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Abstract

Text simplification aims to improve the read-
ability of a text while maintaining its orig-
inal meaning. Despite significant advance-
ments in Automatic Text Simplification, par-
ticularly in English, other languages like Ital-
ian have received less attention due to lim-
ited high-quality data. Moreover, most Au-
tomatic Text Simplification systems produce
a unique output, overlooking the potential
benefits of customizing text to meet specific
cognitive and linguistic requirements. These
challenges hinder the integration of current
Automatic Text Simplification systems into
Computer-Assisted Language Learning envi-
ronments or classrooms. This article presents
a multifaceted output that highlights the po-
tential of Automatic Text Simplification for
Computer-Assisted Language Learning. First,
we curated an enriched corpus of parallel
complex-simple sentences in Italian. Second,
we fine-tuned a transformer-based encoder-
decoder model for sentences simplification.
Third, we parameterized grammatical text fea-
tures to facilitate adaptive simplifications tai-
lored to specific target populations, achieving
state-of-the-art results, with a SARI score of
60.12. Lastly, we conducted automatic and
manual qualitative and quantitative evalua-
tions to compare the performance of ChatGPT-
3.5, and our fine-tuned transformer model.
By demonstrating enhanced adaptability and
performance through tailored simplifications
in Italian, our findings underscore the pivotal
role of ATS in Computer-Assisted Language
Learning methodologies.

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

1 Introduction

The increasing access of digital information
underscores the critical need to ensure univer-
sal access to knowledge, regardless of indi-
viduals’ literacy levels or backgrounds. Au-
tomatic Text Simplification (ATS) is the Nat-
ural Language Processing (NLP) task aimed
at reducing linguistic complexity of texts,
while preserving their original meaning (Bott
and Saggion, 2014; Shardlow, 2014b). ATS
emerges as a promising solution to enhance
text accessibility and readability, aiming to
transform complex texts into versions that
are more comprehensible, thus holding sig-
nificant potential for fostering communica-
tion across diverse audiences and address-
ing gaps in information accessibility (Štajner,
2021). In recent years, research on ATS has
focused on developing approaches to make
texts simplified adapted for individuals fac-
ing cognitive disabilities or language impair-
ment (Bott and Saggion, 2014; Rello et al.,
2013; Aluisio et al., 2010). This development
could have a significant impact on computer-
assisted language learning (CALL), where
adaptive learning technologies can personal-
ize instruction based on individual learner
progress and needs, ensuring a tailored and ef-
fective educational experience.

The emergence of large language models
(LLMs) has significantly advanced automatic
text simplification, among other NLP tasks.
While their success in many benchmarks and
challenges has been demonstrated (Anschütz
et al., 2023; Sun et al., 2023; Engelmann
et al., 2023; Shaib et al., 2023), it is impera-
tive to ensure that the outputs of these mod-
els are truly suitable, especially before de-
ployment in sensitive domains such as edu-
cation or health (Kasneci et al., 2023). Fur-
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thermore, there is limited research being con-
ducted to investigate how LLMs can specifi-
cally be adapted to the needs of each user, in-
cluding individuals with low literacy levels or
cognitive and linguistic impairments, by pro-
viding adapted output (Demszky et al., 2023).
The training data for large language models
(LLMs) primarily comprises text created by
individuals without language disabilities. This
could potentially lead to a limited exposure to
the varied linguistic patterns and communica-
tion styles exhibited by individuals with lan-
guage impairments (Fiora et al., 2024; Guo
et al., 2024).

Finally, most of the existing systems, focused
on the English language. However, languages
like Italian remain relatively under-explored in
this domain, primarily due to data scarcity and
poor data quality. Despite efforts to address
this gap (Brunato et al., 2015, 2016, 2022;
Tonelli et al., 2016, 2017), the availability of
Italian simplification datasets remains limited,
with only a few manually curated datasets and
one large corpus assembled through a data-
driven approach.

This paper aims to address these gaps by (I)
creating a robust corpus by merging and clean-
ing existing resources (II) training a sequence-
to-sequence neural model, (III) incorporating
an adaptive component to control simplifica-
tions for specific target populations. Our most
successful model achieves a SARI score of
60.12 and a BLEU score of 50.30 on the test
set. Moreover, we present an experiment eval-
uating the suitability respectively of our fine-
tuned model and Chat-GPT 3.5 for automatic
text simplification specifically focused to the
disability domain.

2 Related Work

ATS can occur at different levels of granular-
ity: sentence-level, paragraph-level, or even at
the level of entire documents and articles. In
this work, we focus on a sentence-level auto-
matic text simplification task. Consequently,
our attention is solely directed towards exist-
ing work related to sentences.

Sentence-level simplification is often ap-
proached as a monolingual form of machine
translation (MT). For years, attempts have
been made to tackle this task using rule-
based models capable of handling both lexi-
cal simplification and morpho-syntactic sim-
plification. These techniques rely on manu-
ally crafted rules (Bott et al., 2012; Shard-
low, 2014a; Siddharthan, 2011). Manually cu-
rated data offer several advantages. They en-

sure clear and consistent data labeling, non-
redundant metadata recording, and structured
presentation of contextual linguistic phenom-
ena associated with text simplification. Nev-
ertheless, constructing such models demands
extensive investment of time and resources
on experts in language knowledge. Moreover
these systems suffer from a notable drawback:
limited portability and scalability to new sce-
narios.

Authors Description Approach

Yatskar et al. (2010) Context similarity to extract simplifica-
tion rules.

DD

Siddharthan (2011). Simplification and regeneration from
typed dependencies

RB

Biran et al. (2011) The first data-driven system available
for English

DD

Bott et al. (2012). First model and data for Spanish RB
Shardlow (2014a). Errors identification and classification

scheme
RB

Glavaš and Štajner (2015) Based on word vector representations,
cased.

DD

Paetzold and Specia (2015) Modeling words and POS tags. DD
Nisioi et al. (2017) Two LSTM layers incorporating global

attention.
DD

Zhang and Lapata (2017) Utilized LSTM, added lexical con-
straints, and combined with reinforce-
ment learning.

DD

Scarton and Specia (2018) Enhanced the encoder by incorporating
external information.

DD

Zhao et al. (2018) Transformer-based approach supple-
mented with a paraphrase database.

DD

Qiang et al. (2020) Extension to BERT. DD

Table 1: Models for Sentence Simplification from the
least recent to the most recent, along with descriptions
of the systems and an indication of whether it’s rule-
based (RB) or data-driven (DD).

Most sentence simplification models are avail-
able for English, primarily due to the availabil-
ity of extensive supervised training datasets
containing pairs of complex and simple sen-
tences that are aligned in structure and mean-
ing (Wubben et al., 2012; Martin et al., 2020).
However, efforts have also been made to ex-
plore languages beyond English, including
Brazilian Portuguese (Aluı́sio et al., 2008),
Spanish (Saggion et al., 2015), (Glavaš and
Štajner, 2015), Italian (Brunato et al., 2015;
Tonelli et al., 2016), Japanese (Goto et al.,
2015; Kajiwara and Komachi, 2018; Katsuta
and Yamamoto, 2019), and French (Gala et al.,
2020).

Moreover, the emergence of LLMs and, par-
ticularly, GPT has brought about a revolution
in the field of NLP. Its impressive text gen-
eration capabilities, supported by pre-trained
knowledge and fine-tuning adaptability, make
it a versatile tool for various NLP tasks, in-
cluding automatic text simplification. Despite
their success in many benchmarks and chal-
lenges (Anschütz et al., 2023; Sun et al., 2023;
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Engelmann et al., 2023; Shaib et al., 2023), it’s
important to verify that the outputs of these
models can be suitable before deployment also
in sensitive domains, such as for use with chil-
dren who have language disabilities.

3 Dataset selection, curation and
augmentation

Three main datasets are available for auto-
matic sentence simplification in Italian: (1)
Terence & Teacher (Brunato et al., 2015), (2)
SIMPITIKI (Tonelli et al., 2016), (3) PaCCSS-
IT (Brunato et al., 2016).

Terence & Teacher was introduced as the in-
augural Italian Corpus for Text Simplification.
Comprising around 1500 sentence pairs, it in-
tegrates two sub-corpora: Terence, consisting
of 32 simplified children’s stories crafted by
experts across three linguistic dimensions, and
Teacher, which features 24 pairs of texts man-
ually simplified by a teacher targeting L2 stu-
dents.

In 2016, SIMPITIKI was created by gathering
simplification pairs from Wikipedia edits des-
ignated as “simplified”. The pairs were then
manually annotated and filtered, leading to a
final set of 575 pairs out of the initially scraped
2, 671 pairs. Additionally, employing a similar
methodology, a second corpus was created by
simplifying documents from the Trento Mu-
nicipality pertaining to building permits and
kindergarten admissions. This corpus, focused
on public administration, adhered to the same
annotation schema and encompassed an addi-
tional 591 pairs.

Finally PaCCSS-IT includes 63, 000 pairs of
sentences classified by their readability score.
The corpus was constructed through mono-
lingual sentence alignment techniques, align-
ing original sentences with their simplified
counterparts using metrics like TF/IDF scores
or similar methods assessing word similarity.
Each pair includes the cosine similarity, ac-
curacy of automatic classification for predict-
ing sentence alignment, and readability level.
Even though the dataset is quite large, the
authors gathered a substantial amount of text
from the web to initiate the process and reduce
costs, which carried the risk of generating oc-
casional errors, repetitions, and other issues.

For this reason, we propose an augmented
dataset composed by PaCCSS-IT, SIMPITKI
and a translated one. The corpus creation
pipeline can be seen in Figure 1. We started by
cleaning the larger available corpus, PaCCSS-
IT (Brunato et al., 2016), through a pre-

Figure 1: The steps we took to construct the Aug-
mented Dataset

Figure 2: Some examples of the composition of the
Augmented Dataset

processing step similar to the one conducted
in Palmero Aprosio et al. (2019). We delib-
erately retained both capital letters and punc-
tuation within sentences to preserve meaning
and convey grammatical and semantic cues.
Punctuation was selectively removed primar-
ily at the beginning and end of sentences, and
identical pairs of parallel sentences were elim-
inated to prevent redundancy. However, we re-
tained complex sentences that underwent dis-
tinct simplifications to ensure computational
models learned the variability in simplifying
the same sentence.

Additionally, we excluded complex sentences
consisting of two tokens or fewer and those
with low cosine similarity values compared to
their simpler counterparts. More specifically,
we disregarded sentences with cosine similar-
ity less than 0.05. This value was chosen af-
ter a manual inspection which identified pairs
of simple and complex sentences with signifi-
cantly different meanings.

Lastly, we also addressed the issue of sen-
tences containing numbers with no corre-
sponding counterpart in the simple sentences.
This adjustment ensured consistency not only
in alphabetical tokens but also in numerical
values. After cleaning, the curated version
of the PaCCSS-IT corpus comprised 32, 650
pairs of complex and simple sentences. Some
examples of the senteces in the augmented cor-
pus can be seen in Figure 2.

In a later stage, we integrated the Terence
& Teacher (Brunato et al., 2015) and SIMPI-
TIKI (Tonelli et al., 2016) datasets to the cu-
rated version of PaCCSS-IT, conducting spe-
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cific parsing and pre-processing to allineate
with the format in PaCCSS-IT. Our corpus at
this stage consisted of 33, 891 parallel sen-
tences. The curated version incorporating the
three datasets showed an increase in aver-
age sentence length due to the inclusion of
sentences from Terence&Teacher, and SIMPI-
TIKI datasets.

Finally, we augmented the curated versions
by translating sentences from parallel En-
glish datasets. This was done with two main
goals (I) enhance data variety and (II) improve
the model generalization. For doing that,
we used the DeepL API to translate around
5000 sentences pairs from a parallel English
datasets. We decided to translate the Hu-
man Simplification with Sentence Fusion Data
Set (Schwarzer et al., 2021) and few sentences
translated by the first version of the Wikipedia
dataset (Kauchak et al., 2022). The aug-
mented version exhibited increased linguistic
complexity in both complex and simplified
sentences compared to the initial PaCCSS-IT
dataset or its curated counterpart, as it can be
seen in Table 2. The average sentence length
slightly increased in the augmented version,
with complex sentences averaging 9.14 words
and simplified sentences 8.21 words. The
use of conjunctions in simplified sentences
showed a progressive increase from PaCCSS-
IT to the curated and augmented datasets, sug-
gesting greater cohesion in simplified con-
structs. Overall, both the curated and aug-
mented datasets displayed higher linguistic de-
tail and richer language use compared to the
initial PaCCSS-IT dataset. The average length
of complex sentences increased to 8.42, and
that of simple sentences to 7.63 as it can be
seen in Table 2.

Metric PaCCSS-IT Curated Augmented

AV G words complex 8.26 8.42 9.14
AV G words simplified 7.34 7.63 8.21
SV O complex 0.57 0.54 0.55
SV O simplified 0.54 0.50 0.52
CONJ complex 0.23 0.25 0.28
CONJ simplified 0.26 0.27 0.29
SUBJ complex 0.03 0.05 0.06
SUBJ simplified 0.025 0.04 0.05
stop words complex 4.5 4.78 5.08
stop words simplified 2.76 3.02 3.25

Table 2: Normalized metrics for three dataset varia-
tions. The Curated dataset combines three existing
distinct datasets, while the Augmented Dataset incor-
porates the three existing resources together with sen-
tences translated from English parallel corpora. “AVG”
stands for average. “SVO” for subject-verb-object.
“SUBJ” for subordination conjunctions. “CONJ” for
coordination conjuctions”.

4 Methods

In this section, we present the architecture de-
tails of the two models used in this study,
respectively a BERT-based architecture fine-
tuned for the task of sentence simplification
for Italian and the details of the prompting
to Chat-GPT 3.5. In Section 5, we detail
the specifics of the BERT-based architecture’s
fine-tuning and usage used in our experiments.

Proprietary System architecture Our
model consists of both an encoder and a
decoder component. We employ a BERT-
based model fine-tuned for textual simplifica-
tion tasks. The encoder checkpoints were ini-
tialized using pre-trained checkpoints tailored
specifically for the Italian language1 model
available in the Hugging Face Hub repository.
Conversely, the decoder checkpoints were ini-
tialized randomly. When making our architec-
ture choice, it was crucial to consider our tar-
get language, namely Italian. At the time of
implementing our model, the T5 pre-trained
version (Sarti and Nissim, 2022) for Italian
was not available. In a second version of
our model, we integrated an adaptive com-
ponent, enabling semi-supervised learning of
the model by encoding five numerical values
within complex sentences. Following the ap-
proach outlined in (Megna et al., 2021; Mar-
tin et al., 2019), we incorporated a discrete
parametrization mechanism that allows ex-
plicit control of the generation. Additionally,
we opted to include the Word Ratio parameter
proposed by (Sheang and Saggion, 2021). As
illustrated in Table 3, these features encompass
sentence length (both in terms of characters
and tokens), as well as lexical and syntactic
complexity. We selected these five parameters
because, as highlighted in previous studies,
they significantly contribute to the comprehen-
sion challenges faced by individuals with read-
ing comprehension deficits (Oakhill and Yuill,
1996; Nation and Snowling, 2000, 2004; Gal-
letti et al., 2023).

LLM architecture To showcase the capa-
bilities of Large Language Models (LLMs),
we selected ChatGPT-3.5 (Madaan et al.,
2022) due to its proficiency in zero-shot learn-
ing scenarios and user-friendly interface ac-
cessible through the OpenAI platform, which
allows for easy integration and experimenta-
tion.

1namely the bert-base-italian-xxl-cased
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Token Value Description

Word Ratio 0.20 Ratio of words in the complex sentence to
words in the simplified sentence.

Character Ratio 0.20 Ratio of characters in the complex sentence to
characters in the simplified sentence.

Word Rank 0.90 Ranking of words based on frequency or im-
portance.

Lev Similarity 0.90 Levenshtein similarity between the complex
and simplified sentences.

Dependency Tree 1 Degree of similarity in dependency trees be-
tween the complex and simplified sentences.

Table 3: Description of parameters with values used in
the adaptive component for simplification.

5 Experiment Settings

This section outlines the parameters for model
fine-tuning (Subsection 5.2), and discusses the
evaluation metrics (Subsection 5.3) used.

5.1 BERT-based model Fine-Tuning

For the fine-tuning process, we utilized Op-
tuna, an open-source framework for hyper-
parameter optimization to dynamically build
the search space for selecting the optimal pa-
rameters for our work. We configured a batch
size of 4 for both training and evaluation loops,
set a maximum token length of 300, estab-
lished a learning rate of 3e − 4, configured an
Adam epsilon of 1e−8, implemented a warm-
up ratio of 0.10, and conducted 20 epochs.
The remaining parameters were kept at their
default values from Transformers library. For
dividing the three dataset into train and test
we used a standard 0.80 split for training and
0.20 for testing. As explained in Section 6,
we maintained this fine-tuning parameters for
both the two version of our model —the one
with the adaptive component and the one with-
out.

5.2 GPT’s Prompting

We accessed the ChatGPT-3.5 model through
the open-access model available. For our
experiment, we utilized GPT in zero-shot
mode. At the time this work was conducted,
ChatGPT-3.5 had only very recently been re-
leased. As a result, we couldn’t fully explore
different prompt engineering techniques and
we were constrained on relying solely on us-
ing -3.5 in a zero-shot mode. Specifically, we
presented the model with a list of complex sen-
tences and tasked ChatGPT 3.5 with simpli-
fying them for school children aged 8 to 11
with a reading comprehension deficit. Sub-
sequently, we computed our evaluation scores
based on the simplified answers generated by

ChatGPT, comparing them to the ground truth
provided in our annotated corpus.

5.3 Evaluation Metrics

For assessing the performance of both models,
we employed well-established metrics for both
automatic machine translation and text simpli-
fication evaluations, SARI (Xu et al., 2016)
and BLEU (Papineni et al., 2002), on our test
corpus. We qualitatively inspected the output
data to examine the results from each model.
Finally, we involved experts specialised in lan-
guage disabilities to conduct a human evalua-
tion.

SARI and BLEU were chosen for assessing
the performance of both models, because of
their use in previous work (Van den Bercken
et al., 2019; Monteiro et al., 2022; Cardon and
Grabar, 2020). SARI (System-level Automatic
Reviewer for Machine Translation) is a met-
ric designed to assess the quality of machine-
generated sentences, particularly within the
context of machine translation. It centers
on evaluating the fluency and preservation
of meaning in the generated sentences when
compared to reference sentences. In contrast,
BLEU (Bilingual Evaluation Understudy) is
a widely used metric for evaluating machine-
generated sentences, primarily within machine
translation contexts. It quantifies the similar-
ity between the generated sentence and one or
more reference sentences through an n-gram
overlap comparison.

These metrics however have several draw-
backs to evaluate text simplification output,
as pointed out in the literature (Sulem et al.,
2018; Al-Thanyyan and Azmi, 2021). We
thus also included qualitative human evalua-
tion of the results by qualitatively inspecting
the output data to examine the results from
each model. We gathered a panel of experts
specialized with domain-specific expertise, i.e.
speech and language therapists at a partner
specialised center in the rehabilitation of Neu-
rodevelopment2 to conduct a human evalua-
tion, with a specific focus on young children
diagnosed with language disabilities. The cri-
teria for selection was their expertise in lan-
guage learning and disabilities. All annota-
tors were provided with detailed information
regarding the study’s purpose, their role in
the evaluation and the nature of the data that
they were scoring. The experts were not reim-
bursed financially; however, their participation
was voluntary and they were provided with

2https://www.crc-balbuzie.it/
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informed consent before the beginning of the
study.

The evaluation of the quality of the text sim-
plification corpus was made possible through
the utilisation of a Google Form available at
this link 3. The form evaluated scales from
0 to 5 (being 0, the lowest and 5, the high-
est values) concerning grammatical correct-
ness, maintenance of meaning, and level of
simplicity gained as similar work in the liter-
ature (Xu et al., 2016). We selected 10 sen-
tences to represent both the highest and lowest
cosine distances between the sentences gener-
ated by ChatGPT-3.5 and our model. Specif-
ically, we selected five pairs with the highest
cosine distances and five pairs with the low-
est. These sentences have been put at disposal
to the ten experts who participated in the users
studies. Several considerations prompted this
approach: firstly, we needed a manageable
sample size feasible for evaluation within our
available annotators. Secondly, by including
both the most divergent and the most similar
cases, we aimed to ensure robustness in ex-
treme scenarios and reduce bias in our eval-
uation method.

6 Results

In this section we report results on the auto-
matic and human evaluation conducted.

Dataset SARI BLEU

Palmero Aprosio et al. (2019) 49.49 N/A

(A) Fine-tuned + Original PACCS-IT Dataset 57.10 46.00
(B) Fine-tuned + Merged and Cleaned Dataset 55.64 49.78

(C) Fine-tuned + Augmented Dataset 51.51 47.40
(D) Fine-tuned + Augmented + Adaptive Component 60.12 50.30

ChatGPT-3.5 40.51 15.00

Table 4: SARI and BLEU scores for all our fine-tuned
models with the combinations of the different datasets.

6.1 Automatic Evaluation

In our work, we conducted three different fine-
tuning runs using the same fine-tuned model
and equivalent hyper-parameters using three
different training data, as it can be seen in Ta-
ble 4. These three models correspond to model
(A), (B) and (C) in the table.

The first fine-tuning of the model, i.e. (A), was
done using the original version of PaCCSS-
IT. It resulted in a SARI score of 57.10 when
evaluated on the test corpus. This score was

3Click here to access the Google Form

higher than the current state-of-the-art for Ital-
ian language Automatic Text Simplification
task (Palmero Aprosio et al., 2019). Given
the errors manually noticed, it was hypothe-
sized that the high SARI score achieved during
fine-tuning resulted from over-fitting to poor-
quality data, representing a learning fallacy.
To investigate this hypothesis, we fine-tuned
our model using the curated version of our
dataset, i.e. (B). In this case, SARI fell by two
points (55.64). This improvement may be at-
tributed to the inclusion of three merged cor-
pora (Teacher, Terence, and Simpitiki), which
provided the model with more diverse mate-
rial to learn from and thus greater flexibility in
the generative phase. The lower SARI value
could precisely reflect this behavior and shed
light on the previous over-fitting. Following
the previous result, we conduct the final fine-
tuning with the Augmented dataset,i.e. (C). At
this stage, we note that SARI is another 4 per-
centage points lower than in the last training
(51.51). Finally, we fine-tuned an additional
model (D), adding the adaptive component de-
tailed in section 4 and using our augmented
dataset. Our model obtains a SARI score equal
to 60.12 and a BLEU score of 50.30 on the
same test set, achieving the best results over
the four fine-tuned models.

GPT-3.5 exhibited notably lower performance,
yielding a SARI score of 40.51 and a BLEU
score of 15.00 on the same test set4. GPT-
3.5’s notably lower performance in compari-
son to the fine-tuned transformer model within
the context of text simplification can be at-
tributed to several factors. Firstly, the fine-
tuned transformer model likely benefited from
training data and therefore domain adaptation
while, GPT-3.5 was used in a zero-shot mode.
Secondly, the fine-tuned transformer model’s
architecture and parameters were carefully
adapted to the nuances of text simplification,
a step that might have been omitted in GPT’s
preparation. Finally, the ability to control the
level of simplification plays a vital role in
effective text simplification (Nishihara et al.,
2019; Xu et al., 2016). The nuanced interplay
of these factors contributes to the observed
performance disparities in the presented con-
text and it pushed us to perform also a qualita-
tive evaluation. All the results are presented in
Table 4.

However, despite this good performance on
the standard formal metric, a manual and vi-
sual evaluation of the generated simplifica-

4The test corpus is available for exploration via the fol-
lowing link
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Input Test Set Chat GPT Best Performing Model

A cosa è dovuto ciò Perché è successo? A cosa è dovuto?
What is this due to Why did it happen? What is it due to?

Beh, questo è tutto un altro discorso Beh, questa è tutta un’altra storia É tutto un altro discorso
Well, that’s a whole other story Well, that’s a whole other story That’s a whole other speech

Ma non ne farei un dramma Non dovremmo preoccuparci troppo di questa cosa Ma non faceva un dramma
But I wouldn’t make a drama out of it We shouldn’t worry too much about it But it wasn’t a drama

Tutti erano nell’atmosfera della festa Tutti erano felici e festosi Era nell ’ atmosfera della festa
Everyone was in the party mood Everyone was happy and festive It was in the party mood

Ma questo è vero solo in teoria Ma questa teoria è vera solo sulla carta Questo è vero in teoria
But this is only true in theory But this theory is only true on paper This is true in theory

Table 5: Example of some simplifications on the test corpus given by our model and GPT-3.5.

tions revealed several issues. The simplifica-
tions were found to be misleading and con-
tained frequent gross errors. For instance, the
reference sentences in the dataset were some-
times not very informative in terms of simpli-
fications and appeared to be alternative ver-
sions of the complex sentence but not simpli-
fied ones, as shown in Table 6.

Simple Complex

Questa sarebbe una cosa
positiva

Questa è una cosa gravis-
sima

This would be a positive
thing

This is a very serious
thing

Ma facciamo un passo più
avanti

Ma facciamo un lungo
passo indietro

But let’s take a step for-
ward

But let’s take a long step
backward

Table 6: The original complex sentences from the test
dataset and simplifications produced by the fine-tuned
model; highlighting mistakes in italics.

6.2 Human Evaluation

6.2.1 Qualitative Analysis

In a later stage, we inspected the generated
simplified sentences given by our models. We
found that while the simplification efforts un-
dertaken by ChatGPT-3.5 are generally sat-
isfactory upon close qualitative examination,
there are instances where the simplifications
verge on being abstract. The generated sim-
plifications at times involve conceptual ab-
stractions that could potentially introduce an
unintended layer of complexity as it can be
seen in Table 5. This paradoxical outcome
could arise because the model simplify, yet
occasionally employs abstract concepts that
might prove too complex for the intended au-

dience, especially young children or individ-
uals with specific clinical diagnoses. In fact,
ChatGPT sometimes seems to capture greater
nuances of cause-and-effect or context than an
8- to 11-year-old child who has limited expe-
rience of the world and thus may struggle to
make such detailed connections, and as a re-
sult, the simplification proposed by ChatGPT
can sometimes be difficult for children to in-
terpret. For instance, ChatGPT-3.5 might at-
tempt to convey a complex idea by substituting
certain words or phrases with simpler alterna-
tives. However, in doing so, it might inadver-
tently introduce terms that are not within the
immediate vocabulary of the target audience
or that require a certain level of background
knowledge to be fully understood. This kind of
simplification could lead to confusion or mis-
interpretation among individuals who require
the content to be presented always in an easily
accessible manner.

6.2.2 Experts Evaluation

To complete our qualitative analysis, we asked
experts to evaluate the results given by the
models. This evaluation yielded mixed re-
sults as it can be seen in Figure 3. When
we compared the scores of the two models
based on the chosen criteria (grammaticality,
meaning preservation, and level of simplifica-
tion), there was not a significant difference be-
tween them. This is in contrast to the results
of the automatic evaluation, where our fine-
tuned transformer model appeared to outper-
form ChatGPT-3.5 on our test set. This high-
lighted the fact that we are still lacking an eval-
uation mechanism that is both objective and
aligns closely with human judgment. With-
out an accurate way to assess the quality of
text generated by a simplification model, it be-
comes challenging to implement effective con-
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Figure 3: The plots with the form’s results. The sentences were re-arranged and their order do not reflects their
cosine distances.

trols. This underscores that research in this
area is still very much in an experimental stage
and is in its early phases.

7 Conclusions and future work

In this paper, we curated a comprehensive cor-
pus by cleaning and combining existing re-
sources, we fine-tuned an adaptive transformer
model for the sentence simplification task in
Italian, we integrated an adaptable compo-
nent to tailor simplifications for specific tar-
get groups, we evaluated the model by com-
paring it to ChatGPT-3.5, through both quan-
titative and qualitative assessments, including
expert and automatic evaluations of the simpli-
fied text. The automatic evaluation highlighted
that the fine-tuned version of BERT model
seem the better suited for the task. Moreover
the adaptive component increase the State-Of-
The-Art (SOTA) results by 11 points. Lastly,
LLMs, particularly GPT-3.5, have shown sig-
nificant advancements in the generation of co-
herent and fluently articulated text, but a sub-
stantial scope for improvement persists con-

cerning the crafting of textual content that
aligns effectively with the requisites of indi-
viduals possessing particular diagnostic pro-
files or clinical conditions. This progress can
hold promising implications for Computer-
Assisted Language Learning, as it can facil-
itate the creation of tailored educational ma-
terials that accommodate the unique learning
needs and abilities of diverse student popula-
tions. Finally, we believe that there is still
much to do to improve the current evaluation
metrics for automatic text simplification to un-
derstand the nuances and potential biases they
may introduce and to make sure they align
with human evaluation. Developing and re-
fining new evaluation metrics tailored specif-
ically for populations with diverse linguistic
needs and clinical conditions could be a cru-
cial step forward the use of NLP in clinical and
educational contexts. Finally, more extensive
and robust user studies are required to evaluate
the effectiveness of GPT-3.5 in generating text
for specific user groups.
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