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Abstract

In this paper, we investigate the question of
how much domain adaptation is needed for the
task of automatic essay assessment by freezing
layers in BERT models. We test our methodol-
ogy on three different graded language corpora
(English, French and Swedish) and find that
partially fine-tuning base models improves per-
formance over fully fine-tuning base models,
although the number of layers to freeze dif-
fers by language. We also look at the effect of
freezing layers on different grades in the cor-
pora and find that different layers are important
for different grade levels. Finally, our results
represent a new state-of-the-art in automatic es-
say classification for the three languages under
investigation.

1 Introduction

Automated essay scoring (AES) is the “process of
evaluating and scoring written prose via computer
programs" (Shermis and Burstein, 2003). Even
though the implied use of computers nowadays
might suggest so, AES is not a recent phenomenon.
Ellis Batten Page, also known as “the father of
AES" (Wresch, 1993), started to develop his ideas
in the 60’s (Page, 1966; Page and Paulus, 1968) and
implemented a rather sophisticated program to ana-
lyze and grade student essays. Even though work
on AES started around 55 years ago, it is still an ac-
tive area of research to this day (e.g. Beigman Kle-
banov and Madnani, 2020; Wilkens et al., 2023;
Lagutina et al., 2023).

When dealing with pretrained language mod-
els, two of the most common approaches are to
fine-tune the whole model or to just train any ex-
tra classification layers that have been added. De-
spite that, there have been studies that show that
partly fine-tuning the models allows for better do-
main adaptation by maintaining part of the original
knowledge of the model while learning domain-
specific features at the same time (Zhu et al., 2021).

The reason for this is that different layers of neural
models encode different kinds of features, with the
first few encoding lower-level features and the later
ones encoding higher-level features.

In this paper we aim to determine how much
domain adaptation is required for AES. We limit
our experiments to BERT models for a couple of
reasons. There has been a lot of studies focusing on
which layers of these models encode which aspects
of linguistic knowledge (e.g. Clark et al., 2019;
Jawahar et al., 2019). On the other hand, the more
recent generative decoder-only models tend to vary
a lot from each other, which can complicate both
comparison among themselves and between differ-
ent languages. Finally, the performance of these
decoder-only models in terms of second-language
assessment has had mixed results so far (Naismith
et al., 2023; Yancey et al., 2023), which in turn
means that BERT-based models are still an impor-
tant part of AES for second language assessment.

Thus we analyze which layers of a pretrained
BERT model are important for the task at hand and
which ones should be fine-tuned. We assume that
the knowledge embedded in the frozen layers (se-
mantics, syntax, grammaticality, etc.) is important
for the model to properly determine the proficiency
level an essay has been annotated as. We further an-
alyze whether this varies depending on the CEFR
level of the essays. That is, we want to determine
whether the same encoded knowledge of the lan-
guage model is equally important for all levels.

We work with the CEFR1 framework (COE,
2001). It is used to evaluate foreign/second lan-
guage learning by assigning one of the six levels
(A1, A2, B1, B2, C1, C2) that determine the profi-
ciency of second language (L2) speakers. Further-
more, we work with three different languages: En-
glish, French and Swedish. While CEFR-labeled

1Common European Framework of Reference for Lan-
guages
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Linköping Electronic Conference Proceedings 211: 137–152.

137



data can be scarce, there is a growing societal need
for automated grading in CEFR terms. An example
of this is how different governments are either plan-
ning to require a language test for applicants for
residence and citizenship or already do so (Code
civil français, 2011; Swedish Government, 2021,
2023; U.S. Citizenship and Immigration Services,
2023; Government of Canada, 2024). Because of
this, we expect that the need for support in AES
will drastically increase in the near future, both
as a way to support self-studying learners and for
high-stakes essay grading.

The rest of our paper is organized as follows.
Section 2 introduces the context for our experiment
in terms of previous research. In Section 3.2 we
describe our approach, as well as the considera-
tions we have taken into account while designing it.
Section 3.1 describes the datasets used for our ex-
periments, while Section 3.3 describes the state-of-
the-art we compare our models to. We present our
results as well as a discussion of these in Section
4. Finally, we present our conclusions in Section 5,
as well as possible directions in which to expand
our work.

2 Related Work

The state-of-the-art in AES has long been dom-
inated by systems using feature engineering and
linguistic variables that measure textual quality,
such as number of words (Shermis and Burstein,
2003; Parslow, 2015), number of grammatical er-
rors (Yannakoudakis et al., 2018; Ballier et al.,
2019), type-token ratio (Vajjala and Lõo, 2014;
Lee and Hasebe, 2020), or lexical density (Hancke,
2013; Hancke and Meurers, 2013; Pilán and Volo-
dina, 2018). It is only recently that deep learning
approaches have begun to set new standards (Hus-
sein et al., 2019; Bestgen, 2020).

Alikaniotis et al. (2016) and Taghipour and Ng
(2016) were the first ones to use deep learning for
AES. Even though they used an LSTM2 architec-
ture (Hochreiter and Schmidhuber, 1997), other
network architectures such as Convolutional Neu-
ral Networks (CNN) and Recurrent Convolutional
Neural Networks (RCNN) have also been success-
fully applied in the past (Dong and Zhang, 2016;
Dong et al., 2017; Dasgupta et al., 2018; Shin and
Gierl, 2021).

Recent experiments using GPT for CEFR classi-
fication have found that GPT-4 (OpenAI, 2024) can

2Long Short-Term Memory

reach performances approaching those of sophis-
ticated automated scoring systems (Banno et al.,
2024), although agreement with human annotators
remained inconclusive (Yancey et al., 2023). Large
Language Models have also been used for other
tasks related to computational approaches to lan-
guage learning, such as learner-adapted definition
generation (Yuan et al., 2022), learner-centered
text simplification (Baez and Saggion, 2023), or
proficiency-adapted text generation (Bezirhan and
von Davier, 2023).

As with most fields in NLP, most of the work in
this field has been done in English (Søgaard, 2022).
A consequence of that is that other languages are
often not paid enough attention to.

For instance, very little work has been done
on essay classification in Swedish, some exam-
ples being Östling et al. (2013) on grading upper-
secondary essays written by native speakers, Pilán
(2018) on CEFR classification of L2 learner essays,
Lilja (2018) on assigning grades to high-school
essays, and Ruan (2020) on assigning grades to
essays written as a part of national exams. Some
of these works use the Uppsala Corpus of Student
Writings (Megyesi et al., 2016). This corpus mainly
consists of native speaker upper secondary level
writings but also contains some texts, around 8%,
written by learners of Swedish as a second lan-
guage. However, it is not aligned with the CEFR
scale.

Both Lilja (2018) and Ruan (2020) use deep
learning to classify these essays by assigned grades.
Lilja (2018) uses an LSTM and explores whether
pre-trained embeddings are better or not than a fine-
tuned version or randomly initialized ones. They
conclude that pre-trained fine-tuned embeddings
produce the best results, but due to high standard
deviations, they are not significantly different from
randomly initialized embeddings.

Ruan (2020), explores the use of hand-crafted
features in combination with deep neural networks.
The feature categories are virtually identical to
those in Pilán (2018), namely count-based, mor-
phological, syntactic and lexical. Semantic fea-
tures were not included. The chosen architecture
is a recurrent neural network. Using each feature
group separately, they find that all feature groups
perform similarly, although each feature group sep-
arately performs better than using all features simul-
taneously. Overall, they find that a feature-based
system outperforms the word embeddings based
system by Lilja (2018).
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A similar situation presents itself for French,
with a limited number of studies on essay classi-
fication. For non-L2 French, Lemaire and Dessus
(2001) use Latent Semantic Analysis to grade a lim-
ited number of student essays (31), and Zaghouani
(2002) presents a conceptual design for grading
essays using a multi-agent system. Parslow (2015)
presents a preliminary study on automatic grad-
ing of L2 French essays written by Swedish native
speakers using feature-based methods and Naive
Bayes classifiers. Finally, Ranković et al. (2020)
use CamemBERT to extract word-level features
and a deep recurrent network to grade essays writ-
ten by French learners in German-speaking parts
of Switzerland.

Mayfield and Black (2020) argue that the move
to deep neural models for AES comes with consid-
erable computational costs while producing perfor-
mance comparable to the classical models. Their
conclusions indicate, however, that there is a fur-
ther need to explore deep learning approaches.

3 Materials and Methods

Second language assessment is a high-stakes situ-
ation, given that its outcome can affect the educa-
tional and professional opportunities that a student
has available to them. While deep learning mod-
els tend to out-perform feature-based models, they
tend to be obscure, with little to no explanation
both of where specific predictions come from and
which kind of features they focus on (Guidotti et al.,
2018).

In this section, we first introduce the datasets
we used in Section 3.1, followed by our approach
to obtain a more explainable BERT (Devlin et al.,
2019) model in Section 3.2. Finally, we talk about
the state-of-the-art we compare our approach to in
Section 3.3.

3.1 Datasets

3.1.1 English Dataset
We are using the EFCamDat corpus (Geertzen et al.,
2013) for experiments on English. The corpus con-
sists of essays collected from the EF Education
First online platform. The essays were assigned a
grade on a 16-level scale with equivalents to some
of the major standards in L2 language learning, in-
cluding CEFR levels. However, it should be noted
that the grades were assigned according to the level
the students reached in the platform as opposed to
direct evaluation of the essays themselves.

Level # essays # train # valid # test

A1 192K 2,299 767 767
A2 130K 1,555 518 518
B1 62K 738 246 246
B2 18K 218 73 73
C1 5K 62 20 20
C2 0 0 0 0

Total 406K 4,872 1,624 1,624

Table 1: Number of essays in the English L2 learner
corpus (EFCamDat) for each of the CEFR levels. The
letter K denotes that the numbers we are dealing are in
the thousands. Note that there are no C2 level essays
in the corpus. We randomly sample a small percentage
of the corpus for faster training while keeping the label
distributions the same.

The corpus contains over 400,000 essays from
CEFR levels ranging from A1 to C1, as seen in
Table 1. The students are placed into one of the
platform’s 16 levels either through a placement test
or by progressing through the course. Each level
has eight possible writing tasks, which gives a wide
array of possible topics for each CEFR level. Given
that we are training the models several times, we
sampled 2% of the data to keep the use of com-
putational resources within a reasonable margin.
The essays were randomly sampled and stratified
by CEFR level, to maintain the proportion of each
label. Moreover, this leaves us with a dataset of a
comparable size to TCFLE-8, the French corpus
we are using.

3.1.2 French Dataset

For French, we use the recently released TCFLE-
8 corpus (Wilkens et al., 2023). This is a corpus
based on the French language certification exam
TCF (test de connaissance du français ‘French
knowledge test’) administered by the France Édu-
cation International. It is the biggest French corpus
for AES to date with over 6.5k essays and covers a
wide variety of prompts.

All essays are graded by at least 2 professional
raters and cover all six levels of the CEFR scale, as
seen in Table 2. Different data cleaning and quality
assurance steps were taken by the corpus creators
to ensure that the corpus contains representative
samples at each level.
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Level # essays # train # valid # test

A1 689 413 138 138
A2 1,375 825 275 275
B1 1,466 880 293 293
B2 1,427 856 285 285
C1 1,127 676 226 226
C2 485 0 0 0

Total 6,569 3,650 1,217 1,217

Table 2: Number of essays in the French L2 learner cor-
pus (TCFLE-8) for each of the CEFR levels. Note that
this is the only corpus of the three that we are working
with that contains C2 level essays. We have removed
the essays of this level to allow for better comparison
across languages.

Level # essays # train # valid # test

A1 59 35 12 12
A2 143 85 29 29
B1 86 52 17 17
B2 105 63 21 21
C1 96 58 19 19
C2 7 0 0 0
Missing 6 0 0 0

Total 502 293 98 98

Table 3: Number of essays in the Swedish L2 learner
corpus (Swell-Pilot) for each of the CEFR levels. Note
that there are very few essays of level C2 in the corpus
and that some are missing a level.

3.1.3 Swedish Dataset
For Swedish, we use the Swell-pilot corpus (Volo-
dina et al., 2016a; Volodina, 2024). It consists of
three subcorpora of L2 Swedish learners (see be-
low) and is annotated with CEFR levels. All CEFR
levels are well represented in the corpus, with the
exception of C2 level (advanced) essays, as seen in
Table 3. Thus we remove the C2 essays as their low
number would not be representative of the model’s
classification capabilities. Moreover, there are six
essays that lack a level which have been ignored
for the purposes of this experiment.

SpIn consists of 256 essays from a course for
refugees that had recently arrived to Sweden. The
course was introductory in nature and the essays
were part of a mid-term exam.

SW1203 consists of 141 essays from a prepara-
tory course for foreign students that intended to
study an undergraduate program in Sweden.

TISUS consists of 105 essays from the written
part of the Test In Swedish for University Studies
(TISUS)3. The essays are argumentative, the topic
being “stress".

3.2 Methodology
In order to classify the essays, we use language-
specific versions of BERT. For the experiments
themselves, we explore how freezing different lay-
ers of BERT during training affects its performance.
We freeze the layers in a bottom-up manner, given
that lower layers learn more basic linguistic fea-
tures such as surface-level features, while higher
layers learn more task-specific features, such as se-
mantic and contextual features (Clark et al., 2019;
Jawahar et al., 2019). Thus, we compare differ-
ent configurations ranging from a completely fine-
tuned model to one where only the classification
layer was trained.

For the classification task itself, we truncate the
essays to fit the maximum token length of BERT
and feed them to the model.4 We then take the top
layer representation of the [CLS] token and feed
it to a linear layer for classification. Taking the
output of the same layer all the time allows us to
compare the differences between how the models
are learning depending on how many layers we
have frozen.

In terms of hyperparameters, we explore using
different learning rates5 and find that the best per-
forming on average is 5e-5. We also run the experi-
ments for 10 epochs, loading the best performing
checkpoint at the end.

Given that none of the corpora used has standard
train/test splits, we run our experiments five times,
generating new train/validation/test splits with a
60/20/20 distribution each run to account for vari-
ance. We maintain the proportions of the different
CEFR levels across the splits. The number of each
label per level can be seen in Tables 1, 2, and 3.

As for our models, we use specific versions of
BERT according to the language.

For English, we use the original version of
BERT6 (Devlin et al., 2019). It was trained us-
ing BooksCorpus (Zhu et al., 2015) and an English
Wikipedia dump. Note that we are using the cased

3https://www.su.se/tisus/english/
4Note that we are not using Longformer as it is not avail-

able in all of the languages we are working with.
5We experimented with learning rates of 1e-4, 5e-4, 1e-5,

5e-5, 1e-6, 5e-6, and 1e-7.
6https://huggingface.co/google-bert/bert-bas

e-cased
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version of BERT as the Swedish model has no un-
cased version available.

We use CamemBERT7 (Martin et al., 2020) for
French, which is based on RoBERTa (Liu et al.,
2019) rather than on vanilla BERT. It was trained
using the French section of the OSCAR corpus
(Suárez et al., 2019), a language annotated version
of CommonCrawl.8

The final model we use is Swedish BERT9

(Malmsten et al., 2020), a Swedish version of
BERT implemented by KBLab at theNational Li-
brary of Sweden10. It was trained on a combination
of corpora containing newspapers, social media,
official reports from the Swedish government, legal
documents, and Wikipedia in Swedish.

3.3 State-of-the-art

In this section we talk about the current state-of-
the-art in AES within the context of the datasets
we are using. These results are summarized in the
top row of Table 4.

3.3.1 English
The most similar work to our own for English is
by Schmalz and Brutti (2021) who use BERT for
the classification of the EFCamDat data. They also
work on subsets of the whole data (10k, 50k, 100k)
due to space and computational constraints with
using the whole corpus. We report their best results
as state-of-the-art.11

3.3.2 French
Wilkens et al. (2023) perform a series of essay
classification experiments on the TCFLE-8 corpus
in order to establish some first baselines: (1) a
transformer-based approach using CamemBERT,
(2) a feature-based approach using XGBoost, and
(3) a simple logistic regression. For the feature-
based algorithm in (2) and (3) they use a set of 119
features – distilled from over 5k features – from
nine subcategories: errors, graded lexicons, lexical
diversity, lexical frequency, lexical sophistication,
orthographic neighbors, morphology, tenses, likeli-
hood, and word length. They find the transformer-

7https://huggingface.co/almanach/camembert-b
ase

8https://commoncrawl.org/about/
9https://huggingface.co/KB/bert-base-swedish

-cased
10https://www.kb.se/in-english/research-colla

boration/kblab.html
11It would arguably be fairer to compare against the results

they obtained with the smallest subsample, approaching our
own sample size.

based model to perform best, followed by XGBoost.
For brevity, we will only report results from their
best-performing model (i.e., the transformer-based
model) as state-of-the-art.

3.3.3 Swedish
For Swedish, we compare our model with a feature-
based approach to be able to draw a comparison
between performance and explainability. Pilán et al.
(2016) and Volodina et al. (2016b) use a feature
set of about 60 features divided into five subcate-
gories: length-based, lexical, morphological, syn-
tactic, and semantic features. They use an SVM to
classify the data. Both studies found that lexical
features perform the best.

Pilán and Volodina (2018) specifically investi-
gate the importance of features for the classification
of (1) sentences, (2) reading texts from textbooks,
and (3) learner essays from SweLL-pilot. Using
analysis of variance (ANOVA), they determine the
most predictive features for each of the three sub-
genres of text. In general, this study corroborates
findings from Crossley and McNamara (2011) for
L2 English in that lexical diversity and lexical fre-
quency are strong predictors in both studies, and
Vajjala and Lõo (2014) who also found verb vari-
ation and lexical variation to be strong predictors
for L2 Estonian.

3.4 Evaluation
We evaluate our system both in terms of accuracy
and of “adjacent accuracy". The idea behind ad-
jacent accuracy is that an A1 essay misclassified
as A2 is a smaller mistake as opposed to it being
misclassified as a B2 essay.

In more formal terms, we say that a prediction
is correct in terms of adjacent accuracy if: (1) our
classes are ordinal and (2) the prediction is either
the correct class or the immediate predecessor or
successor of it.

Moreover, we use F1 score calculated using both
usual and adjacent accuracy. We report both macro
and weighted F1 scores as they aggregate the F1
scores for the individual classes assuming either
that the classes are equally important (for macro
averaging) or that the number of examples for each
class matter (for weighted averaging).

4 Results and Discussion

4.1 Performance Across Languages
In this section we present the results of our exper-
iments, noting the performance across languages
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Layers Frozen English French Swedish

State-of-the-art 0.974 0.56 0.23

None 0.975 ± 0.000 0.555 ± 0.003 0.722 ± 0.018
All layers 0.319 ± 0.000 0.443 ± 0.005 0.188 ± 0.001

Embedding Layer 0.971 ± 0.000 0.526 ± 0.005 0.727 ± 0.008
1 Encoder Layer 0.974 ± 0.000 0.517 ± 0.011 0.731 ± 0.019
1 and 2 0.974 ± 0.000 0.524 ± 0.010 0.744 ± 0.011
1 to 3 0.974 ± 0.000 0.538 ± 0.002 0.718 ± 0.006
1 to 4 0.977 ± 0.000 0.529 ± 0.011 0.720 ± 0.003
1 to 5 0.972 ± 0.000 0.537 ± 0.008 0.725 ± 0.010
1 to 6 0.966 ± 0.000 0.532 ± 0.017 0.705 ± 0.006
1 to 7 0.967 ± 0.000 0.542 ± 0.018 0.671 ± 0.009
1 to 8 0.962 ± 0.000 0.548 ± 0.006 0.664 ± 0.020
1 to 9 0.957 ± 0.000 0.552 ± 0.004 0.612 ± 0.011
1 to 10 0.946 ± 0.000 0.564 ± 0.004 0.596 ± 0.013
1 to 11 0.919 ± 0.000 0.572 ± 0.001 0.541 ± 0.004

Table 4: Weighted F1 scores for the different languages. Even though the number of layers to freeze to obtain the
best-performing model varies across languages, the best model is always partially fine-tuned.

and CEFR levels. More detailed tables and results
for each language can be found in Appendix B for
the metrics based on accuracy and in Appendix C
for those based on adjacent accuracy. Table 4 com-
pares the weighted F1 scores among languages.

First of all we can notice that all BERT models
that were even partially fine-tuned performed better
than the fully frozen model. That is, fine-tuning
even one layer led to large improvements in the
performance.

Even though the best performing model was al-
ways partially fine-tuned, which layers should be
frozen varied depending on the language. For in-
stance, for English, the only model that performed
better than the fully fine-tuned one was the one
where we froze all layers up to the fourth encoder
layer, indicating a reliance on surface-level features
for classification. Meanwhile, the French model
showed a preference towards fine-tuning just the
last few encoder layers, indicating that a broad
range of linguistic features may be necessary to
accurately classify the essays. Finally, the Swedish
model worked the best when few of the encoder
layers were frozen, which again points to the impor-
tance of surface-level features for AES in Swedish.

Based on this, we can assume that maintaining
basic knowledge of the language within the model
is an important part of automated essay grading.
This sounds reasonable, given that second language

learners tend to demonstrate an imperfect usage
of the language. Moreover, we would prefer not
to have this usage of the language overwrite the
knowledge of the model.

Something notable is that when the model mis-
classified an essay, it usually assigned that essay to
one of the adjacent levels. Even though the CEFR
levels are ordinal to us humans, this information
was not provided to the model at any point during
training. This points to the model learning how
to identify the level of the essay according to the
linguistic characteristics, as students from adjacent
levels are more likely to create similar texts than
those for levels that are farther apart.

4.2 Performance Across CEFR Levels
Figures 1, 2, and 3 show how the different levels
react to fine-tuning different layers of the models.
We have cut-off the values that are below a certain
threshold for each of the plots as they do not help us
identify which layers are important for that specific
class. Nevertheless, the full figures can be found in
Appendix A.

For French and for Swedish we notice that the
levels where the model performs the best are those
that are closer to the edges of the CEFR scale, re-
gardless of the language. This points to these levels
being easier to classify as they are the most likely
to be different from the other essays. On the other
hand, levels B1 and B2 are the ones that have lower
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Figure 1: Performance per CEFR level when freezing
different layers of BERT. Note that the performance
tends to drop as the levels increase.

F1 scores. This might be due to them being more
similar to their adjacent levels and thus harder to
properly identify.

In more language specific notes, we see that the
different levels tend to follow the same trend as the
overall performance of each model.

We begin by looking at how the English BERT
behaves across levels in Figure 1. We can note that
the performance is inversely correlated to the level.
That is, lower levels get higher F1 scores, while
higher levels get lower F1 scores. This might be
due to the prompts given to the students. For exam-
ple, A1 essays have an almost perfect classification.
However, most of them begin with a salutation (hi,
hello, etc.) and address someone called Anna. This
could in turn lead to leakage, which would explain
the high performance seen in Table 4 compared to
French and Swedish. Moreover, the levels are in-
ferred from the course level, which Muñoz Sánchez
et al. (2024b) argue is not necessarily a good proxy
for CEFR levels. As for the individual levels, we
notice that the general trend is for their accuracy to
drop the more layers we freeze. Even though there
are some layers that have either higher or lower
perplexity, they do not seem to follow a pattern.

When looking at the French model in Figure
2 we notice that most of the levels have a slight
increase in their performance as we approach the
latter layers. However, different levels behave dif-
ferently. For instance, the performance for level C1
is mostly stable with a very slight decrease when
freezing just the first few layers and a very slight
increase when fine-tuning just the last few layers.

Figure 2: Performance per CEFR level when freezing
different layers of CamemBERT. Note that even though
all levels perform differently, most of them have a slight
uptick in performance when we finetune only the last
few encoder layers.

Meanwhile, level A1 has its highest performance
when fine-tuning all of the model and another in-
crease when freezing layers up to the ninth or tenth
encoder layers, which points to the importance of
a broad range of features. With levels A2, B1, and
B2 we see a similar pattern: fine-tuning the whole
model leads to higher performance but fine-tuning
just the final encoder layer leads to the highest
performance for these levels. Thus, we can as-
sume that low-, mid- and high-level features play
an important role in French AES. Even though the
performance of our best model is similar to the
one reported by Wilkens et al. (2023), we still see
an increase in performance when freezing layers
compared to fully fine-tuning the base model.

Finally, we take a look at Swedish BERT in Fig-
ure 3. Here we notice that there are two humps in
the performance for levels A1 and A2. The first
is when freezing just the first few layers and the
second one is when freezing up to the first four or
five encoder layers. This points to the importance
of lexical and syntactic features. A similar pattern
can be observed for level B1, albeit in a more er-
ratic manner. For levels B2 and C1 we notice that
freezing the first two decoder layers leads to the
highest performance, pointing to the importance of
lexical features.

5 Conclusions and Future Work

In this study we analyzed different fine-tuning
strategies for AES using BERT-based models.
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Figure 3: Performance per CEFR level when freezing
different layers of Swedish BERT. Note that even though
all levels perform differently, most of them have a sharp
drop in performance when we finetune only the last few
encoder layers.

Even though there was no unified pattern across
languages on which layers are crucial, we show that
the best-performing modes are ones that have gone
through domain adaptation by partial fine-tuning.
We also show that even though the importance of
layers when taking into account the performance
on each individual class differs, it tends to closely
follow that of the whole model.

There are several directions in which our work
can be expanded upon. The most immediate one
would be to expand the languages used, as this
would allow to identify if there are patterns depend-
ing on language families. On a similar note, we
would be interested in seeing the effects of the L1
of a student on which layers and/or features are
more important for the assessment.

Another important follow-up of our work would
be to determine whether freezing specific layers
leads to more fair systems. The idea behind this
would be that a fair model should focus on the
knowledge and skills of the students as opposed to
spurious correlations such as (indirectly) using de-
mographic data for classification. Human graders
do tend to show slight biases based on these char-
acteristics (Aldrin, 2017) and study on how deep
learning models deal with these has been limited
to perceived ethnicity of names (Muñoz Sánchez
et al., 2024a).

Finally, we consider that it is important to do
a deeper analysis both of the terms appearing in
the essays and of the kinds of prompts given to

the students. As we mentioned, almost all of the
essays in the A1 level in the English dataset include
salutations as their first word. This is because the
prompts for this level ask the students to greet or to
introduce themselves to someone in specific. This
can lead to a dataset in which it is not easy to iden-
tify whether our model is behaving as we expect or
if it is looking as spurious correlations.

We consider that this work is an important step
towards understanding which features are impor-
tant when using transformer-based models for AES.
This will in turn help create better and more inter-
pretable models for this task, as well as will con-
tribute to their fairness.

Limitations

The present work only reports on works for the au-
tomatic assessment of written language. It should
be mentioned that there is a substantial body of
work done on automatic assessment of speech as
well. Speech has its own specificities, for example
fluency. Fluency is the rate at which one speaks,
as operationalized in the Complexity, Accuracy,
Fluency (CAF) framework (Skehan et al., 1998).

On top of that, the datasets and the approach we
use in this paper aggregate several characteristics
such as the grammar, vocabulary, relevance, among
others into a single label for the whole essay. Nai-
smith et al. (2023) note that this can lead to issues
when automatically assigning a level to the essay,
as some of these characteristics are harder to cap-
ture computationally, such as discourse coherence.

Another thing to note is that the models we
used were originally trained using vastly differ-
ent amounts of data. This could lead to differences
in how they model language. For example, the
models performed extremely well for the English
dataset, while the performance was lower for both
the French and the Swedish datasets. We recom-
mend further analysis and cross-examination to
ensure that none of these datasets were included in
the training data for any of these models. On top
of that, the French model is based on RoBERTa
not on BERT, which might affect the results. To
the best of out knowledge, CamemBERT is the
most commonly used model derived from BERT in
French.

Ethics Statement

It is important to note that our model should not
be used as a substitute for expert human graders.
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As noted during the results, not even our model
achieves perfect accuracy, which could impact the
lives of students. Thus, we suggest always keeping
a human-in-the-loop approach with this kind of
technology.
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Figure 4: Performance per CEFR level when freezing
different layers of the English model. Note that level A1
is the best performing one, while C1 is the worst.

A Performance Depending on the CEFR
Level

In this appendix we present the figures for the F1
scores for the different languages. Figures 4, 5, and
6 show the effect of different degrees of fine-tuning
of the BERT models across CEFR level in English,
French, and Swedish, respectively.

B Detailed Results per Language

In this appendix we present tables with the usual
metrics for each language. The ones based on adja-
cent accuracy are in Appendix C. Thus, Tables 5, 6,
and 7 show the performance of different degrees of
fine-tuning of the BERT models in English, French,
and Swedish, respectively.

C Adjacent Metrics per Language

In this appendix we present tables with the met-
rics calculated using adjacent accuracy for each
language. The ones based on standard accuracy are
in Appendix B. Thus, Tables 8, 9, and 10 show the
performance of different degrees of fine-tuning of
the BERT models in English, French, and Swedish,
respectively. Note that most of the experiments
achieve very high results using these metrics.

Figure 5: Performance per CEFR level when freezing
different layers of the French model. Note that level C1
is the best performing one in general, followed by A1.

Figure 6: Performance per CEFR level when freezing
different layers of the Swedish model. Note that levels
A2 and C1 are the best performing ones in general,
followed by A1.

Proceedings of the 13th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2024)

149



Layers Frozen Accuracy F1 macro F1 weighted

State-of-the-art (Schmalz and
Brutti, 2021)

0.974 n/a n/a

None 0.975 ± 0.000 0.923 ± 0.000 0.975 ± 0.000
All layers 0.475 ± 0.000 0.137 ± 0.000 0.319 ± 0.000

Embedding Layer 0.972 ± 0.000 0.914 ± 0.000 0.971 ± 0.000
1 Encoder Layer 0.974 ± 0.000 0.914 ± 0.000 0.974 ± 0.000
1 and 2 0.974 ± 0.000 0.922 ± 0.000 0.974 ± 0.000
1 to 3 0.975 ± 0.000 0.866 ± 0.000 0.974 ± 0.000
1 to 4 0.977 ± 0.000 0.911 ± 0.000 0.977 ± 0.000
1 to 5 0.973 ± 0.000 0.884 ± 0.000 0.972 ± 0.000
1 to 6 0.969 ± 0.000 0.838 ± 0.000 0.966 ± 0.000
1 to 7 0.969 ± 0.000 0.852 ± 0.000 0.967 ± 0.000
1 to 8 0.964 ± 0.000 0.820 ± 0.000 0.962 ± 0.000
1 to 9 0.962 ± 0.000 0.749 ± 0.000 0.957 ± 0.000
1 to 10 0.952 ± 0.000 0.737 ± 0.000 0.946 ± 0.000
1 to 11 0.924 ± 0.000 0.699 ± 0.000 0.919 ± 0.000

Table 5: Results of the various setups of English BERT model on the validation set using accuracy and macro and
weighted F1. Note that the only result that outperforms a fully fine-tuned model was when freezing up to the fourth
encoder layer. On top of that, the confidence interval was low enough for it to be considered practically zero.

Layers Frozen Accuracy F1 macro F1 weighted

State-of-the-art (Wilkens
et al., 2023)

0.57 n/a 0.56

None 0.560 ± 0.004 0.571 ± 0.003 0.555 ± 0.003
All layers 0.473 ± 0.005 0.402 ± 0.006 0.443 ± 0.005

Embedding Layer 0.533 ± 0.006 0.543 ± 0.004 0.526 ± 0.005
1 Encoder Layer 0.525 ± 0.011 0.534 ± 0.011 0.517 ± 0.011
1 and 2 0.533 ± 0.010 0.541 ± 0.012 0.524 ± 0.010
1 to 3 0.545 ± 0.003 0.553 ± 0.003 0.538 ± 0.002
1 to 4 0.538 ± 0.011 0.542 ± 0.014 0.529 ± 0.011
1 to 5 0.546 ± 0.008 0.549 ± 0.011 0.537 ± 0.008
1 to 6 0.542 ± 0.017 0.547 ± 0.020 0.532 ± 0.017
1 to 7 0.552 ± 0.018 0.557 ± 0.020 0.542 ± 0.018
1 to 8 0.559 ± 0.008 0.562 ± 0.010 0.548 ± 0.006
1 to 9 0.563 ± 0.006 0.567 ± 0.007 0.552 ± 0.004
1 to 10 0.573 ± 0.006 0.577 ± 0.007 0.564 ± 0.004
1 to 11 0.578 ± 0.003 0.582 ± 0.002 0.572 ± 0.001

Table 6: Results of the various setups of the French CamemBERT model on the validation set using accuracy and
macro and weighted F1. Note that the best result on average is achieved when finetuning only the last encoder layer.
More in general, finetuning the latter layers seems to lead to better results than also finetuning the earlier ones.
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Layers Frozen Accuracy F1 macro F1 weighted

State-of-the-art (Pilán et al.,
2016)

0.18 0.16 0.23

None 0.727 ± 0.016 0.712 ± 0.021 0.722 ± 0.018
All layers 0.324 ± 0.004 0.138 ± 0.001 0.188 ± 0.001

Embedding Layer 0.731 ± 0.008 0.716 ± 0.008 0.727 ± 0.008
1 Encoder Layer 0.735 ± 0.020 0.723 ± 0.020 0.731 ± 0.019
1 and 2 0.749 ± 0.012 0.733 ± 0.011 0.744 ± 0.011
1 to 3 0.720 ± 0.008 0.710 ± 0.005 0.718 ± 0.006
1 to 4 0.724 ± 0.000 0.712 ± 0.003 0.720 ± 0.003
1 to 5 0.729 ± 0.012 0.718 ± 0.010 0.725 ± 0.010
1 to 6 0.710 ± 0.008 0.695 ± 0.005 0.705 ± 0.006
1 to 7 0.678 ± 0.008 0.656 ± 0.011 0.671 ± 0.009
1 to 8 0.673 ± 0.020 0.642 ± 0.021 0.664 ± 0.020
1 to 9 0.641 ± 0.016 0.569 ± 0.007 0.612 ± 0.011
1 to 10 0.649 ± 0.012 0.533 ± 0.014 0.596 ± 0.013
1 to 11 0.612 ± 0.000 0.476 ± 0.005 0.541 ± 0.004

Table 7: Results of the various setups of Swedish BERT model on the validation set using accuracy and macro
and weighted F1. Note that the best result on average is achieved when finetuning the layers above the second
encoder layer. Despite that, freezing some of the intermediate layers also leads to better results than those of the
state-of-the-art.

Layers Frozen Adj. Accuracy F1 macro F1 weighted

State-of-the-art (Schmalz
and Brutti, 2021)

n/a n/a n/a

None 0.996 ± 0.000 0.997 ± 0.000 0.996 ± 0.000
All layers 0.799 ± 0.000 0.382 ± 0.000 0.721 ± 0.000

Embedding Layer 0.998 ± 0.000 0.998 ± 0.000 0.998 ± 0.000
1 Encoder Layer 0.996 ± 0.000 0.987 ± 0.000 0.996 ± 0.000
1 and 2 0.998 ± 0.000 0.998 ± 0.000 0.998 ± 0.000
1 to 3 0.996 ± 0.000 0.986 ± 0.000 0.996 ± 0.000
1 to 4 0.994 ± 0.000 0.984 ± 0.000 0.994 ± 0.000
1 to 5 0.994 ± 0.000 0.986 ± 0.000 0.994 ± 0.000
1 to 6 0.993 ± 0.000 0.964 ± 0.000 0.992 ± 0.000
1 to 7 0.993 ± 0.000 0.971 ± 0.000 0.993 ± 0.000
1 to 8 0.994 ± 0.000 0.988 ± 0.000 0.994 ± 0.000
1 to 9 0.995 ± 0.000 0.991 ± 0.000 0.995 ± 0.000
1 to 10 0.995 ± 0.000 0.990 ± 0.000 0.995 ± 0.000
1 to 11 0.996 ± 0.000 0.986 ± 0.000 0.996 ± 0.000

Table 8: Results of the various setups of English BERT model on the validation set using adjacent accuracy and
the macro and weighted F1 scores that derive from it. Note that the best performance is achieved when freezing
either just the embedding layer or by freezing up to the second encoder layer. This is the only model in which the
best-performing does not match when using the usual accuracy and adjacent accuracy.

Proceedings of the 13th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2024)

151



Layers Frozen Adj. Accuracy F1 macro F1 weighted

State-of-the-art (Wilkens
et al., 2023)

0.98 n/a n/a

None 0.976 ± 0.002 0.976 ± 0.002 0.976 ± 0.002
All layers 0.952 ± 0.005 0.955 ± 0.005 0.952 ± 0.005

Embedding Layer 0.965 ± 0.001 0.966 ± 0.001 0.964 ± 0.001
1 Encoder Layer 0.958 ± 0.004 0.959 ± 0.003 0.958 ± 0.004
1 and 2 0.960 ± 0.002 0.961 ± 0.002 0.960 ± 0.002
1 to 3 0.965 ± 0.002 0.966 ± 0.002 0.965 ± 0.002
1 to 4 0.962 ± 0.001 0.963 ± 0.001 0.962 ± 0.001
1 to 5 0.960 ± 0.003 0.962 ± 0.002 0.960 ± 0.003
1 to 6 0.957 ± 0.004 0.958 ± 0.004 0.957 ± 0.004
1 to 7 0.960 ± 0.005 0.961 ± 0.005 0.960 ± 0.005
1 to 8 0.969 ± 0.002 0.970 ± 0.002 0.969 ± 0.002
1 to 9 0.972 ± 0.002 0.972 ± 0.002 0.972 ± 0.002
1 to 10 0.976 ± 0.004 0.976 ± 0.003 0.976 ± 0.004
1 to 11 0.976 ± 0.002 0.976 ± 0.002 0.976 ± 0.002

Table 9: Results of the various setups of French CamemBERT model on the validation set using adjacent accuracy
and the macro and weighted F1 scores that derive from it. Note that the best result on average is achieved when
finetuning either the final encoder layer or the final two.

Layers Frozen Adj. Accuracy F1 macro F1 weighted

State-of-the-art (Pilán et al.,
2016)

0.59 0.54 0.66

None 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
All layers 0.627 ± 0.012 0.585 ± 0.016 0.544 ± 0.015

Embedding Layer 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
1 - 10 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
1 to 11 0.992 ± 0.004 0.993 ± 0.003 0.992 ± 0.004

Table 10: Results of the various setups of Swedish BERT model on the validation set using adjacent accuracy
and the macro and weighted F1 scores that derive from it. Note that the best result on average is achieved when
finetuning the layer above the third encoder one.
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