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Abstract
This paper explores methods to automatically
predict lexical complexity in a multilingual
setting using advanced natural language pro-
cessing models. More precisely, it investigates
the use of transfer learning and data augmen-
tation techniques in the context of supervised
learning, showing the great interest of multi-
lingual approaches. We also assess the po-
tential of generative large language models for
predicting lexical complexity. Through differ-
ent prompting strategies (zero-shot, one-shot,
and chain-of-thought prompts), we analyze
model performance in diverse languages. Our
findings reveal that while generative models
achieve promising performances, their predic-
tive quality varies and optimized task-specific
models still outperform them when they bene-
fit from sufficient training data.

1 Introduction

Lexical complexity prediction consists in assess-
ing the difficulty of a target word in a given con-
text, either as a binary classification (is the word
difficult or not?) or as a continuous numerical
value prediction indicating the degree of complex-
ity. Such a task is potentially useful for computer-
assisted language learning: e.g. for selecting rel-
evant textual materials for learners or for identi-
fying complex words in texts and then providing
enriched information to help the reader’s under-
standing.

Our study explores deep learning methodolo-
gies for multilingual lexical complexity predic-
tion (LCP). We leverage recent advances in natural
language processing models, such as transform-
ers and generative models, to assess lexical com-
plexity across various languages. More precisely,
we first investigate various multilingual methods
like transfer learning and data augmentation using

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

a supervised approach. We then explore the ca-
pabilities of generative pre-trained large language
models (LLMs) to perform LCP applying vari-
ous prompt engineering and ensemble techniques.
The experiments are carried out on multilingual
datasets from two shared tasks: the 2018 Complex
Word Identification task (Yimam et al., 2018a)
for English, French, German and Spanish, and
the Multilingual Lexical Simplification Pipeline
(MLSP) shared task (Shardlow et al., 2024a) for
a subset of languages (English, French, Japanese
and Spanish).

2 Related work

Lexical complexity prediction has been a grow-
ing area of research, with several works contribut-
ing to the development of graded lexical resources
and methodologies aimed at understanding word
complexity from both native and non-native lan-
guage learners’ perspectives. For example, Gala
et al. (2013) laid the groundwork for French lexi-
cal complexity by proposing a lexicon with diffi-
culty measures. Building on this, François et al.
(2014) introduced FLELex, a graded lexical re-
source specifically designed for French foreign
learners. Tack et al. (2018) extended this research
to Dutch with NT2Lex, a graded lexical resource
linked to the Dutch WordNet. Meanwhile, Alfter
and Volodina (2018) focused on predicting single-
word lexical complexity, a task later expanded
by Alfter (2021) to include multi-word expres-
sions, highlighting the evolving nature of com-
plexity prediction tasks. For more details on this
task, North et al. (2023) provided a comprehensive
overview of the computational approaches used.

2.1 Shared tasks

Lexical complexity prediction has also been the
focus of multiple shared tasks over the last decade
that strongly contributed to the advances of the
field through the development of new dedicated
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datasets as well as novel technical methods to per-
form the task.

The 2016 Complex Word Identification (CWI)
task at SemEval highlighted key findings in iden-
tifying complex words, especially for non-native
English speakers. The dataset, dedicated to the
English language, created with input from 400
non-native speakers, showed that complex words
are generally rarer, less ambiguous, and shorter.
Decision trees, ensemble methods, and particu-
larly word frequency were found to be reliable pre-
dictors of word complexity (Paetzold and Specia,
2016). Top systems, such as those by UWB and
LTG, utilized features like document frequency
and contextual language models, achieving high
rankings (Konkol, 2016; Malmasi et al., 2016).
Despite various feature explorations and innova-
tive methods like sequence labeling (Gooding and
Kochmar, 2019), the fundamental effectiveness of
word frequency remained central to CWI success
(Zampieri et al., 2017).

The 2018 Complex Word Identification task,
thereafter CWI 2018, part of the BEA workshop
at NAACL 2018, focused on identifying difficult
words in texts across multiple languages, includ-
ing English, German, Spanish, and French. The
task was divided into binary and probabilistic clas-
sification tracks, attracting 12 teams with various
approaches. Notably, ensemble-based methods
and feature engineering demonstrated strong per-
formance (Yimam et al., 2018a). Systems such as
those by the NLP-CIC team compared deep learn-
ing with feature engineering, showing comparable
results (Aroyehun et al., 2018). Simple models
based on character n-grams also performed com-
petitively, sometimes matching more complex sys-
tems (Alfter and Pilán, 2018). The challenge
highlighted the effectiveness of both traditional
feature engineering and modern deep learning ap-
proaches in CWI.

The 2021 Lexical Complexity Prediction (LCP
2021) task (Shardlow et al., 2021) at SemEval
involved predicting, for the English language,
the complexity of single words and multi-word
expressions in context using a five-point Likert
scale. The competition attracted 198 teams, with
top-performing systems leveraging advanced NLP
techniques such as transformers and ensemble
methods. The winning system used fine-tuned
pre-trained language models with stacking mech-
anisms, achieving high Pearson correlation scores

(Pan et al., 2021). Approaches varied widely, from
logistic regression with linguistic features (De-
sai et al., 2021) to ensemble-based models com-
bining different feature types (Vettigli and Sor-
gente, 2021). The task highlighted the effective-
ness of combining traditional linguistic features
with modern deep learning models to predict lexi-
cal complexity accurately.

Recently, a dataset was developed for the MLSP
2024 shared task (Shardlow et al., 2024a). It in-
cludes 5,624 instances across 10 target languages.
Each instance features a sentence from an educa-
tional text with a specific target word highlighted.
For each target word, there are two types of anno-
tations: an aggregate complexity score (rated on a
scale from 1 to 5 by 10 annotators) indicating the
difficulty level of the word, and a list of possible
substitutions that simplify the sentence while pre-
serving its original meaning.

2.2 Multilingual approaches
Although many studies concentrate on English
due to a relative shortage of resources in other
languages, promising approaches such as trans-
fer learning and data augmentation have been pro-
posed to address this gap. Cross-lingual trans-
fer learning significantly enhances Complex Word
Identification (CWI) by leveraging models trained
in high-resource languages for use in low-resource
languages. Zaharia et al. (2020) demonstrated
the effectiveness of zero-shot, one-shot, and few-
shot learning techniques with state-of-the-art NLP
models, achieving high F1-scores across multiple
languages. Bingel and Bjerva (2018) used cross-
lingual multitask learning, showing that language-
agnostic models could generalize well across dif-
ferent languages. Additionally, Yimam et al.
(2017) employed language-independent features
to train multilingual and cross-lingual models,
achieving comparable performance to monolin-
gual systems.

2.3 Large language models’ capabilities
Large Language Models (LLMs) like ChatGPT,
Mistral, and Llama3 have significantly advanced
natural language processing across various do-
mains. Given that we are currently in the era of
LLMs, it is crucial to compare and assess their
role in our study to understand their impact on
various tasks. They excel in industrial engineer-
ing tasks, such as automation and programming,
though they have limitations with complex physics
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equations (Ogundare et al., 2023). In mathe-
matical problem-solving, LLMs effectively handle
arithmetic tasks using chain-of-thought reasoning
(Yuan et al., 2023). Their ability to use multimodal
tools is enhanced by frameworks like GPT4Tools,
which improve performance in visual tasks (Yang
et al., 2023). Instruction-following datasets and
fine-tuning, as seen with FLACUNA, enhance
their problem-solving skills (Ghosal et al., 2023).
Comprehensive evaluations reveal strengths in di-
verse tasks like question-answering and code gen-
eration, although challenges remain (Laskar et al.,
2023). Techniques like role-play prompting fur-
ther improve their reasoning capabilities, making
LLMs versatile tools for a wide range of applica-
tions (Kong et al., 2023). The ANU team, par-
ticipating in the MLSP 2024 task to predict word
complexity based on context, relied on a prompt-
ing strategy with GPT-3.5 (i.e. GPT-3.5-turbo-
instruct) for the tasks using zero, one, and few-
shot strategies. The zero-shot strategy included
the context and target word while the non-zero
strategies relied on instructing the model with one
or three random samples from the trial data ac-
cording to the prompting template. Overall, the
authors indicate under-performance for the LCP
task, while demonstrating strong performance for
English in lexical simplification (Seneviratne and
Suominen, 2024).

3 Multilingual lexical complexity
prediction based on supervised
learning

In this section, we investigate two main strate-
gies for the task of lexical complexity prediction
(LCP) in multiple languages using a supervised
approach:

1. Monolingual training: the model is trained
on a dataset in the target language; the train-
ing data may be composed of native data in
the target language, data translated to the tar-
get language from a resource-richer language
(English in our case), or a combination of
both where the native data is augmented with
translated data;

2. Multilingual training: the model is trained
on a multilingual dataset including or not data
in the target language; the model is based on
multilingual word embeddings to deal with
transfer learning.

The actual implementation of these approaches
will depend on the dataset on which they will
be experimented, given their different nature and
composition (cf. section 3.1 and section 3.3).

3.1 Datasets

Experiments to evaluate these strategies are per-
formed on two multilingual datasets: CWI 2018
(Yimam et al., 2018b) and MLSP 2024 (Shardlow
et al., 2024a), cf. section 2. The CWI 2018 dataset
provided by (Yimam et al., 2018b) includes data
in English, Spanish, and German for training and
testing, and French solely for testing purposes, cf.
table 1. Our focus is on Spanish, German, and
French. We selected this dataset because it offers
large possibilities of multilingual experiments us-
ing supervised learning. Two types of labels are
available: binary and probabilistic. Our evaluation
is conducted using the binary labels.

Language Train Dev Test
English 27,299 3,328 4,252
German 6,151 795 959
Spanish 13,750 1,622 2,233
French - - 2,251

Table 1: The number of instances for each training, de-
velopment and test set (Yimam et al., 2018b)

Additionally, we performed evaluation on the
MLSP 2024 dataset (Shardlow et al., 2024a),
which includes 5,624 instances across 10 target
languages. The MLSP dataset provides probabilis-
tic labels, where annotations are continuous values
between 0 and 1. This dataset contains only test-
ing and development data, the latter being limited
to around 30 instances per language, i.e. 300 in-
stances in total. We only focus on four languages
(French, English, Japanese, and Spanish) in order
to limit the energetic impact of our experiments
and to focus on the languages studied in our work-
ing environment. Due to the lack of training data,
we have decided to leverage the LCP 2021 dataset
(Shardlow et al., 2021), which provides annota-
tions highly similar to those in the MLSP task, for
the English language.

3.2 The model

In our research, we adopt a recent system that has
proven effective in predicting lexical complexity
for English (Kelious et al., 2024). We replicate
this model in a multilingual version. The model
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combines a pre-trained language model with fre-
quency characteristics based on Zipf’s law. Such
a system is in line with the literature showing that
hybrid models using transformers (encoders) en-
hanced with additional linguistic features deliver
more robust and effective results (Wilkens et al.,
2024).

Figure 1: The overall architecture for predicting lexical
complexity (Kelious et al., 2024).

Figure 1 illustrates the model described with
more details in Kelious et al. (2024). This model
is divided into two main parts. The first part relies
on lexical embeddings: the encoder receives the
target word and its context as input, formatted as
follows: [CLS]Context[SEP]Target Word, where
[CLS] and [SEP] are special tokens used in the
Transformers model for processing texts. The sec-
ond part incorporates five characteristics based on
Zipf’s frequency, processed by a multilayer per-
ceptron (MLP). The whole, i.e. the concatenation
of the two parts, is then processed by an additional
MLP layer. The model’s output is a continuous
value between 0 and 1. To classify this output into
binary classes, we add a sigmoid layer and apply
a decision threshold set at 0.5 to convert the prob-
abilities into binary classes for the experiments on
CWI 2018.

The conversion of this model from monolingual
to multilingual is relatively straightforward: for
the frequency features, it suffices to extract fre-
quency data in the target language from available
corpora. As for the transformer (encoder) part, it is
necessary to implement a multilingual model or a
monolingual model suited to the specific language
we wish to evaluate.

3.3 Experimental settings
The LCP model is based on various language mod-
els for encoding the input context. For multi-
lingual training strategies, we selected the multi-
lingual language model mdeberta-v3-base1. For
monolingual training strategies, we selected Span-
ish BERT for Spanish (Cañete et al., 2020), Ger-
man BERT for German (Chan et al., 2020), De-

1https://huggingface.co/microsoft/mde
berta-v3-base

Berta (He et al., 2023) for English and mdeberta-
v3-base for Japanese. The Zipf frequencies were
computed using the python library Wordfreq2. For
translating data from English to target languages
such as French, German, Japanese and Spanish,
we used the M2M100 model (Fan et al., 2021).

3.4 Experiments on CWI 2018

This section presents and evaluates the multilin-
gual and monolingual training strategies devel-
oped on the CWI 2018 dataset using a supervised
approach.

3.4.1 Evaluated methods

For the multilingual training approaches, the ex-
periments were the following:

• Multilingual (en, de, es): the LCP model is
trained on the training data of all languages
having training data, namely English (en),
German (de) and Spanish (es);

• Multilingual (zero shot): the model is
trained on the training data of all languages
having training data except the target lan-
guage, resulting in a zero-shot scenario.

We also experimented the following monolin-
gual training approaches:

• Monolingual (native data): the LCP model
is trained on the native train dataset of the tar-
get language;

• Monolingual (native + translated data):
the model is trained on the native train dataset
of the target language, augmented with a por-
tion of the English training dataset translated
to the target language;

• Monolingual (translated data): the model
is trained on a portion of the English training
dataset translated to the target language.

The experiments Monolingual (native data) and
Monolingual (native + translated data) were not
performed for French as it has no training data.
The experiment Monolingual (translated data) was
only performed for French.

2https://pypi.org/project/wordfreq/
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3.4.2 Results
Tables 2 and 3 shows F1 scores for Spanish, Ger-
man, and French. For the sake of comparison, we
also provide the results of the CWI 2018 official
baseline, of the best systems of the shared task,
and of a random baseline randomly selecting the
output from {0,1}. We can derive several insights
and make observations regarding the performance
and trends across different types of training strate-
gies:

Multilingual learning. Generally, multilingual
models trained on all languages (but French) have
strong performance across all languages (Spanish
: 0.800, German : 0.7911, French : 0.799).The
zero-shot configuration, which involves using a
model in scenarios where it hasn’t been explicitly
trained on the target language’s data, performed
reasonably well but not as well as multilingual
models trained on all languages (Spanish: 0.746,
German: 0.744), cf. Table 2. The high score for
French 0.799 in Table 3 indicates that the model
benefits significantly from being part of a mul-
tilingual setup where the knowledge from other
languages can be effectively transferred to French
even without direct training. It suggests that the
underlying representations learned by the model
are robust and applicable across languages.

Model Spanish German

Multilingual (es, en, de) 0.800 0.791
Multilingual (zero shot) 0.746 0.744
Monolingual (native data) 0.775 0.761
Monolingual (native data + 4k translated instances)) 0.789 0.781
The highest score in (Yimam et al., 2018b) 0.769 0.745
Baseline, from (Yimam et al., 2018b) 0.723 0.754
Random 0.43 0.44

Table 2: F1 Scores for Spanish and German Language
Models

Model F1 Score

Multilingual (zero shot) 0.799
Monolingual (translated data - 2k) 0.770
Monolingual (translated data - 4k) 0.713
Monolingual (translated data - 10k) 0.751
Monolingual (translated data - 27k) 0.717
The highest score in (Yimam et al., 2018b) 0.759
Baseline, from (Yimam et al., 2018b) 0.634
Random 0.38

Table 3: F1 Scores for French

Monolingual learning. Focused training on a

single language shows competitive results but still
lags slightly behind the multilingual approach:
Spanish: 0.775, German: 0.761, cf. Table 2. Aug-
menting the data with translations from the En-
glish data tends to be useful, as shown in Table 2,
especially with an augmentation of 4k training in-
stances translated from English to the target lan-
guage. Other tested sizes tend to reach lower per-
formance.

Regarding French, the LCP model does not use
native training data but instead relies on data cre-
ated by translating the English training dataset
to French. This method shows varying perfor-
mances as the data size increases (F1 scores: 0.770
with 2k instances, 0.713 with 4k, 0.751 with 10k,
0.717 with 27k, the full training set). The fluctu-
ating performance with different dataset sizes in-
dicates that the quality and consistency of trans-
lated data might vary significantly, impacting the
model’s learning and performance. Simply in-
creasing the dataset size does not consistently im-
prove performance. This approach highlights the
challenges and limitations of relying on translated
data for training language models, where nuances
and context-specific elements of the original lan-
guage might be lost or misrepresented in transla-
tion.

Baseline and Random. The baseline and ran-
dom models provide a clear floor for performance,
with baselines substantially outperforming ran-
dom guessing across all languages (Baseline vs.
Random: Spanish 0.7237 vs. 0.43, German 0.754
vs. 0.44, French 0.634 vs. 0.38). This reflects the
effectiveness of even basic modeling techniques
over uninformed strategies.

The analysis highlights that while multilingual
training on all languages offers robustness and
generalization across languages, targeted strate-
gies such as monolingual training still hold im-
portance, especially when resources are limited.
The fluctuation in performance with different data
sizes and types of augmentation indicates the need
for careful data management and model tuning
specific to each language’s characteristics.

3.5 Experiments on MLSP 2024

In this section, we present the multilingual and
monolingual experiments developed for the MLSP
2024 dataset using a supervised approach.
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English French Spanish Japanese
Pearson Spearman R2 Pearson Spearman R2 Pearson Spearman R2 Pearson Spearman R2

Multilingual (LCP 2021) 0.80 0.76 0.64 0.52 0.49 0.27 0.67 0.64 0.46 0.63 0.65 0.40
Multilingual (LCP 2021+ Dev) 0.83 0.78 0.69 0.56 0.52 0.31 0.67 0.63 0.45 0.66 0.67 0.43
Multilingual (LCP 2021 + Dev +
2k translated data)

/ / / 0.49 0.47 0.24 0.65 0.64 0.43 0.61 0.61 0.37

Multilingual (LCP 2021 + Dev +
4k translated data)

/ / / 0.51 0.48 0.26 0.63 0.58 0.39 0.63 0.63 0.40

Monolingual (native data) 0.87 0.80 0.72 / / / / / / / / /
Monolingual (translated data) / / / 0.44 0.42 0.19 0.67 0.58 0.39 0.57 0.57 0.32
Baseline MLSP 2024 (Shardlow
et al., 2024b)

0.74 0.74 0.54 0.51 0.52 0.14 0.55 0.52 0.25 0.64 0.66 0.33

Highest mlsp score for English :
(Goswami et al., 2024)

0.84 0.79 0.52 0.31 0.32 0.04 0.24 0.19 0.07 0.17 0.18 0.02

Highest mlsp score for French,
Spanish and Japanese :
(Enomoto et al., 2024)

0.81 0.75 0.51 0.62 0.63 0.27 0.76 0.74 0.49 0.73 0.73 0.41

Table 4: Scores for different languages and methods (Pearson, Spearman, R2)

3.5.1 Evaluated methods
Since we only have test and development data for
the MLSP 2024 dataset, we will use for training
the LCP 2021 dataset (Shardlow et al., 2021) con-
taining 7,662 single-word instances exclusively in
English. The evaluated methods using a multilin-
gual training approach are the following:

• Multilingual (LCP 2021): the LCP model is
based on multilingual word embeddings and
is trained exclusively on English data from
LCP 2021 task;

• Multilingual (LCP 2021 + Dev): the model
based on multilingual word embeddings is
trained on LCP 2021 (English data) aug-
mented with the development data in the 10
languages of the MSLP 2024 task (around 30
instances per language) to improve adapta-
tion to the target languages;

• Multilingual (LCP 2021 + Dev + translated
data): the model based on multilingual word
embeddings is trained on the training data of
Multilingual (LCP 2021 + Dev), augmented
with 2k or 4k instances from LCP 2021 trans-
lated to the target language.

For the monolingual training setting, we evalu-
ated the following approaches for which the LCP
model is specific to each target language:

• Monolingual (native data): the LCP model
is trained on native data in the target lan-
guage; this experiment is only performed for
English using the LCP 2021 as training data.

• Monolingual (translated data): the model
is trained on the translation of LCP 2021

training data (English) to the target language;
this experiment is performed on all languages
but English.

3.5.2 Results
Table 4 presents the evaluation for predicting
word complexity in English, French, Spanish, and
Japanese using the learning methods presented in
section 3.5.1. The evaluation metrics include the
Pearson, Spearman, and R2 scores, as is usually
done for this task (cf. Shardlow et al. (2021)). The
results of the best MSLP 2024 systems and of the
official baseline are also provided for the sake of
comparison:

• Baseline Model: The baseline is based on
linear regression and is trained using log-
frequency on the trial set for each language;

• GMU Team (Goswami et al., 2024): Em-
ployed a weighted ensemble of mBERT,
XLM-R, and language-specific BERT mod-
els. All trial data was used for cross-
lingual training and evaluation. For English,
they augmented the data with the CompLex
dataset (Shardlow et al., 2020).

• TMU-HIT Team (Enomoto et al., 2024):
Used a chain-of-thought based prompting
method employing GPT-4 to generate an in-
struction in English, and subsequently as-
signed complexity scores to target words
across all languages based on the English in-
struction.

In English, the Monolingual method, specific
to the target language, achieved the best scores
(Pearson 0.87, Spearman 0.80, R2 0.72), thanks
to the use of specific annotated data. For French
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and Japanese, Multilingual methods trained ex-
clusively on English outperformed the monolin-
gual method based on translation, indicating that
multilingual training can be beneficial when an-
notated data is limited. Adding small amounts of
multilingual development data (Multilingual (LCP
2021 + dev)) slightly improved performance in
French and Japanese. However, increasing the
data through translation (Multilingual(LCP 2021
+ Dev + 2k or 4k translated data) did not yield
significant improvements. The best scores for
French, Spanish, and Japanese were achieved by
Enomoto et al. (2024), suggesting that their ap-
proach is more effective for these languages.

4 Prompting Large Language Models for
multilingual lexical complexity
prediction

In this section, we focus on assessing the capabil-
ity of generative large language models (LLMs)
to predict the complexity of a word based on its
context. To do this, we use three types of prompt
strategies:

• Zero-shot prompt (base): The model re-
ceives instructions without any specific ex-
amples on how to perform the task, relying
solely on the knowledge acquired during its
training. (See Appendix A)

• One-shot prompt (instruct): This type of
prompt includes some guidelines used during
data annotation, along with an example, thus
providing a frame of reference for the model.
(See Appendix A)

• Chain-of-thought prompt (Advanced
COT): This prompt includes detailed an-
notation instructions, methodological steps
to follow and analysis before delivering an
evaluation, illustrated by an example (See
Appendix A).

4.1 Experimental settings
For this evaluation, we use five different language
models: gpt-4o (June 10, 2024) 3, Llama3 (Dubey
et al., 2024), Mistral (Jiang et al., 2023), Phi3 (Ab-
din et al., 2024), and Gemma (Team et al., 2024).
The last four models are used in their 4-bit quan-
tized versions. It’s important to note that compar-
ing these models might seem unfair if gpt-4o is

3gpt-4o : https://openai.com

included, however, our main goal remains to an-
alyze the effectiveness of each type of prompt ac-
cording to the model. Yet, the comparison in terms
of performance remains relatively fair if gpt-4o is
excluded, considering all other models share the
same type of quantization. Nonetheless, the num-
ber of parameters of each model must be consid-
ered, for example, Phi3 with 3.8 billion parameters
is significantly less than Gemma, which has 9 bil-
lion, while Mistral and Llama are approximately
similar in size. We use Ollama 4, an open-source
tool, to test these different LLMs, keeping the de-
fault settings provided. All the prompts are written
in English, but they explicitly indicate the target
language.

Detailed evaluation of these strategies is first
undertaken using the MLSP 2024 dataset (Shard-
low et al., 2024a). For this task, the generative
models are asked through the prompts to predict
a score on a scale (0, 0.25, 0.5, 0.75, 1) for the
target word in a given context in the target lan-
guage, in order to mimic the human annotators of
the dataset. The evaluation metrics include the
Pearson, Spearman, and R2 scores, as is usually
done for this task (cf. Shardlow et al. (2021)). We
used a subset of the available languages (English,
French, Japanese, and Spanish). In addition, we
also evaluate on the binary classification data from
CWI 2018 in French, German, and Spanish, adapt-
ing the prompts to each task and using the F1 score
for evaluation (See Appendix A).

For the sake of comparison between the super-
vised approach and this one, we also provide the
performance of a model specifically trained on this
task using a multilingual supervised approach.

4.2 Results
In this part, we will evaluate the various prompt
strategies for various LLMs for two different
datasets: LCP 2018 and MLSP 2024.

4.2.1 CWI 2018
Table 5 presents the F1 scores for predicting word
complexity based on context in French, German,
and Spanish. The supervised method achieves the
best results across all three languages. Among
the language models, gpt-4o and Llama3 display
the highest performance. For gpt-4o, the In-
struct prompt yields the best scores in German
and Spanish, while the Base prompt performs bet-
ter in French. The Mistral model shows weak

4https://ollama.com
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Model Version French German Spanish

gpt-4o
Adv COT 0.637 0.694 0.676

Base 0.672 0.628 0.447
Instruct 0.602 0.699 0.683

llama3
Adv COT 0.597 0.654 0.654

Base 0.550 0.630 0.637
Instruct 0.600 0.671 0.603

mistral
Adv COT 0.198 0.183 0.131

Base 0.516 0.646 0.673
Instruct 0.410 0.371 0.281

phi3
Adv COT 0.578 0.667 0.609

Base 0.551 0.642 0.653
Instruct 0.493 0.516 0.395

gemma
Adv COT 0.462 0.577 0.594

Base 0.452 0.563 0.578
Instruct 0.468 0.587 0.608

Supervised (our approach) - 0.799 0.791 0.800

Table 5: F1 score comparison across different languages, models and prompting strategy for CWI 2018

Model Version English French Spanish Japanese
P S R2 P S R2 P S R2 P S R2

gpt-4o
Base 0.736 0.735 0.153 0.505 0.509 0.207 0.659 0.643 0.149 0.595 0.621 0.241

Instruct 0.759 0.665 0.142 0.545 0.555 0.205 0.667 0.645 0.194 0.421 0.404 0.381
Adv COT 0.781 0.670 0.144 0.542 0.554 0.192 0.680 0.654 0.165 0.574 0.594 0.315

Phi3 3.8B
Base 0.230 0.207 0.229 -0.022 -0.036 0.299 0.233 0.214 0.221 0.110 0.210 0.259

Instruct 0.414 0.444 0.166 0.093 0.090 0.250 0.276 0.288 0.171 0.244 0.290 0.219
Adv COT 0.412 0.484 0.151 0.107 0.194 0.284 0.208 0.290 0.244 0.137 0.249 0.259

LLama3 8.0B
Base 0.374 0.418 0.379 0.136 0.146 0.363 0.265 0.278 0.317 0.129 0.158 0.403

Instruct 0.555 0.519 0.147 0.180 0.170 0.229 0.382 0.376 0.152 0.252 0.253 0.184
Adv COT 0.657 0.614 0.134 0.276 0.284 0.225 0.384 0.364 0.165 0.346 0.344 0.283

Mistral 7.2B
Base 0.461 0.489 0.394 0.166 0.149 0.309 0.400 0.397 0.355 0.125 0.122 0.388

Instruct 0.612 0.579 0.139 0.212 0.188 0.220 0.540 0.529 0.152 0.259 0.256 0.153
Adv COT 0.675 0.594 0.160 0.315 0.283 0.213 0.532 0.528 0.191 0.364 0.368 0.163

Gemma 9b
Base 0.123 0.169 0.482 0.038 0.063 0.433 0.175 0.180 0.384 0.137 0.135 0.455

Instruct 0.322 0.360 0.320 0.185 0.189 0.311 0.395 0.407 0.227 0.260 0.270 0.279
Adv COT 0.401 0.440 0.323 0.230 0.253 0.370 0.376 0.394 0.267 0.222 0.227 0.434

Supervised (our approach) - 0.87 0.80 0.72 0.56 0.52 0.31 0.67 0.63 0.45 0.66 0.67 0.43

Table 6: Model performance comparison across different Languages and prompting strategies for MLSP 2024
(P:Pearson, S:Spearman, R2: R2)

performance with the Advanced COT prompt
but significantly improves with the Base prompt.
These findings suggest that the effectiveness of the
prompt type depends on both the model and the
language, highlighting the need to adapt prompt
strategies according to the language and the model
in use.

We then tried to replicate the annotation pro-
cess using LLMs for the CWI 2018 dataset where
an instance is labeled as complex if any annota-
tor finds the word complex, assigning a value of
1, otherwise 0. For this, given a prompt strategy,
each LLM play the role of a single annotator. We
will simulate the annotation process using LLMs,
where 5 LLMs and 3 different prompt strategies
generate a total of 15 annotations. If any of the
annotations equals 1, the final annotation is set to
1, otherwise, it is set to 0. Thereafter, this method
is called AT LEAST 1. For comparison purposes,
we also implemented a majority vote annotation

method (thereafter VOTING MAX), where the fi-
nal label for a given instance corresponds to the
most frequent label among the 15 LLM annota-
tions.

Method Fr De Es
AT LEAST 1 0.45 0.56 0.57
VOTING MAX 0.62 0.69 0.70

Table 7: The F1 scores for French, German, and Span-
ish using two voting strategies.

Table 7 shows that the score obtained using
the single annotation method is significantly lower
than that achieved by majority voting and is also
lower than using a single LLM, gpt-4o (Base).
However, the results from majority voting are rela-
tively close to those of gpt-4o (Base) as seen in Ta-
ble 5. It is also believed that VOTING MAX per-
forms better than AT LEAST 1, as a single vote
out of 15 can lead to errors if an underperform-

Proceedings of the 13th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2024)

103



ing LLM votes 1, causing the instance to be an-
notated as 1. Majority voting helps mitigate this
issue by considering the decision of the majority
of the LLMs.

4.2.2 MLSP 2024
Figure 2 displays the Pearson correlation scores
for each prompt type used for each LLM. It shows
certain trends across different languages.

English: There is a progressive improvement
from ”base” to ”advanced COT”. This suggests
better predictions in more complex configurations.
gpt-4o notably performs better than other mod-
els with a score of 0.78. There is also a signifi-
cant difference between the ”base” and ”instruct”
prompts, while the gap between ”instruct” and
”advanced COT” is closer.

French and Spanish: gpt-4o shows continuous
improvement, similarly to the trends observed in
English, although the scores are more moderate.
Nearly all models demonstrate improvement when
going to more complex prompts.

Japanese: There are noticeable drops for com-
plex prompts, which may indicate a sensitivity to
the types of prompts used for Japanese.

Supervised Model (cf. table 6): The su-
pervised multilingual approach described in sec-
tion 3 outperforms in most cases our LLM prompt-
ing strategy, despite the lack of training data for
French, Spanish, and Japanese. This has to be
further investigated given the results of the best
MLSP 2024 system based on a different prompt-
ing strategy with a different LLM.

The analysis of Pearson correlation scores for
predicting lexical complexity (in Figure 2 and ta-
ble 6) reveals a clear trend where the ”advanced
COT” (Chain of Thought) configurations gener-
ally achieve the best performance across various
languages (French, English, and Spanish). This
approach, which incorporates more detailed in-
structions or chain-of-thought reasoning, appears
to better capture the nuances of lexical complex-
ity compared to simpler ”zero shot” and ”one shot
with instruction” approaches. This superiority is
reflected in higher Pearson scores, indicating a
stronger linear correlation between the predictions
and actual values.

Observations made in English, French, and
Spanish do not parallel those in Japanese, which
presents a unique structure that includes mixed-
script writing, the absence of clear word delimi-
tation, and grammatical specificity. This under-

scores the necessity of using specially designed
prompts for this language when predicting lexical
complexity. The distinctive features of Japanese,
such as kanji and grammatical particles, require a
more targeted approach to effectively capture lexi-
cal complexity. By adapting prompts to the partic-
ularities of Japanese, it may be possible to enhance
the accuracy of predictions by accounting for these
variations.

Figure 2: Correlation score for each llm based on the
prompt type.
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4.3 Are large language models (LLMs) a
good alternative for multilingual lexical
complexity prediction ?

While correlation scores are quite good for the
MLSP 2024 dataset, R2 scores, which indicate the
quality of prediction, suggest otherwise, cf. Table
6. Zero-shot generative models are not optimized
for the specifics of a particular task. Although
they can capture a linear relationship, they are less
accurate in explaining the total variance of task-
specific data, resulting in a lower R2 score. More
specifically, asking an LLM to predict a score on
a scale of five discrete values (0, 0.25, 0.5, 0.75,
1) penalizes it with respect to the way the dataset
is annotated where each instance is annotated with
a continuous value between 0 and 1 being the av-
erage of multiple human annotations. An intuitive
method to address this issue with an LLM is to
have it generate multiple outputs and then calcu-
late the average, which might better disperse the
data. Table 8 displays the average scores of gpt-
4o with varying generation counts n (1, 10, 20,
30) for English. We have also included a model
specifically trained for this task to facilitate com-
parison.

Models P S R2
gpt-4o (n=1) 0.781 0.67 0.14
gpt-4o (n=10) 0.789 0.677 0.174
gpt-4o (n=20) 0.796 0.677 0.174
gpt-4o (n=30) 0.792 0.687 0.183
Supervised (ours) 0.87 0.80 0.72

Table 8: Performance metrics of gpt-4o vs Trained
model for English (P:Pearson, S:Spearman, n:number
of generations)

Table 8 indicates that the Pearson correlation
scores do not increase significantly, with only
slight improvements in the R2 score, which re-
mains quite low compared to the 0.72 achieved by
the model trained with a supervised approach.

What are the consequences of a low R2 score
in this task? Let’s take the example of the mul-
tilingual supervised model and gpt-4o (n=30) and
analyze the scatter plot of each one’s predictions.
Graphs 3 and 4 illustrate the relationship between
actual labels and the values predicted by two dif-
ferent models.

Graph 3 for gpt-4o shows a general trend that is
well captured by the regression line, but with dis-
persion concentrated around the values (0, 0.25,

0.5, 0.75, 1), indicating larger prediction errors.
On the other hand, Graph 4 displays a better fit be-
tween the predictions and the labels, with points
more densely clustered around the regression line,
suggesting increased accuracy and superior over-
all performance of the model.

Figure 3: Scatter plot of gpt-4o’s predictions
(R=0.792,R2=0.183)

Figure 4: Scatter plot of trained model predictions
(R=0.87,R2=0.72)

Graphs 5 and 6 display the dispersion of resid-
uals ei around the zero line.

ei = yi − ŷi

Each residual plot exhibits distinct characteristics
reflecting the performance of two different predic-
tion models. In Figure 6, the residuals are primar-
ily concentrated around the mean prediction val-
ues (0.2 to 0.4), with a high density near the zero
line, suggesting enhanced accuracy of the model
within this range. A slight tendency to underesti-
mate higher values is also observed, indicating a
potential bias in the model. In contrast, Figure 5
shows a broader dispersion of residuals across all
prediction values, with significant variations and
distinct peaks at specific points (0.0, 0.2, 0.5, 0.8),
suggesting a poorer fit of the model and reduced
reliability, especially at the extremes.
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Figure 5: Residual plot for gpt-4o (R=0.792,R2=0.183)

Figure 6: Residual plot for trained model
(R=0.87,R2=0.72)

4.4 Can the R2 score be improved with large
language models?

A good R2 score indicates better predictive quality
of the model, with predicted values being closer
to the actual values. In the dataset used, each
instance is annotated by several evaluators who
assess the complexity of a word on a five-point
scale, with the final score being the average of
these assessments. It is known that each evalua-
tor may differ from each others in terms of level,
and the score they assign also depends on their un-
derstanding of the instructions and their thought
process before giving a score. Additionally, they
can make errors. This process is very similar to
that of LLMs: for example, we have seen in previ-
ous experiment that gpt-4o provides better results
compared to others. Thus, we can imagine that the
group of evaluators is analogous to a set of LLMs.

To test this hypothesis, we asked the five LLMs
used in this experiment (gpt-4o , Llama3, Mistral,
Phi3, and Gemma) to predict the score on a five-
point scale (0, 0.25, 0.5, 0.75, 1) using the best
prompt for English (advanced COT). We then cal-
culated the average of these scores.

Table 9 presents the average and weighted av-
erage of LLM models compared to a single LLM
and a model specifically trained for this task. The

Model P S R2

One llm (gpt-4o) 0.781 0.670 0.144
Average All llm 0.710 0.673 0.450
Weighted average 0.792 0.717 0.610
Supervised (ours) 0.870 0.800 0.720

Table 9: Average and weighted average of large lan-
guage models (LLMs) versus one LLM and a trained
model.

weighted average is calculated by arbitrarily as-
signing weights to each LLM based on previously
observed performances, as shown in Figure 2. The
assigned weights are as follows: gpt-4o at 0.5,
Mistral at 0.2, Llama3 at 0.1, Phi3 at 0.1, and
Gemma at 0.1. These weights are used to deter-
mine if performance can be improved. Ideally and
fairly, these weights should be derived from the
training set and applied to the test set. As demon-
strated in Table 9, the average score for all LLMs
significantly improves the R2 score to 0.45, which
is a substantial improvement compared to using a
single LLM that scores 0.14. Performance fur-
ther enhances with the use of a weighted aver-
age of 0.61, approaching the score of the model
specifically trained for this task. These results
strongly support our initial hypothesis. In conclu-
sion, the use of multiple LLMs somewhat simu-
lates the way data is annotated, providing better
results in terms of R2 score.

5 Conclusion

In this study, we explored new methods aiming at
enhancing the prediction of lexical complexity in
a multilingual context using two distinct types of
models: models trained specifically for the task
in a supervised way and generative models not
specifically trained for the task.

Regarding the supervised approach, our find-
ings indicate that models trained on multiple lan-
guages outperform monolingual ones. Zero-shot
models trained on multiple languages but the tar-
get one displayed variable performance compared
with monolingual models. We also observed that
data augmentation through automatic translation
from English to the target language is feasible, al-
though the required amount of augmentation in-
stances may vary depending on the use case. Addi-
tionally, training a model directly from translated
data is possible reasonable alternative, as we did
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for French 3.
We further investigated the capabilities of gen-

erative models to predict lexical complexity on
the MLSP 2024 dataset by varying the prompt
strategy used. The results underscore the im-
portance of prompt selection, with the ”chain of
thought” prompt proving particularly effective in
English, French, and Spanish 2. However, this ap-
proach was not as effective for Japanese, a lan-
guage that significantly differs from the others and
might require a specially adapted prompt due to its
unique complexity evaluation rules. Additionally,
the findings for CWI 2018 reveal that the super-
vised approach outperforms our LLM prompting
approaches. Majority voting further improved an-
notation quality.

Although generative models show good Pearson
correlation scores, the quality of their predictions
remains questionable, often due to very low R2
scores. To address this, we proposed an ensemble
method using several generative models, which is
akin to the human annotation process (cf. table 9).
This opens new research perspectives.

References
Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,

Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-
rat Behl, et al. 2024. Phi-3 technical report: A
highly capable language model locally on your
phone. arXiv preprint arXiv:2404.14219.

David Alfter. 2021. Exploring natural language pro-
cessing for single-word and multi-word lexical com-
plexity from a second language learner perspective.

David Alfter and I. Pilán. 2018. Sb@gu at the complex
word identification 2018 shared task. pages 315–
321.

David Alfter and Elena Volodina. 2018. Towards sin-
gle word lexical complexity prediction. In Proceed-
ings of the thirteenth workshop on innovative use
of NLP for building educational applications, pages
79–88.

S. Aroyehun, Jason Angel, D. Alvarez, and Alexan-
der Gelbukh. 2018. Complex word identification:
Convolutional neural network vs. feature engineer-
ing. pages 322–327.

Joachim Bingel and Johannes Bjerva. 2018. Cross-
lingual complex word identification with multitask
learning. pages 166–174.
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Anaı̈s Tack, and Marcos Zampieri. 2018b. A report
on the complex word identification shared task 2018.
In Proceedings of the Thirteenth Workshop on Inno-
vative Use of NLP for Building Educational Appli-
cations, pages 66–78, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Seid Muhie Yimam, Sanja Štajner, Martin Riedl, and
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A Appendix

1- Zero-shot prompt (base)

”””

You will be given a sentence and a word included in the
sentence. Evaluate the complexity of the word in the context
of the sentence, and provide a rating in scale of 0.0, 0.25,
0.5, 0.75, 1.0.

Sentence: ’{sentence}’
Word: ’{token}’
Complexity:

return only the number (0.0, 0.25, 0.5, 0.75, 1.0) that
corresponds to the complexity of the word in context.

”””

2- One-shot prompt (instruct)

”””

You are a person without specialized knowledge or expertise
in any specific field.You will receive a sentence containing a
word, your task is to evaluate the word based on one metric.

Evaluation Criteria:

Complexity [0.0, 0.25, 0.5, 0.75, 1.0]: This measures how
difficult it is to understand the word.

1. Carefully examine the sentence and the specified word to
grasp the context in which it is used.

2. Assess the complexity of the word using the criteria
provided

- 0.0: The word is simple and easily understandable to most
people.

- 0.25: The word may have some complexity or be specific to
a certain field, but can still be understood with some effort.

- 0.5: The word is moderately complex and may require some
background knowledge or explanation to understand fully.

- 0.75: The word is quite complex and may be difficult to
understand without significant knowledge or explanation.

- 1.0: The word is extremely complex and likely only
understood by experts or individuals with specialized
knowledge.

Your personal knowledge of a word should not influence your
rating. Instead, rate the word based on the understanding an
average person might have

Example:

Sentence: ’The professor’s discourse was filled with
intricate terminology that baffled the students.’ Word:
’discourse’.
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For this example, ’discourse’ might be rated as 0.25.

Please provide a complexity rating for the ’{language}’word
’{token}’.
Sentence: ’{sentence}’
Word: ’{token}’
return only the number (0.0, 0.25, 0.5, 0.75, 1.0) that
corresponds to the complexity of the word.

”””

3- Chain-of-thought prompt (Advanced Cot)
”””

You are a person without specialized knowledge or expertise
in any specific field.You will receive a sentence containing a
word, your task is to evaluate the word based on one metric.

Evaluation Criteria:

Complexity [0.0, 0.25, 0.5, 0.75, 1.0]: This measures how
difficult it is to understand the word.

Evaluation steps:

• 1.Understand the Context: - Read the sentence and the
word carefully to understand the context in which the word
is used.

• 2. Analyze the Word’s Frequency and Familiarity: -
Determine how commonly the word is used in everyday
language. - Consider if the word is generally known by
the average person or if it is specialized.

• 3. Evaluate the Morphological Complexity: - Examine the
structure of the word, including its length, composition,
and any prefixes or suffixes.

• 4. Define the Word: - Provide a definition of the word
in its common usage. - Explain the specific meaning of the
word in the given context.

• 5. Assess the Overall Complexity: - Based on the analyses
above, determine the complexity of the word using the
following criteria: - 0.0: The word is simple and easily
understandable to most people. - 0.25: The word may have
some complexity or be specific to a certain field, but
can still be understood with some effort. - 0.5: The
word is moderately complex and may require some background
knowledge or explanation to understand fully. - 0.75: The
word is quite complex and may be difficult to understand
without significant knowledge or explanation. - 1.0: The
word is extremely complex and likely only understood by
experts or individuals with specialized knowledge.

• 6. Assign a Complexity Rating: - Based on your
evaluation, assign a complexity rating to the word.

Your personal knowledge of a word should not influence your
rating. Instead, rate the word based on the understanding an
average person might have
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Example:

Sentence: ’The professor’s discourse was filled with
intricate terminology that baffled the students.’ Word:
’discourse’

1. Understand the Context: The word ’discourse’ is used in a
sentence discussing a professor’s speech.

2. Analyze the Word’s Frequency and Familiarity: ’Discourse’
is somewhat specialized but can be understood by most people
with some effort.

3. Evaluate the Morphological Complexity: ’Discourse’ is a
relatively long word but does not have complex prefixes or
suffixes.

4. Define the Word: - Common usage: ’Discourse’ means
written or spoken communication. - Context-specific: In the
sentence, ’discourse’ refers to the professor’s lecture.

5. Assess the Overall Complexity: Considering its moderate
frequency, moderate morphological complexity, and clear
context-specific meaning, ’discourse’ might be rated as 0.25.

6. Assign a Complexity Rating: For this example, ’discourse’
might be rated as 0.25.

Now, Please provide a complexity rating for the
’{language}’word ’{token}’.
Sentence: ’{sentence}’
Word: ’{token}’
return only the number (0.0, 0.25, 0.5, 0.75, 1.0) that
corresponds to the complexity of the word.

”””

4- Zero-shot prompt (base-binary)

You will receive a sentence and a specific word from that
sentence. Evaluate the complexity of the word within the
context of the sentence and return 1 if the word is complex,
or 0 if it is easy.

Sentence: ’sentence’

Word: ’token’

Complexity:

return only the complexity score: 1 or 0.

5- One-shot prompt (instruct-binary)

You are an individual without specialized knowledge or
expertise in a specific area.

You will be given a sentence and a word included in the
sentence.

Your task is to evaluate the complexity of the word in a
binary format (0 or 1).
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Please read and understand these instructions carefully. Keep
this document open while reviewing, and refer to it as needed.

Evaluation Criteria:

Complexity (0, 1): Evaluate how difficult the word is to
understand for an average person.

- 0: The word is simple and easily understandable by most
people. - 1: The word is complex and may be difficult for an
average person to understand.

Evaluation steps: 1. Read the sentence and word carefully to
understand the context.

2. Determine the complexity of the word based on the criteria
above.

3. Assign a complexity rating to the word.

Note: Your own familiarity with the word should not impact
your rating. Base your judgment on an average person’s
understanding of the word.

Example:

Sentence: ’The professor’s discourse was filled with
intricate terminology that baffled the students.’ Word:
’discourse’.

For this example, ’discourse’ might be rated as 1.

Please assign a complexity rating to the ’lang’ word.

Sentence: ’sentence’

Word: ’token’

Complexity:

return only the number (0 or 1) that corresponds to the
complexity of the word.

6- Chain-of-thought prompt (Advanced COT-binary)

You are an individual without specialized knowledge or
expertise in a specific area.

You will be given a sentence and a word included in the
sentence.

Your task is to rate the word on one metric: complexity.

Please read and understand these instructions carefully. Keep
this document open while reviewing, and refer to it as needed.

Evaluation Criteria:

Complexity (0 or 1): the complexity of a word in terms of how
difficult the word is to understand.

Evaluation steps:

1. Understand the Context: - Read the sentence and
the word carefully to understand the context in which
the word is used.
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2. Analyze the Word’s Frequency and Familiarity: -
Determine how commonly the word is used in everyday
language. - Consider if the word is generally known by
the average person or if it is specialized.

3. Evaluate the Morphological Complexity: - Examine
the structure of the word, including its length,
composition, and any prefixes or suffixes.

4. Define the Word: - Provide a definition of the
word in its common usage. - Explain the specific meaning
of the word in the given context.

5. Assess the Overall Complexity: - Based on the
analyses above, determine the complexity of the word
using the following criteria: - 0: The word is simple
and easily understandable to most people. - 1: The
word is complex and may be difficult to understand for
the average person.

6. Assign a Complexity Rating: - Based on your
evaluation, assign a complexity rating to the word.

Note: Your own familiarity with the word should not impact
your rating. This should be based on an average person’s
understanding of the word.

Example:

Sentence: ’The professor’s discourse was filled with
intricate terminology that baffled the students.’ Word:
’discourse’

1. Understand the Context: The word ’discourse’ is used in
a sentence discussing a professor’s speech. 2. Analyze the
Word’s Frequency and Familiarity: ’Discourse’ is somewhat
specialized but can be understood by most people with some
effort. 3. Evaluate the Morphological Complexity: ’Discourse’
is a relatively long word but does not have complex prefixes
or suffixes. 4. Define the Word: - Common usage: ’Discourse’
means written or spoken communication. - Context-specific: In
the sentence, ’discourse’ refers to the professor’s lecture.
5. Assess the Overall Complexity: Considering its moderate
frequency, moderate morphological complexity, and clear
context-specific meaning, ’discourse’ might be rated as 0.

Now, apply this method to the given word and sentence.

Please assign a complexity rating to the ’lang’ word.

Sentence: ’sentence’

Word: ’token’

Complexity:

Please return only the number (0 or 1) that corresponds to
the complexity of the word. Do not include any additional
information or explanations.
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