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3 LIDILE / Université de Rennes 2, 35000 Rennes, FRANCE
4 School of Mathematical and Statistical Sciences, University of Galway, University Road, Galway, Ireland

Contact: bernardo.stearns@insight-centre.org

Abstract

This paper focused on the creation of LLM-
based artificial learners. Motivated by the ca-
pability of language models to encode lan-
guage representation, we evaluated such mod-
els for predicting masked tokens in learner cor-
pora.

We domain-adapted the BERT model, pre-
trained on native English, by further pre-
training two learner models on learner cor-
pora: a natural learner model on the EFCAM-
DAT dataset and a synthetic learner model on
the C4200m dataset. We evaluated the two ar-
tificial learner models alongside the baseline
native model using an external English-for-
specific-purposes corpus from French under-
graduates.

We evaluated metrics related to accuracy, con-
sistency, and divergence. While the native
model performed reasonably well, the natu-
ral learner pre-trained model showed improve-
ments in recall-at-k. We analysed error pat-
terns, showing that the native model made
“overconfident” errors by assigning high prob-
abilities to incorrect predictions, while the ar-
tificial learners distributed probabilities more
evenly when wrong. Finally, we showed
that the general token choices from the native
model diverged from the natural learner model
and this divergence was higher at lower profi-
ciency levels.

1 Introduction

Over the last 20 years, learner corpora have sig-
nificantly benefited research in applied linguis-
tics and NLP by providing insights into how sec-
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ond language (L2) learners improve their profi-
ciency. This understanding has led to enhanced
course material design, improved teacher train-
ing, and greater awareness of students’ linguis-
tic abilities. Additionally, when combined with
NLP technologies, learner corpora have proven
valuable for CALL applications like grammar er-
ror detection and proficiency classification (Bryant
and Briscoe, 2018; Tetreault et al., 2018). This
paper explores the potential of leveraging Large
Language Models (LLMs) with learner corpora,
which have traditionally been used to test specific
research hypotheses. Instead of relying on diverse
corpora with relevant metadata for testing various
hypotheses, we explore the possibility of a single
model that simulates learner behavior across dif-
ferent contexts. Such artificial learners could re-
spond to new stimuli, providing a testbed for lin-
guistic hypotheses, with outputs from a generic
English learner model compared to those from a
native model. By training an LLM on learner data,
it may be possible to create an artificial English
learner that captures the idiosyncrasies of actual
learners.

This research explored the creation of an Ar-
tificial L2 Learner (ALL) model by pre-training
it on second language learner corpora, leveraging
domain-adaptive pre-training. We also believe that
modelling learners’ knowledge and their use of
words and linguistic skills is crucial for Intelligent
Tutoring Systems (ITS) and digital learning plat-
forms in second language teaching and learning.
For an ITS focused on language learning, mod-
elling word usage and language skills of learners
is essential. This is why any simulation of learner
behavior, as a key goal for an ITS, should be ac-
curate and reliable. Motivated by the capability of
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language models to represent linguistic concepts,
this research explored the domain-adaptive pre-
training of large language models (LLMs) to sim-
ulate the behavior of English learners, which we
call Artificial Learner models. Creating an artifi-
cial learner raises at least three questions:

1. How accurate is the artificial learner in pre-
dicting what learners would actually say?

2. How confident is the learner in its predic-
tions?

3. How divergent is the AL compared with a
generic native model?

The rest of the paper is structured as follows: Sec-
tion 2 presents related research. Section 3 explains
the training data and the procedures used to create
our artificial learners. Section 4 delves into our re-
sults, and Section 5 provides a discussion of these
results.

2 Background Research

Research in second language acquisition has been
explored from many different perspectives, result-
ing in different models for each aspect of the learn-
ing process. For example, Whitehill and Movellan
(2017) models learners taking into account how a
learner infers and updates vocabulary knowledge
after doing exercises in a specific ITS for foreign
language learning. The SLAM shared task (Settles
et al., 2018) models the history of a learner’s mis-
takes in Duolingo, predicting if a learner is likely
to make a mistake given their past history of mis-
takes. There are also models that are complemen-
tary to modelling the second language acquisition
process, such as spaced repetition practice models
(Settles and Meeder, 2016) and efficient grammat-
ical error correction (Omelianchuk et al., 2020).
Despite the success of such diverse tasks in their
specific modelling objectives, the usage of their
models is tied to the specific case of their system
or language learning task. This restricts the capa-
bility of such models to simulate the general be-
havior of language learners.

There is another set of language-learning tasks
that explicitly model learners’ behavior and
knowledge however, they are still tied to a sin-
gle task depending on handcrafted features. Ex-
amples include Whitehill and Movellan (2017),
which models vocabulary learning from concepts;

Knowles et al. (2016), which models noun under-
standing from the context of the native language;
and Zylich and Lan (2021), which models retrieval
practice performance for SLA based on linguistic
and memory-based features. Other similar mod-
eling tasks include Avdiu et al. (2019); Renduch-
intala et al. (2016). In a similar fashion, corpus
linguists have also developed single tasks aimed
at predicting specific outcomes in the form of lin-
guistic constructions. Bresnan and Nikitina (2009)
modelled the dative alternation, where learners
hesitate between the prepositional dative struc-
ture or the double object structure. Gries et al.
(2020) approaches in corpus linguistics also re-
flect this method by modeling the genitive vs.
noun of noun construction. Modelling construc-
tion outcomes in learner texts helps understand
the contexts, triggering constructions. Neverthe-
less, these models cannot handle different sets of
constructions, which appears to be a limitation
if one wants to analyze many different linguistic
systems at the same time. In contrast, large lan-
guage models (LLMs) are capable of accommo-
dating diverse constructions and analyzing multi-
ple linguistic systems simultaneously, offering a
more flexible approach to understanding language
patterns.

In the broader field of Natural Language Pro-
cessing, language models have been effectively
adapted to multiple domains and tasks using a sin-
gle generic model, in a similar scenario we see in
the Second Language Acquisition domain. Guru-
rangan et al. (2020a) examines the effectiveness
of adapting pre-trained language models to multi-
ple domains and tasks with a single model. They
test how well a task-specific fine-tuned model
transfers to different types of other tasks, show-
ing a large gain in task performance using an
overall multi-phase domain and a task-adaptive
pre-trained model. Though we see an underuti-
lization of language models in learner modelling
tasks, many other diverse areas have successfully
adapted language models to their tasks.

To the best of our knowledge, two tasks anal-
ysed the potential of language models in SLA.
Palenzuela et al. (2022) explored native pre-
trained language models to predict language mis-
takes in the SLAM shared task. Kim (2024) in-
vestigated the use of language models as ”artifi-
cial English learners” with a model called Bidirec-
tional Encoder Representations from Transform-
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ers (BERT). They specifically tested BERT’s abil-
ity to simulate English learners’ usage of preposi-
tions. Notably, BERT was domain-adaptively pre-
trained on the International Corpus Network of
Asian Learners of English (ICNALE) (Ishikawa,
2013). The study focused on how this artificial
learner utilized four English prepositions: at, for,
in, and on.

Our work proposes a generalized analysis of ar-
tificial English learners, which expands the scope
of previous analysis by introducing a broader
range of metrics, including accuracy, consistency,
and behavior validation. The goal is to establish
trust in the trained models before exploring their
capabilities in specific tasks.

3 Material and Methods

3.1 Data
3.1.1 Training data
EFCAMDAT corpus - We trained two artificial
learner models. The first model was trained on
the EFCAMDAT. We used the refined version of
the EFCAMDAT corpus texts (Shatz, 2020). It
includes 723,282 writings from Englishtown lan-
guage schools (Shatz, 2020).

The learners wrote texts following prompts such
as “introducing yourself by email”. Students grad-
ually moved from one level to the next based
on language teachers’ grades. The writings span
across 16 proficiency levels, which were mapped
to the first five CEFR levels. The CEFR levels of
the texts correspond to the successful completion
of the coursework levels at Englishtown.

C4200M corpus - The second model was
trained on the C4200M corpus (Stahlberg and Ku-
mar, 2021). It is a corpus of synthetically gen-
erated ungrammatical sentences used in neural
grammatical error correction. This model pro-
duces an ungrammatical sentence given a clean
sentence and an error type tag following the tags
defined in the ERRANT automatic annotation tool
(Bryant et al., 2017). The generated ungrammati-
cal sentences follow the distribution of error tags
in the BEA-dev dataset (Bryant et al., 2019). They
argue for the utility of the generated ungrammat-
ical data by pre-training grammar error correc-
tion models with it, outperforming genuine paral-
lel data on the CONLL-2014 and JFLEG-test.

We chose the C4200m with the goal of
analysing a common trade-off in the training pro-
cess of large language models: balancing the qual-

ity of authentic texts versus the quantity of aug-
mented texts, similar to works surveyed in Feng
et al. (2021). We aimed to understand how this
trade-off affects the performance of artificial En-
glish learners. By using the C4200m dataset,
we wanted to see how different amounts of high-
quality and lower-quality texts impact the learn-
ing results of our models. This would help us un-
derstand the best balance between text quality and
quantity for training large language models. Our
approach aligns with other NLP research, provid-
ing a comparative view that adds to the relevance
and usefulness of our findings.

3.1.2 Testing data
The external test set (see Table 1) is made up
of learner writings from the CELVA-SP (Mallart
et al., 2023) a corpus of French undergraduates us-
ing English for specific purposes (ESP). Learners
answered one of three question prompts as part of
a 45-minute in-class writing task. For instance,
they had to describe and share their opinion on
the most important invention in their field. All
their writings were subsequently annotated with
the writing competence scale of the CEFR (Coun-
cil of Europe, 2018, Appendix 4, p .187-189) by
four expert raters. Pairwise inter-rater agreement
was computed on the basis of 60 writings, yield-
ing Cohen’s kappa values ranging from .52 to .72.
The rest of the writings were then annotated inde-
pendently. Table 1 presents the distribution of the
levels in CELVA-SP data.

3.2 Data processing

Processing the learner texts for our analysis in-
volved two types of data processing. First, for
the model training, we simply passed the raw texts
as input to a masked language modelling colla-
tor, following the standard masking strategy used
in the training process of BERT (Devlin et al.,
2019). The collator dynamically generates batches
of masked sentences, which the BERT tokenizer
processes into WordPiece tokens for use in the
training loop.

Second, for prediction analysis, we used a Uni-
veral Dependency (UD) tokenizer (Nivre et al.,
2016) to represent “human” learner tokens. We
masked each token in the text one at a time, creat-
ing a unique masked sentence for every UD token.
These sentences with a single masked token were
then fed to our artificial learners and the baseline
native model to predict token usage. We annotated
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Table 1: Distribution of levels and essays in the CELVA-SP data (Mallart et al., 2023)

Writings # of writings % of writings av # of words SD

A1 85 8.70 126.78 76.67
A2 311 31.83 182.02 87.21
B1 335 34.28 231.34 111.70
B2 198 20.26 285.84 126.75
C1 48 4.91 347.93 144.69
Total 977 100 224.11 120.64

the part of speech for each UD token using UD-
Pipe (Straka, 2018) implementation in spaCy1. It
allowed us to visualize the distribution of proba-
bility scores across different parts of speech for
the natural learner model. Since our experiment
focused on the BERT base model and its limita-
tion of 512 WordPiece tokens, we filtered out texts
with more than 512 such tokens.

3.2.1 Domain-Adaptive Pre-training

The main step in developing the two proposed arti-
ficial learner models was the domain-adaptive pre-
training of an already pre-trained baseline BERT
model. We used the EFCAMDAT as a training
set for the natural learner model, and the C4200m
as a training set for the synthetic learner model.
We trained both artificial learners on a masked lan-
guage modelling task. In Devlin et al. (2019) they
refer to pre-training as training a model on unla-
beled data across various tasks, such as masked
language modelling, where fine-tuning involves
initializing a pre-trained model’s weights and up-
dating them using labeled data. We initialized
a baseline BERT model weights and further pre-
trained them in learner corpus in an unsupervised
masked language modelling task. This is referred
in (Gururangan et al., 2020b) as domain-adaptive
pre-training.

We used the same masked language modelling
pre-training task described in Devlin et al. (2019).
Specifically, we masked 15% of WordPiece tokens
in each sentence of the training set, allowing the
model to learn contextual representations by pre-
dicting the masked tokens.

3.3 Evaluation

To evaluate the predictions of the two artificial
learner models and the native baseline model, we

1You can find the repository at https://github.c
om/TakeLab/spacy-udpipe.

used three types of metrics: recall-at-k, KL diver-
gence, and calibration. We calculated the metrics
on the CELVA-SP dataset.

3.3.1 Accuracy with recall-at-k

We used the recall-at-k metric as our accuracy
measure. It naturally extends the concept of ac-
curacy by taking into account the model’s top-k
potential responses and explicitly consider a cri-
teria for relevant responses that could be easily
extended. In essence, we measured on average
how many of the top-k token predictions recom-
mended by a given model were relevant for the
target masked token used by the learner.

The recall-at-k metric evaluates the top-k re-
sponses of a model that generates a list of poten-
tial responses ŷ to a given query q, ranked by their
likelihood of being correct according to the model.
In our experiment, for a given masked token sen-
tence the query q is the actual masked token used
by the learner, and the list of potential responses ŷ
is the list of tokens predicted by a model ranked by
probability in the softmax layer of BERT vocabu-
lary.

For a target masked token qi and a top-k token
tj predicted by the model, tj is considered relevant
to qi simply if tj is in the set of relevant items for
qi. In our experiment, the only relevant item was
the target masked token itself, so this is equivalent
to verifying if qi is in the top-k predictions but this
would not be the case in more complex scenarios.

We report the average recall@k over all masked
tokens in the CELVA-SP for each of the three eval-
uated models.

AVG Recall@k =

∑
qi∈masked tokens

1[qi ∈ top-k(ŷ)]

# of masked tokens

We report recall for k = [1, 5, 10].
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3.3.2 Kullback–Leibler metric
The Kullback-Leibler divergence is rooted in in-
formation theory and provides a general approach
for quantifying how two probability distributions
differ. We framed each of our models’ output
probabilities for a given masked token as a dis-
crete probability distribution over BERT’s vocab-
ulary tokens. Within that frame, we interpreted
the KL metric for two given models as if their to-
ken choices generally diverged. We implemented
the element-wise KL metric with a small epsilon
value perturbation, ϵ = 10−6, to avoid the scenario
where probabilities are zero. We calculated the KL
element-wise metric for each masked token, and
we grouped them by their text CEFR level with the
intuition to find differences between CEFR levels.

KL(pt, qt) = ptlog

(
pt + ϵ

qt + ϵ

)

3.3.3 Calibration Curves
To foster trustworthiness in our models, high accu-
racy is the immediate desired property of our mod-
els, assigning high probabilities to correct tokens.
A second desirable property is that our models do
not overconfidently make mistakes, assigning high
probabilities to incorrect predictions.

One approach for such analysis is through the
“calibration curve” method. Initially employed in
analysing weather forecasts (Brier, 1950; DeGroot
and Fienberg, 1983), this technique has since been
applied to neural networks (Guo et al., 2017; Min-
derer et al., 2021) and recently to evaluate Large
Language Models (LLMs) from a semantic per-
spective Levinstein and Herrmann (2024). For ex-
ample, (Levinstein and Herrmann, 2024) utilizes
calibration curves to assess the veracity of LLM
statements on specific datasets and asserts that
“calibration offers another metric for evaluating
the quality of probes’ forecasts.” Calibration anal-
yses have been utilized in neural networks and lan-
guage models (Minderer et al., 2021; Chen et al.,
2024), allowing researchers to assess the relation-
ship between a model’s prediction confidence and
success rate.

Calibration curves help us analyze how well a
model performs when it is confident or unconfi-
dent about it’s prediction. In our experiment, our
calibration curves correspond to how many suc-
cessful predictions (event rate) we observe across
different probability scores of the top-1 prediction
of each model.

Figure 1: Interquatile range plot of KL metric between
natural learner and native model per masked token sen-
tence grouped by CEFR level in the CELVA-SP dataset
as described in 3.3.2

Event Rate =
Number of Successful Predictions

Total Number of Predictions
4 Results

4.1 Recall-at-k
We evaluated the accuracy of our models with
recall-at-k metrics. We found a slight difference
in accuracy between the Learner Models and the
native model in the external CELVA-SP test set.
We noticed a slow increase in recall as k increases.
A slow increase in the values of top-k recall may
indicate that the token vocabulary of the language
model is not adequate for the task. We believe it
is unlikely that the model is confused when choos-
ing among 10 or more tokens; instead, the correct
token is likely represented by multiple word-piece
tokens in the model’s vocabulary.

model recall@1 recall@5 recall@10
bert-native (baseline) 0.600 0.622 0.635

bert-efcamdat 0.648 0.670 0.684
bert-c4200m 0.586 0.610 0.623

Table 2: Average recall-at-k in the CELVA-SP for each
evaluated model as described in section 3.3.1

4.2 KL Distance
The KL metric interquantile plot in Figure 1
presents the KL metric between native BERT and
the natural learner model. It allowed us to anal-
yse the intuition that a learner model will generally
differ from a native model in terms of token usage
and that this difference is higher in beginner texts.
The figure indicates that the learner model exhibits
greater disagreement in token choice for masked
sentences at lower proficiency levels, with a mono-
tonic decrease in disagreement as proficiency in-
creases.
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4.3 Calibration Curves
The calibration curve in Figure 2 illustrates the re-
lationship between the predicted probabilities of
the top candidate token and the success rate at
which these tokens correctly predict the true token.
The three models follow a linear trend, showing
that all of them classify more accurately as their
top-1 token probability increases, suggesting that
they are well-calibrated overall. However, the EF-
CAMDAT curve shows a discrepancy for proba-
bilities around 0.6. Specifically, the natural artifi-
cial learner demonstrates underperformance in this
range, as candidates predicted with a 60% proba-
bility only successfully predict the true token 40%
of the time but increase and become slightly higher
for probabilities close to 1. In general, the natural
learner model outperforms the native model in the
range of higher top-1 probabilities. This analysis
can be further supported by Figure 3 where we no-
ticed that the native model (on the right side of the
figure) very frequently assign high probabilities to
its top-1 prediction where the two artificial learn-
ers assign lower probabilities. Even though the na-
tive model assigns higher top-1 probabilities more
frequently, it has a lower success rate than the nat-
ural learner model. One possible explanation for
the learner model’s underperformance in the 60%
probability range is that the masked tokens in this
range likely come from advanced learners’ texts,
whereas the EFCAMDAT dataset primarily con-
sists of beginner learners. This motivates a de-
tailed analysis of the performance of such models
across CEFR levels as future work.

5 Discussion

5.1 Role of Part of Speech
Parts of speech (POS) provide a way to filter out
the prediction distribution. It is possible to anal-
yse the behaviour and success rate of the artifi-
cial learners according to linguistic properties re-
lated to not only the lexicon but also grammar.
For instance, filtering out probabilities per aux-
iliary gives an insight into a closed class. This
helps characterize the impact of universal part-of-
speech (UPOS) on the probability distributions of
the probability scores for the first three predictions
(rank) across the three models. For example, Ta-
ble 3 shows the average probability score assigned
by a given model to its top-3 predictions, as well
as the respective success rate for masked preposi-
tions. We observe a similar pattern, where the na-

model
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Figure 2: Sucess event rate across top-1 token model
probabilities for all 3 models across all masked tokens
in the CELVA-SP data
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tive model, on average, assigns higher probability
scores to its top-1 prediction, yet, has a lower suc-
cess rate compared to the natural learner model.

Figure 4 displays the probability density distri-
bution of words across different Universal Part-of-
Speech (UPOS) for the first prediction (rank = 1).
The x-axis represents the probability assigned by
the natural learner model for each UPOS, while
the y-axis shows the probability density. This vi-
sualization allows for a quick comparison of the
relative frequencies of different UPOS across the
dataset. It indicates how the model makes use of
tokens of a certain type across levels.

Open-class categories such as adjectives (ADJ),
nouns (NOUN), and verbs (VERB) have bimodal
distributions, but the prominent mode reflects the
uncertainty of the prediction (probability around
0.2 for ADJ). However, a closed class like prepo-
sitions (ADP) also has a bimodal distribution, but
the prominent mode is around 0.9. This suggests
that the model is more confident with some closed
classes than open classes.

5.2 Domain Effects for ESP
We conducted a chi-squared test, which demon-
strated that the difference between the domains
was significant (X2 = 45.04, df = 6, p < 0.001).
Our data indicated that masked tokens were eas-
ier to predict in essays written for Communication
Studies compared to those for Pharmacy, as illus-
trated in Table 4. This is some indication to further
take into consideration domain and tasks effects.

5.3 Training Limitations
A significant limitation in our training process is
the imbalance in the distribution of proficiency
levels within the EFCAMDAT dataset. Specif-
ically, there is a disproportionately higher num-
ber of beginner-level texts (A1, A2) compared
to advanced-level texts (C1, C2). This imbal-
ance may affect our KL plot 1. While the result
aligns with expectations for lower proficiency lev-
els, it may exhibit a training artifact effect where
the model’s contextual representation seems to be
coherent towards the characteristics of beginner-
level texts since it was exposed to a large amount
of such texts, whereas for higher proficiency lev-
els, the model’s token choices simply follow the
native BERT distribution .

This artifact impacts the model’s ability to gen-
eralize across proficiency levels. For higher pro-
ficiency levels, the model’s token choices tend to

VERB X
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Figure 4: Probability Density Distribution of top-1 pre-
diction of natural learner model per UPOS

align more closely with the original pre-training
distribution, primarily because the advanced-level
data is underrepresented. This limitation sug-
gests that the model might not be equally effective
across all proficiency levels, potentially underper-
forming for more advanced learners.

5.4 Perspectives for Future ITS
Implementations

If our artificial learners manage to be sufficiently
trustworthy for the emulation of what a learner
would say, one can compare the prediction or the
use of a given learner with each model pre-trained
with a given CEFR level. Our experiment is only
a prototype of our global undertaking. We will ex-
tend the pre-training to other areas, such as pre-
training on different sub-levels of the CEFR scale.
We have seen the reliability of the results, and we
have also suggested that the models created were
not too data-dependent in the sense that they could
be generalized to other types of data.

6 Conclusion

In this paper, we have compared two artificial
learners against a native language model in pre-
dicting tokens produced by learners. Our pri-
mary goal was to propose a masked language mod-
elling task in learner corpora and analyse the ac-
curacy, consistency, and divergence of such ar-
tificial learners. We explicitly chose a large
synthetic ungrammatical dataset and an authen-
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model success rate score mean rank
bert-c4200m 0.53 0.60 1
bert-c4200m 0.08 0.10 2
bert-c4200m 0.04 0.04 3
bert-fullefcamdat 0.58 0.64 1
bert-fullefcamdat 0.09 0.09 2
bert-fullefcamdat 0.02 0.04 3
bert-base-uncased 0.55 0.71 1
bert-base-uncased 0.08 0.09 2
bert-base-uncased 0.03 0.04 3

Table 3: Model success rate and average probability score per rank (top-k position) for prepositions

Communication Electronics Medicine Pharmacy Education Environment Physics
Success 1278 219 249 85 265 1139 749

Total 4284 933 1002 401 1157 4873 3301

Table 4: Contingency table of correct predictions per ESP domain (all models)

tic learner corpus to analyse the trade-off between
the quality of authentic texts and the quantity of
augmented texts. Even compared to the native
BERT model, pre-training BERT in the synthetic
C4200m dataset decreased accuracy, while train-
ing BERT on authentic texts increased accuracy.
Accuracy is greater for closed classes, and the pre-
vious study on artificial learners rightly focused on
a subset of a closed class, prepositions. Through
analysing predicted probabilities against success
rates, we investigated indications of calibrations
and overconfident mistakes of our models, where
native BERT showed a wider gap between its suc-
cess rate and predicted probability. We finally
compared native BERT with our natural artificial
learner in relation to their choice of tokens, where
the KL metric exhibit to be a coherent metric to
generally measure the choice of tokens between
language models. Since we pre-trained our arti-
ficial learner on a dataset containing more texts
from beginner learners than those from advanced
learners, we expect that it will simulate better be-
ginner learners. Future work could address multi-
ple aspects of the training process to enhance per-
formance. We believe that merely increasing com-
putational power and training time could still im-
prove our artificial learners. Additionally, we be-
lieve that more specific masking strategies, such
as masking incorrect tokens, and architectures that
can personalize the artificial learner to a specific
individual, could further enhance performance. In
the direction of personalization, there are opportu-
nities for training more specific artificial learners,

such as nationality or proficiency based artificial
learners.

Limitations

There are several limitations to our work that need
to be acknowledged. One significant limitation is
the high training cost associated with using deep
learning models for natural language processing
tasks. Training these models requires substantial
computational resources, which can be expensive
and time-consuming. In our study, although we
aimed to mitigate these costs by using ”small”
encoder models such as BERT, the training costs
were still considerably higher compared to tradi-
tional language modelling methods.

Furthermore, we expect to make our model
available in accordance with the EFCAMDAT cor-
pus curators, which provides a significant advan-
tage in terms of cost-effectiveness and collabo-
rative potential. Researchers and practitioners
can leverage our pre-trained models and fine-tune
them for their specific applications without in-
curring the high costs associated with training a
model from scratch. This open-source approach
promotes transparency and encourages further in-
novation and experimentation within the commu-
nity.
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