classification with one recycle stream. The flotation circuit 

(FC) includes four flotation stages (Rougher, Scavenger, 

Cleaner 1, Cleaner 2) with two recycle streams. 

 

Fig

.

 3. Studied flowsheet. 
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In the studied flowsheet, the streams under interest were: 

• GC product,  

• Circulating load to the mill (hydrocyclone underflow),  

• Rougher feed,  

• Final tailings, and  

• Final concentrate. 

From these streams, several properties were monitored as 

outputs, namely: 

• Ore concentration,  

• Particle size,  

• Ore mass flowrate,  

• Total volumetric flowrate,  

• Solids concentration, and  

• Grade. 

These represent the outputs Y, that are modeled and subjected 

to GSA. 

For the screening step, a large number of input parameters 

were reduced to a smaller group of important input parameters 

with domain knowledge and simulations using the Scanning 

feature of USIM PAC. Table 1 presents the selected input 

parameters after the screening. For the grinding circuit, mill 

rotation speed and grinding media loading represent 

operational variables, whereas grindability is a material 

property. Similarly in flotation circuit, the pulp level and water 

content can be manipulated in an operational environment. The 

floatabilities can be considered either material properties 

(liberation, mineral properties) or operational variables 

(addition of flotation chemicals). The different flotation cells 

in the flowsheet, namely rougher, scavenger, and two cleaners, 

have unique parameters. As mentioned in Section 2.1., the 

surrogate model outputs from the grinding circuit also act as 

inputs for the flotation circuit surrogate models. 

Table 1. Selected process parameters for MC simulation and 

surrogate modeling. 

Grinding circuit 

 

Flotation circuit 

Grinding media loading Pulp level in cell    

Mill speed Pulp water content in cell 

Ore grindability Ore floatability in cell 

Gangue grindability Gangue floatability in cell 

Hydrocyclone feed 

diameter 

Surrogate model outputs 

from the grinding circuit 

Hydrocyclone overflow 

diameter 

 

Hydrocyclone underflow 

diameter 

 

 

3.2 Monte Carlo simulation 

MC simulation was performed utilizing uniform distribution 

for the input parameters. The used range of the input 

parameters varied from ±5% to ±10% in USIM PAC 

supervisor. The variation amplitude was based on domain 

knowledge. The number of MC simulations done in USIM 

PAC was 10,000. The generated data was used to fit surrogate 

models for the GSA. In GSA, MC was used in generating 

sample inputs for the surrogate models utilizing LHS design. 

The input range was extrapolated to ±10% for all inputs. The 

sample data consisted of 10,000,000 points. 

3.3 Surrogate modeling 

In total, 30 surrogate models, representing the outputs Y, were 

identified using the MC data set from USIM PAC. The model 

performance, in terms of MAPE, for the GC outputs and FC 

outputs are presented in Fig. 4 and Fig. 5, respectively. 

Overall, the low MAPE values (< 1.8%) indicate that the GC 

stream properties from the flowsheet simulation can be 

accurately described with surrogate models. The solids 

concentration in Fig. 5 lacks modeling error values for Final 

concentrate or Rougher feed streams, as the MC data set 

indicated constant output values. 

 

Fig. 4. Model performance (MAPE) of the identified surrogate 

models for GC. 

 

Fig. 5. Model performance (MAPE) of the identified surrogate 

modes for FC. 

The scatter plots of the worst performing surrogate models 

(Circulating load to the mill and ore mass flowrate in final 

tailings) are presented in Fig. 6 and Fig. 7, respectively. The 

MAPE values inspected together with R2 give a more 

comprehensive understanding of the model performance. The 

figure shows that the R2 values are also at acceptable levels 
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(greater than 0.70) in this case. For the ore mass flowrate in 

Fig. 6, the surrogate model seems to systemically 

underestimate some of the values above 11.8 t/h. Thus, for this 

variable, another model structure could be studied to improve 

the modeling performance further. 

 

Fig. 6. Scatter plot of ore mass flowrate in the Circulating load to 

the mill. The scale in both axes begins at 9. 

 

Fig. 7. Scatter plot of ore mass flowrate in the Final tailings. The 

scale in both axes begins at 0.8. 

3.4 Global sensitivity analysis 

The GSA was performed using identified surrogate models. In 

GSA, the results are interpreted individually to different 

flowsheet sections in order to understand the propagation 

routes of the uncertainties. 

Grinding circuit 

The utilized input parameters for GC were listed in Table 1. 

From the GSA results, some essential outputs, such as in PSD 

(Particle size distribution), ore concentration and grade were 

inspected in detail and are discussed below. 

PSD is usually the key process quality parameter in grinding 

circuits. According to the results, PSD of the Grinding circuit 

product is mainly affected by the hydrocyclone parameters (STi 

from 0.51 to 0.06), whilst mill and ore parameters had very 

small sensitivity (STi <0.04) to the PSD. However, for 

Circulating load to the mill, the gangue grindability (0.41), 

mill speed (0.32) and the grinding media loading (0.25) 

explain the PSD variation according to the GSA.   

Grinding circuit product concentration variation is best 

explained by gangue grindability (1st, 0.55), ore grindability 

(2nd, 0.45) and hydro cyclone underflow (3rd, 0.11). The same 

finding applies to the concentration in Circulating load to the 

mill, and to the grade variation in both streams.   

Overall, the operational variables show only moderate 

sensitivity to the studied outputs in GC; Grinding media 

loading affects the total volumetric flowrate of GC product and 

PSD of circulating load. Mill speed affects the GC product 

solids concentration and PSD of circulating load. One 

explanation could be that the selected ranges of the other input 

parameters mask the effect of mill operational parameters in 

most of the studied outputs. One way to overcome this problem 

in sensitivity analysis would be to narrow down the parameter 

ranges of feed characteristics, or to sample the parameter 

values from different types of probability distributions as done 

in (Lucay et al. 2019). 

Flotation circuit 

The utilized input parameters for FC are listed in Table 1. In 

addition to these parameters, the outputs from the GC 

surrogate models are used as surrogate model inputs, and thus, 

in GSA. Three of those were identified to be very significant 

inputs parameters for all FC outputs. 

In all three FC streams, the concentration in the GC product 

stream shows significant sensitivity to the ore concentration 

(or grade), and particle size (STi between 0.47 and 0.29). This 

is an expected result, as variation in flotation fresh feed 

properties determine the flotation performance. According to 

the GSA results, the gangue floatability in rougher and pulp 

water content in cleaner 1 are also sensitive parameters (STi 

between 0.10 and 0.16) to the rougher feed and final 

concentrate concentrations, respectively.   

Interestingly, the ore concentration and particle size in 

Circulating load to the mill seems to explain some variation in 

flotation streams’ properties (STi up to 0.30 and 0.32, 

respectively). This might be contributed by the fact that the 

circulating load affects the water addition rates in the 

flowsheet model, which then propagates into a variation in 

flotation circuit. Another explanation could be that the 

mentioned circulating load properties are affected by mill 

speed, grinding media loading, and hydrocyclone parameters, 

which were also seen in the GSA results for the grinding 

circuit.  

Regarding the solids concentration in final concentrate, the 

GSA shows that the total pulp water content in cleaner 2 is the 

most influencing variable (STi 0.85). This is natural, as the 

higher water content in the final flotation cell corresponds to 

the lower solids concentration of the product. Otherwise, the 

flotation circuit operational parameters are not among the most 

sensitive parameters in the simulated data set, again 

highlighting the need to carefully determine the input’s 

probability distributions for the sensitivity study. Another 

observation from these results is that there can be limited 

possibilities for the operational parameters to mitigate the 

effect of the disturbances entering to the FC from upstream 

process steps. 

Summary of GSA results 

The GC circulating load parameters have a high effect (STi 

>0.10) to the flotation circuit variation. This is due to the mill 

being unable to process the feed (and recycle) fast enough,  

thus increasing the amount of water and decreasing the solids 
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concentration in the feed to the FC. This is observable from 

the parameters with influential STi in the circulating load being 

ore grindability, mill speed and mill grinding media loading.  

In Fig. 8, the occurrence of the most sensitive inputs for the 

rougher feed properties is depicted. The frequency 

corresponds how often the input parameter was among the 

three most significant input parameters based on GSA. 

Similarly, Figure 9 shows the result for final tailings properties 

and Figure 10 for the final concentrate properties. 

 

Fig. 8. Occurrence of the most sensitive inputs for rougher feed 

properties. 

 

Fig. 9. Occurrence of the most sensitive inputs for FC final tailings 

properties. 

From Fig. 8, it can be observed that the rougher feed properties 

are naturally sensitive to the parameters in GC product. 

According to the results, the input parameters that describe the 

ore concentration, grade and particle size thus describe the 

flotation circuit performance and the final concentrate 

variation.  

The ore feed characteristics and the ability of the GC to 

categorize the feed into set particle size similarly most describe 

the variation in the final concentrate and final tailings (See Fig. 

9 and Fig. 10), which is an expected result after the rougher 

feed results. An outlier to this statement is the Pulp water 

content in cleaner 2, which is an operational input parameter 

in FC. As the fresh feed characteristics can’t be affected by the 

operation of the GC, the only thing left to do is to minimize 

the variation in the ore size distribution by GC operation.

 

Fig. 10. Occurrence of the most sensitive inputs for FC final 

concentrate properties.  

4. DISCUSSION 

In addition to the surrogate models presented, the FC outputs 

were also modelled using only the MC data without GC 

surrogates. The performance of the FC surrogates, in this case, 

was slightly worse (>0.05 lower R2). This alternative would 

also make it more difficult to inspect the propagation of 

uncertainties as GC models do not act as inputs for the FC. 

Production of outliers by the GSA method, or volatility, is due 

to its non-additive nature. Non-additivity in this context 

means, that the generated STi value is not equal to the sum of 

the values of the component parts. This is a cost caused by the 

computational and straightforward nature of the used Saltelli’s 

approach over the original Sobol’s method (Saltelli et al., 

2007). This limits the interpretation of the lower magnitude STi. 

Thus, mainly the three most significant STi were discussed in 

this study. Naturally, a more thorough GSA interpretation 

could involve inputs with lower influences into the analysis of 

uncertainty, if the volatility issue can be solved. 

Like (Puy et al., 2022) concludes in their publication, Saltelli’s 

total order method becomes inaccurate with higher 

dimensionality (k>10). The exponential growth in input 
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parameters of more complex flowsheets is an issue that needs

to be addressed thoroughly, utilizing similar design of

experiments and domain knowledge methods that were shown

in this study. Domain knowledge gives insight on what

parameters are influential based on previous experiences and

the local sensitivity analyses on the possible unknown

sensitivities in the analyzed setup.

The proposed approach for the uncertainty analysis with

surrogate models resulted in a lower computational load and

made it possible to use large sample size in GSA. This

decreases the inherent volatility of Saltelli’s method. The

accuracy of Saltelli’s method for the most important

parameters can be improved by repeating the GSA with

multiple LHS designs (Puy et al., 2022). Alternative methods

for calculating total order sensitivity indices, such as Jansen,

Razavi and Gupta, Janon/Monod and Azzini and 

Rosati, suggested by (Puy et al., 2022) could also be 

considered.

The results in this study suggested that the most influential STi

are related to the feed characteristics and the mill performance.

Thus, for more robust operational decisions, the focus could

be shifted to better measure the feed properties in on-line to

minimize the effect of stochastic (inherent) uncertainty. For

process design purposes, the results highlight the emphasis

needed for GC design and its flexibility to tackle and decrease

the uncertainties, that will otherwise strongly propagate

downstream to FC streams. If stochastic uncertainties remain,

only the epistemic uncertainties can be affected, and thus the

focus needs to be on lesser magnitude, operational sensitive

indices. To achieve the best design and operational reduction

of uncertainty, maximum range of uncertainties (all STi > 0.10)

need to be considered.

The proposed framework could benefit from the development

of software interfaces establishing more automated data

transfer. Dividing the process into parts is beneficial for

understanding the propagation of uncertainty through the

different parts of the process. At the same time, more data is

generated that needs to be handled efficiently between the

different software tools. Further, the interface between the

sensitivity analysis results and decision-making in process

design or on-line operation requires further development.

5. CONCLUSIONS

In this work, an uncertainty propagation evaluation framework

was established to be used in model-based decision making.

The proposed methods were chosen to enable rapid inspection

of complex systems typically seen in flowsheet simulators.

The results in this paper demonstrated that this framework can

be used to identify the most influential parameters throughout

the whole inspected process chain. This allows to focus further

analyses to the propagation of uncertainty attributed to these

identified parameters.

Regarding the case study, the propagation of uncertainty

within the studied flowsheet was observed through dividing

the flowsheet into the grinding circuit (GC) and to the flotation

circuit (FC). By doing this, the changes in the GC were seen to

have strong influence on the flotation circuit model output

variation. The GC inputs were the top three most influential

inputs for all observed output parameters in the FC. The most

sensitive operational FC input parameters were not found

among the top three most influential input parameters but were

still considered influential (total sensitivity index values

>0.10). Those parameters were gangue floatability in rougher

and pulp level in cleaner.

Final sensitivity indices indicating the most sensitive

parameters in the whole process were found in the fresh feed

characteristics (ore concentration/grade and particle size

distribution), and the ability of the mill to reduce the particle

size distribution to the desired range. The operational input

parameters had a lower influence in general, but that result

might be due to the small range of changes applied in

simulation, so further studies are required.
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Abstract: Our paper presents a two-stage algorithm designed to address year-round-coupled optimization 

problems encountered in energy system optimization, particularly relevant for scenarios involving seasonal 

storages or other conditions depending on annual integrals. We apply this algorithm to MILP and MIQCP 

models. The solution we propose aims to stay feasible with the original problem while getting close to 

optimal results. It also significantly reduces the computing time compared to solving the original problem 

alone. This is crucial because the original problem, when coupled, is very complex and sometimes 

impossible to solve. 

Keywords: Energy system optimization, seasonal storage, year-round coupling, MILP, MIQCP 

1. INTRODUCTION 

For the best design and operation of energy systems, 

mathematical optimization methods are a well-established tool 

to increase efficiency, minimize costs, manage capacity 

restrictions/availabilities, and reduce ecological impact. In the 

context of energy systems for, e.g., industrial or municipal 

energy supply or the manufacturing sector, Mixed-Integer 

Linear Programming (MILP) represents the state of the art for 

achieving fast and satisfactory results. However, for individual 

problems or research purposes, nonlinear algorithms are also 

commonly applied. Especially the inclusion of bilinear terms 

can help in dealing with problems of temperature-dependence. 

It augments the problem to Mixed-Integer-Quadratically-

Constrained Programming (MIQCP). For optimal design and 

operation of heat pump and heat storage systems, previous 

publications (Hering et al., 2021; Hering et al., 2022) and our 

earlier work  (Powilleit et al., 2019; Wasserfall et al., 2019) 

worked with this subset of nonlinear optimization models.  

Energy system optimization is usually applied to quasi-

stationary models and therefore may not suffice for certain 

problems. One example of this is design optimization, which 

involves the optimal dimensioning of plants. In this scenario, 

the entire year needs to be considered as one coupled problem. 

Due to computational constraints, this can quickly become 

challenging for moderately complex systems. This challenge 

is addressed by calculating with aggregated time series (e.g., 

clustering time points or typical days), where the reduced 

model still yields highly accurate results (Bahl et al., 2017). 

More details and ideas about optimal time series aggregation 

give the publications of Hoffmann et al. (2020; 2022). An 

important aspect is that the sequence of the time steps is not 

kept in order with clustering aggregation techniques.  

In addition to the question of optimal plant size, other 

circumstances also necessitate the coupling of all time steps 

into a single optimization problem. These include: 

 optimizing the loading of seasonal storages, 

 integrating CO2 emission limitations over the course 

of a year, and 

 considering specific pricing models or regulatory 

conditions (such as CHP-remuneration). 

The integration of seasonal storages was addressed by Kotzur 

et al.  (2018b) through the inclusion of typical charging and 

discharging days into their aggregation method. Baumgärtner 

et al.  (2020) proposed an approach which decomposes the 

original problem into smaller subproblems. Kirschbaum et al.  

(2023) introduced an adapted rolling horizon technique with 

integer relaxation. 

In this work, we propose a two-stage algorithm similar to 

methods used for structural optimization. The first stage with 

downsampling and relaxation methods is simplified while 

maintaining the sequence of the time steps. The second stage 

is time-resolved in full detail. The crucial aspects include 

formulating the resulting boundary conditions and selecting 

the result variables to be transferred to the second stage. 

The second stage has to be feasible to the original problem 

while closely approaching optimality. Our aim is to develop a 

seamless algorithm capable of handling a broad range of 

models across both stages, making it suitable for engineering 

applications. This entails automating the aggregation, transfer, 

and formulation of the boundaries in the time-resolved stage. 

The algorithm should solve the problem faster than the original 

problem. 
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2. METHODOLOGY 

The methods presented in this work apply to energy system 

optimization models (ESOM) with the characteristics of being 

quasi-stationary and equipped with hourly resolved annual 

demand time series and containing 5 to 15 technical 

components. Each time step is formulated with a mixed-

integer objective function 𝐽 to minimize operating costs while 

up to 𝑘 constraints (e.g., energy balances, conversion terms, 

operational conditions) can either be mixed integer (MILP, if 

𝐶𝑖 = 0) or in addition bilinear (MIQCP). The continuous 

optimizing variables 𝑥 are usually converted power or energy 

flows. Integer variables 𝑦 are used to describe the minimum  

part load or piecewise linear part load behavior. 

min 𝐽(𝑥, 𝑦)  = 𝑎𝑇 ∙ 𝑥 + 𝑏𝑇 ∙ 𝑦 (1) 

s.t.  𝑥𝑇 ∙ 𝐶𝑖 ∙ 𝑥 +  𝑑𝑖
𝑇 ∙ 𝑥 +  𝑒𝑖

𝑇 ∙ 𝑦 ≤ 𝑏𝑖 (2) 

with 𝑥 ∈ ℝ𝑛,   𝑦 ∈ ℤ𝑚,   𝑖 = 1, … 𝑘 

These equations are often formulated for each time step and 

solved individually (quasi-stationary). However, when time-

coupling conditions are necessary, such as optimizing a daily 

storage, a rolling horizon method is employed (attributable to 

Bellman  (2021)). In this approach, multiple future time steps 

are linked within a control horizon (e.g., 48 h) to determine the 

optimal plant behavior. From this control horizon, only the 

first result is retained, and the process is repeated for the next 

step then. However, for saving computation time, it is also very 

common to keep a subset of the control horizon in a shorter 

write-back horizon (e.g., the first 4 h). The horizon 

continuously shifts forward throughout the year. 

 

 

 

 

However, some issues, such as the integration of seasonal 

storage units or regulatory constraints, cannot be addressed by 

breaking the simulation into smaller parts and prevent solving 

with conventional receding horizon methods. These require a 

fully coupled optimization process. This often results in very 

large and complex optimization problems, which can take a 

long time to compute or might not even reach a solution. To 

tackle these cases, we propose our two-stage algorithm. 

2.1  Two-stage algorithm: simplified first stage   

In the simplified first stage, all time series 𝑏𝑖  with the original 

time step width ∆𝑡 are downsampled into a coarser grid ∆𝑡𝑗 

using integral-preserving averaging.  

𝑏𝑖,𝑡𝑗

𝑑𝑜𝑤𝑛 =  
1

∆𝑡𝑗

∑ 𝑏𝑖,𝑡 ∙ ∆𝑡

∆𝑡𝑗∙𝑗+∆𝑡𝑗

𝑡=∆𝑡𝑗∙𝑗

 (3) 

Additional relaxation of the binary variables is possible: The 

originally binary variables 𝑦 ∈ ℤ𝑛 are defined continuously as 

𝑦 ∈ ℝ𝑛 in the bounds [0,1] to solve only an LP instead of an 

MILP. These simplifications allow to solve the optimization 

model of a moderately complex problem in which the whole 

time frame is coupled in one coupled problem. 

2.2 Two-stage algorithm: choosing transfer variables   

In an intermediate step of the algorithm, it must be determined 

which result variables from the first stage are to be retained. 

These should be the crucial, year-round variables, such as the 

filling level of a seasonal storage or the amount of CO2 

emitted.  These can be brought back to the original time grid 

through upsampling. The upsampling is optional because the 

results of the interpolated time steps are not intended to be used 

further. However, it can still be useful in special cases. The rest 

of the results are omitted. 

From the results, only the transfer variables are selected, which 

should become boundary conditions for the second stage.  

2.3 Two-stage algorithm: Fully-resolved second stage with 

boundary conditions 

In the second stage, the fully-resolved time series and original 

binary variables are solved with a rolling horizon method. The 

transfer variables are incorporated as boundary conditions. An 

intuitive idea is to simply equating the results from each time 

step from the first stage with the ones from the second, but this 

leads to infeasibilities and large deviations to optimality. 

Therefore, we incorporate the boundary conditions into the 

rolling horizon. 

 For integral variables (storage level, amount of CO2), 

in each MILP to solve, we only equate the variable 𝑥∗ 

to the results from the first stage 𝑥∗,𝑓𝑖𝑟𝑠𝑡 𝑠𝑡𝑎𝑔𝑒 at the 

last time step of the control horizon: 

𝑥𝑡=𝛥𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙
∗ = 𝑥𝛥𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙

∗,𝑓𝑖𝑟𝑠𝑡 𝑠𝑡𝑎𝑔𝑒
 (4) 

 For regular variables (e.g., the electrical power of a 

CHP), we equate the integral of all variables within 

the control horizon: 

∑ 𝑥𝑖
∗

𝛥𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑡=𝑖

∙ ∆𝑡 = ∑ 𝑥𝑗
∗,𝑓𝑖𝑟𝑠𝑡 𝑠𝑡𝑎𝑔𝑒

𝛥𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑡=𝑗

∙ ∆𝑡𝑗 (5) 

 We optionally apply tolerances 𝜀 to equation (4) and 

analogously to (5): 

𝑥𝑡=𝛥𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙
∗ ≥ (1 − 𝜀) ∙ 𝑥𝛥𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙

∗,𝑓𝑖𝑟𝑠𝑡 𝑠𝑡𝑎𝑔𝑒
 (6) 

𝑥𝑡=𝛥𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙
∗ ≤ (1 + 𝜀) ∙ 𝑥𝛥𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙

∗,𝑓𝑖𝑟𝑠𝑡 𝑠𝑡𝑎𝑔𝑒
 (7) 

 We discovered that it is very beneficial to solvability 

to set the control horizon to a multiple 𝑛 of the prior 

downsampling rate ∆𝑡𝑗 and write the results back in 

the same length as the downsampling rate.  

∆𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙 =  ∆𝑡𝑗 ∙ 𝑛,        𝑛 ∈ ℤ (8) 

∆𝑡𝑤𝑟𝑖𝑡𝑒−𝑏𝑎𝑐𝑘 =  ∆𝑡𝑗 (9) 

This way, the optimality loss accepted in the first stage due to 

simplification is balanced out to reach approximate optimality. 

The selection of the values for the downsampling rate, the 

rolling horizon frame, and the tolerance varied are discussed 

in Section 3.  

Step 1 Δtcontrol Δtwrite-back 

Step 2 Δtcontrol Δtwrite-back . . . 

Fig. 1. Illustration of a rolling horizon optimization. 
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2.1 Demonstration of algorithm implementation   

Figure 2 shows the results of the algorithm in anticipation of 

the third case study, the optimal filling level of a seasonal 

storage. The final optimum filling level of the seasonal storage 

is marked in green. The grey line is the result of the first 

downsampled stage, with only a very coarse resolution. The 

comparison of the two plots shows the progress: In the left one, 

the red line describes the result of one MILP in the rolling 

horizon. It starts at 𝑡0. The filling level in the horizon meets 

the one from the first step (grey line) at 𝑡ℎ𝑜𝑟𝑖𝑧𝑜𝑛,0, which is 

exactly the defined boundary condition. In the second plot, the 

consideration starts after the write-back frame at 𝑡4. From 

there, an MILP with the actualized control horizon is solved 

and meets the boundary condition again at 𝑡ℎ𝑜𝑟𝑖𝑧𝑜𝑛_4. 

 

 

Fig. 2. Exemplary illustration to demonstrate the algorithm: first 

time step (left), second time step (right).  

3. OPTIMIZATION RESULTS 

The methodology applies to four different use cases, each of it 

considering different aspects. For all use cases, 

 the operating costs are minimized, 

 the demand profiles are extracted and adapted from 

real use cases or taken from published typical days 

and have a resolution of 8760 h, and 

 energy supply from grid is always depicted with 

realistic prices. 

Because the simulations contain many different combinations 

of parameters, the nomenclature for the results is standardized 

as follows.  

Table 1: Nomenclature of result diagrams 

  The big red dot marks the reference case (if 

solvable): the complete solution of the annual-

coupled fully-resolved problem. 

  Colored and shaped group of data points share the 

same simplified stage model. The legend gives 

the downsampling rate (“Down 4”) and adds 

binary relaxation if applied (“Relax”). 

  The data labels mark the boundary conditions in 

the second stage with the control horizon of data 

to write back in hours (“48/3”) and the applied 

tolerances ε in % (“Tol 0,1”). 

  The red circle marks simulations with an 

incomplete result set: For some time steps, no 

solution could be found (within the time limit). 

 

3.1 Software in use  

The models are built with the framework EnergyFrames, using 

libraries from the derivate TOP-Energy®. Both are proprietary 

in-house developments by the GFaI. As an optimization 

solver, Gurobi 11.0.1 is used. While striving for comparability, 

we calculated with a gap value of 0. However, for some 

simulations this was not possible in reasonable time. For 

illustrative purposes, we present computational times in the 

results, but internally validated them using the dimensionless 

measurement of Gurobi’s work-units. 

3.2 CASE 1: OPERATIONAL OPTIMIZATION DUE TO 

REGULATORY RESTRICTIONS 

Case 1 is a combined heating, cooling, and power system (Fig. 

4), as found in small industrial systems. It has certain degrees 

of freedom: The heating demand of ~1 GWh/a can be met by 

a CHP (Combined Heat and Power system), a heat pump, or a 

boiler. The cooling demand of ~0.6 GWh/a can be met by an 

electric compression chiller or a heat-driven adsorption chiller. 

The electric grid can either supply power to the plants and 

other demands of ~1 GWh/a or receive fed-in electricity from 

the CHP.  

The objective function is to minimize the operation costs while 

complying with one condition: Due to reduction goals of the 

operator, the whole system should not emit more than 295 t 

CO2 per year.  

Time → thorizon,0 Time →t4

Fig. 3. Computation time vs. objective function results for the two-stage algorithm with varying parameters (Case 1). 
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Fig. 4. Scheme of the ESOM with combined heating, cooling and 

power, with CO2 emission restriction (Case 1). 

Figure 3 shows the results of the two-stage algorithm for 

different parameters of downsampling rate, tolerances, and 

horizon frame. The calculation times are compared with each 

other depending on the objective function values. The aim is 

to minimize the calculation time with the objective function 

being as close as possible to the reference solution.  

The transfer condition is the integral value of all emissions in 

each time step. This marks the boundary condition for the 

second stage. 

The main results can be summarized as following.  

 Best results can be reached with a downsampling of 

4 h and a rolling horizon of 24 h because they require 

low computation time and still offer a near-optimal 

objective function. 

 The influence of the tolerances in the boundary 

conditions is unambiguous, but usually, zero 

tolerance reduces calculation time because no 

additional degree of freedom is created. 

 Binary relaxation of the first step does not show good 

results (▲ and ◆): Even if the first step solves much 

faster (~8 s instead of 1670 s), solving the 

individual steps of the second stage drastically 

augments the total calculation time and does not even 

find a feasible solution (◯) for each time step.   

To understand the reasons for the weak performance of the 

binary relaxation, we examine the results of the first stage and 

look at the cumulated CO2 emissions. The deviation of the 

relaxed solution to the reference is five times higher than the 

one from the downsampling case. To disclose that behavior, 

we take a deeper look into the results of the relaxed binary 

variables and where they violate the binary condition. We find 

that the main issue with the violation concerns the operation of 

the absorption chiller: The minimum part load of 40 % or 

160 kW is violated during winter operations with loads around 

15 kW (Fig. 6). The resulting boundary condition for the 

second stage is challenging to meet because unrealistic 

behavior stems from the outcomes of the first stage. 

 

Fig. 6. Comparison of the operation of the AC (Case 1). 

3.3 CASE 2: OPTIMAL CHP OPERATION WITH 

ANNUALLY RESTRICTED REMUNERATION 

In this example (Fig. 7), we delve into a common question 

concerning the optimal operation of a small-scale CHP system 

that must effectively meet heat demands of ~1.2 GWh/a while 

also maximizing electricity sales. Under German law, 

remuneration is provided for every kilowatt hour of CHP 

electricity generated, but only for a total of 3,500 full load 

hours (FLH) per year. Consequently, it is not feasible to 

optimize each time step individually. Instead, a comprehensive 

approach spanning the entire year is necessary to determine the 

most advantageous times for distributing the load of the CHP 

system. 

The CHP is represented with a part load behavior, while a gas 

boiler and an emergency cooler serve as additional degrees of 

freedom within the heating grid. Operating costs are 

minimized as an objective function.  
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Fig. 5. Computation time vs. objective function results of the two-stage algorithm with varying parameters (Case 2). 
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The first stage is treated with the downsampling rate of 4 h and 

optional binary relaxation. In this case, we investigate the 

quality of two different transfer variables: First, the cumulated 

FLH (integral variable) is used as a transfer variable for the 

boundary condition. Unlike the previous case, the time-

resolved integral is not necessary because a constraining sum 

is enough. This allows the remuneration of the FLH to be 

limited in the first stage and the electricity generation of the 

CHP to be used as a transfer variable as a second option.  

 

Fig. 7. Scheme of the ESOM with a CHP and annual full load hour 

restriction of remuneration (Case 2). 

The main aspects of the results are:  

 As in the previous case, the binary relaxed cases do 

not improve the total computation time for related 

reasons as Case 1.  

 The other solutions are close to the objective function 

and reduce the calculation time by around 70 %. 

 A larger rolling horizon frame serves a better 

objective function but increases the calculation time. 

 Using the electric power as a transfer variable instead 

of the cumulated FLH seems to be a better option. 

 The tolerance’s influence is less clear than in Case 1. 

3.4 CASE 3: OPTIMAL LOADING STRATEGY OF A 

SEASONAL HYDROGEN STORAGE 

At the core of the fourth use case is a seasonal hydrogen 

storage system, which serves as a year-round coupling element 

to increase the use of renewable energy (Fig. 9). During the 

summer, 1.8 MWp Photovoltaic (PV) and electrolysis can 

charge it, while a fuel cell can reconvert the stored energy into 

electricity to partially cover a demand of ~1.5  MWh/a. A 

small daily electricity storage system can compensate for 

short-term fluctuations. In combination with a heat pump, the 

waste heat from the fuel cell and electrolysis can meet the 

~1 GWh/a heat demand, which otherwise would be satisfied 

by a natural gas boiler. 

 

Fig. 9. Scheme of the ESOM with a seasonal storage (Case 3). 

As before, the first stage is simplified by downsampling and 

optional binary relaxation. The transfer condition is initially 

intuitively the energy level of the seasonal storage (in an 

integral variable). However, an alternative approach is to 

define the charging and discharging capacity of the seasonal 

storage system as a transfer variable. Summarizing the results: 

 Good results are achieved by transferring the filling 

level, employing a downsampling rate of 4 and a 

rolling horizon of 24 hours. The objective function 

closely approximates the reference case, while 

computation times decrease by 20 %. 

 Selecting a rolling horizon frame that is too small is 

problematic because of increased computation times, 

reduced optimality, and infeasibilities at some time 

steps.  

 Similar to previous cases, the binary relaxation 

method yields unsatisfying results: With computation 

time intervals between 200 and 1,800 seconds (not all 

plotted), the second stage requires too much time for 

the solution. In addition, it cannot find a solution for 
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all time steps in the maximum time allowed for 

solving. This leads to an incomplete solution set. 

 Coupling the charging and discharging power instead 

of the integral variable yields highly unfavorable 

outcomes: Calculation times extend up to 13 hours, 

consistently resulting in an incomplete solution set. 

For reasons of clarity, these results are omitted from 

the plot. It is advisable to refrain from this 

formulation. Because the integral variable must be 

computed temporally resolved, no advantage to the 

previous case study can be expected in the first stage.  

 The calculation times of the two-stage algorithm in 

the downsampling scenario can even exceed those of 

the reference case (previously observed only when 

binary relaxation is applied). The solution of 

individual time steps within a rolling horizon 

becomes significantly more complex in this scenario. 

In addition to the coupling condition, the inclusion of 

a daily storage further enlarges the problem size. 

Therefore, it is important to carefully choose the 

horizon frame: To avoid unnecessary complexity, it 

must not be too large, but must be long enough to 

effectively operate the daily storage. 

3.5 CASE 4: OPTIMAL INTEGRATION OF A SEASONAL 

HEAT STORAGE TO SUPPLY HEATING OR COOLING 

COMPRESSION 

The fourth model represents a simplified approach to a heating 

and cooling supply as might be implemented in municipal heat 

planning (Fig. 11). The core of this model is a 190 MWh 

seasonal heat storage that stores water at variable 

temperatures. On the one hand, heat can be extracted as drive 

heat for an electric heat pump, which raises the temperature 

level to satisfy the heat demand. As a degree of freedom, a gas-

driven boiler can also cover the heat demand. On the other 

hand, a compression chiller that satisfies a cooling demand can 

regenerate the storage with its exhaust heat. An additional 

cooling unit can alternatively fulfill the cooling demand. 

The COPs of both plants vary with their inlet temperature, 

which is reflected as the storage temperature itself. The heat 

demand is very high in winter, whereas summer season is 

dominated by cooling demand. The question is how to control 

the storage temperature throughout the year.  

 
Fig. 11. Scheme of the ESOM with a seasonal heat storage and 

temperature dependencies (Case 4). 

Even if the model is kept simple, the temperature-dependent 

COP introduces bilinearity into the problem and leads to a non-

convex nonlinear optimization problem. That significantly 

increases its complexity and computational time. The most 

important bilinear equations are caused by the 𝑖 enthalpy flows 

in every energy balance (with 𝑐𝑝 being constant) and each of 

the both COP-dependencies with 𝛼 being a constant 

temperature correction factor. Storage mass 𝑚 and heat 

capacity 𝑐𝑝 are also assumed to be constant. 

�̇�𝑖 = �̇�𝑖 ∙ 𝑐𝑝 ∙ ∆𝑇𝑖 (10) 

∆𝑈 = 𝑚𝑠𝑡𝑜𝑟𝑎𝑔𝑒 ∙ 𝑐𝑝 ∙ (𝑇𝑠𝑡𝑜𝑟𝑎𝑔𝑒 − 𝑇𝑟𝑒𝑓) (11) 

 ∆𝑈 = ∆�̇�𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 + ∆�̇�𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 (12) 

𝑃𝑒𝑙,𝑗 = 𝐶𝑂𝑃𝑗 ∙ ∆�̇�𝑗 (13) 

𝐶𝑂𝑃𝑗 = 𝐶𝑂𝑃𝑗,𝑛𝑜𝑚 + 𝛼 ∙ (𝑇𝑖𝑛,𝑗 − 𝑇𝑖𝑛,𝑛𝑜𝑚) (14) 

In contrary to the other cases, even a coarse downsampling up 

to 168 h cannot solve the simplified stage to gap zero, but 

remains at gap values between 5 and 8 %. A quite reasonable 

gap of around 10 % is reached even in short calculation times, 

e.g., of 10 minutes. 

Even if we could not generate a reference solution from the 

year-coupled original problem, the algorithm can still compare 

the different boundary conditions concerning the absolute 

value of the objective function. Figure 10 gives an overview 

of the results and the main aspects are summarized:  

 With a downsampling of 24 h and a rolling horizon of 

48 or 72 h, calculation times of less than 100 min can 
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be reached to find a feasible solution. The shortest 

calculation times are reached with a downsampling of 

8 h, and a rolling horizon of 32 h. For example, part 

loads were not modeled in this simple model. 

 The objective function values and filling levels do not 

differ significantly.  

 In this case, small tolerances are recommended for 

the transfer variables in the boundary conditions 

because most cases with 0 tolerance include time 

steps for which no solution was found.  

 Although in this case the binary relaxation provides 

advantages, we would not recommend it respecting 

the experiences of the other use cases.  

Even if the model is not very sophisticated (few plants, no heat 

transfer laws, no part load behavior or runtime conditions), the 

MIQCP takes much more computation time due to the 

temperature dependency.  

The optimal plant behavior is not only influenced by the 

energy prices but subsequently also by the temperature-

dependent COPs. Three differently efficient heat pumps are 

compared for illustration (the compression chiller remains 

unchanged). The algorithm is applied to each heat pump 

configuration. Figure 12 shows the results of the storage 

temperatures: The higher the nominal COP, the colder the 

storage gets in the summer. The highly efficient heat pump can 

operate economically even with a low driving temperature, 

whereas the low efficient heat pump requires the storage to 

keep a higher temperature and hence lowers the full load hours 

of both compression chiller and heat pump by about 19 % resp. 

26 %.     

 
Fig. 12. Influence of nominal COPs on the seasonal storage 

temperature (Case 4). 

4. RESULTS AND DISCUSSION 

For all use cases, the two-stage algorithm demonstrates 

promising results, yielding solutions close to optimal while 

also achieving significant reductions in computation time 

(from 15 to 90 %). In instances where the reference solution 

fails to solve entirely (e.g., due to memory constraints with 

Gurobi), a feasible solution may still be attained, although 

without certainty regarding its proximity to the optimum. 

Generally, the selection of downsampling rates and horizon 

windows requires careful consideration: while coarse 

downsampling accelerates the solution of the first stage, 

ensuring compliance with boundary conditions in the second 

stage may require more time. An overview about the achieved 

computation time saving vs. objective function losses shows 

Figure 13, where two of the most appropriate parameter 

settings where chosen. With a too high resolution, the 

computation time for Case 3 with the seasonal storage in 

combination with a daily storage may exceed the reference 

time. Given the absence of a reference for the MIQCP seasonal 

storage in Case 4, a direct comparison is not possible. 

However, obtaining a plausible and feasible solution in 

approximately 16 minutes is a promising outcome. The 

consistency of the similar storage charging results across 

different algorithm settings is also promising. 

 

Fig. 13. Comparison of effectiveness of the two-stage algorithm. 

Binary relaxation yields unsatisfactory results in this study. 

While the first stage solves rapidly even without 

downsampling, the second stage entails long computation 

times. It is important to note that we did not explore context-

specific relaxation methods. There are likely opportunities for 

improvement by treating specific descriptions for which 

binary variables are intended differently (e.g., piecewise linear 

characteristics, minimal part loads or to flow direction 

decisions), for more details see Özbeg  (2022). In cases where 

downsampling is impossible (e.g., due to critical importance 

of peak power capabilities or peak power prices), revisiting 

this method may be warranted. 

In this work, a highly capable commercial solver was utilized, 

allowing even the reference solution to be solved in a 

reasonable amount of time. However, if using open-source 

solvers, the parameters found here would need to be adjusted. 

The pure solution times were taken into account in this study. 

When utilized within a comprehensive program, other factors 

such as data handling and LP creation will inevitably come 

into play. Moreover, it is worth noting the advantage of 

managing smaller MILP files, particularly in scenarios where 

memory resources may be limited. 

The downsampling process itself can be reconsidered: 

Currently, equidistant integral averaging is applied, but a more 

intelligent segmentation of the time series could be 

implemented, focusing on a higher resolution at important data 

points while preserving the chronological order, as discussed 
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by Kotzur et al. (2018a). This approach could provide a means

to address issues related to peak loads or power pricing better.

5. CONCLUSIONS

Though the models considered here are not extensively

complex (to allow a comparison with the reference solution),

they nevertheless quickly escalate in complexity with the

addition of a few more binary variables or constraints. At this

point, year-round coupling can become unfeasible,

necessitating the application of multi-stage methods.

Our aim was to develop a highly generic method capable of

solving a variety of year-round coupled models within

acceptable computation times, yielding feasible solutions.

While it is possible to fine-tune each individual model with

parameters, we believe that these results allow us to offer a

general solution for MILP models in this domain. A coarser

and faster solution could be achieved with a downsampling

rate of 7 h and a rolling horizon of 28 h, whereas a better

solution could be achieved with a downsampling rate of 4 h

and a rolling horizon of 24 h. However, expressing this

generality for the MIQCP case is more challenging: Here, it is

advisable to examine the results of the first stage and assess

their plausibility with engineering insight. Nonetheless, by

doing so, very good results were achieved in this case as well.

In this work, we only addressed operational optimization

problems. The method can easily be adapted to questions

combined with design optimization as well when considering

the aforementioned issue of peak levelling.

The formulation of MILP models is well-established in

research and application, but there is room for further

refinement in formulating MIQCPs to enhance their

efficiency.
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Abstract: This paper provides a comparative overview of four numerical methods widely employed in 

computational fluid dynamics and related fields: Finite Volume (FV), Lattice Boltzmann Method (LBM), 

Smoothed Particle Hydrodynamics (SPH), and Spectral Methods. FV discretizes the domain into control 

volumes, emphasizing conservation laws and flux integrals across cell faces. It's renowned for its 

robustness, particularly in complex geometries. LBM is a mesoscopic approach simulating fluid dynamics 

through particle interactions on a lattice grid. Its intrinsic parallelism and ability to handle complex 

boundary conditions make it suitable for multiphase flows and porous media simulations. SPH represents 

fluids as a set of particles, where properties are smoothed over neighboring particles using a kernel function. 

SPH excels in free surface flows, astrophysical simulations, and fluid-structure interaction due to its 

Lagrangian nature and adaptive resolution. Spectral Methods discretize functions using orthogonal basis 

functions, such as Fourier or Chebyshev polynomials, enabling high-order accuracy and spectral 

convergence. They are preferred for problems with smooth solutions and periodic boundary conditions, like 

turbulence simulations and wave propagation. 

 

Keywords: Fluid Flow Simulation, Mesh-free Methods, Grid-based Methods, Particle-Based Methods, 

High-Resolution Simulation, Parallel Scalability

1. INTRODUCTION 

The realm of Computational Fluid Dynamics (CFD) stands as 

a revolutionary force in comprehending and engineering fluid 

flow phenomena. It provides a suite of numerical techniques 

adept at simulating and dissecting complex fluid behaviors. 

Amid this toolkit, four prominent methods emerge: Finite 

Volume (FV), Lattice Boltzmann Method (LBM), Smoothed 

Particle Hydrodynamics (SPH), and Spectral Methods. Each 

method offers distinct advantages, tailored to address various 

fluid flow scenarios, thus becoming indispensable across 

scientific and engineering disciplines. 

This paper endeavors to furnish a succinct yet comprehensive 

overview and comparative analysis of these four numerical 

methodologies within the domain of fluid dynamics 

simulations. By delving into their fundamental principles, 

strengths, and limitations, this review aims to serve as a 

compass for researchers and practitioners in selecting the most 

suitable numerical technique for their specific applications. 

The evolution of fluid dynamics study has been marked by a 

surge in numerical methods, propelled by advancements in 

computational power and algorithmic sophistication. FV 

methods, renowned for their robustness and adaptability in 

handling intricate geometries, have garnered widespread 

acceptance. Foundational works by Patankar (Barth, Herbin 

and Ohlberger, 2017)laid the groundwork for applying FV 

methods to fluid flow simulations. Subsequent refinements by 

Versteeg and Malalasekera (Barth, Herbin and Ohlberger, 

2017) and Ferziger and Peric (Boudet, 2011) expanded the 

method's applicability across diverse engineering domains. FV 

method operates by dividing the computational domain into 

small, non-overlapping control volumes. This method 

transforms the integral forms of conservation laws—

governing the fluid's mass, momentum, and energy—into 

algebraic equations over these discrete volumes. By 

computing the fluxes of conserved quantities across the 

boundaries of each control volume, the FV method ensures 

that any flux leaving one volume enters the adjacent one, 

inherently conserving the quantities. This intrinsic 

conservation property, coupled with its flexibility in handling 

complex geometries and boundary conditions, makes the FV 

method particularly powerful and reliable for simulating a 

wide range of fluid flow problems, from aerodynamics in 

aerospace engineering to pollutant dispersion in environmental 

studies. The meticulous nature of flux calculation and 

interpolation at the boundaries, while computationally 

demanding, ensures the fidelity and accuracy of the 

simulations, thereby providing invaluable insights into the 

fluid behavior under various physical scenarios (Boudet, 

2011). Figure 1 illustrates the Finite Volume Method (FVM), 

where the computational domain is discretized into small 

control volumes. The method computes fluxes of conserved 

quantities such as mass, momentum, and energy across the 

boundaries of each control volume, ensuring conservation 

laws are satisfied. A schematic diagram showing a 2D 

computational grid with control volumes. Each control volume 

is represented by a small square, with arrows indicating the 

fluxes of mass, momentum, and energy across the faces of the 

control volumes. 
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Fig. 1. Schematic of the Finite Volume Method (FVM) 

showing control volumes 

LBM has emerged as a formidable contender to traditional 

Navier-Stokes solvers, particularly excelling in simulating 

multiphase flows and intricate boundary conditions. Succi's 

seminal treatise (Samanta, Chattopadhyay and Guha, 2022) 

provided an exhaustive introduction to LBM principles, 

igniting widespread interest and further advancements in the 

field. Recent endeavors by Aidun and Clausen (Aliu et al., 

2020) and Chen et al. (Chen et al., 2020) have broadened 

LBM's horizon into novel territories like microfluidics and 

porous media flow. LBM revolutionizes fluid dynamics 

simulation by bridging microscopic and macroscopic scales 

through kinetic theory. Instead of solving the traditional 

Navier-Stokes equations directly, LBM models fluid flow by 

simulating the evolution of particle distribution functions on a 

discrete lattice grid. At each lattice node, particles propagate 

and collide according to simplified rules derived from the 

Boltzmann equation, with the post-collision distributions 

relaxed towards equilibrium states. This inherently local 

computation facilitates easy parallelization, making LBM 

computationally efficient and adaptable to modern high-

performance computing architectures. The method excels in 

handling complex boundary conditions and interfaces, such as 

those found in porous media or multiphase flows, by naturally 

accommodating microscopic interactions and capturing 

emergent macroscopic behavior. As a result, LBM has found 

applications in diverse fields ranging from microfluidics and 

biomedical engineering to materials science, offering a robust, 

flexible, and scalable tool for exploring the intricacies of fluid 

dynamics in complex systems (Aliu et al., 2020). Figure 2 

depicts the Lattice Boltzmann Method (LBM), where fluid 

dynamics are simulated on a discrete lattice grid. At each 

lattice node, particles propagate and collide, following 

simplified rules that are derived from the Boltzmann equation. 

This method efficiently handles complex boundary conditions 

and interfaces. A lattice grid with nodes connected by velocity 

vectors. At each node, particle distribution functions are 

shown, along with arrows representing the streaming and 

collision processes. 

SPH has ascended in prominence for simulating free surface 

flows, fluid-structure interactions, and celestial phenomena. 

The pioneering work of Gingold and Monaghan laid the 

foundation for SPH, which has since undergone refinement 

and widespread application across many problems. Monaghan 

and Kocharyan's comprehensive review (Bagheri, 

Mohammadi and Riazi, 2023) shed light on SPH techniques, 

while subsequent breakthroughs by Price and Monaghan 

(Rosswog, 2020) and Rosswog (Rai and Mondal, 2021) 

expanded their capabilities in modeling intricate fluid 

dynamics scenarios. 

 

Fig. 2. Representation of the Lattice Boltzmann Method

(LBM) with a D2Q9 lattice grid

SPH transforms fluid dynamics into an elegant dance of

particles, free from the constraints of traditional grids. In this

mesh-free Lagrangian method, the fluid is represented by

discrete particles, each carrying properties such as mass,

velocity, and density. These properties are smoothed over a

finite distance using kernel functions, allowing for the accurate

interpolation of fluid variables across the particles. As these

particles move and interact, they capture the essence of fluid

behavior, from subtle ripples to violent splashes, making SPH

particularly adept at handling complex, transient phenomena

like free surface flows, multiphase interactions, and large

deformations. This flexibility extends to naturally managing

moving boundaries and interfaces, which are often challenging

for grid-based methods. Originating in astrophysics to model

stellar phenomena, SPH has found its way into diverse

applications, including oceanography, biomechanics, and

industrial processes, where its ability to simulate realistic and

intricate fluid motions in a computationally efficient manner

makes it an indispensable tool for scientists and engineers

delving into the dynamic world of fluid flows (Bagheri,

Mohammadi and Riazi, 2023). As shown in Fig. 3, the

Smoothed Particle Hydrodynamics (SPH) method represents

the fluid as a set of discrete particles. The properties of the

fluid, such as density and velocity, are interpolated using

smoothing kernels, enabling the simulation of complex free-

surface flows. Figure 3 provides a visualization of fluid

particles within a domain, where particles are depicted with

overlapping smoothing kernels, illustrating how properties are

interpolated between neighboring particles.

 

Fig. 3. Smoothed Particle Hydrodynamics (SPH) approach 
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Spectral Methods, rooted in mathematical and numerical 

analysis, offer high-order accuracy and spectral convergence 

properties, making them apt for problems with smooth 

solutions and periodic boundary conditions. Seminal 

contributions by Orszag (Rai and Mondal, 2021) and Canuto 

et al. (Caban and Tyliszczak, 2022) established the theoretical 

underpinnings of spectral methods, while Trefethen's 

exposition (Vishwanatha et al., 2023) provided a 

contemporary synthesis of spectral techniques in fluid 

dynamics. Recent strides by Boyd and Fornberg (Prasad, Choi 

and Patil, 2022) have extended spectral methods into 

uncharted domains, encompassing turbulence modeling and 

wave propagation. The Spectral Method in computational fluid 

dynamics is akin to composing a symphony where fluid 

behavior is captured through the harmonics of global basis 

functions. By representing the solution of the governing 

equations, such as the Navier-Stokes equations, with a series 

of trigonometric (Fourier) or polynomial (Chebyshev) 

functions, this method transforms the problem into a spectral 

space where differentiation becomes multiplication, and 

complex operations simplify. The Spectral Method achieves 

unparalleled accuracy for smooth, periodic problems, as each 

function spans the entire domain, capturing even the finest 

nuances of the fluid's motion with minimal numerical 

dissipation and dispersion. 

This high-fidelity approach, however, demands simple 

geometries and periodic or well-defined boundary conditions, 

often restricting its application to idealized scenarios like 

turbulence modeling or climate simulations. In these realms, 

the Spectral Method shines, revealing the intricate, often 

chaotic beauty of fluid dynamics in vivid detail, much like a 

maestro conducting an orchestra to unveil the profound 

complexities of a musical masterpiece (Rai and Mondal, 

2021). Figure 4 illustrates the Spectral Method, which 

represents solutions to partial differential equations using a 

series of basis functions. The method provides high-order 

accuracy for problems with smooth solutions, as demonstrated 

by the convergence of the spectral approximation with 

increasing modes. A graph illustrating the spectral method’s 

concept of representing a function (e.g., a sine wave) using a 

series of basis functions. The figure could include a 

comparison between the original function and its spectral 

approximation using different numbers of modes. 

 

 
Fig. 4. Illustration of the Spectral Method, where a function 

is represented as a series of basis functions 

 

In summation, the literature showcases a diverse array of 

numerical methods available for simulating fluid dynamics, 

each endowed with unique strengths and limitations. By 

grasping the principles and capabilities of these methods, 

researchers and practitioners can harness their full potential to 

tackle the ever-expanding complexity of fluid flow challenges 

in science and engineering. 

 

2. NUMERICAL METHODOLOGIES 

2.1 Finite Volume (FV) method 

The method divides the computational domain into a finite 

number of control volumes, or cells, and calculates the values 

of the variables of interest (e.g., fluid velocity, temperature) at 

the center of each cell. The governing equations for the Finite 

Volume method depend on the specific physical problem 

being solved. However, in the context of fluid flow, the most 

common equations are the conservation laws, such as the 

continuity equation (mass conservation), momentum 

equations (Navier-Stokes equations for incompressible flow), 

and energy equation (heat transfer). Partial differential 

equations (PDEs) that describe the behavior of fluid flow, heat 

transfer, and other physical phenomena are, 

continuity equation: 

𝜕𝜌

𝜕𝑡
 +  ∇. (𝜌𝑢) = 0 (1) 

where 𝜌 is the fluid density, 𝑡 is time, 𝑢 is the velocity vector, 

∇⋅(𝜌𝑢) represents the divergence of the mass flux. 

momentum equations (Navier-Stokes equations): 

𝜕(𝜌𝑢)

𝜕𝑡
 +  ∇. (𝜌𝑢𝑢) = −∇𝑝 +  ∇. 𝜏 +  𝜌𝑔 (2) 

where p is the pressure, 𝜏 is the stress tensor, g is the 

gravitational acceleration. 
and energy equations: 

𝜕(𝜌𝐸)

𝜕𝑡
 + ∇. (𝜌𝐸𝑢) = ∇. (𝑘∇𝑇) + �̇� (3) 

where 𝐸 is the total energy per unit mass (internal energy plus 

kinetic energy), 𝑘 is thermal conductivity, 𝑇 is the temperature, 

𝑞 represents any internal heat sources or sinks. 

These equations are discretized over each control volume in 

the computational domain using the FV method. The integral 

form of these equations over each control volume leads to a set 

of algebraic equations that can be solved numerically to obtain 

the values of the variables at each cell center. The FV method 

ensures conservation of mass, momentum, and energy within 

each control volume and is widely used in CFD simulations 

due to its robustness and accuracy. 

2.2 Lattice Boltzmann Method (LBM) 

The lattice Boltzmann equation is a simplified kinetic equation 

that describes the evolution of the distribution function 𝑓𝑖 (𝑥, 

𝑒𝑖, 𝑡) representing the probability density of finding a particle 
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with velocity 𝑒𝑖 at position 𝑥 and time 𝑡. In its simplest form, 

the lattice Boltzmann equation can be written as 

𝑓𝑖(𝑥 + 𝑒𝑖∆𝑡 , 𝑡 + ∆𝑡) − 𝑓𝑖(𝑥, 𝑡) =  Ω𝑖  (4) 

where Δ𝑡 is the time step, Ω𝑖 represents the collision operator, 

which models the interactions between particles. 

To simulate fluid flows, the lattice Boltzmann equation is 

typically implemented on a regular lattice grid, such as the 

D2Q9 lattice (2D, 9 velocity directions) or D3Q19 lattice (3D, 

19 velocity directions). Each lattice point represents a fluid 

node, and at each node, there are discrete velocity vectors 

associated with the lattice directions. The evolution of the 

distribution functions is governed by streaming and collision 

processes. 

The streaming process updates the distribution functions by 

moving particles along their respective velocity directions: 

𝑓𝑖(𝑥 + 𝑒𝑖∆𝑡 , 𝑡 + ∆𝑡) = 𝑓𝑖(𝑥, 𝑡) (5) 

The collision process models the interactions between 

particles and updates the distribution functions according to 

collision rules, which may include relaxation towards 

equilibrium: 

𝑓𝑖(𝑥, 𝑡) =  𝑓𝑖
𝑒𝑞(𝜌, 𝑢) + 𝜔𝑖  (𝑥, 𝑡) (6) 

where 𝑓𝑖
𝑒𝑞  (𝜌, 𝑢) is the equilibrium distribution function, which 

depends on the local fluid density 𝜌 and velocity 𝑢, 𝜔𝑖 is the 

collision term. 

The macroscopic fluid properties, such as density 𝜌 and 

velocity u, are derived from the distribution functions. For 

example, the density is obtained by summing all the 

distribution functions at each lattice node: 

𝜌(𝑥, 𝑡) =  ∑ 𝑓𝑖(𝑥, 𝑡)
𝑖

 (7) 

And the velocity is calculated as a weighted average of the 

velocity vectors: 

𝑢(𝑥, 𝑡) =
1

𝜌(𝑥, 𝑡)
 ∑ 𝑒𝑖𝑓𝑖(𝑥, 𝑡)

𝑖
 (8) 

Overall, the lattice Boltzmann method simplifies the 

simulation of fluid flows by discretizing the Boltzmann 

equation on a lattice grid, allowing for efficient parallel 

computations, and handling complex boundary conditions. It 

has become a popular choice for simulating a wide range of 

fluid flow phenomena due to its simplicity, scalability, and 

flexibility. 

2.3 Smoothed Particle Hydrodynamics (SPH) 

Smoothed Particle Hydrodynamics (SPH) is a mesh-free 

Lagrangian method used primarily for simulating fluid flows, 

although it can also be applied to other physical phenomena 

like solid mechanics and astrophysics. In SPH, the fluid 

domain is discretized into a set of particles, and the governing 

equations are expressed in terms of these particles. 

The fundamental equations governing SPH include: 

Continuity Equation: The continuity equation ensures mass 

conservation and is expressed as: 

𝜕𝜌

𝜕𝑡
=  −𝜌 ∇. (v) (9) 

where 𝜌 is the density of the fluid and v is the velocity of the 

fluid. 

In SPH, this equation is approximated by summing the 

contributions from neighboring particles within a smoothing 

length ℎ around each particle. 

Momentum Equation: The momentum equation governs the 

motion of fluid particles and is typically written as: 

𝜕𝑣

𝜕𝑡
=  −

1

𝜌
 ∇𝑃 +   𝑣∇2v + 𝑓 (10) 

where 𝑃 is the pressure, 𝜈 is the kinematic viscosity, and 𝑓 

represents external forces such as gravity. 

Similar to the continuity equation, this equation is also 

approximated using neighboring particles within the 

smoothing length. 

Energy Equation: The energy equation governs the thermal 

behavior of the fluid and is expressed as: 

𝜕𝑢

𝜕𝑡
=  

𝑃

𝜌2
 
𝜕𝜌

𝜕𝑡
+   

𝑣

𝜌
 ∇2𝑇  (11) 

where u is the internal energy of the fluid, and T is the 

temperature. 

Like the other equations, the energy equation is also 

approximated using neighboring particles. 

In SPH, each particle carries properties such as density, 

velocity, and energy, and interactions between particles are 

calculated using smoothing kernels that define how the 

influence of a particle diminishes with distance. These kernels 

are typically functions of the distance between particles and 

the smoothing length. 

SPH is advantageous for simulating fluid flows in complex 

geometries and free surfaces as it does not require a fixed grid, 

and particles can move freely within the domain. However, it 

can be computationally expensive due to the large number of 

particles needed to accurately represent the fluid behavior, 

especially in scenarios with high spatial gradients. 

Nonetheless, SPH remains a popular choice for simulating 

fluid dynamics, particularly in scenarios where traditional 

grid-based methods may struggle. 

2.4 Spectral Methods 

Spectral methods are numerical techniques used for solving 

partial differential equations (PDEs) that arise in various 

scientific and engineering fields, including fluid dynamics. 

These methods rely on representing the solution to the PDEs 

as a combination of basis functions, typically chosen to be 

sinusoidal or polynomial functions. The equations governing 

spectral methods vary depending on the specific PDE being 

solved, but the general approach involves transforming the 
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differential equations into an algebraic form using the chosen 

basis functions. 

Basis Function Representation: The velocity components 𝑢 

and v and pressure 𝑝 represented using Fourier series 

expansions: 

𝑢 ( 𝑥, 𝑦 , 𝑡) =  ∑ ∑ �̂�𝑚𝑛(𝑡) 𝑒𝑖 (𝑚𝑘,𝑥+𝑛𝑘,𝑦)
∞

𝑚=−∞

∞

𝑚=−∞
  (12) 

𝑣 ( 𝑥, 𝑦 , 𝑡) =  ∑ ∑ �̂�𝑚𝑛(𝑡) 𝑒𝑖 (𝑚𝑘,𝑥+𝑛𝑘,𝑦)
∞

𝑚=−∞

∞

𝑚=−∞
  

(13) 

𝑝 ( 𝑥, 𝑦 , 𝑡) =  ∑ ∑ �̂�𝑚𝑛(𝑡) 𝑒𝑖 (𝑚𝑘,𝑥+𝑛𝑘,𝑦)
∞

𝑚=−∞

∞

𝑚=−∞
  

(14) 

 

where 𝑘𝑥  and 𝑘𝑦 are the wave numbers in the x and y 

directions, respectively, and �̂�𝑚𝑛, �̂�𝑚𝑛 , 𝑎𝑛𝑑  �̂�𝑚𝑛 are the 

Fourier coefficients to be determined. 

Spatial Discretization: discretize the spatial domain into a 

finite number of grids points (𝑥𝑖, 𝑦𝑗) where the basis functions 

are evaluated. 

Galerkin Projection or Collocation: Project the Navier-Stokes 

equations onto the space spanned by the Fourier basis 

functions. For example, applying Galerkin projection. 

∫ (
𝜕𝑢

𝜕𝑡
 +  𝑢. ∇(𝑢)) . ∅𝑚𝑛𝑑Ω

= −
1

𝜌
 ∫ ∇𝑝. ∅𝑚𝑛𝑑Ω

+ 𝑣 ∫  ∇2𝑢 . ∅𝑚𝑛𝑑Ω + ∫ 𝑓. ∅𝑚𝑛𝑑Ω  

(15) 

where 𝜙𝑚𝑛 represents the basis function corresponding to the 

(𝑚, 𝑛)-th mode. 

Solving Algebraic Equations: Solve the resulting system of 

algebraic equations to obtain the Fourier coefficients 

�̂�𝑚𝑛 , �̂�𝑚𝑛 , 𝑎𝑛𝑑  �̂�𝑚𝑛 . 

Inverse Transformation: Reconstruct the solution to the 

original PDE by performing an inverse Fourier transform to 

obtain the spatial distribution of the solution variables 𝑢, 𝑣 and 

𝑝. 

Temporal Discretization: If the problem is time-dependent, 

discretize the time domain and solve the resulting system of 

equations iteratively over time steps using time-stepping 

schemes such as explicit or implicit methods. 

This mathematical framework provides the basis for applying 

spectral methods to solve the Navier-Stokes equations for 

incompressible flow using Fourier series expansions. Similar 

approaches can be applied using different basis functions, such 

as Chebyshev polynomials or Legendre polynomials, 

depending on the problem's characteristics and desired 

accuracy. 

Overall, spectral methods offer high-order accuracy and 

spectral convergence properties, making them well-suited for 

problems with smooth solutions and periodic boundary 

conditions. However, they can be computationally expensive 

and may require careful treatment of boundary conditions and 

numerical stability issues. The specific equations governing 

spectral methods depend on the chosen basis functions and the 

formulation of the underlying PDEs. 

 

3. COMPUTATIONAL DOMAIN, INITIAL CONDITIONS, 

AND BOUNDARY CONDITIONS 

In this chapter, we outline the computational framework, 

including the domain setup, initial conditions, and boundary 

conditions, which form the foundation for accurate and 

efficient fluid dynamics simulations using FV, LBM, SPH, 

and Spectral Methods. These elements are critical in ensuring 

the fidelity and stability of the simulations. The revised C++ 

code has been modified and optimized to implement fluid 

simulation methods, including Finite Volume (FV), Lattice 

Boltzmann Method (LBM), Smoothed Particle 

Hydrodynamics (SPH), and spectral methods, for solving the 

compressible Euler equations with enhanced computational 

speed. The square box geometry of the computational domain 

is defined implicitly through the meshes or predefined 

particles distribution.  The initial density is initialized as a 

matrix of constant values, and the velocities are initialized as 

a sinusoidal function. These initial conditions define the 

starting state of the fluid simulation. The boundary conditions 

are assumed to be periodic, meaning that the simulation 

domain wraps around at the boundaries. 

3.1 Computational Domain 

The computational domain for the simulations is defined as a 

square box with dimensions [0,𝐿]×[0,𝐿], where 𝐿=1.0 

represents the characteristic length of the domain. This domain 

is discretized based on the specific requirements of each 

numerical method employed. 

Finite Volume Method (FVM): The domain is divided into a 

structured grid of 𝑁×𝑁 cells, where 𝑁 is chosen to balance 

computational efficiency with resolution needs. The grid cells 

are non-overlapping, ensuring mass, momentum, and energy 

conservation at each cell interface. 

Lattice Boltzmann Method (LBM): A regular lattice grid is 

used, with nodes arranged in a D2Q9 (for 2D) lattice 

configuration. The lattice spacing Δ𝑥 is selected to satisfy the 

Knudsen number requirements and ensure accurate resolution 

of the flow features. 

Smoothed Particle Hydrodynamics (SPH): In SPH, the fluid is 

represented by discrete particles distributed across the domain. 

The initial particle spacing is chosen to ensure adequate 

resolution of flow features, with a smoothing length ℎ that is 

proportional to the initial particle spacing, typically ℎ=1.2Δ𝑝, 

where Δ𝑝 is the particle spacing. 

Spectral Method: The computational domain is discretized 

using a series of orthogonal basis functions (e.g., Fourier or 

Chebyshev polynomials). The spatial resolution is determined 

by the number of modes 𝑀 used in the spectral expansion, 

where 𝑀 is chosen to capture the dominant flow features while 

minimizing aliasing errors. 
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Figures 5 to 8 illustrate the computational domain setup 

and boundary conditions for the FVM, LBM, SPH, and 

Spectral method, respectively. The FVM divides the do-

main into grid cells, while the LBM uses lattice nodes ar-

ranged in a regular pattern. The SPH method represents the 

domain as a collection of particles, and the Spectral 

Method discretizes the domain using a set of basis func-

tions. Each figure presents a schematic diagram of the

computational domain for the respective method. For instance,

Figure 5 shows a square domain with grid cells for FVM,

Figure 6 depicts lattice points for LBM, Figure 7 illustrates

particles for SPH, and Figure 8 shows a domain discretized

with basis functions for the Spectral Method.

 

Fig. 5. Computational domain and boundary conditions for 

FVM 

 

 

Fig. 6. Computational domain and boundary conditions for 

LBM 

 

Fig. 7. Computational domain and boundary conditions for 

SPH 

 

 

Fig. 8. Computational domain and boundary conditions for 

Spectral Method 

 

3.2 Initial Conditions 

The initial conditions are designed to represent a physically 

realistic starting state for the fluid flow simulations, ensuring 

that all subsequent dynamics are driven by the inherent physics 

of the system. 

Density: The initial density field 𝜌(𝑥,𝑦) is initialized uniformly 

across the domain with a value 𝜌0, ensuring mass conservation 

from the outset. This uniform initialization is perturbed 

slightly in some simulations to introduce instability modes, 

facilitating the study of flow evolution. 

Velocity: The initial velocity field 𝑢(𝑥,𝑦) is prescribed as a 

sinusoidal function to model a shear flow or vortex pattern, 

given by: 

𝑢𝑥(𝑥, 𝑦) = 𝑈0 𝑠𝑖𝑛 (
2𝜋𝑦

𝑙
)  (16) 

𝑢𝑦(𝑥, 𝑦) = 0  (17) 
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where 𝑈0 is the maximum velocity. This setup ensures a well-

defined initial momentum distribution. 

Pressure: The initial pressure 𝑝(𝑥,𝑦) is computed from the 

equation of state, ensuring consistency with the density and 

velocity fields. For an incompressible flow, the pressure field 

is adjusted iteratively to satisfy the incompressibility condition 

∇⋅𝑢=0. 

3.3 Boundary Conditions 

Periodic Boundary Conditions: Periodic boundary conditions 

are applied in both the 𝑥 and 𝑦 directions to simulate an 

infinite, repeating domain. This choice is particularly suitable 

for studying homogeneous turbulence, shear flows, and other 

scenarios where the effects of boundaries should be 

minimized. 

3.4 Grid Independence and Sensitivity Analysis 

To ensure the robustness of the computational results, a grid 

independence study is conducted for each method. The 

simulations are performed on progressively finer grids or with 

increasing numbers of particles/modes until the results 

converge within a predefined tolerance. This analysis ensures 

that the chosen discretization is sufficiently fine to capture the 

essential flow features without incurring unnecessary 

computational costs. Table 1 compares different grid 

independence studies for these four numerical methods in this 

study. 

Table 1. Grid independence study 

Method 
Resolution 

Parameter 

Grid 1 

(Coarse) 

Grid 2 

(Medium) 

Grid 3 

(Fine) 

Relative 

Error 

FVM 
Grid Size 

(N×N) 
50×50 100×100 200×200 

ϵ1=8%, 

ϵ2=2% 

LBM 

Lattice 

Spacing 

(Δx) 

Δx=0.04 Δx=0.02 Δx=0.01 
ϵ1=7%, 

ϵ2=1.5% 

SPH 

Particle 

Count 

(Np) 

Np

=10,000 

Np

=40,000 

Np

=160,000 

ϵ1=10%, 

ϵ2=3% 

Spectral 

Method 

Number 

of Modes 

(M) 

M=32 M=64 M=128 
ϵ1=5%, 

ϵ2=0.5% 

 

Relative Error (𝜖): Represents the error reduction between 

different resolutions. The error is calculated relative to the 

finest grid (e.g., 𝜖1 for Grid 1 to Grid 2, and 𝜖2 for Grid 2 to 

Grid 3). 

The grid independence study indicates that the solution 

becomes increasingly independent of the grid or resolution 

parameter as it is refined. For the FVM, the relative error 

between the medium and fine grid (𝜖2) is significantly smaller 

than between the coarse and medium grid (𝜖1), indicating 

convergence. Similarly, the LBM shows a reduction in error as 

the lattice spacing decreases, achieving a near-converged 

solution at Δ𝑥=0.01. In the SPH method, increasing the 

particle count leads to better resolution of the flow field, with 

convergence observed as the particle count increases to 

160,000. The Spectral Method demonstrates rapid 

convergence with increasing modes, with minimal error 

observed at 𝑀=128, which is characteristic of its high-order 

accuracy. 

 

4. RESULTS AND DISCUSSION

Figures 9 to 12 show the density prediction in the flow domain

for FV method, LBM, SPH, and spectral method, respectively.

The density distribution of the SPH method shows a complete

difference among the others since it simulates the flow as the

discontinuous particles, although LBM follows the same

concept, but it is not a meshless method as SPH.

Here are some observations for Figures 9 to 12, which relate

to the density predictions using the four numerical methods:

The density distribution in Fig. 9 shows a smooth variation

across the computational domain, indicating that the FVM

effectively captures the flow field dynamics. The sharp

gradients near boundaries are well-resolved, demonstrating the

robustness of the FVM in handling complex geometries and

boundary conditions. The method ensures conservation of

mass, momentum, and energy within each control volume,

which is evident from the consistent density patterns across the

domain.

LBM provides a detailed density distribution with high spatial

resolution, as shown in Fig. 10. The LBM efficiently

handles complex boundary conditions, resulting in smooth

transitions in density even near the boundaries of the

computational domain. The periodic boundary conditions are

effectively implemented, as indicated by the seamless

continuity of the density field across the domain edges.

Figure 11 illustrates the density distribution obtained using the

SPH method, where the fluid is represented by discrete

particles. The SPH method captures intricate fluid dynamics,

such as free surface flows and interactions between particles,

resulting in a detailed and realistic density distribution. The

particle-based nature of SPH allows for adaptive resolution,

which is evident in the varying density levels throughout the

domain, particularly in regions with high spatial gradients.

The Spectral Method, as shown in Fig. 12, achieves a high-

order accuracy in the density prediction, with smooth and

continuous density variations across the computational

domain. The use of orthogonal basis functions allows the

Spectral Method to resolve fine details in the density field,

making it suitable for problems with smooth solutions and

periodic boundary conditions. The method exhibits minimal

numerical dissipation and dispersion, as evidenced by the clear

and accurate density patterns, even in areas with significant

flow activity.
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Fig. 9. Density prediction with FVM 

 
Fig. 10. Density prediction with LBM 

 

Fig. 11. Density prediction with SPH 

 

Fig. 12. Density prediction with Spectral method 

 

To provide a comprehensive understanding of the four 

numerical methods discussed in this paper, Table 2 compares 

these techniques across various aspects such as discretization, 

computational efficiency, accuracy, strengths, and limitations. 

 
Table 2. Comparison of Numerical Methods in CFD 

Aspect FVM LBM SPH 
Spectral 

Method 

Grid 
Structured/Un

structured 

Regular 

Lattice 

Particle-

based 

Orthogonal 

Basis 

Efficien

cy 

Moderate, 
grid-

dependent 

High, 
parallelizab

le 

High 

cost, 

many 
particles 

High, but 

expensive 

Accurac

y 

High, grid 

quality 

Moderate 

to High 

High for 

interactio

ns 

Very High, 

spectral 

Strength

s 

Versatile, 

robust 

Efficient 

parallel 

Mesh-

free, 

deformati
ons 

High 
accuracy, low 

dispersion 

Limitati

ons 

Intensive for 

fine grids 

Lattice/time 

step limit 

Expensiv

e, 
complex 

Needs simple, 

periodic 

 

 

5. CONCLUSIONS 

The Finite Volume Method (FVM), Lattice Boltzmann 

Method (LBM), Smoothed Particle Hydrodynamics (SPH), 

and Spectral Method each have distinct advantages and 

limitations in computational fluid dynamics (CFD). FVM is 

widely used for its robustness and ability to handle complex 

geometries, making it suitable for various industrial 

applications, although it requires sophisticated meshing and 

can be less efficient at high resolutions. LBM, on the other 

hand, excels in handling complex boundary conditions and is 

highly efficient on parallel architectures, but it is limited by its 

lattice structure and interdependent time step and grid spacing. 

SPH is particularly effective for free-surface flows and 

problems with large deformations due to its mesh-free nature, 

but it is computationally intensive and struggles with boundary 

conditions. The Spectral Method provides extremely high 

accuracy for smooth and periodic problems, but it is less 

effective for problems with sharp gradients or irregular 

geometries. In terms of overall comparison, Spectral Methods 

are the best for high-precision and smooth problems, while 

FVM and SPH offer greater flexibility for complex, real-world 

applications. LBM is emerging as an efficient alternative for 

specific applications like multiphase flows and porous media. 

FVM is the most versatile for engineering purposes, SPH is 

ideal for simulations involving evolving boundaries, and 

Spectral Methods shine in scientific computations requiring 

high accuracy. The choice of method hinges on the specific 

needs of the problem, such as required accuracy, 

computational resources, and the nature of the physical 

phenomena being studied. 
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Modelling and Control
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Abstract: Nonlinearities become essential in various systems when the operating area widens.
The linear models are special cases for narrow areas. The behaviour is often asymmetric and
can become gradually steeper or flatter depending on the case. These nonlinear effects can be
analysed from data distributions for chosen operating areas. Further extensions require recursive
analysis. The widely used Gaussian distribution is seldom valid for a wide area. The variable
specific scaling can be presented with two second order polynomial defined by five parameters
interpreted as the operating point and four corner points of the feasible range. These parameters
define the shape factors which may require adjusting to fill the only requirement that the
functions need to be monotonously increasing. Alternative constraints provide good solutions
for combining expert knowledge with the data-based analysis. If the nonlinear behaviour is
analysed correctly, only linear interactions are needed in the models. As the analysis is based on
the same methodology, different applications can be combined by using appropriate process data.
The smooth operation and high quality of products is the main goal of all these applications,
and this can be achieved by combining these indicators with process control in the same way as
it has been one for smaller indicators used in condition monitoring and process control. Different
parts of the methodology have been tested in versatile applications. The main benefit is that
the same structures can be used in various applications since the scaling functions take care of
linking to the nonlinear real world.

Keywords: intelligent models, nonlinear scaling, statistical analysis, nonlinear systems

1. INTRODUCTION

Pieces of the informative and reliable datasets are selected
in such a way that the data may contain measurement sets
from several experiment periods. The multiple-experiment
sets and selected data periods must be handled appropri-
ately, especially in dynamic modelling. Feedback effects,
narrow operating areas and unknown disturbances cause
problems in modelling. Designed experiments are needed
if the data material is not sufficient for modelling (Hinkel-
mann and Kempthorne, 2008). In industrial applications,
the primary goal is to extract the maximum amount of
unbiased information from as few (costly) observations as
possible.

Normalisation or scaling of the data is needed for mea-
surements with considerably different magnitudes. Widely
used min-max normalisation matches the values between
the minimum and maximum to the range [0, 1]. The
operating point cj is fixed in z-score,

pj =
xj − cj
∆cj

. (1)

which is calculated about the arithmetic mean, cj = xj ,
by using the standard deviation of the variable ∆cj = σj ,
transforms the values to a distribution with mean of 0 and
standard deviation 1. The arithmetic means and standard
deviations are optimal for normal distributions.

Data distributions should be taken into account in esti-
mating the centre point cj and developing the scaling
functions. The geometric mean and harmonic mean are
useful when the sample is distributed log-normal or heavily
skewed. The median and trimmed mean are two measures
that are resistant (robust) to outliers. The trimmed mean
ignores a small percentage of the highest and lowest values
of a sample when determining the centre of the sample.
Scaling with themedian andmedian absolute deviation, i.e.
cj = median(xj) and ∆cj = median(|xj −median(xj)|),
provides a solution, which is insensitive to outliers and the
points in the extreme tails of the distribution. Decimal
scaling, where the values are scaled by 10log10 max (xj),
suits for cases where the ranges of the variables vary by
a logarithmic factor. Minimum and maximum values are
very sensitive to outliers.

The outliers, which are unusually large disturbances
caused for example by temporary sensor or transmitter
failures, should be removed from the data. This can be
done by examining more thoroughly the data correspond-
ing to the unusually large residual values. An observation is
often considered as an outlier if the absolute value |pj | ob-
tained by (1) is greater than 3. The Joliffe method has been
introduced to detect observations that do not confirm with
the correlation structure of the data (Fortuna et al., 2007;
Warne et al., 2004). A survey of outlier detection methods
is reported in (Englund and Verikas, 2005). As statistical
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inspection of process data tend to remove peaks which
can carry precious information about system dynamics,
all available information, including expert knowledge and
input-output relationships, should be used (Fortuna et al.,
2007).

Nonlinear activation functions, log-sigmoid and hyperbolic
tangent, are used to generate the neuron outputs from the
sum of the weighted inputs and the bias. These functions
have been modified to improve the normalisation of the
matching scores in multimodal biometric systems (Jain
et al., 2005; Snelick et al., 2005). The log-sigmoid function,
(1+ exp(−2pj))

−1, can be used for nonlinear scaling from
the z-score values pj to the range [0, 1]. The double sigmoid
function extends this with different linear characteristics
in the intervals [cj − ∆c−j , cj ] and [cj , cj + ∆c+j ]. The

operating point cj and the edges ∆c−j and ∆c+j are tuned.
The sigmoid function is related to the hyperbolic tangent
tanh( 12 pj), which scales to the range [−1, 1]. The functions
introduced by Snelick et al. (2005) are based on the scaling
of the min-max normalised values with two functions,
which are quadratic, logistic and combined linear and
quadratic: the inflection point is in the range [0, 1].

The clustering algorithms can be used for compressing
large datasets for modelling: the cluster centres will replace
the corresponding datapoints. Interpolation is needed if
measurements are not frequent enough or if the sampling
period is not constant, e.g. various laboratory measure-
ments are based on samples taken infrequently compared
to the on-line measurements. In practice, some measure-
ments are missing because of failures in sensors or in data
acquisition. These values are either reported as missing
or recognised as erroneous values. Missing data can be re-
placed by using imputation with constants, e.g. the feature
or class mean (Enders, 2010). Outliers are handled in the
same way but with extra care as their difference from the
acceptable values can be fairly small. For large data sets,
missing values are simply left out, since the imputation
may bias the data. Multiple solutions based on clustering
or model-based correction form a basis for iteration.

Quality control systems are developed

• to make quality control more effective and closer to
real time,

• to identify calibration, measurement and communi-
cation errors as close to the observation source as
possible,

• to focus on automatic quality control algorithms
development,

• to develop a comprehensive flagging system to indi-
cate data quality level,

• to make it easier for data users to identify suspicious
and erroneous data, and to highlight corrected values.

Numerous methods are used real-time and non real-time
for the spatial and temporal checks of meteorological data
(Vejen et al., 2002).

Nonlinear effects can be presented with various functions
but the large systems become highly complex combina-
tions of special modules. In fuzzy set systems, the mean-
ings of the variables are shown with a set of membership
functions and the interactions between labels are handled
with fuzzy rules.

This paper focus on nonlinearity analysis to find unified
solutions for modelling and control applications (Section
2). Proposed parametric methodologies are compared with
several statistical distributions (Section 3). The method-
ologies open new possibilities for different types of ap-
plications discussed in Section 5. Conclusions and future
research are presented in Section 6.

2. NONLINEARITY ANALYSIS

The nonlinearity analysis is based on the data distributions
in the operating area of the (sub)system. Data values
are transformed to dimensionless scaled values, also called
linguistic values, are set to be within a real-valued interval
[-2,2]. The basic scaling approach presented in (Juuso,
2004) has been improved later: a new constraint handling
was introduced in (Juuso, 2009), and a new skewness based
methodology was presented for signal processing in (Juuso
and Lahdelma, 2010).

The generalised data-driven analysis extends solutions
with dimensionless features and indicators. The resulting
nonlinear scaling functions are compact solutions for vari-
able specific nonlinearity handling.

2.1 Fuzzy systems

The origin in fuzzy set systems is seen variable specific
feasible ranges which are defined by membership functions.
Membership functions for finer partitions can be generated
with the scaling functions (Juuso et al., 1993). The support
area is defined by the minimum and maximum values of
the variable, i.e. the support area is [min (xj),max (xj)]
for each variable j, j = 1, . . . ,m. The central tendency
value, cj , divides the support area into two parts, and the
core area is defined by the central tendency values of the
lower and the upper part, (cl)j and (ch)j , correspondingly.
This means that the core area of the variable j defined by
[(cl)j , (ch)j ] is within the support area.

In early applications, the corner points were extracted
from existing rule-based fuzzy systems or defined manu-
ally. The fuzzy labels were understood as membership lo-
cations corresponding values of the membership definitions
within the range [-2,2].

2.2 Data-driven analysis

All the parameters are defined together in the data-
driven approach. The analysis of the corner points and the
centre point were earlier based on the arithmetic means or
medians of the corresponding data sets (Juuso, 2004).

The nonlinearity analysis has been later extended to
generalised norms defined by

||τMp
j ||p = (τMp

j )
1/p = [

1

N

N∑
i=1

(xj)
p
i ]

1/p, (2)

where p ̸= 0, is calculated from N values of a sample, τ is
the sample time. With a real-valued order p ∈ ℜ this norm
can be used as a central tendency value if ||τMp

j ||p ∈ ℜ, i.e.
xj > 0 when p < 0, and xj ≥ 0 when p > 0. The norm (2)
is calculated about the origin, and it combines two trends:
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a strong increase caused by the power p and a decrease
with the power 1/p. All the norms have same dimensions
as xj . The norm (2) is a Hölder mean, also known as the
power mean. The generalised norm for absolute values |xj |
was introduced for signal analysis in (Lahdelma and Juuso,
2008a).

For variables with only negative values, the norm is the
opposite of the norm obtained for the absolute values.
If a variable has both positive and negative values, each
norm is an average of two norms obtained where the data
sets are made positive and negative by subtracting a value
xL < min((xj)) and a value xH > max(xj)), respectively.
(Juuso, 2011b)

The generalised norm values increase with increasing or-
der, i.e.

(τMp
j )

1/p ≤ (τMq
j )

1/q, (3)

if p < q. The increase is monotonous if all the signals
are not equal. The arithmetic mean, the harmonic mean
and the root-mean-square (rms) are special cases where
the order p is 1, -1 and 2, respectively. Norms from
the minimum to the maximum corresponding the orders
−∞ ≤ p < ∞ are presented by (2), i.e. the definition
includes the lp norms defined for 1 ≤ p < ∞. The
geometric mean is obtain from (2) when the order p → 0.

The computation of the norms can be divided into the
computation of equal sized sub-blocks, i.e. the norm for
several samples can be obtained as the norm of the norms
of the individual samples:

||KsτMp
j ||p = { 1

Ks

Ks∑
i=1

[(τMp
j )

1/p
i ]p}1/p (4)

whereKs is the number of samples {xj}Ni=1. In automation
and data collection systems, the sub-blocks are normally
used for arithmetic mean (p = 1).

2.3 Dimensionless features

Distributions of the data can be analysed with dimension-
less features obtained by normalising the moments Mk

j ,
for example by standard deviation σj :

γk =
τMk

j

σk
j

=
1

Nσk
j

N∑
i=1

[(xj)i − cj ]
k, (5)

where the moment Mk
j is obtained about some central

value, usually arithmetic mean. Variance σ2
j is the second

moment M2
j . The feature γ3 is called the coefficient of

skewness, or briefly skewness, and the feature γ4 as the
coefficient of kurtosis. The skewness is a measure of
asymmetry: γ3 = 0 for a symmetric distribution. If
γ3 > 0, the skewness is called positive skewness and the
distribution has a long tail to the right, and vice versa if
γ3 < 0. The kurtosis is a measure of the concentration of
the distribution near its mean. The generalised moment
for absolute values |xj | was introduced for signal analysis
in (Lahdelma and Juuso, 2008b).

The normalised moments (5) are generalised by using the
generalised norm (2) as the central value. The standard

deviation σj , which is calculated about the origin, is used
to obtain a dimensionless feature. Juuso and Lahdelma
(2010) introduced a new approach based on using the
generalised skewness γp

3 for defining the central tendency
value and the core area. The central tendency value is
chosen by the point where the skewness changes from
positive to negative, i.e. γp

3 = 0. Then the data set is
divided into two parts: a lower part and an upper part.

The same analysis is done for these two data sets. The
estimates of the corner points, (cl)j and (ch)j , are the
points where γp

3 = 0 for the lower and upper data sets,
respectively. Since the search of these points is performed
by using the order of the moment, the resulting orders
(pl)j , (p0)j and (ph)j are good estimates when additional
data sets are used. The norm values can be recursively
updated with (4), and a new search for the orders is done
only if the values change considerably (Juuso, 2011b).

In practical applications, the data points do not always
cover the whole area of operation, e.g. only the close
neighbourhood of the normal operation point may be
covered, or we would like to extend the model of upper
part later to the lower part. Only one part may be in use
in fault diagnosis. Expert knowledge is used in extending
the feasible range or selecting the methodologies.

Process data often contains outliers, which must be re-
moved before generating the feasible area, because the
procedure described above is sensitive to them. This is the
idea in medians and trimmed means, which are used for the
data samples containing outliers. A good estimate for the
support area can be obtained with the generalised norms
(2) with large negative and large positive orders since these
features are less sensitive to the outliers than the minimum
and maximum values. Discarding values at the high and
low end can be used together with the generalised norms
if there are obvious outliers. Trimming does not need to
be the same for the low and high values.

The operating area of each variable is defined by a feasible
range represented with a trapezoidal membership function
whose corner points are min (xj), (cl)j , (ch)j and max (xj).
Warnings and alarms can be generated directly from the
degrees of membership of the complement.

2.4 Nonlinear scaling functions

A nonlinear scaling function is defined as a (nonlinear)
mapping of variable values inside its range to a range
[−2, 2], denoted as linguistic range. It more or less de-
scribes the distribution of variable values over its range
which includes the normal operation in the range [−1, 1]
and the areas with warnings and alarms. The values Xj

are called linguistic values since the scaling idea originates
from the fuzzy set systems: values -2, -1, 0, 1 and 2 can be
associated to the linguistic labels, e.g.

{very low, low, normal, high, very high} (6)

are defined with membership functions The number of
membership functions is not limited to five: the values
between these integers correspond to finer partitions of the
fuzzy set system. The early applications of the linguistic
equations used only integer values (Juuso, 1999).
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In present systems, membership definitions are used in a
continuous form consisting of two second order polynomi-
als:

xj = f−
j (Xj), Xj ∈ [−2, 0),

xj = f+
j (Xj), Xj ∈ [0, 2].

(7)

The functions should be monotonous, increasing functions
in order to result in realisable systems. The lower part
function is defined by values corresponding linguistic levels
-2, -1 and 0, and the upper part function by values
corresponding linguistic levels 0, 1 and 2. The upper and
lower parts should overlap at the linguistic value 0. (Juuso,
2004)

Five parameters define the coefficients of the second order
polynomials,

f−
j (Xj) = a−j X

2
j + b−j Xj + cj , Xj ∈ [−2, 0),

f+
j (Xj) = a+j X

2
j + b+j Xj + cj , Xj ∈ [0, 2].

(8)

The scaling function is asymmetrical when the coefficients
in the upper and lower part are different. The centre point,
cj , defines the operating point. Four linear equations are
needed for solving the other coefficients:

4a−j − 2b−j + cj = min (xj),

a−j − b−j + cj = (cl)j ,

a+j + b+j + cj = (ch)j ,

4a+j + 2b+j + cj = max (xj).

(9)

In order to keep the functions monotonous and increasing,
the derivatives of functions f−

j and f+
j should always be

positive (Fig. 1). As a second order polynomial has either a
minimum or a maximum point, this requirement is fulfilled
only if these points are outside the ranges (−2, 0) and (0, 2)
for functions f−

j and f+
j , respectively. The derivatives,

D−
j = 2 a−j Xj + b−j , Xj ∈ [−2, 0),

D+
j = 2 a+j Xj + b+j , Xj ∈ [0, 2],

(10)

are corrected to positive in the areas (−2, 0) and (0, 2), re-
spectively, by changing the coefficients of the polynomials
(Juuso, 2004). The membership definitions are continuous
functions but derivatives can have discontinuities in the
centre point.

The functions are monotonous and increasing if the ratios,

α−
j =

(cl)j −min (xj)

cj − (cl)j
,

α+
j =

max (xj)− (ch)j
(ch)j − cj

,
(11)

are both in the range [ 13 , 3], see (Juuso, 2009). If
needed, the ratios are corrected by modifying the core
[(cl)j , (ch)j ] and/or the support [min (xj),max (xj)]. Er-
rors are checked independently for f−

j and f+
j : each error

can always be corrected either by moving the corner of
the core or the support In some cases, good results can
also be obtained by moving cj in the range defined by If
these constraints allow a non-empty range, the maximum
of the lower limits and the minimum of the upper limit are
chosen to define the limits for continuous definitions (Fig.
2).
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Fig. 1. Feasible shapes of the membership definitions
fj and corresponding derivatives Dj : coefficients ad-
justed with the core (left) and the support (right).
Derivatives are presented in three groups: (1) de-
creasing and increasing, (2) linear and linear, and (3)
increasing and decreasing. (Juuso, 2009).

The coefficients of the polynomials can be represented by

a−j =
1

2
(1− α−

j ) ∆c−j ,

b−j =
1

2
(3− α−

j ) ∆c−j ,

a+j =
1

2
(α+

j − 1) ∆c+j ,

b+j =
1

2
(3− α+

j ) ∆c+j ,

(12)

where ∆c−j = cj−(cl)j and ∆c+j = (ch)j−cj . Membership

definitions may contain linear parts if some coefficients α−
j

or α+
j equals to one (Fig. 1).
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Fig. 2. Membership definitions in the core: coefficients
adjusted with the centre point cj .

The centre point is not known if the feasible range is
defined manually. It can be calculated by defuzzifying the
feasible range with the centre of gravity: For strongly
asymmetrical feasible ranges, this value may be outside
the core (Juuso, 2004). The requirement can be fulfilled

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.065 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

484



by modifying the corner points. Additional constraints can
be taken into account, e.g. a good solution can be to use a
locally linear function in the neighbourhood of the centre
point. Then a continuous derivative is chosen at the centre
point. This can be achieved by modifying the centre point
or the corner points of the feasible range. There can be
several acceptable modifications, for which the ratios (11)
remain in the range [ 13 , 3].

Monotonously increasing membership definitions can be
constructed by adjusting the centre point cj , the core
[(cl)j , (ch)j ] and the support [min (xj), max (xj)]. An
easier way for manual approach was introduced in (Juuso,
2009): first define the centre point cj , then the core by
choosing the ratios (11) from the range [ 13 , 3], and finally
calculate the support [min (xj), max (xj)]. The norms are
used together with the generalised skewness in the data-
driven approach to define the centre and corner points.
The ratios (11), which are checked in all data-driven
cases, are also guiding the manual construction of the
membership definitions.

For each variable, the membership definitions are config-
ured with five parameters, which can be presented with
three consistent sets. The working point (centre point) cj
belongs to all these sets, where the other parameters are:

• the corner points {min (xj), (cl)j , (ch)j ,max (xj)} are
good for visualisation;

• the parameters {α−
j , ∆c−j , α

+
j , ∆c+j } suit for tuning;

• the coefficients {a−j , b−j , a+j , b+j } are used in the
calculations.

The upper and lower parts of the scaling functions can
be convex or concave independently. Also, simplified func-
tions can be used: a linear membership definition needs
only two parameters: cj and bj = b+j = b−j or ∆cj =

∆c+j = ∆c−j , since α+
j = α−

j = 1 and a+j = a−j = 0;

an asymmetrical linear definition has ∆c+j ̸= ∆c−j and

b+j ̸= b−j . Local linear functions defined by are used if
appropriate.

3. STATISTICAL DISTRIBUTIONS

In data-based analysis, the nonlinear scaling functions
are based on data samples. The parameters obtained
by statistical analysis depend strongly on the statistical
distribution. The functions extend the normalisation and
scaling solutions from the symmetric special case defined
by the z-score (1), where cj = ||τM1

j ||1 and ∆cj = σj =

||τM2
j ||2, i.e. generalised norms (2) with orders p = 1

and p = 2, respectively. Other special cases, geometric
mean (p = 0) and harmonic mean (p = −1), are used in
defining the centre of the sample for log-normal or heavily
skewed data. Trimmed or truncated means, medians and
median absolute deviations are generally recommended
for the cases with outliers. The generalised norms can
also be trimmed by discarding values at the high and
low end. For heavily skewed data, the discarding limits
are defined by the norms with high positive and negative
orders, respectively.

In the skewness based approach presented above, all the
parameters are analysed from the data. As expected, the cj
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Fig. 4. Orders of the norms (Weibull, λW = 2).

is close to the arithmetic mean (p = 1) when the sample is
taken from a normal distribution. Normalisation with the
z-score is the first phase since the core is symmetrical, i.e.
∆c+j = ∆c−j = 1

2 ||τM2
j ||2. The resulting shape factors

are equal, α−
j = α+

j = 3, and the support is [cj −
2σj , cj + 2σj ]. The size of the random sample effects on
the analysis: the centre point is correctly obtained from
a small sample (N = 1000), and also the core is fairly
accurate. The limits of the support area and the shape
factors require larger samples, e.g. 10000 points provides
fairly good estimate, but 50000 points are required for
highly accurate estimates. Only a slight adjustment of the
core or preferably the support is needed for these samples.

The scaling functions become asymmetrical about the
centre cj in random samples of Poisson and Weibull
distributions. Orders of the norms, {(pl)j , (p0)j , (ph)j},
and shape factors, {α−

j , α+
j }, show strong variations in

these asymmetrical distributions (Figs. 3 - 6). For the
Poisson distribution, the order (p0)j is almost constant,
1.68 ± 0.03 when the expectation number λP ≥ 2, and
(p0)j = 1.73 when λP = 1 (Fig. 3). For the Weibull
distribution, the order (p0)j decreases smoothly from 2.8
to −1.85 when the shape parameter increases from one to
ten (Fig. 4). The order range [(cl)j , (ch)j ] increases for
both: from [1, 4.34] to [−1.15, 6.05] for Poisson and from
[2.2, 3.2] to [−4.75, 6.15] for Weibull distributions whose
scale parameter λW = 3.
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Poisson distributions have the same shape factor α+
j as the

normal distributions, but the shape factor α−
j increases

from 0.6 to almost 3 when the expectation number λP

increases from one to ten (Fig. 5). The core also is
asymmetrical: ∆c+j > ∆c−j . The difference is high, when

λP is small, and becomes negligible, when λP > 10 (Fig.
5). Weibull distributions are very asymmetrical when the
shape parameter κ is small: ∆c+j ≫ ∆c−j , α−

j ≈ 1
3

and α+
j = 3, when κ = 0.5 (Fig. 6). This exponential

distribution becomes more symmetrical when κ increases,
but becomes again asymmetrical for higher κ values (Fig.
6). The Poisson distributions have only integer values,
which causes irregular changes in orders (cl)j and α−

j

obtained from random samples.

For all these distributions, the core area becomes wider
than in the previous approaches where the mean or the
median were used. Higher sensitivity around the centre
point was already detected in (Juuso and Lahdelma,
2010). High positive and negative orders are used in
selecting the limits for the core area if small deviations
are not important. Asymmetrical scaling functions can
be obtained by analysing the upper and the lower part
separately.

The scaling functions consisting of two second order poly-
nomials operate well for versatile distributions, and vari-
ous sigmoid functions can be interpreted as special cases.
The centre points, which define the operating point of

the model, can be defined manually. For the error, the
derivative of error, the sum of error, the original error and
the change of control, the centre point is zero. Also, the
core and support areas can be defined manually for any
membership definition. Monotonous increase needs to be
checked for the manually defined functions.

The shape factors define the type of the feasible range:
narrow and wide cores correspond to high and low shape
factors, respectively. Also, an asymmetric core, i.e. the
core can be narrow on one side of the centre point cj
and wide on the other side, is allowed. The support can
depend strongly on the number of points as seen in the
comparisons of different statistical distributions. Expert
knowledge and physical limitations can be used in selecting
the shape factors α−

j and α+
j . The factors can be set

to three if the data set is fairly limited and there is no
specific additional knowledge. Linear scaling functions, i.e.
α−
j = α+

j = 1 are used if the material is very limited.

4. NATURAL LANGUAGE

The values within the range [-2, 2] obtained by the nonlin-
ear scaling are also called as linguistic values since they can
be interpreted with linguistic terms. The linguistic terms
can be interpreted as fuzzy numbers: for example values
-2, -1, 0, 1 and 2 can be associated to the linguistic labels
(6) which can be made sharper or wider with powering
modifiers ’extremely’, ‘very’, ‘more or less’ and ‘roughly’,
and then processed with the conjunction, disjunction and
negation. Applications can have specific labels to make
understanding easier, and the number of labels are not
limited to these examples. The labels are only for infor-
mation, the calculations are done with the numbers.

5. TYPES OF APPLICATIONS

The nonlinear scaling approach expands the operating ar-
eas in many applications. The following areas are examples
where compact solutions have been developed. Severity
criteria are checked with the scaled values are the same
for all variables. Indicators, models and control can be
combined in applications (Juuso, 2018).

Intelligent indicators are the first applications of the com-
binations of the generalised norms and nonlinear scaling.
Even single norms or indicators can replace and outper-
form large rule-based systems. Several indicators can be
combined as a weighted sum. The severity criteria are the
same for these combined indicators as well. (Juuso and
Lahdelma, 2010)

Statistical process control (SPC) is an important area in
utilizing data. The generalised SPC introduced in (Juuso,
2015) expands the SPC from Gaussian to non-Gaussian
data sets. The analysis methods are suitable for a large
set of statistical distributions. Categorical information
can be studied with the same approach by using manual
definitions, which means that also mixed cases can be
handled. The limits can be updated in short run SPC
since they are defined by the nonlinear scaling approach.
The limits can even change gradually. The GSPC does not
need any interruptions and even recursive approaches are
possible. In these systems, the control levels are defined
uniformly for the scaled values.
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Modelling and simulation is extended to nonlinear systems
by combining the nonlinear scaling and linear equations.
The models can be adapted to different operating condi-
tions by changing the parameters of the scaling functions
(Juuso, 2020).

Intelligent LE controllers can use linear controller struc-
tures in nonlinear systems, The controllers can be adapted
to different operating conditions by changing the parame-
ters of the scaling functions. (Juuso, 2011b)

Temporal analysis provides indirect measurements and
detection of trend episodes for high level control. For any
variable, a trend index is calculated as a difference of
the means of the scaled values obtained for a short and
a long time period, respectively. The index value is in
the linguistic range [−2, 2] representing the strength of
both decrease and increase of the variable xj . The same
analysis can be used for detecting temporal changes of any
indicators (Juuso, 2011a).

6. CONCLUSIONS AND FUTURE RESEARCH

This paper summarizes the main parts of the nonlinear
scaling approach. Highly nonlinear asymmetrical data can
be utilized in appropriate way. There is no need to assume
Gaussian data outside its operating area. Different parts
of the methodology has been tested in versatile applica-
tions. The main benefit is the analysis of the nonlinear
behaviour. Different applications can extend the use of
linear structures by enhancing them with the nonlinear
scaling to take care about linking to the nonlinear real
world. Future research continues this with more detailed
analysis of applicability.

REFERENCES

Enders, C.K. (2010). Applied Missing Data Analysis.
Guilford Press, New York.

Englund, C. and Verikas, A. (2005). A hybrid approach to
outlier detection in the offset lithographic printing pro-
cess. Engineering Applications of Artificial Intelligence,
18(6), 759–768.

Fortuna, L., Graziani, S., Rizzo, A., and Xibilia, M.G.
(2007). Soft Sensors for Monitoring and Control of
Industrial Processes. Advances in Indusrial Control.
Springer, New York. 270 pp.

Hinkelmann, K. and Kempthorne, O. (2008). Design and
Analysis of Experiments: Introduction to Experimental
Design. John Wiley & Sons, New York, 2nd edition.

Jain, A., Nandakumara, K., and Ross, A. (2005). Score
normalization in multimodal biometric systems. Pattern
Recognition, 38(12), 2270–2285.

Juuso, E. and Lahdelma, S. (2010). Intelligent scaling of
features in fault diagnosis. In 7th International Confer-
ence on Condition Monitoring and Machinery Failure
Prevention Technologies, CM 2010 - MFPT 2010, 22-24
June 2010, Stratford-upon-Avon, UK, volume 2, 1358–
1372. BINDT. ISBN=978-1-61839-013-4.

Juuso, E.K. (1999). Fuzzy control in process industry:
The linguistic equation approach. In H.B. Verbruggen,
H.J. Zimmermann, and R. Babuška (eds.), Fuzzy Algo-
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Abstract: Previously presented method of calculating local average gradients for solving
partial differential equations (PDEs) is enhanced by accelerating it with graphics processing
units (GPUs) and combining a previous technique of interpolating between grid points in the
calculation of the gradients instead of using interpolation to create a denser grid.
For accelerating the calculation with GPUs, we have ported the original naive Matlab
implementation to C++ and CUDA, and after optimizing the code we observe a speedup
factors more than two thousand, which is largely due to the original code not being optimized.

Keywords: GPU acceleration, scientific computing, numerical methods, partial differential
equations, deformable grids

1. INTRODUCTION

To intelligently control the formation of material mi-
crostructure in sub-micrometer level, modern computa-
tional tools are needed. The full field models, such as
the level set Hallberg (2013), phase field Steinbach and
Salama (2023) and cellular automata Seppälä et al. (2023),
offer capabilities to explicitly simulate the microstructure
formation Pohjonen (2023). Inclusion of the relevant phys-
ical phenomena and their numerical modelling requires the
solution of partial differential equations (PDEs).

There are several approaches to obtaining the numerical
solution, such as the finite elements, finite differences,
finite volume etc. The finite element method is perhaps the
most advanced, but it’s implementation is not straightfor-
ward. Finite differences in the standard implementation is
limited to structured grids, which grids would be capable
of solving the equations in Eulerian framework. There are
approaches to simulate solid mechanics in the Eulerian
meshes and they could provide certain advantages such as
capability of simulating material distortions without the
need of re-meshing, since the material flow through the
node points can be simulated. However, more often solid
mechanics simulations involving deformations are based in
Lagrangian approach, which naturally describes the flow
of the material and the material point dependent field
variables Basaran (2008).

To simulate the movement of material points within the
Lagrangian approach, and to solve the equations in the
deformed grid, a triangular two-grid method Pohjonen
(2024a) was previously proposed which achieved this pur-
pose in a way which is easy to implement.

In the current work we present enhancements made to
the previous version as well as the parallelization of the
solution with multi-GPU methods. These improvements
pave the way for numerically efficient models that can
incorporate the most important physical phenomena af-
fecting microstructure.

2. METHODOLOGY

2.1 Parallelization

For accelerating our PDE solver we have chosen to use MPI
(Message Passing Interface) for communication between
processes and CUDA for GPU acceleration. The technolo-
gies were chosen since previous codes Pekkilä et al. (2022)
built on top of MPI and CUDA have been able to achieve
impressive performance for multi-GPU stencil computa-
tions, with our PDE solver belonging to this family of
iterative stencil loop (ISL) -algorithms Li and Song (2004).
MPI and CUDA also work well together with MPI having
CUDA-aware implementations where the user can send
data directly from and to GPU memory. This is convenient
for the user and it also provides optimal performance for
the user by routing the GPU data through the fastest
interconnect Potluri et al. (2013) and pipelining the GPU
data movement with the communication.

Furthermore technologies that do not require handwritten
kernels to offload computation to GPUs are not competi-
tive in performance, especially at large data sizes Khalilov
and Timoveev (2021).

Parallelizing an ISL-algorithm with both MPI and CUDA
is conceptually straightforward. The whole domain is split
into local subdomains such that each process will process
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its own subdomain that it is responsible for updating. In
order to compute the required stencil at each grid point
the processes communicate grid points that are part of
their subdomain to each other as required by the data
dependency of the stencil. These regions of points that are
communicated to other processes are called halo regions.
Locally on each processes the incoming halo regions com-
ing from other processes are stored to regions called ghost
zones that surround the local subdomain of the process.

The amount of communication needed for a single stencil
iteration depends on the radius of the stencil. The radius
of a stencil is defined as the maximum Chebyshev distance
from the central grid point to all neighbouring grid points
that are required for calculating the stencil at the central
grid point. N iterations of a stencil of radius R requires
rectangular halo regions of width N × R for the two-
dimensional case.

GPU acceleration is also straightforward since each up-
date at a grid point is independent from updates at each
other point. For achieving close to optimal performance
for memory-bound applications the GPU acceleration be-
comes considerably more complex since it becomes im-
portant to ensure good cache reuse to alleviate the bot-
tleneck of data movement from global memory. However
we observed our application being compute bound on the
hardware used, a single RTX A2000 8GB Laptop GPU, to
benchmark against the original Matlab implementation, so
we were able to achieve relatively good performance with
quite simple kernels.

2.2 Numerical method

Here we present the implemented numerical method,
which was in its initial form first presented in Pohjonen
(2024b) as well some optimizations to the equations that
now yield the results with less total compute. The opti-
mized algorithms were discovered during implementation
work required to accelerate the code.

Each grid point pi and its surrounding neighbours can be
grouped as triplets, which can be visualized as triangles
surrounding the areas Ai shown in in Fig. 1.

Fig. 1. Each grid point pi and its surrounding gridpoints
are grouped as triplets, which form triangular regions
Ai. Each triplet defines a plane whose coefficients
yield the average gradients of these regions.

Each triplet defines a plane, where the plane coefficients
are calculated based on the field values and the positions of
the grid points. The coefficients yield the average gradient
in each of the areas Ai. The average gradient in the
whole hexagonal region, composed from the surrounding
triangles, is then obtained as the weighted average of the
gradients by using the areas of the regions as weights.

The equations for the coefficients of the planes are:

a =
(u1 − u0)y2 + (u0 − u2)y1 + (u2 − u1)y0
(x1 − x0)y2 + (x2 − x0)y1 + (x2 − x1)y0

(1)

and

b =
(u1 − u0)x2 + (u0 − u2)x1 + (u2 − u1)x0

(x1 − x0)y2 + (x2 − x0)y1 + (x2 − x1)y0
(2)

The equations for the areas of the triangles are:

Ai =
|(pi − p0)× (pi+1 − p0)|

2
(3)

And finally the equations for the partial derivatives are:

∂xu|p0 =

∑i=5
i=0 Aiai∑i=5
i=0 Ai

(4)

∂yu|p0 =

∑i=5
i=0 Aibi∑i=5
i=0 Ai

(5)

.

The first simplification is that since the weighting coeffi-
cients are the ratios of the areas of the triangles to the the
sum of all of the areas the divisor of 2 cancels out in and
for the weights we can use the equation:

Wi = |(pi − p0)× (pi+1 − p0)|, (6)

where the divisor is now the sum of the weights.
Another simplification is that if one calculates the coeffi-
cients of the planes with the center grid point being the
origin we have x0 = y0 = u0 = 0, which allows us to
simplify some terms in the formula for the coefficients:

a =
u1y2 − u2y1
x1y2 − x2y1

(7)

b = −u1x2 − u2x1

x1y2 − x2y1
, (8)

where x1, x2, y1, y2 are coordinates in the coordinate frame
where the center grid point is the origin.

Now importantly, if one chooses the grid points in a
way that the cross product responding to the weights is
positive, the denominator terms for the equations for a
and b are equal to the weights. This means that one can
skip division and multiplication by the cross products since
they cancel out. With this insight the new formula for the
partial derivatives becomes:

∂xu|p0 =

∑i=5
i=0 ai∑i=5
i=0 Wi

(9)

∂yu|p0 =

∑i=5
i=0 bi∑i=5
i=0 Wi

, (10)
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where ai and bi are computed without the division with the
cross product. Having to do less division gives a noticeable
performance improvement, since division is a more costly
operation than multiplication and addition.

2.3 Interpolation with plane equations

Previously a two-grid approach where a denser grid was
created out of the original grid by interpolating between
each grid point, was presented Pohjonen (2024a). During
each timestep the interpolated denser grid is used to cal-
culate the partial derivatives and the results are copied
back to the coarse grid, from which a new dense grid is
created for the next timestep. The two-grid interpolation
method was found to help with instability that was caused
near maxima and minima of the grid values. However the
two-grid interpolation method comes at a cost namely that
one has four as many grid points to compute the partial
derivatives compared to the original coarse grid.

This motivated investigation to whether the added accu-
racy of the two-grid interpolation grid could be achieved
without the need for a coarser grid. Since the interpolation
points always lie between points in the original grid one
can calculate the partial derivative values that would be
at the interpolation points using the coarser mesh. One
creates the interpolated points and triangles locally but
they are only used locally to calculate the partial deriva-
tives and are not stored anywhere. A visualization of the
formed triangles can be seen in Fig. 2.

Fig. 2. The interpolated triangles drawn out. Triangles
from A0 − A5 follow the same indexing scheme as in
the non-interpolated scheme. The rest of the triangles
are indexed in reverse clockwise order. p0 − p6 are
the original grid points with i1 − i6 being the inter-
polated points where the first partial derivatives are
calculated.

Now as an example ∂xu|i1 would be the sum of the
coefficients coming from planes: A0, A5, A6, A7, A8 and A9.
One can similarly also calculate the first order partial
derivatives at the interpolated points i2, i3, i4, i5, i6. This
approach works, but it adds significantly more compute
since now there are four times more planes to calculate.

Thus an important observation is that all of the added
planes are copies of the innermost six planes, which are
copies of the original planes between the non-interpolated
points. This is because a linearly interpolated point be-
tween two points on a plane stays on the same plane as
the original points.

Similarly the area of the interpolated triangles is exactly
one fourth of the original triangles so one can use the
original areas to calculate the weights since the common
factor anyway cancels out. Taking all of this into account
the equation for partial derivatives at the interpolated
points simplifies, after cancelling another common factor
of three out, to:

∂xu|ij+1 =
aj + aj+1

Wj +Wj+1
(11)

∂yu|ij+1 =
bj + bj+1

Wj +Wi+j
, (12)

where the indexing j ∈ {0, 1, 2, 3, 4, 5} forms a periodic
sequence such that a6 = a0, b6 = b0 and W6 = W0.

Thus one can calculate the first order partial derivatives
at the interpolated points with a modest number of added
compute. This is a worthwhile trade-off for being able to
use a four times smaller grid and eight times smaller grid in
two- and three- dimensions respectively. Also, since second
order derivatives are only needed at the original coarse grid
points one can now calculate second order partial deriva-
tives during the same iteration in which the first order par-
tial derivatives are calculated. This effectively halves the
amount of needed memory traffic since the coordinates and
field derivatives do not have to be refetched from global
memory but can be directly acccessed from local memory,
either being stored in registers or cache. One also saves
compute since the second order partial derivatives are not
unnecessarily computed at the interpolation points.

For computing the second order partial derivatives one
would in general need the interpolated coordinates because
the innermost planes are not anymore the same since they
depend on the values at the interpolated points. However,
one can show that using the original coordinates gives
exactly half of the correct results so instead of calculating
the interpolated points one can simply scale up the result
computed with the original grid points by a factor of two.

2.4 Rectangular grid

The numerical method was originally implemented using
a regular rectangular grid Pohjonen (2024b). The regions
and grid points for a rectangular grid are visualized in
Fig. 3. The equations are exactly the same except now
we calculate and add up plane coefficients for four planes
instead of six.

The motivation for using a hexagonal grid came from the
fact that with a hexagonal grid each interpolation point
can be uniquely identified with linear interpolation be-
tween two grid points. This is not possible for a rectangular
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Fig. 3. Visualization of the local regions and grid points
for a rectangular grid.

grid and requires for example bilinear interpolation of the
surrounding four points for some interpolation points.

The rectangular grid has the advantages that it requires
less computation and results in simpler memory access
patterns. The rectangular grid requires less compute sim-
ply because it requires calculating plane coefficients for
four planes instead of the six required for the hexagonal
one. The memory access pattern of the hexagonal grid is
more complex since technically it requires the use of two
different stencils or the union of these stencils and the
stencil used depends on the central grid point, whereas
the rectangular grid requires only a single stencil that is
used for all grid points. A union of two stencils contains all
neighbouring grid points that are included in either stencil.

The hexagonal grid requires two stencils since as an
example the x-index offset to get the upper left grid point
p6 of the local hexagon depends on the y-index of the
center point. Of course our treatment of x- and y -indexes
are arbitrary and one can interchange how they are used.
The rectangular grid requires only a single stencil since
the offsets from index of the central grid point are always
the same. Visualizations of the different used stencils can
be seen in Fig. 4.

For a code specifically designed for our numerical approach
the added complexity of which stencil to use does not really
matter but it makes it harder to implement the numerical
method optimally in GPU-computing libraries like Pekkilä
(2019), where it would otherwise be simple.

Importantly, the communication for both meshes is the
same since the union of the two stencils for the hexagonal
mesh and the single stencil for rectangular mesh both have
a radius of one.

The new improved algorithm motivated us to test could it
be used with the original rectangular grid to achieve the
improved accuracy of the two-grid approach.

The new algorithm works exactly the same as for the
hexagonal grid. Due to cancellation of common terms the

Fig. 4. Visualizations of the different stencils. The updated
grid point is located at the origin. The upper stencils
are the two stencils required for the hexagonal grid,
the lower left stencil their union and the lower right
stencil the one required for a rectangular mesh.

equations (11) and (12) can be used to compute the partial
derivatives at the interpolated points j ∈ 0, 1, 2, 3, where
the periodic sequence naturally is now that a4 = a3, b4 =
b3 and W4 = W3. The interpolated points and regions can
be see in Fig. 5

Fig. 5. Interpolated points i1−4 and interpolated regions
drawn out.

Even though the equations are the same for using the
rectangular grid the method is subtly different in the sense
that now the computed gradient values at the interpolated
points are different between neighbouring grid points,
whereas they are the same with the hexagonal grid. We
did not find this discrepancy causing problems when using
the new algorithm with the rectangular grid.
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2.5 Reusing partial results

Since on the tested hardware the GPU kernels were found
to be compute bound we investigated approaches that can
reuse partially computed results. The observation that
the planes A2, A3 at grid point x, y are the same as the
planes A0, A5 at x + 1, y motivated the idea of a single
thread computing multiple contiguous results in the x-
direction. Thus we implemented a kernel where each nx, ny
thread block computes nx × BlockSize, ny results with
thread i, j calculating the results at points i, j, i+1, j..., i+
BlockSize, j, where BlockSize is a tunable parameter. In
order to avoid non-contiguous memory accesses between
threads in a warp, the whole thread block first loads all
needed nx×BlockSize+1, ny+1 input values into shared
memory in a contiguous manner from which threads can
access the values in a non-contiguous pattern without a
performance penalty. Similar to the planes the interpola-
tion point i4 at grid point x, y corresponds to i1 at the
grid point x+ 1, y so the computed gradient values at the
interpolation point can be also reused. A visualization of
the algorithm for a 2×2 thread block with BlockSize = 4
can be seen in Fig. 6.

Fig. 6. Visualization of the algorithm for a 2 × 2 thread
block with BlockSize = 4. Blue regions are those
that are only loaded and read from shared memory.
Green, yellow, red and orange points are computed by
threads (0, 0),(0, 1),(1, 0) and (1, 1) respectively.

One could also reuse partial results also in the y-direction,
but we leave answering whether reusing partial results in
both dimensions increases performance to future work.

2.6 Communication

For optimizing the communication of the halo regions
between the processes we use the important technique of
overlapping computation and communication. MPI sup-
ports an asynchronous API where one can immediately
continue execution after the sending of a message has
started and wait later for the arrival of the message. This
allows us to compute the update at those grid points
that do not depend on the ghost zones at the same time
as the ghost zones are being received. Finally when the
ghost zones are received we can compute the update at
the outer regions that depend on the ghost zones. This
overlaps most of the computation with the communication,
which makes the runtime of a grid update be max(W,C)
instead of the naive W + C, where W is the time needed
for the computation and C is the time needed for the
communication. In Fig. 7 one can see a visualization of
the different subdomain regions of a stencil of radius one.

Our approach for overlapping communication and compu-
tation is equivalent to the one in Pekkilä et al. (2022),

Fig. 7. Regions of a single stencil update for a stencil
of radius one. Grid points in green do not depend
on the blue ghost zones coming from other processes
and their computation can be overlapped with the
communication of the blue ghost zones. The yellow
outer regions depend on the blue ghost zones and their
update has to wait for the arrival of the ghost zones.

except we have a two dimensional simulation instead of
a three dimensional one. For performing the original al-
gorithm that requires two iterations of the grid to com-
pute second-order derivatives is also suboptimal from the
viewpoint of communication, because it needs halo regions
of width two since the grid is iterated twice for a single
update. Being able to calculate the update in a single
iteration means we can use halo regions of width one,
which halves the amount of communication needed.

3. RESULTS

3.1 Comparison to analytical solution

To make sure the accelerated version and the new al-
gorithm have the same accuracy as the original code
we tested the numerical solution similarly to Pohjonen
(2024b) and Pohjonen (2024a).

More specifically we solved the diffusion equation (13)
from an initial point concentration and compared it to
the analytical solution (14) MIT (2024).

∂tu = D(∂xxu+ ∂yyu) (13)

u(x, y, t) =
M

4πtD
exp(− (x− xc)

2 + (y − yc)
2

4Dt
), (14)

with xc, yc being the origin of the initial point concentra-
tion. Values of D = 1 and M = 0.1 were used.

To make sure the code works on a deformed grid we ran-
domly perturbed each grid points coordinates by 0.16(r−
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0.5)·a, 0.16(r−0.5)·h, where r is a random number between
0 and 1 and a is the x-distance between neighbouring grid
points and h is the y-distance between neighbouring grid
points. Comparison of the analytical solution to the result
of the simulation can be seen in Fig. 8.

Fig. 8. Simulation result compared to the analytical result.
The plotted values are a one-dimensional slice along
the x-dimension in the middle of the grid.

We also tested the new algorithm using the rectangular
grid and found it to give as precise answers as the hexag-
onal grid for this simple test case.

3.2 Benchmarks

We present timings of the different GPU kernels in Fig. 9.
The benchmarks were performed on a single RTX A2000

Fig. 9. Timings of different kernels. Integration time is
measured as the log seconds taken to integrate 200
timesteps and grid size is measured as the log amount
of grid points.

8GB Laptop GPU for easy comparison of our accelerated
implementation with the original one.

We observe that the difference between computing with
the coarse and dense grid is close to the factor of four one
would assume from the grid sizes. A benefit of using the
smaller grid and not having to store the calculated first
order derivatives means that one needs less memory for
the simulation and one is able to simulate larger grids.
As an example in the benchmark results one can simulate
64 · 160 × 64 · 160 grid with the coarse grid but with the
dense grid one runs out of memory. Also there is quite
a constant performance increase of ten percent between

the coarse grid kernel and the coarse grid kernel reusing
partial results. BlockSize of 11 was found to give optimal
performance on the tested hardware.
We do not present detailed timings for the original Matlab
implementation but see it adequate to mention that the
best benchmark results for the Matlab implementation
were when it was more than 2000 times slower. Thus it is
clear the the performance increase made possible with the
accelerated version makes significantly larger simulations
possible. We also do not compare the performance of the
GPU implementation against the CPU implementation
because we have spent considerably more effort on opti-
mizing the GPU implementation, which would make the
comparison unfair and misleading.

3.3 Scaling

Not only is the single GPU performance important, but it
is important that we get good scaling when increasing the
amount of GPUs we use. The theoretical optimal scaling
is that when we increase the number of devices by a factor
of N we get a speedup factor of N also.

The reported scaling benchmarks were performed on the
CSC supercomputer Puhti, which has four Xeon Gold 6230
Nvidia V100 -GPUs per node with peak bandwidth of 200
Gpbs between nodes.

For ISL-algorithms the scaling starts to deviate from the
theoretical optimum when the network bandwidth be-
comes the performance limiter Pekkilä et al. (2022). Since
the amount of needed compute scales as O(N2) and the
amount of needed communication scales as O(N) for a
subdomain of size N × N , we can get good scaling by
keeping the subdomain sizes large enough.

Strong scaling, meaning how well does the code scale when
we add more GPUs to a simulation of fixed size, results of
the simulation can be seen in Fig. 10. From the figure one

Fig. 10. Strong scaling of 60 ·160×60 ·160 grid. Integration
time is measured as the time taken to integrate 200
timesteps relative to the time taken on a single GPU.

can see that we have good strong scaling up to 8 GPUs,
with the required time going down linearly as expected.

Weak scaling, meaning how well does the code scale when
we add more GPUs with a fixed subdomain size, results
of the simulation can be seen in Fig. 11. From the plot
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one can see that we get good weak scaling with the time
required staying effectively constant.

Fig. 11. Weak scaling for subdomains of size 60 · 160× 60 ·
160. Integration time is measured as the time taken
to integrate 200 timesteps relative to the time taken
on a single GPU.

4. CONCLUSIONS

We have presented optimizations of the original code
and the used numerical method from the viewpoints of
GPU acceleration, algorithmic improvements and how the
method is mathematically formulated. Together these op-
timizations achieve an impressive speedup factor of over
2000. This enables more accurate simulations of material
microstructure, for example simulations of three dimen-
sional cases, that were previously too prohibitive due to
the needed additional computation required. Additionally
our implementation scales well to multiple GPUs which
enables larger simulations, where more computational re-
sources are needed.

We also investigated the use of a simpler rectangular
mesh which would be easier to use and would require less
compute. The accuracy of the rectangular mesh has to be
studied in harder test cases.

In future studies we plan to conduct larger simulations of
material microstructure. After the original implementation
work we have reimplemented the algorithm and the solver
in the aforementioned GPU-computing library Astaroth.

Because in the new implementation the numerical algo-
rithm is more separated from the rest of code it is more
suitable to be the reference implementation. The reference
implementation, which can be accessed from this link, also
includes preliminary 3d implementation of the method
that will be expanded on future publications.
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Seppälä, O., Pohjonen, A., Mendon, V., Podor, R.,
Singh, H., and Larkiola, J. (2023). In-situ SEM
characterization and numerical mod-elling of
bainite formation and impingement of a
medium- carbon, low-alloy steel. Materials &
Design, 230, 111956. doi:10.1016/j.matdes.2023.
111956. URL https://www.sciencedirect.com/
science/article/pii/S0264127523003714.

Steinbach, I. and Salama, H. (2023). Lectures on phase
field. Springer Nature.

science/article/pii/S0264127523003714.
Steinbach, I. and Salama, H. (2023). Lectures on phase
field. Springer Nature.

SIMS EUROSIM 2024

DOI: 10.3384/ecp212.066 Proceedings of SIMS EUROSIM 2024
Oulu, Finland, 11-12 September, 2024

494

https://bitbucket.org/jpekkila/astaroth/src/424ace54884158a3dda8d708b52b79a4e9d0c892/?at=planes_reference_implementation
https://dx.doi.org/10.1088/0965-0393/21/8/085012
https://dx.doi.org/10.1088/0965-0393/21/8/085012
http://web.mit.edu/1.061/www/dream/THREE/THREETHEORY.PDF
http://web.mit.edu/1.061/www/dream/THREE/THREETHEORY.PDF
https://aaltodoc.aalto.fi/server/api/core/bitstreams/c73ad7b3-47a2-4c23-b802-7721366fb961/content
https://aaltodoc.aalto.fi/server/api/core/bitstreams/c73ad7b3-47a2-4c23-b802-7721366fb961/content
https://aaltodoc.aalto.fi/server/api/core/bitstreams/c73ad7b3-47a2-4c23-b802-7721366fb961/content
https://onlinelibrary.wiley.com/doi/abs/10.1002/adts.202200771
https://onlinelibrary.wiley.com/doi/abs/10.1002/adts.202200771
https://www.sciencedirect.com/science/article/pii/S0264127523003714
https://www.sciencedirect.com/science/article/pii/S0264127523003714

	Preface
	Table of Contents
	Program
	International Program Committee
	National Organizing Committee
	International Reviewers
	The Role of Simulation Governance in the AI Era: Applications in StructuralEngineering
	Role of Physics-Based Realistic Simulation Environments for Research andEducation in Robotics and AI
	Panel Discussion on Future Challenges and Possibilitiesfor Simulation
	Author index
	List of Articles



