
A Supervised Machine Learning Approach for Post-OCR Error Detection
for Historical Text

Dana Dannélls
Språkbanken Text

University of Gothenburg
dana.dannells@svenska.gu.se

Shafqat Mumtaz Virk
Språkbanken Text

University of Gothenburg
shafqat.virk@svenska.gu.se

Abstract

Training machine learning models with high
accuracy requires careful feature engineering,
which involves finding the best feature com-
binations and extracting their values from the
data. The task becomes extremely laborious
for specific problems such as post Optical
Character Recognition (OCR) error detection
because of the diversity of errors in the data.
In this paper we present a machine learning ap-
proach which exploits character n-gram statis-
tics as the only feature for the OCR error de-
tection task. Our method achieves a significant
improvement over the baseline reaching state-
of-the-art results of 91% and 89% F1 score on
English and Swedish datasets respectively. We
report various experiments to select the appro-
priate machine learning algorithm and to com-
pare our approach to previously reported tradi-
tional approaches.

1 Introduction

Post processing is a conventional approach for cor-
recting errors that are caused by Optical Charac-
ter Recognition (OCR) systems. Traditionally, the
task is divided into two subtasks: (1) Error detec-
tion, classify words as either erroneous or valid,
and (2) Error correction, find suitable candidates
to correct the erroneous words (Kolak and Resnik,
2005; Kissos and Dershowitz, 2016; Mei et al.,
2016). Previous research has shown that machine
learning based approaches are suitable for both sub-
tasks (Schulz and Kuhn, 2017; Nguyen et al., 2018,
2019a; Dannélls and Persson, 2020). In the current
work we aim to improve on the first task for histor-
ical texts by using machine learning techniques.

Training an accurate machine learning model
requires handcrafted feature engineering,1 which

1The handcrafted part of this process is finding the most
suitable features and feature combinations by examining the
data manually.

involves finding the best feature combinations and
parameter settings. In the context of post-OCR
error detection, finding a suitable set of features is
challenging because of the diversity of OCR errors
(Amrhein and Clematide, 2018). At the same time,
it is well-known that feature computation is often
time and labour expensive. This raises the question:
Do we always need a rich feature set for achieving
better results or, depending on the task at hand,
fewer features could lead to better or equally good
results? To our knowledge, this question has not
been addressed before.

Unlike OCR errors for modern material, the er-
ror rates for historical texts are very high, resulting
from a large amount of unseen characters in the
output text. This has been observed for several
languages (Springmann et al., 2014; Drobac et al.,
2017; Adesam et al., 2019). To address the chal-
lenges for post-OCR error detection for historical
text, a number of feature combinations have pre-
viously been explored with varying success rates
(more details in Section 2). In this paper, we take
a different approach, and instead of trying to find
the optimal set of features for the task at hand, we
experimented with one n-gram character feature
(Sections 3 and 4). Our method achieves a sig-
nificant improvement over the baseline reaching
state-of-the-art results of 91% and 89% F1 on En-
glish and Swedish datasets respectively. In addition
to being simple, our approach is less expensive for
feature value computations. Finally, we discuss
the strengths of the method and provide pointers to
future work (Section 5).

2 Related work

There are two approaches to OCR detection and
correction. One approach incorporates fine-tuned
methods for improving the OCR system. For ex-
ample, Tesseract (Smith, 2007) has built-in post-



Character Word n-gram Context Features tot. Method Recall (%)
Mei et al. (2016) ! ! ! 6 RM 73.9
Khirbat (2017) ! ! ! 3 SVM 44.2
Nguyen et al. (2019b) ! ! ! 13 GTB 61 & 76
Dannélls and Persson (2020) ! ! 6 SVM 67

Table 1: Feature combinations reported in previous work on post-OCR detection using machine learning models
and the percentage of detected OCR errors reported by each author (RM = Regression Model, SVM = Support
Vector Machine, GTB = Gradient Tree Boosting).

correction functions for improving the OCR results
for different languages. Another approach, that is
taken here and has been adapted by the majority
of previous works, builds on the output results of
a specific OCR system – the one being referred
to as post-OCR processing. The obvious advan-
tage of the latter approach is that the developed
method is not tailored to a particular system and
could be applied to any OCR output regardless of
the OCR system. One must bear in mind, however,
that post-OCR processing is a complicated task be-
cause of the nature of the different errors produced
by various OCR systems.

The majority of post-OCR methods of error de-
tection exploits supervised (Evershed and Fitch,
2014; Drobac et al., 2017; Khirbat, 2017) or unsu-
pervised (Hammarström et al., 2017; Duong et al.,
2020) machine learning techniques, depending on
whether the ground truth data is available or not. In
this paper we focus on supervised methods. The
methods described below have been trained on each
word of the document. Words have been classified
as either erroneous or correct. Precision, recall and
F-score have been calculated based on the predicted
erroneous words.

Mei et al. (2016) have experimented with 6 fea-
tures containing character, word n-gram and con-
text information. They have reported a recall for
bounded (true punctuation) detection of 73.5% us-
ing regression models. Khirbat (2017) has trained
a support vector machine (SVM) model with 3
features: presence of non alpha-numeric charac-
ters, bi-gram frequencies of the word and context
information, that is if the word appears with its con-
text in other places. He reported 69.6% precision,
44.2% recall and 54.1% F1. Nguyen et al. (2019b)
experimented with 13 character and word features
on two datasets of handwritten historical English
documents (monograph and periodical) taken from
the ICDAR competition (Chiron et al., 2017). The
features they have experimented with include char-

acter and word n-gram frequencies, part-of-speech,
and the frequency of the OCR token in its candi-
date generation sets which they generated using
edit-distance and regression model. They trained
a Gradient Tree Boosting classifier and achieved a
recall of 61% and 76% and an F1 of 70% and 79%
on each dataset respectively. Their results are the
highest reported on the ICDAR English dataset.

Dannélls and Persson (2020) have trained an
SVM model and experimented with 6 statistical and
word based features, including the number of non-
alphanumeric characters, number of vowels, word
length, tri-gram character frequencies, number of
uppercase characters and the amount of numbers
occurring in the word. They reported 67% recall,
and 63% F1, which is the highest results reported
on Swedish text from the 19th century.

An overview of the feature sets previous authors
have experimented with and the recall of the er-
ror detection machine learning models reported by
each is provided in Table 1.

3 Method

3.1 Datasets

We experimented with three datasets, two for En-
glish and one for Swedish.

The first English dataset (henceforth Sydney)
comprises newspaper text from the Sydney Morn-
ing Herald 1842-1954, consisting of 10,498,979
tokens and a ground truth data of randomly sam-
pled paragraphs (Evershed and Fitch, 2014). The
material was processed with Abbyy Finereader 14.
The training and testing sets compiled from this ma-
terial contain instances from this particular OCR
system only.

The second English dataset (henceforth IC-
DAR2017) is the monograph dataset from the IC-
DAR 2017 competition (Chiron et al., 2017), which
accounts for 754,025 OCRed tokens with their cor-



responding ground truth.2 The dataset has been
collected from national libraries and university col-
lections. It was processed with Abbyy Finereader
11, and the ground truth comes from various Euro-
pean project initiatives.

The Swedish dataset (henceforth Fraktur&Olof)
consists of a selection of digitized versions of older
Fraktur prints from 1626-1816,3 and all pages from
Olof v. Dalin’s Swänska Argus from 1732-1734,4

all amounting to 261,323 tokens. The ground
truth for this dataset was produced through double-
keying. The material was processed with three
OCR systems: Abbyy Finereader 12, Tesseract 4.0
and Ocropus 1.3.3. Each one of these systems is
using their own built-in dictionary and the quality
of the OCR results differs significantly between the
systems. When we compiled the training and test-
ing sets in our experiments, described in Section 4,
we included instances from all three systems to
avoid the risk of developing a method that is biased
towards a particular OCR system (Dannélls and
Persson, 2020).5

In our experiments (see Section 4), we chose
randomly selected subsets of 50K tokens from the
Sydney and the Fraktur&Olof datasets. A balanced
set of 92K instances was selected from the IC-
DAR2017 dataset. All three subsets were then
divided into training (80%) and test (20%) sets.
Depending on the vocabulary size, it can take days
to run the models. Because of this constraint the
complete datasets were not used in the experiments.

3.2 Preprocessing

All of the above datasets come in different formats,
therefore we had to preprocess them before we
could proceed. For our experiments we needed to
first align the OCRed and ground truth data at the
token level and secondly convert the aligned data
to feature vectors.

In the ICDAR2017 and Sydney datasets, the
OCRed and ground truth data are aligned at the
character level. To align them at the token level, the
ground truth was tokenized on space, and for each
token the same number of characters was extracted

2https://drive.google.com/file/d/
1-pNT00vvIqh0ss_5b2aHo-nG8advaFJi/view

3https://spraakbanken.gu.se/en/
resources/svensk-fraktur-1626-1816

4https://spraakbanken.gu.se/en/
resources/dalin-then-swaanska-argus-1732-1734

5Datasets are available under CC-BY license and can be
accessed from https://spraakbanken.gu.se/en/
resources#refdata.

from the OCRed version. After removing the spe-
cial alignment symbols (‘@’ and ‘#’) that were
inserted by the competition organizers, the result-
ing OCRed and ground truth tokens were compared
to set the labels: ‘0’ if the token was erroneous or
‘1’ if the token was valid.6 These labels are to
be learned and predicted by the machine learning
models during training and testing. Learning is
based on a set of feature combinations to help the
model detect the errors in the output of the OCR,
described in Section 4.

The tokens in the Swedish dataset were com-
puted by first removing duplicate white-spaces and
second, replacing all non-space white-spaces such
as tab with space. Then, valid tokens were ex-
tracted from the ground truth data and were as-
signed label ‘1’. Erroneous tokens were extracted
from the OCRed data and were compared to a large
scale computational Swedish lexicon (Borin and
Forsberg, 2011). If the token appeared in the lexi-
con it was assigned label ‘1’ otherwise ‘0’.7

Table 2 shows a few instances from the data
produced after the preprocesscing step both for
Swedish and English. The resulting full data-sets
were then used to compute various features and
train/test models as explained in Section 4.

English Swedish
Token GT Label Token GT Label
matter matter 1 nytta nytta 1
the the 1 sassvanter - 0
king@ king 0 angenämt angenämt 1
very very 1 p-å - 0
glad glad 1 föreställa föreställa 1
hereof,@ hereof, 0 behöfwesr - 0
@Hkewise likewise 0 Lärdomar lärdomar 1

Table 2: A sample from the English and Swedish
datasets after the preprocessing step (GT = Ground
Truth).

All the machine learning models we experi-
mented with are part of the Sci-kit Python library
(Pedregosa et al., 2011). Input data to all the al-
gorithms in the sklearn library should be in nu-
merical form, but only some of the features we
experimented with are numeric (e.g. the token
frequencies), the others are non-numeric (e.g. bi-
grams). For the non-numeric features, we used
one-hot encoding for data transformation. While
the details are beyond the scope of this paper, the

6Valid OCRed tokens are identical to the GT token.
7Because preprocessing of the datasets is completely au-

tomatic, we noticed that a small proportion of instances was
miss-classified.

https://drive.google.com/file/d/1-pNT00vvIqh0ss_5b2aHo-nG8advaFJi/view
https://drive.google.com/file/d/1-pNT00vvIqh0ss_5b2aHo-nG8advaFJi/view
https://spraakbanken.gu.se/en/resources/svensk-fraktur-1626-1816
https://spraakbanken.gu.se/en/resources/svensk-fraktur-1626-1816
https://spraakbanken.gu.se/en/resources/dalin-then-swaanska-argus-1732-1734
https://spraakbanken.gu.se/en/resources/dalin-then-swaanska-argus-1732-1734
https://spraakbanken.gu.se/en/resources#refdata
https://spraakbanken.gu.se/en/resources#refdata


Fraktur&Olof Sydney
Precision Recall F1 Precision Recall F1

Logistic Regression 0.82 0.74 0.76 0.74 0.60 0.65
Decision Tree 0.84 0.79 0.80 0.71 0.73 0.71
Bernoulli Naive Bayes 0.84 0.78 0.79 0.79 0.58 0.63
Naive Bayes 0.67 0.54 0.37 0.70 0.60 0.59
SVM 0.84 0.79 0.80 0.74 0.60 0.66

Table 3: Evaluation results of error detection for English and Swedish datasets trained with different models on
one feature. The best performing models are highlighted in bold (Experiment I).

major idea behind one-hot encoding is to add an ex-
tra dimension in the feature vector for each unique
feature value. This produces an N dimensional fea-
ture vector (the learned encoding), where N is the
total number of unique values of the complete fea-
ture set. An instance is then encoded by setting the
dimension corresponding to the feature value to ‘1’,
while the remaining dimensions are set to ‘0’. We
used sklearn’s ‘CountVectorizer’ and ‘SVC’ classi-
fiers with default parameter to learn the encoding
and train the different machine learning models. In
all the experiments we used the default SVM radial
basis kernel function.

4 Experiments and results

We devised three experimental settings. The first
experiment is set up to learn which machine learn-
ing algorithm performs best on the OCR error de-
tection task. In the second experiment we create
our baseline and train a machine learning model
with different feature configurations. Given our
findings in the second experiment we further ex-
plore the best performing configuration with simple
character n-gram features.

4.1 Experiment Setup

Experiment I Machine learning classifiers are
known to have pros and cons depending on the
task. To our knowledge, there are no previous stud-
ies to examine the performance of different ma-
chine learning techniques for detecting OCR errors.
We compared between 5 popular state-of-the-art
machine learning classifiers to learn which of them
is most suitable for this task. More specifically,
we explored Logistic Regression, Decision Tree,
Bernoulli Naive Bayes, Naive Bayes and SVM.

Logistic Regression has been very common for
binary tasks because of its success in linearly sepa-
rating data. Decision Tree is a predictive classifier,
most widely used for solving inductive problems.

It has also proven to be efficient for detecting OCR
errors (Abuhaiba, 2006). Both Bernoulli Naive
Bayes and Naive Bayes are probabilistic classifiers.
Bernoulli Naive Bayes includes a probability for
whether a term is in the data or not, and therefore
has been shown useful for document classification.
SVM is a supervised machine learning method that
is very effective in high dimensional spaces. It has
gained high popularity for detecting OCR errors
partially because its performance has proven to be
as robust and accurate as of a neural network (Arora
et al., 2010; Hamid and Sjarif, 2017; Amrhein and
Clematide, 2018).

In this experimental setting, we trained all ma-
chine leaning classifiers on one feature that is the
actual word. For training and testing, 5-cross vali-
dation was applied. Because of the time needed to
train the models, the classifiers were only trained
on two datasets, Fraktur&Olof and Sydney.

Experiment II We experimented in three differ-
ent settings. First, we form our baseline by training
the best performing model (from experiment I) on
the 6 features reported by Dannélls and Persson
(2020). This set of features forms our baseline, it
includes: (1) whether the word contains an alphanu-
meric character, (2) the word tri-gram frequency,
(3) whether the word contains a vowel, (4) whether
the word length is over 13 characters (5) whether
the first letter appears in upper case, (6) whether the
word contains a number. Since all of the features
are numeric in nature, no encoding was required
for this setting.

Second, analogous to previous approaches (Mei
et al., 2016; Khirbat, 2017; Nguyen et al., 2019b),
we enhanced the feature set with 4 additional fea-
tures (referred to as the 10-feature model): (1) the
actual word (2) the actual word length, (3) con-
text, i.e. the word proceeding and following the
actual word, (4) whether the word appears in the
word2vec model, here we apply a simple look-up



Fraktur&Olof Sydney ICDAR2017
Precision Recall F1 Precision Recall F1 Precision Recall F1

Baseline 0.82 0.68 0.70 0.73 0.59 0.60 0.85 0.85 0.85
10-feature 0.80 0.71 0.73 0.81 0.62 0.63 NA NA NA
1-word-feature 0.78 0.83 0.79 0.80 0.62 0.63 0.86 0.84 0.84

Table 4: Evaluation results of error detection with SVM, once computed with the 10-feature model and once with
the 1-word-feature model (Experiment II). Baseline was computed with the 6-feature model.

method against the pre-trained model by Hengchen
et al. (2019). In this case, some of the features
(e.g. the word itself) are non-numeric, hence one-
hot encoding was applied for those features. As
mentioned previously, this means adding an extra
dimension for each unique word in the training
data to learn the encoding and then encoding each
instance by setting the corresponding dimension
values accordingly. The same applies for the con-
text feature.

Third, we removed all features and trained the
model only on one feature, the actual word (re-
ferred to as the 1-word-feature model).8 This po-
tentially means turning the model into a dictionary
look-up kind of system, with the major restriction
that the system is not scalable and is restricted to
only those words which have been seen in the train-
ing data.

Experiment III To overcome the above men-
tioned limitation of using the word as the only fea-
ture, we experimented further with n-gram feature
sets. For each candidate word, we generated char-
acter uni-, bi-, and tri-grams first, and then their
counts within the word were used as feature values
to train the model. To take an example, suppose
our candidate word is ‘passenger’, the computed
uni-, bi-, and tri-gram features vectors will be as
follows:

• uni-gram {‘a’:1, ‘e’:2, ‘g’:1, ‘n’:1, ‘p’:1,
‘r’:1, ‘s’:2}

• bi-gram {‘p’:1, ‘as’:1, ‘en’:1, ‘er’:1, ‘ge’:1,
‘ng’:1, ‘pa’:1, ‘r ’:1, ‘se’:1, ‘ss’:1}

• tri-gram {‘pa’:1, ‘ass’:1, ‘eng’:1, ‘er ’:1,
‘ger’:1, ‘nge’:1, ‘pas’:1, ‘sen’:1, ‘sse’:1}

The intuition is simple: It is more probable that
the corresponding uni-, bi-, and tri-grams have been

8We write ‘word’ although, in practice, it actually refers to
a token because ‘a word’ is not necessarily a lexical word, for
example if we consider an instance from our training data, i.e.
‘ycsteidas’.

seen in the training data as opposed to the complete
word. This can remove the above described lim-
itation and make the system more scalable. The
models were then trained on the resulting feature
vectors and then tested on the test data.

4.2 Results

Experiment I The results from the first exper-
iment, where only one feature was used to train
different machine learning models, are presented
in Table 3. We can observe that both Decision
Tree and SVM outperform the other models on
the Swedish dataset, achieving 80% F1. Bernoulli
Naive Bayes is almost as good with an F1 of 79%.
Decision Tree is the best performing model on
the English dataset with the highest F1 of 71%.
These results strengthen previous successful at-
tempts to train an SVM model for detecting OCR
errors (Arora et al., 2010; Hamid and Sjarif, 2017;
Clematide and Ströbel, 2018).

Experiment II The results from the second ex-
periment are presented in Table 4. Even though we
experimented with the same feature combination as
reported in Dannélls and Persson (2020), our base-
line yields 70% F1 compared to their reported 63%
F1 probably owing to parameter settings and the
chosen sub datasets. The results on Fraktur&Olof
show that the model trained on 1-word-feature out-
performs the model trained on 6 (baseline) and 10
feature sets respectively.

Interestingly, the results on the Sydney dataset
show no difference in performance between the 10-
feature and the 1-word-feature datasets. In contrast
to the Fraktur&Olof dataset where F1 increases
with 5%. We believe the difference in the results
between Fraktur&Olof and Sydney can be charac-
terized by the nature of the data. A manual inspec-
tion of the datasets reveals that Fraktur&Olof is rep-
resentative with regards to its vocabulary. Hence,
more words in the Swedish dataset were seen in the
training set as compared to the English counterpart.

Our baseline results on the ICDAR2017 dataset



Fraktur&Olof Sydney ICDAR2017
Precision Recall F1 Precision Recall F1 Precision Recall F1

Uni-gram 0.81 0.78 0.78 0.83 0.68 0.70 0.89 0.87 0.87
Bi-gram 0.87 0.87 0.87 0.86 0.76 0.79 0.91 0.91 0.91
Tri-gram 0.89 0.89 0.89 0.84 0.74 0.77 0.88 0.88 0.88

Table 5: The accuracy scores of the SVM classifier trained with the n-gram feature sets. Best results for each
dataset in bold (Experiment III).

are not as high compared to the F1 reported by
Mei et al. (2016) and Nguyen et al. (2019b). The
reason for this is because we are experimenting
with completely different datasets with respect to
both size and content. Training the SVM classifier
on 1-word-feature did not improve the baseline.
This, again, may be due to the nature of the data.

Experiment III The results from the experi-
ments with the n-gram feature sets are shown in
Table 5. When we compare between the results
of the 1-word-feature and the n-gram feature mod-
els, we see there is an improvement for all three
datasets: Fraktur&Olof, Sydney, and ICDAR2017.

The best performance achieved on Fraktur&Olof
is 89% F1 with the tri-gram model. This is the high-
est results on 19th century Swedish text reported so
far. The best performing model for Sydney is 79%
F1, achieved with the bi-gram model. The best
results achieved on the ICDAR2017 data are also
with the bi-gram model. For all datasets the n-gram
models show an incremental improvement. One
explanation for the difference between the results
might be the differences between the types of OCR
errors in each dataset. The most obvious errors on
Fraktur&Olof are due to appearance of long s, up-
percase letters and miss-recognition of the Swedish
vowels (‘å’ and ‘ä’), while obvious errors in IC-
DAR2017 are due to hypens and non-alphanumeric
characters.

5 Discussion and Conclusion

Training supervised machine learning models with
large number of features is a computationally ex-
pensive task. This has been demonstrated in pre-
vious work where carefully crafted features were
considered at the expense of high computational
costs. In our experiments we trained an SVM
model on a number of feature sets consisting of
6 features, 10 features, one word feature and three
n-gram character level features, and compared their
results. By training the model on the word itself,
we are necessarily turning the machine learning

model into a dictionary look-up kind of system.
The results show that the 1-word-feature model
trained on word level is sufficient, not only for im-
proving over the baseline, but also for reaching
better results than previously reported for historical
Swedish data. The results on the English datasets
show that the 1-word-feature model is as good as
the 10-feature model. This proves that with the
dictionary of words over the training data alone we
can better predict whether a word contains an OCR
error or not. However, this type of approach has
its own limitations as mentioned previously, and
for that purpose, we turned to character level n-
gram based approach, which improved the results
further.

What makes the proposed approach interesting
is that it eliminates the need to compute many fea-
tures for detecting OCR errors. On the other hand,
we are aware that it relies on the availability of
large amount of training data which is also costly,
and will in turn also increase the training time.

Notwithstanding, in this work we kept the
datasets rather small mostly because of time con-
straints and memory issues. This leaves several
open questions regarding the representativeness of
the chosen data. Correspondingly, we are unable to
make direct comparisons with the results reported
by others. In the future, we plan to experiment with
bigger datasets, and our hope is to improve on the
results reported in this study. Parameter optimiza-
tion of the chosen machine learning algorithms is
another direction which can be explored further
to improve the results in future. Another possible
way to improve the results is to use the back-off
approach in the n-gram setting. Taking a back-off
approach we will use a bi-gram if a tri-gram is not
in the vocabulary in a tri-gram setting, and likewise
a uni-gram if a bi-gram is not in the vocabulary.

Acknowledgments

The work presented here was funded by (1) the
Dictionary/Grammar Reading Machine: Compu-



tational Tools for Accessing the World’s Linguis-
tic Heritage (DReaM) Project awarded 2018–2020
by the Joint Programming Initiative in Cultural
Heritage and Global Change, Digital Heritage and
Riksantikvarieämbetet, Sweden; (2) the Swedish
Research Council as a part of the project South Asia
as a linguistic area? Exploring big-data methods
in areal and genetic linguistics (2015–2019, con-
tract no. 421-2014-969); (3) From Dust to Dawn:
Multilingual Grammar Extraction from Grammars
project funded by Stiftelsen Marcus och Amalia
Wallenbergs Minnesfond 2007.0105, Uppsala Uni-
versity; (4) the Swedish Research Council as part
of the project Evaluation and refinement of an en-
hanced OCR-process for mass digitisation (2019–
2020, grant agreements IN18-0940:1 and 421-
2014-969). It is also supported by Språkbanken
Text and Swe-Clarin, a Swedish consortium in
Common Language Resources and Technology In-
frastructure (CLARIN) Swedish CLARIN (grant
agreement 821-2013-2003). The authors would
like to thank the SLTC anonymous reviewers for
their valuable comments and suggestions on how
to improve the paper.

References
Ibrahim S I Abuhaiba. 2006. Efficient OCR using sim-

ple features and decision trees with backtracking.
Journal for science and engineering, 31(2):223–
244.

Yvonne Adesam, Dana Dannélls, and Nina Tahmasebi.
2019. Exploring the quality of the digital historical
newspaper archive kubhist. In Proceedings of the
4th Conference of The Association Digital Human-
ities in the Nordic Countries (DHN), pages 9–17,
Copenhagen, Denmark. University of Copenhagen,
Faculty of Humanities.

Chantal Amrhein and Simon Clematide. 2018. Su-
pervised OCR error detection and correction us-
ing statistical and neural machine translation meth-
ods. Journal for Language Technology and Compu-
tational Linguistics (JLCL), 33(1):49–76.

Sandhya Arora, Debotosh Bhattacharjee, Mita
Nasipuri, Latesh L. G. Malik, Kundu Mahantapas,
and Dipak Kumar Basu. 2010. Performance compar-
ison of SVM and ANN for handwritten Devnagari
character recognition. IJCSI International Journal
of Computer Science Issues, 7(6).

Lars Borin and Markus Forsberg. 2011. A di-
achronic computational lexical resource for 800
years of Swedish. In Caroline Sporleder, Antal
van den Bosch, and Kalliopi Zervanou, editors, Lan-
guage technology for cultural heritage, pages 41–61.
Springer, Berlin.

Guillaume Chiron, Antoine Doucet, Mickaël Coustaty,
and Jean-Philippe Moreux. 2017. ICDAR2017 com-
petition on post-OCR text correction. 14th IAPR In-
ternational Conference on Document Analysis and
Recognition (ICDAR), 01:1423–1428.

Simon Clematide and Phillip Ströbel. 2018. Improving
OCR quality of historical newspapers with handwrit-
ten text recognition models. In Workshop DARIAH-
CH, Neuchâtel. University of Zurich.

Dana Dannélls and Simon Persson. 2020. Supervised
OCR post-correction of historical Swedish texts:
What role does the OCR system play? In Pro-
ceedings of the Digital Humanities in the Nordic
Countries 5th Conference, volume 2612 of CEUR
Workshop Proceedings, pages 24–37, Riga, Latvia.
CEUR-WS.org.

Senka Drobac, Pekka Kauppinen, and Krister Lindén.
2017. OCR and post-correction of historical Finnish
texts. In Proceedings of the 21st Nordic Conference
on Computational Linguistics (Nodalida), pages 70–
76, Gothenburg, Sweden. Association for Computa-
tional Linguistics.

Quan Duong, Mika Hämäläinen, and Simon Hengchen.
2020. An unsupervised method for OCR post-
correction and spelling normalisation for Finnish.
arXiv, abs/2011.03502.

John Evershed and Kent Fitch. 2014. Correcting noisy
OCR: Context beats confusion. In Proceedings of
the First International Conference on Digital Access
to Textual Cultural Heritage, DATeCH ’14, pages
45–51, New York, NY, USA. Association for Com-
puting Machinery.

Norhidayu Abdul Hamid and Nilam Nur Amir
Sjarif. 2017. Handwritten recognition using SVM,
KNN and Neural Network. ArXiv pre-print,
abs/1702.00723.

Harald Hammarström, Shafqat Mumtaz Virk, and
Markus Forsberg. 2017. Poor man’s OCR post-
correction: Unsupervised recognition of variant
spelling applied to a multilingual document collec-
tion. In Proceedings of the 2nd International Confer-
ence on Digital Access to Textual Cultural Heritage,
DATeCH 2017, pages 71–75, NY, USA.

Simon Hengchen, Ruben Ros, and Jani Marjanen. 2019.
A data-driven approach to the changing vocabu-
lary of the ‘nation’ in English, Dutch, Swedish and
Finnish newspapers, 1750-1950. In Proceedings
of the Digital Humanities (DH) conference 2019,
Utrecht, The Netherlands.

Gitansh Khirbat. 2017. OCR post-processing text cor-
rection using simulated annealing (OPTeCA). In
Proceedings of the Australasian Language Technol-
ogy Association Workshop 2017, pages 119–123. As-
sociation for Computational Linguistics.

https://www.aclweb.org/anthology/W17-0209
https://www.aclweb.org/anthology/W17-0209
https://arxiv.org/abs/2011.03502
https://arxiv.org/abs/2011.03502
http://arxiv.org/abs/1702.00723
http://arxiv.org/abs/1702.00723


Ido Kissos and Nachum Dershowitz. 2016. OCR er-
ror correction using character correction and feature-
based word classification. In Document Analy-
sis Systems 12th IAPR Workshop, pages 198–203.
IEEE.

Okan Kolak and Philip Resnik. 2005. OCR post-
processing for low density languages. In Proceed-
ings of Human Language Technology Conference
and Conference on Empirical Methods in Natural
Language Processing (HLT/EMNLP), pages 867–
874, Vancouver, B.C., Canada. Association for Com-
putational Linguistics.

Jie Mei, Aminul Islam, Yajing Wu, Abidalrahman
Mohd, and Evangelos E Milios. 2016. Statistical
learning for OCR text correction. arXiv preprint,
abs/1611.06950.

Thi-Tuyet-Hai Nguyen, Mickaël Coustaty, Doucet An-
toine, and Nhu-Van Nguyen. 2018. Adaptive edit-
distance and regression approach for post-OCR
text correction. In 20th International Conference
on Asia-Pacific Digital Libraries, ICADL, volume
11279 of Lecture Notes in Computer Science, pages
278–289. Springer.

Thi-Tuyet-Hai Nguyen, Adam Jatowt, Mickael Cous-
taty, Nhu-Van Nguyen, and Antoine Doucet. 2019a.
Deep statistical analysis of OCR errors for effective
post-OCR processing. In Proceedings of the 18th
Joint Conference on Digital Libraries, JCDL ’19,
page 29–38. IEEE Press.

Thi-Tuyet-Hai Nguyen, Adam Jatowt, Mickaël Cous-
taty, Nhu-Van Nguyen, and Antoine Doucet. 2019b.
Post-OCR error detection by generating plausible
candidates. In International Conference on Docu-
ment Analysis and Recognition (ICDAR), pages 876–
881. IEEE.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in Python. Journal of machine
learning research, 12:2825–2830.

Sarah Schulz and Jonas Kuhn. 2017. Multi-modular
domain-tailored OCR post-correction. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
2716–2726, Copenhagen, Denmark. Association for
Computational Linguistics.

Ray Smith. 2007. An overview of the Tesseract OCR
engine. In Ninth International Conference on Docu-
ment Analysis and Recognition (ICDAR 2007), vol-
ume 2, pages 629–633. IEEE.

Ume Springmann, Dietmar Najock, Hermann Morgen-
roth, Helmut Schmid, Annette Gotscharek, and Flo-
rian Fink. 2014. OCR of historical printings of Latin
texts: Problems, prospects, progress. In Proceed-
ings of the First International Conference on Digital

Access to Textual Cultural Heritage, DATeCH 2014,
pages 71–75, New York, USA. Association for Com-
puting Machinery.

http://arxiv.org/abs/1611.06950
http://arxiv.org/abs/1611.06950

