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Preface

The Second SIMS EUROSIM conference on Simulation and Modelling (SIMS EUROSIM 2024) and 65th
SIMS conference on Simulation and Modelling (SIMS 2024) were organized in Oulu, Finland. The
background of this conference series is in the 65-years history of Scandinavian Simulation Society, SIMS. The
first SIMS EUROSIM Conference was organized as a virtual conference in 2021. The SIMS conferences are
annual and every third of them is a joint SIMS EUROSIM conference.

The Scandinavian Simulation Society consists of members from five Nordic countries: Denmark, Finland,
Norway, Sweden, and Iceland. The goal of SIMS is to further develop the science and practice of modelling
and simulation in all application areas and to be a forum for information interchange between professionals
and non-professionals in the Nordic countries. SIMS is a member society of The Federation of European
Simulation Societies (EUROSIM) was set up in 1989. The purpose of EUROSIM is to provide a European
forum for regional and national simulation societies to promote the advancement of modelling and simulation
in industry, research and development. EUROSIM consists of 17 European Simulation Societies. The
Scandinavian Simulation Society (SIMS) had the Annual Meetings during the conference. International
Federation of Automatic Control (IFAC) co-sponsored the conference via technical committees:

TC 3.2. Computational Intelligence in Control

TC 6.1. Chemical Process Control

TC 6.2. Mining, Mineral and Metal Processing

TC 6.3. Power and Energy Systems

TC 6.4. Fault Detection,Supervision&Safety of Techn.Processes-SAFEPROCESS

The conference program consisted of keynote presentations, regular presentations and a panel discussion. The
call for papers resulted in 98 submissions prepared by 337 authors from 25 countries. Submissions were
reviewed by six chairs, 26 IPC members and 21 international reviewers. Full articles were selected on the
grounds of academic merit and relevance to the conference theme. Each submission had 2-5 reviews and the
acceptance rate was 67% for the full articles. The proceedings include 66 articles prepared by 200 authors from
15 countries. The keynotes are included as abstracts. The IFAC conference templates were used for the regular
papers.

The conference covered broad aspects of simulation, modelling and optimization in engineering applications.
The most active area, energy systems, includes many articles on renewable energy, energy storage and power
production. High number of contributions are for the circular economy, where the focus is the CO, capture and
use, in the steel industry, where articles are in thermodynamics and computational methods, and in the
automation where advanced process control, parameter estimation, process intensification and optimization
are used in various application areas, including also mobile robots, warehouse optimization and oil recovery.
Other session topics include water treatment and nature-based solutions, biosystems, fluid flow and heat
transfer, transportation, machine learning, and modelling in process analysis and optimization.

Panel discussion was organized on future challenges and possibilities for simulation. The discussion focused
on four areas: artificial intelligence, importance of the expert or domain knowledge, requirements of data and
use of written or spoken expert data. Discussions emphasized using different forms of expertise together with
the data-driven approaches. The audience had time for two questions. The limitations on relying only on expert
knowledge was the question. This risk can be avoided by following mixtures of ideas also out of box. This
answered the question of why to participate to the next SIMS? SIMS continues to focus on different industrial
and environmental applications, modelling and simulation tools and provides strong support for PhD students
continue for stimulating process development for model-based automation.

We would like to express our sincere thanks to the keynote speakers, authors, session chairs, members of the
program committee and additional reviewers who made this conference such an outstanding success. Finally,
we hope that you will find the proceedings to be a valuable resource in your professional, research, and
educational activities whether you are a student, academic researcher, or a practising professional.

Esko Juuso, Jari Ruuska, Gaurav Mirlekar, and Lars Eriksson
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Conferences location

The conference was organized at Original Sokos Hotel Arina in Oulu, Finland.

Oulu City Reception at Oulu City Hall, 10 September 2024

Opening, 11 September 2024

Opening of The Second SIMS EUROSIM Conference on Simulation and Modelling SIMS EUROSIM 2024
and The 65th SIMS conference on Simulation and Modelling (SIMS 2024):

e Adj. prof. Jari Ruuska, Conference Chair

e Address from University of Oulu, prof. Antti Niemi, University of Oulu, Faculty of Technology

o Address from Scandinavian Simulation Society (SIMS), prof. Tiina Komulainen, SIMS President

e Adj. prof. Esko Juuso, IPC Chair, University of Oulu, Finland

Keynote presentations

The Role of Simulation Governance in the Al Era: Applications in Structural Engineerin
Prof. Antti H. Niemi, University of Oulu, Faculty of Technology, Finland

Role of Physics-Based Realistic Simulation Environments for Research and Education in Robotics and Al

Associate Senior Lecturer Sumeet Gajanan Satpute, Robotics and Al, Luleda University of Technology,
Sweden

Conference topics

The Proceedings include 66 papers in ten topic areas:

Topics Pages
Renewable energy, energy storage and power production 1-105
Circular Economy: CO; capture and use 106 - 176
Steel Industry: thermodynamics and computational methods 177 - 241
Water treatment and nature-based solutions 242 - 265
Bio systems: processes and environmental impacts 266 - 296
Fluid flow and heat transfer 297 -323
Transportation: engines, vehicles, fuels and electrification 324 - 361
Automation 362 -424
Machine learning 425 - 455
Modelling in process analysis and optimization 456 - 494

Conference program

Both conference days started with a keynote and continued with three parallel sessions. The Annual
SIMS meeting was held in the end of the first day. The second day ended with

Panel Discussion on Future Challenges and Possibilities for Simulation

More information is available at SIMS website (https://www.scansims.org/).
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Conference General Chair

Adjuct prof. Jari Ruuska, University of Oulu, Finland

International Program Committee

Adj. prof. Esko Juuso, University of Oulu, Finland,
Chair

Adj. prof. Jari Ruuska, University of Oulu, Finland,
Co-Chair

Dr. Gaurav Mirlekar, University of South-Eastern
Norway, Norway, Co-Chair

Prof. Lars Eriksson, Linkdping University, Sweden,
Co-Chair

Prof. Konstantinos Kyprianidis, Malardalen
University, Sweden, Co-Chair

Dr. Avinash Renuke, Malardalen University,
Sweden, Co-Chair

Dr. Timo Ahola, Outokumpu Stainless, Finland
Prof. Erik Dahlquist, Malardalen University, Sweden

Prof. Tormod Drengstig, University of Stavanger,
Norway

Prof. Yrj6 Hiltunen, University of Eastern Finland,
Finland

Prof. Biao Huang, University of Alberta, Canada

Assoc. prof. David Hastbacka, Tampere University,
Finland

Assoc. prof. Wolfgang Kemmetmidiller, Vienna
University of Technology, Austria

Prof. Tiina Komulainen, Oslo Metropolitan
University, Norway

Prof. Juan Ignacio Latorre-Biel, Public University of
Navarre, Spain

Prof. Kauko Leiviska, University of Oulu, Finland
Adj. prof. Esa Muurinen, University of Oulu, Finland

Assoc. prof. Idelfonso Nogueira, Norwegian
University of Science and Technology, Norway

Dr. Markku Ohenoja, University of Oulu, Finland

Assoc. prof. Adrian Pop, Linkdping University,
Sweden

Prof. Viceng Puig, Universitat Politécnica de
Catalunya, Spain

Assoc. prof. Michela Robba, University of Genova,
Italy

Dr. Jani Tomperi, University of Oulu, Finland
Prof. Tero Tynjala. LUT University, Finland
Dr. Stavros Vouros, Malardalen University, Sweden

Prof. Archana Balkrishna Yadav, Sardar Vallabhbhai
Patel Institute of Technology, India

Assoc. prof. Ru Yan, University of South-Eastern
Norway, Norway

Prof. Chunhua Yang, Central South University,
China

Dr. Peter Ylen, VTT, Finland
Adj. prof. Kai Zenger, Aalto University, Finland

Prof. Borut Zupangi¢, University of Ljubljana,
Slovenia

Prof. Lars Erik &i, University of South-Eastern
Norway, Norway

National Organizing Committee

Adj. prof. Jari Ruuska, University of Oulu, Finland, Chair
Adj. prof. Esko Juuso, University of Oulu, Finland, Co-Chair

Ms. Anu Randén-Siippainen, Finnish Automation Society, Finland

Mr. Marko Vuorio, Finnish Automation Society, Finland
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The Role of Simulation Governance in the Al Era: Applications in Structural
Engineering

Antti H. Niemi
Dean, Professor, Faculty of Technology
University of Oulu, Finland

Abstract

In the era of artificial intelligence (Al), machine learning (ML) and advanced computational techniques
have revolutionized the design, analysis, and assessment processes in structural engineering. These
methods enable engineers to optimize structural designs, predict behaviour under complex loading
conditions, and evaluate risks more efficiently. However, the increasing reliance on simulations to
inform critical decisions highlights the growing need for robust simulation governance. This governance
ensures that computational models are credible, transparent, and aligned with real-world performance
expectations.

Simulation governance encompasses a range of activities aimed at ensuring the quality and reliability
of computational models and results. Key aspects include verification and validation (V&V) of models,
uncertainty quantification (UQ), and adherence to principles of data integrity. Verification ensures that
mathematical models are accurately solved, while validation confirms that models faithfully represent
physical phenomena. UQ addresses the inherent uncertainties in material properties, boundary
conditions, and loading scenarios, offering insights into the reliability of predictions. Together, these
elements form the foundation for trust in simulations in safety-critical applications such as structural
engineering.

One of the most pressing challenges in applying simulation governance to civil engineering is the
disparity between time scales in structural performance. While simulations often focus on short-term
responses (e.g., dynamic behaviour under seismic loads), many civil structures are designed for
decades or even centuries of service life. Accurate modelling of long-term phenomena, such as material
creep, fatigue, and environmental degradation, requires integrating multi-scale and multi-physics
approaches. These considerations add complexity to the modelling process and necessitate careful
calibration and validation to ensure predictive accuracy over extended time horizons.

Finite element analysis (FEA), a cornerstone of computational structural engineering, presents
additional challenges requiring robust governance frameworks. Issues such as stress recovery at
interfaces, the treatment of stress concentrations around geometric discontinuities, and the resolution
of singularities demand careful numerical treatment. Classical finite element methods often struggle
with accuracy in these areas, particularly under complex loading or irregular geometries. The
Discontinuous Petrov-Galerkin (DPG) methodology has emerged as a promising approach to address
these challenges. By using tailored test spaces and robust stability properties, DPG methods improve
the reliability of stress predictions, especially in regions of interest like sharp corners or material
interfaces. These advancements align with the principles of simulation governance by providing
rigorously validated computational tools.

Another critical dimension of simulation governance in the Al era involves integrating sustainability
considerations into computational frameworks. Civil engineers increasingly face pressures to minimize
environmental impacts, optimize resource use, and design for adaptability and resilience. Simulation
tools informed by Al can evaluate the lifecycle performance of structures, assess carbon footprints, and
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explore trade-offs between competing design objectives. However, these applications rely on high-
quality input data, calibrated models, and rigorous V&V processes to ensure meaningful results.

In summary, simulation governance is indispensable for harnessing the full potential of Al-driven tools
in structural engineering. By addressing challenges such as time-scale disparities, numerical accuracy
in FEA, and the integration of sustainability considerations, robust governance frameworks ensure that
computational insights translate into reliable, safe, and efficient designs. As structural engineering
continues to evolve in the Al era, the development and enforcement of these frameworks will play a
pivotal role in shaping the future of the field.

Biography

Dr. Antti H. Niemi earned his M.Sc. in Engineering Physics (2004) and D.Sc. in Mathematics (2009) from
the Helsinki University of Technology (now Aalto University). Since 2020, he has been a professor of
structural design and engineering mechanics at the University of Oulu, where he also serves as Dean of
the Faculty of Technology. In this role, he leads a diverse and dynamic academic community, fostering
innovation and collaboration across disciplines.

Dr. Niemi's research focuses on developing advanced mathematical models and numerical simulation
methods in structural mechanics, addressing topics such as finite element methods, stress analysis,
stability, and multi-scale modelling. His work integrates fundamental mathematics with practical
applications to improve the reliability, efficiency, and sustainability of structural designs.

He has held research positions at international institutions, including Aalto University (Finland), KAUST
(Saudi Arabia), and the Oden Institute at the University of Texas at Austin (USA), which have enriched
his global perspective and interdisciplinary expertise. In addition to his academic roles, he has worked
in engineering consulting as a bridge and structural designer, combining hands-on experience with
theoretical advancements.
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Role of Physics-Based Realistic Simulation Environments for Research and
Education in Robotics and Al

Sumeet Gajanan Satpute, George Nikolakopoulos,
Associate Senior Lecturer, Chair Professor of Robotics and Al,
Robotics and Al, Lulea University of Luled University of Technology, Sweden

Technology, Sweden

Abstract: Physics-based realistic simulation environments are vital for advancing research and
education in Al, providing an accurate and controlled platform for testing algorithms and models.
These environments simulate real-world physics, including dynamics, collisions, and sensor
interactions, allowing Al systems to learn and adapt in complex, lifelike scenarios. In research,
they enable experimentation with Al-driven robotics, autonomous systems, and reinforcement
learning without the constraints of physical setups. For education, they offer hands-on
experiences for students to explore Al concepts and algorithms in dynamic environments,
bridging the gap between theoretical learning and practical application, fostering innovation and
understanding. During this talk, we will present our efforts in the development of relevent
simulation environments within the Robotics and Al group, at Lulea University of Technology,
Sweden. These environments are used in the ongoing coruces as well as the advancement of
autonomy algorithms towards their field implementation.
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Biography

Education

2012

Master of Technology in Electrical Engineering with specialization in Control
Systems, Mumbai University, India
Thesis: Control of noisy underactuated mechanical systems

2021

PhD in Onboard Space systems, Lulea University of Technology, Lulea, Sweden.
Thesis: Guidance and Control of Multiple Spacecraft Formation

Professional Experience

2023 Associate Senior Lecturer, Robotics and Al Group, Luled University of
Technology, Lulea, Sweden.

2021-2023 Postdoctoral Researcher, Robotics and Al Group, Lulea University of
Technology, Lulea, Sweden.

2015-2021 PhD in coolaboration with OHB systems, Sweden and Onboard Space
Systems, Lulea University of Technology, Kiruna, Sweden.

2012-2015 Lecturer, Electronics Department, Veermata Jijabai Technological Institute
(VITI), Mumbai, India
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Panel Discussion on Future Challenges and Possibilities
for Simulation

Chair: Adj. prof. Jari Ruuska, University of Oulu, Finland

Panelists:

e Associate Senior Lecturer Sumeet Gajanan Satpute, Division: Signals and Systems,

Department of Computer Science, Electrical and Space Engineering, Luled University of

Technology, Sweden

o  R&D Manager Severi Anttila, Outokumpu, Tornio, Finland

o  Prof. Tiina Komulainen, SIMS President, Oslo Metropolitan University, Oslo, Norway

o Senior prof. Erik Dahlquist, Past SIMS President, School of Business Society and
Engineering, Division of Automation in Energy and Environmental Engineering, Visterds,

Sweden

e Adj. prof. Esko Juuso, Conference IPC chair, Past EUROSIM President, Control
Engineering, Environmental and Chemical Engineering, Faculty of Technology, University

of Oulu, Finland

The panel discussion was the last part the
conference. The panellists were the keynote
presenter Sumeet Gajanan Satpute (SS), the current
president of SIMS Tiina Komulainen (TK) and the
IPC chair of the conference Esko Juuso (EJ), who
is also a past president of both Eurosim and SIMS.
Industry was represented by Severi Anttila (SA).
Erik Dahlquist (ED) has a long experience in
simulation, including over 20 years activityiesin
SIMS. The chair of the national organizing
committee Jari Ruuska (JR) was the chair of the
panel. The discussion focused on four questions:
artificial intelligence, importance of the expert
knowledge, requirements of measurement data and
use of written or spoken expert data. These
questions were presented by the panel chair. The
audience raised a question on limitations on relying
only on expert knowledge. The audience also asked
why to participate in the next SIMS?

The answers of the panellists were collected
during the panel discussions by Dr. Markku
Ohenoja and doctoral student Henri Vilikangas.

1. Artificial intelligence

e ED: Alis as good as the data fed into it.

e EJ: Al does not answer to everything, but a
tool among others.

e SS: Requirements for Al are not reasonable,
although the performance of them is getting
better all the time.

e SA: If it helps to lessen our workload, it will
allow us to focus on other things.

EJ: Machine learning and Al are additional
tools, not direct solution in process industries.

2. Importance of expert or domain
knowledge

ED: Go first to the experts to start on a higher
level. Measurement data not enough,
knowledge needed. Examples from mining
safety, paper mill troubleshooting.

SS: Working in robotics is a multidisciplinary
area, so getting input from many experts of
different areas is important to reach optimal
solutions. More complex systems, more
multidisciplinary expertise needed.

EJ: Data-based solutions without expertise fail
to reach the same level which they usually
achieve with expert knowledge.

EJ & TK: It is important to understand the
system state, and the fact that companies lose
the most amount of profit in error situations,
importance of that are hard to model and need
to be handled with expert knowledge.

SA: Data quality combined with operation
point detection with experts.

3. Requirements of measurement data

ED: It is important to focus effort on the selected
data, as it will define most the performance of the
Al solution.

TK: Data quality combined with operation
point detection with experts.
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EJ: More focus should be on the data and the
uncertainties present in it, rather than
imagining that more data is always better.
ED: Expertise is needed to guide efforts of
data-analysis to the right direction.

4. How to facilitate use of written or
spoken expert data in system
development data

ED: Expert knowledge vs. expert guess: data
quality also there, i.e. verification of data is
important

SA: Reliability of prediction/simulation as
well! Difficult for operators to re-gain the trust
for a monitoring/model once lost.

EJ/JED/TK: Also operator decisions are
subjective sometimes

ED: Learning from other operators and mills,
risk-taking to test and go outside comfort zone
in training (for advances systems)

SS: Experts might have 40 years of experience
for good decision-making. Al also needs
(some) time to learn.

EJ: An active research area including new
possibilities are available for the challenging
problem.

ED: Al-based advisory systems are needed to
support operator to conduct best practices.
TK: An example is spotting energy saving
potential in WWTP,

5. Audience: Can relying upon only
expert knowledge can inhibit progress?

ED: Relying upon only expert knowledge can
inhibit progress, thus a mixture of these should
be utilized to achieve the best outcome.
Different thinkers are preferred, because it
will lead to innovation more than similar
thinking people, because no one will want to
do things differently or to think on what else
their method could be utilized upon.

SA: Such a risk exists. Relying on peers to
innovate doesn’t give enough varying
information to create a lot of innovative ideas
or solutions. It is like talking to a mirror,
especially here in the Nordic countries, where
there are only a handful of R&D personnel,
and all of them come from a similar
background.

TK: It takes time and effort to standardize the
culture and get everyone to use the new
methods.

EJ: It would be important for people who have
innovative ideas to stand behind their ideas in
the face of “old thinkers”.

SA: The field of development should be able
to adapt to the new ideas, and not think that the
methods haven’t evolved with the time, even
though they were not working solutions 40
years ago.

SS: Braking boundaries is a difficult task.
ED: Culture of work and development needs

time to change and adapt to new ideas and new
thinkers.

6. Audience: Why to participate in the
next SIMS?

ED: Mixture of ideas available.

SA: Possibility for other area experts to hear
out of the box.

TK: Different application areas, different
methods when listening others’ work is
inspiring / gives ideas to own research.
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Renewable Energy Resource Risk
Quantification and Mitigation Assessment
for Mining Micro-Grid

Moksadur Rahman Stefan Thorburn

ABB Corporate Research Center, Forskargrand 7, 72226 Vasteras,
Sweden

Abstract: As one of the most energy-intensive industries, mining accounts for over one-third of
industrial final energy consumption. With the growing mineral demand, combined with declining
ore grades, it is expected that the energy demand in mining will only grow in the future,
potentially increasing its already large greenhouse gas footprint. With rising energy costs,
renewable energy presents a viable option not only to improve the environmental footprint
but also to reduce overall costs with optimized operation of mines. While renewable energy
generators i.e., solar photovoltaics and wind turbines offer numerous benefits like modularity,
environmentally friendliness, and natural availability; the major drawbacks are their temporal
intermittency and seasonal and long-term variability. Hence, these generators pose a resource
risk that the actual quantity of wind and solar irradiation can be less than expected. The resource
risk imposes uncertainty in short-, medium- and long-term energy generation and
consumption. Hence such risk needs to be actively considered and mitigated during the
evaluation and operational phase of renewable or hybrid energy system projects. This
paper provides a comprehensive review of renewable resource risk quantification techniques.
Subsequently, a list of renewable energy resource risk quantification methods is discussed i.e.,
renewable reliability (i.e., the percentage of demand met by renewables), energy deficit and
energy oversupply index, probability of exceedance (PoE) for annual energy production (AEP),
probability of generating at least k MW of renewable power, capacity factor. Finally, some
selected matrices are used to assess the effect of different risk mitigation options, e. g. the
optimal size of energy storage.

Keywords: Mining, renewable resource risk, resource reliability, sustainable energy.

footprint but also to reduce overall costs with optimized
operation of mines. While renewable energy generators i.e.,
solar photovoltaics (PV) and wind turbines have numer-
ous benefits such as environmental friendliness, natural
availability, and lower life-cycle cost; the major drawbacks
are their temporal intermittency and seasonal and long-
term variability. Therefore, renewable energy generators
pose a resource reliability risk that can be manifested as
a quantity risk—i.e., the risk that the quantity of wind
and sunshine will be less than expected (Bolinger, 2017).
The resource reliability risk imposes uncertainty in short-
, medium- and long-term energy generation and
consump-tion. Hence such risk needs to be actively
considered and mitigated during the evaluation and
development phase of renewable or hybrid energy
system projects. There-fore, a methodology is required

1. INTRODUCTION

Mining is one of the most energy-intensive industries. It
accounts globally for 11% of the total final energy con-
sumption and 38% of industrial final energy consumption
(McLellan et al., 2012). Also, being one of the largest
expenses in mining, energy on average accounts for 15%
to 40% of the total operational cost (Igogo et al., 2020).
Having said that, the sector’s final energy consumption
is still heavily dependent on fossil fuels, with 62% of
final energy consumption being made up of oil, gas, and
coal directly, while 35% is made up of electricity from
the grid that often includes fossil fuels (Maennling and
Toledano, 2018). With the increase in mineral demand,
combined with declining ore grades, it is expected that

the energy demands in mining will only grow in the fu-
ture, potentially increasing its already large greenhouse
gas (GHG) footprint (Nasirov and Agostini, 2018). Under
these circumstances, the mining industry has been under
enormous pressure to reduce its environmental impacts.
This is leading to an increasing interest in adopting renew-
able energy to power mining operations. With increasing
energy costs, renewable energy like solar and wind present
a viable option not only to improve the environmental
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to quantify the energy supply risk in a renewable or
hybrid energy generation system. Subsequently, such risk
quantification method can be used to analyze the effect
of different risk mitigation options, e. g. the optimal
size of energy storage and/or backup/emergency energy
generator or through grid or de-mand flexibility. In this
paper, we have focused exclusively on battery energy
storage as a risk mitigation option. Nevertheless, the
methodology presented can be adapted to other
mitigation strategies as well.

Oulu, Finland, 11-12 September, 2024
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Fig. 1. Hybrid energy generation system for mines
2. MATERIALS AND METHODS

2.1 Hybrid Energy Generation System for Mines

A hybrid energy system combines multiple types of en-
ergy generators and/or backup energy sources like storage
or grid in a complementary fashion to ensure depend-
able power supply at a competitive cost (Fathima and
Palanisamy, 2015). One of the major benefits is that it can
capitalize on existing grid infrastructure and add different
components to help reduce costs, environmental impacts,
and system disruptions. Hence, a hybrid energy system
is a viable option that can help the mining industry to
transition away from fossil fuel-based operations. Depend-
ing on the renewable resource availability and economic
feasibility, a hybrid energy system for mines can consist
of solar PV, wind turbine along with diesel generators
(DG) and/or storage and grid as backup source, as shown
in Fig. 1. Of course, the actual configuration will vary
depending on site and mine-specific requirements. How-
ever, including solar and wind generators in mining energy
generation systems comes with disadvantages like tempo-
ral intermittency, and seasonal and long-term variability.
Traditional mining energy sources like diesel and grid can
deliver energy whenever needed. Contrarily, solar and wind
generators can only deliver energy when the sun is shining,
and wind is blowing. This makes both the demand side
and the generation side of the energy system variable. The
challenge lies in the need to constantly balance energy
demand with energy generation. Hence, backup sources
like storage, diesel generators, or connection to regional
electricity grids are essential for the security of supply.
Due to the remote nature of mining sites, combining solar
and wind energy with battery energy storage systems
(BESS) is seen as the most viable option to initiate energy
transition in the mining industry.

2.2 Wind Energy

The use of wind energy in electricity generation is
widespread in today’s world. Typically wind turbines, de-
vices that convert the kinetic energy of wind into electrical
energy, are used for this purpose. Wind energy can also be
used to complement solar energy due to its availability
during the night and on cloudy days.

Wind Resource Assessment

The economic value of wind energy generators depends
on the availability of wind resources at the intended geo-
graphical location. Hence, the wind resource assessment is
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a crucial part of the feasibility study. Even though the ap-
proaches for resource assessment typically vary depending
on many factors like purpose, stage of development, and
generator types under consideration, such calculations are
often based on some on-site wind measurement, sometimes
augmented by meteorological modeling, and likely to be
combined with longer-term measurements from offsite (but
ideally nearby) reference stations. Typically, Weibull dis-
tribution is used to represent the frequency of wind speeds
at a specific location. The general form of the Weibull
distribution for wind speed takes the following form as
shown in equation (1) as presented in (Al Buhairi, 2006),

o=t w @] o

Wind Turbine Modelling

A model of a wind turbine is typically represented by a
power curve, which is a plot between power output and
wind speeds at a particular hub height. In this work,
a piecewise model of a power curve from Devrim and
Eryilmaz, 2021 is used as described in equation (2),

0 ifv<wg orv> v
if vgg <wv< v, (2)
P, ifv, <v<wvg

where v, veo, and v, are cut-in, cut-off, and rated wind
speeds respectively. P, is the rated output power of the
wind turbine.

Specification data for different wind turbines can be ob-
tained freely from the wind turbine library maintained by
Open Energy Platform.

2.3 Solar Energy

Solar energy is one of the fastest-growing renewable energy
technologies available today. The most common options for
utilizing solar energy are PV and solar thermal systems.
In this paper, the focus will be on solar PV, which
are electronic devices that convert sunlight directly into
electricity.

Solar Resource Assessment

One of the major factors for the economic feasibility of
solar PV systems is the availability of solar energy that
can be utilized to produce electricity. Typically, solar
irradiation, the amount of energy that reaches a unit
area in a unit of time (expressed as Wh/m?), is used
to quantify available solar energy. There are different
methods available to estimate solar irradiation in a given
location such as based on in situ data, derived from
satellite data, or a combination of both. Typically, Beta
distribution is used to represent the solar irradiation data.
The general form of the Beta distribution is depicted in
equation (3) as described in Liu et al. (2016),
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where r and r,, are the actual solar intensity and the
maximum intensity in a time period, o and § are the shape
parameters of Beta distribution, I' is a function of Gamma.

Solar PV Modelling

The output power of solar PV is calculated from equa-
tion (4),

va = 77vaprva x GHI (4)

where, npy, Apy, PRpy and GHI denotes solar module
yield, area, performance ratio (also known as a coefficient
for losses that range between 0.9 and 0.5, the default value
is 0.75), and global horizontal irradiance. It’s worth noting
that the above formula is an estimation, as the actual
solar power generation depends on many factors such as
temperature, shading, dust, and the age of the panel. Some
of these factors can be covered by solar module yield.

2.4 BESS

BESS plays an important role in renewable energy inte-
gration due to its ability to directly address intermittency
issues that are inherent to renewable energies. Major bene-
fits of BESS include assistance in peak shaving, load shift-
ing, voltage and frequency regulation by adding virtual
spinning reserve, etc. Typically, a BESS consists of battery
cells connected in parallel and series configurations with
inverters to facilitate charging and discharging.

BESS Modelling

A simplified battery model based on charge quantity and
state of charge (SoC) calculation is used in this work.
The charge quantity of battery storage at the time ¢ is
calculated by equation (5) according to Deshmukh and
Deshmukh (2008),

N0

Ninv

Ep(t) = Ep(t—1)(1—0)+ (EGAu) ) <ot (5)

where, Eg(t) and Fp(t — 1) are the charge quantities of
battery storage at the time ¢ and (¢ — 1), o is the hourly
self-discharge rate, Ega(t) is the total energy generated
by the energy source after energy loss in the controller,
Er(t) is load demand at the time t, 1;n, and np,: are
the efficiency of inverter and charge efficiency of battery
storage. The charge quantity of battery storage is subject
to the constraints represented by equation (6),

EBmin < EB(t) < EBmam (6)
where Ep,,q. a0d Ep,,i, are the maximum and minimum
charge quantity of battery storage.

When referring to BESS, it is more common to use an
empirical definition of SoC, as represented in equation (7),

_ Es()
SoC = EBma:v (7)
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2.5 Renewable Resource Risk

Often the availability of renewable resources dictates the
economic viability of renewable energy integration. Hence,
a feasibility study for renewable energy projects must
include resource assessment as a first step. Most often
a “P50” estimate of wind speed or solar irradiance is
used to calculate the annual energy production that forms
the basis for economic calculation. This introduces two
primary sources of potential error or bias: 1) the system-
atic bias from the resource measurement and/or modeling
techniques used and 2) the random error related to the
inherent short-, medium- and long-term variability of the
resource over time. There is a third error of systemic type
from energy converter models that are used to estimate the
amount of energy generation. Another aspect that is often
overlooked in such traditional approaches to the feasibility
study is that during the operational phase, the energy
demand must always be matched by the energy available
instead of ensuring only an annual balance. This means
energy must be balanced in short-terms like 15— minutes,
hourly, etc., and medium-terms like daily, weekly, monthly,
etc. to long-term like yearly and over the project lifetime.
Thus, the traditional methods overlook the dynamic en-
ergy supply risk and are unable to analyze and provide risk
mitigation options and their associated costs. In addition
to this, for completeness, such a feasibility study should
also consider options related to the other side of the energy
balancing act i.e., the demand side flexibility options.
Energy consumption peaks should be avoided to reduce
the risk of emergency shutdowns and high peak price
payments. At least, the decision makers need ways/tools
to compare different risk mitigation alternatives related
to both the supply- and demand-side that also include
associated costs of corresponding options. For example,
what are the overall costs and benefits of reducing peak
energy demand at rear times with no or exceptionally low
renewable generation against installing additional energy
storage or emergency backup generators to cover rear
peaks? There is a need for a well-defined method/tool
to quantify, predict, and reduce the operational risks of
energy supply and to evaluate means to reduce these risks.

There are multiple approaches used in the literature to
quantify the renewable resource risk. The most common
ways to quantify the renewable resource risk are:

e Probability of exceedance (PoE) for annual energy
production (AEP).

e Renewable reliability (i.e., the percentage of demand
met by renewables).

e Probability of generating at least K MW of renewable
power.

e Energy deficit index and energy oversupply index

e Capacity factor

One of the most widely used matrices is the probability
of exceedance for annual energy production (illustrated
in Fig. 2(a), which, with just a few key inputs, can
be used to estimate the probability that, for example,
the wind or solar generation at a given site will fall
below a given level (Bolinger, 2017). This also allows
comparison of the resource risk among multiple project
sites in terms of probabilistic values. Probability of
exceedance is often represented as “P —level” which
ranges from P 1 (i.e., there
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is only a 1% chance that actual generation will exceed the
P1 estimate) to P99 (i.e., there is a 99% chance that actual
generation will exceed the P99 estimate). In comparison
to the central or median estimate that is equivalent to
the “P50” estimate, the probability of exceedance allows
the project analyst to choose different “P — level” for
wind and/or solar generation. Another common way to
quantify the renewable resource risk is by calculating
the reliability (i.e., the percentage of demand met by
renewables) (Tong et al., 2021). Devrim and Eryilmaz
(2021) proposed calculating the probability of generating
at least k kW of renewable power. Additionally, simple
indicators like the energy deficit index, energy over-supply
index, and capacity factor can be calculated to quantify
energy supply risk.

According to Tong et al. (2021), the renewable energy
system’s reliability index is the percentage of the total load
that is met by renewables at a given time, as depicted in
equation (8),

Renewable generation at time t
Load at time t

Ireliability = x 100% (8)

The energy deficit index is defined as the ratio between
energy shortage and energy demand in a particular hour,
as described in equation (9),

Energy deficit at time t
Load at time t

Taeficit = x 100% (9)
Similarly, the energy oversupply index is the ratio between
energy oversupply and energy demand in a particular hour,
as shown in equation (10),

Energy over supply at time t

1 1
Load at time t X 100% (10)

Ioversupply =

The capacity factor of a renewable energy system is a
measure of how much electricity the system generates com-
pared to its maximum potential output. It is calculated by
dividing the actual energy generated by the system over
a certain period of time by the maximum possible energy
that could have been generated during that same period
(Ahmad et al., 2018). The result is then expressed as a
percentage. The formula for calculating the capacity factor
can be expressed as below,

o Actual energy generated at time t
F

= x100% (11
Maximum possible energy generation o (1)

2.6 Renewable Resource Data

There are several ways to obtain solar and wind resource
data for a specific location. The historical wind data can
be obtained from various sources such as the National
Renewable Energy Laboratory (NREL) or other national
meteorological services. These datasets usually provide
data in the form of wind speed and direction measurements
at a specific location and time. Some of these datasets
can be downloaded in bulk, while others require you
to request access or download data on a case-by-case
basis. Similarly, the historical solar radiation data can be
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obtained from various sources such as NASA’s Surface
Meteorology and Solar Energy (SSE) dataset, the NREL
or other sources. These datasets usually provide data
in the form of solar radiation measurements (usually
in kWh/m? or W/m?) at a specific location and time.
Some other online databases and platforms provide solar
and wind data, such as the European Renewable Energy
Data Platform (EURODATA) and Renewable Resource
Data Center (RReDC). It’s important to note that using
historical data alone may not provide a complete picture
of the renewable energy resources available in a specific
location, and it’s recommended to combine with other
sources of information, such as on-site measurements, local
weather patterns, topography, and land use, etc. to get a
more accurate assessment.

In this work, NASA’s Solar and meteorological resource
data- “POWER data” are used for wind and solar resource
assessment (NASA, 2024). This satellite and modeled-
based database are accurate enough to provide reliable
solar and meteorological resource data over regions where
surface measurements are sparse or non-existent and offer
two unique features — the data are global and contiguous
in time (Pavlovié et al., 2013). Microgrid design tools such
as HOMER and RETscreen also use “Power data’ as
one of the data sources. Most importantly, the data from
“POWER data” is available at multiple temporal levels:
hourly, daily, and monthly.

For this work, the hourly data for wind speed, GHI,
atmospheric temperature, and pressures are collected over
21 years from 2001 to 2021 for a location in Scotland
(Latitude: 57.0161 and Longitude: —2.8719; referred to
as location-1). To get an overview of the data, wind

speed, and solar irradiation are visualized in Figs. 3

and 4. The wind speed shows greater variability with
a mean around 7.4 m/s. Interestingly, for the selected
location the wind speed is slightly higher in winter than
summer. This is linked to the fact that the winter
brings higher temperature gradients. On the other
hand, as expected the solar irradiation peaks during
summer and very low during winter.

3. RESULT AND DISCUSSION
3.1 Prerequisites

To estimate power generation from available wind and
solar resources, the wind turbine model described in Sec-
tion 4.2 and the solar PV model described in Section 5.2
are used. The hourly electricity generation from wind and
solar is calculated for the entire historical dataset of 21
years. The wind and solar park are sized such that it can
on average meet 20% of the load assumed to be 20 MW.
In reality, the load will be variable but for the sake of
simplicity, it is assumed to be constant here. Eventually,
six different cases as presented in table 1 are formulated
by considering different shares of solar and wind in the
renewable energy share. The wind turbine and solar mod-
ule specifications presented in table 2 and 3 are used for
the calculation. Accordingly, the wind farm and solar park
capacities are upscaled to fulfill the installed power needed
for each use case.
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Fig. 3. Hourly (a) wind speed and (b) solar irradiation for
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Fig. 4. Hourly (a) wind speed and (b) solar irradiation for
the year 2011-2020.

3.2 Renewable Resource Reliability

In Figure 11 the wind and solar energy generation cor-
responding to the historical dataset for a given location
is visualized. To be able to include both wind and so-
lar energy case-2 was selected. As expected, the energy
generation from wind and solar follows the same trend as
available wind and solar resources. However, the variability
of available energy is something to note here. If we look
at the hourly mean as well as percentile values, wind has
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Fig. 5. Individual power generation from wind and solar
plant for case 2.

much larger variability than solar. Of course, the wind
speed variation is partly amplified due to the high share
of wind in case-2. However, variability in wind energy
generation comes from high wind speed variability. One
interesting fact is that wind generation cannot be more
than the total rated power of the wind park that is imposed
by the cumulative power curves. Another observation is
that over a year solar and wind can act as complementary
energy sources for this location. By using both solar and
wind energy together, it is possible to reduce the impact
of the yearly variability of each source and have a more
consistent supply of electricity.

Subsequently, the total energy produced combined by
the wind and solar is calculated by adding individual
generation. The cumulative power generation for each of
the cases is chronologically visualized in Fig. 6. By looking
at the average energy generated by each of the system
configurations, it is obvious that case-2 and case-3 provide
fairly stable average energy throughout the year. The
results are summarized in table 4. For better visualization,
the mean reliability for different cases is plotted in Fig. 7.
The mean reliability decreases as the system configuration

Table 1. Cases with different share of solar and

wind

Case no. Description

Case-1: 0% PV & 100% Wind
Case-2:  20% PV & 80% Wind
Case-3:  40% PV & 60% Wind
Case-4: 60% PV & 40% Wind
Case-5: 80% PV & 20% Wind
Case-6: 100% PV & 0% Wind

Table 2. WT (Enercon e-53/800) specification

Parameter Value  Unit
Rated power: 810.0 kW]
Cut-in wind speed: 3.0 [m/s]
Rated wind speed: 120  [m/s]
Cut-out wind speed: ~ 26.0  [m/s]
Rotor Diameter: 52.9 [m]
Hub height: 60/73  [m]
Swept area: 2198  [m?]

Table 3. PV module specification

Parameter Value Unit
Module efficiency: 15 (%]
Performance ratio:  0.75 [-]

Life: 25 [years]
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changes from “Case-1: 0% PV and 100% wind” to “Case-
6: 100% PV 0% wind”. Meaning, for this specific location
wind wind-heavy systems offer higher mean reliability. On
the other hand, the mean energy deficit and the oversupply
index increase with solar-heavy systems. However, one
must not get deceived by the facts or base their conclusion
entirely by looking at the mean values only. The local
variation must be considered as well. Mean value over such
a long timescale often doesn’t tell the whole story.

Table 4. Renewable Reliability at location-1 for
different cases

Mean Mean Mean Mean
Case reliability P50 energy deficit  oversupply

reliability index index

1 19.8% 12.5% 12.5% 21.9%
2 19.2% 14.2% 10.8% 17.0%
3 18.5% 14.6% 10.8% 17.0%
4 17.9% 12.8% 11.3% 16.4%
5 17.3% 9.1% 11.7% 25.3%
6 16.6% 1.2% 14.5% 32.0%

Subsequently, the same calculation is performed for an-
other location in central Australia (Latitude: —22.5909
and Longitude: 133.4432, referred to as location-2). As can
be seen from table 5 and Fig. 8, the trends are reversed
as this location has relatively higher solar irradiation and
lower wind. This shows how renewable generation and
their reliability can be very much location-dependent and
thus the system configuration will vary based on renewable
resource availability.

Table 5. Renewable Reliability at location-2 for
different cases

Mean Mean Mean Mean
Case reliability P50 energy deficit  oversupply

reliability index index

1 14.5% 12.0% 8.7% 11.5%
2 19.8% 17.9% 9.2% 11.6%
3 25.1% 16.6% 14.2% 24.4%
4 30.4% 12.7% 21.5% 37.6%

5 35.7% 12.7% 21.5% 50.6%
6 41.1% 2.2% 37.1% 63.8%
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3.8 PoE for AEP

Once the preferred share of wind and solar for a specific
location is known, the AFEP of the system is calculated at
different PoFE levels. To do so, individual AEP with PoFE
for wind and solar PV is computed for location-1. For a fair
comparison between wind and solar case-3 with 60% wind
and 40% solar is selected for this analysis. For wind, the
spread between P99 and P1 for AEP is around 19.5 GWh
to 34.5 GWh. Subsequently, the spread between P99 and
P1 for AEP is around 10.6 GWh to 12.8 GWh for solar
park. For a combined system, the AEP values are just
added together as presented in Fig. 9. Now, this graph
can be used as the basis of financial calculation when a
P — value is given. As mentioned earlier, typically a P50
AFEP is used for such calculation. For a more conservative
calculation, a higher P — value can be used.
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Fig. 6. Combined power generation from wind and solar
plant for different cases.
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Fig. 9. AEP with PoE for case-3 at location-1.
3.4 Renewable Risk Mitigation with BESS

To get a further understanding of renewable energy vari-
ability, the energy deficit (or power shortage) and over-
supply for case-3 over a year is visualized in Figs. 23
to 25. It is important to note here, a constant load is
considered to calculate the energy deficit and the
oversupply.

Fig. 10(a) shows, that the

oversupply are spread out over the entire year
except for some parts, which is preferable when
considering a BESS. While analyzing the monthly
trends, it was found that there are months where the
energy deficit and oversupply are equally distributed (as
in Fig. 10(b) and months where that is not the case (Fig.
10(c). The argument here is that a BESS needs to be
designed to cover a month where the renewable
generation was particularly low. In that case, the BESS
needs to be oversized and that is associated with high
capital cost.

energy deficit and
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Fig. 11. Average energy deficit index for BESS with Solar
and Wind system (case-3, location-1)

To analyze how the BESS can help mitigate some of
the variability introduced by renewable energy, the BESS
model described earlier is used. Subsequently, different
battery size is used to calculate the corresponding average
energy deficit index for systems with BESS, solar and
wind (case-3). The results are visualized in Fig. 11
where the BESS capacities are represented as hours of
storage. Here, “1 hour of storage” corresponds to a
BESS size that can cover the entire load by an hour.
As can be seen from Fig. 11, initially the average
energy deficit index reduces sharply with increasing
battery sizes. The slope of the curve diminishes as the
BESS size increases.

To analyze how different shares of solar and wind change
the energy deficit versus the BESS size graph, the calcula-
tions are repeated for different cases (case-1 to case-6). The
result is summarized in Fig. 12. “Case-2: 20% PV and 80%
wind” can have a lower energy deficit index than “case-
1: 0% PV and 100% wind”. Interestingly, with further
increase in PV share in the system results in a higher
energy deficit index. Overall, the case-2 with BESS can
provide the lowest energy deficit index.

DOI: 10.3384/ecp212.001

Proceedings of SIMS EUROSIM 2024

©— Case-1

—B—Case-2
—&— Case-3

—»— Case-4

Average energy deficit (%)

—¥— Case-5

—@— Case-6

0 10 20 30 40 50 60 70

Hours of storage (h)

Fig. 12. Average energy deficit index for BESS with Solar
and Wind system (case-1 to 6, location-1)

4. CONCLUSIONS

The mining industry has huge potential for renewable
energy to meet its energy needs while reducing environ-
mental footprint and overall cost. Freely available solar
and meteorological data sources provide a good starting
point for the assessment of renewable energy potential,
allowing for a fairly accurate and efficient evaluation of
the feasibility of different renewable energy projects for
mines. These datasets can provide information on factors
such as solar radiation levels, wind speeds, and tempera-
ture, which are all important for determining the potential
output of renewable energy systems. Indeed, the renewable
energy generation potential of mines will vary depending
on the onsite availability of renewable resources. Accord-
ingly, the preferred share of different renewable sources,
here solar and wind, in a mining energy grid will differ
significantly at different sites. The reliability of renewable
energy generation from the same solar-wind combination
can be utterly different in different locations. Interestingly,
the reliability trend can reverse for two different locations,
meaning increasing the share of solar in a wind-solar mix
can result in both decreasing or increasing reliability based
on the location. Additionally, using both solar and wind
energy together, it is possible to reduce the impact of
yearly variability of each source and have a more consistent
supply of energy. For financial calculation, annual energy
production with the probability of exceedance can act as
a better indicator. When it comes to the battery energy
storage sizing, the benefit diminishes with increasing size.
Meaning, the reduction in overall energy deficit from a
solar-wind-battery system decreases exponentially with
increasing battery energy storage size. Additionally, the
lowest possible energy deficit is also heavily dependent on
the share of solar and wind in the system.
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manufacture at life-cycle level
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Abstract: Life cycle analysis is considered as a valuable decision-making tool to oversee the environmental
impact of a product through its various stages. Starting from the raw material sourcing up to the end-of-life
processes of the product. Life cycle costing is added to the life cycle analysis to augment the economic
aspects. One of the main drawbacks of the life cycle analysis is the focus on single path for the life stages
as it evaluates single option for each life stage and adds the impact to the following stages. this study
presents a tool to evaluate the environmental and economic impact of different options in life cycle stages,
determine the possible combination of different life cycle choices, and calculate the emissions, energy
intensity and cost of each combination scenario. The study takes wind turbine blade as a case study, where
glass fiber reinforced polymers and carbon fibers reinforced polymers are considered as a row material
alternatives with two supply options Europe or China markets, four manufacturing site options (onsite,
Denmark, Germany, and China) and four end of life processing options (reuse, pyrolysis, landfill, and
mechanical grinding). The results range the different combinations scenarios emissions in the range of (74
— 17) tons of CO2 eq, the energy intensity between 261 GJ and 863 GJ, and the cost vary from 89000€ to
22,000€. This work presented a logical method for mapping, analyzing, and evaluating the environmental
and economic sustainability of a wind turbine blade through different life cycle pathways.

Keywords: Life cycle analysis, life cycle cost, wind turbine, wind turbine blades, wind turbine blades end

of life.

1. INTRODUCTION

Wind energy is considered one of the fastest growing
renewable energies in Europe. Europe wind energy installed
capacity increased from around 140 GW to 272 GW in 2023
(Costanzo et al., 2024). Sweden had even faster growth rate as
it expanded from 5.1 GW to 16.3 GW in the same period
(Swedish Wind Energy Association, 2024). Several studies
proved high technical and economic potentials of wind energy
in several areas of Sweden (Warners et al., 2023). In addition
to the increased installed capacity, the wind turbines had also
been scaled up to maximize wind energy exploitation.
Between 2014 and 2023, Sweden's installed turbines count
increased by less than half, while its installed capacity
increased by more than three times (Swedish Wind Energy
Association, 2024). This increase led to greater attention on
wind energy sustainability with particular emphasis on the
end-of-life treatment. Europe decommissioned 1.5 GW and
repowered 736 MW of wind turbines in 2023 (Costanzo et al.,
2024). Composite materials used to manufacture wind turbines
blades and nacelles pose one of the main environmental
challenges due to the difficulty of disposal and recyclability.

To better understand and manage sustainability, life cycle
analysis and costing have been utilized as a valuable tool in
this sector. Life cycle analysis (LCA) is a tool to evaluate the
environmental impact of a product through its different life
stages. The complete spectrum of stages starts from the initial
raw material resources taken from the environment to the end-
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of-life disposal of the product (Bjern et al., 2017). A general
framework has been adopted to perform the LCA, this
framework standardized through ISO 14040. The main steps
in the standardized framework are goal definition, scope
definition, inventory analysis and impact assessment. This
logical approach permits to identify parts of the life cycle to
emphasis, such as cradle to grave which cover the complete
stages spectrum, and gate to gate which focuses on the
manufacturing stage, starting from the raw material at the
factory gate until the product leave the gate of the factory
(Hauschild, 2017).

LCA has been used to evaluate energy sources environmental
impact. for renewable energy, the focus is determining the
emission reduction and evaluating the energy green pathways.
Numerous LCA studies were conducted in wind energy with
various goals. Most studies were for specific locations and
farms sizes, due to the direct effect on impact per the generated
power, mainly the impact of the transportation, installation,
and operation and maintenance (O&M) stages. More recent
studies focused on the environmental impact of the new
technological development on wind turbines such as offshore
installations (Brussa et al., 2023; Garcia-Teruel et al., 2022;
Yuan et al., 2023). Some studies adopted comparative life
cycle analysis (Schreiber et al., 2019). (Ozoemena et al., 2018)
compared the environmental impact of 4 different
technological improvements opportunities on a 114 MW
onshore wind farm located in UK with 1.5 MW, the
improvement opportunities evaluated were using stiffer carbon
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fiber to enlarge the rotor swept area without increasing the
structural loads or equipment requirements, new tower concept
using carbon fiber instead of metal allowing to increase the
hub height from 65 meters to 100 meters without using higher
cranes capacity, and permanent magnet generator using a
lower rotational speed (150 rpm).

With expected increase in wind turbine capacities and installed
numbers, wind turbine blades draw a significant interest in
wind turbine LCA research area because of its high share on
the total wind farm environmental impact (15-25) %, only
exceeded by the tower (Mali and Garrett, 2022). In addition
to the composite materials recycling challenges (glass and
carbon fibers) which compromise around 80% of the total
mass of the blade (Liu et al., 2019).

Considering the increased attention on carbon fibers and wind
turbines blades LCA, this study introduces a scientific
approach to evaluate and compare the environmental impact
and cost of different options of three life cycle stages, taking a
wind turbine blade as a case study.

2. METHODOLOGY

A case study has been made to describe the work done. The
case study evaluates the alternative options of three stages of
wind turbine life cycle namely (material acquisition stage,
manufacturing stage and end of life treatment stage). The study
blade is the National Renewable Energy Laboratory (NREL)
WindPACT project reference turbine blade, 1.5 MW turbine
with 33.35 m long and 4.335 tons in mass (Malcolm and
Hansen, 2000). The case study assumes the turbine
installation location near Eskilstuna Sweden. The study
evaluates different options for each life cycle stage. The
main evaluation criteria are the climate change impact
represented by equivalent carbon dioxide emissions (kg

energy mix impact between China and Europe. Material
acquisition stage inputs are presented in Table 1.

* Option 1 Glass fiber reinforced polymers (GFRP) sourced
from Europe. Transported using Trucks.

¢ Option 2 Glass fiber reinforced polymers (GFRP) sourced
from China. Transported using Trucks + ship

* Option 3 Carbon fiber reinforced polymers (CFRP)
sourced from Europe. Transported using Trucks.

« Option 4 Carbon fiber reinforced polymers (GFRP)
sourced from China. Transported using Trucks + ship.

Material Acquisition
Stage

* Option 1 Onsite manufacturing of the blade.

¢ Option 2 Blade will be manufactured in GoldWind. Co.
factories in China and then shipped to site.

« Option 3 Blade will be manufactured in Nordex Co.
factories in Germany and then shipped to site.

« Option 4 Blade will be manufactured in Vestas Co.
factories in Denmark and then shipped to site.

Manufacturing Stage

¢ Option 1 Repurposing and different usage at end of life.
* Option 2 Materials recovery by pyrolysis.

« Option 3 Landfilling

« Option 4 Materials recovery by Mechanical Grinding.

End of life Stage

Fig. 1. Options per each stage.

Table 1. Material acquisition stage inputs

CO2 eq), energy intensity in mega joules (MJ) and cost Description Unit Value
in Euros. Figure 1 shows the options
evaluated. Glass fiber emissions kg CO; eq/kg 4.79
2.1 Material Acquisition Stage Resin emissions kg CO, eq/kg 6.59
Materials considered are composite fibers and resin, as it o
compromises approximately 75% of the total blade weight Carbon fiber emissions kg €Oz eq/ke 1.2
(Bortolotti et al., 2019) . Recent studies proyed that using Glass fiber energy intensity MJ/ke 3580
carbon fibers as replacement of glass fibers is assumed to
reduce weight due to the higher strength and stiffness. This Resin energy intensity MJ/kg 128.5
study assumes a full replacement of glass fibers reinforced
polymers (GFRP) by carbon fibers reinforced polymers Carbon fiber energy intensity MlJ/kg 210
(CFRP) with the assumption of 20% weight reduction based
on (Corona et al., 2024) and (Ennis et al., 2019). Materials Glass fiber cost €/kg 2.66
weight and cost are assumed based on (Bortolotti et al., 2019),
environmental impacts are based on Environmental Footprint Resin cost €/kg 3.38
Database (Sala and  Cerutti, 2018) used with
OpenLCA software, (Jensen, 2019), (Rani et al., 2021) and Carbon fiber cost €/kg 27.9
(Strozyk et al., 2024). .
Fiber glass mass kg 2453.79

The fiber glass environmental impact is assumed to be the
same regardless of the directions and axials of the fiber. Carbon fiber mass kg 1963.03
Materials Prices taken from USA market assumed to be the ]
same for Europe, and 20% less for China due to the low cost Resin mass kg 1292.16
of labor and energy. The environmental impact of China
sourced materials is scaled up based on the difference of
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2.2 Manufacturing Stage

Wind turbine blade manufacturing process involves various
steps namely (material cutting, demold, infusion of the
components, assembly, trim, overlay, posture, root cut and
drill, root fastener installation, surface preparation, paint,
surface finishing, weight and balance, inspection, and shipping
preparation). These steps utilize simple equipment and
machines in addition to a resin curing oven with a curing
temperature approximately 70 °C. All equipment is assumed
to be powered by electricity. Hence the main impact is caused
by using electricity plus transporting the finished blade to the
site. Manufacturing locations grid mix data are taken from
(Sala and Cerutti,
2018) browsed using OpenLCA software. Manufacturing
processes electricity demand and labor hours are based on
(Bortolotti et al., 2019) . Electricity average price and labor
cost are based on (ILOSTAT, 2022). Manufacturing stage

Environmental Footprint Database

inputs are shown in Table 2.

2.3 End of life Stage

To improve wind power sustainability multiple academic and
industrial parties are investigating several end-of-life options
for wind turbine blades. The studies vary from adding
secondary life to the wind turbine blade and using them as a
construction material up to numerous ways to recover the

fibers (Paulsen and Enevoldsen, 2021) (Rani et al.,

2021) (Yousef et al., 2024). Main proposed options for the

end-of-life stage are summarized below:

e Functional repurposing (cutting the wind turbine in

pieces and using them for simple structures like bus
stops and barns).

e  Mechanical grinding (producing fiber rich powder to be
used for new fibers production).

e Pyrolysis (obtaining pyrolysis gas and oil with other

solid by products).

e Fluidized bed (reclaiming fibers through burning out

the resin).

e Solvolysis (chemically decomposing the fibers matrix
to get the fibers).

e High voltage pulse fragmentation (decomposing the
fibers matrix by high voltage electrolysis process).

e Mechanical shredding and cement or asphalt co
processing.

This study assumes four options for end-of-life stage, which
are:

e Repurposing blade as a high voltage transmission pole
based on (Henao et al., 2024).

Fibers treatment through pyrolysis.

Recovering fibers through mechanical grinding.

Land filling at farm stie.

The inputs data for the end-of-life stage shown in Table 3 are
taken from (Paulsen and Enevoldsen, 2021; Jensen, 2019; Liu
et al., 2019; Sproul et al., 2023). The negative impact

reused fibers and the production of virgin fibers or
construction materials.

Table 2. Manufacturing stage inputs

Description Unit Value
Sweden electricity grid mix kg CO, 0.0834
emissions eq/ MW )
Denmark electricity grid mix kg CO,
emissions eq/ MW 0.60768
Germany electricity grid mix kg CO» 1.19462
emissions eq/ MW '
China electricity grid mix kg CO, 1.9158
emissions eq/MW )
Sweden electricity grid mix MJ /MW 3.80815
energy
Denmark electricity grid mix MJ /MW 38783
energy
Germany electricity grid mix MJ /MW 757788
energy
China electricity grid mix MJ /MW 954177
energy
Sweden electrlclty grid mix /MW 265.05
average price
Denmark electrlclty grid mix /MW 3255
average price
Germany electr1c1ty grid mix MW 372
average price
China electricity .grld mix MW 74 4
average price
One blade manufacturing
labor hour h 407.37
One blade manufacturing
electric energy in MW MW 15725
Labor cost in Sweden €/h 47.8299
Labor cost in Denmark €/h 53.3448
Labor cost in Germany €/h 46.0908
Labor cost in China €/h 4.464

2.4 Transportation and shipping

Transportation is considered for materials and manufactured
blades. Land transportation is assumed to be by 7 Ton trucks
for the materials and 30-ton trucks for the blade. A full 30 Ton
truck is assumed for blade transportation, as it depends on the
size required to fit the blade rather than the weight
dependency. The China options sea transportation assume
container shipping for materials and medium barge for blade.
Distances assumed are 1000 km for material transportation in
Europe and Google maps factory to site measured distance for
the blade.

No road topology is considered in the study, the study assumes
all roads are paved. Transportation main inputs are shown in
Table 4. Emissions and energy intensity are based on

values represent the net gain acquired through the end-of-life  Epyironmental Footprint Database (Sala and Cerutti,
treatment, it presents the difference between the recycled or  2013g)
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browsed by OpenLCA software, transportation cost figures are
based on (Sander van der Meulen et al., 2023).

Table 3. End of life stage inputs.

manufacturing location distance to site, manufacturing
location grid mix, manufacturing location electricity price,
manufacturing location labor cost, recycling method
emissions, recycling method required energy and recycling
method cost). The sensitivity analysis baseline scenario is

Description Unit Value GFRP as a material sourced from Europe, Germany as blade
manufacturing location, and repurposing as an end-of-life
Repurposing emissions kg CO, eq/kg 1.2 treatment. The emissions and energy intensity of electricity are
treated as independent variables, disregarding their mutual
Pyrolysis emissions kg CO; eq/kg -2.06 dependency due to the complexity of their relationship and
reliance on electricity generation and grid operation
Landfill emission kg CO; eq/kg 0.05477 technologies.
Mechani.cal' grinding kg CO eq/kg -1.29 The study is conducted under the limitation of the data found
€missions in literature and Environmental Footprint Database, Industrial
Repurposing energy MJ/kg 1351 sources found was only for complete turbines, and the data
source they use for LCA inventory was commercial databases.
Pyrolysis energy MI/kg 30 No consideration is made for the time value of money as the
main future cost element is the end-of-life cost which is
Landfill energy MJ/kg 0.35827 sourced based on literature estimation as most of the composite
materials recycling methods are not mature enough yet.
Mechanical grinding MlJ/kg 4.8
ek Table 4. Transportation inputs
Repurposing Cost g 0
Description Unit Value
Pyrolysis Cost €ke 0.2556 P
. kg CO»
Landfill Cost €/kg 0.0882 7-ton truck emissions eq/ton km 0.2912
Mechanical grinding €/kg 0.0856 7-ton truck energy MJ/ton.km | 1.94286
7-ton truck cost €/Ton.km 0.125
2.5 Model and calculations Containers ship emissions ek/%oi?czm 0.02954
To evaluate the options of each stage and calculate the total _ ) 4o
emissions, energy intensity and cost of the three stages, a Containers ship energy MJ/tonkm | 0.18034
python model is built to determine all scenarios of options - ]
combinations and calculate the total impacts and cost. Figure Containers ship cost (€/Ton.km) | €/ton.km 0.0014
2 demonstrates the model schematic diagram. -
Site distance km 0
. Vestas factory distance to farm
Material stage location km 770
otal
:' - e;(.il::;%:ﬂ:t] Nordx factory di.stance to farm Km 930
Material stage w ! locatlon
variables E ! s .
yanaes E [ Goldwind factory filstance to km 900
5 farm location
@ . .
s :::::i curg '_ié E ] Mz,t,:;:ctmng . mT:;‘:uI; . China- Europe Sea distance km 23000
definition g1 (emissions, energy & cost) .. kg CO, 2.79529
&1 energy & cost) Blade truck emissions
W eq/km 9
Endoflife E i Blade truck energy MJ/km 18.2991
stage variables ; |
definition =
CER uioflic Blade cost €/km 9.7565
(ammng )
fables f b
sty [ - Blade Barge emissions kg CO, 0.16447
\_ analysis ) eqg/ton.km
1.04824
Fig. 2. Model structure. Blade Barge energy MJ/ton.km 6
L o ) 0.09103
Sensitivity analysis is made to explain the effect of (carbon Blade Barge cost €/Ton.km 5
fiber mass, glass fiber mass, materials transportation distance,
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3. RESULTS AND DISCUSSION

Determining all combinations of options result in 64 possible
scenarios combining one option for each stage. Figure 3
presents the total climate change impact, energy intensity and
cost of the resulting 64 scenarios.

Emissions (kg CO2 eq)
_ + Energy (M]) 800000
W 800001 5 cost(e) t
I
o
“u~ r 600000
= 60000 - =
] =
S =
S &
g‘ 40000 - 400000 E
v
c
o !
v
A2 20000 r 200000
g
0- —0
0 10 20 30 40 50 60
Scenario

Fig. 3. Emissions, energy intensity and cost per scenario.

The total emissions vary between (16,525 to 74,384) kg CO2
eq. The lowest emissions come with scenario 4, which
represents GFRP as a material sourced from Europe with
onsite blade manufacturing and mechanical grinding as a
recycling option. The highest value represents CFRP as blade
material, with China as material source and manufacturing
location in addition to landfilling as end-of-life option.

Total energy intensity calculations fell in the range of (261,179
— 862,661 MJ). The highest energy intensity score is for
scenario number 62 which represent a CFRP blade with China
as material source and blade manufacturing location, and
pyrolysis as end-of-life option. The lowest is for the GFRP
blade with material sourced from Europe and site as a blade
manufacturing location with repurposing as end-of-life option.

® GFRP Europe X
700001 4 GFRPChina X g X
m CFRP Europe % i 3
EGOOOO— % CFRP China x
3 . -
o 500001 4
X A
e
S 40000 -
2 .
= [ ]
E 300001 " ™
x B
° L J []
20000 ® .
L ]

20000 30000 40000 50000 60000 70000 80000 90000

Cost (€)

Fig. 4. Scenarios cost versus emissions.

Figure 3 shows that CFRP sourced from Europe with Denmark
as a manufacturing location and pyrolysis as end-of-life option
involve the highest cost blade (89,159 €), while the lowest cost
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(22,115 €) represents a GFRP blade with material source and
blade manufacturing location in China and repurposing as an
end-of-life option.

The results show variation among the different scenarios with
a general trend of high emissions and energy intensity for the
CFRP blade where China set as material source, while
excessive cost follows the carbon fiber sourced from Europe
and blade manufactured in Europe. The high effect of location
can be seen on all indicators, this can be attributed to the effect
of transportation distance and type, and the effect of the energy
mix in each location. The high energy demand, emissions and
cost related to carbon fiber manufacturing made it less
favorable compared to glass fiber.

® GFRP Europe X "o
8000004 4 GFRPChina X
m CFRP Europe ¥ %
% CFRP China %
700000 - .
—_ |
= | |
£ 600000 a .
> a
2 500000
w
4000001 4
p M
300000{ &
s B
20000 30000 40000 50000 60000 70000 80000 90000
Cost (€)
Fig. 5. Scenarios cost versus energy intensity.
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800000, 4 GFRPChina X %
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% CFRP China % *x *
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[ ]
3000001 , @ ® °
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Fig. 6. Scenarios emissions versus energy intensity.

Correlation can be seen between the low cost and low
emissions for the scenarios including European sourced GFRP
and China as a blade manufacturing location, this can be
attributed to the tradeoffs between the low emissions related to
the glass fibers manufacturing in Europe and the low cost of
labor and electricity in China. As the blade manufacturing
processes requires small amount of power (1.57 MW) the
effect of high emissions of China grid mix is not significantly
affecting the results in this case (Fig. 4).
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Correlation between low cost and low energy can be seen for
the scenarios including GFRP as material, regardless of the
manufacturing location or end of life treatment method, this
result driven by the high energy intensity and inflated cost of
the CFRP compared to the GFRP (Fig. 5).

Energy intensity and cost relations show higher sensitivity to
the material source in the case of CFRP more than for GFRP
case (Fig. 5). Europe CFRP represent the high-cost medium
energy intensity and China CFRP represent the high energy
intensity and medium cost. The high cost and high energy
intensity comes with the scenarios linking carbon fiber and
Europe manufacturing locations resulting from the high
energy intensity of the carbon fibers and the high cost of labor
in Europe.

reduce approximately 20% of the fiber glass emissions. The
same applies for energy intensity which is affected mostly by
the recycling method but with significantly minimal impact
compared to the emissions. Most of the recycling methods
require energy to perform the recycling and to produce the
recovered materials. In addition to the recycling method, we
can see the effect of changing the mass of carbon fiber and
glass fiber affecting the energy intensity by 1.036 this effect is
due to the high energy intensity of the carbon fibers compared
to the glass fibers and the equivalent numbers caused by the
interchangeability between the two materials as we reduce the
glass fibers, we increase the carbon fibers and vice versa.

The minimal sensitivity of the emissions, energy intensity and
cost for most variables with consideration of the wide range of

Materials Transportation Distance (+100 km)

Manufacturing location distance to site (+100 km)
Manufacturing Grid Mix (+ 10kg of CO2 eq emissions/MW)
Manufacturing Electricity Price (+ 10 € /MW) -

Manufacturing Location Labor Cost (+1 €/h) -

Recycling Recoverd Emissions (+ 1 kg of CO2 emissions/kg) -
Recycling Method Energy Intensity (+ 1 MJ/kg) -

Recycling Method Cost (+1 €/kg) -

Carbon Fiber Mass (+10%)

Glass Fiber Mass (-10%)

0.455%

0.118%

1.167% 2.452%

0.05
0.066%

0.040%
0.00

1.024%
-15.635% G085
1.345%
9.413% 0.10
1.036% 1.188%
1.036% 1.188%
-—0.15

Change in Cost
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]
>
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<
fr=
(&)

Change in Energy Intensity

Fig. 7. Emissions, energy intensity and cost sensitivity to variables change.

Figure 6 presents the relation between the emissions and
energy intensity of the scenarios. The effect of grid energy mix
can be seen in the difference between Europe and China as a
materials sources and manufacturing location. The GFRP of
European source represent the lowest emissions and energy
intensity, while the CFRP of the same origin imposed higher
emissions and energy intensity compared to China sourced
GFRP but lower emissions and energy compered to Chinese
sourced CFRP.

Figure 7 represents the sensitivity analysis results, showing the
percentage change in emissions, energy intensity and cost as
result of changing one of the variables. Emissions exhibits
high sensitivity to the end-of-life treatment method. This can
be justified by the high materials emissions per weight
compared to the other stages, recovery of 1 kg CO2 eq /kg
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the scenarios results prove the significance of joint effect of
changing multiple variables at the same time as each scenario
present a unique set of variables values.

Changes in electricity price, labor cost and recycling method
cost only affect the total cost as no relation applied between
the cost and the other impacts.

4. CONCLUSION

The work presented has demonstrated a logical approach to
evaluate several life stage options, which can improve the
LCA studies. Furthermore, it has highlighted the importance
of composite materials recycling. The study results have
proved the magnitude of joint effect of changing several
variables on the LCA and LCC studies.
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The study results have shown the lowest climate change
impact for scenarios 4 (16525 kg CO2 eq), lowest energy
intensity for scenario 1 (261179 MJ), and lowest cost for
scenario 29 (22,115 €), while the highest impacts have been
the results of scenario 63 (74,384 kg CO2 eq), scenario 62
(862,661 MJ), and scenario 38 (89,159 €). This has proven that
no single scenario can give the lowest or highest impact in all
categories and gives room for optimization problem solution.

This work can be a valuable initial step in studying wind
turbine blades material sourcing, manufacturing, and
recycling.

Future work needs to include more life cycle stages, extra
investigation on the interdependency of variables like the
electricity mix relation with cost, and modeling different
transportations mode and topography.
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Abstract: This paper focuses on the utilization of dynamic simulation models in the planning
of experiments for control development. The simulation system is a set of models based on
the first principles for system level simulation of the complete TCP-100 research facility at
Plataforma Solar de Almeria (CIEMAT). This new research facility replaced the 32-year-old
ACUREX facility with which so many advances in Automatic Control were reached by the
research community. The dynamic models are developed to speed up this research for the new
field. The part for control development is the solar field whose parabolic trough collectors (PTCs)
are modelled at module level and combined into PTCs and loops. The presented models of the
parabolic trough field (PTC) will be validated with experimental data and the controllers will
be tested under real conditions. The sequential loops have different operating conditions. This
research uses the parameters based on the parameter selection from providers’ data sheets and
the engineering design project of the TCP-100. The system level model has been implemented
in the Modelica language. All state variables are temperatures according to the modelling
hypothesis applied, and the inputs of the model are: solar radiation, ambient temperature,
setpoints for both circuits pumps, setpoints for two loops control valves, and setpoint for air
cooling power. The simulation experiments are first focused on the modules, PTCs and loops of
the solar field and the full model need to be extended with dynamic LE models before going to
the full simulation tests. In the test campaigns with the new facility, the dynamic LE models

are used for planning the test cases.

Keywords: nonlinear scaling, uncertainty, dynamic modelling, first principles, simulation,

operation of solar PTC plants

1. INTRODUCTION

Modelling and Control of solar thermal power plants is
among the research activities performed at Plataforma
Solar de Almerfa (PSA, PSA-CIEMAT). In the past,
active developments of mathematical models and control
techniques were done with the ACUREX experimental
research facility whose key unit was a parabolic trough
collector (PTC) field.

The first modelling and control works were done by R.
Carmona, Director of PSA center, in the period from
1985 to 1987. Carmona (1985) defended his dissertation
presenting a non-linear distributed mathematical model
of the ACUREX field and proposing an adaptive control
temperature technique (Camacho et al., 1986). Many con-
trol strategies for solar systems have been tested in this
facility in its 32 years of life (Camacho et al., 2007; L.Brus
et al., 2010; Gallego et al., 2013). Nowadays the TCP-100
facility has replaced ACUREX field and it was specially
designed to continue the research activities in Automatic
Control, aimed at contributing to the enhancement of the
efficiency of this plant technology.
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Many parabolic trough collector (PTC) plants have been
commissioned in the last 20 years. Only in Spain around
45 PTCs power plants have been setup and more than
26 abroad, built or under construction (PROTERMOSO-
LAR, 2024). As examples, we can mention the three 50
MW Solnova and the two 50 MW Helioenery parabolic
trough plants of Abengoa in Spain, and the SOLANA
and Mojave Solar parabolic trough plant constructed in
Arizona and California, each of 280 MW power production.

The main approach followed in the research activities
developed so far was to define as control objective the
regulation of the outlet temperature of the PTC field
around a desired setpoint. These are complementary ad-
ditional objectives dealing with the automatic start-up,
different operating point operation changes and shutdowns
of the plant. A previous simulation based analysis of the
facility used the nonlinear distributed parameter model
presented in (Gallego et al., 2016). A more recent system
level dynamic model based on the first principles has been
developed and presented in (Pérez et al., 2018). This model
provides various possibilities for simulation experiments
for developing and validating control solutions. It was used
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in (Yebra et al., 2020) for the development of operation
training techniques for the TCP-100 facility.

The nonlinear scaling approach has been earlier used for
the ACUREX facility (Juuso and Yebra, 2013; Juuso,
2016). The TCP-100 plant has more detailed control
possibilities (Fig. 1). This brings new control cases but also
makes the tuning more complicated. Simulation models
will be used as a replica of the process in the development
of controllers.

This paper is organized as follows: Section 2 summa-
rizes the TCP-100 plant. Section 3 focuses on different
possibilities to use the first principles simulation model
in tuning. Section 4 presents the nonlinear data analysis
methodology. Section 5 presents a planning of simulation
experiments to be performed for typical operation days.
Finally, Section 6 provides some concluding remarks and
future works.

2. TCP-100 FACILITY

The TCP-100 facility consists of two thermofluid circuits
thermally connected by a heat exchanger. This research
focuses on the solar field is formed by three PTC loops,
each of them composed by two PTCs in a North-South
orientation (Fig. 1). Each PTC is 100 meter long, formed
by eight modules and all in parallel. Figure 2 shows the
first PTC in the first loop.

The solar field is in the primary circuit (Fig. 1). In each
loop, the PTCs are connected in the South extreme, and
the colder PTC will always be the first in the row, placed
at the right part of each loop. Each circuit has one tank:
the primary tank T-2 with 10m? volume and the storage
tank T-1 in the secondary with a volume of 115 m?. The
pumps for each circuit are placed after both tanks and
can be controlled. There is an oil cooler in the secondary
circuit.

The other loop, including a storage tank, a cooler and the
connecting heat exchanger, may be bypassed during the
daily operation to let the control system to choose the
operational mode at each time. Operating conditions are
chosen with different operation modes:

(1) Stopped facility. In this mode, both circuits are in
stand-by. Both pumps are stopped and the solar field
unfocused.

(2) Both pumps are working and the solar field is unfo-

cused.

(3) The storage tank is charging with the cooler stopped.

(4) The storage tank is charging with the cooler working

(variable charge).

(5) The storage tank is discharging.

(6) The solar field is cooling.

The new solar field provides new remarkable features to its
predecessor ACUREX. The main differences among both
facilities could be summarized as follows: The ACUREX
solar field consisted of 480 East—West aligned single axis
tracking PTC forming 10 parallel loops. Each loops was
172 m long, and formed by four 12-module collectors
suitably connected in series. The active part of the loop
(those parts receiving beam irradiance) measuring 142 m
and the passive part (those not receiving beam irradiance)
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Fig. 1. Top view of the TCP-100 field at Plataforma
Solar de Almeria (PSA-CIEMAT). The three loops
are shown, with two PTCs in each of them, numbered
from 1 (rightmost) to 6 (leftmost). The first loop is
formed by the connected pair 1-2 (right loop), the
second loop by 3-4 (center loop) and the third by 5-6
(left loop).

g

-

Fig. 2. Lateral view of the first PTC in the first loop at
Pataforma Solar de Almerfa (PSA-CIEMAT). It is
composed of 8 modules of 12 meters length.

30 m. The HTF used was Therminol 55 thermal oil,
capable of supporting temperatures of up to 300°C. There
were temperature sensors and the intlet and outlet of
each loop and the solar field, and the flow rate could be
controlled with the pump field. The experimentation of
advanced control techniques can utilize the new sensors
and actuators installed in the TCP-100 facility summed
up in the next. Temperatures are measured in the inlet
and outlet of the solar field, the inlet and outlet of each
loop, in the inlet and outlet of each PTC and the middle
point of each PTC. Volumetric flow rates are measured
for each loop. Control valves are used to regulate the mass
flow rates in each loop.

3. TCP-100 FACILITY MODEL

The simulation studies can use a hybrid (continuous and
discrete) system level model based on the first principles
model (Pérez et al., 2018). The parameters for that model
were obtained from the plant engineering design project
data and are also used in this paper. The system level
model has been implemented in the Modelica language
with the modelling tool Dymola (DassaultSystems, 2018),
which applies special algorithms for the manipulation of
hybrid models (Mattsson et al., 1999).
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After the symbolic manipulations performed by Dymola,
the model can be expressed as a general nonlinear state
space system in the form

where x € R?, u = {(uc,uq) € R" x {0,1}3}, and
y € RNv, where N, could be arbitrary chosen from the
variables computed in the model detailed in (Pérez et al.,
2018). The variables are used in two ways:

28 state variables (x € R?®) .

Each one means a temperature for: each PTC medium
control volume (CV), see (Patankar, 1980), each PTC
absorber tube, each PTC glass envelope, each tank
medium CV, each tank metal walls, each tank isolation
layer, each of both medium CVs in the HEX, the HEX
metal wall and the air cooler medium CV. All state
variables are temperatures according to the modelling
hypothesis applied.

10 input variables (u = {(u.,uq) € R7 x {0,1}3}) .
Seven real input variables (u. € R7): solar radiation,
ambient temperature, setpoints for both circuits pumps,
setpoints for two loops control valves, setpoint for air
cooling power; and 3 boolean input variables (ugq €
{0,1}3): bypass activation for the storage tank, for the
HEX, and solar field defocusing activation signal.

The Dymola model is capturing the thermal dynamics
for the validation of the facility operation modes and
operation training purposes as a causal block because of
the representation of the inputs and outputs. All the ma-
nipulable inputs are shown with the RealInput interface
component:

e The volumetric flow rates (I/s) in control loops for
pumps in primary circuit (Syltherm800 medium) and
secondary circuit (Therminol55 medium).

e The setpoint for the air cooler cooling power that
modulates forced convection.

e The setpoints for both control valves apertures that
vary the mass flow rate (kg/s) through 1st and 2nd
loops.

e The Boolean control input is used in commanding the
bypass of the storage tank in the secondary circuit.

e The Boolean control input is used to bypass the
HEX, simultaneously in both circuits: primary and
secondary.

e SF_Defocus is the boolean control input to defocus
the solar field. The whole solar field is not reached by
any solar irradiance when this signal is activated.

The non-controllable or disturbance inputs are the solar
irradiance and the ambient temperature.

The output of the model is a generic output vector y[:]
that represents in a general form any arbitrary output
computed by the model and that could vary from one to
another simulation experiment.

Figure 3 shows the summarized model of the TCP-100
facility, that is being acted by a discrete controller imple-
mented with the StateGraph formalism implemented in
the Modelica Standard Library. More details about this
experiment can be found in (Yebra et al., 2020).
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Fig. 3. Modelica model of the TCP-100 facility com-
manded by a discrete controller implemented with the
StateGraph library.
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Fig. 4. Direct Normal Irradiance applied in the simulation
experiment.

Figures 4 and 5 show respectively the Direct Normal
Irradiance (DNI) applied to the model in Figure 3, and the
simulated results for the storage tanks in both subcircuits.
In the primary circuit with Syltherm800 HTF, the mean
temperature of tank T1 is shown when the controller
forces the plant to pass through different operation modes.
After 5.2 hours from the beginning of the experiment,
the T1 temperature rises to its maximum daily value of
316°C. Then, the solar field is defocused and the primary
circuit exchanges energy with the secondary, still keeping
on charging the T2 tank until it reaches its maximum
mean temperature of 219°C at 5.8 hours. During some
hours, the system is evolving thermally coupled in the
absence of incoming DNI, and at time 8 hours the whole
system begins to be cooled. At time 9 hours the bypass
of tank T2 is activated, so the cooler is acting over a
lower thermal load, which makes the primary circuit cool
down to ambient temperature (16°C) at 13.5 hours. In
this simulation experiment, the model of the facility has
passed through most of the operational modes indicated
in Section 2.
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Fig. 5. Simulated temperature profiles for the tanks T1
and T2 in the TCP-100 facility, under the DNI profile
in Fig. 4 and StateGraph controller in Fig. 3.

4. NONLINEAR DATA-BASED MODELS

Tests with the previous collector system have shown clear
nonlinear behaviour in the normal operating range. The
directions of interactions remain constant but the mean-
ings of the variables depend strongly on the operating
conditions. In many cases, the nonlinear systems can be
implemented with nonlinear scaling and linear interaction
models. In the beginning of tuning, the uncertainties need
to be taken into account. The representation with natural
language is beneficial for understanding an comparing with
expert knowledge.

The energy balance of the collector field can be represented
by expression (Juuso, 2009):

LeppAcys = (1= mp)FpcTaigy, (3)

where Iy is effective irradiance (Wm™2), A,y effective
collector area (m?), 1, a general loss factor, F' flow rate
of the oil (m3s™1), p oil density kgm=3, ¢ specific heat of
oil (Jkg='K~') and Ty, ¢ temperature difference between
the inlet and the outlet (°C'). The effective irradiance is the
direct irradiance modified by taking into account the solar
time, declination and azimuth. The density decreases and
the specific heat increases resulting a nonlinear increase of
the term. In the start-up, the flow is limited by the high
viscosity.

4.1 Nonlinear scaling

The nonlinear scaling was presented as a methodology
for improving membership functions of fuzzy set systems
already in (Juuso and Leiviska, 1992; Juuso, 1992). Nonlin-
ear scaling functions (NSF's) are monotonously increasing
functions x; = f(X;) where z; is the variable and X
the corresponding scaled variable in the range [-2, 2]. The
function f() consist of two second order polynomials, one
for the negative values of X; € [—2,0] and one for the
positive values X; € [0,2], respectively. Five parameters
are needed to define these functions since the overall func-
tions are continuous (Fig. 6). The core area [(¢;);, (cn);],
corresponding [-1, 1], is within the support area defined
by the minimum and maximum values (Juuso, 2004). The
corresponding inverse functions X; = f~!(z;) based on
square root functions are used for scaling to the scaled
range.

Everything can be defined manually, but it is important to
obtain the variable specific parameters of the scaling func-
tions by data-based methodologies. Arithmetical means
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Fig. 6. Nonlinear scaling and membership functions.

and medians were used in Juuso (2004). The current solu-
tion uses the central tendency values based on generalised
norms (Juuso and Lahdelma, 2010). The generalised norm
is defined by

1

T _ 1 _
M2y = (M2)? = [

())}1M7, (4)

=1

where the order of the moment p € R is non-zero, and N
is the number of data values obtained in each sample time
7. The norm (4) calculated for variables z;, j = 1,...,n,
have the same dimensions as the corresponding variables.
The norm ||”M7[|, can be used as a central tendency value

if all values z; > 0, i.e. [[TM?]], € R.

The analysis divides the measurement values into two
parts by the point where the skewness changes from
positive to negative, i.e. 75 = 0. Then the data set is
divided into two parts: a lower part and an upper part.
The same analysis is done for these two data sets. The
estimates of the corner points, (¢;); and (cp)j, are the
points where 74 = 0 for the lower and upper data sets,
respectively. Since the search of these points is performed
by using the order of the moment, the resulting orders
(p1);, (po); and (pr); are good estimates when additional
data sets are used. The orders of the norms help in changes
in operating conditions.

4.2 Steady state LE models

Linguistic equation (LE) models consist of two parts: in-
teractions are handled with linear equations, and nonlin-
earities are taken into account by nonlinear scaling (Juuso,
1999). In the LE models, the nonlinear scaling is performed
twice: first scaling from real values to the interval [—2, 2]
before applying linguistic equations, and then scaling from
the interval [—2, 2] to real values after applying equations
The linguistic level of the input variable z; is calculated
the inverse functions of the polynomials (Juuso, 2004).
More inputs can be included with a steady state LE model
represented by

LTout = fout <_

where the functions f; and f,,: are nonlinear scaling
functions of the input variables z;,7 = 1,...,m and the
output .y, respectively.

Z;n:Lj#Out Aij fj_l(xj) + B;
Ai out (5)
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The LE model includes linguistification and delilinguistifi-
cation blocks for the nonlinear scaling of variables. The
linear interaction model is used in the equation block
which can include a set of equations as well. These blocks
are shown in Fig. 7.

Real  Linguistic 0
Delta v

In Qutp{Linguistic  Real

Real  Linguistic Equations

1

Fig. 7. Blocks of dynamic LE models for calculating Ay.

4.8 Dynamic LE models

Dynamic LE models are rather simple input-output mod-
els, where the old value of the simulated variable and the
current value of the control variable as inputs and the new
value of the simulated variable as an output, can be used
since nonlinearities are taken into account by nonlinear
scaling functions (Fig. 7). For the default LE model, all the
degrees of the polynomials in parametric models become
very low, i.e. all the parametric models become the same:

y(t) + ary(t — 1) = byu(t — ng) + e(t). (6)
This model is a special case with three variables, y(t), y(t—
1) and u(t — ny), and a zero bias.

The output, the derivative of the variable y, is integrated
with numerical integration methods:

Ty
y= /F(t»,%u)dt—i—ym (7)
0

where T7 is the time period for integration, and yqg the ini-
tial condition. Usually, several values from the integration
step or the previous steps are used in evaluating the new
value. Step size control adapts the simulation to changing
operating conditions.

Effective time delays depend on the working conditions
(process case), e.g. the delays are closely related to the
production rate in many industrial processes. In the block
shown in Figure 8, the delay of the variable Var! depends
on the variable Var2: the linguistic level of the variable
Var2 is multiplied by I or -1 to get the linguistic level of
the delay for the variable Varl, coefficient I means that
the delay increases when the variable Var2 increases. The
real value of the delay is obtained by the delinguistification
block.

Conventional mechanistic models do not work since there
are problems with oscillations and irradiation distur-
bances. In dynamic LE models, the new temperature dif-
ference Ty; s (t+ At) between the inlet and outlet depends
on the irradiance, oil flow and previous temperature dif-
ference:

Tuirs(t+ At) = arTaip(t) + asless(t) + asF(t),  (8)

where coefficients a;, as and az depend on operating
conditions, i.e. each submodel has different coefficients.
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Fig. 8. Time delay of Var! depends on Var2.

The nonlinear scaling functions of the outlet temperature
does not depend on time. Model coefficients and the scal-
ing functions for Tg;¢¢, I.ff and F are all model specific.
For the ACUREX field, the fuzzy LE system with four
operating areas is clearly the best overall model (Juuso,
2003, 2009): the simulator moves smoothly from the start-
up mode via the low mode to the normal mode and
later visits shortly in the high mode and the low mode
before returning to the low mode in the afternoon. Even
oscillatory conditions, including irradiation disturbances,
are handled correctly. The dynamic LE simulator predicts
well the average behaviour but requires improvements for
predicting the maximum temperature since the process
changes considerably during the first hour. For handling
special situations, additional fuzzy models have been de-
veloped on the basis of the Fuzzy—-ROSA method (Juuso
et al., 2000).

4.4 Working point model

The volumetric heat capacity increases very fast in the
start-up stage but later remains almost constant because
the normal operating temperature range is fairly narrow.
This nonlinear effect is handled with the working point LE
model

wp(i) = Legy (i) — Taigy (i), 9)

where I.f¢(i) and Ty, rr(¢), which are obtained by nonlin-
ear scaling of variables: efficient irradiance I.y; and tem-
perature difference between the inlet and outlet, Tyy;¢f =
Tout—Tin, correspondingly. The outlet temperature T, ()
is the outlet temperature of the module 7. Since each loop
consists of 16 modules, there are 48 sequential modules in
the solar field. The outlet temperatures at modules 16, 32
and 48 are controlled.

The working point, wp, represents a fluctuation from the
normal operation. In the normal working point, wp = 0:
the irradiance I.f; and the temperature difference, Ty;f ¢,
are on the same level. A high working point (wp > 0)
means low Ty, r compared with the irradiance level Iy .
Correspondingly, a low working point (wp < 0) means
high Tdif ¢ compared to the irradiation level feff. The
normal limit (wpmin = 0) reduces oscillations by using
slightly lower setpoints during heavy cloudy periods. This
is not sufficient when the irradiance is high between cloudy
periods. Higher limits (wpmin = 1) shorten the oscillation
periods after clouds more efficiently.
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5. PLANNING OF EXPERIMENTS

The TCP-100 solar thermal power plant replaces the
ACUREX experimental research facility. Therefore, the
scaling functions of the irradiance (W/m?) do not change
which means that also the indicator of the cloudiness
remains the same. This is a good starting point for the
planning of the experiments. All the other variables are in
totally different value ranges.

High-level control & Diagnostics
weighting of stragies, switching, On-?mrr.laudt.:l]mg
cascade control, - identification
plant-wide control, expertise \
/ Adaptation
adaptation mechanisms, e Pe-rfmnrlance
gain scheduling, scaling analysis
Measurement
Technology "
analyser| |)
[t sensor)
= —
Control
Process understanding Decisionmaking | [T
—Modelling = mare efficient (new]™] H

measurements

What is really controlled?

Fig. 9. Modules of the intelligent analyzers and control.

In the LE systems, all variables x; are handled with vari-
able specific nonlinear scaling functions: z; = f;(X;) and
X; = fj_l(:rj), see Section 4. The interactions of the scaled
values X; are presented with linear equations, like (8).
In the starting phase, the scaling functions are available
only for the irradiance. The scaling of the temperature
differences Ty; ¢ is estimated for the loops from the con-
figuration of the field.

The feedback controller is a PI-type LE controller with one
manipulating variable, oil flow, and one controlled vari-
able, the maximum outlet temperatures of the loops. The
PI-type means that the change of control is the sum of the
error and the change of error. The acronym LE means that
dimensionless scaled values are used in the control equa-
tion. The very compact basic controller provides a good
basis for advanced extensions: the scaling functions can
be to versatile operating conditions, and control equations
can extended from the PI type with different algorithms,
e.g. all different types of PID controllers could be used.
The blocks are the same for different modules and loops.

The LE controller contains several parametric scaling
functions for variables, errors, changes and corrections.
Since there is no actual test data available from the new
research plant, the parameters are chosen before the test
campaign by using previous test results from the ACUREX
plant and adjusting or scaling them to correspond better
to the specifications of the new TCP-100 collector field or
using the simulator of the new field. These properties are
tuned after the test campaign.

Intelligent analysers have been used for detecting changes
in operating conditions to activate adaptation and model-
based control and to provide indirect measurements for the
high-level control (Fig. 9). There are many improvements,
which are planned to be introduced to the new TCP-100
facility. For the first tests, the intelligent analysers are
not used. The correction factors based on the working
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point value wp are utilized in the adaptation of the LE
control. The fine-tuning with the predictive braking and
asymmetrical actions are left for later studies.

The working point wp is important in both in this study
and the final system since the model-based control lim-
its the acceptable range of the temperature setpoint by
using the chosen working point (Fig. 9). The fluctuation
indicators are used for modifying these limits to react
better to cloudiness and other disturbances. The manual
setpoints are used only within these limits. Dynamic mod-
els developed for the TCP-100 facility could be used for
development in this task.

High-level control is aimed for manual activating, weight-
ing and closing different actions. As there are many ac-
tions, this is needed to run the tests efficiently. These ideas
will be developed interactively during the test campaigns
to provide a basis for The performance analysis and inte-
gration of expertise (Fig. 9).

The full first principles model is highly complicated and a
lot of tuning work is needed before it can be used in tuning
the controller for the special cases listed above. Actually,
the simulator would already need adaptive parts. A better
way is to focus first on the PTC loops (Fig. 2). There
are three loops in the solar field (Fig. 1) which all consist
of two PTCs both having eight similar modules. These
can be handled with the same parametric LE model. The
modules are working in different operating conditions: the
input and output temperatures depend on the sequence of
the modules. The control of the loops introduces additional
differences between the loops.

The project will then continue first with the full dynamic
models enhanced with the new LE models. Then the full
set of the experiments can be started in the real new
TCP-100 facility which finally provides the data which
can be used in the tuning of the plant and the control
system. The simulation studies provide a starting point
for the test campaigns with the new field. The parameters
will be updated offline during the test days by using the
recursive approach. The TCP-100 facility includes more
units, loops and connections. There are more sensors for
the temperatures and volumetric flows. The control is
available in each of the loops. The dynamic simulation
model includes 28 state variables and seven input variables
(Section 3).

The dynamic simulation model is used as a plant in this
research. This is a flexible solution for analysing differ-
ent weather conditions and disturbances. The strongly
fluctuating situations are difficult to handle reliably with
models. However, they can be taken as scenarios in this
model based analysis. The idea of the nonlinear scaling is
that the algorithms remain unchanged.

6. CONCLUSIONS AND FUTURE RESEARCH

This research focuses on starting to apply the intelligent
models and control algorithms for the new TCP-100 solar
thermal plant. The scaling functions of the ACUREX
facility remain unchanged for the irradiance which also
means that the earlier indicators of the cloudiness can
be used. The new facility includes more units, loops and
connections. The algorithms are not changed and the
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data analysis can be done by using the dynamic models
for a limited set of measurements and subsystems. This
research means preliminary simulation experiments. The
first principles models would require adaptive parts before
going the full simulation experiments. The work can be
started with the loops and modules by using parametric
linguistic equation models. The simulation studies will
be extended with these models before going to the test
campaigns with the new facility.
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Abstract:

This work is a step towards conceptualizing a smart multi-modular structure, whose main
application is solar energy harvest, with the innovative idea of connectors that can be
controlled to mitigate motions and loads in a changing environment. The paper presents
selected preliminary results from experimental tests of an array of floating column-based modules
exposed to regular waves of different periods. Each pair of neighboring modules was connected
by two spring connectors with both tension and compression stiffness. The paper presents an
investigation of motion responses versus load frequencies corresponding to four tested spring
stiffnesses.

The model test results serve as a basis for validating a numerical model that is implemented for
control design and simulation purposes. Wave-, mooring- and connector forces are considered
in the simulations. The proposed method will act as a tool for further evaluation of the effect
of changing the connection stiffness according to the incoming waves and the investigation of
whether it is beneficial to apply a smart connector that can adapt to varying sea states.

Keywords: Renewable Energy, Floating Solar, Model Testing, Numerical Modelling, Control

1. INTRODUCTION
1.1 Background

The world demands more green energy to reduce the global
carbon emissions. To replace polluting energy sources, a
large variety of sustainable solutions is essential. According
to the Intergovernmental Panel on Climate Change, solar
photovoltaic (PV) has become a competitive energy source
as the cost has decreased by 85 % between 2010 and 2019
(IPCC, 2023). In areas where solar irradiation is abun-
dant, but available land areas are in high demand, building
floating solar plants could be a valuable contribution to-
wards the energy transition. In addition to the advantage
of not using land areas, Kumar et al. (2021) summarized
benefits of floating solar, including better cooling effect,
reduction of water evaporation and less accumulation of
dust.

If floating large-area structures can be designed to sustain
higher environmental loads in an exposed or offshore en-
vironment, new solutions for floating photovoltaic (FPV)
power plants can be investigated. DNV (2022) listed the

* The PhD position of the first author is funded by Department of
Marine Technology at NTNU. This work was partly supported by
the Research Council of Norway through SFI BLUES, grant number
309281.
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main opportunities for FPV as; making use of abundant
solar energy in more areas; maximizing the use of space
and existing infrastructure by combining FPV with for in-
stance offshore wind installations; provide offshore charg-
ing for electric marine vessels or for production of alterna-
tive fuels; supplying green energy to islands or maritime
industry; and finally, the reuse of competence from other
marine industries.

Placing floating structures in harsher offshore environ-
ments with wind, current and changing wave states is not a
new research topic. The oil and gas industry has designed
and built offshore installations for decades. Ideas for very
large floating structures (VLFSs) explores making large
areas available on water surfaces for e.g. buildings, float-
ing ports, airports and agriculture (Lamas-Pardo et
al., 2015). To reduce bending moments on these large-
area structures, connecting several smaller modules
together to make a flexible structure that is allowed to
move with the changing sea surface could be a solution.
Such multi-modular structures, in a smaller scale than
the VLFSs, will in this paper be investigated for the
purpose of solar harvest in exposed areas.

A nonlinear model of connected floating modules using
network theory has been used to analyze the response
and connection loads of a multi-modular structure (Zhang
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et al., 2015). Shi et al. (2018) validated the network mod-
elling method by experimental testing of three modules in
an array, and Ding et al. (2021) by full scale results from
the Scientific Research and Demonstration Platform in the
South China Sea.

Multi-modular structures introduce connection points
which present weak links in terms of fatigue life and dura-
bility. This motivates research on how to reduce relative
module motion and loads in connections when such struc-
tures are exposed to changing environmental conditions.
The motion response and oscillations as well as connector
loads of a multi-modular structure were shown by Jiang
et al. (2021) to be affected by the connector stiffness
between modules. By adapting this stiffness to different
wave periods, studies have shown that it is possible to
retain the structure in a state where oscillations are kept at
a minimum, also known as amplitude death state (Xu et
al., 2014; Xia et al., 2016; Zhang et al., 2017). By actively
controlling their stiffness, the connectors themselves can
be used as actuators.

This paper investigates a type of multi-modular struc-
ture with modules larger than the components of typical
floating solar rafts, but smaller than the modules in very
large floating structures. Further, this paper contributes to
research by including varying connector stiffness in both
numerical and experimental tests. The main objectives
are to analyze the behavior of different configurations of
multi-modular structures, investigate the effect of different
connector stiffness and to validate a numerical simulator
by comparable experimental results. The motivation for
the work is to prepare for development of a control system
that changes the dynamics of the structure as a response
to the current sea state by using active control of the
stiffness in connection points. The work utilizes existing
numerical and experimental modelling techniques on a new
type of structure and, by creating a modeling framework,
contributes towards an evaluation of the idea of creating
smart multi-modular structures that adapt to changing
environmental conditions.

1.2 Paper Outline

The paper starts with Sect. 2 presenting a test case with
necessary parameters for both the experimental and sim-
ulator setup. It describes how the test case is adapted for
model testing and introduces the mathematical modelling
of the dynamical system. Results are presented in Sect. 3
and concluding remarks are given in Sect. 4.

2. CASE STUDY
2.1 Test Case

A common test case is used in both the experimental and
numerical investigation for easy comparison. This case is
based on an offshore floating solar power concept, utilizing
the same modules as used in previous model tests (On-
srud, 2019). Square rigid platforms with four cylindrical
floaters or columns (Fig. 1) are flexibly connected to form
an interconnected large-area structure. Arrays of 1, 2,
3 and 5 modules are subjected to regular waves in the
longitudinal direction and are tested with varying stiffness
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in the connection points. Table 1 presents the full-scale
parameters of the test case.

Table 1. Test case parameters (full scale)

Parameter Unit
Module size LxW 12x12 [m]
Module mass m 9088 [kg]
Draft d 1.13 [m]
Column radius r 0.8 [m]
Column height h 2.63 [m]
CG (Igvygvzg) (0’07'1'3) [m]
CF (xg yg,25)  (0,0,0) [m]
CB (Ibv Yb, Zb) (0,0,d/2) [m]
Module distance Az 1.3 [m]
No. of modules N 1-5 [-]
No. of mooring lines Nm 4 -]
No. of connectors Ne 2 -]
between neighbors

Mooring line stiffness K, 2800 [N/m]
Connector stiffnesses: K. 6-29 [kN/m]
- Conn. stiffness S1 29000 [N/m]
- Conn. stiffness S2 26000 [N/m]
- Conn. stiffness S3 15000 [N/m]
- Conn. stiffness S4 6000 [N/m]
Wave period Tw 2.0-8.0 [s]
Wave steepness H/X 1/116 -
Water density p 1000 [kg/m3]

Table 2. Run overview

Variations

1x1, 2x1, 3x1, 5x1

S1, S2, S3, S4, Hinge*
2.0-8.0s

*Only model test with configu-
ration 2x1 and 5% 1

Parameter

Module configurations:
Connector stiffness:
Wave period:

2.2 Model Test

The model tests were performed in a towing tank at NTNU
in Trondheim, Norway. The tank is 2.8 by 25 meters, with
a water depth of 0.7 meters. It has a wave maker and a
wave beach to absorb energy from the waves. The model
was Froude scaled by 1:20 according to the parameters
presented in Table 1. Figure 2 shows a photo of the model
test setup for the three-module configuration in the towing
tank where the experiments were performed.

The first and last module in each test configuration were
moored in four corners by pre-tensioned springs (Figs. 1
and 2). All modules are thus kept in a neutral position in
calm water. Each pair of modules was connected by two
spring connectors (Figs. 3 and 4) functioning with both
tension and compression stiffness. Tests were performed
according to Table 2. Each combination of connector type
and number of modules was exposed to regular waves
travelling in the negative z-direction. The wave period was
limited by the water depth in the tank, ensuring linear
wave behavior.

The response of each module was tracked in six degrees
of freedom (DOFs) using a camera-based motion capture
system. Load cells were used to measure the force in local
z-direction in one spring of each connection pair, see Fig.
3. The wave height was measured by wave probes at 8
different locations throughout the tank.
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Fig. 1. General overview of the test case. Module numbering and global reference frame {g} = (X,, Yy, Z,), as well as
selected parameters from Table 1 are presented. The local {I;} and body-fixed {b;} reference frames coincides when
the modules are in neutral position. Further, connection springs are indicated between modules, and mooring lines
are indicated as dotted lines in the corners of the end modules.

The results from this model test have also been evaluated
in a master thesis from NTNU by Fagerbakke (2023).

Fig. 3. Model test connector and load cell.

2.8 Modelling of the Test Case

The numerical model is based on a mathematical descrip-
tion of rigid modules with flexible connections.The main
assumptions for the numerical model are:

Assumption 1. The modules are assumed rigid.

DOI: 10.3384/ecp212.004

Assumption 2. Waves are modelled as linear deep-water
waves, unaffected by shallow-water effects

Assumption 3. Motions in zy-plane are assumed small,
thus reducing the analysis to a 2D-problem.

Assumption 4. Connector springs between the modules
are limited to axial forces.

Assumption 5. The effect of finite column length is ne-
glected.

Assumption 6. Modules are allowed to overlap if motions
are large, collisions are not modelled.

Reference Frames:  Three types of reference frames
were used to model the multi-modular island, see Fig.
1. A global inertial reference frame defined by {g} =
(Xg,Yy, Zy), where X, and Yy is zero in the initial position
of the geometrical center of the first module, and Zj is zero
at the water surface, with positive axis downwards. A local
coordinate system {l;} = (a!,yl,2!) has its origin in the
neutral position of each module. In addition, each module
has its own body-fixed reference frame, {b;} = (22,12, 2%),
also with the positive z-axis down from the sea surface.

The position and orientation vector for a 6 DOF module
i, in its local reference frame is defined as n; = [p;,©, |7,
where p, = [z;,v;,2]" represent the module’s z-, y-
and z-position in {l;}, and ©; = [#;,0;,%;]" represent
the orientation of {b;} in {l;} in roll, pitch and yaw
respectively. The velocity in the body-fixed reference frame
of each module is v; = [u;,v;,w;, p;,qi, 7] representing
translational velocities in z, y and 2z (u;,v;,w;), and
rotational velocities around these axes (p;, g;, ;).

The transformation between two reference frames is de-
scribed by 0, = J(O©;)v; with the transformation matrix
J(®) being a block diagonal matrix defined by the trans-
formation of translations, R(®), and rotations, T(©),
according to Fossen (2021).

Equation of Motion: The equation of motion for module

i in its body-fixed frame {b;} is given by

M;(w)¥; + Di(w)v; + J 1 (©;)Cim; = Fl(w), i=1,...N
(1)

M ;(w) includes the rigid body mass matrix M gpp,; and

hydrodynamic added mass A;(w). The force vector F? is

the sum of connector forces F° b and

c,i» mooring forces F, .,

wave loads Fz,l(w) D(w); and C; represents potential
damping and restoring matrices respectively.
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Wave Loads: 'The wave loads are modeled as potential
linear excitation loads, Fpot ;(w), and hydrodynamic drag,

F’T),w”son ;(w). The potential wave loads can be expressed
as

F;Zot i = Fpor i(w) cos (wyt

- kxlgg’i + ;) (2)

The amplitude, Fpo i(w), and phase angle, o;(w), are
calculated with help from WADAM (DNV-GL, 2017).
k is the wave number, deﬁned by k = w?/g, where g
is the gravity acceleratlon xl . is the position of the
local reference frame of the module in the global reference
frame. To account for viscous effects, drag loads are added
through Morison’s equation in Vertical and horizontal
directions. Drag forces and moments are calculated using
strip theory and the crossflow principle for each column
i.p:

morison,i.p

1
fb = / ipC’D27"|ur7i,p|ur7i_pdz 3
b _ b
mrnorison,i.p =Tip X fmorison,i.p

where Cp is the drag coefficient, u,;, is the relative
velocity vector on the column and r;, is the distance
between the body frame origin and the force application
point. The total drag load is the sum of loads on all IV,
columns on the module:

s [Zrionss] n

p: morison,t.p.

momson 7

Connector Loads: ~ The moving neighboring modules will
impose forces on each other based on the distance between
connection points and the spring stiffness of the connector.
Following Assumptions 3 and 4, forces occurring from
movement along the transversal and vertical direction (i.e.
along y and z) are neglected, thus the connector forces are
a result of movement in z-direction. The numbering of the
four connectors of module 4 is presented in Fig. 4.

Xi
i 3
—m—]i.8.2 i.N.2 —w—
A\

Fig. 4. Connectors 1-4 on module 7. N indicates the north
face of the module, S indicates the south face.

The total connection force on module ¢ is given by

M =[N§S]|
;mg%” AP {O =[sN] ()
1@

where ®,, € RY*Y represent the topology matrices for
the m face of the modules. @y ;; is 1 if the north face of
module 7 is connected to module j, and 0 if not. Further,

Kc(pi»pj)m,o is given by

K. .(p;,p;) :gc:[ f (pwp])mok ] 6)
e\ Fg/m,o P ’I”czmkxf (pzvpj)mok

where

FePisP)mok = KDl = Plor —p0)  (7)
Simplified to consider motion in z-direction only:
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2

c

Kc(p;,pj)mo=—Kc Z[(xg.m.k - x?o.k -
k=1

82),0,0,0,0,0] "
(8)

where 6z is the neutral distance between modules in z-
direction.

Mooring Loads: — Mooring stiffness is implemented with
only one connection point moving, and the other fixed in
a simulated anchoring point. The force and moment from
mooring line k,, on module ¢ are given by

L

1 .k,

myikem = Em ik | = L) + fot o

f ik ( (H k k ) fpt k ) |l1k | <9)
m?nzkm = rl;nzk X JT(Q )fin ik

where fpt k,, is the pretension in the mooring line, I;
is the vector describing the relative position of mooring
point and the anchoring point, L, is the initial length of
mooring line k,, and ’ri’n,i. k,, 18 the lever arm to the point
where mooring line k,,, is connected to module .

The total mooring load on module ¢ is the sum of forces
and moments from all V,,, mooring lines connected to it:

Pl 3 [

ko1 Mmikn,

} Li=1,..N  (10)

where ® € RY and ®; is equal to 1 if module 7 is moored,
and 0 if it is not.

3. RESULTS AND DISCUSSION

3.1 Natural Periods

Table 3. N = 2, Calculated undamped natural
periods (mass + added mass 1.5e4)

Ke=51 K.=852 K,=83 K.=254
Ty [s]  11.8 11.8 11.8 11.8
Tho [s] 2.2 2.3 3.0 4.5

Table 4. N = 3, Calculated undamped natural
periods in surge (mass + added mass 1.5e4)

Ke=51 K.=82 K,=83 K.=254
T [s] 145 14.5 14.5 14.7
T [s] 3.1 3.2 4.2 5.9
Ty [s] 1.8 1.9 2.6 3.8

Table 3 presents the estimated full scale undamped natural
periods in surge of a 1 DOF system with 2 modules
and with different stiffness of the connector spring. 75,1
corresponds to the mode shape where both modules are
moving in the same direction, while T),5 corresponds to
motion in opposite directions.

Natural periods for a system with 3 modules are presented
in Table 4. T,; corresponds to all modules moving in the
same direction. T},5 corresponds to the middle module at
a standstill, while the two end modules move in opposite
directions causing large relative motion in both connection
pairs. T),3 is the natural period of the mode shape where
the first and third modules move in the same direction, but
opposite the middle. Based on the nature of these mode

Proceedings of SIMS EUROSIM 2024 28

Oulu, Finland, 11-12 September, 2024



SIMS EUROSIM 2024

shapes, the relative motion, and thus the connector force,
is expected to be largest at 1,2 and Ty,3.

Finally, the mode shapes for the five-module configuration
are similar to the three-module case. With more modules,
there are more mode shapes and possible resonance peri-
ods, and it becomes less evident which wave periods will
lead to the largest mean connection load amplitudes.

The first natural periods are corresponding to global
surge motion of the island and are not expected to lead
to significant relative motion. These were calculated to
be outside the interval of wave periods that have been
investigated, and T,,; will thus not be discussed further in
this work.

Heave natural period for a single module due to hydro-
static restoring force is estimated to be 2.7 s.

3.2 Stiffness Dependence in Model Test

N = 2, connector 1.2, period 5.0 s

0.2, 3292.12) -
—— Model test, K. = Hinge
S000 —— Model test, K, = S4
2
200 0.2, 2287.54)
=
= 2000 150
©
2
‘g 1500 100
£
<
1000 50 ‘
500 0 l Li LA L
/ 0 1 2 3 4
0 1L, ]
0 5 10 15 20
frequency [Hz]
(a) N=2
N = 5, connector 1.2, period 5.0 s
0.2, 4534.1) -
—— Model test, K. = Hinge
4000 —— Model test, K. = 84
0.2, 3067.22)
3000 o]
(3]
E
S 2000 2001
£
. 100+
1000
o
/ 0 1 2 3 4 5
0 |_1Jlj,|..|. il I
0 5 10 15 20

frequency [Hz]
(b) N=5

Fig. 5. Measured higher harmonic forces in one connector
between module 1 and 2. Hinged connection compared
to the softest spring connection, stiffness K. = S4.

Connector loads are plotted in frequency domain in Figs.
5(a) (N=2) and 5(b) (N=5) for wave period T, = 5.0 s. To
highlight the effect of the connector stiffness, these figures
present two extreme cases: the hinged connector and the
softest spring connector, S4. Although amplitudes at the
wave frequency are higher, the softer spring appears to
transfer little to no forces at higher frequencies.
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Connector force amplitude (full scale): N =2

—e— Model test, K. = Hinge, average
*— Model test, K. = S1, average
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Fig. 6. Average connector force all connectors.

Figures 6(a) and 6(b) present connector forces in the local
x-direction for N=2 and N=5 configurations respectively.
The hinged connector generally yields higher connector
loads than the tests where modules are connected by
springs. It appears beneficial with a softer connection at
lower wave periods, while for longer periods the stiffer
springs are preferable to avoid the resonance peak related
to Tng.

As mentioned in Sect. 2.2, the first and last module of
each array were moored in all tests. The connector stiffness
is therefore expected to have less impact on module
response of a two-module array, where both modules are
moored, than for a five-module array with three middle
modules held in place only by connectors. This can explain
the similar surge motion at K. = S1, §2 and S3 for
two-module array, seen in Fig. 7(a). The softest spring,
S4, yields a resonance peak at T,, = 4.5 s, coinciding
with the calculated second natural period of the system,
T,o. Similar resonance peaks for the stiffer connection
stiffnesses are visible, though less prominent.

Collisions between modules, as well as larger sway motion,
were observed for some tests. The occurrence was most
severe for the five-module configuration with the two
softest springs S3 and S4. Ideally, the symmetrical model
should show little to no sway motion when subjected
to regular waves in the longitudinal direction. However,
due to model asymmetries and low bending stiffness of
the springs, collisions lead to transversal motion of some
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Fig. 7. Average of response amplitude of all modules in
surge.

modules. This nonlinear behavior became evident at T, =
6 s for S3 and T,, = 5.5 s for S4, expected to be related to
the second and third natural periods of the system. These
larger amplitudes in surge are visible in Fig. 7(b). Hinged
modules allow less relative motion, and the response is
thus expected to be smaller, as seen in the same plot.

These results point to several potential control objectives:
avoiding higher frequency loads, minimizing connector
load, minimizing module motion or relative motion, closely
related to moving the natural periods of the system away
from the current sea state.

3.8 Comparison with Numerical Model

The hinged configuration is simulated by setting the con-
nector stiffness high, K. = 4e5. As seen in Fig. 8(a),
the simulator is able to give a satisfactory estimation of
the relative motion between hinged modules, a motion
mainly occurring due to pitch motion. Further, as the
connection springs get softer, there is a larger discrepancy
between ex-perimental and numerical results. Fig. 9 shows
the relative motion between modules for different
connector stiffnesses. The peaks can be seen in relation
with Tab. 4 as resonance peaks. The plots include a solid
horizontal line indicating the collision limit.

The heave and pitch response for different connector stiff-
nesses are shown in Figs. 11(a) and 11(b) respectively. An
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Fig. 8. Comparison of results with hinged modules.

average response is calculated from the motion amplitude
of all modules. The heave response is mostly governed by
potential forces, and not affected as much by the connec-
tions to other modules. The resonance peak corresponds
to the calculated eigenperiod in heave for one module.
The heave and pitch plots show a closer correspondence
with the model test than the estimated surge motion and
connector force shown in Fig. 10.

3.4 FError Sources

The main sources of discrepancy between the model test
and the simulations are considered to be:
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Fig. 11. Comparison between experimental and numerical results, N=3, heave and pitch response at different connector

stiffness K.

e Mooring line friction: The mooring line in the model
test included pulleys resulting in unmeasured friction
and considerable added damping to the system. A
corresponding force has not been included in the
numerical model.

DOI: 10.3384/ecp212.004

e Nonlinear connector behavior: The design of the con-
nection springs only allowed for a known stiffness
in the axial direction. The transversal and vertical,
as well as the rotational stiffnesses are unknown.
This leads to nonlinear behavior, especially for larger
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waves and softer springs, that is not captured by the
numerical model. The simulator does not seem to
recreate the connector force measured in the model
test well.

e (ollisions: Collisions between modules and sway mo-
tion forced by the springs were observed for some
runs. When collisions occur, forces in connections may
be transferred to the module structure or to transver-
sal motion without being measured, meaning that in
these cases the load cells do not capture all interaction
between neighboring modules.

o Module overlap: Related to collisions. Modules are al-
lowed to overlap in the numerical simulations, mean-
ing that response from the simulations can become
large at resonance since the relative motion between
modules is not limited by collisions.

o Wake effects: The design with several columns in
close proximity of each other is expected to experience
significant wake interaction, which is not considered
in the simulator. These interactions will affect the hy-
drodynamic loads on the module columns, especially
higher harmonic loads.

4. CONCLUSION

This paper has presented experimental and numerical
analyses of a multi-modular floating structure, to inves-
tigate three main objectives: 1) Analyze the behavior of
a multi-modular structure in changing wave conditions,
2) Investigate the effect of changing the stiffness of con-
nectors between neighboring modules and 3) Validate a
numerical simulator by comparable experimental results.
First, choosing a spring connection with a proper stiffness
instead of a hinged connection between modules appears
to be beneficial to reduce connection loads between neigh-
boring modules. When the array of modules is subjected
to longer waves, a stiffer connection leads to a lower con-
nection load, while at shorter waves a softer spring seems
preferable. A softer spring shows fewer higher harmonic
frequencies in the connection load than a hinge type con-
nection. Choosing a softer spring in the connections could
thus be beneficial if higher frequency loads are undesirable.
The optimal stiffness for different sea states must be found
as a balance between minimizing loads and staying within
acceptable limits for module motion.

In general, the simulator proposed in this work overesti-
mates load and response compared to model tests. The
simulator does not capture the full dynamics shown by
the model test and needs further investigation, especially
considering the error sources mentioned in Sect. 3.4.

There is a significant amount of uncertainty related to the
model tests, particularly related to connector design and
mooring configuration. An improved connector design in
future tests is necessary, and a mooring system without
pulleys is preferable. Other possible topics for future
experimental testing include investigating a 2D matrix of
modules, changing wave angle, and including irregular sea
states.
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Abstract: To address climate change and energy security issues from fossil fuels, wind power is a
promising renewable energy source, projected to grow significantly by 2050. Offshore wind energy,
especially floating offshore wind farms shows great potential due to higher and more consistent wind speeds
at sea. However, these turbines have negative environmental burdens throughout their life cycle. This The
present study focuses on a comprehensive cradle-to-grave life cycle assessment of the Hywind Tampen
floating offshore wind farm in Norway. The assessment covers all stages from manufacturing,
transportation, installation, operation, and maintenance to decommissioning, utilizing openLCA® software
and ecoinvent 3.9 database with the ReCiPe 2016 impact assessment method. Key findings indicate that
manufacturing is the primary contributor to total emissions, followed by operation and maintenance. The
study emphasizes the necessity of developing more sustainable manufacturing methods, designing turbines
that are more efficient and versatile, and better maintenance forecasting and planning in order to minimize

the environmental impact of these turbines.

Keywords life cycle assessment, offshore wind, floating, openLCA®, wind energy, renewable energy,

climate change

1. INTRODUCTION

Rapid urbanization and population growth are driving a 50%
increase in global energy demand in the coming years (Skar,
2022). This surge is primarily met by fossil fuels, leading to
resource depletion, global warming, and other environmental
impacts. Among renewable energy resources wind power
stands out as one of the most accessible and environmentally
friendly options (Narayanan, 2023). Additionally, offshore
wind energy is emerging as one of the most promising options
for the coming years and decades, thanks to the higher and
more consistent wind speeds found in open seas(Kaltenborn et
al., 2023).

Despite producing clean electricity, offshore wind turbines
have environmental impacts across their life cycle, including
manufacturing, installation, and decommissioning. The
environmental impact and energy performance of offshore
wind technology are commonly assessed using Life Cycle
Assessment (LCA) (Bhandari et al., 2020) which is the most
commonly employed method to simulate and assess the
environmental impacts of products and processes (Barahmand
and Eikeland, 2022).

Offshore wind turbines are categorized into two types based
on their foundations (Bhattacharya, 2019).

Grounded (bottom-fixed)'he wind turbine is securely bolted
or driven into the seabed, like a giant anchor.
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Floating: The wind turbine sits on a special platform that floats
on the water, held in place by mooring lines.

Floating wind is an emerging technology, thus there is a
limited availability of studies on the subject. After conducting
a literature review, to date, the authors identified only 9 LCA
studies on floating offshore wind. Although some studies like
(Alsubal et al., 2021) were performed for life cycle cost
assessment (LCCA). Among these studies only (Bang et
al.,2019; Brussa et al., 2023; Garcia-Teruel et al., 2022;
Struthers et al., 2023; Yildiz et al., 2021), were focused only
on the floating platforms while the rest of them were more
interested in bottom-fixed platforms.

Yildiz et al.(2021) conducted LCA on only one wind

turbine. On the other hand, Bhandari (2020) conducted LCA
on both farms and wind turbines, the rest of the studies was
conducted on wind farms. The rest of the previous LCA
studies were conducted on all life cycle stages of the wind
farm including manufacturing, transportation, operation
and maintenance (O&M) and decommissioning. On the
other hand, Skar (2022) considered only the
decommissioning stage. In all founded research, the
manufacturing stage is regarded as the most important
stage due to its highest contribution to the total
emissions. Only a few studies conducted LCA on real-
world wind farm case studies.
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2. BACKGROUND

In recent years, the offshore wind industry has seen notable
expansion, with offshore wind capacity growing by
approximately 30% annually since 2010. Moreover, the size of
the largest wind turbines has risen from 3 MW in 2010 to 8
MW in 2016, with projected ratings reaching up to 15-20 MW
by 2030 (Garcia-Teruel et al., 2022).

While most deployed technologies utilize bottom-fixed
structures such as monopiles or jackets, the utilization of
floating turbines is rising as the industry explores locations
with deeper sea depths. There's ongoing debate and research
to determine the economic viability of floating platforms
compared to bottom-fixed turbines, typically within the
transition depth range of 50 to 100 meters. This threshold may
be affected by factors such as the type of floater and the site
conditions. However, for depths more than 100 meters,
floating concepts are widely regarded as the most cost-
effective approach (Karimirad, 2014). The floating wind
turbine foundations can be categorized into three main types,
as illustrated in Fig. 1 adopted from (Bhattacharya, 2019):

(a) (b) (c)

N

Fig. 1. The main Types of floating wind turbine adopted from
(Bhattacharya, 2019).

I-TLP (Tension Leg Platform) with mooring stabilization:
This system utilizes tensioned mooring for stability and is
firmly anchored to the seabed to maintain buoyancy and
stability.

2-Spar buoy with ballast stabilization, optionally equipped
with motion control stabilizers: this system features a deep
cylindrical base for ballast, with the lower section significantly
heavier than the upper section, ensuring the center of buoyancy
is higher than the center of gravity. While cost-effective
initially, these structures require greater water depths and are
not suitable for shallow environments.

3-Semisubmersible buoyancy stabilization: This design
combines ballasting and tensioning principles, requiring
substantial steel components.

3. METHODOLOGY

As per ISO 14040 and 14044 standards, the Life Cycle
Assessment (LCA) framework comprises four stages
(Lotfizadeh, 2024):

* Defining goals and scope

* Conducting a Life Cycle Inventory (LCI) analysis

* Performing a Life Cycle Impact Assessment (LCIA)
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* Interpreting the results
3.1 Goal and scope

The initial step in an LCA, defining goals and scope, is widely
regarded as crucial as it sets the research context, defines
modelling requirements, and outlines project planning (Hesan,
2023).

The goals of this study were to: 1) Assessing the
environmental impact of all life cycle stages of the Hywind
Tampen wind farm. 2) Identifying the key elements affecting
the environmental impact of offshore wind projects. 3)
Learning about potential opportunities for environmental
optimization throughout the life cycle and 4) Identifying
relevant areas for further studies.

A cradle-to-grave method is chosen, and the boundaries of the
system are shown Fig. 2. The defined functional unit (FU)
in this study is 1 MWh of electricity generated by the wind
farm during its life cycle and then delivered to the grid.
Recycling was not included in the current study's end of life
(EOL) stage due to uncertainties and data availability issues.
As shown in Fig. 2, recycling falls outside the system
boundaries.

3.2 Life cycle inventory analysis (LCI)

In this section the data collection and calculations will be
briefly discussed. The Hywind Tampen is chosen as base case
scenario because this wind farm uses the most recent
technologies and largest turbine sizes in floating offshore wind

(Lotfizadeh, 2024).
Table 1. Specifications of the base case (Lotfizadeh, 2024).

Wind Farm Name Hywind Tampen
Distance to port 140 km
Power of each turbine 8§ MW
Number of turbines 11

Wind Farm Capacity Factor 54 %
Generator type Direct drive
Lifetime 20 years
Foundations Concrete SPAR-type
Tower Length 92 m
Rotor Diameter 167 m
Total Height 175 m
Distance between the turbines 1.5 km
Water depth 200 m

Inventory analysis involves collecting data and performing
calculations to identify the inputs and outputs of a product
system. Inputs consist of energy, raw materials, and other
products, while outputs encompass waste, water and air
pollution, and various byproducts (Garcia-Teruel et al., 2022).
These inputs and outputs were utilized as flows in each unit
process and modelled using the openLCA® software. The
inventory data were gathered from the following sources: 1)
literature 2) reference wind turbines 3) environmental product
declarations (EPDs).
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Fig. 2. System boundaries adopted from Lotfizadeh,2024)

It is important to note that access to specific details about wind
turbines and wind farms is restricted due to commercial
sensitivity. This lack of full transparency requires making
certain assumptions when conducting LCA of offshore wind
farms (Lotfizadeh, 2024).In the following a brief description
of inventories and calculations will be given. Detailed
inventories and calculations are available in open access
(“Supplementary materials-life cycle assessment of offshore
wind Farms, Lotfizadeh,” 2024).

3.2.1 Materials and manufacturing

Simulating the raw material supply is done by using market
datasets from the ecoinvent database, including material
procurement and transit to Europe (Brussa et al., 2023).
Previous research either focused on smaller wind turbines or
lacked details about the materials used. Some studies like
(Bang et al., 2019) and (Garcia-Teruel et al., 2022) estimated
missing information by using regression. This study assumes
a linear connection between the size of a turbine and material
weight distribution. To determine the materials and weight for
the 8 MW turbines , we used interpolation method based on a
6 MW turbine and a 15 MW reference turbine (Gaertner et al.,
2020).

3.2.1.1 Tower and Nacelle

The main component of the 8 MW tower is low-alloy steel
(Brussa et al., 2023). Siemens Gamesa EPD specifies the
tower's length 92 meters, but information about its diameter
and wall thickness is missing. The estimation of the weight
was done using a linear interpolation method. The paint on the
tower is negligible compared to the weight of other materials
and was therefore excluded from the calculations.
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For welding the processes “welding, arc, steel” in Ecoinvent
was applied. In some other studies, the welding length was
regarded as a continuous weld along the tower height.
However, this study assumes that the tower is composed of
welded segments, each with a height of 2 meters, and takes
into account the peripheral length of these welded segments.
Figure 3 illustrates the welding process, and Equation (1)
demonstrates the calculation method.

Steel sheet

Welding
Rolling segments
+welding together

Welded Welded tower

segment

Fig. 3. Tower manufacturing process (Lotfizadeh, 2024).

Ly =Ly + Ny X P €Y

Where Ly, represents the total welding length of the tower,
Ly denotes the length of the wind turbine tower, Njis the
number of segments in the tower, and P is the perimeter of each
segment. For an 8 MW wind turbine with a diameter of 10 m,
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the total welding length Ly, is calculated as follows. The tower
length is 92 m, made up of 46 segments, each 2 m in height
and 10 m in diameter.

Ly =92+46 xmtx10=1537m

3.2.1.2 Substructure

The material and weight of the 8 MW turbine substructure
were taken from the environmental product declaration (EPD)
of Siemens Gamesa 8§ MW wind turbine. The substructure
comprises two main components: the spar structure and
ballast. The welding length of the spar structure was also
calculated using Equation (1).

3.2.1.3 Mooring System

The mooring system data for the Hywind Tampen project was
unavailable, however the weight and material data for the
Hywind Scotland project were obtained from the project's
manufacturing factsheets (“Manufacturing Factsheets,” 2024).
As a result, it was assumed that the mooring chains and
anchors for the two projects were identical.

3.2.1.4 Power Transmission

The power transmission category includes inter-array cables,
export cables, and substations. As Hywind Tampen wind farm
distributes electricity to the nearby oil platforms, no substation
was used in this study's base case scenario. Hywind Tampen
inter-array and export cables were made by JDR company,
which also manufactured cables for Hywind Scotland project,
hence this study relied on the manufacturing factsheets of the
Hywind Scotland project to get data on cable specifications.
The Hywind Tampen Inter-array cables are 2.5 kilometres
long, 66kV dynamic array cables (Lotfizadeh, 2024). The
length of the export cable for the Hywind Tampen wind
farm was determined to be 45.4 kilometers based on the
relative distances of the five nearby platforms.

3.2.2 Transportation

Two modes of transportation are covered within the study's
boundaries. To begin, as previously stated, this study models
the raw material supply chain by using market datasets from
the Ecoinvent database, which includes both material
acquisition and transit to Europe (Brussa et al., 2023).Second,
transportation from the factory to the installation port. These
transports are carried out by truck or vessel. It was assumed
that some parts of the turbine components were transported by
truck within Denmark to the Siemens Gamesa factory and after
assembling there were transported by ship to Norway to be
installed at the Hywind Tampen site.

3.2.2 Installation

Most prior research used the "transport, freight, sea, ferry -
GLO" process in ecoinvent to model the emissions from vessel
installation activities; however, this study chose ecoinvent's
"diesel, burned in diesel-electric generating set" process.

! Turret / Nose, Bedplate, Flange, Shaft Bearings, Yaw System

DOI: 10.3384/ecp212.005

The energy demand of all vessels in installation activities
including, installing foundations, turbine tower, rotor, nacelle,
cables and mooring system was calculated and set as "diesel,
burned in diesel-electric generating set" process in the
openLCA® software.

3.2.3 Operation and Maintenance (O&M)

This stage quantifies emissions from operations and
maintenance (O&M) activities, including unexpected repairs
due to failures, routine preventative maintenance, and spare
parts. It is important to note that due to the lack of data on
remotely operated vehicles (ROVs) in the Ecoinvent database,
their activities and emissions were excluded from this study.

3.2.3.1 Unexpected Maintenance

For unexpected maintenance the failure rates are categorized
into major replacement, major repair, and minor repair. To
calculate the overall number of turbine failures over their
lifetime, the annual failure rates (Fig. 4) were multiplied by
the number of turbines of the farm (x11x20). The time
needed to fix each component within each operation and
maintenance category were obtained from (Centeno-Telleria
et al., 2024). With available energy consumption data for
the vessels, the energy consumed for transport to the site and
O&M operation was calculated in MWh using repair
hours for each component. These figures were
employed in ecoinvent's "diesel, burned in diesel-electric
generating set" process in openLCA® software, following
the same approach as the installation phase.

3.2.3.2 Regular Maintenance

The same method applied to regular maintenance, assuming
once-a-year visit of the wind farm for preventative
maintenance (PM) of the wind turbines’ components.

3.2.3.3 Spare parts

There is limited publicly available data on wind turbine
component replacement rates. This study adopted the same
exchange rate as (Arvesen et al., 2013).The rate of annual
replacement for large wind turbine components is assumed to
be 0.075 per wind turbine, and for generators and blades 0.333
per wind turbine.

Table 2. Spare parts replacement rates (Lotfizadeh, 2024).

Annual Annual Lifetime
replacement replacement | replacement

Spare Parts Per Wind Per Wind Per Wind

Turbine Farm Farm
Repl

]ngzcsgtesrft 0.075 0.825 16.5
Blades 0.333 3.667 73.3
Generators 0.333 3.667 73.3
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Pitch and Electrical

Tower Hydraulic Generator Grease,oil componen Contactor Controls

system ts
W Major replacement 0 0.001 0.095 0 0.002 0.002 0.001
Major repair 0.089 0179 0.321 0.006 0.016 0.054 0.054
Minor repair 0.092 0824 0.485 0.006 0.358 0.326 0355

Safety Sensars Pumps and Heaters, Yaw Power Transform Blades Hub
Motors Coolers system converter er

0 0 0 0 0.001 0.005 0.001 0.001 0.001

0.004 0.07 0.043 0.007 0.006 0.081 0.003 0.01 0.038

0.373 0.247 0.278 019 0.162 0076 0.052 0456 0.182

Fig. 4. Annual failure rates (Lotfizadeh, 2024).

3.2.4 Decommissioning

In this study it is assumed that the emissions from
decommissioning stage are the reverse and equivalent to the
installation stage.

3.2.4 Electricity delivered to the grid by the wind farm

The lifetime electricity production of the wind farm was
calculated using the Equation 2.

Epr=CXCp X LXNp—Ej o ()
where, each term is described in Table 3.

Table 3. Different terms of electricity calculation equation

3.3 Life Cycle Impact Assessment (LCIA)

The openLCA® version 2.1 and ecoinvent 3.9 databases were
utilized to perform LCIA. The ReCiPe 2016 v1.03 midpoint
(H) method was selected to ensure that the results are
comparable with previous studies.

4. RESULTS AND DISCUSSION

The impacts of the base case scenario were measured using the
ReCiPe Midpoint (H) 2016 approach, which included 18
impact categories. The results were normalized by dividing by
Er g (the lifetime electrical power delivery of the farm after
all losses in MWh). The results of the 18 impact categories of
the base case scenario are shown in Table 5.

Some heatmaps were created using Microsoft Excel® software

Term Descript.ion Unit to help visualizing the data. These heatmaps employ three
Erigr Real power production of the farm | o colors to depict varying levels of influence. Green
~ .after losses : colors indicate lesser impact values, yellow indicates the 50th
c Capacity Of each turbine MWh percentile (the midpoint), and red intensifies when values
Cr Capacity factor - exceed the middle and approach maximum impact. Fig.
L Lifetime of the wind farm hour 5 illustrates the rule for creating heatmaps in Microsoft
Np Number of turbines in the farm - Excel®.
Format all cells based on their values:
E;oss Electrical loss due to downtime MWh Format Stle: |3-calour Scale .
Minimum Midpaint Maximum
The loss due down time was calculated to be : E} 55 = Type: | Lowest Value ; fm”“'e ; Highest value :
53’508 i:n:u:n (Lowest value) : 50 : (Highest value) :
Prwie'w:‘ |
Then
Fig. 5. The rule for creating heatmaps with Microsoft Excel®.
Erpr =8x0.54 x 20 x 365 x 24 x 11 —53508
= 8,256,878 MWh
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Table 4.A heatmap of the contribution of each life cycle stage to
the total GWP for the base case scenario.

Stace Contribution | GWP (kg CO2-
& (%) Eq/ MWh)
Wind Turbine
Manufacturing
Substructure
Manufacturing
Mooring system o
Manufacturing L 1.04
Power Transmission o
Manufacturing 1.32% 0.49
Installation 5.91% 2.17
O & M vessel 16.27% 5.98
O & M spare parts 14.18% 5.22
Decommissioning 5.91% 2.17
Total 100.00% 36.78

Transportation has a very low share, with 0.03 Kg CO»-Eq per
MWh. Manufacturing contributes the most to overall GWP,
and the floating farm's substructure had significant emissions
due to the use of concrete to manufacture the spar substructure.
Figure 6 illustrates the contribution of the main five life cycle
stages to the total GWP. The second contributor to the total
GWP emissions was operation and maintenance stage.
5.91%

u Mamufacturing

u Transportation

u Installation
0&M

# Decommissioning

30.45%

5.91%
0.07%

Fig. 6. Contribution of the main five life cycle stages to the total
GWP.

4.1 Sensitivity Analysis

This section examines how variations in critical characteristics
during the life cycle stages of the base case scenario impacts
the overall results of the life cycle assessment.

As can be seen in Fig. 7 by decreasing the capacity factor
(CF), it was expected that the global warming potential (GWP)
and other environmental impacts would increase, which the
results confirmed. Conversely, increasing the CF was expected
to reduce GWP and other environmental impacts, and
extending the farm's operational lifespan was anticipated to
further decrease these impacts. Both hypotheses were
validated by the results.

As the distance to the shore increases, the fuel consumption for
vessel activities rises, leading to an increase in the GWP

DOI: 10.3384/ecp212.005

amount. However, the increase in GWP due to changes in the
capacity factor (CF) and lifetime was significantly greater than
the increase resulting from changes in distance to shore.

The strategy of towing to the shore was assumed to be used
only for major replacements. While major repairs and minor
repairs were conducted at the wind farm location. Results
indicated that GWP increased by 11.5% when this strategy was
implemented. Therefore, the optimal O&M approach for
major replacements is to perform operations at the wind farm
site rather than towing the wind turbines back to shore.

40
% 30
g 20
3
2 10
1]
Basecase CF-40% CF-60% Llfenme Llfetlme Llfenme Distance Distance Towing
(CF=54%) 160 250  Strategy
Fig. 7. An overview of GWP value in all scenarios.
5. CONCLUSIONS AND FURTHER RESEARCH
This paper provides a detailed assessment of the

environmental implications associated with the Hywind
Tampen floating offshore wind farm. The LCA findings
indicated that, for the base case scenario, the GWP was
calculated to be 36.78 kg CO»-Eq per MWh.

It was also discovered that the manufacturing stage was
accounted for nearly 57% of total GWP emissions, followed
closely by the operation and maintenance (O&M) stage. Wind
turbine failures accounted for approximately 90% of emissions

throughout the operation and maintenance stage. To
address these challenged wind turbine component
manufacturers ought todevelop and implement more
sustainable production practices. For example, design

strategies that maximize generation capacity per unit of
material used could significantly reduce emissions associated
with the manufacturing stage. Furthermore, improving wind
turbine reliability can lower the environmental impact of the
operation and maintenance stage.

Additionally,The sensitivity analysis explored how various
parameters impact the results. Notably, the capacity factor and
lifetime of the wind farm significantly influence overall
environmental impacts.

Fort further studies, it is recommanded that:

o Using eco-friendly vessels during installation, operation and
manintenance and decommissioning

e The O&M stage was shown to be the second-largest
contributor to overall emissions in the evaluated wind farm.
This emphasizes the significance of performing a sensitivity
analysis for failure rates.
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e Emissions from decommissioning were assumed to be
equal to those from the installation stage. Further
investigation of the decommissioning stage, as well as a
sensitivity analysis using various decommissioning
strategies, is recommended.

e The study did not include recycling in the end of life stage
due to uncertainties and data availability issues. Further
investigations on this stage, such as performing a cradle-to-

Table 5. The results of 18 impact categories of the base case scenario

cradle LCA, could provide useful insights into the materials
used to manufacture offshore wind turbines.

Impact category Reference unitMWh | Value
acidification: terrestrial - terrestrial acidification potential (TAP) kg SO»-Eq 0.15

climate change - global warming potential (GWP100) kg CO,-Eq 36.78
ecotoxicity: freshwater - freshwater ecotoxicity potential (FETP) kgl,4-DCB-Eq 2.93
ecotoxicity: marine - marine ecotoxicity potential (METP) kgl,4-DCB-Eq 3.90

ecotoxicity: terrestrial - terrestrial ecotoxicity potential (TETP) kg 1,4-DCB-Eq 305.75
energy resources: non-renewable, fossil - fossil fuel potential (FFP) kg o0il-Eq 8.75
eutrophication: freshwater - freshwater eutrophication potential (FEP) kg P-Eq 0.01
eutrophication: marine - marine eutrophication potential (MEP) kg N-Eq 0.01

human toxicity: carcinogenic - human toxicity potential (HTPc) kg 1,4-DCB-Eq 15.89

human toxicity: non-carcinogenic - human toxicity potential (HTPnc) kg 1,4-DCB-Eq 46.71
ionising radiation - ionising radiation potential (IRP) kBq Co-60-Eq 1.01

land use - agricultural land occupation (LOP) m2*a crop-Eq 0.72

material resources: metals/minerals - surplus ore potential (SOP) kg Cu-Eq 71.09

ozone depletion - ozone depletion potential (ODPinfinite) kg CFC-11-Eq 0.00
particulate matter formation - particulate matter formation potential (PMFP) kg PM2.5-Eq 0.08

hotochemical oxidant formation: human health - photochemical oxidant formation
i potential: humans (H(I))FP) kg NOx-Eq 0.21
hotochemical oxidant formation: terrestrial ecosystems - photochemical oxidant

i formation potential: ecosystez/ns (EOFII)’) kg NOx-Eq 0.21
water use - water consumption potential (WCP) m3 0.23
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Abstract:

Energy storage can be charged when energy is cheap and discharged when it is expensive to make
an energy system more profitable or used to make the plant operation more efficient to reduce
COs emissions. To optimize long term energy storage with conventional methods a long time
horizon must be used. When the long term energy storage is combined with a complex energy
system the computational cost becomes large when using conventional methods. To reduce the
time horizon, an algorithm will be used to decide the state of charge of the long term energy
storage at the end of the day. This algorithm is trained using machine learning with data of the
optimal state of charge obtained by running computationally heavy long time mixed integer
linear programming ahead of time. Then a one-day or week mixed integer linear programming
optimization will be done for the production planning. The seasonal patterns of the long term
energy storage can then be captured while giving the plant operator a simple one-day or week
production plan. A case study will be done with a combined heat and power plant system with
4 boilers, a long-term thermal storage, and a hydrogen storage system. Using this method the
complexities of a multi energy system with long term energy storage can be captured while doing

day ahead production planning.

Keywords: Energy, Optimization, Energy Storage, Machine Learning, Unit Commitment,

Production Planning

1. INTRODUCTION

Energy storage is an important technology in the transi-
tion to more sustainable energy system since the energy
generated from variable renewable energy sources will not
match up with demand. This leads to energy having to
be stored to meet demand without oversizing the energy
generation and curtailing energy. Some types of renewable
energy generation such as solar or wind also have seasonal
patterns which can require long term energy storage (LTES)
for efficient operation of the energy system International
Energy Agency (2024). Because of this, the optimization of
LTES is important to help the efficient transition towards
a more sustainable energy system. For example, Brey et al.
investigate how hydrogen could be used as seasonal energy
storage in Spain and conclude that it could be used to
smooth out seasonal imbalances Brey (2021).

There are different kinds of electricity markets, in some of
these markets like Nordpool in northern Europe. Trading is
done with both electricity users and suppliers placing bids
and then a price is decided depending on where these bids
meet Nordpool (2024). In this system, the bidding period

* This work is supported by project ProPlan under the RESILIENT
competence center, financed by the Swedish Energy Agency (2021-
90273) and co-financed by Maélardalen University and industrial
partners. The support received by Mailarenergi AB and Eskilstuna
Strangnés Energi och Miljé6 AB is appreciated.
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is 1 hour and because of this, there are requirements on
the computational speed of the optimization process for
electricity suppliers. To optimize LTES with conventional
methods like mixed integer linear programming (MILP)
a long time horizon must be used which can make the
optimization computationally expensive. This time can be
too long to make bids on the electricity market especially if
the optimization has to be run several times to run different
uncertainty scenarios.

Saletti et al. use linear programming (LP) for the long
time horizon (LTH) while MILP is used for the short time
horizon (STH) Saletti et al. (2022). This method has a
fast solution time, however, the solving time of the (LTH
still depends on system complexity. The objective of the
optimization is to meet the heat and electricity demand
of a hospital and not maximize profit by selling to the
electricity market. Marzi et al. use MILP to do day ahead
scheduling of a multi energy system with LTES considering
uncertainty Marzi et al. (2023). The computation time for
their method is, however, too long to do bidding in less
than one hour.

In a study by Bischi et al. a rolling horizon is used together
with typical weeks to optimize plant operation with MILP
considering the entire year. The goal of this optimization
is however not to consider how the state of charge (SOC)
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of the storage will change over the year but to make sure
that yearly emission constraints are met optimally.

Bruninx et al. optimize an energy system with energy
storage using unit commitment by considering reserve
capacity in a computationally efficient way Bruninx and
Delarue (2017). The time horizon in this study is however
24 hours so the focus is not on LTES. Optimization of a

compressed air energy storage is done by Ghaljehei et al.

by using using stochastic programming and mixed integer
nonlinear programming. Here the time horizon is also 24

hours so it is not fit for LTES Ghaljehei and Golkar (2017).

System states are used to optimize medium and long term

energy storage in a study by Worgin et al. Wogrin et al.

(2016). Here some states of the system are defined and
clustered and based on what cluster the system is in the
storage is operated accordingly.

A life cycle analysis with energy storage optimization is
done by Dong et al. where the energy storage is optimized

using a representative day for each season Dong et al. (2023).

This representative day is used to calculate how much the
storages will be charged or discharged during each season
to store energy over seasons. This method will however not
work when doing operational optimization since it will just
have the same operation every day and not ex discharge
the storages more for a day with high electricity prices

Mi et al. use multi timescale optimization to do generation
and expansion planning where the longest timescale is one
month Mi et al. (2021). Here the longer timescale is however
used to optimize capacity credits and not to optimize
LTES. Zhang et al. also use multi timescale optimization to
optimize the operation of an energy system with hydrogen
energy storage Zhang et al. (2023). Here a rolling horizon
optimization is used where different kinds of energy have
different time resolutions. Here two days ahead is used
to optimize the energy storage using MILP. Su et al. use
multiple timescales and add a flexibility requirement to
make the energy system more prepared for uncertain future
disruptions Su et al. (2023). Here a short, medium, and
long time horizon is used where the long time horizon is
one week.

In a study by Bahlawan et al. the design and operational
operation of an energy system with long term thermal
energy storage is optimized Bahlawan et al. (2022). Here
switch on priority is used to do the operational optimization
where one energy conversion technology is used first and
only if this technology can not supply the demand the next
conversion technology is used. This method will however
not work well for a system where the operational cost of
different technologies changes and there is no electricity
demand but instead electricity is sold to the grid.

Reinforcement learning is used by Alabi et al. to control
an energy system with energy storage and carbon capture
Alabi et al. (2023). Here reinforcement learning is used to
control the power output of the energy units and not to
optimize any kind of LTES. Sleptchenko et al. use LP to
optimize multiple different energy storage technologies as a

part of an energy system Sleptchenko and Sgouridis (2019).

In this study, the focus is not on computational speed but
on the seasonal patterns of the storage operation.
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Water value is an optimization method to optimize how
hydropower resovoirs are used. Here a value of the water
in the reservoir is calculated and used to determine if the
reservoir should be discharged Helseth et al. (2017); Jahns
et al. (2020). This method is quite computationally costly
if used for daily production planning with the optimization
by Helseth et al. taking between 28 and 40 hours.

1.1 Current Work

In this paper day ahead planning will be done for an energy
system with LTES where the goal is to make as much profit
as possible by selling electricity to the grid while supplying
the required district heating (DH) demand. Instead of using
LP or MILP to optimize the long term behavior of the
system a machine learning (ML) model will be used to
predict the end of day SOC of storages and then MILP
will be used to optimize the daily operation with this SOC
as a constraint.

The contribution of this work will be (i) to develop a new
faster method to optimize LTES which allows for scenario
analysis in production planning or be used in studies where
the optimization has to be used many times. (ii) Analyze
the effect of system complexity and optimization horizon.
(iii) Test which input features give the best prediction.

2. METHODOLOGY

Because MILP is slow over long time horizons, a ML
algorithm is used to predict the SOC of the storage’s at
the end of the day or week so the MILP can run for one
day or week instead of a longer time. The ML algorithm is
trained using optimal SOC data obtained by running the
MILP on historical electricity price and DH demand data.
Because only a few years of DH demand data was available
some synthetic electricity price and DH demand data were
also generated for training. This was done by using the
probability density function (PDF) which can be seen in
Eq. (1) to decide how much the scenarios should deviate
from the real data like in Marzi et al. (2023) but with some
changes. These changes are, instead of using the PDF to
decide the deviation from the real data the PDF is used
to decide the change in deviation at each timestep. Some
of the spikes in the electricity price were also randomly
removed and new ones were added so the spikes in the
electricity price would not occur at the same time of year
in all the generated scenarios. This synthetic data was run
through the MILP to get optimal SOC data for training
the ML algorithm. A flowchart of how the training and
optimization are done can be seen in Fig. 1.

1 (z—p)?
202

PDF(z) = (1)

ovV2m
A case study based on the system seen in Fig. 2 where
the full system has four combined heat and power (CHP)
plants, one TES (thermal energy storage) which uses water
to store heat. There is also a hydrogen energy storage (HES)
with an electrolyzer to convert electricity to hydrogen, a
hydrogen storage tank, and then a fuel cell (FC) to convert
the hydrogen back to electricity For both the electrolyzer
and FC there are some losses in the form of heat which is
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[ Generate synthetic data to have more training data ]

!

[ Run MILP for long time to get optimal SOC data ]

[ Sort data ]

storage charge/discharge with

!
[ Train Al algorithm to see patternsin ]
electricity price and DH demand

[ Run daily optimization }‘—‘

Fig. 1. Flowchart of method

used to both charge the TES and provide heat to the DH
network. The system is used to provide the DH demand
to the district heating network and sell electricity to the
electricity grid. To evaluate how system complexity affects
the current methods performance some other cases were
also evaluated, these are one case with one boiler, the HES,
and the TES, one case with one boiler and the TES, and
one case with one boiler and the HES.

CHPs

Electrolyzer 'y i
a a
d. ‘.

Hydrogen
tank
_
=] —
L] L ]
L] f ]
><
> Electricity
FC .
grid

Fig. 2. Full system layout

2.1 Mized Integer Linear Programming (MILP)

The general MILP formulation can be seen in Eq. (2),
where x is a vector of the decision variables, ¢ is a
vector with the relationship between the decision variables,
and A and b make the constraints where A is a matrix
and b a vector. When running the MILP the binary
constraints were relaxed to increase computational speed
since generating training data without relaxing binaries
was too computationally costly with the used hardware.
However, if the model is simple enough or there is enough
computing power the full model could be run with binary
constraints. Other methods could also be used to increase
the computational speed of the MILP.

min(c’z)
st. Ar<=b

(2)

The objective function can be seen in Eq. (3) where Cee,
is the economic cost and Cepange is @ penalty to punish
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uneven operation of the storages and boilers. In the results
when profit is referred to it refers to Ce.,. The constraints
that are considered in the MILP model can be seen in
Table 1 with what constraints apply to each unit.

C= Ceco + Cchange (3)

Table 1. List of constraints for MILP model

CHP

=
=
n

Constraint
Max/min power
Ramp up/down
SOC
Min up/down time
on/off status
electricity to heat ratio
SOC start and end of time horizon
Heat loss to enviroment
Startup status
DH demand met
Transmission capacity out of plant -

SNEX XIS SN XSS
XIS XN XN NS

! 'XX\X\X\\\:E,:

The MILP was tested in three different ways, the first is to
just run the MILP for 1 year to get the optimal behaviour of
the system. The second way is to give the MILP a constraint
at the end of day SOC and then run the MILP for 36 hours
but only taking the operation from the first 24. The third
option is to use a rolling horizon optimization Bischi et al.
(2019); Marquant et al. (2015) where the optimization is
done daily with a one week time horizon. For this method
the constraint on the SOC on the storages was also set to
happen after one week. A optimality gap of 1% was used
for the MILP otpimization

2.2 Machine Learning (ML) Algorithm

Some different ML algorithms were tested these are deep
neural network (DNN), random forest (RF), historic
gradient boosting (HGB), and Gaussian regression (GR).
For all of these hyper parameter optimization was done and
for the DNN different architectures of the network were
also tested. The variables being predicted are the optimal
daily or weekly charge and discharge from the HES and
TES where training data is retrieved by running the MILP
with a long time horizon. Some different input features
were tested to get the lowest prediction error possible. The
training and testing data were split by having training
data be the data generated based on the first year and the
testing data be the real data from the second year.

Prepossessing of the data was done before passing it to the
ML algorithm. This prepossessing consisted of calculating
the mean, max, and minimum daily electricity price and
DH demand and monthly and weekly mean electricity
price and DH demand. The data was also scaled with the
electricity price, DH demand, SOC of the storages, day of
the year, and weekday being scaled between 0 and 1 and
the charge/discharge of the storages being scaled between
-1 and 1 where -1 is fully discharging and 1 is fully charging.
The loss metric used during the training of the ML models
is mean square error.

A lot of the charge and discharge data of the storages
is distributed around 0 to avoid any bias in the model
training weights were used in the loss function to make
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all charge and discharge amounts be equally represented.

This was done using DenseWeight which applies weights to
different values of the training data based on kernel density
estimation Steininger et al. (2021).

3. RESULTS
3.1 Long term Mixed Integer Linear Programming MILP

Figure 3 shows how the SOC of the HES and TES change
when using MILP to optimize the system. The data used
for optimization is from 2017, the year the ML algorithm
makes its prediction. The storages does not start and end
at the same SOC since the MILP optimization was done
over 3 (2016-2018) with the SOC being constrained to be
the same at the beginning of 2016 and the end of 2018.

104 SOC TES

—— SOCHES

0.8 4

0.6

0.4 4

0.2 4

0.0 4

T T T T T T T
2017-01 2017-03 2017-05 2017-07 2017-09 2017-11 2018-01

Fig. 3. SOC of storages based on MILP over predicted

year

3.2 Full System One Day Prediction Horizon

The MAE as a percentage of the maximum occured
charge/discharge of the storages for different ML algorithms
can be seen in Table 2. As can be seen, the MAE of HGB
is the lowest, however, this MAE is achieved by having the
charge/discharge around zero all the time which does not
lead to a good operation of the storages. The DNN on the
other hand makes predictions that are based on the features
and most of the time the decision to charge or discharge
the storage is correct. The amount charged or discharged is
however often wrong. This leads to the DNN operating the
storages in a better way than HGB even though the MAE
is higher. RF operates the storages in a similar way as
HGB in that it tries to keep the charge/discharge around
zero. GR operates the storages in a way that is somewhere
between the strategy of the DNN and HGB. Because of
this, the DNN is used as the ML algorithm for the rest of
the results.

Table 2. Prediction performance of ML algo-

rithms
ML method T MAE HES T MAE TES
DNN 25% 20%
RF 22% 9%
HGB 4% 6%
GR 23% 9%

The ML algorithm predicts the optimal SOC of the storages
at the end of the day or week based on the features that
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can be seen in Table 3. Different combinations of features
were tested but these were chosen since they gave the
lowest mean absolute error (MAE). The data from the long
term MILP and ML prediction using a DNN (deep neaural
network) can be seen in Figs. 4 and 5, here a one-
day prediction horizon was used. As can be seen, the
prediction error is evenly spread except for predicting too
low values when the HES is charged at maximum
power. The HES has a MAE of 4500 kWh and the TES
has a MAE of 332 000 kWh. This MAE is quite high,
around 25% and 20% of the maximum daily charge/
discharge power that occurred for the HES and TES. This
error is however not important as long as the ML
algorithm can give predictions that have a good
operation of the storages in the daily MILP
optimization.

In future research, this error could be reduced either by
using a more complicated method such as first classifying
if the storage will be charged, discharged, or not used, and
then after that having 2 different specialized models for
charging and discharging for each of the storages. Different
ML models could also be used for different periods of the
year. Another way to improve the results could be to use
reinforcement learning and a one-day or week MILP model
to more directly optimize based on the objective function.

20000

10000

—10000 7

Predixted values [kWh]

—20000 7

T T T T
—10000 0 10000 20000

Real values [kwh]

T
—20000

Fig. 4. Correlation between predicted and real charge/

dis-charge for HES using DNN with a one-day
prediction horizon
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Fig. 5. Correlation between predicted and real charge/

dis-charge for TES using DNN with a one-day
prediction horizon
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Table 3. Features used for ML

HES | TES
v v

Feature

Current day mean electricity
price and DH heat demand
Current day max electricity price
and DH heat demand

Current day min electricity price
and DH heat demand

Two weeks of mean electricity
price

Two weeks of mean DH demand
Two months of mean electricity
price and DH demand

Time of year

Day of week

SOC of storages

<
N

NSNS (XS
NSNS NS

The DNN performs better in some parts of the year and
worse in others as can be seen in Figs. 6 and 7. The
accuracy might be able to be improved if multiple ML
models were trained for different parts of the year. The
algorithm does however still mostly charge and discharge
the storages at the correct time but the amount charged
or discharged is often wrong. For both figures the DNN
was trained using data generated based on data from
2016 and then tested using real real data from 2017.
The optimality gap used for the MILP for both training
and testing is 1%.

20000 + MILP
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10000

—10000 4

Charge/discharge [kwh]
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2017-01 2017-03 2017-05 2017-07 2017-08 2017-11 2018-01
Day

Fig. 6. Comparison charge/discharge HES MILP and
DNN
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Fig. 7. Comparison charge/discharge TES MILP and
DNN
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The SOC of the HES for MILP and with constraints from
the ML model can be seen in Fig. 8 and the same for
the TES in Fig. 9. Both the HES and TES SOC are
quite different between using MILP and using DNN model
constraints. The important thing here however is not that
the SOC of the storages are the same but how profitable the
operation of the entire energy system is in both scenarios.
This will be discussed in the next section. The SOC pattern
for the TES is however similar between the MILP and DNN
model constraint with it discharging during the winter and
charging during the summer. There is a difference in when
the storages is being charged/discharged between the MILP
and DNN. The reason for this could be that the DNN gets
a low electricity price as an input and therefore charges the
storage while the MILP does not charge the storage since
it has all the data and knows that there will be an even
cheaper electricity price in the future. In reality, a forecast
for the electricity price would have to be used to operate
the MILP in this way which could make the results of the
MILP and DNN more similar.
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Fig. 8. Comparison SOC HES MILP and DNN
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Fig. 9. Comparison SOC TES MILP and DNN

3.8 Comparison Cases

Table 4 compares the profitability of the daily MILP
model with the ML constraints and when constraints are
taken from the optimal operation of the previous year. The
comparison is made as a ratio profitability compared to
the long time MILP optimization results. When a one day
time horizon is used the daily MILP model with constraints
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from DNN outperforms the other models with constraints
from the optimal operation of the last year and other ML
methods. All of them are also close to the long time horizon
MILP optimization being 1, 4, and 6 percent away. Of note
here is that the energy storages is only one part of the
system so it is not the only factor effecting profitability.

When a one week time horizon is used, both the models with
constraints from ML algorithms and last year’s optimal
operation have the same profitability as the long time MILP
optimization. This is because a rolling time horizon is used
with the constraint placed at the end of the week but only
the operation from the first day is used, then the next day
the optimization is run again. This means that even if there
is some error in the prediction the operation of the first
day can be good since there is no constraint for the SOC
at the end of the first day.

Even though the MAE of the prediction is high the
profitability is not greatly impacted. This is because the
prediction is based on the electricity price DH demand
and time of year. This gives a good operation even if the
prediction is different from the value from the long time
MILP.

Another benefit to using ML to give constraints to the
MILP compared to using values from last year is that if a
change in the electricity price or DH demand were to occur
the operational plan can change. This makes the constraints
given by the ML model more robust. The diversity and
amount of training data generated and the number of years
used to generate training data will also affect how robust
the optimization is.

One thing to note when looking at Table 4 is that the
SOC the storages is not constrained to be the same at the
end of the year which affects the profitability. The final
SOC with the DNN constraints can be seen in Figs. 8
and 9. The final SOC when using the optimal results
from the last year can be seen in the same figures but
looking at the beginning of the year.

Table 4. Profitability comparison with con-
straints from ML models and taking SOC values
from last year MILP optimization

Time horizon

Method 1 day | 1 week
DNN 0.97 1
Last year MILP 0.96 1
GR 0.94 1
HGB 0.94 1
RF 0.94 1

In Table 5 the MAE and computational speed of the
method using daily and weekly MILP with DNN constraints
and the long term MILP model can be seen. Here the MAE
is a percentage of the maximum occured charge/discharge
of the storages. As can be seen, the optimization is fast
both for the one day and one week time horizon when
using constraints from the DNN. When running the MILP
for a year with the full model the optimization time is

over 30 hours which does not allow for day ahead planning.

Another problem when running the model in this way is
that a forecast for electricity price and DH demand is
needed for the entire year. When using the ML algorithm
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only a forecast for the average electricity price for the next
2 weeks and next 2 months is needed. Even this can be
removed with some increase in the prediction error.

The MAE of the HES prediction increases when doing a
one week prediction while the MAE of the TES prediction
decreases. This is likley because the seasonal patterns of
the TES are stronger which makes a one week prediction
easier since any irregular spikes in temperature will have
a lower effect. The HES is more driven by the electricity
price which has a less seasonal pattern so in this case the
increase in features for the DNN only increase the MAE.

Table 5. MAE for different time resolutions and

horizons
Time horizon MAE HES | MAE TES | Computational time
1 day 25% 20% 1.78 s
1 week 30% 18% 12.33 s
Long term MILP - - 180.2 s*

*With binary constraints relaxed, the full model takes over 30 hours
to run

Table 6 shows the error when doing predictions based
on data from a simpler system. The prediction is slightly
better for the system with only one boiler. The prediction is
better on simpler systems since the behavior of the system
becomes less complex and therefore easier to predict.

Table 6. Comparison different systems

System MAE HES | MAE TES
One boiler only TES - 20%
One boiler only HES 22% -
One boiler HES and TES | 22% 18%
Four boiler HES and TES | 25% 20%

4. DISCUSSION

This method is fast enough to implement in real-time, when
doing so retraining of the ML model should be done to
catch any new patterns in electricity price or DH demand.
The period between retraining will have to be decided based
on testing different periods. When retraining the algorithm
data could be generated again to increase the training data
since the generated data is created based on real data and
will therefore have some similar patterns.

Some things are required for it to be possible to use this
method, the first is some historical data that can be used for
training and creation of synthetic data or a way of creating
realistic synthetic data without any real data. Some long-
term energy storage is also needed for this method to be
effective, if no long-term energy storage exists conventional
methods are more suitable for optimization.

The use case for this kind of optimization method is in
cases where the optimization has to be done in a short time
or where the optimization has to be done a lot of times, for
both of these cases LTES should also be a part of the energy
system. For the case where optimization has to be done
fast it could be at a powerplant where the MILP model is
too complex to optimize over a long time horizon, then this
method can be used to speed up the optimization. For a
case where optimization has to be done many times, there
could be a case where the MILP optimization is part of an
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inner loop where it has to run many times per iteration of
some other optimization layer.

Since the synthetic data is only used for training the ML
algorithms and is generated without using any of the testing
data the use of synthetic data should not have any negative
impact on the results. The use of synthetic data might also
not be needed if enough historical data is available, other
methods of generating synthetic data could also be used.

5. CONCLUSIONS

Using ML to reduce the time horizon of a MILP model by
constraining the SOC of LTES gives a similar economic
operation to letting the MILP run over a long time horizon.
The MAE of the prediction is large but the economic
operation is still good with this method. This method
outperforms using the past years storage operation when
running the MILP daily and has an equal performance
when running the MILP weekly.

The ML method that gives the best operation of the
storages is a DNN.
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Abstract: Batteries are used in electric vehicles as well as in stationary applications. In electric vehicles,
high energy density, as kilowatt hour per kilogram (kWh/kg), is needed while stationary applications are
less sensitive to the energy density. Principally, it may be a good idea first to use batteries for transportation
applications and then when capacity has reached a certain level start using them for other applications in a
“second life”. Both for optimizing the performance of operations in 1st and 2nd life and for making fair
commercial agreements when selling used batteries for second life applications, there is a need to make
predictions of Remaining Useful Life (RUL) and State of Health (SoH). For this purpose, battery models
are needed. This paper presents a methodology for building a useful battery model based on our experiments
and literature data. Single cells and cells in series of Nickel Manganese Cobalt (NMC) batteries and
Lithium Iron Phosphate (LFP) batteries have been cycled. Electrochemical Impedance Spectra (EIS) and
differential capacity (dQ/dV) have been measured for each cycle. These data were then used to develop
SoH and RUL models using various regression methods. The developed models are described and
discussed, and the results are presented in the paper.

Keywords: Battery model, electric vehicles (EV), stationary applications, kilowatt hour per kilogram
(kWh/kg), Nickel Manganese Cobalt (NMC), Lithium Iron Phosphate (LFP), Electrochemical Impedance

Spectra (EIS), differential capacity (dQ/dV), regression.

1. INTRODUCTION AND RELATED WORK

There is a strong interest in following the degradation of
batteries during the first life to give the possibility to predict
the remaining useful life (RUL) for the battery, especially for
the second-life use of batteries. By following the state of health
(SoH) continuously, correlating it to how the battery has been
used, and following it until it is totally wared out, reasonably
good prediction models can be determined and used. This
information can be utilized for 2" life use of batteries
(Chirumalla et al., 2023, 2024).

In this paper, we want to extract experience from what has
been done earlier and add to it our own battery modeling
approach for the simulation of batteries used in Vehicles. For
second life use of batteries there is a high interest to use for
power grid balances as shown in e.g. Dahlquist et al. (2023).

Many researchers have modelled battery performance in
different ways. Pelletier et al. (2017) focused on modelling
cycle-life as a function to the depth of discharge (DOD) and
discharged rate relative to the battery maximum capacity (C-
rate). Ahmadiana et al. (2018) modeled battery resistance
growth versus state of charge (SoC) and battery degradation as
a function to DOD. Maheshwari et al. (2020) have modelled
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cycling life vs C-rate using a non-linear model. O’Kane et al.
(2022) have used the PyBaMM, an open source modelling
environment for simulation of the effect of different variables
important for degradation of Li-ion batteries. Four degradation
mechanisms are coupled in PyBaMM. The most important
ones are the loss of lithium inventory and the loss of active
material. For the same cell, five different pathways have been
evaluated. Lam and Bauer (2012) performed a lot of cycling of
LFP batteries and from the experiments, an empirical model
was constructed, which was capable of modeling the capacity
fading in electric vehicles (EV) battery cells under most
operating conditions. Ravali and Raju (2023) developed a
Lithium-lon Battery model for estimation of degradation
capacity and SoC using Sigma Point Kalman filter. After one
thousand cycles, the amount of capacity faded from 24Ah to
20.5Ah at 25°C.

de la Vega et al. (2023) have proposed to monitor battery
performance by measuring instantaneous terminal cell voltage
as a function to SoC during the first discharge cycle, as a
reference cycle, and the n™ cycle. The SoC interval [SoCuin,
SoCmax] = [0.55, 0.75] was chosen to calculate the AVRMS
indicator, which is terminal voltage difference between first
and n® cycle at SOCmin and SoCmax. This is an interesting

Proceedings of SIMS EUROSIM 2024 48

Oulu, Finland, 11-12 September, 2024


mailto:erik.dahlquist@mdu.se
mailto:maher.azaza@mdu.se
mailto:amare.desalegn.fentaye@mdu.se
mailto:josefin.rojas.vazquez@hitachi.se
mailto:meysam.majidi.nezhad@mdu.se
mailto:anas.fattouh@mdu.se

SIMS EUROSIM 2024

approach to give the possibility to follow the degradation
continuously if the values at SoCpnin and SoCnax are stored
continuously.

Shamarova et al. (2022) have developed a method utilizing
data from electrical circuit models (ECM) where dependency
of ECM parameters on the electrochemical properties of the
battery was examined in using a pseudo-two-dimensional
(P2D) model. This is combining physical and statistical
modelling approaches. Wildfeuer et al. (2023) made a set of
experiments studying impact on SoH for capacity, resistance,
Li-inventory, positive electrode losses, and negative electrode
losses for SoC 10-100% and temp 20-60°C for NAC batteries.
Panchal et al. (2017) did similar experimental studies for LFP
batteries.

Drive cycles with different modes like acceleration, constant
speed, and deceleration in both highway and city driving were
implemented at —6°C, 2°C, 10°C, and 23°C ambient
temperatures with all accessories on. 4.6% capacity fade
occurred over 3 months of driving. The empirical degradation
model was fitted to these data, and an extrapolation estimated
that 20% capacity fade would occur after nine hundred daily
drive cycles. This is a high degradation rate, but experimental
data and model were close for the 3 months test period. Zhang
et al. (2023) have compared LFP and NMC batteries.
Degradation characteristics during charging of LiFePO4
(LFP)/Graphite batteries at voltages of 3.65-4.8V and
Li(Ni0.5C00.2Mn0.3)0O2 (NCM)/Graphite batteries at 4.2—
4.8V at —10 °C with currents of 0.2—1A were determined. The
loss of active material (LAM) causes the height of the highest
IC peak (dQ/dV-V) to decrease for a given voltage, while the
loss of Lithium inventory (LLI) shifts the DV curve (dV/dQ-
Q) toward lower capacities.

It can also be interesting to see what measurements on real
vehicles indicate with respect to capacity losses. Salazar and
Bengoechea (2021) have summarized information reported by
different Tesla Model 3 owners. One had a decrease of
capacity by 4.8% during 136,000km operation, another 2.3%
loss during 22,000km, when the vehicle was charged to 10%
five days a week. A third had a 2.2% decrease during
32,000km of SoH for 12 months operation. In this case all the
cars had LFP batteries.

Shen et al. (2019) tried to make RUL predictions. They were
working with NASA data set and the CALCE data set. They
compared their own model to another approach. Still, the value
is to use common data sets for comparing different modelling
approaches. Uddin et al. (2016) used an approach with
identification and tracking of electrochemical battery model
Parameters. This combines physical and statistical methods.
The method was demonstrated on a 3.03Ah LiC6/NCA battery
stored at 45°C with 50% SoC for 476 days.
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Rahbari et al. (2018) used another approach with an Adaptive
Neuro-Fuzzy Inference System for SoH of real-life plug-in
hybrid electric vehicles (PHEVs). The model was representing
the experimental data in a good way. Dai et al. (2018) showed
a SoH estimation method by using prior knowledge-based
neural network (PKNN) and Markov chain for a single
lithium-ion battery. Shi et al. (2019) used another method with
estimation of the state of health (SoH) for a lithium-ion battery
based on the ohm internal resistance RO. They were
considering the variation of RO with the state of charge (SoC),
which was new.

This overview covers a broad spectrum of methods, although
many other techniques are also utilized. From all this, we
developed a simplified battery degradation model that can be
adapted to different types of batteries and with reasonable
values for impact of different variables like temperature, C-
rate, DOD/DOC and calendric time.

The paper is organized as follows. Section 2 presents the
experiment setup while Section 3 presents the experimental
data, both our data and other data from literature. In Sections
4 and 5, we develop a battery degradation model and power
demand model from vehicle, respectively. The paper ends with
discussion and conclusions in Section 6.

2. EXPERIMENTS SETUP
2.1 Testing of battery cells

Single cells can be tested with Electrochemical Impedance
Spectroscopy (EIS). The spectra are made by measuring the
current and the capacity as a function of voltage as the
frequency of the supplied current is going from 1000Hz to
0.001Hz. At high frequencies, we see the resistance in the
electrolyte, at mid frequencies capacitance over the electrode
surface, and at low frequencies the inner resistance of the cells
as such. By following the EIS at the start and after a number
of cycles, you can get both a quantitative measure of the
overall degradation over time as well as an indication of what
mechanisms in the battery cells are causing this.

Another measure is to follow dQ/dV or dV/dQ, as a function
of V, where Q is cell capacity (Ah) and V voltage. By
measuring and plotting this over cell cycles a battery
performance pattern is achieved. This can be measured
continuously during the use of the cell, which is not possible
with the EIS, and thus can be a good complement. Figure 1
depicts a system for prediction of RUL, SoH and SoC.

There is a correlation between DoD (depth of discharge)/DoC
(depth of charge) and degradation rate. Figure 2 shows this
correlation presented by Qadrdan et al. (2018). Real operation
with Tesla cars still indicates that this curve is not relevant for
NAC batteries in “real life” operations.
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Fig. 1. Experimental setup to collect data that will be used to
develop algorithms for prediction of SoH, RUL, and SoC.

DoD=removed amount of charge/maximum available
amount of charge=Qd/C*100 [%]
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Fig. 2. Battery cycle life as a function to depth of discharge.
Adapted from Qadrdan et al. (2018).
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Fig. 3. Analysis of EIS in a Nyquist plot inspired by Li et al.
(2020), and Turilli et al. (2021).
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The SoH can be shown in an EIS, Electrochemical impedance
spectrum. In Fig. 3, we see how the pattern in a Zca VS Zin 1S
looking like when a frequency scan is made from 1000Hz to
0.001Hz. Higher frequency is to the right. Closest to y-axis we
have ohmic resistance (Rohm):

2(w) = V(@)i(®)
WV (@)i(w)(cosp(w)*jsing(w))
= Zr+jZj

The impedance spectrum can also be represented as an
equivalent electric circuit model as shown in Fig. 4.

CPEsgr ECM CPEg
Rsgr Renr

L. ”
L.

Fig. 4. Common equivalent circuit model inspired by Xiong et al.
(2020).

According to Xiong et al. (2020), the model in Fig. 4 is the
most common ECM, which is composed of three parts:

e  Part 1: a series of Roum and L.

e  Part 2: a parallel of CPEsg; and Rsg;.

e  Part 3: a parallel of CPEg and series of Rcur and Zw
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Part 1 indicates the ohmic resistance increase, where Roum
incorporates the ohmic resistance of electrolytes, electrode,
binder and current collector. It can be acquired by resolving
the intersection among the impedance spectrum and high
frequency region of the Nyquist plot. The inductance
incorporated the high frequency phenomena occurring in the
collector, can be acquired by the impedance positive imaginary
part. Part 2 describes the formation, decomposition and growth
of SEI film, where the Rsg is calculated from the first semi
arch span at mid-frequency. Part 3, Rcur the charge transfer
resistance attained by a second semiarch at low frequency,
CPEq simulates the double-layer affect that occurs during
battery discharge for the shape of electrode according to Xiong
et al. (2020).

In our cycling tests we have collected spectra with dQ/dV as a
function of voltage and number of cycles. Here we can see how
the spectrum for the same battery is changing pattern. In this
case we cycled NMC batteries model 18650 up to four hundred
cycles from 3.3 to 4.2 Volt. The results are shown in Fig. 5.

dqdv over charging cell Biltema (a)
4500 : e : : - -
Peak 2 d
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1000 £ . . . . . . . .
3.2 33 3.4 35 3.6 3.7 3.8 3.9 4 4.1 4.2
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dqdv over charging cell s17 (b)
Charging CCCV 42V @ 84
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E
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Fig. 5. Results of the incremental capacity analysis over the cell’s
cycling (a) NMC cell from Biltema and (b) NMC cell from
Samsung.

The shift in pattern during cycling is shown as a few arrows.
This information can be used to predict the performance of the
batteries. It can also be used for prediction of remaining useful
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life, RUL, if cycling proceeds until the capacity has faded to
below 70-80% of the original SoH.

In Fig. 6, we see how the EIS changes during cycling. The
diagram to the left is for fresh batteries while the others are
after several cycles. The higher the cycle number, the further
to the right.

EIS scans cell 16 (b)

20_]

[mOhm]
N S
€,

-10_]

Z"

-20_]

Z' [mOhm]
Fig. 6. Electrochemical impedance spectra (EIS) for a NMC
battery from Samsung after Nyquist plot for battery cell (marked
16): cycle 200, 207 and 300. Experiments performed at MDU.

From experimental data, regressions and prediction models

have been developed using different Al-algorithms. Results
from these are exemplified in Fig. 7.

Capacity Estimation using V, |, dqdv (S16#)
T T T

29

T
Real Value
—#— FNN10 Predicted
FNN40 Predicted
—G— CNN1 Predicted
~— »— CNN2 Predicted
LSTM Predicted

275 - b

Capacity(Ah)

2.65 - b

26 L L L L L

0 10 20 30 40 50 60
Cycle
Fig. 7. Battery capacity estimation using different deep-learning
algorithms as a function of cycle number
(FNN10,FNN40,CNN1,CNN2 and LSTM). Rojas Vazquez

(2023).

Some other approaches using different type of models is e.g.
capacity degradation estimation using sigma point Kalman
filter (Gaddipati and Kuthuri, 2023) and Lin et al (2023) using
a data driven approach.

2.2 Testing of battery packs

For many cells in series and parallel, it is difficult to perform
EIS, while dQ/dV or dV/dQ is possible to measure. By
comparing this for packs as well as single cells, and
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performing EIS as well for the single cells, we can create data
that can be used to make Al models for different types of
performance numbers. These can be state of charge (SoC),
state of health (SoH), remaining useful life (RUL), and similar.
By measuring full cycles for batteries and packs when fresh
and after different numbers of cycles, prediction models can
be developed. Also the depth of discharge (DoD), that is how
close to 0% charge you go, is of interest to monitor. C-rate for
both charge and discharge as well as temperature in the cell
packs are other factors.

3. EXPERIMENTAL DATA
3.1 Our experimental data

Previously we presented data from NMC battery cycling
performed at our lab. We also have done testing with LFP
batteries, or more correct Lithium Iron Manganese Phosphate
batteries with 20Ah capacity. The latter are prismatic, while
the first ones are cylindrical with a 2.9Ah capacity.

As seen above, the degradation during fifty cycles of a NMC
battery was 1.8% or 0.035% per cycle, when cycling between
2.5V and 4.2V. Another cell was cycled 325 cycles between
2.5V and 4.2V with 1.5A charging current (C-rate= 0.52) and
3A discharge current (C-rate =1.04). The decrease in capacity
went from 2.91Ah to 2.73Ah, or 0.18 Ah. This means 6.2%
during 325 cycles or a decrease of 0.019% per cycle. If we just
look at the first fifty cycles of the same battery (S20), the
decrease was from 2.91Ah to 2.81Ah, or 3.4%, or 0.069% per
cycle. There is a faster degradation in the beginning, but it is
reduced with time.

For the LFP batteries, we had a degradation of 0.12% per cycle
at C-rate (.15 during thirty-nine cycles, when cycling between
2.5V and 3.7V at 3A for the 20Ah batteries. It was the same
for charging and discharging.

We did the same cycle for LFP batteries but with four cells in
series with 10A and 40A respectively. This corresponds to a
C-rate of 0.5 and 2 respectively. For the reference case with C-
rate 0.5 and cycling only between 12.6V to 13.7V for four
batteries, corresponding to 3.15-3.4V per cell. We could not
see any degradation at all after one hundred cycles with this
mild cycling. For C-rate 2, 40A, we saw a small degradation
by 0.0079% per cycle during 102 cycles. When running at C-
rate 0.5, the temperature increase was around 2-3°C but for C-
rate two it was 55-65°C measuring between the cells at various
positions. The lower temperature was at the entrance and outlet
from the series, while the higher temperature was between the
cells.

A problem with these measurements is that we get slightly
non-linear degradation. The degradation is higher in the first
fifty cycles compared to later. This also will depend on
temperature, C-rate, and other factors. To get more insights,
we have collected data from the literature as explained in the
next subsection.

3.2 Other experimental data

Tests with different Tesla cars with NAC batteries were made
with fast charging 90% of the time (Tesla 3 and Tesla Y) and
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compared to Tesla models with only 10% fast charging. This
was followed 1000- 2000 days. What they found was that the
degradation was very similar in both cases (SOH from 99% to
91% for 1000 days and 89% for 2000 days. The % is the
percent of the SOH measured as original distance with fully
charged batteries after use compared to fresh batteries). Still,
here the temperature control has been good, and a charging
pattern with low power close to full charge (around 80-90%).
Still, it is not known how degradation affects the long-term
capacity like 10-20 years.

Later the Tesla user’s organization compared LFP batteries.
Salazar and Bengoechea (2021) have summarized information
reported by different Tesla Model 3 owners, who have LFP
batteries. One had a decrease of capacity by 4.8% during
136,000 km operation; another 2.3% loss during 22,000 km,
when the vehicle was charged to 100% five days a week. A
third had 2.2% decrease in SOH during 32,000 km and 12
months of operation. In this case, all the cars had LFP batteries.
The second Tesla owner says he was charging to 100% five
days a week, which is higher DOC than recommended. Also,
the others said they often charged to 100%. A Tesla model 3
consumes 1.4-1.7kWh/10km which means 136,000 km
corresponds to some 19,000 — 23,100kWh total charging. The
battery capacity is some 55-77kWh depending on the model,
so it corresponds to 250- 420 full battery cycles. 4.8% total
degradation then corresponds to 0.011-0.019% per cycle. The
second had a loss of 2.3% during 2,000 km or 3080-3740kWh.
This means forty -68 full cycles, or 0.058- 0.034% per cycle.

Zhang et al. (2023) studied the degradation of both LFP and
NMC batteries as a function of temperature and C-rate. The
LFP batteries were charged to 3.65V while the NMC batteries
were charged to 4.2V. The degradation is seen in Table 1.

Table 1. Degradation of LFP and NMC batteries as a function
of C-rate and Temperature according to Zhang et al. (2023)

% degradation per cycle
C-rate | 0.2 0.5 1
Temp | 25°C | -10°C | 25°C | -10°C | 25°C | -10°C
NMC | 0.02 0.07 0.05
NMC 0.0375 | 1.16 | 0.4125 | 3.6
LFP 0.03 0.25 0.36
LFP 0.0233 | 0.26

Lin et al. (2023) have studied SoH in relation to internal
resistance. They found a degradation of SoH by 8% during
three hundred cycles while the inner resistance increased from
0.18 to 0.213 Ohm. The SoH decrease per cycle was 0.027%.

Shabani et al. (2023) have shown that DOD/DOC has an
impact on degradation, but also where in the span charge and
discharge occur. With the same total cycle depth but with
different spans you see different degradation. With DOC
=50%, we can see that the degradation rate goes from 12 to
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14.5% for 10 years when having a cycle of 40-90% SoC
compared to 10-60% SoC. When we increase the DOC above
this span of 50%, we also see an increased fade. How much
this is depends on temperature, battery type, and C-rate?

3.3 Summary of degradation data

If we try to summarize the data, both our own and others’ data,
we get a high variation as % per cycle, but still, we can see
some trends. An increased C-rate above 0.5-1 usually
increases the fade of SoH. When the temperature is below 0-
10°C and above 30°C, we also see an increased degradation
rate. The difference between LFP and NMC batteries is not
clear from these data. What can be seen is that the value for
the same condition varies significantly at the same temperature
and C-rate. We can see that the C-rate above 0.2 is increasing
the degradation rate as well as -10°C compared to +25°C. This
is for both LFP and NMC batteries. It is usually said that LFP
should not get that hot as energy per kg is lower, but we saw a
very high increase to 65°C at 40A with four cells in series, with
each 20Ah, or C-rate 2. This led to the swelling of the batteries
significantly. Concerning DOC/DOD many authors report that
this is important, like Shabani et al. (2023), but in absolute
numbers, it is not that easy to get a reliable figure.

What we have done with our simulation model is to set some
average values on degradation rate and from these estimate
parameter values. Adjustment is made for large changes in
DOC, temperature, and C-rate. We have made these
adjustments for each cycle assuming a full cycle. When the
cycle is not full, we assume degradation in SOH is a share of
the full cycle.

4. BATTERY DEGRADATION MODEL

The battery degradation will depend on several factors like
time, temperature, Depth of Discharge (DOD), Depth of
Charge (DoC), number of cycles, and C-rate as well as the
calendric time as such. It is of interest to define some key
numbers to follow that integrate these different factors.

The algorithm we use for the battery simulation is shown in
Table 2 (input data), Table 3 (calculations) and Table 4
(calculations for first 21 timesteps during charging) below.
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Table 2. Input data to battery simulator. In this case a single
LFP cell.

Input LFP Sort
Cell
Euxcen 64 Wh
Eocenn 3.2 Wh
Eocen 60.8 Wh
U cell 37V
Uppw.cutoft 25V
Upcen 25V
Ulgocel 3515V
Tocen 15 A
Lioo cen 2A
Ulormal 32V
Py 48 W

The calculations in the simulator are chosen as constant
voltage, constant current or constant power. In Table 3
below we see calculations for the constant power case
during charging. For discharge the calculation of SoC is
slightly different compared to during charging.

Table 3. Calculation for constant power (kW) during charge
and discharge

Constant power

dt 0.016667 h (minute)
Etcn 60.8 Ejgocent
P 48
Ubcen 3.515 Ujpoeen
Lcan 13.65576 P..,/U 100,cell
Etrcen 60 E; cer Uy cen™ Tt cen™dt
SoC 0.986111 (Et+i cen - Eqcen)/(E0cen ~Eocer)
Ubsy cen 3.500903 U, oy-(1- SOC)*(UI{)QoeH'U{]:oeH)
| g 13.71075 P..4/U el
Loop Et.cell=Et+1.cell
Ut=Ut+1
(It=1t+1)

Principally we calculate an update of SoC for each time step
depending on the kW discharge or charge. Calculations are
done for a single cell, but several cells in parallel and series are
configured to get the correct current, voltage, and energy
content (kWh).
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Table 4. Calculation of first 10 time-steps during charge of 15 cells in series

Constant power 15 cells

t 1 2 3 4 5 6 7 8 9 10
dt 0.01667 0.01667 0.01667 0.01667 0.01667 0.01667 0.01667 0.01667  0.01667  0.01667
Ey 48 48 48 48 48 48 48 48 48 48
Eio 912 912 912 912 912 912 912 912 912 912
Uy 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5
Uigo 52.275 52.275 52.275 52.275 52.275 52.275 52.275 52.275 52.275 52.275
P 720 720 720 720 720 720 720 720 720 720
ly 15 15 15 15 15 15 15 15 15 15
I, 19.2 19.09548 18.9921 18.88983 18.78865 18.68856 18.58952 18.49153 18.39457 18.29861
E 48 60.0024 72.0048 84.0072 96.0096  108.012 120.0144 132.0168 144.0192 156.0216
U 375 37.70525 37.9105 38.11575 38.321 38.52625 38.7315 38.93675 39.142 39.34724
E1 60.0024 72.0048 84.0072 96.0096  108.012 120.0144 132.0168 144.0192 156.0216  168.024
SoC 0.013892 0.027783 0.041675 0.055567 0.069458  0.08335 0.097242 0.111133 0.125025 0.138917
Upn 37.70525  37.9105 38.11575 38.321 38.52625 38.7315 38.93675 39.142 39.34724 39.55249
bt 19.09548 18.9921 18.88983 18.78865 18.68856 18.58952 18.49153 18.39457 18.29861 18.20366

If we look at the degradation due to different factors, we can
see that cycling conditions can be accounted for with a number
of adjustment factors or KPIs:

1. DoD/DoC is calculated as SoCi, when a cycle starts
minus SoCoy when we switch from charging to
discharging or the opposite. When DoD/DoC is larger
than 60% the amount between actual value and 60%
is calculated and multiplied by KPIqqc.

2. The temperature is assumed normal between 10°C
and 30°C, but increased degradation in proportion to
temperature difference higher or lower than this.
KPItemp = Topel‘ational - (> 30°C or <]00C) * Ctemp.

3. Adjustment for C-rate is KPI ¢ e = C-rate/Cerate,

Calendric time influence KPIcal = number of hours

since manufacture of battery * Ccal.

>

Degradation now becomes average degradation when
DOD/DOC is <60%, temperature 10-30°C and C-rate < 0.5.
We then add degradation rate as add-ons to this average value.

Degradation of SoH equals to:

SoHuee = S0Huwverage + (SOC-60) *KPlyo. + (Temp — >30
or<l10)*KPliemp + C-rate*KPI..rae

The SOHuverage 15 calculated from the measured values when
conditions are stated as above. For fifty cycles we have eight
test sets giving an average of 0.045%/cycle. For 325 and 435
cycles we have used two data sets, giving 0.015%/cycle. These
are the base values under “normal conditions”. So SOHaverage,50
= 0.045% and SOHaverage,400 = 0.015%. We assume the same
for both NMC and LFP batteries.

When the temperature went down to -10°C, the degradation
rate for NMC batteries was 1.16%/cycle at C-rate 0.5 and
3.6%/cycle at C-rate one. For C-rate going from 0.5 to 2 the
degradation rate went from 0.001 to 0.0079 for LFP battery
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and from 0.038 to 0.41 for a NMC battery in one set but from
0.07 to 0.05 in another! The tests unfortunately give quite
diverse measures! At extreme temperatures we normally see
significant degradation of SOH, but sometimes less than
expected. We thus have chosen to use conservative values. The
plan is to use future measurements to make these factors better
by time, including both measurements done in lab as well as
including module and pack data from different vehicles. The
following values have been set as our initial estimates: KPIgoc
=0.002, KPliemp=0.005, KPI c.rate = 0.01. This would give for
DOD=90, temperature 0°C and C-rate 2 a SoHdeg,400=0.015 +
(90-60)*0.002 + 10*0.005 + 2*0.01 = 0.145%.

Battery degradation could be modelled as U=I*R where R is
increased as a function of degradation of SoH. The correlation
between inner resistance and SoH is that a decrease of R by
0.18 to 0.2130hm correspond to a decrease in SoH by 8%
during three hundred cycles according to Wang et al. (2023).
This means 0.027% per cycle. This is a reasonable value if we
assume 25°C and C-rate 0.2-0.5. We also assume DOC/DOD
to be 60% (SoC 20-80%).

The actual power then could be calculated as Picna= P*(
Rovigina/Rpresen). When we demand P= 980W, we only get
P*(Roriginal/Rpresens) Which is lower than demanded, assuming
that total resistance is increasing.

In our simulation model though we are using the SoH
degradation depending on temperature, DOC/DOD and C-rate
as stated previously. From this we can calculate battery
degradation giving RUL and SoH from running with different
scenarios with respect to the different conditions.

5. POWER DEMAND FROM VEHICLE

The power demand for each time step is given from a model
over e.g. a train line going from one station to the next. There
is a time schedule that must be followed given the limitations
with respect to acceleration, deceleration, and average
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velocity. When passing sensitive areas there are speed
limitations e.g. 80 km/h to reduce the impact of noise. The
power demand for a train line is seen in Fig. 8 below. The
power demand is calculated from the weight of the train,
distance, inclination, velocity limitations, acceleration, friction
due to bearings, and wind. The results are shown in Fig. 9. The
power demand is in kW. Positive values are discharging
batteries and negative values charging the batteries due to
“motor breaking”.

Deceler . Acceler Cnn»fr.ml speed
ation Constant ation (120km/h) Deceleration

speed
(80km/h)

Constant speed
(120km/h)

Acceleration

need [km/h]

Sp

Zone A

Zone B Zone C Zone D Zone E Zone F Zone G

0 1 2 3 4 5 6 7

Relative Distance

Fig. 8. A train line with seven zones with different conditions
with respect to velocity, inclination and acceleration/deceleration.

From the data in Fig. 8 power demand for each zone is
calculated and sent to the battery simulator. In Fig. 9 we see
the speed of the train in each zone, or more precisely the
velocity of the train when it enters and leaves the zone.
Thereafter we see the power demand as kW in each zone, the
energy output or input to the battery as kWh and finally the
state of charge, SoC, calculated for each zone. In this case
there were just seven zones, but where there are major
accelerations/decelerations each zone may be divided into
several zones.
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Fig. 9. Speed in km/h in each zone (top), power demand (kW),
energy transfer (kWh) and finally state of charge (SoC) in/out of
each zone.

For each full cycle, we do a calculation on degradation of SoH
due to calendric time, temperature, DOD/DOC and C-rate. For
part of a full cycle, that is how much of a full cycle before
changing from charging to discharge or vice versa, we do this
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calculation as percent of a full cycle, so as a function of total
Ah stored and used.

6. DISCUSSION AND CONCLUSIONS

From the experimental results, we have made prediction
models for RUL and SoH. Concerning the battery simulator,
we have formulated the equations for constant power during
each section of the distance of a vehicle, or during a certain
time period. By running scenarios like a train line as above or
some other driving cycle for another type of vehicle, we can
simulate future degradation and from this calculate RUL and
SoH at certain times, or for “end of life” (EOL). Also
calculations can be made on when SoH has reached e.g. 80%,
where a second life use would be recommended. From the
intensity of the drive cycle, we also can recommend suitable
use of the batteries for this second life use. In case of harsh
cycles, it may be better to use the batteries for only energy
storage like in photovoltaic (PV) cell applications. If low
DOD/DOC has been applied generally, a power application,
like for example frequency control, can be possible, where
high power may be demanded.
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Numerical simulation of thermal runaway kinetic mechanisms and battery
thermal model for safety assessment of different lithium-ion battery
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Abstract: The importance of EVs and li-ion batteries are pinpointed in the automotive industry during the
last decade by increased growth of electrified powertrain. Li-ion batteries offer significant improvements
in terms of energy and power density; however, safety challenges continue to exist. Different thermal,
mechanical, or electrical abuse conditions in li-ion batteries can trigger a series of exothermic chain
reactions in the battery cells and finally result in thermal runaway (TR) and combustion of battery cells and
EVs. Furthermore, different battery technologies exploit various cell chemistries, leading to the distinct
thermal behavior of battery cells during normal and abuse conditions. This work aims at investigating the
TR kinetic mechanisms to evaluate thermal behavior of the battery cells under thermal abuse conditions.
Furthermore, this work investigates the different li-ion battery cathode, anode and electrolyte materials to
assess the safety of battery systems in EV application. The results revealed that unlike batteries with LiCoO;
cathodes with temperature threshold of 150 °C, Liy.1(Ni13C013Mny3)0.902 batteries do not undergo TR
process at temperatures below 170 °C. Moreover, the temperature peak is more hazardous in LiCoO;
batteries with LiPF¢/PC: DMC electrolyte compared to the same battery with standard electrolyte. In
addition, batteries with Lithiated LisTisO1, anode showed safer TR process compared to all the previous

battery types.
Keywords: Numerical simulation, Electric Vehicles, Li-ion batteries, Safety, Thermal runaway kinetic
mechanisms

1. INTRODUCTION conducted investigations on the thermal behavior of Li-ion

batteries under TR. A lumped model is proposed by Hatchard
et al. (Hatchard et al., 2001) to model the oven test as a
standard procedure of battery TR under thermal abuse
conditions. Kim et al. extended the previous models to 3D
models for oven tests of cylindrical cells and showed that
smaller cylindrical cells can reject heat faster than larger cells
and undergo a more moderate TR. Different studies have
focused on the thermal stability of cathode materials. MacNiel
et al. (MacNiel et al., 2002) studied the thermal stability of
seven different cathode materials by differential scanning
materials (DSC) and ranked them from safest to the least safe.
Jiang et al. studied the three different cathode materials,
LiCo02, Li(Nip.1C00.sMny.1)O; and LiFePO4 using accelerated
rate calorimetry (ARC) and showed that LiFePO4 offers
highest thermal stability. Peng et al. (Peng et al., 2016)
numerically investigated thermal safety of batteries for five
different cathode materials. Wang et al. (Wang et al., 2006)
investigated the thermal stability of li-ion battery electrolytes
and fitted the chemical reaction kinetics by Arrhenius law.
They concluded that the stability of electrolyte plays a
substantial role in li-ion safety. The effect of anode material
was also investigated by Haung et al. (Haung et al., 2016). The
thermal and combustion characteristics of TR over the battery
module with LisTisO12 anode battery cells were investigated

The importance of EVs and li-ion batteries are pinpointed in
the automotive section by the zero-tailpipe emission
requirement of EU fleet and increased share of electrified
powertrain in the market (IEA). Li-ion batteries offer
significant improvements from the first generations of EVs in
terms of energy density and power density, however, safety
challenges in the way of li-ion EVs continue to exist (Wang et
al., 2023). Extensive research has been done in thermal
management of EV batteries by proposing hybrid cooling
methods or even battery operating under cold climate to
enhance the performance of battery system (Gharehghani et
al., 2022, 2023). However, battery performance under abuse
conditions remains a challenge for battery developers.
Different thermal, mechanical, or electrical abuse conditions
in li-ion batteries can trigger a series of exothermic chain
reactions in the battery cells and finally result in thermal
runaway (TR) and combustion of battery cell, battery system
and the EV. Therefore, investigations of thermal behavior of
battery cells under critical conditions are of outmost
importance for EVs security and driver’s safety. Moreover,
different battery technologies exploit various cell chemistries
(Cathode, anode, electrolyte and separator materials), leading
to their distinct thermal behavior. Some researchers have
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through heating. Numerical investigation of thermal runaway
behavior of lithium-ion batteries with different battery
materials is also done by other researchers in the field (Kong
et al., 2021). In spite of numerous research on the effect of
battery material on the thermal stability of li-ion cells, a
comprehensive study to investigate the effect of different cell
components TR process of the battery cells is rarely done.

This work aims at the investigation of the most well-proven
kinetic mechanism reactions of TR phenomena to evaluate
thermal behavior of the battery cells with different materials
under thermal abuse conditions. A thermal model with TR
kinetic mechanism sub-model is adopted to replicate the
behavior of the battery cells under thermal abuse conditions.
Furthermore, to investigate the effect of different battery
materials of the cell thermal behavior during TR, two different
cathode, anode and electrolyte is selected from the literature
and also their temperature evolution with heat rates are
compared in the simulation of thermal abuse test. The results
of this work will facilitate the integration of kinetic
mechanisms into battery modelling under critical operation
and will improve the safety design of li-ion batteries in EV
application.

2. METHODOLOGY

This work employs a 2D thermal model integrated with the TR
kinetic mechanism to evaluate the thermal stability of different
li-ion battery cells under thermal abuse condition. The model
was built in the commercial COMSOL Multiphysics software
and by setting PDEs describing the undergoing physics of the
problem. The simplified schematic of battery cell is presented
in Fig.1 based on the 18,650-cell geometry and the model was
developed by 2D definition.
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Fig. 1. A) Schematic of battery cell and inner structure B) Model
Geometry of present work
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The thermal model was adopted by defining the conservation
of energy law and introducing the heat source term of TR
reactions. Heat source term considers heat of reaction in TR
event and by including a variety of different exothermic
reactions in each component of battery. The objective of
simulation is to replicate ARC test and trigger li-ion battery
cells with thermal abuse and by setting oven temperature.

The interplay of heat transfer between cell and environment,
heat of exothermic reactions and cell thermal balance
determines the temperature dynamics of the cell. The
temperature of the cell increases by the enthalpy of each
reaction, which further increases the cell temperature and
decreases the concentration of that component. The framework
of numerical thermal model in the present study is illustrated
in Fig. 2. Furthermore, li-ion cell properties in this simulation
are listed in Table 1.

Boundary & Initial conditions,

Thermal model B.Cs (Tp,ep. h),
Thermal runaway kinetic mechanism B.Cs (C0,.),
Mechanism Parameters
(A, Eay, Hy, W)

—
a[ Calculate the fraction of component ]
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e ——
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integrated total energy, heating rates, Integrated heat source
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Fig. 2. Thermal modeling and TR framework

2.1 Thermal model

The thermal behavior inside the battery is modeled by the
conduction heat transfer and conservation of energy as Eq.l
and 2. The generated heat Qgen by decomposition of each
component and dissipated heat Qg;ss to the environment is then
introduced into the energy equation.

dTBat _ Qgen - Qdiss
de MC,

M

dTBat

dt

Toae(t) = Taato + j de @

The generated heat of each reaction is calculated by the TR
model. Then, total generated heat is expressed as the
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summation of multiple heat components following the
following equation:

Qpen = ) Qs ©)

The interaction between battery and environment is
determined by considering the convection and radiation heat
as in Eq.4 and allows battery to reach to the environment
temperature and calculate the released heat of reaction in that
temperature. This iterative process is illustrated in Fig.2

Qaiss = Qconv + Qrad
=h-A- (Tarc — Tpat)
+&0(Tare — Tgat) 4

2.2 Thermal runaway model

The present model utilizes TR kinetic mechanisms introduced
by Kim et al. (Kim et al., 2007). The model follows the basic
kinetic mechanism of chemical reactions by the following
Arrhenius form:

dc, Eqx

e =g = Ax(€)™ (1 = c)2efeT )
Where kx is the reaction rate and cx is the normalized
concentration. Furthermore, Ax, Ea and gx are the pre-
exponential factor, activation energy and mechanism function
respectively. The concentration of each species is then updated
in the TR process as follows and by calculation of the reaction
rate. Model parameters for Kim et al. mechanism is presented
in Table 2 and.

cx=1—f K, dt (6)

The heat of the reaction is then calculated by multiplication of
reaction rate, heating value (Hx) and total mass of that
component (1mx) as the following:

Qx =my - Hy - Ky @)

Finally, the generated heat of each reaction calculated by the
model is superimposed to determine the total generated heat in
the following equation:

250

— Experimental Simulation

o
=

Temperature (°C)
=]
a

50

0
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Fig. 3. Comparison of the simulated temperature and reference
temperature for Kim et al. mechanism and Oven Temperature of
155°C

In this study, a LiCoO, battery with standard LiPFs electrolyte
and graphite anode is selected for oven test. Furthermore, a
Liz1(NiyzCo13Mnas)090, cathode (Kong et al., 2021),
LiPF¢/PC: DMC electrolyte (Wang et al., 2006) and lithiated
LisTisO12 anode (Haung et al., 2016) is selected from the
literature to assess the effect of different cathode, electrolyte
and anode material on the thermal stability of the cell during
thermal abuse conditions respectively. The Model parameters
of different battery materials are listed in Table 1.

Table 1. Model parameters of different anode, cathode and
electrolyte materials.

Lithiated | 5 NiyeCoys | LiPF&/PC: DMC
LI4TI5012
Mny3)0.902 electrolyte
anode

(Haung et cathode (Kong (Wang et al.,

al., 2016) etal., 2021) 2006)
Hyx 2.568x10"5 7.9x10"5 3.209x1075
Ay 5.21x10719 2.25x10M14 7.53x10719
Ex 1.88x10"5 1.54x10"5 1.882x10"5
Wy 1.274x10"3 1.293x10"3 0.96x10"3

Table 2. Model parameters and Li-ion cell properties for
Kim et al. (Kim et al., 2007) mechanism.

_ _ Symbol Description Value
Qgen - Z Qx - QSEI + Qa + Qc + Qe (8) Cell format 18,650 _
Where Qgg; is the heat from the SEI decomposition reaction, Battery rac_ilus, m Mt 0.009
) . . Battery height, m Nbatt 0.065
Q. is the heat from the anode active material and electrolyte, -
. . . Thickness of battery can, m dean 5E-4
Q. is the heat from the cathode active material and electrolyte Mandrel radi 0.002
and Q, is the heat from the electrolyte decomposition. The andrel radius, m ___ Mmandrel :
Model parameters of different battery materials are listed in yolumetrlc h(i?t CipaC'ty of Rho.Cp patt 2.789E6
Table 1. jellyroll, 0 m—~ K™) '
Average jelly roll radial K 0,034
The results of temperature evolution simulation are compared | thermal conductivity, W/cm K Tbatt '
with the experimental data in Kim et al. (Kim et al., 2007) | Heat transfer coefficient, h 717
study. The comparison in Fig. 3 shows that temperatures in the | W/(m?2-K) con '
simulation are in good agreement with the experimental data. . Hsei 2.57x10"5
Reaction heat, —
IKgA(-1) Ha 1.714%x10"6
Hc 3.14x10"5
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He 1.55x10"5
Asei 1.667x10"15
Reaction frequency factor, Aa 2.5x10713
sN(-1) Ac 6.667x10"13
Ae 5.14x10"25
Eagei 1.3508x10"5
Reaction activation energy, Ea, 1.3508%x10"5
J-mol~(-1) Eac 1.396x10"5
Ea. 2.74x10"5
Co.sei 0.15
. . . Co.a 0.75
Initial value, dimensionless ” 0.04
Coe 1
Miei 1
Ma n 1
Reaction order Me p1 L
Mc, p2 1
Me 1
t0.sei 0.033
Volume-specific content of We 610
reacting material, kg-m*(-3) We 1300
' We 406

Table 3. Initial concentrations and reaction rates for each
component in Kim et al. (Kim et al., 2007) mechanism.

Component Initial concentration dc/dt
Anode 0.75 -Ran
Cathode 0.04 -Reat
Electrolyte 1 -Re
SEI 0.15 -Rsei
toei 0.033 -Ran
Binder - -

3. RESULTS AND DISCUSSION

The TR simulation of the li-ion battery cells with different
cathode, anode and electrolyte materials is performed to
investigate the thermal stability and safety of li-ion batteries
with different materials. The thermal stability of Li-ion
batteries is characterized by the onset temperature and time of
TR events. In addition, the thermal safety of the TR process
can be characterized by the heat rate and peak temperature.
The thermal safety of li-ion battery cell with LiCoO> cathode,
graphite anode and standard LiPFs electrolyte is assessed
based on Kim et al. kinetic mechanism. The results illustrated
in Fig.4 indicate that battery cells are not prone to TR event at
the temperatures under 150 °C. However, higher temperatures
cause the start of exothermic reactions and further increased
temperature. It can be found that higher temperatures can
cause more serious hazard TR events in terms of released heat,
temperature peak and onset time of TR. The results of
temperature diagram, heat rate and average values for
components are presented in Fig. 4.

DOI: 10.3384/ecp212.008
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Fig. 4. TR kinetic mechanisms for LiCoOz battery with
standard LiPFs electrolyte and graphite anode. A) Maximum
temperature for Oven Temperature 150-200 °C B) Heating
rate for Oven Temperature 160 and 165 °C) Average values and
temperature for Oven Temperature 180 °C.

The thermal safety of Liyi(NiyzsC013Mn13)0902 battery
cathode with standard LiPFg electrolyte and graphite anode is
evaluated in Fig. 5. Unlike batteries with LiCoO; cathodes that
presented  temperature  threshold of 150  °C,
Liz.1(Niy3Co13Mna3)0.902 batteries do not undergo TR process
at temperatures below 170 °C. However, the thermal runaway
events are much more intensive and oven temperatures of 180
can result in peak temperatures of 443 °C while LiCoO>
batteries peak at ~300 °C during TR at the same oven
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temperature. The results of temperature diagram and heat rates
for Liz1(NiizCo13Mna3)0.902 batteries are presented in Fig. 5.
(a)

450F

— T = 165°C
—— Towa=1707C
— Tean=175°C

Towan = 180 °C

o B b
—— Electrolyte

E 60 sel

d SEI
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—. Positive Electrode

Negative Electrode |

Negative Electrode

Fig. 5. TR kinetic mechanisms for Lil.1(Nii3Co13Mni
3)0902 battery with standard LiPF¢ electrolyte and graphite
anode A) Maximum temperature for Oven Temperature 165-
180 °C B) Heating rate for Oven Temperature 175 and 180 °C.

The thermal safety of LiCoO; batteries with LiPFs/PC: DMC
electrolyte and standard graphite anode was also assessed in
this study to compare the influence of different electrolyte
materials. The results indicate that batteries undergo TR
process at 150 °C while this is a safe temperature for
Li1.1(NiyzCo13Mnass)0.902 batteries or even LiCoO; batteries.
The temperature peak is less substantial in LiCoO; batteries
with  LiPFe/PC: DMC electrolyte  compared to
Liz1(NiyzCo13Mnys)o 90, batteries, but more intensive
compared to LiCoO; batteries, especially at higher oven
temperatures. The results of temperature diagram and heat
rates for LiCoO; batteries with LiPFe/PC: DMC electrolyte is
presented in Fig. 6.

Lastly, thermal safety of LiCoO; batteries with standard LiPFg
electrolyte and Lithiated LisTisO12 anode is assessed in this
study to compare the influence of different anode materials.
The results indicate that batteries undergo TR process at 160
°C. LiCoO- batteries with Lithiated LisTisO12 anode show less
intensive TR process compared to all the previous battery
types. This is evident from comparison of temperature peaks
for different battery materials. The results of
temperature diagram and heat rates for LiCoO, batteries
with Lithiated LisTisO12 anode are presented in Fig. 7.
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Fig. 6. TR kinetic mechanisms for LiCoO: battery with LiPFe/
PC: DMC electrolyte and graphite anode. A) Maximum
temperature for Oven Temperature 140-200 °C B) Heating
rate for Oven Temperature 150 and 160 °C.

4. CONCLUSIONS

In this study thermal stability of different battery materials was
evaluated for li-ion batteries under thermal abuse conditions.
A LiCoO2 battery with standard LiPF6 electrolyte and
graphite anode is selected for oven test as the basic battery.
Furthermore, a Lil,l(Ni1/3C01/3Mn1/3)0,902 cathode, LiPF¢/PC:
DMC electrolyte and lithiated LisTisO12 anode is selected to
assess the effect of different cathode, electrolyte and anode
material on the thermal stability of the cell during thermal
abuse conditions respectively. The results of temperature
evolution and heat rate diagram are reported and comparison
between different battery materials has been drawn.

It is shown that unlike batteries with LiCoO; cathodes with
temperature threshold of 150 °C, Li11(Ni13C013Mn1/3)0.902
batteries do not undergo TR process at oven temperatures
below 170 °C. However, the temperature peaks are more
substantial in batteries with this type of cathode. Moreover, the
temperature peak is more intensive in LiCoO- batteries with
LiPFe¢/PC: DMC electrolyte compared to the same battery with
standard electrolyte but less intensive compared to
Li1.1(NiysCo15Mny3)090; batteries. In addition, batteries with
Lithiated LisTisO1, anode show less intensive TR process
compared to all the previous battery types.
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Fig. 7. TR kinetic mechanisms for LiCoO: battery with
standard LiPFs electrolyte and Lithiated LisTisO12 anode A)
Maximum temperature for Oven Temperature 140-200 °C B)
Heating rate for Oven Temperature 160 and 170 °C.

The result of this study provides battery safety researchers with
new insights into the thermal stability of different battery
types. Further investigation into the assessment of battery
materials thermal stability will foster the EV battery safety.
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Abstract: This paper assesses the impact of increasing wind power production and energy storage
systems on grid resilience in Sweden. Wind power currently makes up 17% of Sweden’s electricity mix,
and this share is expected to rise significantly in the coming decades as Sweden aims for 100% renewable
energy generation by 2040. However, the variable and intermitted output can negatively impact grid
stability. A microgrid model is developed, incorporating a wind turbine, battery storage, power grid, and a
representative demand profile. Wind speed data is analysed to select profiles representing high and low
variability, with variance used as a metric for resilience. Planned production is constructed in 12-hour
intervals based on wind speed forecasts. The model compares grid dependency and electricity delivery
with and without battery storage of varying capacities. The results show that battery storage reduces grid
interactions and grid dependency. Furthermore, it aligns actual wind power production with the planned
production profile. Optimisation analyses find that minimising operational costs and battery usage
increases grid reliance while minimising costs and grid supplies provides a more stable supply but
overuses batteries. Sensitivity analysis demonstrates higher grid dependency in high-variance wind
conditions. The paper contributes to understanding how to enhance wind power resilience through
improved production planning and battery integration. It proposes using variance analysis in wind profile

selection and identifies trade-offs between system stability, costs and battery lifespan under different

optimisation strategies.

Keywords: wind power, planned production, battery storage, resilience, Sweden

1. INTRODUCTION

Sweden primarily relies on hydropower and nuclear energy for
domestic electricity production (The Swedish Energy Agency,
2023). In 2020, renewable energy sources contributed to 92%
of Sweden’s electricity production, with hydropower
accounting for 45%, nuclear power for 29%, wind power for
17% and solar power for 1%. The remaining 8% was generated
through combined heat, power, and industrial processes.
Globally, there has been a rapid increase in the adoption of
wind power (Benitez, Benitez and van Kooten, 2008), a trend
mirrored in Sweden. The installed capacity of wind power in
Sweden increased from 3,487 GWh in 2010 to 27,536 GWh in
2020, a growth attributed partly to supportive renewable
electricity policies (IEA, 2019). Sweden aims to achieve 100%
renewable energy production by 2040, while still retaining
nuclear energy as an option (The Swedish Energy Agency,
2023). However, this goal is complicated by the predicted rise
in energy demand over the coming decades, driven by various
factors including emissions reduction, industry growth,
hydrogen production, and the electrification of transportation
and the steel industry (Holmberg and Tangerés, 2023). To
address this growing demand, it is expected that wind energy
production will need to increase over the coming decades
(Ministry of the Environment and Energy, 2018). Current
projections indicate that the installed capacity of wind power,
which stood at 12,100 MW, is expected to rise to 18,500 MW
by 2030 and 33,300 MW by 2040 (Swedish Wind Energy
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Association, 2021). Integrating wind power into the electricity
grid presents several challenges due to its inherent weather-
dependent nature, which results in variable and unstable power
output (Zhao et al., 2015; Reddy, 2017). This variability may
adversely affect the stability and performance of the electric
power system, causing frequency and voltage disturbances that
may lead to system shutdowns (Li et al., 2021). Additionally,
the intermittency of wind power affects market mechanisms
for electricity trading, as these mechanisms rely on accurate
production planning forecasts. Inaccuracies can lead to price
fluctuations in electricity prices, particularly as wind power
penetration rises (Peizheng Xuan et al., 2019). The primary
goal of grid operation is to meet electricity demand, however
variable wind power output complicates this objective.
Accurate forecasting of production and demand is crucial for
determining the required amount of dispatchable electricity.
Despite advancements in forecasting techniques, errors are
inevitable, necessitating power reserves for grid operators
(Michiorri et al., 2018), ultimately hindering the integration of
wind power (Zhao et al., 2015). One proposed solution to
mitigate these grid issues is combining wind power with
energy storage systems (ESS). ESS can provide the necessary
flexibility to smooth out the variability in wind power output
(Zhao et al., 2015; Michiorri et al., 2018; Barra et al., 2021).
Previous research has explored various aspects of ESS
integration: Li et al. examined short-term “power-smoothing”
applications utilising high-power ESS that rapidly respond to
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high power outputs (Barra et al., 2021), Sperstad and Korpas
et al. investigated the optimal scheduling of ESS in grids
with large renewable energy shares, developing a
framework to avoid suboptimal operations (Sperstad and
Korpas, 2019). Additionally, M. Ghazipour and M. Abardeh
et al. developed a stochastic optimisation approach for
optimising the location and size of ESS in energy systems
(M. Ghazipour and M. Abardeh, 2019). These studies
collectively aim to enhance the understanding of ESS
from  various technological perspectives, addressing
the wvolatile energy output of renewable energy sources
(RES) and mitigating their adverse effects on the energy
system. However, none of these studies specifically address
ensuring a guaranteed electricity supply, a critical factor as
the increase in wind power reduces the amount of
controllable electricity supply. This aspect is vital in the
broader context of energy system  resilience.
Acknowledging resilience is increasingly crucial within the
ongoing energy transition, despite its varied definitions across
multiple disciplines. Fundamentally, resilience revolves
around the capacity to cope with disruptive events (Gasser et
al., 2021; Jasitnas, Lund and Mikkola, 2021). One definition
of resilience involves minimising service disruptions by
anticipating, resisting, absorbing, adapting to and recovering
from disruptive events (Ahmadi, Saboohi and Vakili, 2021).
Gasser et al. define resilience as the capacity of systems to
withstand stress, pressure or disturbance without loss of
function (Gasser ef al., 2021). This research aims to develop a
microgrid model that integrates wind power and battery energy
storage, assess the role of battery storage in mitigating wind
power variability, and analyse the system's resilience. By
evaluating performance during disruptive wind events, this
study aims to enhance the broader understanding of how ESS
can enhance the resilience of renewable energy systems,
ensuring a more stable and reliable electricity supply. The
central question addressed is: How can battery energy storage
mitigate volatility and increase the integration of wind
turbines?

2. METHODOLOGY

This research employs a case study representative of recent
developments in Eskilstuna, Sweden. The primary
components of the microgrid model include a wind turbine,
battery storage, a power grid and a representative demand
profile. Two configurations will be modelled, to assess the
value added by battery storage. These configurations are
modelled using Modelon Impact, a systems modelling and
simulation program. Modelon Impact utilises Modelica’s core
modelling and simulation capabilities. Modelica is an object-
oriented programming language. Modelica allows for a
detailed description of the behaviour of physical components
and their interactions within the system.

2.1 Components and controls

Figure 1 illustrates the microgrid model. The Wind and
Temperature blocks contain wind speed and air temperature
data, respectively. The Temperature block determines the air
density, directly affecting the wind power produced in the
Turbine block. By incorporating these data, the model
accounts for the impact of temperature-induced density
variations on wind power generation. The power generated by
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Fig. 1. The microgrid model developed with Modelon Impact.
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the wind turbine is then directed to the Converter block which
converts the alternative current (AC) to direct current (DC).
This DC power flows through the transformer- which converts
the high voltage to a lower voltage suitable for distribution
within the grid. The electricity is delivered to the Demand
block, representing a representative demand profile. The
Demand and Demand profile blocks represent the forecasted
power demand. The Grid block can provide and receive
unlimited electricity to balance the grid. This setup facilitates
analysis by comparing the actual power output against the
planned output. An important component of the microgrid
model is the Control unit. The operation of the battery is based
on the net amount of power denoted by Py, described in (1).

Puet= Pwind - Pdemand (1)

The Control unit measures Py at each time point and
operates according to the following control scheme.
o If Py <0, the required power is generated by
discharging the battery, or bought from the grid
o If Py > 0, the surplus is either used to charge the
battery sold to the grid or both.

2.2 Wind power

The theoretical power that can be extracted from the wind by
a wind turbine is proportional to the wind speed to the power
of three (Kim, 2013). This relation is described in (2), where P
represents the total wind power production by the turbine,
measured in watts. The total area the turbine blades cover in
one rotation is described by A, the swept area of the wind
turbine in m?, p is the density of the air in kg/m* and v
represents the velocity of the wind in m/s, C, is the power
coefficient, defined as the ratio of power extracted by the wind
turbine from the energy available in the wind.

1
PzzAp v3Cp (2)

In addition to calculating the theoretical wind power, a suitable
wind speed profile is required. Moreover, a thorough wind data
analysis is needed to capture resilience in a wind speed profile.
Rapid and large changes in wind speeds are identified as
disruptive events. One example of such events is sudden drops
in high wind speeds. These abrupt changes can be quantified
through statistical measures such as variance. Variance
assesses the spread of data points relative to their average in
the data set. Specifically, in wind speed analysis, variance
indicates the degree of variability in wind speeds over time.
Greater variability, as indicated by a higher variance signifies
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an increased need for system resilience. A timeframe of one
week is selected for the modelling phase to calculate the
variance of the wind speed of the dataset. Hence the variance
will be calculated for each week of the dataset. The formula
for the variance is shown in (3). Where x; is each value in the
data set, x is the mean of all values in the data set and N is the
number of all values in the data set (Hui, 2018).
, (g —x)?

o? =T 3)

The selection of wind speed profiles in this research is based
on several criteria. First data was sourced from a location of
importance to the research region. Additionally, the profiles
were chosen to represent a range of scenarios including
average, low and high-wind conditions, to assess the system’s
resilience under diverse operational conditions.

2.3 Planned production

Forecasting wind speed will become increasingly paramount
as future wind farms function more like conventional power
plants. This transition implies a shift towards more accurate
planning of electricity production, leading to the development
of guidelines focused on reliability to ensure the safe operation
of wind farms. Several factors are driving the shift in the role
of wind power. Firstly, wind power’s exposure to volatile
wholesale electricity prices changes its economic dynamics.
Given the relatively low marginal cost of producing wind
power, increased wind power tends to decrease electricity
prices. Secondly, governmental support schemes, such as feed-
in-tariffs (a guaranteed cost-based purchase price for
electricity), are being replaced by auctioning systems,
incentivising wind farm owners to prioritise profit
maximisation over pure electricity production volume. This
shift underscores the growing importance of accurate wind
speed forecasts in optimising wind farm operations and
maximising profitability (Kolle et al., 2022). Wind speed
forecasts are constructed for various timeframes depending on
the specific application. These include very short-term
forecasts (a few seconds to 30 minutes), short-term forecasts
(30 minutes to 6 hours ahead), mid-term forecasts (6 hours to
a day ahead), and long-term forecasts (1 day to a week or
more). Different methods, such as machine learning or
statistical approaches are employed for generating these
forecasts (Khosla and Aggarwal, 2022). In this research, a
mid-term forecast for a half-day ahead is used, with wind
speed predictions generated every 12 hours. The variables used
in the planned production profile are depicted in (4) and (5),
where Vaverage represents the average wind speed, and Vi
represents the hourly wind speed values i = 1,2, ..., 12. The
choice of a 12-hour planning interval aligns with the timeframe
of day-ahead wholesale electricity price data, ensuring
coherence between the forecasting parameters and pricing
data.

1 —12
Vaverage = 12 Z ) 12171' “4)
i=
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2.4 Optimisation

The optimiser minimises the total cost, as presented in (6).
Where L(x,u,p) represents the integral cost depending on the
process state x, the controls u, and the plant parameters p. State
variables x denote the dynamic state over time, such as the
state of charge (SOC) of the battery, the power output of the
wind turbine or the electricity consumption of the grid. Control
variables u are decision variables that can be adjusted to
optimise the system performance, such as the charging and
discharging rate of the battery or the import and export to and
from the grid. Parameters p are fixed values for a system,
including the power efficiency of the turbine, battery capacity,
electricity prices, or demand profiles. The cost integrand
L(x,u,p) can be further decomposed into two terms, presented
in (7). Costy typically refers to the operational cost per unit
time (OPEX,..), while cost, penalises the controls u (du?/dt) to
promote smoother and more stable operation.

TOptimization

Miny, ) ,CoSt = f L(x,u,p) dt (6)

0

Costy, can be defined as minimising the battery’s aggressive
charging and discharging behaviour, thus extending its
technical lifetime. Generally, the penalty of cost, is much
lower than the operational cost costy. Dynamic optimisation
aims to find the optimal trajectory u(t) while satisfying the
system constraints. Modelon Impact utilises the Interior Point
OPTimiser (IPOPT) to determine the best next step. [POPT
gradually narrows down search barriers within a feasible
region to approach an optimal solution without reaching the
boundary until close to finding it.

L(x,u,p) = cost, + cost, (7

In this research, different objectives are chosen to be
minimised. The first scenario combines operational cost and
battery controls to minimise total cost while minimising
battery operation to extend the technical lifetime. The second
scenario considers operational cost and the power output of the
grid, aiming to minimise grid dependency. In Table 1 the
optimisation scenarios are presented.

Table 1: Optimisation scenarios

Scenario Costy Costu
*
OPEXsec, controls OPEXsec Battery(l.)ower Charge
Power discharge)
OPEXGsec, power grid OPEXsec | Grid power

2.5 Data

This section outlines the key properties and sources of the time
series data used in the research, which include air temperature,
wind speed, electricity prices, and demand profiles. The
following tables provide a summary of the data.
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Table 2: Demand profile data

Parameter | Resolution Period Unit
Demand 12 hour
profile interval Weekly | [MW]

Table 3: Time series data
Parameter Unit Range Period Source
Air 01/01/2010 — (SMHI,
temperature | K 017102023 | Uy | 5503)

. 01/01/2010 — (SMHI,
Wind speed | [m/s] 01/10/2023 Hourly 2023)
Electricity | [EM [ 01012015 | .~ 1 (ENTSO-E,
price Whe] | —01/12/2023 Y | 2023)

2.6 Modelling assumptions

The battery capacity is assumed to remain constant, meaning
that the battery’s efficiency does not degrade over the
simulation period of one week. This assumption is reasonable
given the short simulation period, where the number of
charging cycles during this time is insufficient to cause the
battery capacity to degrade. Additionally, unlimited import
and export from and to the grid is assumed. However, in real-
life, the grid may encounter congestion, where the
transmission network cannot meet the demand. In such cases,
assets like wind farms may receive compensation from
Svenska kriftnat (Transmission System Operator) to adjust
production or decrease consumption accordingly (Holmberg
and Tangerds, 2022). The total installed cost of batteries
decreases as the capacity increases. Most costs are calculated
for a battery system with a 2-hour duration, meaning the time
it can deliver its full power capacity in MW. For example, a
battery with 2 MW and a 2-hour duration has a capacity of 4
MWh. In the case study, the battery system has a 1:1 power
ratio (MW:MWh). Data on batteries with a 1-hour duration is
limited, therefore it is assumed that the cost of batteries for
different capacities is based on 2-hour duration systems.
Although the transmission capacity of the power grid is
assumed to be unlimited in this research, in reality, exceeding
transmission capacity can result in penalties for wind farm
owners. For example, if the 220 kV transmission line
connecting the wind farm to the grid is exceeded, penalties
may be imposed on the wind farm owner for not meeting
planned production. To mitigate this, batteries with longer
durations and different power ratios could enable more
effective operating strategies. A 1:1 power ratio is selected,
allowing the battery to discharge completely within one hour.

3. RESULTS
3.1 Wind profile selection

The wind speed variance at hub height is calculated from 2010
to 2023, plotted in Fig. 2. Each bar in Fig 2. represents a
week and its corresponding variance value. A higher variance
indicates greater variability in wind speed, while a lower value
suggests more stable wind conditions. The highest and lowest
variances are 51 and 0, respectively. It is important to note that
the variance is rounded up towards the nearest integer. The
variance is calculated at hub height, as the wind speed at this
height determines the wind turbine's power output.
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Fig. 2. Variance of the wind speed at hub height, from 2010 until
2023. The chosen wind profile is indicated in red.

3.2 Planned production

It is essential to establish a baseline by examining the wind
power output generated solely by the wind farm, without any
battery storage. This baseline gives insight into how accurate
the actual production of the wind turbine is compared to the
planned production. Furthermore, the interaction between the
wind turbine, power grid, and planned production will be
visible. In Fig. 3 the produced power of the wind turbine is
presented. The planned power production and the actual power
production are not balanced most of the time. During periods
of imbalance, the electricity grid functions as a source and sink
of electricity. Analysis indicates that 65% of the total
exchanged electricity flows into the systems and 35% is
delivered to the grid. Integrating battery storage aims to
decrease grid interactions, especially the delivered electricity
to increase power system autonomy. Battery integration with
a wind turbine increases power output. This influences the
total amount of electrical energy the grid has to provide. The
total electricity delivered is presented in Fig. 4. The blue bar
represents the delivered electricity in the scenario when only
the wind turbine operates, and the yellow bars indicate the
scenario in which both the wind turbine and battery are in
operation. With increasing battery capacity, there is a notable
decrease in the total energy demand from the grid. For
instance, in the wind turbine-only scenario, the grid delivers
430 MWh. However, with 1 MW of installed battery capacity,
the grid delivers 37 MWh less. At 30 MW installed capacity,
the grid provides a total of 183 MWh.

3.3 Battery storage

The straightforward observation of decreased -electricity
delivered by the grid with increased battery capacity can be
further analysed when looking at capacity efficiency. Capacity
efficiency is defined as the difference between the delivered
electricity by the grid in a scenario with only wind turbines and
the electricity delivered by the grid when batteries are
installed, divided by the total battery capacity. It measures how
effectively the battery is utilised. For example, in Fig. 4, the
total electricity delivered by the grid in the wind turbine
scenario is 430 MWh, and the delivered electricity for a2 MW
battery is 382 MWh, resulting in a capacity efficiency of
430—-382=24 MWh/MW. In Fig. 5 the capacity efficiency
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Fig. 3. The actual and planned power production of the wind
farm.

for each battery size is plotted against the battery capacity. It
can be observed that as battery capacity increases the capacity
efficiency goes down. This implies that increasing battery
capacity has diminishing returns in terms of its effectiveness
in reducing grid dependency.

3.4 Optimisation

The results of the two optimisation scenarios in Table 1 are
presented in Fig. 6 and compared with the main scenario
from Fig. 4, which involves the simulation with the microgrid
controller. The control strategy of the microgrid controller, as
outlined in (1) focuses on maintaining grid balance by
prioritising maximum utilising the battery while minimising
reliance on the grid. Unlike optimisation strategies, this
method does not involve optimising specific variables but
rather adopts a more direct approach to grid management. The
optimisation analysis reveals that integrating 1 MW of battery
capacity reduces grid-supplied electricity when minimising
operational cost and battery controls. Grid-delivered
electricity shows a steep increase after installing 10 MW
battery capacity. This observation suggests a trade-off,
wherein efforts to smooth battery controls to extend battery life
elevate the reliance on the grid. In the scenario aimed at
minimising the operational cost and grid power output, the
dependency on grid-supplied electricity remains relatively
stable for each additional battery capacity. However,
exceptions are noted with the installation of 2 MW and 30 MW
battery capacities, where an increase in grid dependency is
observed. Figure 7 presents the operational cost across all
scenarios. In each scenario, the operational cost of the wind
turbine and the battery are constant as they incur fixed
operational expenses. Conversely, the grid’s operational costs

40
35 |
30 |
25><
20 |
15+
10 t

Capacity efficiency [MWh/MW)|

0 10 20

Battery capacity [MW]
Fig. 5. The impact of battery capacity on the total amount

of the grid’s delivered electricity.

vary and depend on the power output and electricity price. The
optimisation analysis reveals that incorporating up to 2 MW
of battery storage leads to a small decrease in operational cost.
Compared to the main scenario, incorporating 10 MW, 20 MW
and 30 MW of battery storage leads to higher operational costs.
The SOC of the battery is presented in Fig. 8. In the
optimisation scenario aimed at minimising the operational cost
and grid supply, the SOC begins at 0.9 and gradually decreases
until 0.1 over the simulation period. Although continuous
charge and discharging cycles occur, they constitute only a
small fraction of the total battery capacity. In the optimisation
scenario of the operational cost and battery controls, the SOC
exhibits different patterns of battery utilisation. A more regular
pattern is observed in the SOC of the battery, especially in the
first two days of the simulation. The small operational cycle
during day six indicates a degree of flexibility in deviating
from the optimised battery controls to minimise operational
costs. Compared to battery controls a higher penalty is
associated with optimising operational costs. In contrast, the
SOC during the simulation with the microgrid controller
indicates a more frequent utilisation of the battery, aligning
with the result of Fig. 6, which suggests reduced grid
dependency. Specifically, the microgrid controller simulation
experiences a total of fourteen operational cycles, whereas the
battery controls optimisation scenario only experiences a total
of eleven operational cycles. This indicates a trade-off wherein
the grid can be stabilised at the expense of potentially
overusing the battery, or reducing stress on the battery by
increasing dependency on the grid.

i gg P Electricity deliverd by the grid [MWh]
393
L >7° 382 ]
400 22 a5 ﬁ
— 30 309
§ 300 | 2
<
8 200 | 183 ST v e = )
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100 | L - 2
50 r
0
1 2 5 10 20 30
Battery size [MW] 12 5102030 125102030 125102030
Fig. 4. The total electricity delivered by the grid with and without Simulation with microgrid |Opt. Operational cost and| Opt. Operatic_)nal cost
batt ery storage controller battery and grid
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Fig. 7. The operational cost of the simulation and Optimisation
scenarios for every battery size.

3.5 Sensitivity analysis

To measure the impact of variance on the results, different
wind speed profiles and their 12-hour interval average are
presented in Fig. 9. What can be observed from this analysis is
that the high variance profile exhibits more pronounced
peaks and troughs in wind speed throughout the week. High
peaks are observed on the first and third days of the simulation.
The low-variance profile demonstrates a more stable pattern
and gradually increases from O m/s on the first day to
approximately 5 m/s by the end of the week. Quantitatively,
the high variance profile has a variance of 16.01 and the low
variance has a value of 2.27. Figure 10 presents the electricity
delivered by the grid in the high and low-variance scenarios,
showcasing a similar trend to that of the main scenario. In the
high variance scenario, more electricity is delivered by the grid
in both the wind turbine-only simulation and the incorporation
of each additional battery storage capacity. This observation
can be attributed to the deviations between planned and actual
production caused by the high variance in wind speed. The grid
intervenes to align the actual with planned production,
resulting in an increased demand for electricity from the grid.
Conversely, in the low variance scenario, less electricity is
required from the grid as the actual production closely aligns
with the planned production due to lower variance in wind
speed. Consequently, there is a reduced need for the grid to

—Opt. Operational cost an grid supply
Opt. Operational cost an battery controls
Simulation with microgrid controller

0.9
. ‘\x
N S T e e = N = R
o | U LA L) L L) L L
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Fig. 8. The battery SOC during the simulation run with the
microgrid controller and the optimisation runs.
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intervene to align the two. For instance, in the wind turbine-
only simulation, the electricity delivered by the grid is 116
MWh in the low variance scenario but decreases to 0 MWh
when 30 MW of battery capacity is installed, this indicates the
significant impact of variance on grid dependency and the
effectiveness of battery storage mitigating it. In addition to
analysing variations in wind speed, it is essential to consider
the potential effects of model prediction uncertainties on the
system’s performance. Prediction errors, whether in wind
speed or demand can lead to imbalances in supply and demand,
compromising grid stability. Errors in forecasting can lead to
inefficient dispatch resulting in increased operational costs and
can reduce system efficiency. Storage sizing depends on
accurate forecasts, if errors are not accounted for, resilience
strategies may be underutilized.

4. DISCUSSION

4.1 Battery optimisation

Michiorrit et al. researched strategies to minimise power errors
in wind turbines and optimise battery storage sizing in a 9 MW
wind farm. The wind farm owner provided to the transmission
system operator with 30-minute interval power predictions. A
5 MW power-rated battery, resulted in high penalties and
periods of disconnection. To address this, a sizing
methodology was developed that generated error time series
characterised by their autocorrelation. This led to an optimal
capacity. A smaller-sized battery performed better because it
effectively absorbed prediction errors correlated over
timescales of around 6 hours, rather than compensating for all
the differences between actual and predicted output over time.
Consequently, a smaller battery reduced penalties while still
achieving the target level of allowable errors, allowing it to be
utilised to its full technical potential (Michiorri et al., 2018).
In this research, no error range is employed for the operational
strategy, resulting in immediate battery utilisation whenever
there is a misalignment between predicted and actual power.
This complicates the comparison between the study of
Michiorri et al and the current research. However, both studies
agree that a smaller battery can better utilise its full potential.
This is demonstrated in the present research, where the battery
capacity increases and the capacity efficiency decreases.

4.2 Production planning interval

This research shows that a 12-hour interval accumulates
production planning errors in a high-variance scenario,
resulting in increased electricity from the grid. As the variance
decreases, the forecast error also decreases, suggesting that a
12-hour forecast interval is more suitable for low-variance
wind profiles. In contrast, high-variance wind profiles could
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Fig. 10. Electricity delivered by the power grid: high and low
wind profile.

benefit from a narrower interval. Y et al. investigated the
optimisation of a self-disciplined interval of a wind farm. This
interval is calculated assuming an error distribution around the
mean of the predicted power output. An estimation technique
models the historical error distribution shape between the
actual and predicted wind power output. This interval width is
optimised using the [IPOPT. A case study analyses a 10-minute
simulation interval to validate this method. Optimised battery
storage technology supplies the necessary power to maintain
this interval. It was found that the optimised method can
effectively improve the self-disciplined level. Showing shorter
intervals is an effective way of constructing robust production
planning. A limitation of this research is the exclusion of
battery degradation. Furthermore, only one case study is used
and the method does not consider any error in actual wind
power production (Yu et al., 2020).

4.3 Policy decisions

Policy decisions should focus on resilient energy
infrastructure, with investments made in battery optimisation
to achieve cost-effective grid independence. Furthermore,
policies should address grid congestion and provide
compensation mechanisms for energy producers. Increase
penalties for overproduction to encourage efficient energy
management. Furthermore, high upfront costs and varying
electricity prices are barriers to large-scale deployment of
battery storage. Governments can provide subsidies for stable
pricing mechanisms and long-term contracts to ensure
financial security.

5. CONCLUSIONS

This research aims to investigate how battery storage can
mitigate the volatility of wind power and its implications for
the resilience of the Swedish energy system upon integration
into the power grid. Given the growing trend of wind power
with battery storage in Sweden, this study contributes to our
understanding of improving wind turbine resilience through
better production planning. Presented below are the main
findings stemming from this research:

e Incorporating battery storage significantly reduces

dependency on the power grid, especially in the
lower-variance wind profiles.
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e Enhanced utilisation of batteries is observed as
battery capacity decreases.

e The research introduces a method for selecting wind
speed profiles based on variance analysis, which
captures the dynamic nature of wind behaviour. This
approach identifies disruptive events through
variance, providing a nuanced understanding of wind
variability and system resilience.

e Enhancing system resilience by reducing grid
dependency can increase capital and operational
costs. Consequently, this leads to a higher variability
in the SOC of the battery while smoothing the power
grid supply. This creates a trade-off between
stabilising the grid by heavily using the battery and
protecting battery life by relying more on the grid.

e High-variance wind speed profiles lead to greater
discrepancies between planned and actual
production, requiring more grid intervention. In
contrast, low-variance profiles aligned better with
forecasts, reducing grid dependency.

The research identifies a clear trade-off between battery usage
and grid dependency. While battery integration reduces grid
reliance, it also necessitates careful consideration of battery
control strategies to prevent increased operational costs and
ensure battery longevity. This insight is crucial for optimising
microgrid performance and achieving a more autonomous,
cost-effective, resilient power system.
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Abstract: In offshore oil and gas production gas turbines are used for both power production
and to provide process heat. CO5 emissions from the gas turbines accounts for about 25 % of
the total Norwegian emissions and installing a bottoming cycle to produce power by recovering
heat from the gas turbine exhaust is one way to reduce these missions. When installing a
steam bottoming cycle offshore, the total weight and size will be important, and there is a
need for a compact heat recovery steam generator (HRSG). A compact HRSG will often need
to be designed with smaller tube diameters than conventional on-shore steam generators. To
increase confidence in the compact design, the heat transfer and pressure loss models need to
be accurate for the relevant geometry ranges. In this work, a compact Once Through Steam
Generator (OTSG) is designed using optimisation procedures where the total weight of the
steam generator has been minimised for a desired duty with restrictions for pressure losses.
A range of correlations from the literature were used for the calculation of the performance.
The results from the optimisation show that the "heaviest’ results were about three times the
minimum weight than the ’lightest’. To increase confidence in the results, and to provide a
recommendation for design models, a validated CFD model was used to perform a numerical
analysis of the optimised geometry and compare this with the correlations.

Keywords: heat exchanger optimization, finned tube bundle, heat transfer, pressure drop, CFD

1. INTRODUCTION

The oil and gas industry is a significant contributor to
the Norwegian overall emissions, with offshore installations
accounting for a quarter of total greenhouse gas emissions.
Most of these emissions come from gas turbines used on the
platforms. To reduce CO5 emissions towards 2030, the in-
stallation of steam bottoming cycles for power production
has been proposed as illustrated in Fig. 1. Another technol-
ogy to reduce emissions from gas turbines is to use carbon-
free fuels like for instance mixtures including ammonia
and hydrogen. Then the fuels must be imported off-shore
and installing a bottoming cycle will have considerable
fuel-saving potential. Weight and size of these cycles are

Pump

To ambient

Steam

Steam ] turbine

Exhaust
Bottoming

Gas turbine
cycle

Fig. 1. Gas turbine with a steam bottoming cycle.

currently limiting factors for their widespread implementa-
tion, and efforts have already been made to develop designs

1 This publication has been funded by HighEFF - Centre for an
Energy Efficient and Competitive Industry for the Future, an 8-year
Research Centre under the FME-scheme (Centre for Environment-
friendly Energy Research, 257632/E20). The authors gratefully ac-
knowledge the financial support from the Research Council of Nor-
way and user partners of HighEFF.

DOI: 10.3384/ecp212.010

that meet these criteria. Previous studies have shown that
using small diameter tubes in the heat exchanger is one of
the key factors in achieving compact design. However, the
design of the heat exchanger currently relies on empirical
correlations that are not necessarily validated for offshore
geometries. As a result, designs can vary greatly depending
on which correlation is chosen. Mazzetti et al. (2021) and
Deng et al. (2021) developed an optimisation procedure for
steam bottoming cycle design, which demonstrated that
the heat recovery steam generator (HRSG) was the main
contributor to the total weight of the cycle. They showed
that optimising the HRSG with minimum weight as the
objective, the lowest possible tube diameter was always
selected In Montanés et al. (2023), a similar optimisation
study for a combined heat and power bottoming steam
cycle was done. Here, typical available tube diameters and
wall thicknesses were chosen for the HRSG while the re-
maining geometry parameters were optimized. The results
showed a clear trend on how the obtained minimum weight
increased with the selected tube diameter. The fin height
and the fin- and tube spacing were different for each tube
diameter. To increase the confidence in these results and
alternative to experimental work, numerical studies with
CFD can be an option. Lindqvist and Neess Lindqvist and
Naess (2018) developed a steady-state CED model for plain
and serrated fin tube bundles, which was validated against
available experimental data. The layout angle was limited
to 30°, and both solid and serrated fins were investigated.
A periodic domain was used, where a single tube row
is modeled. The results were compared to a simulation
where 8 tube rows were modeled, and it was found that
the periodic model provided near identical results at a
fraction of the computational cost. The numerical results
were also compared with some widely used correlations,
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showing that the CFD model generally was more accurate
than the correlations, being within 20 % of experimental
values. It was found that none of the investigated empirical
correlations yielded results similar to those of the CFD
model for all geometries.

The current author, Espelund et al. (2022), expanded on
this work by including tube bundles also with larger layout
angles. It was found that the steady-state approach did not
converge for larger angles, but transient simulations gave
accurate results. Comparisons with experiments showed
that the transient CFD model agreed within 20 %.

In this work, an optimised set of design parameters using
the different exhaust side heat transfer and pressure loss
models from Table 1 are found and the different minimum
weights are compared. In earlier studies of compact Once
Through Steam Generators (OTSG’s) by Mazzetti et al.
(2021), Deng et al. (2021), and Montanés et al. (2023),
the ESCOA correlations have been used as the basis for
the thermal design. Therefore, the thermal performance
(duty and exhaust side pressure loss) when using the
other models with the optimized "ESCOA geometry” has
been evaluated as a pure simulation. Simulated Nu- and
Eu-number are compared to the results from the CFD
analysis.

2. GEOMETRIES AND CORRELATIONS

The heat recovery heat exchanger in a steam bottoming
cycle can be a Once Through Steam Generator (OTSG).
The OTSG geometry consists of finned tube bundles,
either as a single core or divided into different bundles,
each representing the economizer, the evaporator, and the
superheater. In this case study, a single tube bundle is used
as the base case. Relevant OTSG geometry parameters are
illustrated in Fig. 2. A staggered tube pattern is used
with a fixed layout angle of 30° as shown in Fig. 2(a).
In this study, only models for solid round fins have
been evaluated. Figure 2(c) shows the notation for the
number of passes and rows per pass. The number of tubes
per row N, is the number of tubes along a header.

The performance of the OTSG is calculated as a cross-
counter flow heat exchanger with exhaust flowing upward.
The exhaust flow is flowing across 60 tube rows (30 - 2).
Each parallel circuit, "tubes per row”, is defined to have
equal performance so the problem is 2-dimensional. Each
tube pass is divided into 20 sub-elements and the heat
balance between gas and water/steam is solved for each
of the the 1200 heat exchanger elements. For each sub-
element the transferred heat, @), is calculated from

Q=U-A-AT. (1)

The overall heat transfer coefficient U (W/(m?K)) is
calculated from (2) based on internal and external heat
transfer coefficient, «; and «,, the tube side and fin side
surface areas, A; and A,, and the conductive resistance
through the tube wall, R,,.

transfer when evaluating «; in (2). Two-phase frictional
pressure loss is calculated with the Friedel (1979) cor-
relation. The extended surface ”apparent” heat transfer
coefficient o, in Eq. (2) is calculated from a correlation for
the Colburn j-factor or Nu-number that uses the detailed
fin and tube geometry into account. The derived heat
transfer coefficient is the a. in Eq. (3) where 7y is the
fin efficiency, Ay is the fin surface area and A, is the total
outside surface area.

=0 - [1 — (L —ny) ﬁ’j (3)

The relations between the heat transfer coefficient «., the
j-factor, Stanton- (St), Prandl- (PR) and the Nusselt (Nu)
-number are shown in Eqgs. (4) and (6).

P2/3
j=5t Pr2/?’:oz671r (4)
p'umax'cp
acdh
Nu=— )
= (5)
n-Cp
Pr=—— 6
r=15 (6)

where 1 (Pas) is the dynamic viscosity, C, (J/(kgK))is
the specific heat capacity, A (W/(mK)) is the thermal
conductivity and dp is the hydraulic diameter. The Re-
number is based on the maximum velocity, umax inside
the tube bundle and with the hydraulic diameter as the
diameter at the fin base, namely

maXd
Re = max@h (7)

v

We have assumed L-fin where the fin base diameter, so
the hydraulic diameter, dj, is the outside tube diameter
do plus 2 - F; where F; is the fin thickness. The fin
efficiency 7y in Eq. (3) is calculated as recommended by
the correlation while the temperature difference AT in
Eq. (1) is calculated for the arithmetic mean temperature
difference between inlet and outlet fluid temperatures
on inside and outside. Since the performance calculation
model is called from an optimisation routine, we want
to avoid unnecessary iterations so the OTSG is solved
from the "warm” end, following the exhaust flow from
the warm inlet. From a desired steam outlet temperature
and pressure, the calculation is done backward to the feed
water flow direction inside the tubes. When solved, the
unknown inlet state for the steam and outlet state for
the exhaust can be found. To solve the heat balance in
each integration step, the 2'nd order Heun’s method is
used to accurately predict the temperature difference and
the transferred heat, (), from the warm to the cold end.
After the integration, the total heat duty and the pressure
losses for the exhaust and waterside are known and used by
the optimisation routine in the constraint evaluations. The
various correlations used for heat transfer and pressure loss
on the exhaust side are listed along with the in Table 1

U= 1 The pressure drop is calculated using the Euler number
a . & + Ry + 1 (2) Eu, which is defined as the pressure drop across a tube
A; Qo row normalized by the dynamic pressure,
In the performance calculations, the correlation from Ben- Eu = Ap (8)
nett and Chen (1980) is used for the two-phase heat %pu%
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(a) Staggered tube pattern showing solid and serrated fins (b) Tubes with circular fins
Parameter Unit  Value
Fin height, F}, mm 4.0 - 25
1 pass Fin pitch, F} mm 2.0 - 8.0
:) Fin thickness, F} mm 1.05
(@ Tube outer diameter, d, mm 25.4
D) ‘Wall thickness mm 2.11
f Transversal/diagonal fin gap, G¢ mm 1.5 - 100
2 rows per pass Core width, W m 3.0 - 10.0
K\ Number of passes, Np - 30
EARERIRARAARARAARARRARAR R W@) Rows per pass, N, - 2
Tubes per row, N¢ - 30 - 80
G p
:) Layout angle, 8 © 30
l l Transversal tube pitch, P mm Calculated
w Longitudinal tube pitch, P, mm Calculated

(¢) Number of passes and rows per pass

(d) Fixed and variable design parameters for the OTSG

Fig. 2. Geometry definitions for the OTSG used by the design optimisation model.

where Ap is the pressure drop across one tube row and
Up, . is the velocity through the minimum flow area.

Table 1. List of evaluated correlations for out-

side heat transfer and pressure loss for round
solid fins

Heat transfer
Pressure loss
Briggs and Young (1963)

Robinson and Briggs (1966)

Correlation

Briggs & Robinson

Stasiulevicius Stasiulevicius et al. (1988)
PFR Rosenman (1976)

Mon Mon (2003)

ESDU Hewitt (1998) (ch 2.5.3)
ESCOA See. Ganapathy (2003)
Holfeld Holfeld (2016)

Lindqvist Lindqvist (2019)

Rabas Rabas et al. (1981)

3. OPTIMIZATION PROCEDURE

The optimisation procedure is set up as a flowsheet optimi-
sation model with only the OTSG as a single unit model.
It is implemented in an in-house heat exchanger modelling
software by Skaugen et al. (2013). The optimisation was
done with the NLPQL model from Schittkowski (1986).
NLPQL requires a function for the calculation of an ob-
jective and functions for the calculation of all equality and
inequality constraints.

The optimisation model in this work is configured to min-
imise the weight of the OTSG in Fig. 1 for a given steam

DOI: 10.3384/ecp212.010
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production and duty. The steam turbine and other compo-
nents in the steam cycle are not included. The gas turbine
is a natural gas-fired gas turbine with around 30 MW
power output. The exhaust flow rate is 86.1kg/s with
a temperature of 510°. The corresponding water/steam
boundary conditions used are: Feed water flow rate and
temperature of 10.2kg/s and 17.0 °C. The inlet feed water
pressure is 29.5 bar.

The geometry design parameters, and their range, are
listed in Table 2d. These are the free optimisation vari-
ables for the problem.

The underlying heat exchanger model consists of the ther-
mal simulation model described in Sec. 2 combined with
weight calculation model for the fin and tube weights plus
an estimation for the total weight of the casing with plates,
beams, and insulation. So, for a set of geometry input
parameters, the free optimisation variables, the thermal
model finds the transferred heat and pressure losses while
the weight model estimates the total weight. The cal-
culated results are converted into constraints and objec-
tive for the optimisation routine. By minimising the total
weight, and not only the bundle weight, the model ensures
that the size and shape of the tube bundle will require
unnecessary large inlet/exit transition ducts for instance.
The tube bundle will typically account for about 50% or
less of the total weight for the OTSG. The optimisation
problem is defined in Table 2. The condition for the
required duty is the only equality constraint. NLQPL
evaluates the constraints and the objective function and
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proposes a new set of design variables (from Table
until the minimum is found and none of the constraints
are violated.

Table 2. Defined constraints and objective
function for the optimisation problem

Description Condition

OTSG Duty Q=34

Exhaust pressure loss Apex
Water/steam pressure loss Apws

Maximum exhaust velocity Umax /s
Diagonal tube pitch P; <3

Objective min (Total weight)

The optimisation routine does not guarantee that the
global minimum is found, so to improve confidence in the
result a multi-start where each case has been run with 10
random sets of initial values for the free variables within
the specified range.

4. CFD MODEL

A CFD model for plain and serrated fin tube banks
has previously been developed by the current author
(Espelund et al., 2022). A detailed description can be
found in (Espelund,2022), but a summary of the model
is given here. The simulations were run on the IDUN
HPC cluster (Sjdlander et al. 2021). The incompressible
Navier-Stokes equations are solved for the external flue
gas in a periodic domain, while the heat equation is
solved in the fins. The domains are coupled with thermal
boundary conditions, and the equations are solved using
the chtMultiRegionFoam solver in OpenFOAM v2206.

4.1 Governing equations

The Navier-Stokes equations are solved in the gas region.
They are constituted by the continuity, momentum, and
energy equations. In this section, Einstein notation is
used, with i € {1,2,3} corresponding to the three spatial
coordinates. The continuity equation reads,

8ui

=0, 9)
where wu; is the velocity component in the ¢ 3ioction.
The gas is modelled as incompressible and with constant
thermal and transport properties, yielding the following
momentum balance equations,

ou; _l dp 0%u;

or. Ox + Veﬁ@x

j p i 3T

where p is the pressure field, p is the density and veg
is the effective kinematic viscosity (accounting for both
molecular and turbulent viscosity). The turbulence model
by Spalart and Allmaras (1992) is used. S; is an external
driving force (corresponds to the pressure loss ’6,717) to
drive the flow through the cyclic domain, as descri%réd by
Patankar et al. (1977).

(10)

The energy conservation equation is formulated using the
specific enthalpy h, viz.

d(ph+ex) 0 Dp  Og

It + oz, (ui(ph +ex)) — Dt owy

where the heat flux is given by Fourier's law ¢, =
Pt Oh/Ox;, where the effective thermal diffusivity is

(11)
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defined as et = kesr/(pcp) and ex = %puiui is the
specific kinetic energy. Here K.y is the effective ther-
mal conductivity. In the solid region, the special case of
u; = Dp/Dt = 0 in Equation (11) is solved. The solid
region is also assumed to have constant thermal properties.

To reduce the time needed to reach pseudo-steady-state
conditions, steady-state simulations are run initially, using
the chtMultiRegionSimpleFoam solver. Once the average
fin temperature T stabilises, the steady-state simulation
is terminated, and the transient simulation is initiated. To
ensure converged results and a sufficiently long sampling
interval, the transient simulations were run for 30 fluid
exchange times 7 = P,/Up mqz. Data were sampled for
T > 15.

4.2 Geometry and discretization

A periodic domain is used to model the heat exchanger,
and the discretization follows the procedure in Lindqvist
and Naess (2018). The geometry is specified according
to the optimised solid fin OTSG. The mesh consists of
hexahedral cells, with wall refinement at the fins sides and
at the tube surface. The mesh at the edges of the fins are
not refined towards the wall boundary, which means that
wall functions are needed to model the turbulent profiles
here. The numerical mesh is illustrated in Fig. 4.

4.3 Boundary conditions

By adding an external pressure force S; in the momentum
equation, Eq. (10), cyclic boundary conditions can be
used in all directions. As the pressure gradient is not
known a priori, the mean VelocityForce option is used in
OpenFOAM. This will adjust the source term to reach
a specified mean velocity, which was used to fix Re to
relevant values from the optimized OTSG design.

The temperature field needs additional treatment since the
total heat transfer to the domain is not known a priori.
To keep a fixed average inlet temperature, a cyclic jump
boundary condition is used between the inlet and outlet
for temperature.

T‘in(x7y) = Tw + : (ﬂn,target - Tw); (12)

w
where Tin(z,y) and Toui(z,y) is the inlet and outlet
temperature fields, respectively, Ty, is the constant wall
temperature and Ti, target 1S the constant target inlet
temperature. The average temperature is defined as

SN

1
= —/ T(x,y)pu;dn;, where m:/puidni, (13)
m.Ja A

and n; is the patch normal vector and A is the domain
of the patch. Thus, this is a mass flux weighted average
which ensures a fixed inlet temperature, but with a cyclic
profile that also ensures that the temperature is constant
at the walls. In this work, the conditions of Tj, = 320K
and Ty, = 300K has been used, which corresponds to
experimental conditions for correlation development.

At the interface between the gas and solid regions, no-slip
and no-penetration are prescribed the velocity field and

Proceedings of SIMS EUROSIM 2024 74

Oulu, Finland, 11-12 September, 2024



SIMS EUROSIM 2024

Eu []

0.4F

50

Nu [

40

6 8 10 12

t/7 [l

Fig. 3. Hlustration of sampling. Time signal for Eu and Nu, with the sampling region shaded around the time average
value. The signals are from the coarsest mesh simulation with Re = 7500 The illustration shows 6 periods used for
sampling, while the actual sampling was performed with 15 periods.

von Neumann-boundary conditions for the pressure. The
temperature field is coupled in the two domains and obeys
continuity in temperature and energy conservation, i.e.

(14)

Tw,gas = Lwfin and Qini|w,gas = _Qini|w,ﬁn,

where n; is the wall normal direction.

4.4 Post-processing

The transient temperature, heat flux and pressure drop
data were time averaged as

1 2
/ x(t)dt,
to —t1 Jy

where £1 and t5 is the start and end time of the sampling
interval, respectively. x(¢) is the transient time signal and
X is the time average. The sampling of Nu and Eu is
illustrated in Fig. 3.

X = (15)

Fig. 4. Computational mesh used in the CFD simulations.
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Eu is calculated directly by using Eq. (8), with Ap = P, -
Op/ 0z . To calculate Nu, the temperature driving force AT
in Eq. (1) needs to be extracted from the CFD simulations.
This is taken to be the difference between the bulk gas
temperature and the wall temperature

AT =Ty, — Ty, (16)
where the bulk temperature is defined as
Tb = Tfront + Tback7 (17)

where Ttont and Thacx are the temperature fields at the
planes located at —P;/2 and +P;/2 relative to the center
tube, respectively.

The heat flux and fin temperatures are sampled at the
center tube, and Nu is then calculated using the definition
in Eq. (5).

4.5 Thermophysical properties

The thermal and transport properties are assumed to be
constant for both the gas and fins. They are summarised
in Table 3. The fin region properties correspond to that of
carbon SS-304 steel, while the gas phase is modelled as air
at 310 K. These conditions correspond to the experimental
conditions in which most correlations are developed.

Table 3. Constant thermophysical properties
used in the CFD simulations.

Property Gas Fins
Density, p (kg/m3) 1.1614 7950
Specific Heat Capacity, Cp (J/kg-K) 1007 520
Thermal Conductivity, & (W/m-K) 0.0263 15.5
Dynamic Viscosity, (Pa-s) 1.8455 x 1075 -

4.6 Grid refinement study

To assess the grid sensitivity of the solution, a grid refine-
ment study was performed. The simulations were run with
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Re = 7 500 using four different mesh resolutions, where
the wall cell sizes were equal for all meshes, ensuring the
same y+ values for each simulation. An initial steady-state
simulation was conducted using the coarsest mesh, and its
final time step was used as the initial condition for all
simulations in the grid refinement study. The simulations
were run until a quasi-steady state was achieved, where
the time-averaged values of Eu and Nu did not change
significantly. The resulting values are presented in Fig. 5.
A mesh resolution of 730 000 cells was deemed sufficient, as
both Eu and Nu are within 1% of the values at the finest
grid (1850000 cells).

Relative value [-]

500 1000 1500
Number of cells [10?]

Fig. 5. Results from grid refinement study. Eu and Nu are
normalised by the value at the finest grid.

5. RESULTS AND DISCUSSION
5.1 Results from optimisation

The main results from the optimisation are shown in Table
4 and are an indication of the different models ability
to extrapolate. The optimisation is run twice. The first
time the number of tubes per row is treated as a decimal
number, providing a continuous flow area. As a second
run, its value is a fixed integer value while the other three
parameters, tube length, fin height, and fin pitch are re-
optimised with a slight minimum weight increase as the
penalty. It was also observed that all the models were
constrained by the minimum tube pitch of 3 times the
outer tube diameter, so a fixed triangular tube pitch of
76.2 mm was specified in the 2'nd optimisation run.

As seen from Table 4, the obtained minimum weights
range from 84 to 124 tonnes. The tendency is that the
models obtaining the lowest weight seem to favour very
low fin- height (3-7.5 mm) and pitch below 4 mm while the
others are generally in the range of 7-15 mm and 4-8 mm.
In a practical situation, the fin height and pitch cannot be
varied freely meaning that the spread in the weight could
be larger depending on the underlying model. In an OTSG,
the heat transfer on the outside is limiting, so therefore
fins are used to increase the surface area. However, when
optimising for a specific duty and minimising the total
weight, the weight contribution from the fins seems to
be significant, and thus the optimisation routine finds the
alternative solutions as discussed above.

The optimal tube lengths generally are between 5 and 6
m with the number of tubes per row around 50. These
two parameters make up the exhaust cross-flow area and
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Table 4. The result for the free geometry vari-
ables and the objective function for the differ-

ent models
Tube Tubes Fin Fin Minimum

Model length  per row height pitch  Weight

] [ [mm] [mm]  [Ton]
Briggs 6.29 56 10.1 5.6 124.7
Holfeld 591 50 10.5 4.4 114.6
Lindqvist 6.84 52 14.1 9.7 109.6
Rabas 5.71 50 14.5 8.1 102.6
PFR 5.32 42 3.5 1.9 99.3
ESCOA 5.83 48 7.6 4.0 97.7
Mon 5.47 51 3.0 1.5 97.3
ESDU 5.41 49 6.2 3.5 91.5
Stasiulevicius 4.87 50 6.5 3.7 84.1

determine the size of the enclosing casing which accounts
for about half the total weight

Each of the correlations from Table 1 has also been used to
simulate the performance of the optimised geometry from
the ESCOA models. In Fig. 6 the comparison between the
predictions is shown.
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